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Abstract
Characterisation of soft tissue mechanical properties is a topic of increasing interest in translational and clinical research.
Magnetic resonance elastography (MRE) has been used in this context to assess the mechanical properties of tissues in vivo
noninvasively. Typically, these analyses rely on linear viscoelastic wave equations to assess material properties frommeasured
wave dynamics. However, deformations that occur in some tissues (e.g. liver during respiration, heart during the cardiac cycle,
or external compression during a breast exam) can yield loading bias, complicating the interpretation of tissue stiffness from
MREmeasurements. In this paper, it is shown how combined knowledge of amaterial’s rheology and loading state can be used
to eliminate loading bias and enable interpretation of intrinsic (unloaded) stiffness properties. Equations are derived utilising
perturbation theory and Cauchy’s equations of motion to demonstrate the impact of loading state on periodic steady-state
wave behaviour in nonlinear viscoelastic materials. These equations demonstrate how loading bias yields apparent material
stiffening, softening and anisotropy. MRE sensitivity to deformation is demonstrated in an experimental phantom, showing a
loading bias of up to twofold. From an unbiased stiffness of 4910.4±635.8 Pa in unloaded state, the biased stiffness increases
to 9767.5± 1949.9Pa under a load of ≈34% uniaxial compression. Integrating knowledge of phantom loading and rheology
into a novel MRE reconstruction, it is shown that it is possible to characterise intrinsic material characteristics, eliminating
the loading bias from MRE data. The framework introduced and demonstrated in phantoms illustrates a pathway that can
be translated and applied to MRE in complex deforming tissues. This would contribute to a better assessment of material
properties in soft tissues employing elastography.
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1 Introduction

Diagnosis and therapy planning often depend on developing
an accurate understanding of the state of a patient’s dis-
ease.Complex alterations occur in diseased tissue, depending
on a range of factors such as changes to protein isoforms,
alterations in protein density, extracellularmatrix reorganisa-
tion, inflammation, etc. These modifications fundamentally
impact tissue mechanical properties, triggering changes in
stiffness, elasticity and viscosity (Yeh et al. 2002; Yin et al.
2009; Baiocchini et al. 2016). The ability to detect changes in
tissue mechanical properties in vivo has the potential to sig-
nificantly benefit clinicalmedicine, enabling amore thorough
assessment of pathology as well as monitoring of treatment
progression. This potential has lead to the development of
a number of approaches for the noninvasive assessment of
tissue mechanics.
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Manual palpation is a classical approach of inspecting
tissue for changes in elasticity in accessible organs (Weiss
2003, Nguyen et al. 2014). Advancements in medical imag-
ing have led to the development of elastography—a modern
quantitative technique for assessing the mechanical prop-
erties of internal organs. Elastography imaging is usually
achieved using Ultrasound or Magnetic Resonance Imaging
(MRI) (see Carey and Carey 2010 for a review), enabling
the determination of tissue properties in vivo. Elastography
imaging focuses on observing waves as they traverse through
tissues, thus allowing quantification of strain response due
to an excitation. In the case of magnetic resonance elas-
tography (MRE), low-amplitude harmonic waves (10–1000,
30–80Hz in vivo) are produced on the body and subsequently
imaged in three-dimensions (Manduca et al. 2001, Fovargue
et al. 2018b). Harmonic wave motion is then related to local
tissue properties, in most cases, through linear viscoelastic
wave equations (Glaser et al. 2012). MRE has been suc-
cessfully employed for a range of tissues—including brain
(Klatt et al. 2007; Green et al. 2008; Schregel et al. 2012),
liver (Huwart et al. 2006, 2007, 2008, Klatt et al. 2007) and
breast (Sinkus et al. 2000, 2005a, 2007,Houten et al. 2003)—
showing contrast between diseased and healthy tissue as well
as providing resolution of apparent tissue anisotropy (Qin
et al. 2013). More recently, it has also been applied to heart
(Elgeti et al. 2008, Kolipaka et al. 2009, Robert et al. 2009,
Kolipaka et al. 2010, Couade et al. 2011, Kolipaka et al.
2012, Elgeti and Sack 2014), skeletal muscles (Green et al.
2012, 2013), and other soft tissues, reviewed in Manduca
et al. (2001), Mariappan et al. (2010) and Fovargue et al.
(2018b).

While interpreting stiffness measures in organs, such as
the liver, has shown diagnostic value, a challenge yet to
be addressed is the impact of macroscale deformations on
wave propagation behaviour. Broadly, by looking at the 1D
wave equation ∂2u/∂t2 = c2∂2u/∂x2, term c = √

T /ρ

depends on tension T and linear density ρ and is scaling the
spatial second derivative of displacement u. The resultant
force term on the right hand side balances the acceleration
term on the left hand side, leading to the phase velocity
increasing with higher tension. Elastic, hyperelastic and vis-
coelastic nonlinear materials would exhibit this effect. This
is relevant in the context of tissues that undergo natural
deformations (e.g: the heart muscle during the cardiac cycle
(Asner et al. 2017), the liver during respiration (Kang et al.
2012), etc.) and tissues that undergo imposed deformations
(e.g. breast during MRE scans Sinkus et al. 2005a, 2007).
As many tissues are known to exhibit significant nonlinear-
ity (Nash and Hunter 2000; Taber 2004; Liu et al. 2006;
Holzapfel and Ogden 2009; Gao et al. 2010; Nordsletten
et al. 2011b; Goenezen et al. 2012) under physiological con-
ditions, both natural and imposed deformation can result
in loading bias—an apparent stiffness that is a conglomer-

ate measure of the intrinsic material properties and current
kinematic state. For instance, the nonlinearity arising from
compressive strainwas quantified in exvivobovine liver sam-
ples using MRE measurements (Clarke et al. 2011). Hence,
mixtures of patient-specific kinematics and intrinsic tissue
properties are non-trivial and presumably result in a reduc-
tion in clinical specificity.

In this paper, the harmonic perturbation of Cauchy’s
equations of motion for a general incompressible nonlin-
ear viscoelastic material is examined, in order to understand
the links between intrinsic properties and kinematics in
MRE. From this analysis, a set of governing equations are
derived, illustrating the general impact of large deformation
on the motion of harmonic waves. Importantly, these equa-
tions enable the elimination of loading bias and therefore
retrieval of intrinsic properties when large-scale deforma-
tion and constitutive behaviour are known. Theoretical
test cases are presented, showing the ability of deforma-
tion to yield apparent increase, decrease and anisotropy
in materials. In order to demonstrate the applicability of
these perturbed equations, experiments were performed in
polyvinyl alcohol (PVA) phantoms. Rheological tests were
performed to characterise material behaviour, and loaded
phantoms were imaged using MRE. Results show the capac-
ity of these equations to correct for the complex dynamics
of wave motion in deformed materials. To the authors’
knowledge, this is the first cross-validation study linking
mechanical characterisation of a material in rheology with
wave motion through the deformed material in MRE. The
developments presented provide a key step towards improv-
ing the estimation of material properties in soft tissues, using
elastography.

As a starting point, Sect. 2.1 presents perturbation the-
ory employed within Cauchy’s equations of motion. The
perturbed equations are analysed in the context of a gen-
eral viscoelastic material under load, further leading to the
derivation of apparent stiffness moduli influenced by large
deformations and material constitutive law. For exemplifica-
tion purposes, an idealised case of harmonic wave motion
traversing a uniformly compressed Neo-Hookean material
is presented. Experiments are employed to test the theoreti-
cal ground developed. In Sect. 2.2, PVA phantoms are tested
in a rheological setup, to determine the material governing
law. In Sect. 2.3, MRE data are acquired in PVA phantoms at
different uniaxial compression levels. The knowledge on rhe-
ological behaviour and deformation is integrated into MRE
data analysis, in order to undo the loading bias. The exper-
imental results are presented in Sect. 3. Particularly, the
estimation of the intrinsic stiffness of PVA is presented in
Sect. 3.3. The theoretical framework presented in this study
could be extended to in vivo MRE data analysis.
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2 Materials andmethods

2.1 Harmonic wavemotion in deformed nonlinear
viscoelastic materials

MRE relies on the analysis of small amplitude harmonic
waves traversing through materials. As materials undergo
deformation, wave behaviour is impacted (Thurston and
Brugger 1964). One option to understand the relation-
ship between large-scale deformation and small-scale wave
behaviour is perturbation analysis. After covering nota-
tion 2.1.1, this section reviews perturbation results for
Cauchy’s equations (Sect. 2.1.2) considering the particular
case of a nonlinear viscoelastic material. Example cases are
then highlighted (Sect. 2.1.3), illustrating the impact of load
on the apparent stiffness characteristics stemming fromMRE
waves.

2.1.1 Kinematics, harmonic wave motion and notation

Here, we briefly review the basic kinematics in large defor-
mation mechanics in order to later describe the macroscale
deformation of phantom and tissue material subjected to
MRE. For more complete dispositions, see for example
(Malvern 1969; Wang and Truesdell 1973; Graff 1991;
Holzapfel 2000; Bonet and Wood 2008). The motion of a
solid body, denoted by the regionΩ0 ⊂ R

d , is characterised
by the displacement field U : Ω0 × [0, T ] → R

d . In this
case, any reference point X ∈ Ω0 may be deformed to its
physical position by the diffeomorphic Lagrangian mapping
L : Ω0×[0, T ] → R

d so that its position at a time t ∈ [0, T ]
is given by

x = L(X, t) = U(X, t) + X, ∀X ∈ Ω0.

Due to the Lagrangian mapping, note that any m-
dimensional functionv : Ω0×[0, T ] → R

m canbewritten as
a function of the deformed domain Ω(t), e.g. ṽ : Ω → R

m ,
with the understanding that ṽ(x, t) = v(L−1(x, t), t). For
ease of notation, the ·̃ is dropped where there is clear dis-
tinction.

The stresses resulting from material deformation can be
separated into deviatoric and hydrostatic components. For
the latter, the effect is quantified using the hydrostatic pres-
sure P , which ensures some constraint on the volume or
pressure-volume relation. The deviatoric components are, in
turn, related to shape changes (or strains and strain history).

Important quantities for mechanics are the deformation
gradient tensor F and its determinant J :

F = ∇0U + I, J (F) = det F.

Here,∇0 refers to the gradient operator taken with respect
to coordinates of Ω0, so that (∇0)k = ∂/∂Xk . For later use,
J = J (F) is implied.

