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Abstract. Modelling human free-hand sketches has become topical re-
cently, driven by practical applications such as fine-grained sketch based
image retrieval (FG-SBIR). Sketches are clearly related to photo edge-
maps, but a human free-hand sketch of a photo is not simply a clean
rendering of that photo’s edge map. Instead there is a fundamental
process of abstraction and iconic rendering, where overall geometry is
warped and salient details are selectively included. In this paper we study
this sketching process and attempt to invert it. We model this inversion
by translating iconic free-hand sketches to contours that resemble more
geometrically realistic projections of object boundaries, and separately
factorise out the salient added details. This factorised re-representation
makes it easier to match a free-hand sketch to a photo instance of an
object. Specifically, we propose a novel unsupervised image style transfer
model based on enforcing a cyclic embedding consistency constraint. A
deep FG-SBIR model is then formulated to accommodate complemen-
tary discriminative detail from each factorised sketch for better matching
with the corresponding photo. Our method is evaluated both qualita-
tively and quantitatively to demonstrate its superiority over a number
of state-of-the-art alternatives for style transfer and FG-SBIR.

1 Introduction

Free-hand sketch is the simplest form of human visual rendering. Albeit with
varying degrees of skill, it comes naturally to humans at young ages, and has
been used for millennia. Today it provides a convenient tool for communication,
and a promising input modality for visual retrieval. Prior sketch studies focus
on sketch recognition [4] or sketch-based image retrieval (SBIR). SBIR methods
can be further grouped into category-level [5] and instance-level fine-grained
SBIR (FG-SBIR) [43]. This dichotomy corresponds to how a sketch is created
– based on a category-name or a (real or mental) picture of a specific object
instance. These produce different granularities of visual cues (e.g., prototypical
vs. specific object detail). As argued in [43], it is fine-grained sketches of specific
object instances that bring practical benefit for image retrieval over the standard
text modality.
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Fig. 1. (a) A free-hand object instance sketch consists of two parts: iconic contour and
object details. (b) Given a sketch, our style transfer model restyles it into distortion-
free contour. The synthesised contours of different sketches of the same object instance
resembles each other as well as the corresponding photo contour.

Modelling fine-grained object sketches and matching them with correspond-
ing photo images containing the same object instances is extremely challenging.
This is because photos are exact perspective projections of a real world scene or
object, while free-hand sketches are iconic abstractions with different geometry,
and selected choice of included detail. Moreover, sketches are drawn by people
of different backgrounds, drawing abilities and styles, and different subjective
perspectives about the salience of details to include. Thus two people can draw
very different sketches of the same object as shown in Fig. 1(a) photo→sketch.

A closer inspection of the human sketching process reveals that it includes
two components. As shown in [21], a sketcher typically first deploys long strokes
to draw iconic object contours, followed by shorter strokes to depict visual de-
tails (e.g., shoes laces or buckles in Fig. 1(a)). Both the iconic contour and object
details are important for recognising the object instance and matching a sketch
with its corresponding photo. The contour is informative about object subcate-
gory (e.g., a boot or trainer), while the details distinguish instances within the
subcategory – modelling both are thus necessary. However, they have very dif-
ferent characteristics demanding different treatments. The overall geometry of
the sketch contour experiences large and user-specific distortion compared to
the true edge contour of the photo (compare sketch contour in Fig. 1(a) with
photo object contour in Fig. 1(b)). Photo edge contours are an exact perspective
projection of the object boundary; and free-hand sketches are typically an or-
thogonal projection at best, and usually much more distorted than that – if only
because humans seem unable to draw long smooth lines without distortion [6].
In contrast, distortion is less of an issue for shorter strokes in the object detail
part. But choice and amount of details varies by artist (e.g., buckles in Fig. 1(a)).
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In this paper, for the first time, we propose to model human sketches by in-
verting the sketching process. That is, instead of modelling the forward sketching
pass (i.e., from photo/recollection to sketch), we study the inverse problem of
translating sketches into visual representations that closely resemble the perspec-
tive geometry of photos. We further argue that this inversion problem is best
tackled on two levels by separately factorising out object contours and the salient
sketching details. Such factorisation is important for both modelling sketches
and matching them with photos. This is due to the differences mentioned above:
sketch contours are consistently present but suffer from large distortions, while
details are less distorted but more inconsistent in their presence and abstraction
level. Both parts can thus only be modelled effectively when they are factorised.

