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Sustaining Ecosystem Function Under Environmental Change: The Combined 

Impacts of Temperature, Species Diversity and Limiting Resources on 

Phytoplankton Communities 

Leah Lewington-Pearce 

ABSTRACT 

Plankton play a key role in regulating nutrient and carbon cycles in freshwater 

ecosystems. The uptake and processing of nutrients in planktonic biomass are highly 

sensitive to changes in the environment, such as alterations in the availability of 

limiting nutrients, increasing temperature due to climate change, and changes to the 

composition of interacting species. The focus of this thesis is to use a variety of 

experimental and theoretical methods to assess and predict the impact of multiple 

perturbations on community structure, dynamics and ecosystem function, with a 

particular focus on interactions between phytoplankton and their consumers 

(zooplankton). Increases in both temperature and phytoplankton species diversity 

independently decreased CO2 concentrations when the number of non-resource 

species (those inedible to the zooplankton) were high. Using structural equation 

modeling I show that the effect is indirect, resulting largely from the positive impacts 

on total biomass of phytoplankton. Phytoplankton are limited by a range of 

resources, and differences in the functional traits used to utilize light and nutrients 

can explain the distributions of species under different temperature regimes. I found 

that under light and nitrogen limitation, resource requirements are generally lowest at 

intermediate temperatures, and that changes in temperature may therefore alter the 

competitive hierarchy amongst species. Using the model freshwater phytoplankton 

Chlamydomonas reinhardtii, I also find that previous selection environments govern 

future competitive abilities in phytoplankton. Adaptation to a high salt and low 

nutrient stress increases competitive ability under light limited conditions, indicating 

a strong dependency of selection environment for overall competitiveness. This 

thesis provides a mechanistic insight into the role of diverse plankton communities 

for community dynamics and ecosystem functioning. 
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CHAPTER 1 

General Introduction 

 

Climate warming modifies ecological communities 

Human activities result in global climate warming, with an estimated surface 

temperature rise of between 2.6 and 4.8oC by the end of the century (IPCC 2014). 

Unfortunately, scientists seldom know if, or how quickly populations can respond to 

changes in the climate (Urban et al. 2016) because populations differ greatly in their 

adaptive potential (Hoffmann and Sgrò 2011, Merilä and Hendry 2014), and ability 

to track suitable climates into new regions through dispersal and range shifts 

(Schloss et al. 2012). The warming of our climate has a strong impact on freshwater 

communities in particular because they are often spatially confined, strongly size-

structured and dominated by ectotherms, whose contributions to ecosystem 

functioning largely depend on environmental temperature (Woodward et al. 2012). It 

is therefore pivotal to understand and predict how environmental warming might 

affect the future properties of freshwater species and communities.  

Environmental temperature is one of the fundamental drivers of biological 

activity, influencing processes at multiple levels of organization, from sub-cellular to 

entire communities (Eppley 1972, Brown et al. 2004, Kingsolver 2009, Dell et al. 

2011, Kratina et al. 2012, Sentis et al. 2017). The vital rates of individual 

populations involved in biotic interactions, may respond differentially to temperature 

changes (Dell et al. 2011), generating cascading effects throughout ecological 

communities (Harley 2011, Kratina et al. 2012). Increased temperatures accelerate 

the reaction rate of enzymes, where the respiratory rates of heterotrophic organisms 

are more sensitive to changes in temperature than the photosynthetic rates of 

autotrophic organisms (Allen et al. 2005). Thus greater sensitivity of consumers to 

temperature, compared to producers can generate a stronger top-down control of 

food webs, in comparison to resource (bottom-up) control and enhance the strength 

of consumer-resource interactions (O'Connor 2009, Yvon-Durocher et al. 2010, 

Kratina et al. 2012, Eklöf et al. 2015). Alternatively, temperature can shift elemental 

stoichoimetry and the uptake rates of resources (Yvon-Durocher et al. 2015b), 
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potentially strengthening bottom-up control of food webs through increased 

competition of autotrophs for non-substitutable resources.  

These changes in bottom-up and top-down control of ecological communities 

governed by climate warming, can alter the taxonomic composition, distribution and 

strength of biotic interactions and stability of entire ecosystems (Pawar et al. 2012). 

Therefore understanding how individual species or functional groups respond to 

temperature is an important step toward forecasting species persistence and 

community composition in future warmer environments.     

 

Resources structure ecological communities 

Resource availability strongly governs the structure, dynamics and temporal stability 

of ecological communities (Rosenzweig 1971, Ives and Carpenter 2007, Li and 

Stevens 2017). Climatic or environmental events can cause resource supply to 

fluctuate (Yang et al. 2008, Hastings 2012), so that periods of resource abundance 

are followed by periods of resource scarcity. The consequences of fluctuating 

resource abundance are likely to be highly species and context dependent, such that 

opportunistic generalist species can cope with the environmental change (Li and 

Stevens 2017). Such variable resource availability can select for populations with 

high growth rates during resource abundance, a common example of which includes 

fast growing local phytoplankton blooms, commonly found in eutrophic water 

(Anderson et al. 2002). Over time, competition for a common resource that is in 

limited supply can result in a superior competitor eliminating inferior populations or 

species from a location, also known as the competitive exclusion principle (Gause 

1934). Competitive exclusion principle states that the number of co-existing species 

cannot exceed the number of limiting resources (Hardin 1960).  

The ability of multiple species to coexist on a few limiting resources, in spite 

of the tendency for competition that excludes other species is known as the “paradox 

of the plankton” (Hutchinson 1961). One of the main explanations of the “paradox of 

the plankton” is that fluctuations in resource availability can enable diverse 

communities because species differ in their growth strategies, where one species 

grows fast on abundant resources and another can survive on scarce resources 

(Hutchinson 1961, Grover 1997, Chesson 2000, Descamps-Julien and Gonzalez 

2005). Further explanation of high diversity in phytoplankton communities is that 
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phytoplankton species differ in their requirements for distinct non-substitutable 

resources (Tilman 1982, Grover 1997). One such example of this resource 

partitioning is found in diatoms that are limited chiefly by the availability of silica, 

whereas other phytoplankton functional groups such as cyanobacteria are not 

(Reynolds et al. 2002). Therefore the variability in the availability of different 

resource types is important for determining community composition.  

Competition for limiting resources may also lead to character displacements 

among species, where evolution of niche differentiation alleviates the negative 

influence of resource limitation and competition for limiting resources. Some of the 

most compelling and important examples of adaptive evolution include Darwin’s 

finches, sticklebacks, and anolis lizards among others (Schluter and McPhail 1992, 

Losos et al. 1998, Grant and Grant 2006). However, because phytoplankton compete 

for non-substitutable resources that cannot be compensated by the consumption of 

another resource, competition for a single limiting resource may result in species 

converging on a single optimum phenotype (Abrams 1987, Vasseur and Fox 2011). 

Therefore characterising how phytoplankton evolve in response to limiting resource 

environments is also important for determining community composition.  

 

Planktonic communities as a model system 

Plankton are an excellent model system to investigate ecological interactions and 

population dynamics for a variety of reasons. Planktonic populations show large 

changes in their population numbers over a short period of time due to their 

relatively short generation times and high population growth rates (Klausmeier et al. 

2008, Edwards et al. 2013). Zooplankton in particular are key organisms in 

many lentic ecosystems, due to their strong links to both phytoplankton resources 

and fish predators (Carpenter et al. 2001). Plankton also play a crucial role in the 

top-down control of phytoplankton species due to their gape-limited feeding, 

allowing larger phytoplankton to escape predation (Gliwicz and Siedlar 1980). It is 

relatively easy to collect large amounts of data on the population dynamics of 

plankton in the field because populations cover large spatial areas, the data of which 

can then be used to parameterize predictive models (Litchman and Klausmeier 

2008). 
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Phytoplankton have been used to develop and test fundamental ecological 

principles such as species coexistence (Hutchinson 1961), competition for resources 

(Tilman 1982) and ecological stoichiometry (Sterner and Elser 2002). At a global 

scale, phytoplankton are also ecologically important. As major primary producers in 

most aquatic ecosystems, they are responsible for nearly half of primary production 

for the planet, form the basis of aquatic food webs, and also influence global cycles 

of nitrogen and phosphorus among other elements (Falkowski et al. 1998, Field et al. 

1998). Phytoplankton are also sensitive to environmental forcing such as climate 

change (Falkowski and Oliver 2007). The composition of phytoplankton 

communities can strengthen or mitigate climate change by fixing atmospheric carbon 

through photosynthesis (Field et al. 1998). The relative abundance of phytoplankton 

also has profound effects on the trophic dynamics in aquatic ecosystems by altering 

the relative species abundances at higher trophic levels (Falkowski et al. 1998). The 

supposed simplicity of phytoplankton life histories makes them an ideal system with 

which to study general ecological questions regarding the effects of biotic and abiotic 

forcing on community structure and ecosystem function. However, the perceived 

simplicity of plankton may hide a range of complex interactions that should not be 

underestimated.  

  

Microcosms as experimental ecosystems 

Laboratory microcosms are a useful tool, in particular for the study of population and 

community dynamics. Experimental microcosms are miniature-constructed 

ecosystems, which offer a possibility to test ecological concepts involving different 

levels of organization from the individual populations to community-based 

extrapolations (Altermatt et al. 2015). They enable manipulation of physical and 

biological factors in a controlled laboratory set up (Drake and Kramer 2012). Many 

natural communities are too complex to permit the level of replication and control 

needed to empirically validate ecological theory. Moreover, the type of experimental 

design is so logistically complex that it is impossible to directly perform them in the 

field (Altermatt et al. 2015). Various groups of organisms, including phytoplankton, 

bacteria and arthropods are frequently used in model microcosms, to investigate the 

mechanistic underlying of patterns in predator-prey dynamics, the importance of 

biodiversity, significance of trade-offs, effects of environmental change on food web 
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structure and to determine the role of keystone species (Gause 1934, Petchey et al. 

1999, Gonzalez and Chaneton 2002, Kratina et al. 2010, Narwani and Mazumder 

2010, 2012). The relatively short generation times of these organisms allow 

investigations of long-term effects over a relatively short experimental duration. The 

results of the microcosm studies may be difficult to scale directly to natural 

conditions, but the findings can be used to identify underlying mechanisms and as 

well as generate new hypotheses to test in natural conditions (Drake and Kramer 

2012). 

 There are, however, specific challenges associated with microcosm-based 

experimental work (Carpenter 1996, Schindler 1998, Carpenter 1999). First, it cannot 

be assumed that the full complexity of an organisms’ interactions with its 

environment can be approximated due to the subset of species included in the 

microcosms (Drake and Kramer 2012). Reduced complexity of microcosms may 

eliminate the ability to reliably predict the ecosystem function in question and to 

directly extrapolate the results from microcosm to the whole natural ecosystem 

(Carpenter 1996, Schindler 1998). Second, even though microcosm experiments are 

designed specifically to tease apart one or only a few processes, multiple ecological 

and environmentally stochastic processes may be acting in concert. This makes it 

inherently difficult to develop a comprehensive understanding of the whole system, 

for example the process of species migration (Drake and Kramer 2012, Altermatt et 

al. 2015). Third, processes that act on different spatiotemporal scales may be 

difficult to tease apart, especially in long-term experiments on large spatial scales. 

Natural ecosystems have fluctuating environmental conditions (Bulling et al. 2006), 

which may not be fully represented in microcosm experiments that tend to last less 

than a year (Ricklefs 2004). Due to these shortcomings, a combination of modeling 

and microcosms is the most ideal approach (Altermatt et al. 2015).  

  

Using functional traits to predict community structure 

A fundamental goal in community ecology is to understand and predict how 

environmental change impacts biodiversity and how these changes alter ecosystem 

functioning. One approach to understanding the mechanisms governing species 

coexistence and biodiversity in a phytoplankton community is to identify and 

characterize the key functional traits and trade-offs for multiple species in a 
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community (Litchman et al. 2010). Trait based approaches are being increasingly 

used to explain community organization along environmental gradients in both 

aquatic and terrestrial ecosystems (McGill et al. 2006, Litchman and Klausmeier 

2008), and can be used to leverage sparse data to make more general inferences 

about unstudied species (Urban et al. 2016). Understanding phytoplankton trait 

diversity is essential because changes in phytoplankton communities inevitably 

affect higher trophic levels, from zooplankton to fish, biogeochemical cycling and 

may alter water quality and services that aquatic ecosystems provide to humans 

(Menden-Deuer and Kiørboe 2016). Species traits measured under the laboratory 

conditions are good predictors of phytoplankton performance in nature (Edwards et 

al. 2013). Resource utilization traits such as the maximum nutrient uptake rate, half-

saturation constant and uptake affinity, in particular are among the key response 

traits that define the ecological niche of an organism (Chase and Leibold 2003, 

Litchman and Klausmeier 2008), and different values in these traits correspond to 

distinct ecological strategies (Sommer 1985, Litchman et al. 2007). Investigating 

how functional traits vary along environmental gradients is therefore an essential 

prerequisite to predicting how ecological communities may respond to climate 

change.  

In phytoplankton, nutrient acquisition traits and nutrient requirements for 

population growth are among the major response traits affecting fitness. A variety of 

studies have linked nutrient physiology to population dynamics through simple 

mathematical models (Droop 1973, Tilman 1982, Grover 1991). The parameters 

derived from these models can be measured empirically in the laboratory, and then 

used to predict the outcome of competition for limiting resources. These parameters 

therefore represent informative response traits that relate directly to a populations 

growth. By comparing traits across species, we can identify the important trade-offs 

defining resource competition.  

 

Research aims and thesis organization 

In the following chapters, I describe my efforts to understand how temperature, 

species diversity and resource limitation affect freshwater planktonic community 

structure and function by altering the ecological interactions. Whilst the individual 

effects of these environmental drivers are relatively well understood, little is known 
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about how these drivers combine to shape community assembly. The thesis chapters 

address these objectives from a ‘top-down’ perspective. I begin by describing how 

temperature and species diversity impact ecosystem function as a result of 

interactions across trophic levels, how temperature alters the competitive interactions 

among species within a trophic level, how competitive traits evolve within individual 

species and finally whether trade-offs in competitive traits within a population of the 

same species also occur between taxonomically different species. 

 

In Chapter 2, I analysed the independent and combined effect of warming and non-

resource diversity on a zooplankton-phytoplankton model system to investigate their 

impact on community structure and ecosystem function. I focused on the 

concentration of CO2 in the water, because zooplankton and phytoplankton are 

important in controlling concentrations of atmospheric CO2 through changes in the 

rates of photosynthesis and respiration (Allen et al. 2005). I applied structural 

equation modelling to identify whether the temperature and non-resource diversity 

directly affect the amount of CO2 concentrations or whether the effects operated 

indirectly through changes in the zooplankton-phytoplankton community structure.    

 

In Chapter 3, I examined how temperature alters the minimum requirements of six 

phytoplankton species for essential limiting resources. I showed that the key traits 

governing phytoplankton competition for light and nitrogen are strongly 

temperature-dependent with notable increases in minimum resource requirements at 

temperatures above the species optima. These temperature-dependent responses are 

also different across multiple species.  

 

The variation in the traits that govern resource competition within a single species 

may be important and possibly as large as the variation among species. In chapter 4, 

I therefore used an established model species, Chlamydomonas reinhardtii, to 

investigate the evolutionary response of competitive traits of many environmentally 

selected populations to resource limitation. I showed that resource requirements of 

individual populations respond to selection under different resource availability. In 

particular, populations selected under nitrogen limitation resulted in the adaptation of 

low requirements of nitrogen. I discuss the importance of the intraspecific variability 

within ecological communities as a signature of the previous selection environment. 
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Chapter 5 provides a general summary and discussion of the main results from all 

data chapters and places these findings into the broader context of global 

environmental change and species diversity. Biological mechanisms such as the life 

history and evolutionary potential of a species are fundamentally important in 

mediating present and future responses to abiotic environmental variation (Urban et 

al. 2016). This thesis fills some of the gaps in empirical data and advances our 

current mechanistic understanding of the affect of environmental change on the 

diversity of freshwater planktonic communities. 
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CHAPTER 2 

Diversity and Temperature Indirectly Reduce CO2 Concentrations 

in Experimental Freshwater Communities 

 

 

Abstract 

 

Biodiversity loss and climate warming are occurring in concert, with potentially 

profound impacts on ecosystem functioning. We currently know very little about the 

combined effects of these changes on the links between the community structure, 

dynamics, and the resulting in situ CO2 concentrations in freshwater ecosystems.  

We performed a simple food web experiment, where we analyzed the responses of 

freshwater phytoplankton, zooplankton, and dissolved CO2 to factorially manipulated 

gradients of inedible/non-resource species diversity and environmental temperature. 

We aimed to determine the individual and combined effects of temperature and non-

resource diversity on CO2 concentration, either directly, or indirectly via influences 

on the phytoplankton and zooplankton biomass. There were no interactive effects of 

temperature and diversity on CO2 concentration in the water. Increases in both 

temperature and non-resource diversity independently decreased CO2 concentrations, 

with a substantial reduction in CO2 concentrations at the highest non-resource 

diversity. A structural equations model showed that the effects of non-resource 

diversity and warming on CO2 were indirect, resulting largely from the positive 

impacts on total biomass of primary producers. Our study is the first to 

experimentally partition the impacts of temperature and diversity, providing a 

mechanistic insight into the role of diverse plankton communities for ecosystem 

functioning and their importance in regulating CO2 dynamics under ongoing climate 

warming.  
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Introduction 

 

Biodiversity loss and climate warming are both occurring simultaneously, and at 

unprecedented rates (Butchart et al. 2010, IPCC 2014). Yet, very little is known 

about their combined effects on community structure, dynamics, and on the flux of in 

situ CO2 between aquatic systems and the atmosphere (Traill et al. 2010, Atwood et 

al. 2015). A detailed assessment of the relationship between community structure 

and ecosystem function across diversity and temperature gradients is pivotal to 

improving our understanding of the role that biodiversity can play in mitigating the 

impact of climate warming.  

Human activities have increased the concentrations of heat-trapping gases in 

the atmosphere, inducing global climate warming. There is no evidence of a 

reduction in the rate of global surface warming, known as the ‘warming hiatus’, 

indicating that climate warming is still accelerating (Karl et al. 2015). Climate 

models forecast mean rises in global surface temperatures of 1.5oC  to 4.5oC  by the 

year 2100, with CO2  being the main contributor (Meinshausen et al. 2011, IPCC 

2014). Freshwater communities are particularly sensitive to warming because they 

are often spatially confined, strongly size-structured and dominated by ectotherms, 

whose contributions to ecosystem functioning largely depend on environmental 

temperature (Woodward et al. 2012). Ectotherms include diverse phytoplankton taxa 

that play a key role in carbon sequestration in freshwaters, through primary 

production (Kratina et al. 2012, Low-Décarie et al. 2014, Davidson et al. 2015, Low-

Décarie et al. 2015).  

 Changes in plankton interaction networks, via climate warming or 

biodiversity loss, alter the ratio of heterotrophs to autotrophs and shift the rates of 

photosynthesis and community respiration - two biological processes that drive the 

global carbon cycle and concentrations of atmospheric CO2 (Allen et al. 2005). 

Greater sensitivity of consumers to temperature, compared to producers, can amplify 

top-down control by increasing interaction strengths (O'Connor et al. 2009, Kratina 

et al. 2012, Eklöf et al. 2015). Increased herbivory can indirectly enhance emissions 

of CO2 into the atmosphere by reducing the phytoplankton biomass, thus reducing 

the rate of carbon sequestration (Atwood et al. 2013). Alternatively, zooplankton 

grazing on phytoplankton could weaken at higher temperatures due to the stronger 
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temperature dependence of metabolism than feeding in consumers (Rall et al. 2010, 

Fussmann et al. 2014). Depending on the relative impacts of temperature on trophic 

interactions and community structure, warming may either reduce or increase CO2 

concentrations in aquatic ecosystems.  

Species diversity may alter the effects of warming on community structure, 

dynamics and CO2 concentration. For example, lakes with diverse phytoplankton 

communities contain many species that are inedible to herbivorous zooplankton 

(Hillebrand and Cardinale 2004). These ‘non-resources’ are species outside of the 

focal consumer-resource relationship that may interfere with zooplankton foraging, 

effectively reducing the strength of top-down control (Kratina et al. 2007, Narwani 

and Mazumder 2010, 2012), enhancing food web stability and persistence (Narwani 

and Mazumder 2012, Hammill et al. 2015). Consequently, the increased biomass of 

phytoplankton resource and non-resource species can enhance sequestration of CO2, 

thereby reducing its concentration in the water (Davidson et al. 2015). However, we 

currently know very little about the combined effects of diversity and temperature on 

ecological community structure and dynamics, and particularly on the resulting 

changes in in situ CO2 concentrations. The carbon metabolism and carbon balance 

are inherently dynamic processes but it is unknown how closely CO2 concentrations 

track the dynamics of plankton communities. 

