
Polynomial-time equivalence testing for1

deterministic fresh-register automata2

Andrzej S. Murawski3

University of Oxford, UK4

Steven J. Ramsay5

University of Bristol, UK6

Nikos Tzevelekos7

Queen Mary University of London, UK8

Abstract9

Register automata are one of the most studied automata models over infinite alphabets. The10

complexity of language equivalence for register automata is quite subtle. In general, the problem11

is undecidable but, in the deterministic case, it is known to be decidable and in NP. Here we12

propose a polynomial-time algorithm building upon automata- and group-theoretic techniques.13

The algorithm is applicable to standard register automata with a fixed number of registers as14

well as their variants with a variable number of registers and ability to generate fresh data15

values (fresh-register automata). To complement our findings, we also investigate the associated16

inclusion problem and show that it is PSPACE-complete.17

2012 ACM Subject Classification Theory of computation → Formal languages and automata18

Keywords and phrases automata over infinite alphabets, language equivalence, bisimilarity, com-19

putational group theory20

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.7221

Funding Supported by EPSRC grants EP/J019577, EP/P004172.22

1 Introduction23

Register automata [9, 15] are one of the simplest models of computation over infinite alpha-24

bets. They operate on an infinite domain of data by storing data values in a finite number25

of registers, where the values are available for future comparisons or updates. The automata26

can also recognise when a data value does not appear in any of the registers. Fresh-register27

automata [20] are an extension of register automata that can, in addition, generate data28

values not seen so far.29

In recent years, register-based automata have appeared in a variety of contexts, ranging30

from database query languages [18] and programming language semantics [14] to run-time31

verification [7]. Since the very beginning, there has been great interest in extending learning32

algorithms to register automata [16, 4, 1, 5, 12], driven by applications in verification [11]33

and system modelling [21].34

Register automata are closely related to nominal automata [3], which constitute a nom-35

inal counterpart of finite-state machines. Their closure properties and associated decision36

problems have first been studied in [9, 15]. One of the most fundamental and applica-37

ble decision problems is that of language equivalence, not least due to connections with38

query equivalence, program equivalence and learning. Unfortunately, it turns out that the39

equivalence problem for register automata is in general undecidable [15]. Fortunately, it is40

decidable in the deterministic case (by reduction to emptiness using closure properties [9]).41

© Andrzej S. Murawski and Steven J. Ramsay and Nikos Tzevelekos;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 72; pp. 72:1–72:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.72
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72:2 Polynomial-time equivalence testing

Our paper presents the first polynomial-time algorithm for the problem. The algorithm42

is actually applicable to a wider class of automata, namely fresh-register automata with a43

variable number of registers.44

To begin with, we exploit the observation that in the deterministic setting, language45

equivalence and bisimilarity are closely related. Secondly, because in our setting only dif-46

ferent values can be stored in different registers [9], we take advantage of symbolic repre-47

sentations of bisimulation relations based on partial permutations. The proposed algorithm48

attempts to build such a bisimulation relation incrementally. To avoid potential exponen-49

tial blow-ups, the candidate relations are stored in a concise fashion through generators of50

symmetric groups. Thanks to the fact that group membership testing works in polynomial-51

time [6] and subgroup chains can only have linear length [2], we can prove that the process52

of refining the candidate will terminate in polynomial time. Consequently, the equivalence53

problem for our variant of fresh-register automata is in P, which improves upon the best54

upper bound known so far, namely, NP [13].55

A natural question is whether the polynomial-time bound could have been obtained via56

the associated inclusion problem. We give a negative answer to this question by showing57

that the inclusion problem in our setting is PSPACE-complete.58

2 Automata59

Let D be an infinite set (alphabet). Its elements will be called data values (in process60

algebra, the term names is used instead). We shall work with a deterministic model of61

register automata over D. As in [9], we require that different registers contain different data62

values. To allow for more flexible use of registers, the number of available registers will be63

allowed to vary according to the current state. Register content can be both erased and64

created. Creation can be local (new element is guaranteed not to occur in any register)65

or global (new element is guaranteed not to have been encountered in the whole run). We66

give the formal definition below. In Remark 5 we discuss the motivation behind various67

restrictions and their relevance to polynomial-time complexity.68

IDefinition 1. Given a natural number r, we write [1, r] for the set {i ∈ N | 1 ≤ i ≤ r}. An r-69

register assignment is an injective function from a subset of [1, r] to D. An r-deterministic70

fresh-register automaton (r-DFRA) is a tuple A = 〈Σ, Q, q0, µ, δ, F 〉, where:71

Σ is a finite alphabet of tags;72

Q is a finite set of states, q0 ∈ Q is initial and F ⊆ Q contains final states;73

µ : Q→ P([1, r]) is the availability function indicating which registers are filled at each74

state, we require µ(q0) = ∅;75

δ = δold + δfresh is the transition function, where δold : Q × Σ × [1, r] ⇀ Q controls the76

use of existing register values and δfresh : Q × Σ ⇀ Q × [1, r] × {•,~} indicates when77

fresh values are created and how fresh they are.78

To preserve the meaning of µ, we insist that δold(q, t, i) = q′ implies i ∈ µ(q) and µ(q) ⊇ µ(q′)79

and δfresh(q, t) = (q′, i, x) implies µ(q) ∪ {i} ⊇ µ(q′). Note the use of ⊇ instead of =. This80

allows for register erasures during computation. We shall write q t,i−→ q′ for δold(q, t, i) = q′81

and q t,ix−−→ q′ for δfresh(q, t) = (q′, i, x).82

Next we formalise how to obtain a labelled transition system for a given r-DFRA.83

I Definition 2. A labelled transition system (LTS) over Act is a tuple S = (Act,C,→),84

where C is a set of configurations, Act is a set of action labels, and →⊆ C × Act × C. We85

write κ `−→ κ′ for (κ, `, κ′) ∈→. S is deterministic if κ `−→ κ1 and κ `−→ κ2 imply κ1 = κ2.86

A. S. Murawski and S. J. Ramsay and N. Tzevelekos 72:3

An r-DFRA induces a deterministic LTS as follows.87

I Definition 3. Given an r-DFRA A = 〈Σ, Q, q0, µ, δ, F 〉, we define its set of configurations:88