We tackle the first level of inverse-sketching by proposing a novel deep image
synthesis model for style transfer. It takes a sketch as input, restyles the sketch
into natural contours resembling the more geometrically realistic contours ex-
tracted from photo images, while removing object details (see Fig. 1(b)). This
stylisation task is extremely difficult because (a) Collecting a large quantity
of sketch-photo pairs is infeasible so the model needs to be trained in an un-
supervised manner. (b) There is no pixel-to-pixel correspondence between the
distorted sketch contour and realistic photo contour, making models that rely on
direct pixel correspondence such as [14] unsuitable. To overcome these problems,
we introduce a new cyclic embedding consistency in the proposed unsupervised
image synthesis model. It forces the sketch and unpaired photo contours to share
some support in a common low-dimensional semantic embedding space.

We next complete the inversion in a discriminative model designed for match-
ing sketches with photos. It importantly utilises the synthesised contours to fac-
tor out object details to better assist with sketch-photo matching. Specifically,
given a training set of sketches, their synthesised geometrically-realistic contours,
and corresponding photo images, we develop a new FG-SBIR model that extracts
factorised feature representations corresponding to the contour and detail parts
respectively before fusing them to match against the photo. The model is a
deep Siamese neural network with four branches. The sketch and its synthesised
contours have their own branches respectively. A decorrelation loss is applied to
ensure the two branch’s representations are complementary and non-overlapping
(i.e., factorised). The two features are then fused and subject to triplet matching
loss with the features extracted from the positive and negative photo branches
to make them discriminative.

The contributions of this work are as follows: (1) For the first time, the
problem of factorised inverse-sketching is defined and identified as a key for both
sketch modelling and sketch-photo matching. (2) A novel unsupervised sketch
style transfer model is proposed to translate a human sketch into a geometrically-
realistic contour. (3) We further develop a new FG-SBIR model which extracts an
object detail representation to complement the synthesised contour for effective
matching against photos.
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2 Related Work

Sketch modelling: There are several lines of research aiming to deal with
abstract sketches so that either sketch recognition or SBIR can be performed.
The most best studied is invariant representation engineering or learning. These
either aim to hand-engineer features that are invariant to abstract sketch vs con-
crete photo domain [5, 13, 3], or learn a domain invariant representation given
supervision of sketch-photo categories [23,37,12] and sketch-photo pairs [43,35].
More recent works have attempted to leverage insights from the human sketching
process. [2,45] recognised the importance of stroke ordering, and [45] introduced
ordered stroke deformation as a data augmentation strategy to generate more
training sketches for sketch recognition task. The most explicit model of sketch-
ing to our knowledge is the stroke removal work considered in [30]. It abstracts
sketches by proposing reinforcement learning (RL) of a stroke removal policy
that estimates which strokes can be safely removed without affecting recognis-
ability. It evaluates on FG-SBIR and uses the proposed RL-based framework
to generate abstract variants of training sketches for data augmentation. Com-
pared to [45] and [30], both of which perform within-domain abstraction (i.e.,
sketch to abstracted sketch), our approach presents a fundamental shift in that
it models the inverse-sketching process (i.e., sketch to photo contour) therefore
directly solving for the sketch-photo domain gap, without the need for data aug-
mentation. Finally, we note that no prior work has taken our step of modelling
sketches by factorisation into contour and detail parts.
Neural image synthesis: Recent advances in neural image synthesis have
led to a number of practical applications, including image stylisation [7,15,26,22],
single image super-resolution [19], video frame prediction [28], image manipula-
tion [47,18] and conditional image generation [29,40,33,31,46]. The models most
relevant to our style transfer model are deep image-to-image translation mod-
els [14,48,24,16,41], particularly the unsupervised ones [48,24,16,41]. The goal is
to translate an image from one domain to another with a deep encoder-decoder
architecture. In order to deal with the large domain gap between a sketch con-
taining both distorted sketch contour and details and a distortion-free contour
extracted from photo edges, our model has a novel component, that is, instead
of the cyclic visual consistency deployed in [48, 24, 16, 41], we enforce cyclic em-
bedding constraint, a softer version for better synthesis quality. Both qualitative
and quantitative results show that our model outperforms existing models.
Fine-grained SBIR: In the context of image retrieval, sketches provide
a convenient modality for providing fine-grained visual query descriptions —
a sketch speaks for a ‘hundred’ words. FG-SBIR was first proposed in [20],
which employed a deformable part-based model (DPM) representation and graph
matching. It is further tackled by deep models [43,35,39] which aim to learn an
embedding space where sketch and photo can be compared directly – typically
using a three-branch Siamese network with a triplet ranking loss. More recently,
FG-SBIR was addressed from an image synthesis perspective [32] as well as an
explicit photo to vector sketch synthesis perspective [38]. The latter study used a
CNN-RNN generative sketcher and used the resulting synthetic sketches for data
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Fig. 2. Schematic of our sketch style transfer model with cyclic embedding consis-
tency. (a) Embedding space construction. (b) Embedding regularisation through cyclic
embedding consistency and an attribute prediction task.

