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Abstract 

 

Myelodysplasia (MDS) is characterised by inefficient haematopoiesis with dysplastic 

features of blood and bone marrow, reduction of mature blood cells and continuous 

bone marrow failure (BMF). Acute myeloid leukaemia (AML) is characterised by the 

accumulation of immature myeloid blasts in the bone marrow. MDS and AML are 

mostly sporadic clonal disorders affecting older patients. Familial occurrence of 

MDS/AML is rare, and most of these cases occur in the setting of genetic syndromes.  

However, it has also been reported to be caused by germline heterozygous mutations 

in genes including RUNX1, CEBPA, TERC, TERT, GATA2, SRP72, and ANKRD26.  

 

Our group has collected 115 families that have two or more individuals with BMF with 

at least one of whom has MDS or AML. The aim of this project was to identify disease 

causing gene variants that can lead to familial MDS/AML. Identification of 

predisposing variants to familial MDS/AML is critical for effective management in 

these families. This will also provide new insights into the biology of MDS/AML in 

general.  

 

Herein, we have characterised a subset of families with MDS/AML as well as identified 

candidate disease genes using a range of genetic studies. Specifically, we have: i. 

Identified new genetic variants in some of the known disease genes such as RUNX1 

and GATA2. ii. Our studies have substantiated the discovery of DDX41 as a disease 

gene as we have identified several families harbouring novel heterozygous loss of 

function (LoF) DDX41 variants. iii. Identified germline heterozygous LoF RTEL1 

variants in a subset of families with myelodysplasia and liver disease. This defines a 

new disease group in this field, RTEL1 can now be added to the list of familial 

MDS/AML disease genes. iv. We have identified nine new candidate disease genes 
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which are involved in RNA splicing, transcription factor, DNA modification, cell 

signalling and intracellular transport. 
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PCR polymerase chain reaction 

PHF6  PHD finger protein 6 

pLI probability of LoF intolerance 

PML promyelocytic leukemia 

pmol picomole 

POT1 protection of telomeres 1  

PPM1D protein phosphatase, Mg2+/Mn2+ dependent 1D 

PRPF8 pre-mRNA processing factor 8 

PRRs pattern recognition receptors 

PS-DVB polystyrene-divinylbenzene 

PTPN11 protein tyrosine phosphatase, non-receptor type 11 

PVDF polyvinylidene difluoride 

RAD21 RAD21 cohesin complex component  

RAD51 RAD51 recombinase 

RAEB refractory anaemia with excess blasts 

Rap1 repressor activator protein 1  

RARA retinoic acid receptor alpha 

RB retinoblastoma tumour suppressor 

RCA rolling circle amplification 

REV7 mitotic arrest deficient 2 like 2 

RFWD3 ring finger and WD repeat domain 3 

RLHs RIG-like helicases 

RNA ribonucleic acid 

rpm revolutions per minute 

rRNA pre-ribosome RNA 

RTEL1 regulator of telomere elongation helicase 1 

RUNX1 runt related transcription factor 1 

RUNX1T1 RUNX1 translocation partner 1 

RUNX2 runt related transcription factor 2 
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RUNX3 

SAMD9 

SAMD9L 

runt related transcription factor 3 

sterile alpha motif domain containing 9 

sterile alpha motif domain containing 9 like 

SBDS SBDS, ribosome maturation factor 

SCT stem-cell transplant 

SDS Shwachman-Diamond syndrome 

SDSA synthesis-dependent strand annealing pathway  

SDS-PAGE 

SETD4 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SET domain-containing protein 4 

SF2 Superfamily 2  

SF3B1 splicing factor 3b subunit 1 

SF3B2 splicing factor 3b subunit 2 

SF3B3 splicing factor 3b subunit 3 

SFTPA2 surfactant protein A2  

SFTPC surfactant protein C  

SLX1 SLX1 structure-specific endonuclease subunit  

SLX4 SLX4 structure-specific endonuclease subunit 

SMC1A structural maintenance of chromosomes 1A 

SMC3 structural maintenance of chromosomes 3  

SNPs single nucleotide polymorphisms 

SRP72 signal recognition particle 72 

SRSF2 serine and arginine rich splicing factor 2 

SSC saline-sodium citrate 

ssDNA single-stranded DNA  

STAG1/2 stromal antigen 1/2 

STING stimulator of interferon genes 

T/S telomeric to single-copy gene ratio 

TBE tris-borate-EDTA 

TBK1 TANK binding kinase 1 

TBS-T Tween-20 

TCFs ternary complex factors 

T-circle telomeric-circle 

TE tris-EDTA 

TERC telomerase RNA component 

TERT telomerase reverse transcriptase 
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TET2 tet methylcytosine dioxygenase 2 