Previous research has only examined the independent effects of diversity 

(Naeem et al. 1994, Schleuss et al. 2014) and temperature (Davidson and Janssens 

2006) on carbon storage in terrestrial ecosystems, despite the fact that freshwater 

ecosystems emit a similar amount of CO2 due to changing land-use patterns (Cole et 

al. 2007). Only one previous study has investigated the combined effect of species 

richness and temperature on multiple ecosystem processes in aquatic environments 

(Perkins et al. 2015). The authors investigated the diversity of benthic macro 

invertebrates and found that at the low and high temperature, multifunctionality 

increased with species richness so that approximately two species were required to 

drive an additional ecosystem process (Perkins et al. 2015). However, this work did 

not monitor consumer, resource, non-resource or CO2 dynamics and did not establish 

the temporal link between the CO2 dynamics and community structure.    

Here, we experimentally tested both the independent and interactive effects 

of temperature and gradients of non-resource diversity on several causal pathways 

(changes in plankton community structure) that affect CO2 concentration. 
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Corresponding time-series of phytoplankton biomass, consumer and resource 

densities and CO2 concentrations were established for 96 experimental plankton 

communities. We hypothesized that higher temperature causes an indirect increase of 

CO2 concentration in the water by enhancing consumer respiration and intensifying 

consumer grazing on phytoplankton. By contrast, we expected that non-resource 

diversity indirectly reduce CO2 concentration by weakening the consumer-resource 

interactions, increasing autotroph biomass and fixing CO2 through photosynthesis. A 

greater freshwater carbon storage capacity can result from plant biomass being 

deposited in the sediment, thus escaping decomposition and re-mineralization in the 

water column. These hypothetically antagonistic impacts of temperature and 

diversity have the potential to further exacerbate or mitigate ongoing climate 

warming.  

 

Methods 

 

(a) Model communities and experimental design  

We used the freshwater filter-feeding zooplankton Daphnia pulex (hereafter ‘D. 

pulex’ or ‘consumer’) feeding on the freshwater green algae Chlorella vulgaris 

(hereafter ‘C. vulgaris’ or ‘resource’) as our consumer-resource model system. 

Daphnia is a key zooplankton in many lentic ecosystems, with strong links to 

both phytoplankton resources and fish predators (Carpenter et al. 2001). The 

experimental design consisted of four-phytoplankton diversity treatments consisting 

of 0 (only C. vulgaris), 2, 4 and 8 non-resource species, assembled into two different 

community compositions (A and B; Table 2.1). The two community compositions 

allowed us to test the effect of diversity per se, as there may be variation in the 

composition of natural communities. The 14 species used in the non-resource 

phytoplankton species pool were selected for the following reasons (i) their cell (or 

colony) size was larger than ~45 μm and were therefore less easily consumed by D. 

pulex (Burns and Gilbert 1986, Narwani and Mazumder 2010); (ii) the species exist 

in combinations that represent communities that occur naturally (US EPA’s National 

Lakes Assessment survey, Table S2.1); (iii) species could be distinguished 

morphologically under a microscope. Due to the limited size of the species pool, the 

two 8 non-resource species treatments inevitably shared some species with the 4 and 
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2 non-resource species compositions (Table 2.1). The original sources of the 

phytoplankton taxa and their relative inoculation biovolumes can be found in Table 

S2.1.  

All non-resource diversity treatments and species compositions were 

maintained at different temperatures in separate incubators (Stuart SI500, Orbital) set 

to 19oC, 23oC and 27oC. Preliminary studies were used to determine the range of 

temperatures that enabled positive growth rates of all consumer, resource and non-

resource species in monoculture. Incubators were lit with cool white LED light 

panels (Mirrorstone™) set to a 12h light: 12h dark cycle. Each LED light panel 

emitted ca. 100 μmol m-2 s-1 of Photosynthetically Active Radiation (PAR). We 

collected 60 mL samples twice a week for 8 weeks, resulting in 16 temporal samples. 

The experiment consisted of two blocks (due to space limitation in the incubators) 

and all treatment combinations were replicated twice in each block, yielding a total 

of 96 experimental units (4 diversity treatments x 2 community compositions x 3 

temperatures x 2 replicates x 2 blocks = 96).  
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Table 2.1. Experimental phytoplankton community compositions with individual 

species for each non-resource diversity treatment. The 0 non-resource diversity 

treatment received only resource species C. vulgaris. All experimental assemblages 

received an equal amount of resource species C. vulgaris (1.6 x 106 ESD) and had 

equivalent total biovolume of non-resource species (8 x 105 ESD) in the 2, 4 and 8 

diversity treatments. 

 

No. of non-resource 

phytoplankton species 

Phytoplankton species  

 Composition A Composition B 

2 Closterium acerosum  

Cosmarium botrytis  

Micrasterias crux-melitensis  

Staurastrum pingue 

4 Closterium acerosum  

Cosmarium botrytis  

Micrasterias crux-melitensis  

Mougeotia sp.  

Closterium littorale  

Eudorina elegans  

Micrasterias crux-melitensis  

Staurastrum pingue 

8 Closterium acerosum  

Cosmarium botrytis  

Eremosphaera viridis  

Eudorina elegans  

Micrasterias crux-melitensis  

Mougeotia sp.  

Pediastrum duplex  

Staurastrum pingue  

Ankistrodesmus falcatus  

Closterium littorale  

Cosmarium botrytis  

Eremosphaera viridis  

Eudorina elegans  

Micrasterias crux-melitensis  

Staurastrum pingue  

Volvox aureus 

 

 

(b) Inoculation densities and biovolumes 

Phytoplankton species were grown in batch monocultures in Bold’s Basal Medium 

(BBM) and the zooplankton were grown in batch culture with the green alga 

Chlamydomonas reinhardtii in Volvic Mineral Water (Volvic, France), which 

closely resembles the chemical composition of natural lake water (see Table S2.2). 

Prior to the start of the experiment, we measured the density and mean biovolume 

(estimated as the equivalent spherical diameter, ‘ESD’) of 30 natural units (cells, 

colonies or filaments) of each monoculture in the species pool, at stationary phase, 

with a stage micrometer. Species biovolumes were calculated using equations based 

on body shape and cell size of each phytoplankton species (Hillebrand et al. 1999). 

Experimental microcosms received a constant resource (C. vulgaris) biovolume of 

1.6 x 106 μm ESD and a total biovolume of 8 x 105 μm ESD of all other appropriate 

species in the mixture, split equally between all non-resource species present (Table 
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1, Table S2.1). This approach ensured that higher diversity treatments received the 

same total biovolume as the lower diversity treatments, regardless of different 

phytoplankton cell size. Each microcosm also received seven D. pulex, which were 

first acclimated to their assigned temperature treatment for three days prior to the 

experiment.  

Experimental communities were established in 1L glass media bottles filled 

with sterile Volvic Mineral Water, that were randomly distributed within the 

incubators. We used commercial spring water for the experimental medium as 

preliminary tests using BBM resulted in extremely high phytoplankton densities and 

the rapid extinction of the zooplankton consumers. Media bottle tops were modified 

with small holes on the sides, large enough to prevent lethal build-up/depletion of 

gases. However, the holes were small enough to prevent evaporative losses and 

minimize bacterial contamination. Side holes were only exposed when microcosms 

were inside the incubators, which had previously been sanitized with 70% ethanol.  

 

(c) Sampling and sample processing 

To homogenize the experimental communities and to ensure a representative sample, 

the microcosms were inverted and gently shaken, prior to each sampling, with bottle 

tops securely fastened and without the air holes exposed. All sampling and media 

replacement was done using sterile technique in a vertical lamina flow cabinet 

(PCR6, Labcaire), to prevent contamination. Each sample was microscopically 

inspected to ensure that there was no contamination of cultures with bacteria, fungi 

or protozoa over the duration of the study. 

Each 60mL sample was divided up into smaller sub-samples, to measure the 

CO2 concentration in the water, the density of consumer and resource and the total 

phytoplankton biomass. We estimated the phytoplankton biomass as chlorophyll-a 

concentration, because counting densities of all individual non-resource species over 

time was not logistically feasible. To measure CO2 concentration, the sample was 

transferred to 3 mL gastight vials (Labco), which were then sealed. Samples were 

taken during the light cycle to represent maximum CO2 uptake. A 500 μL headspace 

was introduced by withdrawing the sample and simultaneously replacing with 500 

μL of oxygen free nitrogen via a needle and 3-way valve. After equilibration (30 

minutes shaking), 100 μl samples were withdrawn from the headspace and injected 

into a gas chromatograph (GC) fitted with a flame-ionisation detector (Agilent 
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Technologies; for details see Sanders et al. (2007). Headspace concentrations of CO2 

were calculated from peak areas calibrated against known standards (Scientific and 

Technical Gases), and the total amount in the vial (headspace plus sample) was 

calculated using solubility coefficients (Weiss 1974, Yamamoto et al. 1976). Final 

CO2 concentrations were corrected for media addition days by subtracting the 

concentration of CO2 measured in control microcosms (only media without living 

organisms), measured at each experimental temperature treatment. 

To estimate consumer density over time, two observers checked each 

experimental community for the presence of D. pulex. If D. pulex were present at 

low density, i.e. fewer than 20 individuals, we counted all the individuals in the 

microcosms (1L). If there were a greater number of individuals, we counted the 

number of individuals in the 60 mL sub-sample. To measure resource density 

(number of C. vulgaris cells), 10 mL sub-samples were fixed with Lugol’s iodine 

solution. C. vulgaris density was estimated by counting cells using a 

haemocytometer under a compound light microscope at 40x magnification. To 

estimate total phytoplankton biomass, we filtered 30 mL sub-sample onto glass fiber 

filters (Whatman, Grade 1, 25mm) and stored them at -20oC. We extracted the 

chlorophyll-a in acetone (90% v/v with ultra high purity water) for 24 h in a dark 

refrigerator. We used a spectrophotometer and measured absorption of light at 665 

nm (Dalsgaard 2000). We replaced the volume sampled with 120 mL of sterile 

Volvic water starting from day 10, and continuing weekly. After each sampling 

event, bottles were placed back into incubators (with lids exposing air holes to allow 

gas exchange) in a haphazard fashion to eliminate edge effects.   

  

(d) Statistical analyses 

We analyzed the independent and interactive effects of non-resource diversity and 

environmental temperature on four continuous response variables: (i) time-averaged 

consumer density (number of individuals per L), (ii) time-averaged resource density 

(number of C. vulgaris cells per mL), (iii) time-averaged total phytoplankton 

biomass (aggregated biomass of all phytoplankton taxa in the community), and (iv) 

time-averaged concentration of CO2 (amount of CO2 in the water).  

To illustrate the effects of the treatments and their interactions, we used linear 

mixed effects (LME) models with non-resource diversity and environmental 

temperature as fixed effects. We accounted for the temporal blocks, non-resource 
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community composition and position of the microcosms in the incubators as random 

effects. We used the varIdent function to improve homogeneity of variance in the 

model fit (Zuur et al. 2009). This model represented a good fit to the data for all 

response variables, as denoted by the R2 values (Nakagawa and Schielzeth 2013) 

(Table S2.3). Moreover, we fit this LME model to the time-series across the entire 

experiment and included time into the random factor term (Table S2.4). We also fit 

this same LME model to the time-series that accounted for temporal autocorrelation 

instead of time in the random factor term. Statistical outcomes of LME’s including 

all time-series data with and without temporal autocorrelation, and time-averaged 

data were qualitatively identical; therefore we present the time-averaged model 

outputs only (Table S2.3). All analyses were performed in R 3.2.3 (R Development 

Core Team, 2016), using the function lme in the package nlme; and r.squaredGLMM 

in the package MuMIn.  

 We then tested whether temperature had a direct effect on CO2 concentration 

due to the lower solubility of CO2 at higher temperatures (Wiebe and Gaddy 1940), 

or indirect effect due to the shift in community structure. To separate the physico-

chemical effects from the biological effects of community structure, we adjusted the 

entire data set to the lowest temperature treatment (19oC), therefore CO2 

concentrations measured at 23oC were increased by 10.2% and CO2 concentrations 

measured at 27oC were increased by 20.5%. This adjustment was based on the CO2 

measurements in control microcosms with no organisms and incubated at the three 

experimental temperatures. We then applied a piecewise structural equation 

modeling (SEM) approach (Lefcheck 2016) to both corrected and uncorrected data to 

test whether the changes in CO2 concentrations resulted directly from the 

experimental diversity and temperature manipulations, indirectly through the 

changes in community structure or from the effect of temperature on CO2 solubility 

(Atwood et al. 2015). The path diagrams (Fig. S2.1. Supplementary material) were 

expressed as a set of biologically relevant, linear structured equations, which 

reflected our hypotheses and were then evaluated individually. SEMs incorporated 

random effects of block, position in the incubator, non-resource composition and an 

additional temporal autocorrelation term for each day of the experiment. To test the 

directed separation of linear models, a Fisher’s C test was performed following the 

piecewise SEM function proposed by Lefcheck (2016). The Fisher’s C statistic was 

then used to obtain AIC values. We compared seven different models and selected 
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the model with the lowest AIC score, representing the best fit to our data (model 1, 

Table S2.5). The piecewise SEM returned parameter estimates and partial 

correlations, allowing our hypotheses to be tested at a significance level α = 0.05 

(Fig. S2.1). 

 

Results 

 

(a) Ecosystem function 

Higher non-resource diversity (LME, F1, 89 = 9.719, P < 0.001; Fig. 2.1a, Table S2.3) 

and elevated temperature (LME, F1, 89 = 48.942, P < 0.001; Fig. 2.2a, Table S2.3) 

both independently reduced time-averaged CO2 concentration in the water. There 

was no interactive effect of temperature and diversity on time-averaged CO2 

concentration (LME, F1, 89 = 0.838, P = 0.407; Table S2.3). There were significant 

differences in CO2 concentrations only between the highest (8 non-resource) 

diversity treatment and all other diversity treatments (Fig. 2.1a). The 8 non-resource 

diversity treatment reduced CO2 concentration by 15.4% compared to treatment with 

0 non-resource. CO2 concentration declined by 14.9% when temperature was raised 

from 19oC and 23oC, by 27.1% when temperature was raised from 19oC to 27oC, but 

did not change when temperature was raised from 23 to 27oC (Fig. 2.2a).  
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Figure 2.1. The effects of non-resource diversity on time-averaged CO2 

concentration (a), time-averaged total phytoplankton biomass (b), time-averaged 

consumer density (c) and time-averaged resource density (d). Each bar represents 

means across all time points and temperature treatments (n = 24 replicates); error 

bars represent ± 1 standard error.  
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 Figure 2.2. The effects of environmental temperature on time-averaged CO2 

concentration (a), time-averaged total phytoplankton biomass (b), time-averaged 

consumer density (c) and time-averaged resource density (d). Each bar represents 

means across all time points and diversity treatments (n = 32 replicates); error bars 

represent ± 1 standard error. 

 

 

(b) Community structure 

Alongside a reduction in time-averaged CO2 concentration, total phytoplankton 

biomass (LME, F1, 89 = 60.931, P < 0.001; Fig. 2.1b, Table S2.3) and consumer 

density (LME, F1, 89 = 13.333, P < 0.001; Fig. 2.1c, Table S2.3) increased 

significantly in the 8 non-resource species diversity treatment. However, resource 

density was not affected by non-resource diversity (LME, F1, 89 = 1.309, P = 0.256; 

Fig. 2.1d, Table S2.3). Temperature had a positive effect on time-averaged total 

phytoplankton biomass (LME, F1, 89 = 3.788, P = 0.050; Fig. 2.2b, Table S2.3) and 

consumer density (LME, F1, 89 = 20.358, P < 0.001; Fig. 2.2c, Table S2.3), but had a 
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negative effect on resource density (LME, F1, 89 = 10.023, P = 0.002; Fig. 2.2d, Table 

S2.3). 

 

(c) Direct and indirect effects of diversity and temperature 

Before accounting for reduced CO2 solubility at higher temperatures, SEM showed a 

direct negative effect of temperature on CO2 concentration (-0.21, Fig. 2.3a), i.e. an 

increase of 1 x standard deviation (SD) in temperature resulted in a decrease of 0.21 

SD in the concentration of CO2 in the water. However, after accounting for CO2 

solubility, the direct effect of temperature disappeared and SEM analyses instead 

supported the indirect negative effects of temperature (standardized β = -0.04, P = 

0.314) and diversity (standardized β = -0.08, P = 0.063) on CO2 concentration via 

shifts in the community structure (Fig. 2.3b). In agreement with our predictions, 

diversity enhanced the total phytoplankton biomass (standardized β = 0.36, P < 

0.001) and resource density (standardized β = 0.08, P = 0.045), indirectly reducing 

the CO2 concentration (standardized β = -0.11, P < 0.001 and standardized β = -0.10, 

P < 0.001, respectively). Furthermore, the indirect negative effect of diversity on 

CO2 via total phytoplankton biomass (-0.040, Fig. 2.3b) was more important than the 

indirect negative effect of temperature (-0.012, Fig. 2.3b).  

Density of consumers was also increased by non-resource diversity 

(standardized β = 0.26, P < 0.001), increasing the CO2 concentration (standardized β 

= 0.06, P = 0.021). The positive indirect effect of diversity on CO2 mediated through 

increased consumer density (0.016, Fig. 2.3b) was smaller than the negative effect on 

CO2 mediated through increased total phytoplankton biomass (-0.040, Fig. 2.3b). 

Temperature enhanced total phytoplankton biomass (standardized β = 0.11, P = 

0.009), and reduced resource (standardized β = -0.10, P = 0.012) and consumer 

densities (standardized β = -0.13, P < 0.001), causing a net reduction in CO2 

concentration. The negative effect of temperature on consumer was weaker than the 

positive effect of diversity, leading to a net positive effect of consumers on CO2 

concentrations in the high diversity and high temperature treatments. There was no 

direct effect of consumer on resource density (standardized β = -0.03, P = 0.290). 
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Figure 2.3. The best-fit structural-equation model (SEM) showing how the 

covariance’s among the variables predict the pathway of outcome of CO2 

concentration. (a) Before correction for the effect of temperature on CO2 solubility in 

the water, the SEM retains a significant direct effect of temperature on CO2 

concentration. (b) After correction for the effect of temperature on CO2 solubility, 

the SEM retains only an indirect effect of temperature on CO2 concentration. 

Significant direct pathways are displayed as solid lines (P < 0.05), while non-

significant direct pathways are displayed as dashed lines. Red lines denote the 
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negative effects; black lines denote the positive effects. The strength of the effect is 

proportional to the thickness of the lines and represented as the magnitude of the 

regression coefficients. Two types of path coefficients are placed next to 

corresponding pathways. Standardized regression coefficients (bold, black font) 

represent the standard deviation change in variable Y per unit change in variable X. 

Unstandardized regression coefficients (grey font) represent the standard deviation 

change in Y, given a standard deviation change in X. The amount of variation 

explained by the models was (a) R2 = 0.30 for consumer density, R2 = 0.16 for total 

phytoplankton biomass, R2 = 0.23 for CO2 concentration and R2 = 0.02 for available 

resources; (b) R2 = 0.30 for consumer density, R2 = 0.16 for total phytoplankton 

biomass, R2 = 0.26 for CO2 concentration and R2 = 0.02 for available resources. 

 

(d) Community dynamics 

The temporal changes in CO2 concentration were associated with concurrent changes 

in the plankton community structure (compare Figs. 2.4 and 2.5). The CO2 peak 

around day 20 coincided with an increase in consumer density, and a decline in 

available resource (Fig. 2.5). After this peak observed in all treatments combinations, 

the highest non-resource diversity treatment diverged from the other treatments, with 

its CO2 concentration declining closer to the atmospheric equilibrium compared to 

lower non-resource diversity treatments (Fig. 2.4a). 
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Figure 2.4. The independent effects of non-resource diversity (a) and environmental 

temperature (b) on the temporal dynamics of CO2 concentration. Points represent 

mean of 24 replicates ± 1 standard error for each diversity treatment level and 32 

replicates ± 1 standard error for each temperature treatment level. Dashed lines 

represent CO2 concentration at 19oC, 23oC and 27oC, atmospheric equilibration is 

15.98 μmol L-1, 14.24 μmol L-1 and 12.79 μmol L-1 respectively. a) Higher non-

resource diversity (LME, F1, 89 = 9.719, P < 0.001) and b) elevated temperature 

(LME, F1, 89= 48.942, P < 0.001) both independently reduced mean CO2 

concentration in the water.
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Figure 2.5.  The effect of non-resource diversity (a-c) and temperature (d-f) on the community dynamics of consumer density (d and d), total 

phytoplankton biomass/chlorophyll-a (b and e) and resource density (c and f). Points represent mean of 24 replicates ± 1 standard error for each 

diversity treatment and 32 replicates ± 1 standard error for each temperature treatment.
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Discussion 

 

We show that the responses of plankton community structure to temperature and 

diversity gradients can govern the dynamics of CO2 concentrations in experimental 

freshwater communities. The effects of consumers and producers (phytoplankton 

biomass) were both driven by phytoplankton non-resource species diversity. 