CA = {(q, ρ,H) | q ∈ Q, ρ : µ(q)→ D is injective, rng(ρ) ⊆ H ⊆fin D}89

We refer to H as history. Let S(A) be the LTS 〈Σ × D,CA, →A〉, where →A is defined90

in the following way: a configuration (q1, ρ1, H1) can make a transition to a configuration91

(q2, ρ2, H2) reading input (t, d), written (q1, ρ1, H1) (t,d)−−−→ (q2, ρ2, H2), if one of the conditions92

listed below is satisfied (the last two cases never overlap, because δfresh is a partial function).93

d = ρ1(i), δold(q1, t, i) = q2, ρ2 = (ρ1 � µ(q2)) and H2 = H194

d 6∈ rng(ρ1), δfresh(q1, t) = (q2, i, •), ρ2 = (ρ1[i 7→ d] � µ(q2)) and H2 = H1 ∪ {d}95

d 6∈ H1, δfresh(q1, t) = (q2, i,~), ρ2 = (ρ1[i 7→ d] � µ(q2)) and H2 = H1 ∪ {d}96

Note that S(A) does not depend on the initial and final parameters q0 and F .97

I Definition 4. The configuration κinit
A = (q0, ∅, ∅) will be called initial. A sequence of98

configurations κ0, · · · , κn such that κ0 = κinit
A and κi

ti,di−−−→ κi+1 (i = 0, · · · , n− 1) is called99

a run on the data word (t0, d0) · · · (tn−1, dn−1). A run is accepting if κn = (qn, ρn, Hn) and100

qn ∈ F . We write L(A) for the set of words from (Σ×D)∗ with accepting runs, and call it101

the language of A.102

I Remark 5. Our definition allows for a variable number of available registers, i.e. it is more103

permissive than that in [15, 19]. This flexible register regime makes it possible to express104

certain common computational scenarios more directly: in particular, data values can be105

discarded (“forgotten”) as soon as they are no longer needed (cf. garbage collection). Our106

result shows that poly-time equivalence testing is still possible with this added flexibility.107

At the same time, the flexible number of registers simplifies the technical development: one108

can combine an r1-DFRA and a r2-DFRA into a single max(r1, r2)-DFRA (see Remark 7)109

by taking the disjoint union of states and transitions.110

We rely on injective register assignments, as in the original definition of Francez and111

Kaminski [9]. This restriction is important for poly-time complexity, as the presence of mul-112

tiple copies of the same value in registers could be used to model binary memory content113

(e.g. 1 is represented by the same value in two registers and 0 by different values). Con-114

sequently, this would imply a PSPACE lower bound. The appeal of injectivity lies in the115

fact no expressivity is lost but the transition function has a particularly simple shape and116

one can define the deterministic variant without introducing any additional comparisons117

between registers. While the injective discipline may seem restrictive, it has proved a good118

match for several prominent formalisms that arise in programming language semantics, and119

does not limit expressivity (e.g. [1]). For example, one can show that the automata support120

elegant translations from the pi-calculus [19]. They are also a natural target when it comes121

to investigating the semantics of programs with unbounded data – this is one of the original122

motivations mentioned in [9], which was also exploited in our work on the ML programming123

language [14].124

The explicit availability function µ guarantees that whenever a transition refers to ex-125

isting register content, the relevant value will be available. Allowing for transitions that126

may block on unavailable values is known to lead to NP-hardness [17], already for emptiness127

in the deterministic case. Our variant of automata makes it possible for the automaton to128

drop multiple data values from registers. Conversely, values can also be created but only129

one at a time. Of course, such single value creations can be combined to create multiple130

MFCS 2018

72:4 Polynomial-time equivalence testing

new values. However, the new values must also occur in labels. One can imagine adding a131

facility for spontaneous value creation, where locally or globally fresh values would be added132

to the registers without being present in labels. However, the resultant non-determinism133

could then be used to prove universality undecidable in the same way as for nondeterministic134

automata, e.g. the argument from [15] could be repeated by employing spontaneous value135

creation to guess the location of errors. Like in [1, 12], we assume that the registers are not136

filled at the beginning and are initialised through transitions.137

IDefinition 6. A relationR ⊆ C×C is called a simulation if, for all (κ1, κ2) ∈ R, if κ1
t,a−−→ κ′1138

then there is κ2
t,a−−→ κ′2 such that (κ′1, κ′2) ∈ R. R is called a bisimulation if both R and139

R−1 are simulations. The union of all bisimulations is denoted ∼. Two configurations κ1, κ2140

are bisimilar just if κ1 ∼ κ2, i.e. there is some bisimulation R containing them.141

In this paper we are concerned with the language equivalence problem for DFRA, i.e.142

the question whether, given r1-DFRA A1 and r2-DFRA A2, we have L(A1) = L(A2). Our143

approach to the problem is bisimulation-oriented: language equivalence testing of A1 and144

A2 can be viewed as a bisimilarity problem for a single r-DFRA with r = max(r1, r2).145

I Remark 7. We explain this reduction in a little more detail. First we transform Ai into146

A′i as follows:147

remove all transitions leading to states from which it is impossible to reach a final state,148

add a new state fi and designate it as the only final state,149

add transitions from former final states to the new final state on a new tag t$.150

Suppose S(A′i) = 〈Σ × D,CA′
i
, →A′

i
〉 (i = 1, 2) and consider the LTS SA1,A2 = 〈Σ ×151

D,CA′1 +CA′2 ,→A′1 +→A′2〉. Now language equivalence of the original automata is equiva-152

lent to checking whether κinit
A1

and κinit
A2

are bisimilar in SA1,A2 . IfA′i = 〈Σ, Qi, qi0, µi, δi, {fi}〉,153

then let SA1,A2 = SA′ , where A′ is the max(r1, r2)-DFRA defined by 〈Σ, Q1 + Q2, q
′, µ1 +154