augmentation. Our FG-SBIR model is also a Siamese joint embedding model.
However, it differs in that it employs our synthesised distortion-free contours
both as a bridge to narrow the domain gap between sketch and photo, and a
means for factorising out the detail parts of the sketch. We show that our model
is superior to all existing models on the largest FG-SBIR dataset.

3 Sketch Stylisation with Cyclic Embedding Consistency

Problem definition: Suppose we have a set of free-hand sketches S drawn
by amateurs based on their mental recollection of object instances [43] and a
set of photo object contours C sparsely extracted from photos using an off-
the-shelf edge detection model [49], with empirical distribution s ∼ pdata(S)
and c ∼ pdata(C) respectively. They are theme aligned but otherwise unpaired
and non-overlapped meaning they can contain different sets of object instances.
This makes training data collection much easier. Our objective is to learn an
unsupervised deep style transfer model, which inverts the style of a sketch to a
cleanly rendered object contour with more realistic geometry, and user-specific
details removed (see Fig. 1(b)).

3.1 Model Formulation

Our model aims to transfer images in a source domain (original human sketches)
to a target domain (photo contours). It consists of two encoder-decoders, {ES , GS}
and {EC , GC}, which map an image from the source (target) domain to the tar-
get (source) domain and produce an image whose style is indistinguishable from
that in the target (source) domain. Once learned, we can use {ES , GC} to trans-
fer the style of S into that of C, i.e., distortion-free and geometrically realistic
contours. Note that under the unsupervised (unpaired) setting, such a mapping
is highly under-constrained – there are infinitely many mappings {ES , GC} that
will induce the same distribution over contours c. This issue calls for adding more
structural constraints into the loop, to ensure s and c lie on some shared embed-
ding space for effective style transfer and instance identity preserving between
the two. To this end, the decoder GS (GC) is decomposed into two sub-networks:
a shared embedding space construction subnet GH , and an unshared embedding
decoder GH,S (GH,C), i.e., GS ≡ GH ◦GH,S , GC ≡ GH ◦GH,C (see Fig. 2(a)).
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Embedding space construction: We construct our embedding space sim-
ilarly to [25, 24]: The GH projects the outputs of the encoders into a shared
embedding space. We thus have hs = GH(ES(s)), hc = GH(EC(c)). The projec-
tions in the embedding space are then used as inputs by the decoder to perform
reconstruction: ŝ = GH,S(hs), ĉ = GH,C(hc).
Embedding regularisation: As illustrated in Fig. 2 (b), the embedding
space is learned with two regularisations: (i) Cyclic embedding consistency: this
exploits the property that the learned style transfer should be ‘embedding con-
sistent’, that is, given a translated image, we can arrive at the same spot in the
shared embedding space with its original input. This regularisation is formulated
as hs = GH(ES(s)) → GH,C(GH(ES(s))) → GH(EC(GH,C(GH(ES(s))))) ≈ hs,
and hc = GH(EC(c)) → GH,S(GH(EC(c))) → GH(ES(GH,S(GH(EC(c))))) ≈
hc for the two domains respectively. This is different from the cyclic visual
consistency used by existing unsupervised image-to-image translation models
[25, 24, 48], by which the input image is reconstructed by translating back the
translated input image. The proposed cyclic embedding consistency is much
‘softer’ compared to the cyclic visual consistency since the reconstruction is per-
formed in the embedding space rather than at the per-pixel level in the image
space. It is thus more capable of coping with domain discrepancies caused by
the large pixel-level mis-alignments due to contour distortion and the missing of
details inside the contours. (ii) Attribute prediction: to cope with the large vari-
ations of sketch appearance when the same object instance is drawn by different
sketchers (see Fig. 1(a)), we add an attribute prediction task to the embed-
ding subnet so that the embedding space needs to preserve all the information
required to predict a set of semantic attributes.
Adversarial training: Finally, as in most existing deep image synthesis mod-
els, we introduce a discriminative network to perform adversarial training [8]:
the discriminator is trained to be unable to distinguish generated contours from
sketch inputs and the photo contours extracted from object photos.