Although consumers did not significantly modify the standing stock of resource (Fig. 

2.3), increased resources in the high diversity treatment were likely incorporated into 

the consumers, allowing an increase in consumer population density (Fig. S2.4).  

 Mean CO2 concentration, consumer density, and total phytoplankton biomass 

differed only when 8 non-resource species were included in the experimental 

community. This suggests that diversity effects on some communities and ecosystem 

processes may only become evident after reaching a specific threshold. The existence 

of a diversity threshold has been documented in consumer assemblages, with effects 

becoming apparent only at the highest diversities containing six species (Duffy et al. 

2003). Although our highest diversity treatment reduced CO2 concentration to values 

closer to atmospheric equilibration (Fig. S2.2), the experimental systems were still a 

net source of CO2. This corresponds to the majority of freshwater lakes that are 

supersaturated with CO2 relative to the atmosphere, allowing a net flux of CO2 from 

the water column to the air by a concentration gradient (Cole and Caraco 1998, Cole 

et al. 2007). However it is important to note that the supersaturating effect of CO2 

relative to the atmosphere may also be due to the sampling methodology carried out. 

Measurements of CO2 were taken in the morning after a period of darkness, such that 

in the period preceding measurements, heterotrophic processes would have 

dominated, allowing the microcosms to be supersaturated with CO2 in the morning. 

The random selection of non-resource species in the diversity compositions also 

contributed to the variation in each response variable (Fig. S2.5). Community 

composition B with 8 non-resource species had higher consumer density and 

phytoplankton biomass than composition A with 8 non-resource species (Fig. S2.5).  

In addition to the diversity effect per se, phytoplankton community 

compositions with the highest diversity, also likely altered the CO2 concentration in 

the water, as indicated by the higher consumer density and total phytoplankton 

biomass in community composition B than in composition A (Fig. S2.5). Species 
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identity can affect the long-term dynamics of edible (Behl and Stibor 2015) and 

inedible (Narwani and Mazumder 2010) phytoplankton, and plays a major role in the 

net biodiversity effects on ecosystem functioning, contributing roughly 50% of the 

biodiversity effects across different ecosystems (Cardinale et al. 2011). Identifying 

species that have key effects on ecosystem stability and functioning, through 

reducing CO2 concentration, is a fruitful avenue for future research. The 

photosynthetic responses of individual phytoplankton species differ in their 

sensitivity to temperature and to species interactions. Some species benefit from 

increases in temperature and diversity if conditions favour their individual 

temperature optima (Huertas et al. 2011, Schabhüttl et al. 2013). Other taxa pushed 

away from their temperature optima can go locally extinct or experience competitive 

displacement from dominant species (Schabhüttl et al. 2013). This also stands true 

for the carbon capture abilities of individual phytoplankton species. In particular 

cyanobacteria have very efficient carbon capture mechanisms, raising their internal 

concentration relative to their environment by 1000-fold (Low-Décarie et al. 2014). 

This suggests that some species are more important than others in determining the 

community level response to biodiversity losses and climate warming.  

Although we analyzed two different community compositions for each 

diversity level, a larger range of species and compositions can unequivocally tease 

apart the relative effects of diversity and species identity (Bell et al. 2009). Five of 

the non-resource species in our study were shared between the two high diversity 

compositions, precluding us from directly identifying non-resource species with the 

largest effect on the CO2 concentration or consumer dynamics. While not logistically 

feasible in our study, control monocultures and regular counts of all non-resource 

species would partition the expected additive effect of individual species from the 

observed effect of total phytoplankton biomass. As an example, larger phytoplankton 

species settle out of suspension faster than smaller species, which may have acted as 

a defense against grazing and contribute to losses of CO2 by organic carbon 

sedimentation (Tranvik et al. 2009). Our study was also limited by considering only 

a single zooplankton consumer. Although Daphnia spp. are keystone grazers in 

freshwater ecosystems (Carpenter et al. 2001), more diverse communities can 

consume a wider range of resources (Narwani and Mazumder 2010). 

 CO2 concentrations were higher at 19oC compared to 23oC or 27oC, 

supporting the negative relationship between CO2 concentration and temperature. 
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This contrasts with other work indicating increased CO2 emissions at higher 

temperatures (Allen et al. 2005, Lopez-Urrutia et al. 2006). The effect in our study is 

driven by lower CO2 solubility at higher temperatures (Wiebe and Gaddy 1940), but 

the direct effect of temperature on CO2 concentration was not retained in the best 

model after the data were corrected for solubility (Fig. 2.3b). Instead, the SEM 

analysis of corrected data revealed an indirect effect of temperature via an increase in 

phytoplankton biomass and a reduction in zooplankton density. This is in agreement 

with other studies indicating indirect effects of temperature on CO2 (Davidson et al. 

2015, Finlay et al. 2015).  

 Surprisingly, there were no interactive effects of temperature and non-

recourse diversity on CO2 concentration. The independent negative effects of both 

non-recourse diversity and warming on CO2 concentrations resulted from increasing 

the total phytoplankton community biomass. The SEM showed no significant 

relationship between phytoplankton biomass and consumers (D. pulex). This 

suggests that in our study, primary producers are the main drivers of the observed 

changes in CO2, by sequestration of carbon from the water into phytoplankton via 

photosynthesis (Watson et al. 1992, Trolle et al. 2012). Consumers presumably 

altered CO2 concentration directly by respiratory losses and indirectly by reducing 

phytoplankton biomass. This highlights the importance of photosynthetic organisms 

in mitigating CO2 emissions into the atmosphere (Low-Decarie et al. 2011). 

Logistical constraints have limited previous studies investigating the causal 

links between the community structure and CO2 emissions in freshwaters to one or 

two temporal sampling points (Butman and Raymond 2011, Raymond et al. 2013, 

Atwood et al. 2015, Rasilo 2015). Furthermore, it remains unknown how CO2 

concentrations in aquatic ecosystems respond to plankton diversity. To our 

knowledge, this is the first study to investigate the combined influences of 

biodiversity and temperature on aquatic CO2 dynamics. Our experimental design 

allowed us to partition the effects of temperature and diversity, thus providing more 

mechanistic insight into the processes operating in plankton communities. In natural 

systems, the impact of climate warming will be either weakened or exacerbated, 

depending on whether the temperature effect on phytoplankton richness is negative 

(Petchey et al. 1999, Hillebrand et al. 2012), positive (Yvon-Durocher et al. 2015a) 

or neutral (Hillebrand et al. 2010, Kratina et al. 2012).  

Controlled microcosm experiments have been identified as an important tool 
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to advance gaps in our understanding of CO2 dynamics in a multiple stressor 

environment (Hasler et al. 2016). Our results indicate that systems with more diverse 

non-resource phytoplankton communities can help to mitigate the pace of climate 

warming by increasing primary production and carbon capture, and reducing the 

return of CO2 to the atmosphere by primary consumers. With this information in 

hand, we may begin to develop models that more realistically predict the impacts of 

changing biodiversity and climate warming on ecosystems. 
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CHAPTER 3 

How Temperature Governs Resource Competition in Phytoplankton 

 

Abstract 

 

Resource competition theory is a framework for predicting the outcome of 

competition among species with different resource requirements. However, there is 

little empirical evidence about whether and how species’ requirements depend on 

other environmental factors, including temperature. If so, climate warming may alter 

the outcomes of resource competition and community dynamics. We experimentally 

demonstrate how environmental temperature alters the minimum light and nitrogen 

requirements and other growth parameters of six widespread phytoplankton species 

from distinct taxonomic groups. We found that species require the least light at 

intermediate temperatures, whereas nitrogen requirements tend to increase with 

rising temperature. Changes in temperature alter the competitive hierarchy amongst 

species for both resources, which can reorganize community composition under 

future climate warming. 
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Introduction 

 

Resource availability and environmental temperature exert strong control on 

biological processes across all scales, from individual metabolism and population 

growth to community assembly and dynamics (Eppley 1972, Tilman 1982, Sterner 

and Elser 2002, Brown et al. 2004). Species’ resource-dependent growth rates can be 

used to predict competitive outcomes according to resource competition theory 

(Tilman 1982, Chase and Leibold 2003), whereas the temperature-dependence of 

species’ metabolic rates can explain population, community and bulk ecosystem 

metabolism (Brown et al. 2004, Yvon-Durocher et al. 2010). While the independent 

influences of these two environmental drivers on populations and communities are 

relatively well understood, each alone leaves substantial variation in community 

dynamics unexplained. This highlights the fact that very little is known about how 

these drivers combine to shape community assembly, despite some indication of their 

interactive effects on population growth rates (Thomas et al. 2017), competitive 

dominance (Tilman 1981), and community composition (Hillebrand 2011, Kratina et 

al. 2012). The lack of experimental data from multiple species are critically limiting 

our current understanding of how temperature alters species’ resource requirements, 

shifts competitive hierarchies and modifies dynamics in different ecological 

communities. 

The resource-dependence of population growth rate drives competition for 

resources, one of the principal forces governing community composition and 

dynamics (Keddy 2002). Competition for resources has been modelled in numerous 

phenomenological ways, for example by using interaction coefficients (Chesson 

2000) or the degree of resource-use overlap (Macarthur and Levins 1967), but 

adopting resource competition theory (RCT) has an advantage of explicitly 

modelling competition as a function of species’ resource-dependent growth rates 

(Tilman 1982, Chase and Leibold 2003). One of the key predictions of RCT is that 

the species that can survive at the lowest level of the limiting resource outcompetes 

other species in an environment with constant resource supply (Tilman 1977, Tilman 

1980, 1982, Miller et al. 2005). This minimum level of resource required to maintain 

a break-even population growth rate is therefore an important trait, known as R*. R* 

and related parameters of resource competition models have been used to accurately 



 32 

predict the outcomes of competition under constant environment in the lab, and more 

recently, also in natural ecosystems (Miller et al. 2005, Dybzinski and Tilman 2007, 

Edwards et al. 2013). 

 Environmental temperature places fundamental constraints on organismal 

metabolism, with effects scaling from individual physiology to the ecology of entire 

communities (Eppley 1972, Brown et al. 2004, Kingsolver 2009, Dell et al. 2011, 

Kratina et al. 2012, Sentis et al. 2017). The metabolic theory of ecology (MTE) 

posits that the temperature-dependence of an organism’s metabolic rate is determined 

by the most rate-limiting underlying biochemical reaction. Scaling up, the 

temperature-dependence of a population or community’s metabolic rate is the 

aggregate of the contributions of individuals or species, respectively (Savage et al. 

2004, Cross et al. 2015). Previous work has used different temperature-dependencies 

of photosynthesis and respiration (Allen et al. 2005, Schaum et al. 2017) to predict 

how biomass distribution within food webs is affected by warming (O'Connor 2009, 

Yvon-Durocher et al. 2010). Empirical work indicates that warming can enhance the 

strength of consumer-resource interactions (O'Connor 2009, Yvon-Durocher et al. 

2010), food web-wide respiration rates (Yvon-Durocher et al. 2010) and relative 

heterotrophic biomass (Kratina et al. 2012, Shurin et al. 2012). It has also been 

proposed that temperature has differential impacts on various resource uptake and 

assimilation pathways (Toseland et al. 2013, Daines et al. 2014), which would have 

knock-on effects on competitive interactions. For example, reaction rates of 

phosphorus-rich ribosomes are more temperature-sensitive than nitrogen-rich 

photosynthetic proteins, suggesting that warming can shift elemental stoichiometry 

and resource requirements (Martiny et al. 2013, Yuan and Chen 2015, Yvon-

Durocher et al. 2015b). Nevertheless, how temperature influences species minimum 

resource requirements, competitive interactions and multispecies community 

assembly remains to be tested.  

In this study, we investigate the temperature-dependence of phytoplankton 

resource requirements for two essential limiting resources, nitrogen and light. We 

focus on phytoplankton because they are globally important primary producers, 

accounting for nearly half of all primary production and support consumers across 

many aquatic ecosystems (Field et al. 1998). Phytoplankton rely on a limited number 

of essential resources for survival and reproduction, including light and 

macronutrients like nitrogen and phosphorus. Furthermore, phytoplankton 
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competitive and thermal traits have been extensively studied, and are amenable to 

measurements of resource requirements and temperature-dependent population 

growth rates (Wilson et al. 2007, Kremer et al. 2017a, Thomas et al. 2017). 

For any given species, it is assumed that R* is minimized at a particular 

temperature, and increases steeply as temperature rises or declines, following a U-

shaped response curve (Lehman et al. 2000, Tilman 2004). However, there are very 

few empirical examples of the temperature-dependence of R*’s, and those focus only 

on the silica and phosphorus requirements of individual diatom species (Tilman 

1981, van Donk and Kilham 1990, Shatwell et al. 2014). This restricts our 

understanding of the temperature-dependence of R*s across different resources and 

species. Determining the general shape of R*’s response to temperature for multiple 

limiting resources and across multiple species would improve our ability to forecast 

shifts in community composition and ecosystem processes under future climate 

warming.  

We experimentally test how temperature influences the traits that govern 

species’ competition for resources, with special emphasis on R*. We quantify the 

temperature-dependence of competitive traits for six common and widely distributed 

phytoplankton taxa. By characterizing the shape of the temperature responses of R* 

and other key population growth traits, we aim to address the following questions: i) 

Do R* and other growth parameters increase symmetrically or asymmetrically as 

temperature departs from the optimum? ii) How do the sensitivities of R* and other 

growth parameters to warming differ for limiting nitrogen and light resources?  
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Methods 

 

Quantifying resource- and temperature-dependent growth rates 

To investigate the temperature-dependence of resource competition for light 

and nitrogen, we measured population growth rates of six species spanning three 

groups of freshwater phytoplankton: cyanobacteria, chlorophytes and diatoms (Table 

S3.1). We refer to species by their genus name for simplicity. We estimated their 

growth rates in two separate experiments that crossed gradients of temperature with: 

(i) light, and (ii) nitrogen. Prior to each experiment, species were maintained in batch 

culture in a modified sterile COMBO freshwater medium which did not contain 

animal trace elements or vitamins (Kilham et al. 1998).  

We estimated the growth rates of each species at each of ten levels of 

nitrogen and light by measuring changes in chlorophyll-a fluorescence over time. We 

also estimated phycocyanin fluorescence for the cyanobacteria species during the 

nitrogen experiment. We took daily measurements of these proxies for 

phytoplankton biomass using a Biotek Cytation 5 multi-mode plate reader. We 

measured chlorophyll-a fluorescence at excitation and emission wavelengths of 

435nm and 685nm. We measured the phycocyanin using excitation and emission 

wavelength of 620nm and 665nm. Experimental units were tissue-culture plates that 

were sealed with Breathe-Easy™ membranes to prevent evaporative losses and 

cross-contamination between adjacent wells. To reduce the risk of contamination, all 

acclimation and experimental inoculation steps were performed in a laminar flow 

hood using sterile technique. Well-plates were randomly assigned a location within a 

grid in the temperature-controlled incubators (Multitron, Infors HT, Switzerland), 

which were set to rotate at 100 rpm. Cultures were illuminated at 140.6 μmol 

photons m-2·s-1 of photosynthetically active radiation (PAR), except for the light-

limited treatments (see below), for a 18L:6D photoperiod and maintained at 15oC, 

20oC, 25oC or 30oC. These temperatures encompassed the approximate range of each 

species’ previously-estimated optimal temperature for growth (Topt) (Thomas et al. 

2016).  
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Experiment 1: Temperature-dependence of light limitation 

In the light limitation experiment, we factorially manipulated temperature 

(four levels) and light (ten levels). Sub-cultures of each phytoplankton species were 

acclimated to the four experimental temperatures and the ten light levels (0.15, 0.95, 

3.6, 6.8, 18.7, 29.3, 49.2, 77.3, 105.5, 140.6 μmol photons m-2·s-1) for six days prior 

to the start of the experiment. Before inoculating each species into the final growth 

rate experiment, we estimated population level biomass using chlorophyll-a 

fluorescence as a proxy, and aimed to equalize the starting values across all treatment 

combinations using dilutions. We measured raw fluorescence units (RFU) of 

chlorophyll-a by pipetting 1 mL samples of each acclimated culture into 48-well 

tissue-culture plates. Dilutions were conducted to achieve a starting RFU ≤ 1,500.  

The light requirements were estimated by inoculating 100 μL of diluted, 

acclimated phytoplankton culture into 900 μL of sterile COMBO medium in a 48-

well Falcon tissue-culture plate to achieve an initial biomass of ≤ 150 RFU. We used 

neutral density filters (Solar Graphics™, Clearwater, Florida) to manipulate the total 

amount of light supplied without changing light spectrum. The light filters on the 

opaque frames prevented unmeasured light from entering the wells from the sides of 

the plates. Experimental light intensities under the filters were measured using a 

Skye PAR Quantum sensor.  

 Measurements of population-level RFU were made in two replicate wells for 

all temperature and light combinations daily for 10 days. Temperature treatments 

were applied in two temporal blocks. The 20 oC treatment was repeated in both 

blocks as a control for the effect of block, i.e. the 20 oC treatment was replicated four 

times (twice in each block). The growth rate estimates at controlled 20oC did not 

differ between blocks. In total we estimated 600 growth rates from 6,000 biomass 

measurements.  

  

Experiment 2: Temperature-dependence of nitrogen limitation 

In the nitrogen limitation experiment, we factorially manipulated temperature 

(four levels) and the concentration of elemental nitrogen in the form of nitrate, 

NaNO3 (1, 4, 6, 10, 40, 60, 100, 400, 600, 1000 μmol N·L-1). These nitrate 

concentrations were derived from the experimental estimates of resource limitation 

of freshwater phytoplankton (Narwani et al. 2015) and additional pilot experiments 

where we estimated minimum resource requirements for the six focal species. For 
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comparison, standard COMBO media (Kilham et al. 1998) contains 1,000 μmol·L-1 

of NaNO3.  

 Sub-cultures of each phytoplankton species were acclimated to all 

temperature and nitrate combinations for 13 days prior to the start of the experiment 

(see supplementary methodology S3.1). We first diluted the acclimated cultures to 

500 RFU or less, and then inoculated 1 mL of the cultures with 9 mL of sterile 

COMBO containing the assigned nitrogen level into 6-well tissue culture plates, 

achieving an initial biomass of less than 50 RFU. We measured population biomass 

of all species in three replicated wells and calculated their means at all temperature 

and nitrogen combinations daily over 9 days. This resulted in 720 growth rate 

estimates from 6,480 biomass measurements.  

 

Models of population growth  

We described variation in light-dependent growth using the Eilers-Peeters 

model (Eilers and Peeters 1988): 

μ(𝐼) =
μ𝑚𝑎𝑥𝐼

μ𝑚𝑎𝑥

α 𝐼𝑜𝑝𝑡
2  𝐼2+(1−2

μ𝑚𝑎𝑥
α 𝐼𝑜𝑝𝑡

)𝐼+ 
μ𝑚𝑎𝑥

α 

,    (1) 

where μ is the specific growth rate (per day) as a function of irradiance I (in μmol 

photons m-2 s-1),  Iopt is the optimal irradiance for growth, μmax is the maximum 

specific growth rate and α is the initial slope of the curve.  

 We described variation in nitrogen-dependent growth using the Monod 

equation (Monod 1949):  

μ(𝑁) =
μ𝑚𝑎𝑥𝑁

𝑁+ 
μ𝑚𝑎𝑥

α 

–  𝑚,     (2) 

where μ is the specific growth rate (per day) as a function of nitrogen concentration 

N (in μmol·L-1), α is the initial slope of the curve, m is the background mortality rate 

(i.e. the specific growth rate at N = 0), and μmax is the maximum growth rate only 

when m = 0. We modified the Monod equation by including the m parameter, which 

accounts for mortality in the absence of any nutrients. The estimated maximum 

growth rate (μmax) is therefore the sum of μmax and m.  

 We fit equations (1) and (2) to our experimental data and used the resulting 

parameters to numerically estimate R* values (the irradiance and nitrate levels where 

each species’ net growth rate equaled zero, I* and N* respectively).  
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Temperature-dependence of competition parameters 

We applied two approaches to characterize the shape of the temperature-

dependence of competitive traits around their maxima (or minima for R*). First, to 

characterize the shape of the temperature-trait response curve, we fit a generalized 

additive mixed model (GAMM) where the trait value (fixed effect) was a smooth 

non-parametric function of temperature, while a random effect accounted for 

differences in species’ mean trait value (across all temperatures). A significant 

random effect term indicates differences in the temperature response among 

individual phytoplankton. Because species have different temperature optima, we 

standardized the temperature so that all species had their trait minimum (for R*) and 

maximum (for all other traits) at the same position on the temperature axis (set to 0).  