µ2, δ1 + δ2, F
′〉 for any q′ ∈ Q1 +Q2 and F ′ ⊆ Q1 +Q2. Note, the components q′, F ′ can be155

chosen arbitrarily, because they do not contribute to the definition of bisimilarity over (the156

configuration graph of) SA′ .157

3 Symbolic bisimulations158

In this section we introduce symbolic representations of bisimulation relations, for configu-159

ration pairs with common history,1 based on partial permutations. A partial permutation160

over [1, n] is a bijection between two (possibly different) subsets of [1, n]. Let ISn stand for161

the set of partial permutations over [1, n] and SX for the group of permutations over X.162

Let us consider the kind of possible scenarios that may arise in simulating transitions of a163

DFRA.164

A transition on a value already stored in a register can be matched by a transition on a165

stored value or a locally fresh transition, but never a globally fresh one.166

A globally fresh transition can be matched by a globally fresh transition or a locally fresh167

one, but never a transition on a stored value.168

A locally fresh transition can be matched by a transition on a stored value, a locally169

fresh transition or a globally fresh one.170

1 By Remark 7, it suffices to consider configuration pairs with common history.

A. S. Murawski and S. J. Ramsay and N. Tzevelekos 72:5

The use of partial bijections will help us specify which cases may occur. Although we work171

with automata over r registers, we shall use partial permutations over [1, n], where n = 2r.172

They will be used to express not only a matching between data values occurring in two sets173

of r registers (corresponding to two configurations that we examine for bisimilarity) but also174

to indicate which values forgotten by one set are still remembered by the other.175

The number 2r may be surprising but it is needed to provide an accurate account of176

scenarios in which local freshness can be simulated by global freshness. Note that this is177

possible if the registers of the second configuration contain all the data values that have178

been forgotten by the first one (i.e. do not appear in its registers any more). Once the179

size of the history exceeds 2r, this is no longer possible: because the first configuration180

has only r registers it will have forgotten more than r data values and, because the second181

configuration has only r registers, it cannot remember them all. Consequently, we only need182

to track matches between forgotten values and register content of the other configuration183

as long as the size of the history does not exceed 2r. To keep track of such scenarios, it184

is convenient to imagine that there are 2r registers available and use partial permutations185

to match values in registers with values that were possibly forgotten until the size of the186

history is at most 2r. Once that is exceeded, matchings between the real r registers suffice.187

Given σ ∈ ISr and q1, q2 ∈ Q, we write σ � (q1, q2) for σ ∩ (µ(q1)×µ(q2)). Next, in188

accordance with the use of 2r registers discussed above, we introduce notions that will allow189

us to represent configurations in which only a subset S ⊆ [1, 2r] of the registers is available190

along with certain values that are not stored any longer. The data values occurring in191

registers S will occupy the same positions (as specified by S), for other values we impose the192

convention that they should reside in the leftmost register positions that are unoccupied.193

I Definition 8 (Notation). Given S ⊆ T ⊆ [1, 2r], let S / T ∈ S2r be the permutation that194

shifts all elements in T \S to the left (inside the interval [1, 2r]) without interfering with S.195

Formally, if T \ S is ordered as [i1, · · · , ik] then:196

S / T = (i1 i′1); · · · ; (ik i′k), where i′j is the jth smallest element in [1, 2r] \ S.197

Each (i i′) denotes a transposition and ; is the composition of permutations. For example,198

taking S = {3, 6} and T = {1, 3, 4, 6, 7}, the permutation would be S /T = (1 1); (4 2); (7 4)199

and, therefore, (S / T)(T) = {1, 2, 3, 4, 6}.200

Given S ⊆ [1, 2r] and h ≤ 2r with |S| ≤ h, we define S/h to be the unique T satisfying201

S ⊆ T ⊆ [1, 2r], |T | = h and T = (S/T)(T). In other words, S/h is obtained by adding h−|S|202

smallest numbers from [1, 2r]\S to S. For instance, for S = {3, 6}: S/2 = S, S/3 = {1, 3, 6},203

S/4 = {1, 2, 3, 6}, etc. Finally, given σ ∈ IS2r and S1 ⊆ dom(σ), S2 ⊆ rng(σ):204

we write: σ(S1,S2)/ = (S1 / dom(σ))−1;σ; (S2 / rng(σ)),205

and extend the notation to q1, q2 ∈ Q by: σ(q1,q2)/ = σ(µ(q1),µ(q2))/.206

Next we shall introduce a symbolic notion of simulation. Pairs of configurations will be207

represented by elements of U0 = Q×IS2r×Q× ([0, 2r]∪{∞}): each pair is represented by208

the states it contains and a partial permutation representing the two register assignments (a209

matching between their common data values). In order to handle the interaction between210

the two kinds of fresh transitions we also introduce an additional element storing the size211

of the common history (∞ stands for “bigger than 2r”). Below we define a subset U of U0212

that characterises the elements compatible with availability information. Moreover, once213

the history becomes larger than 2r, we reduce the matchings to r registers only (see above).214

MFCS 2018

72:6 Polynomial-time equivalence testing

I Definition 9. Let U0 = Q×IS2r×Q× ([0, 2r]∪{∞}) and:215

U = { (q1, σ, q2, h) ∈ U0 | h ≤ 2r =⇒ (dom(σ) = µ(q1)/h ∧ rng(σ) = µ(q2)/h)
∧ h =∞ =⇒ (σ ∈ ISr ∧ σ ⊆ µ(q1)×µ(q2)) }

216

Given configurations κ1, κ2, with κi = (qi, ρi, H) for some common H, we define the set of217

symbolic representations of (κ1, κ2) by:218

symb(κ1, κ2) =
{
{(q1, ρ1; ρ−1

2 , q2,∞)} |H| > 2r
{(q1, (ρ̂1; ρ̂−1

2)/(q1,q2), q2, |H|) | ρi ⊆ ρ̂i ∧ rng(ρ̂i) = H} |H| ≤ 2r
219

The essence of the above representation is the abstracting away from the register assign-220

ments ρ1, ρ2 to a partial permutation σ ∈ IS2r. If the history is large, then σ is simply a221

matching between the common values of ρ1 and ρ2. If, on the other hand, H contains at222

most 2r elements then σ is obtained by extending each ρi to some ρ̂i that stores the full223

history H, and these pairs (ρ̂1, ρ̂2) are then represented by recording their indices containing224

matching values.225

We proceed with defining symbolic bisimulations. The clauses (a)-(f) in the definition226

below cover all possible kinds of simulation scenarios. Partial bijections help to capture the227

conditions under which simulation is possible.228

I Definition 10. Let A = 〈Σ, Q, q0, µ, δ, F 〉 be an r-DFRA. A symbolic simulation on A is a229

relation R ⊆ U , with elements (q1, σ, q2, h) ∈ R written q1 R
h
σ q2, such that all (q1, σ, q2, h) ∈230