3.2 Model Architecture

Encoder: Most existing unsupervised image-to-image translation models de-
sign a specific encoder architecture and train the encoder from scratch. We found
that this works poorly for sketches due to lack of training data and the large ap-
pearance variations mentioned earlier. We therefore adopt a fixed VGG encoder
pretrained on ImageNet. As shown in Fig. 3, the encoder consists of five con-
volutional layers before each of the five max-pooling operations of a pre-trained
VGG-16 network, namely conv1 2, conv2 2, conv3 3, conv4 3 and conv5 3. Note
that adopting a pretrained encoder means that now we have ES = EC .
Decoder: The two subnets of the decoder: GH and GH,S (GH,C) use a resid-
ual design. Specifically, for convolutional feature map extracted at each spatial
resolution, we start with 1 ∗ 1 conv, upsample it by a factor of 2 with bilinear
interpolation and then add the output of the corresponding encoder layer. It
is further followed by a 3 ∗ 3 residual and 3 ∗ 3 conv for transformation learn-
ing and adjusting appropriate channel numbers for the next resolution. Note
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Fig. 3. A schematic of our specifically-designed encoder-decoder.

that shortcut connections between the encoder and decoder corresponding lay-
ers are also established in the residual form. As illustrated in Fig. 3, the shared
embedding construction subnet GH is composed of one such block while the
unshared embedding decoders GH,S (GH,C) have three. For more details of the
encoder/decoder and discriminator architecture, please see Sec. 5.1.

3.3 Learning Objectives

Embedding consistency loss: Given s (c), and its cross-domain synthesised
image GC(ES(s)) (GS(EC(c))), they should arrive back to the same location in
the embedding space. We enforce this by minimising the Euclidean distance
between them in the embedding space:

Lembed = Es∼S,c∼C [||GH(ES(s))−GH(EC(GC(ES(s))))||2
+||GH(EC(c))−GH(ES(GS(EC(c))))||2].

(1)

Self-reconstruction loss: Given s (c), and its reconstructed resultGS(ES(s))
(GC(EC(c))), they should be visually close. We thus have

Lrecons = Es∼S,c∼C [||s−GS(ES(s))||1 + ||c−GC(EC(c))||1]. (2)

Self-reconstruction loss: Given s (c), and its reconstructed resultGS(ES(s))
(GC(EC(c))), they should be visually close. We thus have

Lrecons = Es∼S,c∼C [||s−GS(ES(s))||1 + ||c−GC(EC(c))||1]. (3)
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Attribute prediction loss: Given a sketch s and its semantic attribute
vector a, we hope its embedding GH(ES(s)) can be used to predict the attributes
a. To realise this, we introduce an auxiliary one-layer subnet Dcls on top of the
embedding space h and minimise the classification errors:

Lcls = Es,a∼S [− logDcls(a|GH(ES(s)))]. (4)

Domain-adversarial loss: Given s (c) and its cross-domain synthesised im-
age GC(ES(s)) (GS(EC(c))), the synthesised image should be indistinguishable
to a target domain image c (s) using the adversarially-learned discriminator, de-
noted DC (DS). To stabilise training and improve the quality of the synthesised
images, we adopt the least square generative adversarial network (LSGAN) [27]
with gradient penalty [9]. The domain-adversarial loss is defined as:

Ladvg = Es∼S [||DC(GC(ES(s)))− 1||2]
+ Ec∼C [||DS(GS(EC(c)))− 1||2]