THC2 thrombocytopenia 2 

TINF2 TERF1 interacting nuclear factor 2 

TLR Toll-like receptors 

TNRC6C trinucleotide repeat containing 6C 

TP53 tumor protein p53 

TRANK1 tetratricopeptide repeat and ankyrin repeat containing 1 

TRF1 telomere repeat binding factor 1  

TRF2 telomere repeat binding factor 2  

TRIF TIR-domain-adapter-inducing interferon-β 

TRIM21 tripartite motif containing 21 

TSCA Truseq Custom Amplicon 

TTP1 TINF2-interacting protein 2  

TTS upstream of the transcription start site 

U2 snRNP U2 small nuclear ribonucleoproteins complex 

U2AF1 U2 small nuclear RNA auxiliary factor 1 

UBE2T ubiquitin conjugating enzyme E2 T 

UTR untranslated region 

V volt 

V/cm volt/centimetre 

VAF variant allele frequency 

vs versus 

VUS variant of unknown significance  

WAS Wiskott-Aldrich syndrome 

WASp WAS protein 

WES whole exome sequencing 

WHO World Health Organization 

WRAP53 WD repeat containing antisense to TP53 

WT1 Wilms tumor 1 

XL X-linked  

XLN X-linked neutropenia 

XP xeroderma pigmentosum  

XPD Xeroderma pigmentosum group D  

XPF ERCC excision repair 4, endonuclease catalytic subunit 

XRCC2 X-ray repair cross complementing 2 
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-Y loss of Y  

ZMYM2 Zinc finger MYM-type containing 2  
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1.1 General introduction  

 

Myelodysplasia and acute myeloid leukaemia are mostly sporadic haematopoietic 

malignancies typically affecting older patients, though a small subset has been 

associated with germline mutations. Familial cases of myelodysplasia/acute myeloid 

leukaemia are rare, but are extremely relevant for the investigation of the molecular 

pathogenesis of myelodysplasia and acute myeloid leukaemia in general as many 

genes associated with these familial myeloid neoplasms are also recurrently mutated 

in sporadic cases (Liew & Owen, 2011; West et al., 2014). Large-scale sequencing of 

cancer genomes has now been completed for thousands of cancer samples. This 

initial discovery phase has uncovered many novel genes, pathways, and mutational 

processes implicated in cancer development (Vogelstein et al., 2013). Furthermore, it 

has been demonstrated that the mutation/deletion status of a set of genes could be 

used to build a clinically relevant prognostic system as independent variables from 

clinical parameters. Moving forward, studies are warranted to clarify how to integrate 

this increased knowledge of gene mutations in our understanding of leukaemogenesis 

and into clinical practice (Haferlach et al., 2014).  

 

 

1.2 Myelodysplasia syndromes 

 

Myelodysplasia syndromes (MDS) are a heterogeneous group of bone marrow 

disorders derived from clonal haematopoietic stem cells with increased proliferation 

or resistance to apoptosis, leading to an over production of abnormal differentiated 

blood cells. This produces inefficient haematopoiesis with morphological dysplastic 

features of blood and bone marrow, reduction of blood cells with various degrees of 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Liew%20E%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Owen%20C%5Bauth%5D
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cytopenia and continuous bone marrow failure (Figure 1.1) (Tefferi & Vardiman, 

2009). The incidence rate of sporadic myelodysplasia in 2016 was approximately 3 to 

4 cases per 100,000 population per year, with 30 cases per 100,000 population per 

year in patients >70 years old (Cancer Network - www.cancernetwork.com/cancer-

management/mds).   

 

 

 

Figure 1.1. Schematic of a normal haematopoietic stem cells differentiation. Driver mutation(s) 

in the haematopoietic stem cell is necessary for the development of MDS or AML. 
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There are many MDS subtypes with varying clinical features and pathogenesis 

depending on which blood cells are affected. Any or all of the blood cells may be 

affected in MDS and its diagnosis depends mainly on the degree of dysplasia and 

blast percentages in peripheral blood and bone marrow. MDS should be classified 

according to the World Health Organization (WHO) criteria, as revised in 2016 (Arber 

et al., 2016). In the revised WHO MDS criteria the terms “refractory anemia” and 

“refractory cytopenia” were replaced by “myelodysplastic syndrome” followed by the 

appropriate modifiers: single vs multilineage dysplasia, ring sideroblasts, excess 

blasts, or the del(5q) cytogenetic abnormality (Table 1.1, adapted from Arber et al., 

2016).   

 

MDS can evolve into a form of leukaemia, usually acute myeloid leukaemia (AML) in 

30% of cases (Mufti et al., 2008). The clinical phenotype of patients with MDS are 

diverse with respect to the number and severity of cytopenias, cellularity and blast 

count in the bone marrow, rate of progression to AML, overall survival and response 

to treatment. MDS is an extremely heterogeneous group of disorders, ranging from 

mild conditions with a near-normal life expectancy to forms approaching AML. Much 

of this phenotypic heterogeneity is likely due to the variety of genetic alterations that 

contribute to disease pathogenesis.   

 

Somatically acquired genetic abnormalities, including karyotypic abnormalities, gene 

alterations and aberrant epigenetic regulation of gene expression lead to the 

development of MDS (Bejar et al., 2011). However, single genetic alterations are 

unlikely to be the sole disease-causing abnormalities in myeloid neoplasms. Instead, 

a combination of two or more of these genetic modifications may be needed in 

cooperation with global changes in epigenetic states and cellular environment (Bejar 

et al., 2011).  
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Table 1.1. WHO classification of MDS and AML as revised in 2016 
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Furthermore, there is no single factor known to cause these genetic alterations, in 

many cases it is probably due to a combination of different factors such as smoking, 

some anti-cancer treatments, exposure to certain chemicals (such as benzene) and 

exposure to high levels of ionising radiation. 