R satisfy the (FSyS) conditions in R. We say that a tuple (q1, σ, q2, h) satisfies the fresh231

symbolic simulation conditions (FSyS) in R if the following conditions hold, where (a-c)232

apply to h ≤ 2r, and (d-e) to h =∞:233

(a) for all q1
t,i−→ q′1,234

1. if σ(i) ∈ µ(q2) then there is some q2
t,σ(i)−−−→ q′2 with q′1 Rhσ′ q′2 and σ′ = σ(q′1,q

′
2)/,235

2. if σ(i) = j′ ∈ [1, 2r] \ µ(q2) then there is some q2
t,j•−−→ q′2 with q′1 R

h
σ′ q
′
2 and σ′ =236

(σ; (j j′))(q′1,q
′
2)/;237

(b) for all q1
t,i•−−→ q′1 and i′ ∈ dom(σ) \ µ(q1),238

1. if σ(i′) ∈ µ(q2) then there is some q2
t,σ(i′)−−−−→ q′2 with q′1 Rhσ′ q′2 and σ′ = ((i i′);σ)(q′1,q

′
2)/,239

2. if σ(i′) = j′ ∈ [1, 2r] \ µ(q2) then there is some q2
t,j•−−→ q′2 with q′1 R

h
σ′ q
′
2 and σ′ =240

((i i′);σ; (j j′))(q′1,q
′
2)/;241

(c) for all q1
t,`i−−→ q′1 with `i ∈ {i•, i~} there is some q2

t,`j−−→ q′2 with `j ∈ {j•, j~} and,242

1. if h < 2r then q′1 Rh+1
σ′ q′2 with σ′ = ((i 2r);σ[2r 7→ 2r]; (j 2r))(q′1,q

′
2)/,243

2. if h = 2r then q′1 R∞σ′ q′2 with σ′ = σ[i 7→ j] � (q′1, q′2);244

(d) for all q1
t,i−→ q′1,245

1. if σ(i) ∈ µ(q2) then there is some q2
t,σ(i)−−−→ q′2 with q′1 R∞σ′ q′2 and σ′ = σ � (q′1, q′2),246

2. if i ∈ µ(q1) \ dom(σ) then there is some q2
t,j•−−→ q′2 with q′1 R∞σ′ q′2 and σ′ = σ[i 7→ j] �247

(q′1, q′2);248

(e) for all q1
t,i•−−→ q′1 and j ∈ µ(q2) \ rng(σ), there exists q2

t,j−→ q′2 with q1 R
∞
σ′ q
′
2 and249

σ′ = σ[i 7→ j] � (q′1, q′2);250

A. S. Murawski and S. J. Ramsay and N. Tzevelekos 72:7

(f) for all q1
t,`i−−→ q′1 with `i ∈ {i•, i~} there is some q2

t,`j−−→ q′2 with `j ∈ {j•, j~}, q′1 R∞σ′ q′2251

and σ′ = σ[i 7→ j] � (q′1, q′2), and `i = i• =⇒ `j = j•.252

Define now the inverse of R by R−1 = { (q2, σ
−1, q1, h) | (q1, σ, q2, h) ∈ R } and call R a253

symbolic bisimulation if both R and R−1 are symbolic simulations. We let s-bisimilarity,254

denoted s∼, be the union of all symbolic bisimulations.255

In the rest of the paper, given R ⊆ U and h ∈ [1, 2r] ∪ {∞}, we shall write Rh for the256

projection of R on h: Rh = {(q, σ, q′) | (q, σ, q′, h) ∈ R}.257

I Remark 11. To gain some further intuition about the definition above, let us consider258

the 2-DFRA configurations κi = (qi, ρi, H), i = 1, 2, where: µ(q1) = µ(q2) = {1, 2}, ρ1 =259

{(1, a), (2, b)}, ρ2 = {(1, a), (2, c)} and H = {a, b, c}.260

The pair (κ1, κ2) can be represented symbolically by (q1, σ, q2, 3) ∈ symb(κ1, κ2) ⊆ U , where261

σ = {(1, 1), (2, 3), (3, 2)}. This represents the fact that ρ1, ρ2 share the data value a in their262

first register and each have a private value in their second register.2 The (FSyS) conditions263

express symbolically what it takes for κ2 to simulate κ1, i.e. what is needed for (q1, σ, q2, 3)264

to belong to a (symbolic) simulation R. Let us look at two sample cases.265

Suppose q1
t,1−−→ q′1. Then, κ1

(t,a)−−−→ κ′1 and, in order for κ2 to match this, it must be the266

case that q2
t,1−−→ q′2. This is imposed by Condition (a)1 of (FSyS).267

If q1
t,2−−→ q′1 then κ1

(t,b)−−−→ κ′1. Then, κ2 can only match a transition on b using a268

locally fresh transition (Condition (a)2), so we must have e.g. q2
t,1•−−→ q′2, yielding some269

κ2
(t,b)−−−→ κ′2.270

In each of the cases above, the (FSyS) conditions also stipulate that the resulting rep-271

resentation of (κ′1, κ′2) must also be in R. In the second case, assuming κ′i = (q′i, ρ′i, H)272

and µ(q′i) = {1, 2}, we have that ρ′1 = {(1, a), (2, b)} and ρ′2 = {(1, b), (2, c)}, and the273

pair (κ′1, κ′2) is represented by (q′1, σ′, q′2, 3) with σ′ = {(1, 3), (2, 1), (3, 2)}. Because σ′ =274