Ladvds = Es∼S [||DS(s)− 1||2] + Ec∼C [||DS(GS(EC(c)))||2]
− λgp Es̃[(||∇s̃DS(s̃)||2 − 1)2]

Ladvdc = Ec∼C [||DC(c)− 1||2] + Es∼S [||DC(GC(ES(s)))||2]
− λgp Ec̃[(||∇c̃DC(c̃)||2 − 1)2]

(5)

where s̃, c̃ are sampled uniformly along a straight line between their correspond-
ing domain pair of real and generated images. We set weighting factor λgp = 10.
Full learning objectives: Our full model is trained alternatively as with a
standard conditional GAN framework, with the following joint optimisation:

argmin
DS ,DC

λadvLadvds
+ λadvLadvdc

argmin
ES ,EC ,GS ,GC ,Dcls

λembedLembed + λreconsLrecons + λadvLadvg + λclsLcls

(6)

where λadv,λembed,λrecons,λcls are hyperparameters that control the relative
importance of each loss. In this work, we set λadv = 10,λembed = 100,λrecons =
100 and λcls = 1 to keep the losses in roughly the same value range.

4 Discriminative Factorisation for FG-SBIR

The sketch style transfer model in Sec. 3.1 addresses the first level of inverse-
sketching by translating a sketch into a geometrically realistic contour. Specifi-
cally, for a given sketch s, we can synthesise its distortion-free sketch contour sc
as GC(ES(s)). However, the model is not trained to synthesise the sketch details
inside the contour – this is harder because sketch details exhibit more subjec-
tive abstraction yet less distorted. In this section, we show that for learning a
discriminative FG-SBIR model, such a partial factorisation is enough: we can
take s and sc and extract complementary detail features from sc to complete the
inversion process.
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Fig. 4. (a) Existing three-branch Siamese Network [43, 35] vs. (b) our four-branch
network with decorrelation loss.

Problem definition: For a given query sketch s and a set of N candidate
photos {pi}Ni=1 ∈ P , FG-SBIR aims to find a specific photo containing the same
instance as the query sketch. This can be solved by learning a joint sketch-photo
embedding using a CNN fθ [43, 35]. In this space, the visual similarity between
a sketch s and a photo p can be measured simply as D(s, p) = ||fθ(s)− fθ(p)||22.
Enforcing factorisation via de-correlation loss: In our approach, clean
and accurate contour features are already provided in sc via our style transfer
network defined previously. Now we aim to extract detail-related features from
s. To this end we introduce a decorrelation loss between fθ(s) and fθ(sc):

Ldecorr = ||fθ(s)T fθ(sc)||2F , (7)

where fθ(s) and fθ(sc) are obtained by normalising fθ(s) and fθ(sc) with zero-
mean and unit-variance respectively, and ||.||2F is the squared Frobenius norm.
This ensures that fθ(s) encodes detail-related features in order to meet the
decorrelation constraint with complementary contour encoding fθ(sc).
Model design: Existing deep FG-SBIR models [43,32] adopt a three-branch
Siamese network architecture, shown in Fig. 4(a). Given an anchor sketch s and
a positive photo p+ containing the same object instance and a negative photo
p−, the outputs of the three branches are subject to a triplet ranking loss to align
the sketch and photo in the discriminative joint embedding space learned by fθ.
To exploit our contour and detail representation, we use a four-branch Siamese
network with inputs s, sc, p

+, p− respectively (Fig. 4(b)). The extracted features
from s and sc are then fused before being compared with those extracted from
p+ and p−. The fusion is denoted as fθ(s)⊕ fθ(sc), where ⊕ is the element-wise
addition3. The triplet ranking loss is then formulated as:

Ltri = max(0,∆+D(fθ(s)⊕ fθ(sc), fθ(p
+))−D(fθ(s)⊕ fθ(sc), fθ(p

−))) (8)

where ∆ is a hyperparameter representing the margin between the query-to-
positive and query-to-negative distances. Our final objective for discriminatively
training SBIR becomes:

min
θ

󰁛
t∈T

Ltri + λdecorrLdecorr (9)

3 Other fusion strategies have been tried and found to be inferior.
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we set ∆ = 0.1,λdecorr = 1 in our experiments so two losses have equal weights.