Second, to measure the temperature sensitivity of each trait, we quantified 

how steeply the trait values rise or fall with increasing temperature, by breaking each 

curve into portions below and above the trait maximum (or minimum for R*) if the 

trait showed a non-linear response to temperature. To characterize the rising and 

falling parts of the curve above or below the trait maximum or minimum for R* (set 

to 0 on the temperature axis) we fit a linear model with log-transformed trait estimate 

as the response, which is equivalent to assuming that the trait increases or decreases 

exponentially with temperature. For the traits that showed a linear response, we fit a 

linear model to the entire standardized temperature range. We used the estimated 

slope to calculate a Q10 coefficient, representing the temperature sensitivity of the 

change in the trait value due to an increase in temperature of 10oC. For the analyses, 

we only used Iopt estimates when the estimated Iopt was less than the maximum 

irradiance used in the experiment.    

 

Results 

 

Temperature-dependence of minimum light and nitrogen requirements 

Minimum light (I*) and nitrogen (N*) requirements of all phytoplankton 

species were influenced by experimental temperature (Fig. 3.1). I* were consistently 

lowest at intermediate temperatures and highest and most variable at both maximum 

(30 oC) and minimum (15 oC) experimental temperatures (Figs. 3.1a, c). There was 
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an overall positive relationship between N* and temperature across species. 

However, this relationship differed among individual phytoplankton species, as the 

model that included the random effect of species term described the data better than 

the model without this random effect  (GAMM, R2 = 0.10, F2.00. = 3.93, p = 0.036; 

Figs. 3.1b, d).  

In order to estimate the temperature sensitivity of I* and N*, we divided the 

temperature-dependent curve for all species combined into the increasing and falling 

portions, and defined the “optimal temperature” as that at which I* and N* were 

minimized (Figs. 3.1c, d). The estimated temperature sensitivities (Q10) across all 

species for the increasing portions of the curves for I* and N* were 0.70 and 0.45 

respectively (95% CI were [0.61, 0.79] and [0.39, 0.51] respectively; Table S3.4). 

The estimated temperature sensitivity (Q10) for the falling portions of the curves for 

I* and N* were 2.25 and 1.01 respectively (95% CI were [2.03, 2.50] and [0.86,1.16] 

respectively, Table S3.4). This shows that species’ I* and N*s are more sensitive to 

lower than-optimal temperatures, than higher-than optimal temperatures (Table 

S3.4), indicating an asymmetric response of I* and N* around the optimum. Species 

I* are also more than twice as sensitive to higher than optimal temperatures compare 

to N*, indicating differences in the sensitivity of species R* to different resource 

types (Table S3.4).  
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Figure 3.1. Temperature alters minimum light (I*) and nitrogen (N*) 

requirements of six phytoplankton species (different symbols). (a) I* values are 

lowest and least variable at intermediate experimental temperatures, (b) N* values 

increase at the highest experimental temperatures. (c, d) illustrate the same data that 

were corrected to remove differences among species in the mean trait value across a 

temperature gradient. The x-axis represents temperatures standardized so that all 

species have their trait minimum at the same value (0 oC). (c) I* as a function of 

temperature relative to the minimum trait value, with a fitted GAMM, (d) N* as a 

function of temperature relative to the minimum trait value, with a fitted GAMM.   

 

Despite the overall patterns in minimum resource requirements (Fig. 3.1), 

there were also strong interspecific differences in I* and N* responses to temperature 

(Fig. 3.2, note different y-axes). Whereas I* and N* showed opposite relationships 

with temperature for some species (e.g., Synechococcus, Cyclotella, and 
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Scenedesmus), both I* and N* responded consistently to temperature for other 

species (e.g. Kirchneriella). Pediastrum had low requirements for both resource 

types across the whole temperature gradient (Fig. 3.2e). 

 

 

Figure 3.2. Temperature alters within species responses to light (I*) and 

nitrogen (N*) limitation. I* and N* show opposite relationship with temperature for 

some species (a, c, f), or similar trends for other species (d). Note different y-axis.   

 

Temperature-dependence of other resource competition traits 

Changes in R* with temperature ultimately arise from the temperature-

dependence of the traits that determine R*. In our study, the maximum specific 

growth rates (μmax) for light and nitrogen were positively influenced by temperature, 

ranging from 0.09 to 1.71 day-1 (Figs. 3.3a, S1, Table S3.2) and from 0.23 to 1.45 

day-1 (Figs. 3.3c, S3.2, Table S3.3), respectively. Whereas μmax increased 

monotonically with warming in the nitrogen limitation experiment, there appeared to 

be an optimum temperature in the light limitation experiment, beyond which μmax 

declined (Figs. 3.3b, d). The μmax for the light limitation experiment was more 

sensitive to temperature than it was for the nitrogen experiment (Q10 for the 

increasing portions of the curves were 0.45 for light and 0.22 for nitrogen). The Q10 

for the declining portion of the light curve was smaller than for the increasing portion 

(-0.12), indicating an asymmetric response of light μmax to temperature around the 
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optimum. Across species, growth rates responded more strongly to initial increases 

in nitrogen than light availability (α), with larger variation across temperatures for 

nitrogen (Fig. 3.3e, g). Response curves for α were non-monotonic under both types 

of resource limitation (Figs. 3.3f, h). Although the remaining traits were also 

temperature-dependent (i.e. the Q10 values differed from zero; Figs. 3i-l, Table S3.4), 

they showed lower sensitivity to temperature and less difference between the 

response to light and nitrogen in comparison to I* and N* (Table S3.4).
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Figure 3.3. The key traits for nitrogen and light competition depend on experimental temperature. The effect of temperature on (a) the 

growth rate measured under unlimited light (μmax) (e) the initial slope of the growth-light curve (α), (i), the optimal irradiance for growth (Iopt). (c) 

growth rate measured under unlimited nitrate, (g) the initial slope of the growth-nitrogen curve, and (k) the specific growth rate at N = 0. The 

GAMMs fitted to four growth-irradiance traits modified by experimental temperature: (b) μmax,. (f) α, (j) Iopt. The GAMMs fitted to three 

nitrogen competition traits modified by experimental temperature: (d) μmax, (h) α, and (l) m. The plotted data points are corrected to remove 

differences between species in the mean trait value across temperatures. The x-axis represents temperature values that have been standardized so 

that all species had their trait maximum at the same position (0 oC).
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Discussion 

 

We provide experimental evidence that minimum resource requirements for 

light (I*) and nitrogen (N*) are temperature-dependent. Whereas minimum resource 

requirements for light tended to increase at the highest and lowest experimental 

temperatures, minimum resource requirement for nitrogen were more variable and on 

average increased with rising temperature, indicating asymmetric responses of R* 

around its minimum. Species-specific differences in the temperature-dependence of 

R* shifted the outcomes of competition as predicted by RCT. Empirically 

parameterized models illustrate how these changes in resource competition alter 

phytoplankton community composition and dynamics. This is in line with some 

previous work showing that two species of diatoms are superior competitors for 

silica at different temperatures (Tilman et al. 1981) and that temperature alters the 

identity of the best rotifer competitors (Stelzer 1998). The partitioning of the 

temperature-light niche observed in our study may enhance coexistence and 

biodiversity in environments with temporal or spatial variation in temperature and 

light (e.g. Descamps-Julien and Gonzalez 2005). 

The species-specific responses of I* and N* to temperature indicate distinct 

interactive effects of temperature and light or nitrogen on each species’ population 

growth rates. Previous tests of combined temperature and nutrient impacts on 

individual species (Descamps-Julien and Gonzalez 2005, Thomas et al. 2017) 

showed that temperature and nutrients could limit species ranges by decreasing 

individual growth rates. Moreover, temperature can also alter the supply ratio of 

limiting nutrients (Tilman et al. 1986) available in the environment, resulting in the 

taxonomic replacement and turnover of dominant species (Hillebrand 2011). The 

temperature-dependence of R* and other competitive traits can thus alter community 

composition, by switching competitive hierarchies under future climate warming. 

The monotonic increase in minimum nitrogen requirements with rising 

temperature indicates that the optimum temperature for N* may not have been 

captured in the temperature range tested in our study. Maximum growth rate (μmax) 

also tended to increase monotonically with temperature, whereas α appeared to have 

a unimodal relationship with temperature for both resources. The non-linear 

relationship of growth traits with temperature has also been recognised in the 
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minimum silica requirements of two diatom species (Tilman et al. 1981). 

Furthermore, a synthesis of published light curves showed that μmax, α and Iopt all 

show unimodal relationships with temperature (Edwards et al. 2016) and a similar 

pattern of R* across temperatures is found in models of temperature-nutrient 

interactions (Follows et al. 2007, Thomas et al. 2017). However, these models 

presently do not account for the temperature-dependence of traits such as α, and may 

need to be modified accordingly. 

Despite the potential for a temperature-dependent RCT to improve 

forecasting of community dynamics, experimental characterization of resource 

requirements for a large number of taxa is not practical (Kremer et al. 2017b). 

However, the integration of nutrient-based competition models with metabolic-based 

theory (Brown et al. 2004) may be a critical step towards understanding fundamental 

constraints governing community and ecosystem dynamics under changing 

climate (Allen and Gillooly 2009). Recent efforts to understand how temperature 

influences cell physiology and metabolism (e.g. synthesis of proteins and RNA) have 

yielded promising insights (Toseland et al. 2013, Daines et al. 2014). For instance, 

nitrogen-rich photosynthetic proteins are less sensitive to temperature changes than 

phosphorus-rich ribosomes. Consequently, the activity of ribosomes increases more 

rapidly with warming than that of photosynthesis proteins, requiring more 

photosynthetic proteins per cell with warming. This may explain temperature-

induced increases in the nitrogen content of phytoplankton biomass, relative to 

phosphorus content (Yvon-Durocher et al. 2017). Such mechanistic insights may 

therefore allow the identification of generalities governing the temperature 

dependencies and sensitivities of species’ resource requirement. Efforts to merge 

metabolic theory with RCT (Ward et al. 2017) have the potential to result in a more 

general understanding of the environmental dependence of community dynamics.   

Our study demonstrates differential temperature sensitivity of competition for 

light and nitrogen across six phytoplankton species from varying taxonomic groups. 

These changes in competitive traits have the potential to reorganize ecological 

communities under the ongoing and accelerating climate warming. Further merging 

of resource competition and metabolic theory can improve the forecasts of future 

competitive community assembly.  

  



 45 

CHAPTER 4 

Selection Drives Evolution of Minimum Resource Requirements in 

Chlamydomonas reinhardtii 

 

Abstract 

 

We used the model freshwater phytoplankton species Chlamydomonas reinhardtii to 

investigate whether minimum requirements for essential resources (R*) respond to 

selection by environmental reductions in local resource availability. We used 

ancestral populations that had been previously evolved under resource limitation in 

chemostat for 285 days, including low nitrogen, low phosphorus, low light, biotic 

(depletion of total nutrients by the growth of other phytoplankton, osmotic stress, and 

a crossed biotic depletion and osmotic stress treatment. We estimated population-

level growth rates along gradients of light, nitrogen and phosphorus for ancestors and 

descendants in order to determine their R* for these resources. Descendants 

displayed an adaptive response to selection under low nitrogen supply (N*), non-

adaptive responses to low light supply and no significant trait change under low 

phosphate supply. Neither genotypic diversity nor additional stress consistently 

accelerated adaptive change, although the crossed biotic-salt treatment was the only 

selection treatment able to maintain the originally low ancestral light requirement. 

We did not observe the trade-offs between N*, P* and I* at the intraspecfic level that 

have previously been documented across distantly related species. Species’ abilities 

to adapt to local changes in resource supply may have consequences for the outcome 

of competitive community assembly in response to environmental change. 
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Introduction 

 

Competition is one of the major forces structuring phytoplankton 

communities (Tilman 1977, Tilman 1981, Sommer 1985, Huisman et al. 1999). 

Studies of phytoplankton competition show that functional traits of individual 

species measured in isolation can be used to predict the outcomes of competition 

(Tilman 1977, Tilman 1981). The hypothesis that species traits can be used to predict 

community assembly is attractive because it presents the possibility of successful 

ecological forecasting in the face of future biotic and abiotic environmental change 

(Keddy 1992, Petchey et al. 2015). However, is unclear how the extent in which 

competitive traits evolve under selection imposed by levels of local resource 

availability. 

While competition can be described in a number of ways, resource 

competition theory (RCT) proposes a set of competitive traits that can be used to 

predict the outcome of competition among species (Tilman 1982). These traits can be 

expressed as parameters describing the way in which population growth rates vary 

along gradients of resource availability (Tilman 1977, Tilman 1982). Given these 

parameters, and the resource-dependent growth rates along resource gradients, 

population dynamics and the outcome of interspecific competition can be predicted 

(Droop 1973, Tilman 1982, Grover 1991). A general prediction of RCT is that the 

species which has the lowest requirement for a given limiting resource, also 

commonly known as R*, will outcompete other species in an environment with a 

constant supply of that resource (Tilman 1977, Tilman 1980, 1982, Miller et al. 

2005). R* and the other grow parameters of RCT have been used to accurately 

predict the outcomes of competition both in the lab and in the field (Miller et al. 

2005, Dybzinski and Tilman 2007, Edwards et al. 2013). The considerable variation 

among species in the magnitude of these competitive traits has therefore been shown 

to determine the structure and diversity of communities driven by resource 

competition.  

To date investigations of the variance and covariance of competitive traits in 

phytoplankton have focused on variation among species. These comparisons have 

been made at some of the largest taxonomic and phylogenetic scales, including 

variation among cyanobacteria, green, and red eukaryotic phytoplankton, and 
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spanning hundreds of millions of evolutionary history (Litchman et al. 2010, 

Edwards et al. 2011, Schwaderer et al. 2011, Edwards et al. 2013, Edwards et al. 

2015). On these scales, there is great variation in competitive abilities for all 

essential resources including light, nitrogen and phosphorus (Litchman et al. 2007). 

Furthermore, there is a tendency for trade-offs among these traits (Litchman et al. 

2007, Edwards et al. 2011), and some traits show evolutionary conservation 

(Litchman et al. 2010, Edwards et al. 2011, Schwaderer et al. 2011, Edwards et al. 

2013, Edwards et al. 2015), where traits tend to be more similar among more 

taxonomically similar species. In contrast, a recent study spanning tens to hundreds 

of millions of years of the evolutionary history of green freshwater phytoplankton 

does not find evidence for phylogenetic signal of competition traits for light, nitrogen 

or phosphorus, suggesting that these traits may be evolutionarily labile in some 

clades or phylogenetic scales (Narwani et al. 2015).  

While there are good descriptions of competitive trait variation among 

phytoplankton species, little is known about the extent of this trait variation within 

species and how it evolves. Evolution experiments have shown that phytoplankton 

show heritable trait variation and the potential for evolutionary adaptation in their 

abilities to grow along other environmental gradients including acidification 

(Lohbeck et al. 2012), warming (Schlüter et al. 2014) and salt stress (Lachapelle and 

Bell 2012). Moreover, phytoplankton can undergo rapid evolution of phenotypic 

traits related consumer resistance (Yoshida et al. 2003, Hairston et al. 2005, Fischer 

et al. 2014), which can fundamentally alter the strength of the consumption and the 

population dynamics of both the consumer and resource populations. However, 

phytoplankton do not show heritable phenotypic adaptation to all types of 

environmental change, e.g. increasing atmospheric CO2 (Stinchcombe and 

Kirkpatrick 2012, Schaum et al. 2017, Yvon-Durocher et al. 2017). This indicates 

that phytoplankton growth traits may be genetically or physiologically constrained or 

correlated in such a way as to impose limits to or trade-offs among adaptive 

responses. For example, adaptations enhancing competitive ability in one 

environment may come at a cost, or a correlated improvement, in another 

environment. Trade-offs have been documented among competitive abilities for 

different resources at large taxonomic scales (Edwards et al. 2011). Yet, there is little 

support for trade-offs among population-level growth rate parameters within the 

model green alga, Chlamydomonas reinhardtii (Bell 1991). While the effects of 
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intraspecific variation and evolution on population and community-level properties 

and dynamics, such as primary production, have been increasingly studied (Violle et 

al. 2012), the nature and the extent of intraspecific trait variation and the 

mechanisms driving its evolution are still largely unknown for microbes in general. 

Because the evolution of resource competition traits may have strong impacts on 

community assembly (Vasseur and Fox 2011), it is essential to understand the 

potential for these traits to evolve, and the patterns of trait variance and covariance 

that emerge in response to selection.  

Previous work in well-known model systems has shown how competition for 

limiting resources may lead to character displacements among species competition 

for substitutable resources. Evolution of niche differentiation to alleviate the negative 

influences of resource-limitation and competition for limiting resources has been 

demonstrated in Darwin’s finches, sticklebacks and anolis lizards among others 

(Schluter and McPhail 1992, Losos et al. 1998, Grant and Grant 2006). Nevertheless, 

predictions for how trait evolution proceeds under competition for essential resources 

are fundamentally different: when competing for a single limiting resource, species 

should converge on a single optimum phenotype, which is a low requirement (R*) 

for the limiting resource (Abrams 1987, Vasseur and Fox 2011). This is because the 

lack of that resource cannot be compensated for by consumption or improved 

competitive ability for any other resource, i.e. nitrogen limitation cannot be 

compensated for by consumption of light or phosphorus. As such, photo-autotrophs 

that consume a few nutritionally essential resources including light, nitrogen and 

phosphorus, may be expected to converge on the same, low-R* phenotype when 

under selection by any type of resource limitation (Abrams 1987).  

Here, we investigate the evolutionary response of competitive traits within 

the model alga (Chlamydomonas reinhardtii) to environmental reductions in local 

resource availability. We test the following hypotheses and expectations: (i) 

Resource competition traits, in particular R*, evolve in response to selection by 

limiting resources. R* should decline in environments where the same resource is 

limiting. Individual populations selected under limitation by a particular resource 

will respond by reducing their population-level requirements for that limiting 

resource. (ii) Genetic diversity and/or stress can accelerate evolution in response to 

selection. A genetically diverse population will display a stronger adaptive change of 

R* under resource-limitation than the isogenic clonal populations within the same 
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period of selection (Hughes et al. 2008). Increasing the amount of stress will also 

impose a stronger adaptive change of R* (Goho and Bell 2000). (iii) Evolved 

variation in R* under selection by different limiting resources results in trade-offs in 

competitive ability for light, nitrogen and phosphorus. Fundamental biological 

constraints to adaptation results in similar trade-offs among evolved variation within 

a species as that which has been previously observed among species (Litchman et al. 

2007). Alternatively, an increased competitive ability for one resource could result in 

a correlated improvement in the competitive ability for another (pleiotropic or 

correlated fitness benefits in low-resource environments) (Velicer 1999, Jeffery 

2005, Lahti et al. 2009). The work presented in this chapter is the physiological 

analysis of strains previously evolved by others. This is the first study of the 

evolutionary change in competitive traits for essential resources in response to 

selection by low resource availability. 

 

Methods 

 

Evolution experiment previously performed by others 

We use the model phytoplankton strain Chlamydomonas reinhardtii CC1690 wild 

type mt+ obtained from the Chlamydomonas Centre (chlamycollection.org). The 

monoculture was grown in a semi-continuous liquid COMBO freshwater medium 

(Kilham et al. 1998), without vitamins, silica and animal trace elements, which are 

unnecessary for growing green algae. The cultures were subsequently plated onto 

agar. From the plates we selected four random colonies, derived from single cells 

(hereafter referred to as Anc 2, Anc 3, Anc 4 and Anc 5) and inoculated them into 

liquid COMBO freshwater medium (Fig. 4.1a). To start the selection experiment, 

each ancestral monoculture was transferred into seven replicate chemostats 

containing 30 mL of sterile COMBO medium. Each chemostat received daily sterile 

media replacement via an automated peristaltic pump and were continuously mixed 

and aerated to prevent heterogeneity in resource availability. Chemostats were 

maintained at 20oC and illuminated under 90 μmol photons m-2s-1of light on an 18h 

light: 6h dark cycle. 

 For each ancestral population, the seven chemostats were randomly assigned 

to one of seven treatments: control, nitrogen limitation, phosphorus limitation, light 
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limitation, salt stress, biotically-depleted medium (i.e. medium previously used to 

grow seven other species of phytoplankton), and a combination of salt stress and 

biotically-depleted medium (Fig. 4.1b, Table S4.1). The biotically-depleted medium 

was used to infer the influence that a bio-diverse community may have on 

simultaneously depleting the availability of all dissolved resources. The osmotic 

stress treatment consisted of increasing concentrations of NaCl. We used osmotic-

stress as a selection treatment to compare the adaptation under resource limitation 

relative to that under another type of environmental stress. The controls were 

maintained in full COMBO for the duration of the experiment. Resource-limitation 

and salt-stress increased monthly until a final, highly-stressful concentration was 

achieved, so that populations did not go to extinction (estimates of biomass reduction 

relative to the control are given in supplementary material, Fig. S4.1, Table S4.1). 