σ; (3 1) = (σ; (3 1))(q′1,q
′
2)/, the (FSyS) conditions require (q′1, σ′, q′2, 3) ∈ R.275

The importance of symbolic bisimulations lies in that they precisely represent actual276

bisimulations in a finite way. Below, we first show that the symbolic representations of pairs277

of configurations are well defined (the choice of extensions ρ̂i for the case of |H| ≤ 2r does278

not matter for s∼), and then prove the representation property.279

I Lemma 12. For any κ1, κ2 with κi = (qi, ρi, H) and |H| ≤ 2r, either symb(κ1, κ2) ⊆ s∼280

or symb(κ1, κ2) ∩ s∼ = ∅.281

I Proposition 13. For any κ1, κ2 with common history, κ1 ∼ κ2 iff symb(κ1, κ2) ⊆ s∼.282

Although finite, symbolic bisimulations are of exponential size in the worst case (with283

respect to the automaton size) because of including the partial bijections σ. Our equivalence-284

testing algorithm for r-DFRA will rely on representations of candidate symbolic bisimula-285

tions in a succinct way. In order to spell out in what sense these representations will capture286

subsets of U we need to introduce the following closure operations.287

I Definition 14. Let R ⊆ U . Then Cl(R) is defined to be the smallest subset X of U such288

2 E.g. the value b is in register 2 of ρ1 but is not present in ρ2. Seeing ρ̂2 as an expansion of ρ2 to 3
registers (with register 3 containing forgotten values), we set ρ̂2(3) = b and therefore σ(2) = 3.

MFCS 2018

72:8 Polynomial-time equivalence testing

that R ⊆ X and X is closed under the following rules.289

S = µ(q)/h h ≤ 2r
(q, idS , q) ∈ Xh (q, idµ(q), q) ∈ X∞

(q1, σ, q2) ∈ Xh

(q2, σ−1, q1) ∈ Xh
290

(q1, σ, q2) ∈ X∞ σ ⊆ σ′

(q1, σ′, q2) ∈ X∞
(q1, σ1, q2) ∈ Xh (q2, σ2, q3) ∈ Xh

(q1, σ1;σ2, q3) ∈ Xh
291

292

The next lemma provides a handle on proving that closures Cl(R) satisfy (FSyS) conditions.293

I Lemma 15. Let R,P ⊆ U with R = R−1. If all g ∈ R satisfy the (FSyS) conditions in294

P then all g′ ∈ Cl(R) satisfy the (FSyS) conditions in Cl(P).295

I Corollary 16. Cl(s∼) = s∼.296

Proof. It suffices to show the left-to-right inclusion. All elements in s∼ satisfy the (FSyS)297

conditions in s∼. Hence, by the previous lemma, all elements of Cl(s∼) satisfy the (FSyS)298

conditions in Cl(s∼). This implies that Cl(s∼) is a symbolic bisimulation. Thus, Cl(s∼299

) ⊆ s∼. J300

I Remark 17. One may wonder to what extent our techniques apply to simulation rather301

than bisimulation. Although symbolic simulation can be related to simulation, our methods302

crucially exploit the fact that bisimilarity is symmetric. This is reflected in the top right303

rule of Definition 14, which introduces inverses, and enables us to develop a group-theoretic304

representation scheme in the next section.305

4 Representation306

Our algorithm for DFRA equivalence will rely on manipulating sets H ⊆ U that, for positive307

instances, will ultimately converge to a symbolic bisimulation relation. We shall handle them308

through succinct representations based on group theory, whose shape is inspired by the309

structure of bisimulation relations [13]. The backbone of a generating system, to be defined310

next, is an equivalence relation �h on states. As explained in Definition 19, the relation311

specifies which pairs of states may actually feature in tuples of the represented subset of U .312

I Definition 18. A generating system R consists of a set {Rh |h ∈ [0, 2r] ∪ {∞}}, where313

each Rh = 〈�h, {(qhC , Xh
C , G

h
C) | C ∈ Q/�h}, {σhq | q ∈ Q}〉 satisfies the following constraints.314

�h ⊆ Q×Q is an equivalence relation.315

For any �h-equivalence class C:316

qhC is a state from C (class representative);317

Xh
C = µ(qhC)/h for h ∈ [0, 2r] and X∞C ⊆ µ(q∞C);318

∅ 6= GhC ⊆ SXh
C
.319

For any q ∈ Q, C = [q]�h and h ∈ [0, 2r], we have σhq ∈ IS2r with dom(σhq) = µ(qhC)/h320

and rng(σhq) = µ(q)/h. Moreover, σ∞q ∈ ISr and dom(σ∞q) = X∞C . Finally, σh
qh

C

= idXh
C
.321

Thus, at each level h, a generating system partitions the set of states into equivalence classes322

according to �h and each class has a representative qhC , which is “connected” to each element323

of the class via σhq . Each representative qhC is also equipped with a subset Xh
C ⊆ [0, 2r] and324

a set GhC of permutations (generators) from SXh
C
.325

A. S. Murawski and S. J. Ramsay and N. Tzevelekos 72:9

I Definition 19. Let R be a generating system. The subset of U represented by R, written326

Gen(R), is defined to be Cl(HR), where HR =
⋃2r
h=0HhR∪H∞R and, for any h ∈ [0, 2r]∪{∞},327

we take HhR = { (qhC , ghC , qhC , h) | C ∈ Q/�h, ghC ∈ GhC } ∪ { (qhC , σhq , q, h) | q ∈ Q,C = [q]�h }.328

I Example 20. The representation system Rinit is defined by the following components.329

�h = {(q, q) | q ∈ Q}. Note that [q]�h = {q}.330

For any equivalence class C = {q} we have: qhC = q, Xh
C = µ(q)/h (h ∈ [0, 2r]), X∞C =331

µ(q), GhC = {idXh
C
}.332

For any q, σhq = idXh
C
.333

Note that Gen(Rinit) = Cl(∅).334

Next we examine how generating systems can be employed in algorithms. We are particularly335

interested in membership testing and a special kind of updates.336

4.1 Membership337

The next lemma reduces testing for membership in Gen(R) to the classic problem of group338

membership testing [6]. Given G ⊆ SX , we let Sub(G) be the subgroup of SX spanned by339