When relating kinematics and kinetics, the right or left
Cauchy Green strains

C = FT F, B = FFT

are often considered. These may also be defined in terms of
their isochoric variants (Ogden 1997; Bonet andWood 2008)
as

F̂ = J−1/dF, Ĉ = F̂
T
F̂, B̂ = F̂ F̂

T
,

which are invariant to changes in volumetric properties of
the material, i.e. Ĉ(aF) = Ĉ(F) for a real positive scalar
a ∈ R

+ (Holzapfel 2000). A set of invariants are associated
with these quantities. Here, the first and second invariants of
any second-order tensor A ∈ R

m×m are defined as in Bonet
and Wood (2008)

IA = A : I, I IA = A : A.

For later clarity, the double contraction “:” is used as defined
in Bonet and Wood (2008), e.g. the contraction of second-
order square tensors A, B ∈ R

m×m becomes a scalar1

A : B = Ai j Bi j ,

and the contraction of a fourth-order tensorA ∈ R
m×m×m×m

and a second-order tensor B yields a second-order tensor in
R
m×m2

(A : B)i j = Ai jkl Bkl .

For further use throughout the paper, the multiplication of
second- and fourth-order tensors AA or AB is defined to
take place over the last index of the first quantity and first
index of the second quantity, i.e.

(AA)i jkl = AisAs jkl ,

(AB)i jkl = Ai jks Bsl .

Finally, the derivative of a second-order tensor with respect
to another is defined as

(∇B A)i jkl = ∂Ai j

∂Bkl
.

1 Einstein summation over repetitive indices is assumed.
2 Only dimensionality m was used as this case is relevant to this work,
particularly m = 3.
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MRE relies on the propagation of shear waves through
the body, assumed to reach a harmonic steady state. Being
wave motion, these deformations are assumed to be linear
and small. The large deformation U is perturbed by these
small wave deformations

uε : Ω0 × [0, T ] → R
d , (1)

where the scale of the perturbations is much smaller than the
dominant length scale of the body or the large displacement it
undergoes. When the perturbations are periodic-in-time and
have reached a steady-state, the deformations and pressures
can be written as

uε = Re{uceiωt }, pε = Re{pceiωt }, (2)

where uc = ur + iui (ur , ui : Ω0 → R
d ) and pc = pr + i pi

(pr , pi : Ω0 → R) give the complex periodic steady-state
behaviour with real and imaginary parts given by subscripts
r and i , respectively.

2.1.2 Perturbation of Cauchy’s equations of motion

For an incompressible body, at any time t ∈ [0, T ], motion of
Ω0 satisfies Cauchy’s first law (conservation of momentum)
and conservation of mass shown in Eqs. 3a and 3b, respec-
tively (see Malvern 1969; Ogden 1997; Holzapfel 2000;
Bonet and Wood 2008):

ρ J∂t tU − ∇0 · (FS) = 0 on Ω0, (3a)

J − 1 = 0 on Ω0. (3b)

Here, ρ is the material density, ∂t t is the second time deriva-
tive, and Se = S(P,C) is the second Piola Kirchhoff (PK2)
stress tensor depending on the hydrostatic pressure, P , and
the right Cauchy Green tensor, C .

The PK2 stress can be characterised as elastic, hyperelas-
tic, viscoelastic, etc., depending on the constitutive relation
that describes thematerial.Ahyperelasticmaterial, for exam-
ple, can be written as a function of C (or other strain
metrics) and space (X). In contrast, a viscoelastic material
additionally depends on time (t). We recall briefly that, for
hyperelastic materials—such as those commonly applied in
biomechanics—Se is given as the derivative of a governing
hyperelastic strain energy function,W = We(C) (Bonet and
Wood 2008), with respect to the right Cauchy Green tensor
C , i.e.

Se = 2∇CWe, Se,i j = 2
∂We

∂Ci j
. (4)

This model is extensively applied in nonlinear
biomechanics—for example in simulations of the heart

(Wang et al. 2009, Nordsletten et al. 2011a, McCormick
et al. 2013, 2014, Hadjicharalambous et al. 2014), breast
(Rajagopal et al. 2010, Reynolds et al. 2011, Gamage et al.
2011), arterial wall (Holzapfel 2000, Gasser et al. 2006,
Hariton et al. 2007), etc.-where specific material response
is usually defined through biorheological experiments. The
simplest material models are purely elastic, based on spring
rheological elements. Complementary, pure viscosity is
based solely on dashpot elements. Biological tissues usu-
ally exhibit viscoelasticity; hence, a suitable tissue model
should consider a combination of these springs and dashpots.
For instance, the Maxwell model is formed by considering a
spring and dashpot connected in series, whereas the Kelvin–
Voigt model is formed by considering a spring and dashpot
connected in parallel. These types of models have been anal-
ysed in literature (Liu and Bilston 2000, Bilston et al. 2001,
Banks et al. 2011), but have shortcomings in predicting creep
(Maxwell model) or stress relaxation (Kelvin–Voigt model)
(Liu et al. 2006, Banks et al. 2011). While the Maxwell
constitutive equation was found to be better suited for mod-
elling fluids (Houten et al. 2000; Sinkus et al. 2005a), the
Kelvin–Voigt constitutive equation was employed for pur-
poses similar to ours, modelling soft tissues subjected to
elastography testing (Sinkus et al. 2005a, Huwart et al. 2006,
Sinkus et al. 2007, Huwart et al. 2008) (albeit not consider-
ing the effects of large deformations on the wave behaviour).
However, the Kelvin–Voigt model is not able to accurately
capture the power-law dependence on frequency that is usu-
ally observed in tissues (Chui et al. 2004, Sinkus et al. 2007,
Nicolle et al. 2010, Nicolle 2015). Thus, an adaptation of this
model is commonly used, which replaces the dashpot with a
springpot. This form was observed to describe tissue better
(Kiss et al. 2004).

To capture the viscoelastic behaviour exhibited generally
by tissues and polymers, we proceed by assuming that the
PK2 stress can be decomposed into an additive sumof elastic,
viscoelastic and hydrostatic components, i.e.

S = Se + Sp + Dα
t Sv. (5)

The elastic part Se is defined through a hyperelastic strain
energy function We(C) as in Eq. 4, the hydrostatic part as
Sp = J PC−1, and the viscoelastic part is defined using the
Caputo formulation (Caputo 1967) of the fractional-order
derivative:

Dα
t Sv = 1

Γ (1 − α)

∫ t

0

1

(t − z)α
∂t Sv(z) dz.

Here, Sv depends on a viscoelastic strain energy function
such as Sv = 2∇CWv . Considering the coefficient of deriva-
tion α to be 0, the viscoelastic stress Sv acts as a hyperelastic
term, while α = 1 indicates the first-order derivative ∂t Sv .
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Intermediate values ofαwould lead to non-trivial transitional
results between Sv and ∂t Sv . Therefore, this formulation of
the viscoelastic term leads to a fractional nonlinear Kelvin–
Voigt type of model and the PK2 tensor for our viscoelastic
material becomes

S = 2∇CWe + 2Dα
t (∇CWv) + J PC−1, (6a)

Si j = 2
∂We

∂Ci j
+ 2Dα

t

(

∂Wv

∂Ci j

)

+ J PC−1
i j . (6b)

In order to investigate the effect of deformation on wave
behaviour, we consider the case where high-frequency/low-
amplitude harmonic waves (see Eq. 1) are imposed onto our
body that satisfies the set of Eq. 3. For our purposes, we
assume that the introduction of these micro-deformations uε

does not disrupt the natural state of macro-deformation U ,
such that the total observed state (Uε, Pε) can be charac-
terised by

Uε(X, t) = U(X, t) + uε(X, t),

Pε(X, t) = P(X, t) + pε(X, t), (7)

with (U, P) satisfying the original Eq. 3 (without pertur-
bation conditions) and with (Uε, Pε) satisfying a perturbed
version of Eq. 3, i.e.

ρ J ε∂t tUε − ∇0 · (FεSε) = 0 on Ω0, (8a)

J ε − 1 = 0 on Ω0, (8b)

where superscript ε indicates quantities dependent on the
perturbed state variables.

A simplification of the set of Eq. 8 can be achieved by
expanding about the state variable U and then linearising
with respect to the small perturbations uε, pε (Thurston and
Brugger 1964). For completeness, details about the expan-
sion and linearisation processes can be found in Appendix 1.
Considering the case of harmonic waves, a set of periodic
nonlinear viscoelastic wave equations can be derived in the
reference domain Ω0. By recasting the reference frame gra-
dient and divergence operators into their physical domain
counterparts, the set of Eq. 8 can be transformed into the
physical domain as:

−ρω2uc − ∇ · [(G′ + iG′′) : ∇uc + pc I] = 0, (9a)

∇ · uc = 0, (9b)

where ∇ = ∂/∂x on Ω . Here, G′ and G′′ are the real and
imaginary stiffness moduli influencing the apparent wave
dynamics of uc and taking the form of fourth-order tensors:

G′
i jml = 1

J

[

F∇F(Se + ωα cos
(πα

2

)

Sv

+ Sp) + IS
]

ismn
Fln Fjs, (10a)

G′′
i jml = ωα

J
sin

(πα

2

)

(

F∇FSv

)

ismn Fln Fjs, (10b)

where F, Se and Sv depend on the unperturbed macro-
deformationU andhydrostatic pressure and P . In the absence
of deformation, under the assumption of an isotropic mate-
rial defined by a standard law (e.g. a Neo-Hookean model
for Se and Sv), these stiffness moduli are simply given by
G′ + iG′′ = G∗I , where G∗ is the true complex shear mod-
ulus characterising the material and Ii jkl = δikδ jl . The wave
dynamics become symmetric, since I : ∇uc = ∇uc+∇uTc .
However, under deformation, the components of ∇uc are
scaled in a non-trivial way. By understanding the form of the
scaling influencing theG′ andG′′ moduli, the bias introduced
by deformation on the wave behaviour can be predicted. Fur-
thermore, the deformation can be undone, that is, the moduli
that reflect the undeformed state can be recovered.

2.1.3 Loading bias of planar shear waves in pure
compression

For an intuitive illustration, let us consider the case of a sim-
ple isotropic Neo-Hookean material described by the strain
energy function

We(P, F) = μe

2
(IĈ − 3),

where μe is the elastic material parameter. The elastic stress
is derived to be

Se = μe

J 2/3

(

I − IC
3
C−1

)

.