The experiment ran for 285 days (~285 generation), after which the evolved 

populations were plated onto agar.  
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Figure 4.1. Conceptual diagram showing the process and timeline for (a) the isolation of ancestral populations, (b) derivation of evolved 

descendants by exposing ancestral populations to six different selection environments, (c) measurement of descendants’ population growth rates 

under a gradient of light, nitrogen and phosphate availability, and (d) estimation of the competition growth parameters under light, nitrogen and 

phosphate resource. This work specifically performed in this chapter relate to processes (c) and (d). 
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Resource limitation experiments 

To investigate the response of the ancestral descendant populations to light, 

nitrogen and phosphorus availability, we estimated their growth rates in three 

separate experiments in which we manipulated the supply of either light, nitrogen or 

phosphorus (Fig. 4.1c). Prior to each experiment, species were placed back into 

liquid batch culture in sterile COMBO medium, modified as described above. In 

each experiment, we estimated the growth rates of each species at each of ten levels 

of light, nitrate or phosphate. We estimated growth rates by measuring changes in 

population-level chlorophyll-a fluorescence over time using a Biotek CytationTM 5 

multi-mode plate reader. We measured chlorophyll-a fluorescence at excitation and 

emission wavelengths of 435nm and 685nm. Chlorophyll-a can be used as a proxy of 

phytoplankton biomass (Greenberg Arnold and Clesceri Lenore 1992). Although 

chlorophyll fluorescence is used as the main measure of chlorophyll and as a proxy 

for algal biomass, it is important to note that there are limitations to the use of 

fluorescence based measurements of in vivo chlorophyll in the context of the light 

and nutrient limitation experiments as described in both chapters 3 and 4 (Suggett et 

al. 2009).  The photo physiology that affects chlorophyll fluorescence yield is known 

to respond to nutrient treatments, and short and long-term light exposure and this 

response is known to be different amongst taxonomic groups (Suggett et al. 2009). 

While chlorophyll production may respond plastically to environmental variation, we 

allowed all cultures to acclimate to the resource conditions prior to the experiment to 

allow plastic adaptation to occur before the start of the experiments. Experimental 

units were tissue-culture plates, which we sealed with Breathe-Easy™ membranes to 

prevent evaporative losses and cross-contamination between adjacent wells. To 

reduce the risk of contamination, all acclimation and experimental inoculation steps 

were performed in a laminar flow hood using sterile technique. Well-plates were 

randomly assigned a location within a grid in temperature-controlled incubators 

(Multitron, Infors HT, Switzerland), which were set to rotate at 100 rpm. Cultures 

were illuminated at 140.6 μmol photons m-2·s-1 of photosynthetically active radiation 

(PAR), except for the light-limited treatments (see below for details), for a 18L:6D 

photoperiod and maintained at 20oC. 
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(i) Light R* 

In the light limitation experiment, we exposed all ancestral and descendant 

populations to each of ten light levels (0.15, 0.95, 3.6, 6.8, 18.7, 29.3, 49.2, 77.3, 

105.5, 140.6 μmol photons m-2·s-1). Liquid batch cultures of all ancestors and 

descendants were first acclimated to the ten light levels for six days prior to the start 

of the experiment. Before inoculating each ancestor and descendant into the growth 

rate experiment, we estimated population level biomass using chlorophyll-a 

fluorescence, and aimed to equalize the starting values across all treatment 

combinations using dilutions. We measured raw fluorescence units (RFU) of 

chlorophyll-a by pipetting 1 mL samples of each acclimated culture into 48-well 

tissue-culture plates and reading the plates on a Biotek CytationTM 5 plate reader. 

Dilutions were conducted to achieve a starting RFU ≤ 1,500.  

To estimate population-level growth rates at each light level, we inoculated 

100 μL of diluted, acclimated phytoplankton culture into 900 μL of sterile COMBO 

medium into individual randomized wells of a 48-well Falcon tissue-culture plate to 

achieve an initial biomass of ≤ 150 RFU. We used neutral density filters (Solar 

Graphics™, Clearwater, Florida) to manipulate the total amount of light supplied 

without changing light spectrum. The light filters on the opaque frames prevented 

unmeasured light from entering the wells from the sides of the plates. Experimental 

light intensities under the filters were measured using a Skye PAR Quantum sensor. 

Each light level was replicated three times for the ancestors, but once for the 

descendants. We then monitored population-level chlorophyll-a fluorescence, as a 

proxy for population-level biomass, by recording RFU daily on the plate-reader over 

10 days. In total, we estimated 450 growth rates from 4,500 biomass estimates. 

 

(ii) Nitrogen R* 

In the nitrogen limitation experiment, we exposed all ancestral and 

descendant populations to ten concentrations of elemental nitrogen in the form of 

nitrate, NaNO3 (1, 4, 6, 10, 40, 60, 100, 400, 600, 1000 μmol N·L-1). These nitrate 

concentrations were chosen based on previous estimates of nitrogen limitation in 

freshwater phytoplankton (Narwani et al. 2015). For comparison, standard COMBO 

media (Kilham et al. 1998) contains 1,000 μmol·L-1 of NaNO3.  

 All ancestors and descendants were first acclimated to low-nitrate 

concentrations for 9 days prior to the start of the experiment (see supplementary 
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methodology S4.1). We first diluted the acclimated cultures to 500 RFU or less, and 

then inoculated 1 mL of the cultures with 9 mL of sterile COMBO containing the 

assigned nitrogen level into 6-well tissue culture plates, achieving an initial biomass 

of less than 50 RFU. We measured chlorophyll-a fluorescence as a proxy for 

population-level biomass of all populations over 8 days. This resulted in 350 growth 

rate estimates from a total of 3,500 biomass estimates. 

 

(iii) Phosphorus R* 

In the phosphorus limitation experiment, we exposed all ancestral and 

descendant populations to ten concentrations of elemental phosphorus in the form of 

phosphate, PO3- (0.5, 1, 2, 4, 6, 8, 10, 20, 35, 50 μmol P·L-1). These phosphate 

concentrations were also chosen based on prior estimates of resource limitation of 

freshwater phytoplankton (Narwani et al. 2015). For comparison, standard COMBO 

media (Kilham et al. 1998) contains 50 μmol·L-1 of PO3.  

 All ancestors and descendants were first acclimated to low-phosphate 

concentrations for 9 days prior to the start of the experiment (see supplementary 

methodology S4.1). We first diluted the acclimated cultures to 500 RFU or less, and 

then inoculated 1 mL of the cultures with 9 mL of sterile COMBO containing the 

assigned phosphate level into 6-well tissue culture plates, achieving an initial 

biomass of less than 50 RFU. We measured chlorophyll-a fluorescence as a proxy 

for population-level biomass of all populations over 8 days. This resulted in 350 

growth rate estimates from a total of 3,500 biomass estimates. 

 

Population growth estimates 

As in Chapter 3, we described variation in light-dependent growth using the 

Eilers-Peeters model (Eilers and Peeters 1988): 

 

μ(𝐼) =
μ𝑚𝑎𝑥𝐼

μ𝑚𝑎𝑥

α 𝐼𝑜𝑝𝑡
2  𝐼2+(1−2

μ𝑚𝑎𝑥
α 𝐼𝑜𝑝𝑡

)𝐼+ 
μ𝑚𝑎𝑥

α 

,    (1) 

where μ is the specific growth rate (per day) as a function of irradiance I (in μmol 

photons m-2 s-1),  Iopt is the optimal irradiance for growth, μmax is the maximum 

specific growth rate and α is the initial slope of the curve.   
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 As in Chapter 3, we described variation in nitrogen-dependent and 

phosphate-dependent growth using a modified version of the Monod equation 

(Monod 1949):  

μ(𝑁𝑃) =
μ𝑚𝑎𝑥𝑁𝑃

𝑁𝑃+ 
μ𝑚𝑎𝑥

α 

–  𝑚,     (2) 

 

where μ is the specific growth rate (per day) as a function of nitrogen concentration 

N or phosphate concentration P (in μmol·L-1), α is the initial slope of the curve, m is 

the background mortality rate (i.e. the specific growth rate at N or P = 0), and μmax is 

the maximum growth rate only when m = 0. We modified the Monod equation by 

including the m parameter, which accounts for mortality in the absence of any 

nutrients. The estimated maximum growth rate (μmax) is therefore the sum of μmax and 

m.  

 We fit equations (1) and (2) to our experimental data and used the resulting 

parameters to numerically estimate R* values (the irradiance, nitrate and phosphate 

levels where each species’ net growth rate equaled zero, I* N* and P* respectively).  

 

Statistical analyses 

We analysed the independent effects of the selection treatment and ancestral 

identity for each descendant on: i) the minimum resource requirement for light (I*), 

nitrogen (N*) and phosphate (P*), and ii) the initial rate of response of the 

population-level growth rate to increases in resource availability (α), representing the 

slope of the curve at low resource-availability. 

To illustrate the effects of the selection treatments and investigate whether 

the descendants differed significantly from the ancestor, we used linear models (LM) 

with selection treatment as a fixed effect. To investigate whether the genotypically 

diverse ancestor displayed a stronger adaptive change of R* under resource-

limitation than the isogenic clonal populations within the same period of selection, 

we used LM with ancestor as a fixed effect. All analyses were performed in R 3.2.3 

(R Development Core Team 2016), using the function lm in the package lme4. 

To reveal whether evolved variation in R* under selection by different 

limiting resources results in trade-offs in competitive ability for light, nitrogen and 

phosphorus, we applied Principle Component Analysis (PCA) and Redundancy 
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Analysis (RDA) on the combined R* and α data from all three experiments. PCA and 

RDA were performed using the function dudi.pca and rda in the package vegan. We 

also tested whether different histories of low-resource selection result in trade-offs or 

associated fitness benefits across different contemporary low-resource environments.  

 

Results 

 

(a) Selection experiment 

Minimum light (I*) and nitrogen (N*) requirements evolved in response to 

experimental selection by different limiting resources (Figs. 4.2a, b, Table S4.5). 

Compared to the ancestors, I* increased significantly for all descendants selected 

under the biotic, light, nitrogen and salt treatments (LM, F6,29 = 11.13, P < 0.05; Figs. 

4.2a, Table S4.5), but I* did not change significantly for descendants selected under 

phosphate or the combined biotic x salt treatment (F6,29 = 11.13, P = 0.193, 0.999, 

respectively; Figs. 4.2a, Table S4.5). Overall, the ancestors had the lowest mean 

requirement for light (I*=0.03, Fig. 4.2a, Table S4.2), indicating a low requirement 

for light in the ancestral populations. The combined biotic and salt selection 

environment resulted in the lowest mean requirement for light out of all descendants 

(I* = 0.18, Fig. 4.2a, Table S4.2). The salt-stress and the biotic treatments alone 

resulted in the highest mean requirements for light (I* = 7.14, respectively, Fig. 4.2a, 

Table S4.2) and therefore did not accelerate the adaptive change in minimum 

resource requirements.  

In comparison to the ancestors, N* decreased significantly for descendants 

selected under low light and low nitrogen (F6,26 = 1.92, P < 0.05; Figs. 4.2b, Table 

S4.5), but it did not change significantly for descendants selected under the biotic, 

biotic x salt, phosphate or salt treatments (F6,26 = 1.92, P = 0.119, 0.115, 0.953 and 

0.385 respectively; Figs. 4.2b, Table S4.5). Overall, the low nitrogen selection 

treatment resulted in the lowest mean nitrogen requirement (N* = 2.64, Fig. 4.2b, 

Table S4.3), whereas the low phosphate selection treatment resulted in the highest 

mean requirement for nitrogen (N* = 11.21, Fig. 4.2b, Table S4.3). Minimum 

phosphate requirements (P*) did not respond significantly to any of the selection 

environments measured in this study (F6,27 = 0.69, P = 0.660, Fig. 4.2c, Table S4.5). 
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The response of descendants to initial increases in light (α) were affected by the 

selection treatment (Figs. 4.2e, Table S4.5). Compared to the ancestors, α decreased 

significantly for all descendants regardless of the selection environment (F5,30 = 0.94, 

P < 0.05, Fig. 4.2e, Table S4.5). The response of descendants to initial increases in 

phosphate (α) were also mediated by the selection treatment, although due to large 

variation among ancestors for this trait, the biotic and nitrogen treatments only 

marginally reduced α in relative to the ancestor (F5,30 = 0.94, P = 0.06, 0.041, Fig. 

4.2g, Table S4.5). The response of ancestors and descendants to initial increases in 

nitrogen was not significantly effected by the selection treatment (F6,26 = 1.03, P = 

0.430, Fig. 4.2f, Table S4.5). 

 

 

Figure 4.2. Minimum resource requirements evolve in response to selection 

environment and depend on the type of limiting resource. (a-c) The ancestral and 

environmentally-selected descendant minimum light (I*), nitrogen (N*) and 

phosphate requirements (P*). (d) Variation in the descendants’ R* for light, nitrogen 

and phosphate measured as the log response ratio of each descendant relative to its 

ancestor for each limiting resource. (e-g) The ancestral and environmentally selected 

descendants initial growth response (α) to increasing light, nitrogen and phosphate 

resource. (h) Variation in the descendants’ α for light, nitrogen and phosphate 

measured as the log response ratio of each descendant relative to its ancestor for each 

limiting resource. 
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 (b) Ancestral genotype 

While the selection treatment was a better predictor for R* than the ancestral 

identity for most descendants under light and phosphorus limitation (Figs. 4.3a,c, 

Table S4.5), the identity of the ancestral population was marginally more important 

in explaining the response of the descendant N*s to environmental selection  (F4,28 = 

2.35, P = 0.079, Fig. 4.3b, Table S4.5). Anc 2’s minimum nitrogen requirement were 

significantly larger than Anc 3 and Anc 4 (F4,28 = 2.35, P < 0.05, Fig. 4.3b, Table 

S4.5) under all selection treatments, and marginally higher than Anc 5 and the 

diverse population ancestor CC 1690 (F4,28 = 2.35, P = 0.0632, 0.0690, Fig. 4.3b, 

Table S4.5), under certain selection treatments (Fig. 3), suggesting a possible 

genotype by environment interaction (as indicated by the crossover of ancestral 

lines).  Overall, the genotypically diverse ancestor did not consistently accelerate the 

adaptive change in N* (Fig. 4.3b).   

 



 

 59 

 

Figure 4.3. Ancestral genotypes only explain variation in descendant’s response to 

nitrogen. The ancestral and environmentally-selected descendant minimum (a) light 

(I*), (b) nitrogen (N*) and (c) phosphate requirements (P*), coloured by ancestral 

genotype for each selection treatment.  
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(c) Trade-offs in competitive ability 

We did not find support for our hypothesis that there are trade-offs among the 

minimum requirements for light, nitrogen and phosphate. Variation in I* and N* was 

oriented orthogonally according to variation in the first two axes of a principal 

components analysis, suggesting that variation in these traits among ancestors and 

descendants of the selection experiment was largely independent (rho = -0.28, P = 

0.112, Fig. 4.4a). There was relatively little variation in P* observed (Fig. 4.2e), and 

overall, there was no evidence of a negative trade-off between P* and N* (rho = -

0.23, P = 0.204) or between P* and I* (rho = 0.36, P = 0.042). Principal components 

analysis showed that 89.94% of the variation in these three traits is explained by the 

first two PC axes (Fig. 4.4a). The first axis (64.81% of the variation) corresponds 

primarily to variation associated with nitrogen requirements, and the second axis 

(25.13% of the variation) corresponds primarily to variation associated with light 

requirements. Minimum phosphate requirements did not correspond to the first two 

axes and was primarily associated with the third axis (PC3 = 9.06%, Fig. 4.4a, Table 

S4.6). An increase in light requirement explains most of the variance in the evolution 

of the descendants away from the ancestors, and the selection treatment explains 

more of the variation in nitrogen and phosphate requirements of the descendants 

(Fig. 4.4a, Table S4.6).  

There was a clear separation of the ancestor and descendants’ initial response 

to increases in resource (α). Principal components analysis shows that 94.73% of the 

variation in α for all resources is explained by the first two PC axes (Fig. 4.4b). The 

first axis (81.73% of the variation) corresponds primarily to variation associated with 

the initial response to increases in phosphate, and the second axis (13% of the 

variation) corresponds primarily to variation associated with the initial response to 

increases in light and nitrogen (Fig. 4.4b, Table S4.6). The RDA constrained by 

selection treatment indicates a possible trade-off between R* and α (Fig. 4.4c). There 

was a weak, but significant negative correlation between R* and α (R2 = 0.13, P 

<0.05, Fig. 4.4c), suggesting the existence of trade-off between the requirements of a 

resource and its initial growth response to increasing resource availability. 
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Figure 4.4. (a) Principle components analysis (PCA) showing the separation of the 

descendants and ancestors minimum resource requirements for light (I*), nitrogen 

(N*) and phosphate (P*) depending on the selection treatment onto the first two PC 

axes of a PCA. The first axis (64.81% of the variation) corresponds primarily to 

variation associated with nitrogen requirements, and the second axis (25.13% of the 

variation) corresponds primarily to variation associated with light requirements. 

Minimum phosphate requirements did not correspond to the first two axes and was 

primarily associated with the third axis (9.06% of the variation). (b) PCA showing 

clear separation of the ancestor and descendants’ initial response to increases in 

resource (α). The first axis (81.73% of the variation) corresponds primarily to 

variation associated with the initial response to increases in phosphate, and the 

second axis (13% of the variation) corresponds primarily to variation associated with 

the initial response to increases in light and nitrogen. (c) An RDA constrained by 

selection treatment indicates a possible trade-off between R* and α (Note R* and α 

loading onto opposite orthogonal axes for each resource). The scores for the 
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genetically diverse ancestor CC1690 under each selection treatment are plotted as 

open circles to distinguish from the isoclonal ancestors. The percentage of variation 

explained by each axis was 58% and 21% for axis 1 and axis 2 respectively. 

  

Finally, we tested whether evolved differences in R* were also associated 

with differences in low-resource fitness. Here were focused only on nitrogen and 

light limitation because we observed minimal variation in P* in the descendants of 

the selection experiment. The reaction norms provide evidence that all descendants 

have reduced fitness under low light relative to the ancestors, but greater fitness 

under low-nitrogen (Fig. S4.9a-f), consistent with the R* results. This suggests that 

selection under nitrogen limitation increased fitness more than selection under light 

limitation (Figs. S4.1, S4.9g). The nitrogen selection treatment was also the most 

stressful treatment in chemostat at the end of the evolution experiment relative to the 

control, indicating that it imposed a greater selective pressure compared to the other 

selection environments (Fig. S4.1). The genotypically diverse ancestor evolved a 

greater relative fitness benefit under low nitrogen than the other descendants evolved 

from isoclonal ancestors. 

 

Discussion 

 

The requirements of C. reinhardtii for three essential resources responded to 

selection under low resource availability and osmotic stress in all possible ways: 

adaptive evolutionary trait change, non-adaptive change and no change. Nitrogen 

requirements were reduced in low-nitrogen environments, demonstrating the 

approach to an adaptive phenotypic trait optimum (lower N*). Light requirements 

moved away from an ancestral trait optimum (shown by the increase in I*), even 

when selected under low light. Finally, phosphorus requirements did not change 

significantly as a result of selection in any environment, potentially due to a 

constraint on trait variation (indicated by the lack of variation in P*). Counter to our 

predictions, neither stress nor genotypic diversity significantly nor consistently 

increased the magnitude of adaptive change. We also did not find support for the 

emergence of trade-offs among competitive abilities across descendant genotypes as 

has been observed among species across much larger taxonomic scales.  
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All of the descendants evolved a lower resource requirement for nitrogen 

regardless of the selection history. In agreement with our hypothesis, descendants 

selected under low nitrogen decreased their requirements for nitrogen the most 

compared to the ancestor. The opposite has been demonstrated in isolates of natural 

fungi (Goddard and Bradford 2003), where isolates did not adapt to nitrogen-

limitation but did so when limited by carbon, as a result of greater adaptation to 

nitrogen- than carbon-limitation in the ancestral populations. The fact that the 

ancestral population had higher requirements for nitrogen than the descendants in our 

study suggests that selection may result in advantageous mutations in competitive 

traits towards a trait optimum, but will do little for populations that are already close 

to their adaptive optimum for a particular resource. The population growth rate 

response of descendants to initial increases in nitrogen supply (α) was not altered by 

the selection treatment and therefore did not evolve in the same direction as N*. 

These outcomes differ from previous findings of multiple trait adaptation to fish 

predation, where most traits evolved towards their new optima (Stoks et al. 2016). 

Therefore, although strong selection may cause rapid evolution in some competitive 

traits, our results suggest that not all traits determining competitive ability for a 

resource will respond to selection.  