 

Sporadic MDS, de novo MDS and the closely related secondary AML evolving from 

an antecedent MDS are predominantly sporadic diseases that affect the elderly, with 

a median age of diagnosis over 70 years, and generally carry a poor prognosis 

(Sekeres et al., 2008; Steensma, 2015b; Khwaja et al., 2016). Although, adult patients 

less than 50 years of age are sporadically affected by MDS. In addition, in children, 

refractory cytopenia of childhood and juvenile myelomonocytic leukaemia (JMML) are 

considered distinct entities and are more related to congenital bone marrow failure 

and familial leukaemia syndromes than to adult MDS (Niemeyer & Baumann, 2011). 

Furthermore, Hirsch et al. (2017) found that high-risk MDS (with excess blasts) was 

more common among early onset (range, 20-50 years old) MDS patients (35% 

against 24%, P=0.048) while lower-risk MDS (with single lineage dysplasia, MDS with 

ring sideroblasts with single and multilineage dysplasia and, MDS with multilineage 

dysplasia) predominated in MDS patients over 50 years of age (28% against 41%, 

P=0.042). Additionally, the number of mutations tended to be higher in advanced 

WHO subtypes and high-risk prognostic groups, which is also associated with 

increasing intratumoral subpopulations and worse prognosis (Haferlach et al., 2014).  

 

Congenital disorders such as Down syndrome, Fanconi anaemia (FA), dyskeratosis 

congenita (DC) and Bloom syndrome are also associated with MDS. In these 

syndromes affected individuals usually present with MDS at an earlier age (Germing 

et al., 2008), suggesting a “multiple-hit” mechanism of cancer development with 

genetic and environmental factors. The genetic variations in haematopoietic cells, 
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whether inherited or acquired, can affect apoptosis and cell differentiation which are 

crucial to increase the susceptibility of the affected precursor cell to further DNA 

damage, contributing to an accumulation of secondary genetic alterations that 

conclusively results in the development of definite MDS and AML (Tefferi & Vardiman, 

2009). 

 

Finally, although MDS is classified as cancer by WHO and is treated by oncologists 

in many settings, and MDS shares some biological features with leukaemia or other 

overt neoplasms, there are other features of MDS that are not typical of cancer, such 

as response to immunosuppressive therapy in some cases and stability for more than 

a decade in others (Shlush & Minden, 2015). 

 

 

1.2.1 Patterns of acquired genetic variants in MDS 

 

The spectrum of genetic abnormalities in MDS implicates a wide range of molecular 

mechanisms in the pathogenesis of this disorder, including RNA splicing, transcription 

factors, DNA modification, chromatin regulation, cell signalling and epigenetic 

regulators (Haferlach et al., 2014). RNA splicing is the most commonly mutated 

pathway in MDS and occurs early in disease evolution. These mutations play a major 

role in determining the clinical features of the disease, with differences in 

morphological features seen on bone marrow biopsy as they may influence the 

subsequent genomic evolution of the disease. It happens because the patterns of 

cooperating mutations are very different between the genes with driver mutations 

(Papaemmanuil et al., 2013). Specific alterations present in individual patients with 

MDS may explain much of the heterogeneity in clinical phenotype associated with 

MDS and can predict prognosis and response to therapy (Bejar et al., 2011).  
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Chromosomal abnormalities are present in approximately half of patients with MDS. 

The most common of these are loss of 5q (-5q), loss of 7 or 7q (-7/7q), trisomy 8 (+8), 

loss of 20q (-20q), and loss of Y (-Y) (Haase et al., 2007; Bejar et al., 2011). Del(5q) 

is the only cytogenetic or molecular genetic abnormality that is considered a specific 

MDS subtype by WHO criteria. The presence of +8, -Y, or del(20q) is not considered 

to be MDS-defining in the absence of diagnostic morphologic features of MDS (Arber 

et al., 2016).  

 

Acquired somatic variants have been identified in several genes in MDS (Table 1.2), 

where the genes involved in chromatin regulation (ASXL1 and EZH2), DNA repair and 

transcriptor factor (TP53), transcriptor factor (RUNX1), RNA splicing (SF3B1, SRSF2, 

and U2AF1), and DNA methylation (TET2 and DNMT3A) are the most frequently 

mutated (Arber et al., 2016). However, deleterious variants in most of these genes 

can be found in different myeloid neoplasms and are not specific for MDS (Bejar et 

al., 2011). 