5 Experiments

5.1 Experimental Settings

Dataset and preprocessing: We use the public QMUL-Shoe-V2 [44] dataset,
the largest single-category paired sketch-photo dataset to date, to train and eval-
uate both our sketch style transfer model and FG-SBIR model. It contains 6648
sketches and 2000 photos. We follow its standard train/test split with 5982 and
1800 sketch-photo pairs respectively. Each shoe photo is annotated with 37 part-
based semantic attributes. We remove four decoration-related ones (‘frontal’,
‘lateral’, ‘others’ and ‘no decoration’), which are contour-irrelevant and keep the
rest. Since our style transfer model is unsupervised and does not require paired
training examples, we use a large shoe photo dataset UT-Zap50K dataset [42] as
the target photo domain. This consists of 50,025 shoe photos which are disjoint
with the QMUL-Shoe-V2 dataset. For training the style transfer model, we scale
and centre the sketches and photo contours to 64× 64 size, while for FG-SBIR
model, the inputs of all four branches are resized to 256× 256.
Photo contour extraction: We obtain the contour c from a photo p as
follows: (i) extracting edge probability map e using [49] followed by non-max
suppression; (ii) e is binarised by keeping the edge pixels with edge probabilities
smaller than x, where x is dynamically determined so that when e contains many
non-zero edge pixel detections, x should be small to eliminate the noisy ones,
e.g., texture. This is achieved by formulating x = esort(lsort×min(αe−β×r, 0.9)),
where esort is the edge pixels detected in e sorted in the ascending order, lsort is
the length of esort, and r is the ratio between detected and total pixels. We set
α = 0.08,β = 0.12 in our experiments. Examples of photos and their extracted
contours can be seen in the last two columns of Fig. 5.
Implementation details: We implement both models in Tensorflow with
a single NVIDIA 1080Ti GPU. For the style transfer task: as illustrated in
Fig. 3, we denote k ∗ k conv as a k × k Convolution-BatchNorm-ReLU layer
with stride 1 and k ∗ k residual as a residual block that contains two k ∗ k
conv blocks with reflection padding to reduce artifacts. Upscale operation is
performed with bilinear up-sampling. We do not use BatchNorm and replace
ReLU activation with Tanh for the last output layer. Our discriminator has the
same architecture as in [14], but with BatchNorm replaced with LayerNorm [1]
since gradient penalty is introduced. The number of discriminator iterations per
generator update is set as 1. We trained for 50k iterations with a batch size of 64.
For the FG-SBIR task: we fine-tune ImageNet-pretrained ResNet-50 [10] to
obtain fθ with the final classification layer removed. Same with [43], we enforce
l2 normalisation on fθ for stable triplet learning. We train for 60k iterations with
a triplet batch size of 16. For both tasks, the Adam [17] optimiser is used, where
we set β1 = 0.5 and β2 = 0.9 with an initial learning rate of 0.0001 respectively.
Competitors: For style transfer, four competitors are compared. Pix2pix
[14] is a supervised image-to-image translation model. It assumes that visual
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connections can be directly established between sketch and contour pairs with l1
translation loss and adversarial training. Note that we can only use the QMUL-
Shoe-V2 train split for training Pix2pix, rather than UT-Zap50K, since sketch-
photo pairs are required. UNIT [24] is the latest variant of the popular un-
supervised CycleGAN [48, 16, 41]. Similar to our model, it also has a shared
embedding construction subnet. Unlike our model, there is no attribute pre-
diction regularisation and visual consistency instead of embedding consistency
is enforced. UNIT-vgg: for fair comparison, we substitute the learned-from-
scratch encoder in UNIT to our fixed VGG-encoder, and introduce the same
self-residual architecture in the decoder. Ours-attr: This is a variant of our
model without the attribute prediction task for embedding regularisation. For
FG-SBIR, competitors include: Sketchy [35] is a three-branch Heterogeneous
triplet network. For fair comparison, the same ResNet50 is used as the base net-
work. Vanilla-triplet [43] differs from Sketchy in that a Siamese architecture is
adopted. It is vanilla as the model is trained without any synthetic augmenta-
tion. DA-triplet [38] is the state-of-the-art model, which uses synthetic sketches
from photos as a means of data augmentation to pretrain the Vanilla-triplet net-
work and fine-tune it with real human sketches. Ours-decorr is a variant of our
model, obtained by discarding the decorrelation loss.