In contrast to the nitrogen experiment, the ancestral populations originally 

started with near-zero requirements for light. The lowest level of light imposed under 

the low-light selection (5 µmol photons·m-2·s-1) may therefore not have imposed 

strong light limitation (Figs.4.1a, S4.1, Table S4.1), effectively representing a case of 

relaxed selection (Lahti et al. 2009). The environment that combined biotic and salt 

stress however maintained the low ancestral light requirement. This likely resulted 

from a stronger selective pressure on I* (although not by directly limiting light), 

keeping descendants on the ancestral low-light trait optimum. This suggests that the 

combined  biotic and salt stress selection treatment may have been most similar to 

the growth conditions of this Chlamydomonas strain in the culture collection, where 

cultures are maintained under relatively low light, on agar with a Yeast-Acetate (YA) 

medium which includes organic carbon from yeast extract and acetate, as well as 

inorganic mineral salts (Sueoka 1960). Similar conditions can result in the evolution 

of Chlamydomonas into efficient heterotrophs through adaptation to low light and 

the supply of an organic substrate (acetate) (Bell 2013). This may explain the 

ancestral low light requirements observed in this study. The increase in light 
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requirement observed in many of the treatments may also have occurred via selection 

on another, genetically correlated, trait via antagonistic pleiotropy or linkage 

disequilibrium (Velicer 1999, Jeffery 2005, Lahti et al. 2009). Selection may 

therefore have occurred on an unmeasured trait that is negatively associated with I*. 

One possibility, given our knowledge of the historical growth environment, could be 

selection for an increase in growth rate in chemostat. Cultures were previously 

maintained on agar plates and sub cultured only once every few months, allowing for 

slow growth rates, but in chemostats a growth rate higher than the dilution rate is 

necessary to maintain a viable population. More light may also then be required to 

maintain this higher-than ancestral growth rate, especially given the absence of 

organic carbon substrates in the selection medium. 

The lack of adaptation to phosphorus limitation may be explained by the 

adaptive constraint resulting from the low genotypic variation in P* among the 

populations, or by the stabilizing selection on this trait either directly, or indirectly 

(via selection on a correlated trait) across all selection treatments. The ancestral 

populations may also have already been at their trait optimum for phosphorus, where 

the descendants remained. A previous study was also unable to detect specific 

evolutionary adaptation to elevated CO2 (Low-Décarie et al. 2013) due to 

conservation in the ability to utilize carbon. However, there was large variation in the 

response of the ancestors to increasing amounts of phosphate (α). Phosphate is the 

most biologically available form of phosphorus for most phytoplankton and is 

usually found in low concentrations in aquatic ecosystems (Maloney et al. 1972), 

therefore even slight increases in phosphate can produce large increases in the 

growth rate.  

We also tested whether different ancestral genotypes affected the response of 

the environmentally selected descendants to limiting light, nitrogen and phosphate. 

There were differences among ancestral genotypes in the evolution of R* only when 

they were limited by nitrogen. In particular Anc 2 had the largest requirements for 

nitrogen depending on the type of environmental selection. However, the genetically 

diverse population (CC1690) did not consistently show a stronger adaptive change in 

N*, contrary to our prediction (Hughes et al. 2008), which may have been due to 

clonal interference slowing the adaptive potential of the genotypically diverse 

population (Gerrish and Lenski 1998). In a previous study, the impact of nitrogen 

limitation on CC1690, Anc 3 and Anc 5, showed that the genetically diverse 
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population maintained higher single-cell multi-dimensional phenotypic variation for 

three phenotypes (high chlorophyll, high membrane lipid and high storage lipid) over 

time (Krismer et al. 2016). This suggests that although, genetic diversity can result in 

greater individual-level variation in some phenotypic responses in C. reinhardtii, it 

does not necessarily translate into a greater adaptive potential for R* under selection 

by limiting resources. To test how genotypic diversity affects the evolution of 

competitive abilities, competition experiments between all descendants and 

ancestors, with clear variation in R* traits for nitrogen or light could be carried out, 

while tracking the changes in frequency of all genotypes, to show whether the 

genotype with the lowest R* wins, and is fixed in a population under low resource 

availability.  

An adaptive decline in resource requirements for light did not come at a 

reduced competitive ability for nitrogen, as previously hypothesized, and variation in 

these traits among ancestors and descendants were largely independent. Although 

such a trade-off has been found for light and nitrogen resource across large 

taxonomic groups (Litchman and Klausmeier 2001, Litchman et al. 2007), we find 

that the same trade-off does not occur within a species. This suggests that the trade-

offs among species result from long-term adaptation and speciation that are not 

observed at the intraspecific level. Moreover, the trade-offs may not be due to 

genetic or biophysical constraints of trade-offs (Via and Lande 1985, Houle 1991). 

Despite the lack of intraspecific trade-off for R* between resources, we found a 

negative trade-off between the minimum resource requirement and the initial growth 

response (α) to low resource availability across light and nitrogen resource. There is 

other evidence for trade-offs occurring between the maximum growth rate, 

equilibrium competitive ability and ability to store phosphorus between species 

(Edwards et al. 2011), indicating that different strategies are favoured under different 

conditions of nutrient supply. A negative relationship between R* and α therefore 

suggests that when resources are limiting, populations may evolve a lower 

requirement for a resource by increasing their initial growth response to increasing 

amounts of resource.  

Although we provide novel and valuable insights into the evolutionary 

potential of resource requirements, the experimental work used only one species of 

phytoplankton. Although C. reinhardtii is a well-established model species used for 

the study of evolutionary adaptation (Bell 1991, 2013), different phytoplankton 
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species have markedly different life cycles and growth strategies that may alter their 

responses to limiting nutrients (Litchman et al. 2015). For example, smaller 

phytoplankton grow particularly well under low resource availability because of their 

high surface area to volume ratio, enabling rapid assimilation of nitrate (Hein et al. 

1995). The intraspecific patterns in trade-offs identified in this chapter are also 

limited to a single species. Therefore the findings of an adaptive response to resource 

limitation or the evidence of intraspecific trade-offs cannot be directly generalised to 

other species. A promising avenue for future work would be to investigate the 

evolutionary changes of multiple species (including those studied in Chapter 3), to 

assess generality of these findings.   

Although genetic diversity did not result in a stronger adaptive change in the 

minimum resource requirements for light, nitrogen and phosphate, the genetically 

diverse population of C. reinhardtii may have a lower resource requirement 

compared to the isoclonal populations at higher temperatures (as shown by the 

temperature dependence of resource requirements in Chapter 3). Currently it is not 

clear whether an adaptation for improved competitive ability in one environment at 

higher temperature will come at a cost in another, and whether genetic diversity may 

alleviate the phenotypic constraint on the response. It would therefore be interesting 

to empirically test the minimum resource requirements of environmentally adapted 

population from the genetically diverse ancestors and isoclonal ancestors to see 

whether the adaptive response varies across a temperature gradient.   

Despite these limitations, we show that the adaptive potential of some 

resource requirements may be constrained or may undergo correlated evolution, 

which could limit the degree of adaptive convergence in R* of competitors, or may 

even show non-adaptive selection or drift away from the trait optimum. This 

contradicts the theory predicting that adaptation under essential resource limitation 

should lead to convergence of competitive abilities among competitors when limited 

by the same resource (Fox and Vasseur 2008). A promising venue for future studies 

would experimentally test whether and how the evolution of competitive traits alters 

ecological dynamics.  Characterizing the adaptive potential of a species’ competitive 

ability is therefore a necessary first step with important consequences for predicting 

the effects of evolution on the competitive outcomes in response to environmental 

change.     
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CHAPTER 5 

General Conclusions 

 

The main aim of my research was to investigate how freshwater planktonic species, 

communities and ecosystem are governed by abiotic environmental change. The 

results presented in this thesis connect the main ideas outlined in the Introduction 

Chapter (Chapter 1). I used freshwater planktonic communities as experimental 

model systems and measured the response of individual species and functional traits 

to provide novel mechanistic insights into the effects of warming and resource 

availability on population and community structure. 

In Chapter 2, a microcosm experiment of the combined effects of temperature 

and non-resource diversity revealed that both temperature and diversity 

independently reduced CO2 concentration, with a dramatic reduction only at the 

highest diversity treatment. This work is the first to demonstrate the pivotal role of 

high diversity of inedible resources in reducing CO2 concentrations, with the 

potential to mitigate the impact of on-going and accelerating climate warming. The 

identity of the species that comprised the high diversity treatments was also 

important for determining the functional response of the community to changes in 

the environmental temperature (Chapter 2). Indeed it is well known that individual 

functional groups within phytoplankton communities can respond differentially to 

global warming (Litchman et al. 2015, Thomas et al. 2016). In Chapter 3 I 

demonstrated that the key functional traits governing interspecific phytoplankton 

competition for light and nitrogen are strongly temperature- and species-dependent, 

and can subsequently explain the distributions of species under different temperature 

regimes. In particular, I found that under light and nitrogen limitation, resource 

requirements are generally lowest at intermediate temperatures, and that changes in 

temperature may therefore alter the competitive hierarchy amongst species.  

The turnover in the identity and abundance of a particular species within a 

community characterised in Chapters 2 and 3 may also result from nutrient limitation 

favouring particular populations of a single species that have selective advantages in 

different environments. In Chapter 4, I find that local adaptation to different 

environmental stressors is critical for predicting the outcomes of competition under 
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resource limitation. Using Chlamydomonas reinhardtii as a model green alga, I 

showed that populations are able to evolve their resource requirements to respond to 

low-resource availability. In particular, I revealed that populations evolve lower 

requirements for nitrogen when limited by nitrogen, allowing C. reinhardtii 

populations to approach an adaptive-trait optimum. Populations can also move away 

from an optimum of ancestral populations established under light limitation, thus 

increasing the requirement for light in descendant populations. There may also be no 

adaptive response in competition traits to phosphate limitation, presumably due to a 

highly conserved constraint for phosphate requirements present in ancestral 

populations, perhaps because phosphate is usually found in low concentrations in 

aquatic ecosystems (Maloney et al. 1972). Increasing environmental stressors may 

therefore select for particular populations depending on the type of adaptation to the 

most limiting resource, therefore influencing overall ecosystem functioning (chapter 

2) in a multitude of ways (Litchman et al. 2015). 

Species are constantly adjusting to changes in local environmental conditions. 

Where phenotypic plasticity or genetic adaptations cannot cope with the 

environmental change, the species can either move to a more favourable environment 

or go locally extinct. My thesis identifies some of the main mechanisms underlying 

co-existence within plankton communities within a variable abiotic environment. I 

identified the relative importance of adaptation, and the role of temperature in 

governing the interactions of freshwater plankton communities. This work thus 

improves our mechanistic understanding of the pivotal role of species diversity and 

thus improving the forecasts of community dynamics in a changing world.   
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SUPPLEMENTARY MATERIAL 

Supplementary Chapter 2 
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Figure S2.1. Conceptual path diagram illustrating the alternative hypotheses based 

on the models presented in Table S2.5, of how warming (oC) and phytoplankton 

diversity (number of non-resource species), may affect consumer density, resource 

density, total phytoplankton biomass (total chlorophyll-a concentration) and CO2 

concentration. Red and black colors indicate negative and positive effects 

respectively. All models, (a) model 1 and 2, (b) model 3, (c) Model 4, reflect our 

hypotheses that (i) high temperature would directly increase consumer density, 

resource density and total phytoplankton biomass; (ii) high diversity would reduce 

consumer density, increase resource density and total phytoplankton biomass; (iii) 

consumers increase CO2 concentration whilst total phytoplankton biomass and 

resource density reduces CO2 concentration in the water. (iv) at high temperature, 

high diversity would reduce consumer density, increase resource density and total 

phytoplankton biomass, and reduce CO2 concentration; (v) at high temperature, low 

diversity would increase consumer density, decrease resource density, decrease total 

phytoplankton biomass but increase CO2 concentration. We composed models with 

(model 1 2 and 3) or without (model 4) a direct effect of temperature and diversity on 

CO2 concentration, and with biologically relevant combinations of direct links of 

consumer, resource densities and total phytoplankton biomass. Model 2 included 

phytoplankton composition as a random factor. 
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Figure S2.2. Mean consumer density, chorophyll-a concentration (total 

phytoplankton biomass) and resource density over the over the experimental duration 

for different diversity levels and community compositions (error bars are ± 1 

standard error, N=4). Horizontal lines are means of each diversity category (grey for 

all 0, 2 and 4 non-resource diversity treatments combined, orange for 8 non-resource 

composition A and green for 8 non- resource composition B).
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Table S2.1. Inocula of phytoplankton species that originated from the Experimental 

Phycology and Culture Collection of Algae at the University of Göttingen (EPSAG) 

and the Culture Collection of Algae of Charles University in Prague (CAUP). Cell 

diameter and biovolume estimates were determined from an average sample size of 

30 cells calculated using a stage micrometer. Cell diameters are mean ± 1 SD. 

Biovolumes for each species were calculated using equations based on the body 

shape and cell size of each species (Hillebrand et al. 1999). The last column indicates 

the number of lakes each phytoplankton species occurs across North America as 

found in the US EPA’s National Lakes Assessment survey (2007). 

 

Species 

 

Source & 

Identifier 

Cell Diameter (μm) 

(±SD) 

Biovolume (μm3) 

No. lakes each 

species occurs 

Chlorella vulgaris EPSAG 211-

11b 

4 ± 0.44 

33.49 

 

Cosmarium botrytis EPSAG 612-5 43 ± 1.6 

41608.66 

161 

Closterium acerosum EPSAG 126.8 333 ± 7.52 

109089 

545 

Mougeotia sp. EPSAG 650-1 1494 ± 67.06 

269181.69 

366 

Eremosphaera viridis EPSAG 228-1 182 ± 1.42 

3154950.59 

2 

Staurastrum pingue EPSAG 5.94 56 ± 3.3 

11084 

70 

Pediastrum duplex EPSAG 84.8 27 ± 6.52 

140 

360 

Eudorina elegans EPSAG 29.87 38 ± 2.83 

2467.7 

545 

Closterium littorale EPSAG 611-7 146 ± 7.74 

3750 

366 

Ankistrodesmus falcatus EPSAG 202-2 44 ± 1.58 

363.2 

2 

Volvox aureus EPSAG 88-1 159 ± 13.34 

7563.1 

139 

Micrasterias crux-

melitensis 

CAUP K602 98 +/98- 1.13 

5670.6 

511 
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Table S2.2. Chemical composition of Volvic Mineral Water used as experimental 

media.  

 

 

 

 

 

 

 

 

 

Mineral: 

Composition  

(mg l¯¹): 

Calcium (Ca) 12 

Sulphates (SO₄ ) 9 

Magnesium (Mg) 8 

Sodium (Na) 12 

Bicarbonates (HCO₃ ) 74 

Potassium (K) 6 

Silica (SiO₂ ) 32 

Chlorides (Cl¯) 15 

Nitrates (NO₃ ) 7.3 
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Table S2.3. Linear mixed effects (LMEs) model summary statistics illustrating the 

independent and combined effects of non-resource diversity and environmental 

temperature on the time averaged response variables: (i) consumer density (number 

of D. pulex per sample), (ii) resource density (number of C. vulgaris cells per 

sample), (iii) total phytoplankton biomass (aggregated biomass of all phytoplankton 

taxa in the community) and (iv) concentration of CO2 (amount of CO2 in the water 

uncorrected for the difference in solubility at each temperature). Temperature and 

non-resource diversity were treated as fixed effects. We accounted for the temporal 

blocks, non-resource community composition and position of the microcosms in the 

incubators (nested in time) as random effects. We used the varIdent function to 

improve homogeneity of variance in the model fit (Zuur et al. 2009). 

 

 d.f. F value R2 

(cond) 

R2 

(marg) 

P 

(a) CO2 uncorrected   0.938 0.565  

Diversity 1,89 9.719   0.0025 

Temperature 1,89 48.942   <0.0001 

Diversity*Temperature 1,89 0.042   0.838 

      

(b) Phytoplankton biomass    0.609 0.236  

Diversity 1,89 60.931   <0.0001 

Temperature 1,89 3.788   0.050 

Diversity*Temperature 1,89 0.732   0.395 

      

(c) Consumer   0.414 0.219  

Diversity 1,89 13.333   0.0004 

Temperature 1,89 20.358   <0.0001 

Diversity*Temperature 1,89 0.462   0.498 

      

(d) Resource   0.638 0.099  

Diversity 1,89 1.309   0.256 

Temperature 1,89 10.023   0.002 

Diversity*Temperature 1,89 0.353   0.554 
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Table S2.4. Linear mixed effects (LMEs) model summary statistics illustrating the 

independent and combined effects of non-resource diversity and environmental 

temperature on four response variables: (i) consumer density (number of D. pulex per 

sample), (ii) resource density (number of C. vulgaris cells per sample), (iii) total 

phytoplankton biomass (aggregated biomass of all phytoplankton taxa in the 

community) and (iv) concentration of CO2 (amount of CO2 in the water uncorrected 

for the difference in solubility at each temperature). This model was fit to the whole 

time series data. Temperature and non-resource diversity were treated as fixed 

effects. We accounted for the temporal blocks, non-resource community composition 

and position of the microcosms in the incubators (nested in time) as random effects. 

We used the varIdent function to improve homogeneity of variance in the model fit 

(Zuur et al. 2009). 

 d.f. F value R2 

(cond) 

R2 

(marg) 

P 

(a) CO2 uncorrected   0.855 0.052  

Diversity 1,191 18.161   <0.0001 

Temperature 1,1308 119.005   <0.0001 

Diversity*Temperature 1,1308 0.008   0.931 

      

(b) Phytoplankton 

biomass 

  0.899 0.174  

Diversity 1,191 125.591   <0.0001 

Temperature 1,1310 9.995   0.002 

Diversity*Temperature 1,1310 3.686   0.055 

      

(c) Consumer   0.799 0.046  

Diversity 1,191 29.691   <0.0001 

Temperature 1,1310 28.164   <0.0001 

Diversity*Temperature 1,1310 0.976   0.323 

      

(d) Resource   0.858 0.008  

Diversity 1,191 1.911   0.169 

Temperature 1,1310 13.612   0.0002 

Diversity*Temperature 1,1310 0.627   0.429 
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Table S2.5. A comparison of different structural equations models (SEMs) used to 

explain patterns of covariance among variables analyzed in this experiment 

(Lefcheck 2016). We compared the models with (models 1,2 and 3) or without 

(model 4) a direct effect of temperature (T) and diversity (D) on CO2 concentration, 

and with biologically relevant combinations of direct links of consumer (C), resource 

(R) densities and total phytoplankton biomass (Chl). The best model (model 1) was 

also compared to a model with phytoplankton composition as a random factor 

(model 2) to test whether species compositions contributed to any variation in the 

data. We also simplified the model by removing individual pathway predictors 

(models 5 and 6) but model 1 described the data best, as indicated by the lowest AIC 

and non-significant Fisher C. For each model we report the degrees of freedom, 

Fisher C, P value, n (number of samples) and K (number of model parameters). We 

selected the model with the lowest AIC score, representing the best fit to our data. 

All SEMs incorporated a random effect of block, time and position within the 

incubator. The degrees of freedom were extracted directly from the analyses 

summary statistics using the sem.fit function from the PiecewiseSEM package in R. 

Notes: The best model is in bold font.
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Model Description d.f. Fisher 

C 

P n K AIC 

1 CO2 ~ T + D + Chl + C + R 

Chl ~ T + D + R 

R ~ T + D + C 

C ~ T + D  

2 3.20 0.202 1536 33 69.2 

2 Model 1 with composition as 

random factor  

2 3.38 0.184 1536 37 77.38 

3 CO2 ~ T + D + Chl + C + R 

Chl ~ T + D + C 

R ~ T + D  

C ~ T + D + R 

2 31.19 0 1536 33 97.19 

4 CO2 ~  Chl + C + R 

Chl ~ T + D + C 

R ~ T + D  

C ~ T + D + R 

 

6 39.06 0 1536 
 

31 101.06 

5 CO2 ~ T + D + Chl + C + R 

Chl ~ T + D + R 

R ~ T + C 

C ~ T + D 

4 9.40 0.052 1536 32 73.4 

6 CO2 ~ T + D + Chl + C + R 

Chl ~ T + D + R 

R ~ T 

C ~ T + D +R 

4 8.66 0.070 1536 32 72.66 
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Supplementary Chapter 3 

 

 

 

 

Figure S3.1. The interactive effect of temperature and light on growth rate of six 

freshwater phytoplankton species. Fitted models are of equation (1). (a-d) 

Synechococcus,sp. (e-h) Kirchneriella subcapitata, (i-l) Microcystis, (m-p) 

Pediastrum boryanum, (q-t) Cyclotella meneghiniana, (u-x) Scenedesmus 

acuminatus. Growth rate estimates were weighted based on the uncertainty in each 

point. The grey lines represent represents the 95% confidence interval of the curve 

using 1000 bootstrapped values.  
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Figure S3.2. The interactive effect of temperature and nitrate concentration (μmol L-

1) on growth rate of six freshwater phytoplankton species. Fitted models are of 

equation (2). (a-d) Synechococcus,sp. (e-h) Kirchneriella subcapitata, (i-l) 

Microcystis, (m-p) Pediastrum boryanum, (q-t) Cyclotella meneghiniana, (u-x) 

Scenedesmus acuminatus. Growth rate estimates were weighted based on the 

uncertainty in each point. The grey lines represent represents the 95% confidence 

interval of the curve using 1000 bootstrapped values. 
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Figure S3.3. Within species comparisons of the estimated minimum resource 

requirements for light (I*) and nitrogen (N*) across a gradient of temperature for (a-

b) Synechococcus sp., (c-d) P. boryanum, (e-f) K. subcapitata, (g-h) C. 

meneghiniana, (i-j) M. aeruginosa and (k-l) S. acuminatus.. It was observed that M. 

aeruginosa did not grow at 15oC and therefore I* could not be estimated (denoted by 

the *).  
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Table S3.1. The list of phytoplankton taxa used for both, the light and nitrogen 

competition experiments. The culture collection names are abbreviations: SAG = 

Sammlung von Algenkulturen Göttingen (Göttingen, Germany), CCAP = the Culture 

Collection of Algae and Protozoa (Oban, Scotland). Temperature optima (Topt) were 

obtained from (Thomas et al. 2016) and approximated based on different 

measurements from multiple strains. These taxa can be found naturally in lakes 

across North America, as described in the US EPA’s National Lakes Assessment 

survey ((USEPA) 2009). 