 

The number of somatic variants increases linearly with age and on average, patients 

over 50 years of age have more somatic variants in spliceosomal, epigenetic modifier, 

and RAS gene families. Furthermore, there are age-related differences in molecular 

features among elderly patients with MDS, where somatic variants in the genes 

involved in RNA splicing (SRSF2) and DNA methylation (TET2 and DNMT3A) occur 

with a high frequency. While somatic variants in genes involved in chromatin 

regulation (ASXL1), DNA methylation (TET2), DNA repair and transcriptor factor 

(TP53 and RUNX1) are the most frequently mutated genes in patients with early onset 

MDS (range, 20-50 years old) (Hirsch et al., 2017).   
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Table 1.2. Frequent genetic abnormalities observed in sporadic MDS 
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It is known that there are haematological neoplasm-associated genetic abnormalities 

in the blood of some healthy people, especially older adults called clonal 

haematopoiesis of indeterminate potential (CHIP) (Biernaux et al., 1995; Steensma 

et al., 2015a). Although, acquired clonal mosaicism predicts an increased risk of 

development of a neoplasm, indicating that such alterations can represent disease-

initiating events in some cases by promoting clonal expansion (Jacobs et al., 2012). 

The most common genes identified with variants in healthy population or in patients 

with non-haematological malignancies in analysis of a large cohort were ASXL1, 

BCORL1, TP53, GNAS, SF3B1, DNMT3A, TET2, JAK2 and PPM1D. In addition, the 

frequency of these variants increased with aging (Xie et al., 2014; Jaiswal et al., 2014; 

Genovese et al., 2014; Kwok et al., 2014).  

 

Further studies are required to determine the best management and monitoring of the 

patients with CHIP, to describe whether they have a higher risk of developing 

malignancies or any other outcome. The specific genetic variants, number of variants, 

and variant allele frequency may also influence the risk of progression and could 

further refine diagnostic criteria (Wong et al., 2015). 
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1.3 Acute myeloid leukaemia  

 

Leukaemia is a cancer of the white blood cells, it is classified according to the type of 

white blood cell affected and the speed with which the cancer progresses. AML is one 

type of leukaemia and is an aggressive disorder characterised by a fast clonal 

proliferation of very large numbers of malignant immature myeloid cells in the bone 

marrow (Figure 1.2) (Kupsa et al., 2012). These cells will never mature into proper 

blood cells, fundamental to a healthy immune system, and so patients with AML have 

an increased risk of infection. Normal blood cells are prevented from being made by 

the clustering of cancer cells in the bone marrow. Most of the complications of 

leukaemia are caused by the lack of normal cells in the blood (bone marrow failure), 

rather than the leukaemia cells themselves. 

 

 

 

Figure 1.2. Schematic of haematopoietic stem cells differentiation. Differences in cell 

morphology and proliferation are shown when the haematopoietic stem cells are mutated 

leading to the development of MDS and AML. 
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AML accounts for less than 1% of all new cancer cases in 2015 in the UK. There were 

approximately 3,100 new cases of AML between 2013 and 2015 in the UK, with 

approximately 8 cases diagnosed every day.  Cancer research UK predicts that 1 in 

200 men and 1 in 255 women will be diagnosed with AML during their lifetime 

(http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-

cancer-type/leukaemia-aml). As in MDS, different factors play a role in AML 

development. Cigarette smoke is a minor risk for AML (Bjork et al., 2009) and benzene 

exposure increases the risk of leukaemia (Vlaanderen et al., 2010). Patients who are 

receiving radiotherapy or chemotherapy to treat some other cancers may go on to 

develop AML. When this happens, it is called secondary leukaemia or therapy-related 

leukaemia. The risk of developing AML from other blood disorders is also low 

(Greaves, 1997). 

 

AML is a heterogeneous genetic disorder characterised by the accumulation of 

genetic abnormalities. The critical initiation step towards the disease pathogenesis 

occurs with the generation of chimeric fusion genes from translocation/inversion 

events or with preleukaemic mutation rising in the haematopoietic stem/progenitor cell 

(Hou et al., 2014). These preleukaemic events precede the development of 

leukaemia, which happens when further mutations co-occur later in the progenitor 

cells (Shlush et al., 2014). The presence of mutations that precede development of 

leukaemia likely reflects a cell’s cumulative inability to completely repair the multitude 

of mutations that occur randomly over time (Tomasetti & Vogelstein, 2015). 

 

Studies have shown that translocations/inversions underlie disease pathogenesis in 

approximately 80% of AML in children and 30% in young adults, whereas only a 

minority of AMLs in older adults have balanced rearrangements. Moreover, 

approximately 40% of adult AML with a highly heterogeneous clinical outcome have 
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normal karyotype but might exhibit molecular abnormalities that retain the normal 

characteristics of multipotent differentiation (Grimwade & Mrozek, 2011). Chimeric 

fusion genes are insufficient to induce leukaemic transformation in their own right. 

However, they may provide a competitive advantage, generating populations of cells 

in which secondary mutations may arise and be selected for (Miyamoto et al., 2000). 

  

Leukaemias often comprise heterogeneous mixtures of subclones (Welch et al., 

2012). Studies in large cohorts have shown that the development of AML follows 

specific and ordered evolutionary trajectories (Papaemmamuil et al., 2016) and the 

identification of this stepwise acquisition of mutations during the development of the 

disease is possible with the use of next generation sequencing (NGS) approaches. 

The use of NGS with an extensive sequencing depth have allowed the quantification 

of the differences in the relative proportion of co-occurring mutations within the tumour 

at the time of diagnosis (Mardis et al., 2009).   