The viscous term is assumed to be zero, i.e. Sv = 0. Under
these assumptions, the real modulus G′ becomes

G′
i jml = 1

J

[

μe B̂l jδim − 2μe

3
(B̂i jδml + B̂mlδi j )

+ δmlδi j

(

2μe I B̂
9

+ P J

)

+ δmjδil

(

μe I B̂
3

− P J

) ]

. (11)

To better understand the changes introduced by large
deformations U on the wave dynamics, we analyse the case
of plane waves through a material under pure compression.
Thus, considering a cuboid that is compressed along the
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Fig. 1 Planar waves through a loaded phantom; (Top left) Phantom
in undeformed state. (Top right) Phantom in compressed state, com-
pared against the undeformed state. (Bottom left) Planar wave created

by moving the front face of the phantom (in blue) along the e1 direc-
tion. (Bottom right) Planar wave created by moving the top face of the
phantom (in blue) along the e2 direction

height (e3 direction), imposing incompressibility, the defor-
mation U is described by

U = [

(1/
√

λ − 1)X1, (1/
√

λ − 1)X2, (λ − 1)X3
]T

,

where λ is the ratio of the final height over the initial height
(i.e. λ < 1). In this case, the hydrostatic pressure is a constant
given by P = μe(1/λ − λ2)/3 and the kinematic tensors
describing this deformation are

F =
⎛

⎜

⎝

1√
λ

0 0

0 1√
λ
0

0 0 λ

⎞

⎟

⎠
,

B = B̂ = C = Ĉ =
⎛

⎝

1
λ
0 0

0 1
λ

0
0 0 λ2

⎞

⎠ , (12)

with J = 1.
A pure shear wave which will perturb the macro-

deformation U can be written as

uc =
⎛

⎝

u1(x2, x3)
u2(x1, x3)
u3(x1, x2)

⎞

⎠ . (13)

This form ensures that ∇uc has only off-diagonal compo-
nents, i.e. ∇uc : I = 0, thus satisfying the incompressibility
assumption of thematerial. Since the deformation considered
employs no shearing (i.e. no off-diagonal components), then
also B : ∇uc = 0 and therefore this wave form allows for
simplifications when being contracted, as needed in Eq. 9a,

with the stiffness modulus by removing the terms containing
δml and B̂ml from Eq. 11:

G′ : ∇uc = 1

J

[

μe∇ucB + ∇uTc
(μe I B̂

3
− P J

)]

.

Additionally, under the divergence operator, ∇uTc vanishes
(together with I B̂, P and J , which are constant in space),
and thus, the elastic contribution can be further simplified to

∇ · (G′ : ∇uc) = ∇ · (μe∇ucB) (14)

Let us now analyse particular examples of shear waves—
namely planar waves—travelling through the compressed
cuboid. In the first case, consider that the front face of the
cuboid is vibrated along the e1 direction (see Fig. 1), an
idealised wave of the form

uc =
⎛

⎝

u1(x2)
0
0

⎞

⎠ (15)

is created, with the only nonzero entry in the wave displace-
ment gradient being (∇uc)12. Therefore, the deformation
contribution in Eq. 14 simply becomes a scaling by 1/λ:

μe∇ucB = μe

λ
∇uc.

As such, the loading bias is influencing the apparent stiffness
of the cuboid,which appears to beμe/λ, whereas the intrinsic
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stiffness isμe. Thus, under this setup of thewave, thematerial
stiffness appears to be higher, since λ < 1.

In the second case, consider a planar wave created by
vibrating the top face of the cuboid, this time along the e2
direction (see Fig. 1). Then, the idealised wave displace-
ments

uc =
⎛

⎝

0
u2(x3)

0

⎞

⎠ (16)

are probing the cuboid in the direction in which it was orig-
inally compressed, since the only nonzero component of the
wave gradient is (∇uc)23. This results in a stiffness scaling
by λ2, i.e.

μe∇ucB = λ2μe∇uc.

With λ < 1, the biased stiffness λ2μe appears to be softer
than the material’s true stiffness μe.

From analysing these two simple instances of planar
waves (Eqs. 15 and 16), we gain an understanding of how
the waves probing a material under compression experience
different loading bias—stiffer in the expanded direction e1
and softer in the compressed direction e3.Had thewaves been
more complex, like in Eq. 13, then the effect of the loading
would yield

μe∇ucB = μe

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
1

λ

∂u1
∂x2

λ2
∂u1
∂x3

1

λ

∂u2
∂x1

0 λ2
∂u2
∂x3

1

λ

∂u3
∂x1

1

λ

∂u3
∂x2

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Thus, even under simplified conditions like an idealised shear
wave travelling through a Neo-Hookean material, we get a
feeling for how biased the wave propagation becomes under
pure compression. It can be presumed that, under less than
ideal conditions (more complexmaterials and deformations),
the harmonic wave motion becomes increasingly intricate.

2.2 Nonlinear viscoelastic characterisation of PVA

Experiments done in controllable media, where shapes and
deformations are simple, constitute the first step in evalu-
ating the theory explained in the previous section. A first
key component is using a material with a known rheologi-
cal behaviour, as this governs the effective loading bias (e.g.
Eq. 6). The following sections describe the fabrication pro-
cess of PVA material and its testing in a rheological setup.
A viscoelastic material law is also formulated. This law will

then be later (Sect. 2.3.2) integrated with deformation and
MRE data.

2.2.1 PVA phantom preparation

A material suitable for our purposes should be able to with-
stand large deformations without rupturing and to have low
wave attenuation. For this, polyvinyl alcohol cryogel (PVA-
C) was selected, which is suitable for mimicking soft tissue
properties and has a high MR signal (Surry et al. 2004,
Sinkus et al. 2005a). Following a protocol similar to the
one described in Xia et al. (2011), phantoms were created
by mixing polyvinyl alcohol powder (P1763 Sigma-Aldrich
Company Ltd., UK) with deionised water in a concentra-
tion of 7%. A magnetic stirrer was used for 2h, in order
to fully dissolve the powder into the water, while heating
the concoction to 90◦C. The mixture was covered through-
out the process, to avoid evaporation, left to cool down at
room temperature and poured into cuboid moulds of dimen-
sions 64 × 48 × 42mm. The moulds were then placed in
a freezer at − 20◦C and underwent three cycles of freez-
ing (14h) and thawing (10h) (F-T). These specifications
ensured that the material was suitable for testing under large
deformations. Laboratory experimentation with higher PVA
concentrations (e.g. 10%) led to phantoms that were not
easily deformable, whereas reducing the number of F-T
cycles led to unstable phantoms that would leak water under
loading.

During the freezing process, volumetric expansion
occurred. Therefore, the phantoms’ top was cut, in order to
achieve cuboid shapes. This led to differences in the phan-
toms’ height, which ranged between 32 and 42 mm. For a
meaningful variance testing, 14 homogeneous phantoms
were created, out ofwhich 7 were used for rheological exper-
iments and 7 for MRE experiments. However, one phantom
was excluded in the rheological tests due to rupture. The time
between phantom fabrication and testing in either rheology
or MRE was within twoweeks, to avoid potential material
degradation.

2.2.2 Rheological testing of PVA phantoms

The phantoms allow for suitable examination methods that
can test the theory developed in Sect. 2.1. It was seen that, in
order to account for the nonlinear complex stiffness moduli
G′ andG′′ (Eq. 10), understanding of the nonlinear behaviour
and frequency dependence of the material must be inferred.
This can be done through rheological testing,which is used to
characterise material behaviour by quantifying its response
to different types of applied stress. As such, each of the six
phantoms created for rheology experiments was tested in a
Bose Electroforce 5500 test instrument. The setup, seen in
Fig. 2, consisted of a supportingfixedplaten and an adjustable
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Fig. 2 Illustration of experimental setup, protocol and data in rheolog-
ical tests. (Left) Phantom in the rheological instrument. The moving
platen is compressing the phantom and oscillates vertically, while the
loading cell records the force. (Right, top) The traction measurements
in one phantom for the six tests: four micro-oscillations and one macro-
oscillation (sweeping over frequencies) and a relaxation test. (Right,

bottom) Platen displacements, corresponding to phantom compression
levels. Zoomed panel: exemplification of a micro-oscillatory test dis-
placements, showing the frequency sweep; illustration of a cycle in the
lowest frequency regime—one period, starting from the lowest point in
the compression

upper platen, which was movable in the vertical direction. A
load cell of capacity 225N measured the force required to
ensure a user defined deformation.

For our aims, three types of tests were employed, with
the purpose of assessing PVA’s nonlinear behaviour. The
first test was designed to investigate the material’s response
to dynamic micro-oscillations around a state of large static
load. This design replicates closely the in vivo MRE sce-
nario, where low-amplitude harmonic waves are propagating
in an organ which may be subjected to large deformation.
For reproducing the nonlinear behaviour, four different static
loading stateswere investigated. Thus, themoving platenwas
programmed to compress the phantom by 2, 4, 6 and 8 mm,
respectively (∼5–20% uniaxial compression), and then to
oscillate with an amplitude of 0.15 mm (∼0.4%). This test
will be referred to as the micro-oscillatory test.

The second test was designed to investigate the nonlinear
large deformation response in time. As such, large oscil-
lations were imposed around a state of large deformation:
the platen compressed the phantom by 5.8 mm (∼15% uni-
axial compression) and then oscillations of 4 mm (∼10%)
amplitude were imposed. This test will be referred to as the
macro-oscillatory test.

In both tests, oscillatory tests were carried under a fre-
quency sweep, from 0.1 Hz to 10 Hz (the instrument’s limit):
0.1, 0.5, 1, 2, 5, 7.5 and 10Hz. A clear depiction of the testing
protocol can be seen in Fig. 2. This was done to investigate

the frequency response of PVA, with the aim of extrapolat-
ing it to the higher frequencies used in MRE. In all tests, but
clearly noticeable in the macro-oscillatory one, the displace-
ments’ amplitude is decreasing with increasing frequency.
This is probably due to the instrument’s limitation which,
in the faster frequency regime, cannot reach the instructed
displacements.

At the higher frequencies (≥ 5Hz), it was observed that
themoving platen gains acceleration and introduces a bias on
the data. As such, calibration data were acquired, where the
same protocol was followed, but with no sample in between
the platens. Subtracting the calibration data from the phantom
data eliminated the platen’s momentum bias.

A final stress relaxation test was conducted by subject-
ing the material to a constant large deformation, in order to
capture the specific viscoelastic effect. Hence, the phantoms
were held under a compressionof 11mm(∼28.5%) for 5min.

Overall, each phantom underwent six tests: four micro-
oscillations at different loads (with seven different oscillatory
states acquired), one macro-oscillation (with seven different
oscillatory states acquired) and one relaxation. In between
tests, the phantoms were left to rest in water for 15–20min,
since PVA is best stored in water (Surry et al. 2004), for
hydration reasons. This resting time allowed for an efficient
testing protocol of the phantoms, and its duration was suffi-
cient to observe reproducibility.
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2.2.3 Constitutive modelling of PVA

PVA and other hydrogels have been modelled, previously,
as hyperelastic materials, employing laws that are generally
used to describe rubber-like materials. Often, a Mooney–
Rivlin type of model, employing two parameters, was found
to be sufficient to capture the elastic behaviour of PVA
(Anseth et al. 1996, Pazos et al. 2009). Extension to vis-
coelasticity was sometimes accomplished by considering
Maxwellian elements (Anseth et al. 1996, King et al. 2011).
As such, here the aim is to model the PVA material as vis-
coelastic, yet using springpot elements. Following previous
investigations, we start the modelling process by consider-
ing the elastic part to be defined by a Mooney–Rivlin type of
material law:

We(F) = C1(IĈ − 3) + C2(I IĈ − 3)2, (17)

where C1 and C2 (Pa) are material parameters. Considering
the definition of the elastic part of the PK2 stress given, gen-
erally, as Se = 2∇CWe, it follows that Se has two elastic
parts scaled by the material parameters C1 and C2:

Se(C) = C1Se1 + C2Se2.