 

Species Culture Collection Strain Number TOpt (
oC) 

Scenedesmus acuminatus SAG 38.81 29 

Pediastrum boryanum SAG 87.81 19 

Kirchneriella subcapitata SAG 12.81 24-26 

Cyclotella meneghiniana SAG 1020.1a 24 

Synechococcus sp. CCAP 1479.10 31 

Microcystis aeruginosa Lab Strain - 28-33 
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Table S3.2. Light limitation experimental parameter estimates for six freshwater 

phytoplankton species. α is the species’ initial response to elevated resource 

availability,  µmax is the maximum growth rate under non-limiting light conditions, 

Iopt is the optimal irradiance for growth and I* is the species minimum light 

requirement. Parameter uncertainty (in parentheses) was measured as the 95% 

confidence width estimated from 1000 bootstrap values.  

 

Species Temp 

(oC) 

α µmax 

 ± SE 

Iopt I* 

[µmol photons 

m-2s-2] 

Scenedesmus 

acuminatus 

15 0.02 

(0.01-0.02) 

0.65 ± 

0.0000

3 

80.24 

(75.67-87.29) 

4.78 

(3.27-6.20) 

20 0.02 

(0.02-0.03) 

1.16 ± 

0.02 

194.73 

(194.73-194.73) 

0.07 

(0-1.63) 

 25 0.03 

(0.02-0.03) 

1.53 ± 

0.04 

9049.78 

(9049.8-9049.8) 

1.08 

(0-2.54) 

 30 0.03 

(0.02-0.07) 

1.32 ± 

0.27 

74.50 

(68.42-83.51) 

0.67 

(0-1.78) 

      

Pediastrum 

boryanum 

15 0.01 

(0.003-0.03) 

0.82 ± 

0.05 

86.88 

(70.47-951.56) 

5.42 

(0-11.77) 

20 0.01 

(0.01-0.02) 

0.79 ± 

0.09 

168.69 

(168.69-168.69) 

2.05 

(0-4.52) 

 25 0.02 

(0.01-0.03) 

1.10 ± 

0.11 

104.23 

(92.38-123.65) 

2.74 

(0.44-4.76) 

 30 0.05 

(0.03-0.09) 

0.90 ± 

0.09 

60.98 

(52.17-77.86) 

3.62 

(2.21-5.17) 

      

Kirchneriella 

subcapitata 

15 0.01 

(0.0001-1) 

0.35 ± 

0.01 

92.85 

(35.31-8402.34) 

30.97 

(0-73.69) 

20 0.04 

(0.02-0.08) 

1.10 ± 

0.07 

70.74 

(57.99-110.84) 

1.80 

(0-4.01) 

 25 0.07 

(0.03-0.18) 

1.36 ± 

0.004 

10000 

(10000-10000) 

2.68 

(0-5.14) 

 30 0.002 

(0.0001-0.02) 

0.88 ± 

0.08 

175.50 

(175.50-175.50) 

53.06 

(13.41-77.77) 

      

Cyclotella 

meneghiniana 

15 0.0001 

(0.0001-0.0001) 

0.84 ± 

0.05 

156.13 

(156.11-156.19) 

84.46 

(64.28-95.56) 

20 0.01 

(0.0001-0.06) 

1.35 ± 

0.08 

71.66 

(52.88-3986.30) 

0 

(0-1.24) 

 25 0.04 

(0.02-0.07) 

1.31 ± 

0.19 

74.84 

(62.73-113.52) 

0.27 

(0-2.32) 

 30 0.03 

(0.02-0.07) 

1.20 ± 

0.20 

74.33 

(62.08-104.20) 

0.34 

(0-2.92) 

      

Synechococcus 15 0.01 

(0.01-0.03) 

0.55 ± 

0.06 

141.40 

(141.40-141.40) 

0 

(0-0) 

20 0.02 

(0.01-0.03) 

1.71 ± 

0.04 

 

1421.90 

(1421.9-1421.9) 

1.35 

(0-5.52) 

 25 0.03 

(0.02-0.05) 

1.66 ± 

0.48 

70.77 

(61.58-88.69) 

1.04 

(0-3.34) 
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 30 0.04 

(0.02-0.07) 

1.53 ± 

0.45 

 

9838.23 

(9838.2-9838.2) 

1.33 

(0-3.55) 

      

Microcystis 

aeruginosa 

15 1.000 

(0.02-1) 

0.09 ± 

0.10 

0.22 

(0.09-0.45) 

0.05 

(0.02-0.12) 

20 0.01 

(0.01-0.03) 

0.48 ± 

0.03 

57.53 

(50.14-68.77) 

2.30 

(0-4.22) 

 25 0.02 

(0.01-0.03) 

0.58 ± 

0.02 

92.90 

(84.50-120.53) 

2.84 

(0-5.12) 

 30 0.02 

(0.01-0.04) 

0.88 ± 

0.10 

99.99 

(79.56-1190.55) 

0.53 

(0-3) 
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Table S3.3. Nitrate limitation experimental parameter estimates for six freshwater 

phytoplankton species. α is the species’ initial response to elevated resource 

availability,  µmax is the maximum growth rate under non-limiting nitrate conditions, 

m is the specific growth rate at N = 0 and N* is the species minimum nitrate 

requirement. Parameter uncertainty (in parentheses) was measured as the 95% 

confidence intervals estimated from 1000 bootstraps.  

 

Species Temp 

(oC) 

α µmax ± SE m N* 

[µmol L-1] 

Scenedesmus 

acuminatus 

15 0.04 

(0.03-0.08) 

0.64 ± 0.01 0 

(0-0.07) 

0 

(0-1.34) 

 20 0.07 

(0.05-0.10) 

1.01 ± 0.03 0.27 

(0.18-0.37) 

5.18 

(3.95-6.36) 

 25 0.14 

(0.12-0.20) 

1.45 ± 0.0005 0.03 

(0-0.15) 

0.23 

(0-0.87) 

 30 0.02 

(0.01-0.03) 

1.21 ± 0.34 0.39 

(0.31-0.48) 

24.61 

(20.17-29.89) 

      

Pediastrum 

boryanum 

15 0.11 

(0.06-0.22) 

0.49 ± 0.02 0.16 

(0.08-0.27) 

2.11 

(1.42-2.70) 

 20 0.08 

(0.04-0.17) 

0.74 ± 0.04 0.16 

(0.05-0.32) 

2.50 

(1.07-3.74) 

 25 0.14 

(0.09-0.22) 

0.78 ± 0.18 0.20 

(0.11-0.30) 

1.87 

(1.30-2.32) 

 30 0.02 

(0.01-0.03) 

0.80 ± 0.05 0.15 

(0.08-0.23) 

10.10 

(6.21-14.23) 

      

Kirchneriella 

subcapitata 

15 0.25 

(0.17-0.38) 

0.50 ± 0.13 0.38 

(0.29-0.48) 

2.84 

(2.51-3.20) 

 20 0.03 

(0.03-0.04) 

0.78 ± 0.18 0.18 

(0.14-0.22) 

7.00 

(5.93-8.02) 

 25 0.04 

(0.03-0.06) 

0.81 ± 019 0.02 

(0-0.09) 

0.53 

(0-1.66) 

 30 0.02 

(0.02-0.03) 

0.66 ± 0.40 0.30 

(0.26-0.34) 

19.47 

(17.07-22.09) 

      

Cyclotella 

meneghiniana 

15 0.24 

(0.14-0.41) 

0.70 ± 0.18 0.53 

(0.37-0.71) 

4.09 

(3.38-4.80) 

 20 0.10 

(0.05-0.20) 

0.90 ± 0.08 0.37 

(0.21-0.57) 

5.23 

(3.86-6.83) 

 25 0.17 

(0.12-0.26) 

1.13 ± 0.07 0.52 

(0.36-0.69) 

4.76 

(3.97-5.76) 

 30 0.07 

(0.04-0.12) 

1.18 ± 0.05 0.64 

(0.49-0.81) 

15.94 

(12.21-20.72) 

      

Synechococcus 15 0.003 

(0.002-0.01) 

0.52 ± 0.02 0.15 

(0.12-0.20) 

61.21 

(44.65-74.74) 

 20 0.12 

(0.06-0.22) 

0.77 ± 0.09 0.78 

(0.58-1.03) 

13.50 

(10.16-18.08) 

 25 0.24 

(0.15-0.37) 

0.99 ± 0.09 0.68 

(0.51-0.87) 

5.21 

(4.40-6.06) 

 30 0.15 

(0.10-0.24) 

1.34 ± 0.13 1.49 

(1.23-1.76) 

20.12 

(16.16-25.13) 
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Microcystis 

aeruginosa 

15 0.09 

(0.07-0.12) 

0.23 ± 0.0001 0.38 

(0.35-0.42) 

11.89 

(10.90-13.13) 

 20 0.24 

(0.15-0.38) 

0.53 ± 0.11 0.93 

(0.79-1.11) 

13.31 

(11.23-15.97) 

 25 0.02 

(0.01-0.03) 

0.61 ± 0.04 0.56 

(0.46-0.67) 

67.21 

(49.52-91.74) 

 30 0.01 

(0.004-0.01) 

1.19 ± 0.01 0.25 

(0.15-0.38) 

44.15 

(27.72-59.46) 
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Table S3.4. Q10 values calculated from the fitted slope of a linear model fit to the 

log-transformed response of each trait estimate to temperature. Q10 values represent 

the temperature sensitivity of the change in the trait value due to an increase by 

100C.  

Parameter Adjusted 

temperature range 

(oC) 

Q10 95% 

Confidence 

width 

Light    

I* Below 0 -2.25 0.22 

 Above 0 0.70 0.09 

µmax Below 0 0.45 0.02 

 Above 0 -0.12 0.03 

α Below 0 0.02 0.001 

 Above 0 -0.05 0.01 

Iopt Below 0 0.31 0.03 

 Above 0 -0.25 0.03 

Nitrogen    

N* Below 0 -1.01 0.15 

 Above 0 0.45 0.06 

µmax Across entire x-axis 0.22 0.01 

    

α Below 0 0.14 0.01 

 Above 0 -0.08 0.005 

m Below 0 0.18 0.02 

 Above 0 -0.25 0.03 
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S3.1. Supplementary Methodology  

 

 

Acclimation to nitrogen 

 

To allow for acclimatization, the phytoplankton were maintained at the assigned 

nitrate concentration and experimental temperature, for 13 days prior to the start of 

the experiment. 100ml batch cultures of each species were first placed into 

temperature-controlled incubators set to one of the four experimental temperatures 

(Multitron, Infors HT, Switzerland). After 7 days, 12ml of each phytoplankton 

culture was centrifuged at 3,000rpm for 12 minutes and re-suspended in COMBO 

medium containing their respective target nitrate concentration. This allowed 

cultures acclimate to their assigned experimental nitrate concentrations. This 

resuspension was repeated on the third and fifth day of the acclimation to ensure 

complete removal of excess nitrate from the culture medium while also preventing 

starvation due to depletion. The phytoplankton pellet was then once again re-

suspended in fresh and sterile COMBO medium with the assigned nitrate 

concentration. 

 

 

Parameter estimation  

 

We estimated population growth rates (r) as the slope of the log-transformed 

population-level pigment fluorescence (chlorophyll-a for eukaryotes, phycocyanin 

for cyanobacteria) against time (Simis et al. 2012). We used a minimum of three 

time points selected from the period during which growth was exponential 

(determined visually).  

 We used a maximum likelihood approach to fit equation (1) and equation (2) 

to the light-dependent and nitrogen-dependent growth rate estimates of each species 

at all experimental temperatures. We accounted for uncertainty in individual growth 

rate estimates by weighting each point by the reciprocal of the standard error. In 

addition to estimating the parameters of equation (1), we also numerically estimated 

the R* (i.e. I* and N*) values, or the irradiance and nitrogen levels at which the 



 

 88 

population growth rate is equal to zero, by solving the parameterized growth 

functions. We then quantified the uncertainty in each parameter estimate, while 

accounting for the uncertainty in the individual growth rate estimates. 

For each fitted curve, we simulated 1000 new datasets with the same number 

of points as the original fit, and at exactly the same irradiance levels. Residuals were 

randomly drawn and based on the variance in the original fit, but adjusted for bias in 

maximum likelihood estimates of variance (Gelman and Hill 2007). We then refit 

equations (1) and (2) to each of these 1000 simulated datasets and calculated the 95% 

confidence intervals in each parameter estimate. We followed this approach to 

account for the weighting of individual points by their uncertainty, and to capture 

uncertainty in R*, which was not a parameter included in the equation (and therefore 

precluded a likelihood profile-based approach). The parameters were estimate using 

R 3.3.3. (R Development Core Team 2014). Maximum likelihood fits were 

performed using the package bbmle (Bolker 2016). 
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Supplementary Chapter 4 

 

 

 

Figure S4.1.  Estimates of biomass reduction of all ancestral strains assigned to each 

selection treatment relative to the control (indicated by the dotted line). Estimates of 

biomass reduction for each treatment were calculated by taking the log response ratio 

of the mean biomass estimate (RFU) of the last 4 time points of the selection 

experiment relative to the last 4 time points of the control. 
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Figure S4.2. Growth curves of all ancestors under limiting light, nitrogen and 

phosphate resource. Rows demonstrate the response of each descendant’s ancestral 

history to each limiting resource.  Growth rate estimates were weighted based on the 

uncertainty in each point. The grey lines represent represents the 95% confidence 

interval of the curve using 1000 bootstrapped values. 
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Figure S4.3. Growth curves of all descendants selected under the biotic treatment, 

for limiting light, nitrogen and phosphate resource. Rows demonstrate the response 

of each descendant’s ancestral history to each limiting resource.  Growth rate 

estimates were weighted based on the uncertainty in each point. The grey lines 

represents the 95% confidence interval of the curve using 1000 bootstrapped values. 
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Figure S4.4. Growth curves of all descendants selected under the biotic treatment, 

for limiting light, nitrogen and phosphate resource. Rows demonstrate the response 

of each descendant’s ancestral history to each limiting resource.  Growth rate 

estimates were weighted based on the uncertainty in each point. The grey lines 

represents the 95% confidence interval of the curve using 1000 bootstrapped values. 
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Figure S4.5. Growth curves of all descendants selected under the biotic x salt 

treatment, for limiting light, nitrogen and phosphate resource. Rows demonstrate the 

response of each descendant’s ancestral history to each limiting resource.  Growth 

rate estimates were weighted based on the uncertainty in each point. The grey lines 

represent the 95% confidence interval of the curve using 1000 bootstrapped values. 
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Figure S4.6. Growth curves of all descendants selected under the low phosphate 

treatment, for limiting light, nitrogen and phosphate resource. Rows demonstrate the 

response of each descendant’s ancestral history to each limiting resource.  Growth 

rate estimates were weighted based on the uncertainty in each point. The grey lines 

represent the 95% confidence interval of the curve using 1000 bootstrapped values. 
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Figure S4.7. Growth curves of all descendants selected under the high osmotic stress 

(salt) treatment, for limiting light, nitrogen and phosphate resource. Rows 

demonstrate the response of each descendant’s ancestral history to each limiting 

resource.  Growth rate estimates were weighted based on the uncertainty in each 

point. The grey lines represent the 95% confidence interval of the curve using 1000 

bootstrapped values. 
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Figure S4.8. Growth curves of all descendants selected under the biotic x salt 

treatment, for limiting light, nitrogen and phosphate resource. Rows demonstrate the 

response of each descendant’s ancestral history to each limiting resource.  Growth 

rate estimates were weighted based on the uncertainty in each point. The grey lines 

represent the 95% confidence interval of the curve using 1000 bootstrapped values.  
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Figure S4.9. (a-f) Reaction norms of absolute fitness of each descendant and it’s ancestor; green = selected under low light, blue = selected 

under low nitrogen and red = ancestor). Lines connect the fitness of the descendants or ancestor in each assay environment. (g) Trade-offs in 

fitness resulting from divergent selection. Lines connect a pair of evolved descendants from their common ancestor selected in one of two 

environments (filled circles: selected in low light (wL); open circle: selected in low nitrogen (wN). Values are expressed as relative fitness 

calculated as the Log response ratio of each environmentally selected descendant to its relative ancestor. The fitness of the ancestor is by 

definition given by the intersection of the two dashed lines in the figure.  
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Figure S4.10. The weak, but significant negative correlation between R* and α, 

indicating a negative trade-off between the requirements of a resource and its initial 

growth response to increasing resource availability. Due to little variation in P* 

observed in this experiment, we use only the R* and α estimates from the light and 

nitrogen experiments.  
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Table S4.1. Experimental treatments applied monthly during the evolution 

experiment performed previous to the experiments carried in Chapter 5. All 

treatments are resource depletion treatments, except for the control and the NaCl 

treatments. The NaCl treatment consisted of increasing concentrations of salt in order 

to impose an osmotic stress. Competition medium was first made by allowing seven 

species of other freshwater green phytoplankton to grow on and deplete the resource 

from standard COMBO medium, and then mixing that medium together with some 

proportion of standard (full) COMBO. The proportions shown are the proportions of 

the media made up of biotically depleted COMBO (i.e. 1 is completely depleted, or 

spent COMBO).

Month NaNO3 

(μmol 

L-1) 

K2HP0

4 

(μmol 

L-1) 

Competition 

(Proportion) 

Light 

(μmol 

photons 

m-2s-1) 

NaCl 

(g/L) 

Competition 

x NaCl 

1 1000 50 0 100 0 0 0 

2 100 5 0.01 70 1 0.01 1 

3 100 5 0.1 50 2 0.1 2 

4 10 0.5 0.4 20 4 0.4 4 

5 10 0.5 0.75 15 6 0.75 6 

6 10 0.5 0.95 5 8 0.95 8 

7 10 0.5 1 5 8 1 8 

8 10 0.5 1 5 8 1 8 
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Table S4.2. Light limitation experimental parameter estimates for descendants under 

each selection treatment. α is the species’ initial response to elevated resource 

availability,  µmax is the maximum growth rate under non-limiting light conditions, 

Iopt  is the optimal irradiance for growth and I* is the species minimum light 

requirement. Parameter uncertainty (in parentheses) was measured as the 95% 

confidence width estimated from 1000 bootstrap values.  