 

Variant allele frequency (VAF) is the comparison of the proportion of reads that 

contain the mutant allele to that of wild-type allele reads, with the obtained relative 

proportions able to infer clonal architecture (Figure 1.3). Such analysis has 

demonstrated the emergence of new clones carrying novel mutations at different 

times during the evolution of the leukaemia (Walter et al., 2012) and also those 

mutations that persist after treatment failure, prioritising obvious critical molecular 

drivers of leukaemia development and relapse to target therapy (Ding et al., 2012). 

Mutations with a high VAF are predicted to occur early, whereas mutations present 

only in a minority of cells are likely to be acquired at later stages of leukaemia 

development. High VAF may also be observed as a result of acquired uniparental 

disomy, for example in a proportion of AMLs with associated FLT3-ITD and TET2 

mutations (Fitzgibbon et al., 2005; Mohamedali et al., 2009). 
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Figure 1.3. Clonal evolution and clonal heterogeneity of AML. Mutation of DNMT3A is the 

earliest event and occurs before the disease development. NPM1c occurs as the disease-

defining mutation in the founding clone, with further acquisition of a FLT3-ITD mutation in a 

clone during leukaemia expansion, which become dominant at diagnosis. Quantification of 

VAF of each mutation, allows the demonstration of the evolution of the disease according to 

the temporal acquisition of mutations (adapted from Grimwade et al., 2016). 

 

 

The outcome of AML patients greatly differs according to their genetic abnormalities 

and the overall survival of AML patients is correlated with the number of driver 

mutations independent of the patient’s age and white cell count. In addition, the 

clinical effect of some driver mutations is modified by the wider genomic context in 

which they occur due to gene-gene interactions, in which the prognostic effect of one 

gene is significantly altered if another gene is co-mutated (Papaemmanuil et al., 

2016). Although, studies in healthy individuals have demonstrated that mutation 

frequency increases as a function of age and clonal expansion in older adults was 

confirmed by the presence of mutations associated with myeloid malignancies, 

increasing the risk of blood cancer development (Genovese et al., 2014; Jaiswal et 

al., 2014; Xie et al., 2014; McKerrell et al., 2015). 

  

Undoubtedly, a more complete genetic characterisation of haematological 

malignancies has great potential to elucidate the molecular basis for the clinical 
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heterogeneity of these disorders and to identify disease subtypes with shared 

outcomes and responses to therapy (Bejar et al., 2011).   

 

 

1.3.1 Patterns of acquired genetic variants in AML 

 

The discovery of somatic chromosomal abnormalities including balanced 

translocations in the leukaemic cells of some patients established that AML is a 

genetic disease (Rowley, 1973; Rowley et al., 1977). This blood disorder is 

characterised by the accumulation of genetic abnormalities such as the formation of 

chimeric fusion genes because of gene translocations and inversions listed in Table 

1.3. These chromosomal rearrangements occur between genes that encode 

haematopoietic transcription factors (RARA, RUNX1, or CEBPA), epigenetic 

regulators (KMT2A, NSD1, KAT3A), and components of the nuclear pore complex 

(NUP98, NUP214) (Grimwade et al., 2016). 

 

The WHO classifications recognised these recurrent chromosomal rearrangements 

as separate entities that are sufficient to diagnose AML without evidence of bone 

marrow blasts percentage ≥20%. In this classification, molecular groups in adult AML 

include t(15;17), t(9;11), t(8;21), inv(16), t(16;16), t(6;9), inv(3), t(3;3), t(1;22), MLLT3-

KMT2A, DEK-NUP214, RUNX1-RUNX1T1, CBFB-MYH11, PML-RARA, as well as 

mutations in CEBPA, RUNX1, GATA2, MECOM or NPM1 (Arber et al., 2016).  
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Table 1.3. Frequent genetic abnormalities observed in sporadic AML 
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The outcome for AML patients differs considerably according to the cytogenetic 

abnormality and there are variations even in outcomes between patients with the 

same chromosomal abnormality. In addition, genomic heterogeneity in AML is 

associated with complex epigenetic heterogeneity (Li et al., 2016). However, 

approximately half of AML patients have normal karyotype and their outcome is also 

heterogeneous. The advances in technology provided important insights into the 

molecular abnormalities underlying AML with normal cytogenetics and those with 

chromosome losses or gains that were previously poor understood (Grimwade et al., 

2016).  

 

Systematic studies of the genomic landscape of AML have generated an extensive 

catalogue of leukaemia genes. The AML biology consists of many different genetic 

alterations in patients that typically have more than one driver mutation. The disease 

evolves over time, with multiple competing clones coexisting at any time (Walter et 

al., 2012). 