5.2 Results on Style Transfer

Qualitative results: Fig. 5 shows example synthesised sketches using the
various models. It shows clearly that our method is able to invert the sketching
process by effectively factorising out any details inside the object contour and
restyling the remaining contour parts with smooth strokes and more realistic per-
spective geometry. In contrast, the supervised model Pix2pix failed completely
due to sparse training data and the assumption of pixel-to-pixel alignment across
the two domains. The unsupervised UNIT model is able to remove the details,
but struggles to emulate the style of the object photo contours featured with
smooth and continuous strokes. Using a fixed VGG-16 as encoder (UNIT-vgg)
alleviates the problem but introduces the new problem of keeping the detail part.
These results suggest that the visual cycle consistency constraint used in UNIT
is too strong a constraint on the embedding subnet, leaving it with little freedom
to perform both the detail removal and contour restyling tasks. As an ablation,
we compare ours-attr with ours-full and observe that the attribute prediction
task does provide a useful regularisation to the embedding subnet to make the
synthesised contour more smooth and less fragmented. Our model is far from
being perfect. Fig. 6 shows some failure cases. Most failure cases are caused by
the sketcher unsuccessfully attempting to depict objects with rich texture by an
overcomplicated sketch. This suggests that our model is mostly focused on the
shape cues contained in sketches and confused by the sudden presence of large
amounts of texture cues.
Quantitative results: Quantitative evaluation of image synthesis models
remains an open problem. Consequently, most studies either run human per-
ceptual studies or explore computational metrics attempting to predict human
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Sketch UNIT-vggUNIT Pix2pix Ours-attr Ours-full PhotoPhoto contour

Fig. 5. Different competitors for translating sketching abstraction at contour-level. Il-
lustrations shown here have never been seen by its corresponding model during training.

Sketch

Ours-full

Photo

Fig. 6. Typical failure of our model when sketching style is too abstract or complex.

perceptual similarity judgements [34,11]. We perform both quantitative evalua-
tions. Computational evaluation: In this evaluation, we seek a metric based
on the insight that if the synthesised sketches are realistic and free of distor-
tion, they should be useful for retrieving photos containing the same objects,
despite the fact that the details inside the contours may have been removed. We
thus retrain the FG-SBIR model of [43] on the QMUL-Shoe-V2 training split
and used the sketches synthesised using different style transfer models to re-
trieve photos in QMUL-Shoe-V2 test split. The results in Table 1 show that our
full model outperforms all competitors. The performance gap over the chance
suggests that despite lack of detail, our synthetic sketches still capture instance-
discriminative visual cues. The superior results to the competitors indicate the
usefulness of cyclic embedding consistency and attribute prediction regularisa-
tion. Human perceptual study: We further evaluate our model via a human
subjective study. We recruit N (N = 10) workers and ask each of them to per-
form the same pairwise A/B test based on the 50 randomly-selected sketches
from QMUL-Shoe-V2 test split. Specifically, each worker undertakes two trials,
where three images are given at once, i.e., a sketch and two restyled version
of the sketch using two compared models. The worker is then asked to choose
one synthesised sketch based on two criteria: (i) correspondence (measured as
rc): which image keeps more key visual traits of the original sketches, i.e., more
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Chance Pix2pix [43] UNIT [24] UNIT-vgg Ours-attr Ours-full

acc@1 0.50% 3.60% 4.50% 4.95% 6.46% 8.26%

acc@5 2.50% 10.51% 15.02% 17.87% 22.22% 23.27%

acc@10 5.00% 17.87% 26.28% 29.88% 31.38% 35.14%

Table 1. Comparative retrieval results using the synthetic sketches obtained using
different models.

(wc, wn) UNIT vs. Ours-full UNIT-vgg vs. Ours-full Ours-attr vs. Ours-full

(0.9, 0.1) 88.0% 72.0% 62.0%

(0.8, 0.2) 88.0% 70.0% 64.0%

(0.7, 0.3) 88.0% 70.0% 64.0%

(0.6, 0.4) 86.0% 68.0% 62.0%

(0.5, 0.5) 84.0% 70.0% 64.0%

Table 2. Pairwise comparison results of human perceptual study. Each cell lists the
percentage where our full model is preferred over the other method. Chance is at 50%.