The elastic terms are derived to be

Se1 = 2

J 2/3

(

I − IC
3
C−1

)

,

Se2 = 8

J 4/3
(

I IĈ − 3
)

(

C − I IC
3

C−1
)

.

As previously mentioned in Sect. 2.1.2, we consider the
viscous part of PK2 to depend on a fractional-order derivative
of a viscoelastic stress Sv , which is defined here as the sum
δ1Se1 + δ2Se2. Hence, the PK2 tensor becomes

S = C1Se1 + C2Se2 + Dα
t (δ1Se1 + δ2Se2) + Sp. (19)

Here, α is the fractional derivative coefficient, with α = 0
preserving the viscoelastic stress (Dα

t Se = Se), which turns
into a purely elastic contribution, and α = 1 indicating the
first-order derivative, which becomes a purely viscous con-
tribution. The hydrostatic stress Sp = J PC−1 completes
the definition of our PK2 tensor.

2.2.4 Rheology data analysis andmodel fitting

The viscoelastic model derived in the previous section
(Eq. 19) needs to be tailored to the PVA material used in
the rheological experiments by finding appropriate parame-
ters C1, C2, δ1, δ2 (Pa) and α.

As previously mentioned, the acquired rheological data
consist of forcemeasurements required to ensure a predefined
displacement, each corresponding to a point in time. Thiswas
transformed into traction data in the e3 direction by dividing
the force readings by the cuboid’s top area adjusted to the
deformation, i.e.

trd(t) = F(t)

A(t)
, A(t) = A0h0

h(t)
.

Here, trd(t) is the traction obtained from the data, F(t) is the
force reading, and A(t) is the area at time t , which depends
on the initial top area A0 and the ratio of initial cuboid height
h0 to the compressed height h(t) (with h(t) = h0 − d(t)).

Likewise, the traction in the e3 direction arising from the
model (trm) was computed using

trm(t) = (σ (t) · n)3, σ = FSFT ,

whereσ is theCauchy stress and n is the normal to the surface
(in our case, we are interested in the normal to the top surface,
i.e. n = [0, 0, 1]T ). Since the deformation at any point in
time is given by

U(t) =

⎛

⎜

⎜

⎜

⎝

(√

h(t)
h0

− 1
)

X1
(√

h(t)
h0

− 1
)

X2
(

h0
h(t) − 1

)

X3

⎞

⎟

⎟

⎟

⎠

,

the elastic and viscoelastic tensors Se1,2 and Dα
t Se1,2 can be

determined, together with their counterparts in the Cauchy
stress. They take the form of diagonal second-order ten-
sors. The hydrostatic pressure P can also be determined
at each time point by noticing that the traction in the e1,2
directions is 0. Hence, P counteracts the elastic and vis-
coelastic contributions in both the e1,2 directions and can be
used as such in computing the traction in the e3 direction.
Thus, the only unknowns in the traction model are parame-
ters C1, C2, δ1, δ2, α. In broad terms, since α is the only
nonlinear parameter of the model, the parameterisation pro-
cess is done by iterating over fixed values of α and then
solving a minimisation problem which yields a best fit of
the remaining linear parameters. It is desired that all tests
(micro-, macro-oscillations and relaxation) carry the same
importance in the fitting process, and that the error is not
dominated by certain tests (e.g. those done at higher compres-
sion levels, which employ larger tractions). As such, for each
of the six tests (four micro-oscillation, one macro-oscillation
and one relaxation), the traction data and model were stan-
dardised according to the maximum traction value in the test,
i.e.
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trd(t) = trd(t)

max
t

|trd(t)| , trm(t) = trm(t)

max
t

|trd(t)|

where trd(t) and trm(t) are kept for simplicity, to avoid addi-
tion of further notation.

Three characteristics were considered to be important
when fitting the model to the data: the compression, relax-
ation and oscillatory response. Thus, the error to be min-
imised was designed to comprise two parts, the first one
dealing with the compression and relaxation behaviour, and
the second one with the oscillatory behaviour. For the first
part, in order to ensure that the error is not dominated by
compression only, but also by relaxation, it is important to
consider the data broken down into cycles, i.e. one full oscil-
lation starting from the lowest load state, equivalent to one
period (see Fig. 2). Each of these cycles is confined within a
generic time interval [t1, t2]. A mean traction value ( ¯trd , ¯trm
for data and model, respectively) is defined as the integral of
the traction over the cycle, e.g.

¯trdk =
∫ t2

t1
trd(t) dt, ¯trmk =

∫ t2

t1
trm(t) dt,

over generic cycle k. This mean value captures the compres-
sion level and, by considering locally every cycle in a test,
captures the relaxation behaviour. Hence, the first part of the
error deals with the sum, over all cycles, of the mean traction
value difference between the data and the model, normalised
by the data:

err1 =
∑

k( ¯trdk − ¯trmk )2

∑

k( ¯trdk )2
.

The second part of the error is designed tomeasure the dif-
ference in the oscillatory behaviour between data and model.
Thus, the traction amplitude corresponding to a generic time
point t j in a cycle k is found as the difference between the
traction value and the traction mean over the cycle, e.g.

trd(tkj ) − ¯trdk , trm(tkj ) − ¯trmk .

The difference in amplitudes between the model and the data
is investigated across all time points in a cycle, over all cycles,
and is subsequently normalised by the data, as

err2 =
∑

k
∑

j

[

(trd(tkj ) − ¯trdk ) − (trm(tkj ) − ¯trmk )
]2

∑

k
∑

j

(

trd(tkj ) − ¯trdk
)2 .

We note that the standardisation of the data was done over
each of the six tests separately, to ensure that they carry
equal importance within the error, while the normalisation

was done over the tests altogether, to facilitate the interpre-
tation of the error, which is finally outlined as

err =
√

err1 + err2
2

. (20)

This form yields 0% for a perfect fit and 100% when
C1, C2, δ1, δ2 = 0 Pa, irrespective of α.

Having defined the error to be minimised, a more detailed
parameter fitting process can be described. The nonlinear
parameter α is iterated between 0.05 and 1 (close to the
elastic and viscous limits, respectively), with an incremental
step of 0.05. Since the PVA material used has a low vis-
coelastic response (and α = 0.05 was observed to be the
most suitable), the incremental step was refined to be 0.01
between 0.01 and 0.1. For each fixed α, the linear parameters
C1, C2, δ1, δ2 were searched by solving the least squares
problem corresponding to error Eq. 20, using the inbuilt func-
tion lsqnonlin of MATLAB and Statistics Toolbox Release
2015a, The MathWorks, Inc., Natick, Massachusetts, USA.
The nonlinear solver was used in order to allow for a posi-
tivity constraint on the parameters. For each phantom, a full
set of parameters was determined.

To ensure parameter uniqueness, once the bestα valuewas
determined, a new parameter search was performed. Thus,
each individual linear parameter (C1, C2, δ1 and δ2, respec-
tively) was fit using the process described above, but while
imposing the remaining three linear parameters to be 0 Pa.
This was done in order to gauge the value of each model
component and to identify potential parameter coupling.

2.3 Harmonic wavemotion in deformed PVA

After characterising the PVA material through a viscoelastic
model, the next essential element in estimating the intrinsic
material parameters and bypassing the loading bias is merg-
ing the information on deformation and rheology with MRE
data. Thus, in what follows, the MRE experimental features
used to obtain simple deformations are described. The core
component of integrating material behaviour and deforma-
tion knowledge into the data analysis process is outlined.

2.3.1 MRE experimental setup

When designing the MRE experiment, it was important to
obtain shear waves that would propagate through the whole
body of the phantom, while maintaining a fixed position
of the phantom. The setup used is illustrated in Fig. 3. A
transducer indenting the phantom transmits small amplitude
compressional waves. Since the PVA material is aqueous, it
could easily slide on a flat surface. For this reason, the phan-
tom’s back side was in contact with the support, ensuring no
penetration, hence converting the compressional waves into
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Fig. 3 Illustration of the MRE test setup. (Top) 3D view of the setup.
A coil vibrating to the frequency established by the MRE sequence is
connected to a flexible lamella, which causes an attached rod to vibrate
longitudinally. A piston fit at the end of the rod is indenting the phan-
tom, thus generating compressional waves. The phantom is resting on
a smooth support and is in contact with the back support plate, which

prevents the phantom from slipping and thus helps converting the com-
pressional waves into shear waves. An upper plate compressing the
phantom is kept in place by bolts fixed to the side plates. Reception
coils are placed around the phantom, for signal enhancement. (Bottom)
2D top view of the setup

shear waves. A large uniaxial deformation could be obtained
by simply compressing the phantomwith a smooth top plate,
as seen in Fig. 3. Due to the sliding feature of the PVA
material, the phantoms did not bulge under the uniaxial com-
pression just described.

Using this setup inside theMR scanner, coronal wave data
were recorded usingMRE in undeformed and deformed con-
figurations. Each phantomwas scanned in the reference state
(uncompressed), first deformation state consisting of uniax-
ial compression of ∼5mm (∼14%) and second deformation
state consisting of uniaxial compression of∼12mm(∼35%).

MR acquisition consisted of two primary scans. First, a
geometric scan was acquired providing 55 cross-sectional
slices with a field of view (FOV) of 96×96mm (resolution of
96×96 pixels and slice thickness of 1 mm). Scan parameters
were adjusted to enhance signal of thePVAmaterial (TE/TR=
120.00 /5000.00 ms).

The second scan was a MRE eXpresso Gradient Echo
sequence (Garteiser et al. 2013) providing 10 cross-sectional
slices with a FOV of 96× 96mm (resolution 96× 96 pixels
and slice thickness of 2.0 mm). Driver frequency andmotion
encoding gradients were set, by turn, at 120, 130 and 140 Hz,
and TE/TR at 6.91 /151.82 ms. The sequence encoded each
of the three displacement component direction—e1, e2, e3

and a reference non-motion encoded image removing back-
ground phase shifts due to the MRI gradients. Examples of
the geometric and wave images can be seen in Fig. 4, for the
undeformed and deformed configurations.