 

The molecular landscape of AML in young adults (<60 years) consists of variants in 

genes involved in signalling pathway (FLT3, RAS, KIT, CBL, NF1, and PTPN11), 

epigenetic modifier genes (DNA methylation: DNMT3A; DNA demethylation: TET2, 

IDH1/2, WT1; chromatin regulation: ASXL1/2, PHF6, BCOR, and EZH2), splicing 

factor genes (SRSF2, SF3B1, U2AF1, and ZRSR2), cohesion complex members 

(RAD21, SMC1A, SMC3, and STAG1/2), transcription factor genes CEBPA and 

RUNX1 and, tumour suppressor NPM1 (Grimwade et al., 2016). The same chromatin 

and splicing factors genes are also frequently mutated in high-risk myeloproliferative 

neoplasms and in MDS (Haferlach et al., 2014; Papaemmanuil et al., 2016). 

 

This elucidation of the molecular landscape of AML has already facilitated the 
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identification and development of novel and targeted therapy agents that includes 

novel epigenetic therapies, anti-apoptotic agents, and selective inhibitors of nuclear 

export and immunotherapies that target a number of specific cellular processes such 

as intracellular signalling, transcriptional control, epigenetic regulation, and mRNA 

splicing (Chen et al., 2013). It has been demonstrated how important it is to target an 

early and/or driver mutation as it will be present within all clones for the eradication of 

disease (Fielding et al., 2014). On the other hand, recent studies have shown that 

minimal residual disease assessment using NGS provides a more powerful predictor 

of disease outcome than mutational profile, defining patients at risk of relapse (Klco 

et al., 2015).  

 

The knowledge of the clonal architecture and the role of clonal haematopoiesis in the 

development and prognosis of blood cancers are essential for the development of 

effective therapies. Furthermore, as the complete prognostic significance of additional 

mutations or combinations of mutations is currently unknown, a key challenge will be 

to determine which are the most informative molecular markers that most reliably track 

leukaemic populations irrespective of the recognised clonal heterogeneity, rather than 

pre-leukemic clones that can persist in patients in long-term remission following 

chemotherapy. As consequence, it is necessary to refine and optimise combinational 

knowledge of mutation complement for prognostication along with demographic 

characteristics and type of AML (de novo, secondary or therapy related). Finally, 

correlation of mutational data with genome-wide scale via epigenetic and proteomic 

analysis data sets may also further refine our understanding of AML biology, improve 

outcome prediction and treatment choice (Grimwade et al., 2016). 
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1.4 Familial myelodysplasia and/or acute myeloid leukaemia with germline 

predisposition syndromes 

 

Family history of myelodysplasia and/or acute myeloid leukaemia (MDS/AML) is here 

defined as the presence of two or more relatives with bone marrow failure, where at 

least one of them presents with MDS or AML. Familial occurrence of MDS/AML is 

rare, less than 300 families were reported to have mutations in one of known disease 

causing gene (published mutations is listed in Tables A1.1 – A1.9 in Appendix 1). 

Several of these cases occur in the setting of genetic syndromes associated with 

increased risk of developing MDS or AML, including inherited bone marrow failure 

syndromes, such as Fanconi anaemia, severe congenital neutropenia, Shwachman-

Diamond syndrome and dyskeratosis congenita. However, rare familial cases of 

MDS/AML have been reported outside the context of such syndromes who carry 

germline predisposing mutations (Gao et al., 2014). 

 

Genomic investigation of families with MDS/AML has revealed multiple genes that 

when altered predispose to the disease development. Patients who carry mutation 

within these genes often have other concomitant characteristics, particularly in those 

diagnosed in adulthood. Table 1.4 summarises the known genes predispositions to 

inherited MDS/AML.  

 

WHO classification included familial MDS/AML in the myeloid neoplasms with a 

predisposition germline mutational group, which comprises MDS, 

MDS/myeloproliferative neoplasms (MPN), and AML that occur on the background of 

a predisposing germline mutations with the following classification: (1) myeloid 

neoplasms with germline predisposition without a pre-existing disorder or organ 

dysfunction with mutations in CEPBA, (2) myeloid neoplasms with germline 
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predisposition and pre-existing platelet disorders with mutations in RUNX1, 

ANKRD26 and ETV6, (3) myeloid neoplasms with germline predisposition and other 

organ dysfunction with mutations in GATA2, myeloid neoplasms associated with bone 

marrow failure syndromes, myeloid neoplasms associated with telomere biology 

disorders, myeloid neoplasms associated with Down syndrome and JMML associated 

with neurofibromatosis, Noonan syndrome or Noonan syndrome-like disorders (Arber 

et al., 2016). These patients must have a different management and their families 

should get genetic counselling. 

 

In familial neoplasms, mutations are frequently present in the heterozygous state, 

most commonly resulting in loss of function alleles and subsequent haploinsufficiency, 

although gain-of-function mutations have also been reported in GATA2 (Godley, 

2014). 