G.340

I Lemma 21. Let R be a generating system, u = (q1, σ, q2, h) ∈ U and σ = σhq1
;σ; (σhq2

)−1.341

Then u ∈ Gen(R) if and only if q1 �h q2 and σ ∈ Sub(GhC), where C = [q1]�h = [q2]�h .342

4.2 Update343

Suppose Gen(R) = Cl(H). We explain how, given u = (q1, σ, q2, h) ∈ U , one can update344

R to R′ so that Gen(R′) = Cl(H ∪ {u}). Of course, if u ∈ Gen(R) then it suffices to take345

R′ = R. Thus, let us assume u 6∈ Gen(R). By Lemma 21, this corresponds to the following346

cases, where σ = σhq1
;σ; (σhq2

)−1.347

1. q1 �h q2 and either (a) or (b) holds, where C = [q1]�h = [q2]�h :348

(a) σ ∈ SXh
C
\ Sub(GhC), (b) σ 6∈ SXh

C
, i.e. dom(σ) (Xh

C .349

2. q1 �h q2 does not hold.350

Observe that 1.(b) will never arise for h 6=∞ due to the definitions of U and R. Note also351

that, for h 6=∞, Xh
C is uniquely determined by qhC . However, this is not the case for X∞C .352

Before we explain how to tackle each case, we introduce several technical lemmas that353

examine how partial permutations interact. They will inform the performance of updates354

based on modifying X∞C .355

I Lemma 22. Given I ⊆ ISr, let χI = {σ |σ = σε1
1 ; · · · ;σεk

k , k > 0, σi ∈ I, εi ∈ {1,−1}}356

and DI = {dom(σ) |σ ∈ χI}. Then χI is closed under composition and inversion, and DI357

is closed under intersection.358

I Lemma 23. Given I ⊆ ISr, let BI =
⋂
X∈DI

X be called the base of I. Then we have:359

1. BI ∈ DI and idBI
∈ χI .360

2. Given σ ∈ ISr and X ⊆ [1, r], let us write σ � X for idX ;σ. Then, for any σ ∈ I,361

σ � BI ∈ χI and σ � BI is a permutation of BI .362

Next we show that, given I, the base BI can be calculated via graph reachability.363

I Lemma 24. Let I ⊆ ISr. Consider the undirected graph GI = (V,E) with V = [1, r],364

where {j1, j2} ∈ E iff there exists σ ∈ I such that σ(j1) = j2 or σ(j2) = j1. We shall call365

v ∈ [1, r] endangered if there exists σ ∈ I such that v 6∈ dom(σ) or v 6∈ rng(σ). For any366

i ∈ [1, r], i ∈ BI if and only if no endangered vertex is reachable from i in GI .367

MFCS 2018

72:10 Polynomial-time equivalence testing

4.3 Update implementation368

Finally, we are ready to return to the main issue of representation update. We discuss369

the three cases (1.(a), 1.(b) and 2.) in turn. Recall that u = (q1, σ, q2, h) ∈ U and σ =370

σhq1
;σ; (σhq2

)−1.371

1.(a) Here we have σ ∈ SXh
C
\ Sub(GhC). To update the system in order to represent σ,372

it suffices to add σ to GhC without changing anything else.373

1.(b) Here we have dom(σ) (Xh
C and h = ∞. In order to capture σ, we replace X∞C374

with BI , where I = G∞C ∪{σ}, and set G∞C = {σ � BI |σ ∈ I}. Note that, by Lemma 23, all375

the elements are permutations, as required. Similarly to G∞C , we replace σ∞q with σ∞q � BI376

for each q ∈ C. Other elements of the system remain the same.377

2. This case is the hardest as we need to merge two different equivalence classes, namely,378

C1 = [q1]�h and C2 = [q2]�h into a single one C = C1 ∪C2 (formally, this is a change to �h).379

For the new class C, we take qhC = qhC1
.380

Next we discuss Xh
qC
. Given τ ∈ GhqC2

, let τ̂ = σ; τ ; (σ)−1 and consider I = GhqC1
∪ {τ̂ | τ ∈381

GhqC2
}. We shall set Xh

qC
to BI . Note that, if h 6= ∞, all elements of I will have the same382

domains, so in this case Xh
qC

will not change. As before, we set GhC = {σ � BI |σ ∈ I}. We383

also modify σhq , but only for q ∈ C1 ∪ C2. If q ∈ C1, we take σhq � BI instead of σhq . For384

q ∈ C2, we need to take the change of representative into account and take (σ;σhq) � BI385

instead of σhq .386

(For this to be a correct choice, we need to show that dom(σ;σhq) ⊇ BI . This is indeed so, be-387

cause dom(σ;σhq) = dom(σ; idXh
qC2

), by dom(σhq) = Xh
qC2

, and dom(σ; idXh
qC2

) = dom(σ; τ) ⊇388

dom(σ; τ ;σ−1) = dom(τ̂) ⊇ BI for any τ ∈ GhqC2
.)389

Recall that we work under the assumption that Gen(R) = Cl(H) and let us write R′ for390

the updated representation system. In each of the above cases, the modifications contribute391

to HR′ only elements from Cl(H∪{u}). This is completely clear for 1.(a). For 1.(b) and 2.,392

we need to appeal to Lemma 23 (σ � BI ∈ χI) and the use of composition/inversion during393

construction. Consequently, Gen(R′) ⊆ Cl(H ∪ {u}).394

Conversely, Cl(H ∪ {u}) ⊆ Gen(R′), because all elements of R as well as u have been395

integrated into R′, either directly or through composition and reductions to X∞C . Thanks396

to the defining rules for Cl (notably, closure under composition and inclusion), such changes397

preserve representability.398

5 Algorithm399

Finally, we present the algorithm for deciding whether two configurations κi = (qi, ρi, H) are400

bisimilar. Let u0 = (q1, σ, q2, h) be an arbitrary element of symb(κ1, κ2). By Lemma 12 and401