2.3.2 MRE data analysis

The geometric data acquired were used to provide detailed
quantitative information of the geometrical configuration of
the material in reference and deformed states. Assuming that
the cuboid phantoms were compressed uniformly, then the
deformation gradient can be written as in Eq. 12, where λ

is the compression defined as the ratio of the compressed
and uncompressed heights. Hence, due to the design of the
MRE experiment, this form of the deformation gradient can
be employed with the stiffness moduli given by Eq. 10.

From the recorded small amplitude displacements, two
reconstruction methods were used. Firstly, a divergence free
finite element reconstruction solving the set of Eq. 9 (Fovar-
gue et al. 2018a) was used to retrieve the stiffness of the PVA
phantom, merging the datasets acquired at 120, 130 and 140
Hz, for a better signal to noise ratio. This method takes as
input the material density ρ, frequency ω and wave displace-
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Fig. 4 Images corresponding to the uncompressed (top row) and
compressed (middle and bottom rows) phantoms (here illustrated in
phantom 12). (First column) Phantom depicted at the different defor-
mation states. The uncompressed state is kept for reference. The piston
(grey bar) is indenting the phantom perpendicularly during the MRE
scan. Slices are acquired in the coronal plane (depicted in blue). (Second
column) Cross-sectional (coronal) view from the T2 weighted images.
The piston indentation can be seen, as well as the expansion of the phan-

tom in the e1 − e2 directions under compression. Wave displacements
from the MRE imaging protocol can be seen in the e1 direction (third
column), in the e2 direction (fourth column) and in the e3 direction
(fifth column). It can be observed in the wave displacements, between
the three rows, that the wavelength increases under compression. The
wave images in the third, fourth and fifth columns have been cropped
around the phantom area, to exclude the surrounding noise

ments uc and reconstructs the complex stiffness modulus G∗
by assuming

G∗ = G∗I. (21)

This is usually separated into the (real) storagemodulusG ′
and (imaginary) loss modulus G ′′ (where G∗ = G ′ + iG ′′).

As explained in Sect. 2.1.2, the form of G∗ presented in
Eq. 21 holds true in the absence of deformation and under
an isotropic standard material law, and the wave gradient
contribution becomes symmetric, asI : ∇uc = ∇uc+∇uTc .
Hence, this method is suitable for reconstructing the stiffness
modulus when no deformation is employed, but will lead to
a biased result under deformation. Throughout the rest of
the paper, this method will be referred to as uncorrected
reconstruction (UR).

Secondly, the same reconstruction was adapted here, by
integrating the formal definition of the real and imaginary
stiffness moduli G′ and G′′ (Eq. 10) in order to account for
the bias in apparent stiffness introduced by the deformations.
Conceptually, instead of relying solely on the wave displace-
ments and its gradient ∇uc, the reconstruction integrates the

scaling due to large deformations into the wave displace-
ments gradient. Hence, instead of solving for G∗, a modified
form of the equations was developed, given below:

−ρω2uc − ∇ · [M(G′ : ∇uc)]
−i∇ · [(N (G′′ : ∇uc)] − ∇ · pc I = 0, (22a)

∇ · uc = 0, (22b)

where a solution is sought for M+i N . This second approach
will be referred to as the corrected reconstruction (CR).

As previously mentioned, within the UR the wave gradi-
ent is contracted with the fourth-order identity tensor scaled
by the complex stiffness modulus, as (G∗I) : ∇uc. By
contrast, the CR allows the wave to be contracted with
two distinct fourth-order tensors, defined by the user. One
result is to be integrated with the real part and one with
the imaginary part of the complex stiffness modulus, as
M(G′ : ∇uc)+i N (G′′ : ∇uc), whereM+i N is to be found.
This is a novel way of analysing MRE data and is of utmost
importance, since we saw, in Eq. 10, that the real and imagi-
nary moduliG′ andG′′ are non-trivial and change differently
with deformation. These changes depend on metrics derived
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from the known deformation gradient F (B, IC , etc.), and,
for our PVAmaterial, are scaled by the parameters determin-
ing the viscoelastic Eq. 19. The specific form can be found
in Appendix 2, which is applicable to the PVA material used
here. Thus, assuming that the viscoelastic model describes
the data well, then G′ and G′′ already incorporate the true
real and imaginary stiffness moduli. Hence, it is predicted
that M and N will be reconstructed as unity.

With this understanding of the newly developed CR, the
PVAmaterial model was parameterised, this time employing
the MRE data. The reference and second compression states
were used, and the left hand side of Eq. 22a was minimised
over all pixels. That is, the linear model parameters were
sought such that M and N were reconstructed as closely as
possible to unity for each pixel, over all pixels. The nonlinear
parameter α was fixed to be the one indicated by rheology
tests. The set of parameters thus obtained from the reference
and second compression states was tested against the first
compression state, for prediction value. The error was mea-
sured as the pixel-wise difference between the reconstructed
values M and unity in uncompressed and second compres-
sion case, normalised by the number of pixels, as

err =
√

∑n
k=1 (Mk − 1)2

n
, (23)

where n is the total number of pixels considered and subscript
k iterates over those pixels.

3 Results and discussion

The first essential step in the experimental work was tailor-
ing the viscoelastic law 19 to the PVA phantoms used in the
rheology testing. The results of this process are presented in
Sect. 3.1 and help us understand the rheological behaviour of
the PVAmaterial used, which directly influences the loading

bias. The deformation bias is shown in Sect. 3.2, by investi-
gating uniaxial compression in the MRE experimental setup.
In Sect. 3.3 it is shown that, by incorporating the information
on rheology and deformation into the CR, the intrinsic stiff-
ness of the PVA material can be retrieved from the loaded
states of the phantoms.

3.1 Nonlinear viscoelastic model for PVA

The aim of the modelling process was to fit the viscoelas-
tic model 19 to the PVA data acquired in the rheological
setup. Hence, for each of the six phantoms used in the rhe-
ology experiment, the parameters were fit accounting for
all oscillatory and relaxation tests simultaneously. It will
be seen that the parameters cannot be uniquely identified,
which stems from the fact that the PVA has a small vis-
coelastic response, as it will be explained shortly. As such, a
model with a reduced number of parameters is sought, which
ensures unique parameter estimation.

Initially, the 5-parameter model described by Eq. 19 was
fit to the data, considering α values between 0 and 1. Figure 5
(left) depicts the errors for each of the six phantoms used in
rheology. All phantoms yield a minimal error around an α

value of 0.03–0.09. Theminimal error increases only slightly
at higherα values. The reason for the shallow changes inmin-
imal error at highα values is that the 2 viscoelastic parameters
δ1 and δ2 become very small; hence, the data are fit mostly
with the elastic parametersC1 andC2. Due to the PVAmate-
rial having a small viscoelastic response, employing only
an elastic model is not highly detrimental to the model fit,
hence the small errors even at α = 1. The best parameter
fit for each phantom is summarised in Table 1. The errors
are small (less than ∼7%), which indicates that a good fit is
ensured for each test. An example of themodel fit can be seen
in Fig. 6 (left). It can be observed that the compression level
and relaxation behaviour are properly captured, while micro-
oscillatory amplitudes are slightly underestimated. Notably,

Fig. 5 The minimum error (per Eq. 20) obtained by fitting the model
to the data for each phantom, sweeping over fixed values of α between
0.01 and 1. (Left) The error for the 5-parameter model. (Right) The

error for the 3-parameter model. The minimal error for each phantom,
obtained by employing the parameters in Table 1 (5-parameter model)
and Table 3 (3-parameter model), is enhanced
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Table 1 Best fit parameters for each PVA phantom; the error, computed
as per Eq. 20, can be seen in the first column (in brackets)

Phantom C1 (Pa) C2 (Pa) δ1 (Pa) δ2 (Pa) α

p1 (3.44%) 1545.66 0.18 195.76 149.40 0.06

p2 (5.69%) 1683.89 11.55 0.47 275.13 0.05

p3 (1.50%) 1606.03 4.50 1457.86 193.03 0.04

p4 (1.71%) 2491.84 57.71 628.60 79.40 0.09

p5 (1.01%) 647.09 174.31 2259.66 2.00 0.03

p6 (6.69%) 1746.13 0.04 0.00 272.97 0.05

Mean 1620.11 41.38 757.06 161.99 0.05

SD 537.34 62.71 839.25 98.87 0.019

a large variability can be seen for all parameters with stan-
dard deviations around the mean spanning more than 100%.
This can be explained by looking at the α parameter, which
is generally small (0.03–0.09). These values indicate that
the PVA has a very small viscoelastic response. Mathemat-
ically, if α = 0, then the linear parameters {C1, δ1} and
{C2, δ2} become pairwise redundant, since they scale the
same component. Hence, with a very low α, a coupling of the
parameters arises. For instance, it can be seen, in Table 1,

that the phantoms for which a high δ1 was yielded had a small
C1 and vice versa.

Due to the small viscoelastic response of the PVA phan-
toms, parameters {C1, δ1} and {C2, δ2} tend to exhibit very
similar features. As such, in order to identify each param-
eter contribution to the model, α was set to 0.03 (the best
choice according to Fig. 5 (right)) and each of the linear
parameters was fit individually. The effects of each individ-
ual parameter on the model are illustrated in Fig. 7. When
considering onlyC1, themodel component considered is Se1,
which is equivalent to the Neo-Hookean elastic law. This
parameter captures reasonably well the compression level of
each test, indicating that the PVA material used has a dom-
inant linearly elastic response. However, it lacks the ability
to capture the changes in oscillatory amplitudes—in the four
repetitions of themicro-oscillatory tests, the data indicates an
increased amplitude at higher compression levels, whereas
the model shows the same amplitude. The decrease in ampli-
tude seen in the macro-oscillatory test is a direct result of
the decrease in the actual displacement amplitude data, as
seen in Fig. 7. This amplitude behaviour is entirely expected
from the Neo-Hookean model, and the mismatch between

Fig. 6 Illustration of the model fit considering the 5-parameter model
or 3-parameter model in phantom 3. (Left) The model fit to the data
using all parameters: C1, C2, δ1, δ2 and α (with an error of 1.50%).