 

Table 1.4. Genes frequently mutated in familial MDS/AML 

Predisposition genes to familial MDS/AML  

Transcription factor  

RUNX1 Song et al. (1999) 
CEBPA Smith et al. (2004) 
GATA2 Hahn et al. (2011); Ostergaard et al. (2011) 
ANKRD26 Noris et al. (2013) 
ETV6 Zhang et al. (2015) 
  
Cell signaling   

SRP72 Kirwan et al. (2012) 
  

Telomere maintenance  

TERC Kirwan et al. (2009) 
TERT Kirwan et al. (2009) 
  
RNA splicing  
DDX41 Polprasert et al. (2015) 
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1.4.1 Familial platelet disorder with propensity to myeloid 

malignancy (FPD/AML) 

 

Familial platelet disorder with propensity to myeloid malignancy is an autosomal 

dominant familial MDS/AML syndrome caused by germline mutations in RUNX1, 

which is located on chromosome 21. Besides reports of missense mutation in the 

DNA biding domain, the majority of mutations in this gene are frameshift, nonsense, 

or deletion that result in premature protein truncation, leading to protein loss-of-

function or confer dominant-negative effects to the remaining RUNX1 allele (Sakurai 

et al., 2014). Often, patients with FPD/AML present with life-long mild to moderate 

thrombocytopenia with platelet defects and it can vary even within affected families 

from individuals with a normal platelet count, to severe thrombocytopenia or to 

childhood MDS/AML at the time of diagnosis (Song et al., 1999). The haematological 

malignancies described in FPD/AML patients include MDS, AML, and T-cell acute 

lymphoblastic leukemia (ALL) with 40% lifetime risk to develop MDS or AML and an 

average age at diagnosis of 33 years (Owen et al., 2008). 

 

 

1.4.2 Thrombocytopenia 2 

 

Thrombocytopenia 2 is an autosomal dominant disorder caused by germline 

mutations in the 5’ untranslated region (5’ UTR) of ANKRD26 on chromosome 10. 

These mutations might enhance ANKRD26 expression and dysregulation of 

apoptosis might be the pathogenetic mechanism. (Pippucci et al., 2011). 5’ UTR has 

been described to be involved in transcription regulation and it is important for the 
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regulation of translation of transcripts by differing mechanisms (Cenik et al., 2011). 

Hence, ANKRD26 has a role in transcriptional and translational regulation. 

 

Thrombocytopenia 2 is characterised by moderate thrombocytopenia with or without 

bleeding propensity, similar to FPD/AML (Pippucci et al., 2011). The prevalence of 

thrombocytopenia 2 is not well described and individuals carrying ANKRD26 

mutations are clinically difficult to distinguish from those with FPD/AML (Noris et al., 

2013). 

 

 

1.4.3  Thrombocytopenia 5 

 

Thrombocytopenia 5 is an inherited autosomal dominant MDS/AML predisposition 

syndrome associated with germline missense mutations in ETV6 on chromosome 12. 

These mutations appear to have a dominant negative function, disrupting the nuclear 

localization of the protein and resulting in reduced expression of platelet-associate 

genes. Individuals with germline mutations in ETV6 present with variable degree of 

thrombocytopenia and mild to moderate bleeding tendencies and they are at 

increased risk for all haematological malignancies, including MDS, AML, chronic 

myelomonocytic leukaemia (CMML), B-lymphoblastic leukaemia, and plasma cell 

myeloma (Zhang et al., 2015). It is noteworthy mentioning that ETV6 and DDX41 were 

discovered as familial MDS/AML causing genes in 2015 by Zhang et al. (2015) and 

Polprasert et al. (2015) respectively during the course of this study. DDX41 will be 

discussed in chapter 4. 
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1.4.4 Familial AML with mutated CEBPA 

 

Germline heterozygous mutations with high penetrance in CEBPA are the cause of 

familial AML, an inherited autosomal dominant disorder (Smith et al., 2004; Tawana 

et al., 2015). Patients carrying mutations in this gene located on chromosome 19, 

present long-term survival, with median age of AML onset of 24.5 years. They also 

appear to have a significant risk of late AML recurrence and this typically represent 

independent leukaemic episodes, characterised by a unique molecular profile that is 

distinct from that of the preceding tumour (Tawana et al., 2017). Frameshift mutations 

in CEBPA commonly occur in the N-terminal combined with C-terminal in-frame 

insertions or deletions (disrupting the DNA binding or leucine zipper domains) and, 

they are frequently accompanied by mutations in GATA2 or WT1 in familial AML 

(Fasan et al., 2014). 

 

 

1.4.5 Familial MDS/AML with mutated GATA2 

 

GATA2 deficiency is a clinically heterogeneous predisposition to MDS caused by 

germline mutations on chromosome 3. Patients carrying GATA2 mutations are at 

significantly increased lifetime risk of MDS/AML, with a median age at onset of 29 

years and they can present without any haematopoietic or organ system involvement 

prior to the development of MDS or AML. There are two distinct syndromic 

presentations caused by GATA2 mutations, including Emberger syndrome and 

MonoMac syndrome. 
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Emberger syndrome is clinically characterised by primary lymphedema, 

cutaneous/extragenital warts, low CD4/CD8 T-cell ratio, and sensorineural hearing 

loss with a predisposition to MDS/AML. The MonoMac syndrome is characterised by 

pulmonary alveolar proteinosis, monocytes, dendritic cells and B/natural killer cell 

deficiencies, leading to the development of atypical mycobacterial or fungal infections, 

and MDS/AML predisposition. Both phenotypes can overlap, and these syndromes 

are considered to be part of the same autosomal dominant genetic disorder with 

variability because they share the same underlying genetic aetiology (Hahn et al., 

2011).  