Sketchy [35] Vanilla-triplet [43] DA-triplet [38] Ours-decorr Ours-full

21.62% 33.48% 33.78% 33.93% 35.89%

Table 3. Comparative results on QMUL-Shoe-V2. Retrieval accuracy at rank 1
(acc@1).

instance-level identifiable; (ii) naturalness (measured as rn): which image looks
more like a contour extracted from a shoe photo. The left-right order and the
image order are randomised to ensure unbiased comparisons. We denote each
of the 2N ratings for each synthetic sketch under one comparative test as ci
and ni respectively, and compute the correspondence measure rc =

󰁓N
i=1 ci, and

naturalness measure rn =
󰁓N

i=1 ni. We then average them to obtain one score
based on a weighting: ravr = 1

N (wcrc +wnrn). Intuitively, wc should be greater
than wn because ultimately we care more about how the synthesised sketches
help FG-SBIR. In Table 2, we list in each cell the percentage of trials where
our full model is preferred over the other competitors. Under different weighting
combinations, the superiority of our design is consistent (> 50%), drawing the
same conclusion as our computational evaluation. In particular, compared with
prior state-of-the-art, UNIT, our full model is preferred by humans nearly 90%
of the time.

5.3 Results on FG-SBIR

Quantitative: In Table 3, we compare the proposed FG-SBIR model (Ours-
full) with three state-of-the-art alternatives (Sketchy, Vanilla-triplet and DA-
triplet) and a variant of our model (Ours-decorr). The following observations
can be made: (i) Compared with the three existing models, our full model yields
14.27%, 2.41% and 2.11% acc@1 improvements respectively. Given that the three
competitors have exactly the same base network in each network branch, and
the same model complexity as our model, this demonstrates the effectiveness of
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Our FG-SBIR Model

Fig. 7. We highlight supporting regions for the top 2 most discriminative feature di-
mensions of two compared models. Green and red borders on the photos indicate correct
and incorrect retrieval, respectively.

our complementary detail representation from contour-detail factorisation. (ii)
Without the decorrelation loss, Ours-decorr produces similar accuracy as the
two baselines and is clearly inferior to Ours-full. This is not surprising – without
forcing the original sketch (s) branch to extract something different from the
sketch contour (sc) branch (i.e., details), the fused features will be dominated
by the s branch as s contains much richer information. The four-branch model
thus degenerates to a three-branch model.

Visualisation: We carry out model visualisation to demonstrate that fθ(s)
and fθ(sc) indeed capture different and complementary features that are useful
for FG-SBIR, and give some insights on why such a factorisation helps. To this
end, we use Grad-Cam [36] to highlight where in the image the discriminative
features are extracted using our model. Specifically, the two non-zero dimensions
of fθ(s)⊕fθ(sc) that contribute the most similarity for the retrieval are selected
and their gradients are propagated back along the s and sc branches as well as
the photo branch to locate the support regions. The top half of Fig. 7 shows
clearly that (i) the top discriminative features are often a mixture of contour
and detail as suggested by the highlighted regions on the photo images; and
(ii) the corresponding regions are accurately located in s and sc; importantly
the contour features activate mostly in sc and detail features in s. This validates
that factorisation indeed takes place. In contrast, the bottom half of Fig. 7 shows
that using the vanilla-triplet model without the factorisation, the model appears
to be overly focused on the details, ignoring the fact that the contour part also
contains useful information for matching object instances. This leads to failure
cases (red box) and explains the inferior performance of vanilla-triplet.
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6 Conclusion

We have for the first time proposed a framework for inverting the iconic rendering
process in human free-hand sketch, and for contour-detail factorisation. Given a
sketch, our deep style transfer model learns to factorise out the details inside the
object contour and invert the remaining contours to match more geometrically
realistic contours extracted from photos. We subsequently develop a sketch-photo
joint embedding which completes the inversion process by extracting distinct
complementary detail features for FG-SBIR. We demonstrated empirically that
our style transfer model is more effective compared to existing models thanks to
a novel cyclic embedding consistency constraint. We also achieve state-of-the-art
FG-SBIR results by exploiting our sketch inversion and factorisation.
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