(Right) The model fit to the data using a reduced number of parameters:
C2, δ1, and α (with an error of 1.78%). The parameter values can be
seen in Tables 1 and 3

Fig. 7 Contribution of each
parameter to the model (black)
compared to the data (red) (here,
in phantom 4). Each of the four
linear parameters (C1 (top left),
C2 (top right), δ1 (bottom left),
δ2 (bottom right)) was fit to the
data, while setting the other 3 to
be 0 (α was kept constant at
0.03). In each quadrant, the
traction is depicted along the
y-axis and the time along the
x-axis (waiting times between
tests not plotted for
convenience). The parameters
and errors can be seen in Table 2
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Table 2 Best fit parameter for each PVA phantom; the error, computed
as per Eq. 20, can be seen below each parameter; each parameter was
fit considering the remaining three parameters to be 0

Phantom C1 (Pa) C2 (Pa) δ1 (Pa) δ2 (Pa) α

p1 1835.42 685.33 2175.25 813.40 0.03

err (%) 11.69 53.97 9.80 58.12

p2 1933.73 884.40 2318.04 1031.81 0.03

err (%) 17.78 52.34 15.18 59.42

p3 3015.56 1190.96 3568.47 1433.38 0.03

err (%) 9.29 52.93 7.31 56.10

p4 3036.63 1072.38 3585.49 1258.29 0.03

err (%) 7.89 57.27 6.24 60.80

p5 2864.40 1132.68 3374.09 1346.91 0.03

err (%) 8.70 53.30 8.70 56.92

p6 1934.22 890.65 2363.49 922.69 0.03

err (%) 22.35 52.31 15.39 65.47

Mean 2436.66 976.06 2897.47 1134.41 NA

SD 590.75 189.85 677.24 248.31 NA

the model and data indicates that the PVA displays nonlinear
characteristics. Lastly, no relaxation behaviour is displayed,
which is also expected due to the model component being
purely elastic. Conversely, the fractional derivative of the
Se1 component, scaled by δ1, is the viscoelastic counterpart
of the Neo-Hookean model. As such, investigating the value
of δ1 leads to similar observations as forC1, with the obvious
difference that it can capture the relaxation behaviour. It is
stressed, once again, that the similarity occurs due to α being
very small.

When investigatingC2 , the nonlinearity of the Se2 compo-
nent becomes obvious—a linear increase in the compression
level (2mm between the micro-oscillatory tests) leads to a
nonlinear response in the traction force. Hence, this param-
eter alone provides an unsuitable fit to the data; however,
it adds value to the full model by being able to adjust for
the increased amplitude in the four micro-oscillation tests.
As before, the viscoelastic counterpart δ2 captures the relax-
ation behaviour. Table 2 presents the best fit parameter for
each PVA phantom. By investigating Fig. 7, it is expected
that the C1 and δ1 parameters provide a better fit, and hence
yield smaller errors than the C2 and δ2 parameters.

Having looked at each individual component, it is reason-
able to conclude that two out of the four linear parameters—
one elastic and one viscoelastic non-counterpart—are suffi-
cient for describing the PVA material behaviour. By keeping
either C1 or δ1, the compression level is ensured. By adding
either δ2 or C2, the amplitude fit can be improved for both
the micro- and macro-oscillations. The relaxation is ensured
by considering either viscoelastic component—δ1 or δ2,
although from the individual parameter fit it looks like δ1
is more suitable for this aspect.

Table 3 Best fit parameters for each phantom, restricting C1, δ2 = 0
Pa; the error, computed as per Eq. 20, can be seen in the first column,
in brackets

Phantom C2 (Pa) δ1 (Pa) α

p1 (3.95%) 118.94 1923.03 0.03

p2 (6.54%) 233.16 1900.25 0.03

p3 (1.78%) 169.10 3220.10 0.03

p4 (2.32%) 117.86 3143.31 0.02

p5 (1.28%) 176.42 2854.77 0.02

p6 (8.74%) 216.15 1973.74 0.03

Linear Linear Nonlin

Mean 171.94 2502.53 0.03

SD 43.71 581.34 0.005

These observations indicate that the best parameters to fit
are C2 and δ1, while setting C1 and δ2 to 0 Pa. Indeed, when
investigating all pairwise tests (i.e. fitting either {C1, δ1},
{C1, δ2}, {C2, δ1} or {C2, δ2}, with α = 0.03), the smallest
errors were obtained when consideringC2 and δ1. Hence, the
initial model was reduced to 3 parameters—C2, δ1 and α-,
with δ1 modelling theNeo-Hookean viscoelastic component,
andC2 spanning the nonlinear behaviour. The simplifiedPK2
tensor that characterises the PVA material becomes

S = C2Se2 + δ1D
α
t Sv1 + Sp. (24)

The new set of parameters obtained for the 3-parameter
model can be seen in Table 3. It is notable that the error
increase is very small; thus, the new parametrisation does not
significantly deteriorate the quality of the fit. An example of
the parameterised 3-parameter model fit to the rheology data
can be seen in Fig. 6 (right). The error plot of the 3-parameter
model can be seen in Fig. 5 (right). Each phantom indicated a
best fit for a very small α (0.02 or 0.03). At low α values, the
errors are generally small, since the PVA is only slightly vis-
coelastic. However, at high α values, there is a sharp increase
in theminimal error, which eventually plateaus. This happens
when the contribution of the viscoelastic parameter becomes
insignificant (δ1 becomes very small, to counteract the effect
of α) and the only remaining parameter is thus C2. In this
case, as seen in Table 2 as well, the errors rise up to ∼30–
35%. In the low α regime, employing the 3-parameter model
increases the errors only slightly compared to the 5-parameter
model, which is preferred due to reduced complexity.

3.2 Loading bias in harmonic wavemotion under
pure compression

In this study, the PVA phantom material is described by the
moderately complex viscoelastic Eq. 24. Harmonic waves
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Fig. 8 Stiffness maps G ′ and corrected maps M corresponding to the
uncompressed (top row) and compressed (middle and bottom rows)
phantoms (here illustrated in phantom 12). (First column) Phantom
depicted at the different deformation states. The uncompressed state is
kept for reference. The piston (grey bar) is indenting the phantom per-
pendicularly during the MRE scan. Slices are acquired in the coronal

plane (depicted in blue). (Second column) Stiffness estimates using the
UR. The region of interest (ROI) of the apparent stiffness map G ′ was
obtained by eroding the phantoms’ margins. (Third column) Estimates
of map M using the CR. The ROI of maps M was obtained by eroding
the phantoms’ margins

were designed to probe the PVA, as shown in Fig. 4 (columns
3–5).

With this experimental design, when reconstructing with
UR the MRE phantom stiffness in the uncompressed and
two compression states, it is observed that the material
appears increasingly stiffer with increasing compression.
This behaviour is observed in all seven phantoms, as shown
in Fig. 8 (column 2). There it can be seen that, in the uncom-
pressed case, the intrinsic stiffness is ∼ 4.5 kPa. At the first
compression level, the loading bias leads to an apparent stiff-
ness of ∼6 kPa, and at the second compression level to an
apparent stiffness of ∼7.5 kPa. A summary of the average
stiffness of every phantom in each deformation state can
be seen in Fig. 9. The statistics are based on a region
of interest (as seen in Fig. 8) which excludes the phan-
tom’s margins, in order to avoid peculiar boundary effects.
A nonlinear stiffening trend can be observed with increased
compression. The standard deviations increase as well, from
∼10 to ∼21%, suggesting a higher stiffness heterogeneity

under compression, which could be a result of the complex
wave behaviour. Since the phantom PVA material becomes
apparently anisotropic under deformation, a shear wave (as
in Eq. 13) probing, locally, different directions would lead to
higher variability in the stiffness measurements.

Recall that in Sect. 2.1.3 we discussed the motion of a
planar shearwave through a compressed body in order to gain
an intuition of the biasing effects of loading. It was seen that,
for an idealised planar wave (like in Eq. 15) moving through
a compressed Neo-Hookean body, the material appears to be
stiffer. Although theMRE experiment employed in this study
carries additional complexity compared to the idealised case
(particularly in the type of material used and wave structure),
the stiffening trend observed in PVA is in accordancewith the
simplified theoretical outcomes just summarised. The same
stiffening effect was observed in an ultrasound study as well
(Gennisson et al. 2007), under similar conditions (idealised
planar wave and uniaxially compressed material).
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Fig. 9 Average of stiffness maps G ′ and corrected maps M over all
pixels in a phantom (excluding boundaries), in all deformation states.
(Left) Average of stiffness map G ′ obtained using UR (Eq. 9) on the
MRE data. In undeformed state, when λ = 1, the average stiffness
of the phantoms lies within 4.5-5.3 kPa. With increased compression,

the phantoms appear to be stiffer, following a nonlinear trend. (Right)
Average of corrected maps M , obtained by employing CR (Eq. 22)
on the MRE data. The average value of the corrected maps M spans
between 0.96 and 1.11. The standard deviation for all phantoms in all
compression states cross the line at the ideal value M = 1

3.3 Intrinsic stiffness estimation

By understanding how loading biases stiffness estimation, it
is possible to estimate intrinsic stiffness values when using
CR. This requires knowledge of the deformation employed
and the material law. Since this study deals with pure
compression, the deformation was estimated using Eq. 12.
Rheological testing of the PVA led to a 3-parameter material
law (Eq. 24). It was seen, in Sect. 3.1, that there is variation
in estimating the linear parameters C2 and δ1, whereas the
nonlinear parameter α is stable around 0.02–0.03. The opti-
misation performed in rheologywas not repeated forMRE, as
this was observed to lead to a parameter coupling between α

and δ1. Thus, α was fixed at 0.03, as indicated by the rheolog-
ical tests, and C2, δ1 were estimated as described in the data
analysis Sect. 2.3.2. The resulting parameters are presented
in Table 4. It is notable that the C2 parameter is generally
lower in MRE (Table 4) than in rheology (Table 3), with the
exception of phantom 13. This could be related to the degree
of relative compression achieved. In rheology, the maximum
relative compression is 28.5%. In MRE, however, relative
compressions reach up to 35%, with the exception of phan-
tom 13 (only 18%), as seen in Fig. 9. At lower deformation
levels, the viscoelastic component is less employed; thus, the
purely elastic part becomes more dominant. As C2 is scal-
ing the elastic component, its estimate is higher when less
uniaxial compression is achieved. Within each MRE phan-
tom, experimental imperfections lead to variability between
pixels. Looking at the apparent stiffness maps in Fig. 8,
excluding the boundary area (as shown in column 2), a small
degree of heterogeneity is observed,which accentuates under
higher compressions. One reason behind this is speculated
to lie in the crystallisation process during the F-T cycles of
PVA. Assuming that the PVA freezes first at the mould edges
and then in the centre, this could affect the local structures
formed.Another reason could be that the top side of the phan-

Table 4 MRE minimisation parameters fixing α = 0.03; the error,
computed as per Eq. 23, can be seen in the first column, in brackets

Phantom C2 (Pa) δ1 (Pa) α

p7 (15.85%) 93.68 2119.92 0.03

p8 (15.86%) 83.15 2085.28 0.03

p9 (14.80%) 88.36 1878.05 0.03

p10 (16.64%) 94.83 2126.26 0.03

p11 (17.08%) 103.43 2235.11 0.03

p12 (18.27%) 106.27 1945.07 0.03

p13 (11.15%) 246.54 1848.72 0.03

Linear Linear Nonlin

Mean 120.43 2019.75 NA

SD 56.96 139.60 NA

toms is not perfectly flat, as it was cut manually. As such,
the compression could have not been ideally uniform. Other
arguments could revolve around the compression that the pis-
ton is exerting on the phantom, but an analysis in this sense
is intricate and beyond the purpose of this study. Regardless
of the underlying reasons, the small local variations in each
phantom lead to the errors presented in Table 4, as slightly
different pixels are attempted to be fit to the same measure.
Although the errors are higher than in rheology (Table 3),
the error metrics are not directly comparable. In rheology,
a transient behaviour is investigated, that is, a data point is
followed in time (Eq. 20), whereas in MRE a large spatial
sample size is examined—all the pixels across several slices
of each phantom, in uncompressed and second compressed
state (Eq. 23).