Proposition 13, bisimilarity of κ1, κ2 amounts to checking whether u0 belongs to a symbolic402

bisimulation. Our algorithm will determine whether or not this is the case.403

The algorithm is presented in Figure 1. It is similar in flavour to the classic Hopcroft-404

Karp algorithm for DFA [8], which maintains sets of pairs of states. In contrast, we work405

with sets of elements from the set U , i.e. four-tuples (q1, σ, q2, h). As subsets of U may406

have exponential size, we do not store them explicitly. Instead we take advantage of the407

representation systems developed in the previous section.408

Starting from u0, the algorithm maintains generating systems Ri, beginning with Rinit .409

We assume the availability of a data structure ∆ for storing multisets of elements of U (e.g.410

a queue), equipped with emptiness testing, a get method that removes an occurrence of an411

element u from ∆ and returns it as a result, and an add method that extends ∆ with the412

A. S. Murawski and S. J. Ramsay and N. Tzevelekos 72:11

1 i=0; R0 = Rinit; ∆ = {u0}; ∆0 = ∅;
2 while (∆ is not empty) do {
3 u = ∆.get();
4 if u 6∈ Gen(Ri) {
5 if one-step test fails for u return NO;
6 ∆.add(succ-set(u));
7 ∆i+1 = ∆i.add({u});
8 Ri+1 = Ri updated with u;
9 i=i+1;

10 }
11 }
12 return YES

Figure 1 Bisimilarity checking algorithm.

elements listed as its argument .413

I Remark 25. Each of the conditions for (FSyS) relies on finding a matching transition414

satisfying an extra constraint spelt out in terms of Rh. If (FSyS) fails for u or u−1 because415

no potential transition exists, we shall say that the one-step test fails for u ∈ U . Note that416

we are not concerned whether the extra constraint is satisfied – we only check if a transition417

with the specified source and label exists.418

Because we work with deterministic automata, the availability of a transition implies unique-419

ness. Consequently, if u passes the one-step test, the (FSyS) rules for u and u−1 deliver420

a unique set of conditions that need to be checked in order for (FSyS) to be satisfied (for421

u and u−1). Formally, these conditions can be captured as a subset of U and we shall call422

them the successor set of u, written succ-set(u). In the code above the membership test423

(u 6∈ Gen(Ri)) is performed as specified in Section 4.1, while the extension of Ri with u424

follows Section 4.3.425

The correctness arguments rely on the following invariants.426

I Lemma 26. The loop satisfies the following invariants.427

(a) For any i ≥ 0, Gen(Ri) = Cl(∆i) and, for all v ∈ ∆i, v, v−1 satisfy the (FSyS)428

conditions in Cl(∆i ∪∆).429

(b) For any symbolic bisimulation relation R, if u0 ∈ R then ∆ ⊆ R.430

I Theorem 27 (Partial Correctness). When the Algorithm returns YES, there exists a sym-431

bolic bisimulation containing u0. When the Algorithm returns NO, no symbolic bisimulation432

can contain u0.433

Proof. When the Algorithm returns YES, ∆ is empty. Consequently, Lemma 26 (a) implies434

that each element of ∆i ∪ ∆−1
i satisfies the (FSyS) conditions in Cl(∆i), so Cl(∆i) is a435

symbolic bisimulation relation by Lemma 15.436

If u0 6∈ Gen(Rinit) then i > 0 and u0 ∈ ∆0 ⊆ ∆i. Thus, u0 ∈ Cl(∆i).437

If u0 ∈ Gen(Rinit) then the Theorem is also true, because Gen(Rinit) is a symbolic438

bisimulation.439

Thus, in each case, there exists a symbolic bisimulation containing u0. The NO case follows440

immediately from Lemma 26 (b). J441

Next we argue why the algorithm terminates and its complexity is polynomial. To that end,442

it will be useful to introduce the following measure on representation systems.443

MFCS 2018

72:12 Polynomial-time equivalence testing

I Definition 28. Given R, let mR : ([0, 2r]∪{∞})×Q→ N×P(IS2r) be defined as follows.444

mR(h, q) = (|Q/ �h |+ |X[q]�h
|,Sub(Gh[q]�h

))445

Given (n1, H1), (n2, H2) ∈ N × P(IS2r), let (n1, H1) ≤ (n2, H2) stand for n1 < n2 or446

(n1 = n2 andH1 ⊇ H2). ForR1,R2, we then writemR1 ≤ mR2 iff for all (h, q), mR1(h, q) ≤447

mR2(h, q).448

I Lemma 29. Given a representation system R and u ∈ U , let R′ be its extension by u449

constructed in Section 4.3. Then mR′ � mR.450

I Theorem 30. The Algorithm terminates.451

Proof. We argue by contradiction. Observe that, if the Algorithm does not terminate, there452

can be no bound on the number of times that elements are added to the queue. This will453

generate an infinite sequence of generating systems R0,R1, · · · ,Ri,Ri+1, · · · , where each454

Ri+1 extends Ri according to Section 4.3. By Lemma 29, mR0
 mR1
 · · ·
 mRi

 · · · .455

Given that the first components (numbers) in mRi(h, q) are bounded by |Q|+ 2r, for this to456

happen, we would need to have an infinite chain of subgroups of SX for some X ⊆ [1, 2r].457

This contradicts the bound from [2]. J458

Following a similar pattern of reasoning, we can establish a bound on the number of gen-459

erating systems that can be produced by the Algorithm, which happens to correspond460

to the value of i. We have already observed that the integers in the first component of461

mRi(h, q) are bounded by |Q|+ 2r. Consequently, that particular component can decrease462

|Q| + 2r times for h ∈ [0, 2r] and |Q| times for h = ∞ (the sets Xh
C are not modified in463

this case). As for the second component, the bound on the number of times it can change464

is 2r + O(1) [2]. Because the decreases may occur for any q, h, the overall bound on i is465

|Q|(2r + 1)(|Q|+ 2r)2r︸ ︷︷ ︸
h∈[0,2r]