 

 

Treatment Ancestor α µmax ± SE Iopt I* 

[µmol photons 

m-2s-2] 

Ancestor      

 Anc2 0.12 

(0.08-0.19) 

1.75 ±  

0.09 

53.43 

(46.99-65.25) 

0.15 

(0-0.85) 

 Anc3 0.11 

(0.08-0.16) 

1.77 ±  

0.23 

60.25 

(53.51-73.93) 

0 

(0-0.65) 

 Anc4 0.09 

(0.06-0.13) 

1.71 ±  

0.14 

38.06 

(35.46-40.77) 

0 

(0-0.94) 

 Anc5 0.09 

(0.03-0.18) 

1.88 ±  

0.07 

118.80 

(62.89-10000) 

0 

(0-1.53) 

 CC 1690 0.08 

(0.06-0.11) 

1.98 ±  

0.03 

72.38 

(63.95-89.45) 

0 

(0-0.11) 

Biotic      

 Anc2 0.01 

(0.008-0.03) 

1.59 ±  

0.14 

297.68 

(297.68-297.68) 

7.47 

(0-14.59) 

 Anc3 0.01 

(0.005-0.008) 

1.28 ±  

0.02 

341.54 

(341.54-351.54) 

3.56 

(0-14.27) 

 Anc4 0.01 

(0.007-0.03) 

1.83 ±  

0.09 

190.93 

(190.92-190.93) 

6.24 

(0-15.26) 

 Anc5 0.01 

(0.008-0.01) 

2.40 ±  

0.66 

217.68 

(217.67-217.68) 

10.44 

(0.94-17.37) 

 CC 1690 0.004 

(0.003-0.004) 

1.61 ±  

0.05 

131.45 

(131.45-131.46) 

7.99 

(2.76-12.11) 

Light      

 Anc2 0.02 

(0.01-0.04) 

1.57 ±  

0.16 

285.62 

(285.62-285.62) 

4.31 

(0-9.32) 

 Anc3 0.02 

(0.01-0.03) 

1.26 ±  

0.15 

971.21 

(971.21-971.21) 

3.30 

(0-10.26) 

 Anc4 0.01 

(0.008-0.01) 

2.01 ±  

0.004 

335.38 

(335.38-335.39) 

0.13 

(0-8.00) 

 Anc5 0.02 

(0.009-0.04) 

1.60 ±  

0.06 

289.27 

(289.26-289.27) 

5.08 

(0-11.57) 

 CC 1690 0.02 

(0.01-0.03) 

1.64 ±  

0.04 

1049.37 

(1049.37-

1049.37) 

2.05 

(0-7.22) 

Nitrogen      

 Anc2 0.01 

(0.005-0.01) 

1.65 ±  

0.13 

305.97 

(305.97-305.97) 

0 

(0-8.78) 

 Anc3 0.01 

(0.008-0.02) 

1.31±  

0.09 

1652.41 

(1652.41-

1652.41) 

0 

(0-0) 

 Anc4 0.01 

(0.01-0.02) 

1.69 ±  

0.13 

651.91 

(651.91-651.92) 

6.24 

(1.49-10.81) 
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 Anc5 0.01 

(0.006-0.01) 

1.46 ±  

0.15 

382.35 

(382.35-382.36) 

4.68 

(0-14.97) 

 CC 1690 0.02 

(0.01-0.02) 

2.04 ±  

0.55 

1457.37 

(1457.37-

1457.37) 

4.23 

(0-10.73) 

Phosphate      

 Anc2 0.02 

(0.02-0.04) 

1.25 ±  

0.05 

3468.74 

(3468.74-

3468.74) 

2.23 

(0-5.63) 

 Anc3 0.01 

(0.009-0.02) 

1.81 ±  

0.14 

353.45 

(353.45-353.46) 

3.35 

(0-11.11) 

 Anc4 0.03 

(0.02-0.07) 

1.51 ±  

0.11 

8937.91 

(8937.91-

8937.91) 

1.84 

(0-5.49) 

 Anc5 0.01 

(0.009-0.01) 

1.51 ±  

0.08 

161.69 

(161.69-161.69) 

2.42 

(0-5.48) 

 CC 1690 0.02 

(0.01-0.02) 

1.49 ±  

0.13 

5876.22 

(5876.22-

5876.22) 

0 

(0-2.08) 

Salt      

 Anc2 0.02 

(0.01-0.03) 

1.74 ±  

0.74 

196.80 

(196.80-196.80) 

4.82 

(0.41-8.30) 

 Anc3 0.01 

(0.01-0.02) 

1.97 ±  

0.42 

460.90 

(460.90-460.90) 

5.67 

(0.23-10.39) 

 Anc4 0.01 

(0.009-0.02) 

1.78 ±  

0.008 

390.18 

(390.18-390.19) 

4.30 

(0-10.68) 

 Anc5 0.03 

(0.02-0.04) 

1.69 ±  

0.02 

238.73 

(238.73-238.73) 

4.00 

(0-7.24) 

 CC 1690 0.02 

(0.02-0.04) 

1.67 ±  

0.14 

9727.47 

(9727.47-

9727.47) 

3.03 

(0-7.36) 

Biotic x 

Salt 

     

 Anc2 0.02 

(0.01-0.02) 

2.21 ±  

0.15 

844.99 

(844.99-844.99) 

0 

(0-1.75) 

 Anc3 0.10 

(0.02-0.41) 

1.57 ±  

0.14 

37.04 

(26.02-54.69) 

0.89 

(0-3.67) 

 Anc4 0.02 

(0.01-0.03) 

2.38 ±  

0.78 

4306.02 

(4306.02-

4306.02) 

0 

(0-0) 

 Anc5 0.01 

(0.009-0.01) 

2.08 ±  

0.09 

445.66 

(445.66-445.66) 

0 

(0-0) 

 CC 1690 0.02 

(0.008-0.04) 

2.00 ±  

0.34 

75.74 

(65.09-95.68) 

0 

(0-5.47) 
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Table S4.3.  Nitrogen limitation experimental parameter estimates for descendants 

under each selection treatment. α is the species’ initial response to elevated resource 

availability,  µmax is the maximum growth rate under non-limiting nitrate conditions, 

m is the specific growth rate at N = 0 and N* is the species minimum nitrate 

requirement. Parameter uncertainty (in parentheses) was measured as the 95% 

confidence intervals estimated from 1000 bootstraps 

 

Treatment Ancestor α µmax ± 

SE 

m N* 

[µmol L-1] 

Ancestor      

 Anc2 0.02 

(0.01-0.07) 

0.46 ±  

0.21 

0.12 

(0.01-0.28) 

7.95 

(1.73-14.45) 

 Anc3 0.02 

(0.01-0.04) 

0.44 ±  

0.22 

0.09 

(0.02-0.19) 

7.23 

(2.29-11.89) 

 Anc4 0.02 

(0.01-0.06) 

0.42 ±  

0.13 

0.15 

(0.07-0.26) 

9.28 

(5.47-14.59) 

 Anc5 0.02 

(0.002-0.64) 

0.37 ±  

0.13 

0.07 

(0-0.47) 

5.21 

(0-17.65) 

 CC 1690 0.02 

(0.004-0.15) 

0.30 ±  

0.10 

0.13 

(0.04-0.29) 

9.81 

(4.59-20.95) 

Biotic      

 Anc2 0.02 

(0.004-0.09) 

0.19 ±  

0.02 

0.12 

(0.04-0.26) 

12.35 

(5.09-26.00) 

 Anc3 0.01 

(0.004-0.06) 

0.89 ±  

0.19 

0 

(0-0.0.24) 

0.00002 

(0-12.28) 

 Anc4 0.03 

(0.01-0.09) 

0.97 ±  

0.18 

0.11 

(0-0.31) 

3.96 

(0-7.84) 

 Anc5 0.02 

(0.01-0.03) 

0.86 ±  

0.28 

0.11 

(0.06-0.17) 

7.48 

(4.73-10.07) 

 CC 1690 0.01 

(0.01-0.05) 

0.60 ±  

0.26 

0 

(0-0.17) 

0.00002 

 (0-8.34) 

Light      

 Anc2 0.02 

(0.01-0.09) 

0.60 ±  

0.15 

0.08 

(0-0.25) 

5.57 

(0-11.31) 

 Anc3 0.03 

(0.01-0.11) 

0.62 ±  

0.23 

0.13 

(0.003-0.30) 

5.26 

(0.25-9.21) 

 Anc4 0.02 

(0.01-0.04) 

0.73 ±  

0.23 

0 

(0-0.09) 

0.00002 

(0-3.22) 

 Anc5 0.11 

(0.03-100) 

0.39 ±  

0.11 

0 

(0-3.66) 

0.00002 

(0-1.35) 

 CC 1690 0.01 

(0.007-0.01) 

0.57 ±  

0.21 

0.05 

(0.03-0.08) 

5.75 

(3.27-8.13) 

Nitrogen      

 Anc2 0.01 

(0.003-0.11) 

0.39 ±  

0.04 

0.07 

(0-0.27) 

7.08 

(0-17.33) 

 Anc3 0.09 

(0.007-4.48) 

1.03±  

0.21 

0.28 

(0-2.24) 

4.35 

(0-12.83) 

 Anc4 0.11 

(0.06-1.08) 

0.93 ±  

0.29 

0 

(0-0.69) 

0.00002 

(0-1.81) 

 Anc5 0.007 

(0.004-0.02) 

0.99 ±  

0.23 

0 

(0-0.13) 

0.00002 

(0-13.51) 

 CC 1690 0.02 

(0.01-0.04) 

0.58 ±  

0.04 

0.03 

(0-0.11) 

1.76 

(0-5.05) 

Phosphate      
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 Anc2 0.02 

(0.01-0.04) 

0.32 ±  

0.07 

0.20 

(0.15-0.25) 

14.10 

(10.83-17.65) 

 Anc3 0.04 

(0.02-0.07) 

0.31 ±  

0.07 

0.10 

(0.05-0.17) 

3.70 

(2.53-4.93) 

 Anc4 0.03 

(0.01-0.07) 

0.49 ±  

0.15 

0.12 

(0.03-0.23) 

5.43 

(1.99-8.46) 

 Anc5 0.01 

(0.004-0.02) 

0.36 ±  

0.03 

0.10 

(0.03-0.17) 

11.36 

(5.57-18.29) 

 CC 1690 0.04 

(0.02-0.07) 

0.35 ±  

0.03 

0.18 

(0.13-0.25) 

7.37 

(5.84-9.30) 

Salt      

 Anc2 0.02 

(0.009-0.04) 

0.35 ±  

0.04 

0.14 

(0.08-0.22) 

11.03 

(7.06-16.19) 

 Anc3 0.01 

(0.006-0.03) 

0.88 ±  

0.23 

0.03 

(0-0.19) 

3.23 

(0-12.05) 

 Anc4 0.03 

(0.009-0.09) 

0.26 ±  

0.05 

0.07 

(0-0.19) 

3.28 

(0-5.55) 

 Anc5 0.02 

(0.004-0.20) 

0.39 ±  

0.05 

0.11 

(0-0.36) 

6.47 

(0-13.64) 

 CC 1690 0.01 

(0.006-0.04) 

0.32 ±  

0.03 

0.05 

(0-0.15) 

4.29 

(0-7.91) 

Biotic x Salt      

 Anc2 0.02 

(0.004-0.16) 

0.70 ±  

0.33 

0.09 

(0-0.34) 

5.33 

(0-14.15) 

 Anc3 0.01 

(0.006-0.10) 

0.38 ±  

0.11 

0 

(0-0.14) 

0.00002 

(0-4.97) 

 CC 1690 0.008 

(0.004-0.02) 

0.74 ±  

0.17 

0.04 

(0-0.14) 

5.53 

(0-13.76) 
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Table S4.4.  Phosphate limitation experimental parameter estimates for descendants 

under each selection treatment. α is the species’ initial response to elevated resource 

availability,  µmax is the maximum growth rate under non-limiting phosphate 

conditions, m is the specific growth rate at P = 0 and P* is the species minimum 

phosphate requirement. Parameter uncertainty (in parentheses) was measured as the 

95% confidence intervals estimated from 1000 bootstraps. 

 

Treatment Ancestor α µmax ± 

SE 

m P* 

[µmol L-1] 

Ancestor      

 Anc2 100 

(99.98-100) 

0.27 ±  

0.08 

0.92 

(0 -1.89) 

0 

(0-0) 

 Anc3 4.87 

(4.14-100) 

0.26 ±  

0.03 

0 

(0-0.19) 

0 

(0-0) 

 Anc4 5.80 

(5.79-100) 

0.26 ±  

0.07 

0 

(0-0.28) 

0 

(0-0) 

 Anc5 100 

(99.99-100) 

0.46 ±  

0.07 

0.46 

(0-2.63) 

0 

(0-0) 

 CC 1690 100 

(99.99-100) 

0.35 ±  

0.07 

0 

(0-2.66) 

0 

(0-0) 

Biotic      

 Anc2 3.85 

(0.66-100) 

0.57 ±  

0.11 

0 

(0-3.13) 

0 

(0-0.13) 

 Anc3 0.17 

(0.08-100) 

0.52 ±  

0.11 

0 

(0-3.74) 

0.00002 

(0-0.75) 

 Anc4 0.20 

(0.12-1.03) 

1.05 ±  

0.02 

0.004 

(0-0.49) 

0.02 

(0-0.92) 

 Anc5 0.34 

(0.16-100) 

0.45 ±  

0.08 

0 

(0-3.84) 

0.00002 

 (0-0.48) 

 CC 1690 0.75 

(0.43-100) 

0.42 ±  

0.07 

0 

(0-3.30) 

0.00002 

 (0-0.25) 

Light      

 Anc2 1.63 

(0.16-100) 

0.30 ±  

0.05 

0 

(0-2.76) 

0.00002 

 (0-0.24) 

 Anc3 3.35 

(0.58-100) 

0.43 ±  

0.08 

0 

(0-2.63) 

0 

(0-0.12) 

 Anc4 1.60 

(0.69-100) 

0.36 ±  

0.06 

0 

(0-2.48) 

0.00002 

(0-0.08) 

 Anc5 0.09 

(0.05-0.40) 

1.08 ±  

0.43 

0 

(0-0.37) 

0.00002 

(0-1.74) 

 CC 1690 0.33 

(0.16-100) 

0.38 ±  

0.06 

0 

(0-3.50) 

0.00002 

 (0-0.45) 

Nitrogen      

 Anc2 0.23 

(0.13-0.97) 

1.26 ±  

0.14 

0 

(0-0.59) 

0.00002 

 (0-1.12) 

 Anc3 0.30 

(0.20-1.17) 

1.37 ±  

0.18 

0 

(0-0.55) 

0.00002 

 (0-0.78) 

 Anc4 0.22 

(0.08-54.31) 

1.19 ±  

0.06 

0 

(0-5) 

0.00002 

(0-1.51) 

 Anc5 0.36 

(0.17-11.18) 

1.30 ±  

0.03 

0.03 

(0-2.24) 

0.09 

(0-0.94) 

 CC 1690 0.22 

(0.15-0.57) 

1.22 ±  

0.15 

0 

(0-0.36) 

0.00002 

 (0-0.78) 

Phosphate      
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 Anc2 100 

(99.99-100) 

0.38 ±  

0.07 

2.50 

(1.94-3.02) 

0 

(0-0) 

 Anc3 0.81 

(0.46-100) 

0.35 ±  

0.05 

0 

(0-2.82) 

0.00002 

 (0-0.18) 

 Anc4 0.34 

(0.18-88.31) 

0.77 ±  

0.17 

0 

(0-4.14) 

0.00002 

 (0-0.59) 

 Anc5 0.31 

(0.20-1.56) 

1.22 ±  

0.23 

0 

0-0.66) 

0.00002 

 (0-0.87) 

 CC 1690 100 

(99.99-100) 

0.28 ±  

0.07 

1.75 

(1.04-2.33) 

0 

(0-0) 

Salt      

 Anc2 0.27 

(0.10-100) 

0.36 ±  

0.06 

0 

(0-3.34) 

0.00002 

 (0-0.53) 

 Anc3 0.42 

(0.23-100) 

0.30 ±  

0.03 

0 

(0-2.77) 

0.00002 

 (0-0.33) 

 Anc4 0.78 

(0.38-100) 

0.25 ±  

0.03 

0 

(0-2.25) 

0.00002 

 (0-0.09) 

 Anc5 2.81 

(1.43-100) 

0.31 ±  

0.04 

0 

(0-1.57) 

0 

(0-0.07) 

 CC 1690 1.14 

(0.11-0.04) 

0.78 ±  

0.20 

0.11 

(0-5) 

0.12 

(0-0.63) 

Biotic x Salt      

 Anc2 100 

(99.97-100) 

0.55 ±  

0.11 

1.23 

(0-3.51) 

0 

(0-0) 

 Anc3 0.81 

(0.53-100) 

0.34 ±  

0.06 

0 

(0-2.76) 

0.00002 

(0-0.18) 

 Anc4 0.32 

(0.24-3.44) 

0.32 ±  

0.05 

0.005 

(0-0.43) 

0.01 

 (0-0.29) 

 CC 1690 0.96 

(0.29-100) 

0.53 ±  

0.10 

0.04 

(0-3.88) 

0.05 

(0-0.32) 
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Table S4.5. Linear model (LM) summary statistics illustrating the independent 

effects of selection treatment and ancestor on six response variables: (a) descendants 

minimum light requirements (I*), (b) descendants minimum nitrogen requirements 

(N*), (c) descendants minimum phosphate requirements (P*), (d) descendants initial 

response to elevated light availability (α), (e) descendants initial response to elevated 

nitrogen availability (α) and (f) descendants initial response to elevated phosphate 

availability (α). Either the selection treatment or the ancestral genotype was treated 

as fixed effects.  

 

 

 

Trait d.f. F value AIC P 

(a) sqrt (I* +1)     

Selection treatment 6,29 11.13 62.411 <0.0001 

Ancestor 5,30 2.16 86.529 0.086 

(b) sqrt (N* +1)     

Selection treatment 6,26 1.92 88.546 0.115 

Ancestor 4,28 2.35 88.071 0.079 

(c) sqrt (P* +1)     

Selection treatment 6,27 0.69  0.660 

Ancestor 5,28 0.88  0.508 

(d)  sqrt (α light +1)     

Selection treatment 6,29 20.82 -158.59 <0.0001 

Ancestor 5,30 0.94 -125.52 0.472 

(e) sqrt (α nitrogen +1)     

Selection treatment 6,26 1.03 -125.46 0.430 

Ancestor 4,28 0.81 -141.70 0.527 

(f) sqrt (α phosphate +1)     

Selection treatment 6,27 3.10 160.47 0.019 

Ancestor 4,29 1.11 173.86 0.372 
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Table S4.6. Results for the Principle Component Analysis evaluating the variation in 

R* and α under selection by limiting light, nitrogen and phosphate resource.  

 

Analysis PC1 PC2 PC3 

(a) R*    

Eigenvalue 0.725 0.277 0.099 

Variance explained (%) 65.810 25.125 9.064 

Light 0.226 0.974 0.001 

Nitrogen -0.974 0.226 -0.001 

Phosphate 0.001 0.001 -0.999 

(b) α    

Eigenvalue 1.191 0.189 0.077 

Variance explained (%) 81.732 13.004 5.265 

Light -0.001 -0.928 -0.372 

Nitrogen 0.00003 0.372 -0.92 

Phosphate 0.999 -0.001 -0.001 
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S4.1. Supplementary Methodology 

 

Acclimation to nitrogen and phosphorus 

 

To allow for acclimatization, the descendants and ancestors were maintained at the 

assigned nitrate or phosphate concentration listed in the table below, for 13 days 

prior to the start of the experiment. Batch cultures of each population were firstly 

transferred from agar into 100ml of standard COMBO media and cultured at 20oC 

on a 16:8 hour light-dark cycle for two weeks. 12ml of each batch culture were then 

centrifuged at 3,000rpm for 12 minutes and re-suspended into COMBO medium 

containing one of five nitrate or phosphate concentrations (Table S4.7). This allowed 

cultures to acclimate to their assigned experimental nitrate or phosphate 

concentrations. This re-suspension was repeated on the fourth and seventh day of the 

acclimation to ensure complete removal of excess nitrate or phosphate from the 

culture medium while also preventing starvation due to depletion. The phytoplankton 

pellet was then once again re-suspended in fresh and sterile COMBO medium with 

the assigned nitrate or phosphate concentration. 
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Table S4.7. Assigned acclimation concentrations for experimental nitrogen and 

phosphorus concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter estimation  

 

We estimated population growth rates (r) as the slope of the log-transformed 

population-level pigment fluorescence (chlorophyll-a) against time (Simis et al. 

2012). We used a minimum of three time points selected from the period during 

which growth was exponential (determined visually).  

 We used a maximum likelihood approach to fit equation (1) and equation (2) 

to the light-dependent, nitrogen-dependent and phosphate-dependent growth rate 

estimates of each ancestor and descendant for all selection treatments. We accounted 

for uncertainty in individual growth rate estimates by weighting each point by the 

reciprocal of the standard error. In addition to estimating the parameters of equation 

(1), we also numerically estimated the R* (i.e. I*,N* and P*) values, or the 

irradiance, nitrogen or phosphate levels at which the population growth rate is equal 

to zero, by solving the parameterized growth functions. We then quantified the 

Experimental Concentration Acclimation Concentration 

Nitrate  

(μmol N·L-1) 

Phosphate 

(μmol P·L-1) 

Nitrate  

(μmol N·L-1) 

Phosphate 

(μmol P·L-1) 

1 0.5 1 0.5 

4 1 1 0.5 

6 2 6 2 

10 4 6 2 

40 6 40 6 

60 8 40 6 

100 10 100 10 

400 20 100 10 

600 35 600 35 

1000 50 600 35 
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uncertainty in each parameter estimate, while accounting for the uncertainty in the 

individual growth rate estimates. 

For each fitted curve, we simulated 1000 new datasets with the same number 

of points as the original fit, and at exactly the same irradiance levels. Residuals were 

randomly drawn and based on the variance in the original fit, but adjusted for bias in 

maximum likelihood estimates of variance (Gelman and Hill 2007). We then refit 

equations (1) and (2) to each of these 1000 simulated datasets and calculated the 95% 

confidence intervals in each parameter estimate. We followed this approach to 

account for the weighting of individual points by their uncertainty, and to capture 

uncertainty in R*, which was not a parameter included in the equation (and therefore 

precluded a likelihood profile-based approach). The parameters were estimate using 

R 3.3.3. (R Development Core Team 2014). Maximum likelihood fits were 

performed using the package bbmle (Bolker 2016). 
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