The parameters obtained in Table 4 were sought by
employing the CR on each phantom in uncompressed and
second compression states, as previously described. Sub-
sequently, they were used directly in reconstructing the
corrected maps M for the first compression case, corre-
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spondingly for each phantom. The corrected maps M are
illustrated, in a phantom, in Fig. 8 (column 3). Since the
parameters are fit to best describe the data in uncompressed
and second compressed states, it was indeed expected that the
M map’s average for these cases is close to unity. Addition-
ally, the corrected map for the first compression case, whose
average also lies close to unity, demonstrates the prediction
value of the parameters.

The quantified average of map M for all phantoms in
all deformation states (uncompressed, first compression and
second compression) is shown in Fig. 9 (right). Same as for
the apparent stiffness G ′, only a ROI was considered inside
each phantom, to avoid boundary effects. Depending on each
phantom’s height, a variable compressionλ describes the first
or second compression. For instance, the data points on the
graph corresponding to λ between 0.75 and 0.8 depict the
first compression for taller phantoms and second compres-
sion for shorter phantoms. It is observed that the standard
deviations are sizeable (10–19%) and tend to be higher at
the larger compression levels. In the stiffness measurements,
this observation was attributed to the apparent anisotropy
effect and waves’ local probing directions. In the corrected
maps M , the apparent anisotropy effect is undone by incor-
porating the knowledge on the deformation gradient, given
by Eq. 12. Since the variance does not decrease in the M
maps compared to G ′ maps, it suggests that the predicted
apparent anisotropy in compression is not the main cause of
the increasing standard deviations. Instead, it could be due to
experimental imperfectionswhich are difficult to control. For
instance, the slight unevenness of the phantoms’ top or the
compression induced by the piston indentation are unavoid-
able, yet for simplicity their effects are not accounted for in
the deformation gradient, which employs an idealised form.
Despite these, in all but one cases, the average of corrected
map M lies within 10% of the ideal value of 1. This indicates
that the model, parameterised with the values presented in
Table 4, captures the bias induced by loading on the wave
motion. This shows that the parameters found can describe
the material at different deformation states and are suitable
for estimating the intrinsic stiffness of the PVA material.

Integrating rheology and MRE is a difficult problem to
tackle. While rheology can be employed to directly measure
a material’s stress-strain response, MRE relies on investi-
gating the wave propagation behaviour in order to estimate
material properties. Here, we tried to integrate the two meth-
ods by validating a viscoelastic model using rheological data
and then using it to derive the G′ and G′′ moduli to be used
within CR of MRE data. The model was shown to capture
the loading bias, thus proving the successful integration of
the methods. Furthermore, model parameterisation was done
separately for rheology and MRE, yet it is notable that the
standard deviations around the mean of theC2 and δ1 param-
eters are overlapping across the two experimental methods.

This, together with the undoing of the loading bias, demon-
strates the improvement that the newly developed CR brings
in analysing MRE data.

3.4 Extension and impact in tissue

The theoretical framework presented in Sect. 2.1.2 showed
that the stiffness moduli are directly related to the material
law and deformation. The work done in phantoms supports
the theoretical concept. It was shown that, by incorporat-
ing the knowledge on material behaviour and deformation
into the MRE reconstruction, the intrinsic stiffness can be
estimated. This approach could be extended and applied in
tissues. As a first step, a biomechanical model describing
the tissue could be inferred and further adapted from animal
rheological work. Additionally, by employing registration
tools on anatomical images of an organ in undeformed and
deformed states, deformations can be quantified. Together, a
better characterisation of specific tissue rheology and large
deformation recordings usingMRI could enable proper inter-
pretation of MRE data.

The most immediate extension of our approach could be
breast MRE. This imaging technique relies on the breast
being fixed in between two plates, which leads to tissue com-
pression. In the literature, the loading bias was observed in
cases where the breast was fixed tightly, compared to cases
where the breast was fixedmore loosely (Sinkus et al. 2005a),
but was not accounted for. Undoing this bias using subject
specific deformation would help in correcting the observed
stiffness for both healthy and diseased areas. For instance,
provided that the risk of breast cancer is associated with tis-
sue stiffness (Boyd et al. 2014), accounting for the loading
bias would ensure that the risk assessment is not underes-
timated or overestimated. Clinically, this could improve the
prognostic value and disease management.

Another extension of our study could be in the liver,
which is subjected to motion due to respiration. While this
results mainly in translational motion, parts of the liver can
be strained (Kang et al. 2012). This can be advantageous,
since some liver pathologies were shown to become more
apparent, compared to healthy tissue, under large strains (in
ex vivo) (Yeh et al. 2002). Measuring stiffness in strained
tissue could increase diagnostic accuracy, but would require
techniques to eliminate loading bias.

The heart is a particularly complex organ which presents
structural anisotropy, has dynamic stiffness, and undergoes
large motion during the cardiac cycle. The latter constitutes
one of themany challenges in assessing the unbiased stiffness
of the myocardium (Kolipaka et al. 2010, Glaser et al. 2012),
since the effects of deformation non-trivially interfere with
the intrinsic tissue properties. The framework presented in
this study would constitute a step forward in assessing the
tissue characteristics, by eliminating the deformation bias.
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In order to follow this paper’s proposed pathwayof retriev-
ing intrinsic material parameters fromMRE data, one would
have to consider Eq. 9 in the material frame as a starting
point. Since the moduli G′ and G′′ depend on constitutive
behaviour and deformation (e.g. Eq. 10), then knowledge on
the PK2 tensor and deformation gradient is necessary. The
material behaviour can be modelled by considering a con-
stitutive equation for the strain energy function W , like in
Eq. 17, from which tensor S can be derived, or by proposing
an adaption for S, e.g. Eq. 19. A formulation for the deforma-
tion gradient F is required, like the one presented in Eq. 12,
which needs to describe the unperturbed macro-deformation
that the body is undergoing. From these, a form of themoduli
G′ and G′′ can be inferred, which can be employed within
CR (Eq. 22) to eliminate the loading bias.

3.5 Study limitations

A limitation encountered during the analysis process of the
data presented in this study was the estimation of the viscous
modulus fromMRE data. The rheological tests performed on
PVA phantoms identified a very low α, indicating that there
is little viscous response of the material. This is a conse-
quence of choosing a highly elastic material, with low wave
attenuation. As such, the characteristics of the viscous com-
ponent were difficult to identify under MRE testing, leading
to an overestimation of the reconstructed viscous modulus.
This effect was already identified with the employed MRE
reconstruction (Fovargue et al. 2018a),where the overestima-
tion of the viscous modulus was observed in a purely elastic
phantom, particularly with increased noise. However, this
drawback is predicted to disappear when using in vivo data,
as tissue has a stronger viscous component. Nevertheless, in
this phantom study, the bias due to the spectrum of stiffness
prevented the characterisation of the full complex modulus,
thus shifting the focus only on the real stiffness modulus.

This study provides the means through which a material’s
intrinsic characteristics can be retrieved, despite it experienc-
ing loading. However, a reasonable quantification of intrinsic
material parameters relies on a good estimation of the defor-
mation state and on an appropriate constitutive material law.
In more complex scenarios, like in vivo measurements, these
prerequisites are more challenging to attain. The deforma-
tion metrics would presumably need to rely on precise image
registration techniques. As medical image registration is a
greatly developed field, identification of suitable methods
is surely attainable. However, the material constitutive law
could be difficult to model, particularly in tissues which
exhibit anisotropy. Nonetheless, much work has been done
in this sense, as tissue models have been developed in many
forms—polynomial, exponential, logarithmic, power laws,
etc., and can be further improved and adapted. Undeniably,
a model with increased complexity would lead to convo-

lutedG′ andG′′ moduli, yet they can be attained numerically
(by contrast with the analytic form presented here, for PVA,
in Appendix 2). Hence, despite an increased computational
cost, the use of a complex model would not be hindered.

4 Conclusions

This paper presents a framework for integrating knowledge
onmaterial constitutive behaviour and deformation intowave
dynamics in order to retrieve intrinsicmaterial stiffness prop-
erties. First off, a theoretical foundation was established by
perturbing Cauchy’s equations of motion and transcribing
the resulting equations intomaterial frame. This determined a
form of the stiffness moduli which was seen to depend on the
material model and deformation metrics. To support the the-
ory, experiments onPVAphantomswere employed. ThePVA
material was tested in a rheological setup and its examined
behaviour was modelled using a viscoelastic law. The same
material was subjected to MRE experiments, where a known
deformation (uniaxial compression) was employed. It was
seen that, under the designed testing conditions, using stan-
dard MRE analysis, the material appeared to be stiffer with
increasing compression. Thus, the knownmaterialmodel and
deformation were integrated into the stiffness moduli and
subsequently into the MRE reconstruction. By doing this,
it was shown that intrinsic material stiffness parameters can
be estimated, thus undoing the loading bias observed using
standard analysis. Hence, this study provides a framework
demonstrated to work in phantoms, which can be adapted
and applied to MRE in more complex instances.
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Simplification to linearised elastic wave
equations

Here we aim to simplify the total system of Eq. 8 by Pertur-
bation theory, expanding about the current state U .

Starting by linearising the mass conservation equation,
using the matrix determinant multiplication rule (Golub and
Loan 1996), note that the first-order ε terms of the Jacobian
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J ε may be clustered as3

J (Fε) = J + Du[J ][uε]
= J + Du[J (F)][uε]
= J + ∂ J

∂F
: Du[F][uε] + O(ε2)

= J + ∂ J

∂F
: ∇0uε + O(ε2). (25)

Since ∂ J
∂F = J F−T (Bonet and Wood 2008), it follows that

J (U + uε) ≈ J + J F−T : ∇0uε. (26)

This approximation, considered to hold strongly when trun-
cated to the first-order, reduces the mass balance in Eq. 8b
to

J ε − 1 = J (1 + F−T : ∇0uε) − 1 = 0

on Ω0. (27)

Here, note that J is assumed to satisfy the original balance
law in Eq. 3b, which leads Eq. 27 to become

F−T : ∇0uε = 0. (28)

Using Eqs. 25 and 28, it is now clear that J ε = J+O(ε2),
which simplifies the momentum term in Eq. 8a to

ρ J ε∂t tUε = ρ J∂t tUε + O(ε2). (29)

To further reduce the momentum balance, we want to
expand the stress term FεSε in Eq. 8a using Taylor expan-
sion in (P, F). As a result, letting S = Se(C(F)) +
Dα
t Sv(C(F)) + Sp(C(F), P), using ∇F to denote the

derivative with respect to F, i.e.