+ |Q||Q|2r︸ ︷︷ ︸
h=∞

= O(|Q|2r2 + |Q|r3) + O(|Q|2r). Each increase of i is466

accompanied by the addition of one-step successors to the queue. There are O(r) such suc-467

cessors and their generation can take O(r) steps due to rearrangements on permutations.468

Consequently, the handling of each element of u may require O(r2) steps (O(r) steps for469

h = ∞). This does not take group membership tests into account, for which there ex-470

ist polynomial-time algorithms [6]. Thus, the complexity can be conservatively bounded471

by O(|Q|2r5p(r)) steps, where p(r) refers to the complexity of membership testing for S2r472

(which bounds those for SX , where X ⊆ [1, 2r]). Note that for h = ∞, the complexity is473

O(|Q|2r2p(r)). Knuth [10] reports on an algorithm for which p(r) = O(r5 +mr2), where m474

is the number of membership queries, adding that it runs considerably faster in practice.475

I Theorem 31. The language equivalence problem for r-DFRA is in PTIME.476

A natural question for further study is whether the problem is PTIME-complete. It is477

certainly NL-hard, by reduction from DFA.478

Implementation479

An implementation of our algorithm is available from http://github.com/stersay/deq.480

Although we leave a full analysis of our empirical results to a future publication, it is481

worth mentioning that initial case studies indicate that the high-degree of r in the worst482

case is not a hindrance in practice. For example, in comparing two encodings of automata483

simulating finite stack machines (considered previously by [12]), bisimulations for automata484

with r ≤ 1500 can be computed in less than one minute.485

http://github.com/stersay/deq

A. S. Murawski and S. J. Ramsay and N. Tzevelekos 72:13

6 Inclusion486

Equivalence can often be attacked by reduction to the associated inclusion problem. As we487

explain next, for DFRA this route would not yield a PTIME bound.488

I Theorem 32. The inclusion problem for r-DFRA is in PSPACE-complete.489

Proof. For membership in PSPACE, we first note that inclusion can be reduced to simula-490

tion. Now observe that if there is a winning strategy for Attacker over the infinite alphabet491

then there will be one if 2r+1 letters are used. This is because 2r+1 letters are sufficient to492

simulate the effect of attacks that rely on global freshness: with 2r+ 1 letters available it is493

always possible to choose a letter that is not stored in either set of the r-registers and, thus,494

attacks based on global freshness can be simulated. Consequently, failures of inclusion can495

be detected by guessing the relevant word using 2r+ 1 letters on the understanding that for496

globally fresh transitions we need to choose a letter not occurring in any of the 2r registers.497

To this end, polynomial space is needed to keep track of the current content of both sets of498

registers.499

We can show PSPACE-hardness already for DFRA without global freshness, which we500

refer to as DRA. Because DRA can be complemented easily, we actually show that the equiv-501

alent problem of DRA intersection emptiness is PSPACE-hard. This is done by reduction502

from non-emptiness of deterministic linear-bounded Turing machines. The main difficulty503

in the argument is to represent the tape through registers. This seems impossible at first504

given that a register assignment must contain different data values. We overcome this by505

constructing two (n+ 1)-DRA A1, A2 such that whenever they synchronise on a data word,506

their register assignments ρ1, ρ2 represent the content of n tape cells as follows: 0 in the ith507

cell is represented by ρ1(i) = ρ2(i), and 1 by ρ1(i) 6∈ rng(ρ2). The (n + 1)th register plays508

a technical role that helps us to maintain the representation. The position of the head and509

state of the machine are maintained in the state of the automata. J510

References511

1 F. Aarts, P. Fiterau-Brostean, H. Kuppens, and F. W. Vaandrager. Learning register512

automata with fresh value generation. In Proceedings of ICTAC, volume 9399 of Lecture513

Notes in Computer Science, pages 165–183. Springer, 2015.514

2 L. Babai. On the length of subgroup chains in the symmetric group. Communications in515

Algebra, 14(9):1729–1736, 1986.516

3 M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. LMCS, 10(3),517

2014.518

4 B. Bollig, P. Habermehl, M. Leucker, and B. Monmege. A robust class of data languages519

and an application to learning. Logical Methods in Computer Science, 10(4), 2014.520

5 S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Active learning for extended finite state521

machines. Formal Asp. Comput., 28(2):233–263, 2016.522

6 M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for permutation523

groups. In Proceedings of FOCS, pages 36–41. IEEE Computer Society, 1980.524

7 R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification based525

on register automata. In Proceedings of TACAS, LNCS. Springer, 2013.526

8 J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite automata.527

Technical Report 114, Cornell University, 1971.528

9 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–529

363, 1994.530

10 D. E. Knuth. Efficient representation of perm groups. Combinatorica, 11(1):33–43, 1991.531

MFCS 2018

72:14 Polynomial-time equivalence testing

11 M. Leucker. Learning meets verification. In Proceedings of FMCO, volume 4709 of Lecture532

Notes in Computer Science, pages 127–151, 2007.533

12 J. Moerman, M. Sammartino, A. Silva, B. Klin, and M. Szynwelski. Learning nominal534

automata. In Proceedings of POPL, pages 613–625. ACM, 2017.535

13 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Bisimilarity in fresh-register automata.536

In Proceedings of LICS, pages 156–167, 2015.537

14 A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In Proceedings of538

ESOP, volume 6602 of Lecture Notes in Computer Science, pages 419–438. Springer-Verlag,539

2011.540

15 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite541

alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.542

16 H. Sakamoto. Studies on the Learnability of Formal Languages via Queries. PhD thesis,543

Kyushu University, 1998.544

17 H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory automata.545

Theor. Comput. Sci., 231(2):297–308, 2000.546

18 T. Schwentick. Automata for XML - A survey. J. Comput. Syst. Sci., 73(3):289–315, 2007.547

19 N. Tzevelekos. Full abstraction for nominal general references. Logical Methods in Computer548

Science, 5(3), 2009.549

20 N. Tzevelekos. Fresh-register automata. In Proceedings of POPL, pages 295–306. ACM550

Press, 2011.551

21 F. W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017.552

	Introduction
	Automata
	Symbolic bisimulations
	Representation
	Membership
	Update
	Update implementation

	Algorithm
	Inclusion