(∇F)i j = ∂/∂Fi j ,

and the deltas for the difference between the perturbed and
unperturbed states, i.e.

δF = Fε − F = ∇0uε,

δP = Pε − P = pε,
(30)

3 Here, we denote by

Dx [ f ][u] = lim
ε→0

f (x + εu) − f (x)

ε

the directional derivative of f at a point x in the direction of increment
u.

we may focus on the deformation gradient expansion

Fε = F +
∞
∑

n=1

([∇F]nF)[: δF]n,

≈ F + ∇0uε + O(ε2), (31)

the hydrostatic part expansion

Sε
p = Sp +

∞
∑

n=1

(

([∇F]nSp
)[: δF]n

+
(

∂n

∂Pn
Sp

)

[: δP]n
)

≈ (

Sp + ∇FSp : ∇0uε + pε J F−T ) + O(ε2), (32)

the PK2 elastic part expansion

Sε
e = Se +

∞
∑

n=1

([∇F]nSe
)[: δF]n,

≈ Se + ∇FSe : ∇0uε + O(ε2), (33)

and the PK2 viscoelastic part expansion

Dα
t S

ε
v = Dα

t

(

Sv +
∞
∑

n=1

([∇F]nSv

)[: δF]n
)

≈ Dα
t

(

Sv + ∇FSv : ∇0uε
) + O(ε2)

≈ ∇FSv : Dα
t

(∇0uε
) + O(ε2), (34)

where it is assumed that Sv and ∇FSv are constant in time.
Hence, the components of the stress term FεSε are given by

FεSε ≈ FS

+ (

F[∇F(Se + Sp)] + [I]S) : ∇0uε

+ F[∇FSv] : Dα
t

(∇0uε
) + pε J F−T

+O(ε2), (35)

where the square bracketed terms denote fourth-order ten-
sors resulting from differentials of the PK2 stress tensor with
respect to F. For clarity, in indicial notation,

(FεSε)i j = Fik Sk j + Fik
∂(Se + Sp)k j

∂Fmn

∂uε
m

∂Xn

+ Dα
t Fik

∂(Sv)k j

∂Fmn

∂uε
m

∂Xn
+ ∂uε

i

∂Xn
Snj

+ pε J F−1
j i + O(ε2). (36)

Thus, considering Eqs. 29 and 35, the conservation of
momentum can be split between macro-deformation (in
square brackets) and micro-deformation components, i.e.
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[

ρ J∂t tU − ∇0 · (FS)
]

+ ρ J∂t tuε

−∇0 ·
(

[

F∇F(Se + Sp) + IS
] : ∇0uε

+[F∇FSv] : Dα
t

(∇0uε
) + pε J F−T

)

= 0. (37)

Noting that the macro-deformation U satisfies Eq. 3a,
the first square bracketed term on the left hand side is zero.
Hence, a set of linearised elastic wave equations in the ref-
erence frame can be formulated:

ρ J∂t tuε − ∇0 ·
(

[

F∇F(Se + Sp) + IS
] : ∇0uε

+[F∇FSv] : Dα
t

(∇0uε
) + pε J F−T

)

= 0. (38a)

F−T : ∇0uε = 0. (38b)

While the set of Eq. 38 deals generically with small scale
perturbations, in the case where the frequency is sufficiently
high or the time interval sufficiently long, harmonic waves
may be considered. Thus, inserting the wave form given by
Eq. 2 into the set of Eq. 38, and noting the Laplace transform
as Dα

t

(

eiωt
) ≈ (iω)αeiωt ∀t >> 0, it follows that

−ρ Jω2uc − ∇0 ·
(

[F∇F(Se + (iω)αSv + Sp)

+IS] : ∇0uc + pc J F−T
)

= 0, (39a)

F−T : ∇0uc = 0. (39b)

When comparing with real data, it is desirable to map
the momentum equations into the physical frame. Using the
property (Ogden 1997) that

∇ ỹ = (∇0 y)F−1,

the gradients with respect to the reference frame can also be
transformed into the current domain. Hence, the terms in the
set of Eq. 39 become

[F∇F(Se + (iω)αSv + Sp) + IS] : ∇0uc
= [F∇F(Se + (iω)αSv + Sp) + IS] : [∇0ucF−1F]
= [F∇F(Se + (iω)αSv + Sp)FT + ISFT ] : ∇uc,

(40)

and

F−T : ∇0uc = F−T : [∇0ucF−1F]
= I : ∇uc
= ∇ · uc. (41)

In indicial notation,

(

[F∇F(Se + (iω)αSv + Sp) + IS] : ∇0uc
)

i j

= Fik
∂(Se + (iω)αSv + Sp)k j

∂Fmn

∂(uc)m
∂xl

Fln

+ δim Snj
∂(uc)m

∂xl
Fln,

and

F−T : ∇0uc = ∂(uc)m
∂xm

.

Moreover, by noticing the property linking the divergence of
a tensor between the physical and reference domains (Gurtin
et al. 2010)

J∇ · ˜H = ∇0 · [JHF−T ] ,

the divergence of the stress terms can be recast in terms of
the physical gradient operator ∇, i.e.

∇0 ·
(

[F∇F(Se + (iω)αSv + Sp)FT

+ISFT ] : ∇uc
)

= J∇ · (C : ∇uc), (42)

where the fourth-order tensor C encompasses

Ci jml = 1

J

(

Fik
∂(Se + (iω)αSv + Sp)ks

∂Fmn

+ ∂Fik
∂Fmn

Sks

)

Fln Fjs . (43)

Combining Eqs. 40–42 and noting the property linking the
divergence of a scalar in the reference domain to the physical
frame (Gurtin et al. 2010)

J∇w̃ = ∇0 · [wJ F−T ]

the equations analogous to the classical set of Eq. 3, may be
written as,

−ρ Jω2uc − J∇ ·
(

pc I + C : ∇uc
)

= 0, (44a)

∇ · uc = 0,

on Ω. (44b)

Equation 44a can be written as

− ρω2uc − ∇ · [(G′ + iG′′) : ∇uc + pc I] = 0, (45a)

with the understanding that the real and imaginary scaling
moduli G′ and G′′ are given by G′ = Re(C), G′′ = Im(C),
i.e.
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G′ = 1

J

(

F∇FSe + ωα cos
(πα

2

)

F∇FSv

+ F∇FSp + IS
)

FT FT , (46a)

G′′ = ωα

J
sin

(πα

2

)

F∇FSvFT FT . (46b)

Viscoelastic moduli estimates for PVA
material

In this section, the aim is to understand the effect ofmacrode-
formations on the wave behaviour in a viscoelastic material
described by Eq. 19. So far, general elastic and viscoelastic
stresses Se and Sv have been used. Recall that, for this work,
they were considered to comprise two parts each, based on a
Mooney–Rivlin type of law, as follows:

Se = C1Se1 + C2Se2,

Dα
t Sv = δ1D

α
t Se1 + δ2D

α
t Se2.

Hence, the fourth-order tensorC can be taken one step further
and written as

Ci jml = 1

J

{

Fik

[

C1
∂Se1,ks
∂Fmn

+ C2
∂Se2,ks
∂Fmn

+ (iω)α
(

δ1
∂Sv1,ks

∂Fmn
+ δ2

∂Sv2,ks

∂Fmn

)

+ ∂Sp,ks
∂Fmn

]

+ ∂Fik
∂Fmn

Sks

}

Fln Fjs, (48)

while the G′ and G′′ moduli become

G′ = 1

J

{

F
[

C1(∇FSe1) + C2(∇FSe2)

+∇FSp

]

+ IS
}

FT FT

+ ωα

J
cos

(πα

2

)

F
{

δ1(∇FSe1)

+ δ2(∇FSe2)
}

FT FT , (49a)

G′′ = ωα

J
sin

(πα

2

)

F
{

δ1(∇FSe1)

+ δ2(∇FSe2)
}

FT FT . (49b)

The moduli G′ and G′′ are influencing the wave dynamics
∇uc, leading to an apparentwave dynamic.Now, considering
the analytic formulation of the contraction (G′+ iG′′) : ∇uc,
consider that the wave ∇uc satisfies the harmonic wave

motion described in Sect. 2.1.1. After a cumbersome deriva-
tion and simplification process, the moduli defining the PVA
material used can be formulated as

G′ : ∇uc

= 1

J

{

C1

[

− 4

3
I(̂B : ∇uc) + 2

3
I
̂C∇uTc + 2∇uĉB

]

+ 8C2

[

(̂B
2 : ∇uc)

(

4̂B
2 + 4I − 8

3
I I

̂C I
)

+
(

̂B∇uĉB + (̂B∇uĉB)T + ∇uĉB
2 + I I

̂C

3
∇uTc

)

· (I I
̂C − 3)

]

− J P∇uTc

+ωα cos
(πα

2

)

·
(

δ1
2

3
I
̂C

[∇uc + ∇uTc
]

+ 8δ2

[

(̂B
2 : ∇uc)

(

4̂B
2 + 2I − 2I I

̂C I
)

+
(

̂B∇uĉB + (̂B∇uĉB)T + I I
̂C

3

(∇uc + ∇uTc
)

)

· (I I
̂C − 3)

])}

(50)

and

G′′ : ∇uc

= 1

J

{

ωα sin
(πα

2

)

·
(

δ1
2

3
I
̂C

[∇uc + ∇uTc
]

+ 8δ2

[

(̂B
2 : ∇uc)

(

4̂B
2 + 2I − 2I I

̂C I
)

+
(

̂B∇uĉB + (̂B∇uĉB)T + I I
̂C

3

(∇uc + ∇uTc
)

)

· (I I
̂C − 3)

])}

. (51)

In theparticular casewhen there exists nomacro-deformation,
i.e. F = I , it follows that the real scaling modulus retains
only the terms

G′ : ∇uc = 1

J

{

2C1
(∇uc + ∇uTc

) − J P∇uTc

+ 2δ1ω
α cos

(πα

2

) (

∇uc + ∇uTc
)

}

, (52)

while the imaginary modulus reduces to

G′′ : ∇uc = 2δ1ωα

J
sin

(πα

2

) (

∇uc + ∇uTc
)

. (53)
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