 

 

1.4.6 Familial aplastic anaemia/MDS with SRP72 

 

Only two families with autosomal dominant MDS and aplastic anaemia (AA) in 

adulthood have been identified to date as a result of germline mutations in the gene 

SRP72. The reported mutations are one missense and one deletion that caused a 

truncated protein. Little is known regarding the lifetime risk or incidence of this unusual 

condition given the rarity of these germline mutations (Kirwan et al., 2012).  

 

 

1.4.7 Bone marrow failure syndromes 

 

Typically, bone marrow failures are a group of disorders presenting in young age with 

characteristic physical features along with bone marrow failure and a predisposition 

to MDS/AML and other cancers. The majority of individuals with bone marrow failure 

syndromes will have syndromic phenotypic abnormalities such as pancreatic 
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dysfunction or multiple congenital anomalies at presentation. Patients with severe 

congenital neutropenia, Fanconi anaemia, Shwachman-Diamond syndrome and 

dyskeratosis congenita are at significantly increased risk for treatment-induced 

malignancies (Dokal & Vulliamy, 2010; Schulz et al., 2012). 

 

 

1.4.7.1 Fanconi anaemia 

 

Fanconi anaemia (FA) is a rare, autosomal recessive or rarely X-linked genetic 

predisposition to bone marrow failure with congenital limb anomalies including absent 

thumbs and other radial ray defects. FA cells are characterised by increased 

chromosomal fragility and breakage when treated with DNA cross-linking agents. 

Patients with FA present with progressive bone marrow failure with pancytopenia, up 

to 30% of familial MDS/AML incidence and there is an increased risk of solid tumours, 

particularly squamous cell carcinomas of the head and neck. Approximately 40% of 

patients with FA lack physical abnormalities associated with the disease and are also 

less likely to develop early-onset bone marrow failure (Rosenberg et al., 2008). 

Furthermore, apparently healthy relatives of a FA patient should be referred for 

genetic counselling and management of solid tumour risks as FA is caused by biallelic 

mutations in the 21 FA complementation groups, FANCA-FANCW. Mutations in 

FANCA is responsible for 70% of FA cases, followed by FANCC with 14%, while 

mutation in the remaining genes of this group account for up to 3% of the cases. 

However, BRCA1, BRCA2, PALB2 and RAD51C are also part of this group and, when 

mutated these genes are associated with autosomal dominant predispositions to solid 

tumour development, mainly ovarian and breast cancer (Bogliolo & Surrallés, 2015; 

Sawyer et al., 2015). FA will be further discussed in chapter 3. 
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1.4.7.2 Dyskeratosis congenita 

 

Patients with dyskeratosis congenita (DC) are at increased risk for bone marrow 

failure, MDS, or AML, solid tumours, and pulmonary fibrosis. DC is a telomere biology 

disorder characterised by very short telomeres and classically by a diagnostic triad of 

dysplastic nails, lacy reticular skin pigmentation, and oral leukoplakia; the median age 

at onset is 37 years. However, these features are not present in all individuals with 

DC and they may or may not develop over time (Dokal, 2011; Tummala et al., 2015). 

Pathogenic germline mutations can be detected in approximately half of DC cases 

and there are 12 known disease genes: DKC1, TERC, TERT, NOP10, NHP2, ACD, 

TINF2, WRAP53, CTC1, RTEL1, PARN and NAF1 (Walne et al., 2013; Walne et al., 

2016). Additionally, germline mutations in TERT and TERC have also been 

associated with idiopathic AA and idiopathic pulmonary fibrosis (Yamaguchi et al., 

2005). 

 

MDS and AML heterogeneity is not only explained by its morphological diversity, but 

also by the increasing number of molecular pathways and hallmarks that participate 

in disease initiation and evolution. The main biological hallmarks in sporadic MDS and 

AML have been well described and include both genomic and epigenomic alterations 

in transcription factors, epigenetic modulators, miRNA, microenvironment and innate 

immunity (Bejar et al., 2011). The most common mutations in these sporadic diseases 

are in epigenetic modifiers (TET2, IDH1/2, DNMT3A, EZH2 and ASXL1) as well as in 

genes involved in spliceosome machinery (U2AF1, SRSF2 and SF3B1) (Shahrabi et 

al., 2016; Cedena et al., 2017) Furthermore, it is well known that inducing 

differentiation and apoptosis of leukaemic blasts by DNA-hypomethylating agents 

such as azacytidine (AZA) and decitabine (DAC), represent well-tolerated alternative 

treatment approaches to most patients with MDS and AML as they are older and 
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exhibit a poor prognosis (Bohl et al. 2018). Clinical responses to AZA and DAC 

support epigenetic alterations as a fundamental pathophysiology in sporadic MDS 

and subsets of sporadic AML (Fenaux et al., 2009; Traina et al., 2014). These 

hypomethylating agents are nucleoside analogs that integrate into DNA and inhibit 

DNA methyltransferases (Saygin & Carraway, 2017), affecting the proliferation of 

malignant cells. (Moudra et al., 2016). 

 

Although mutations in epigenetic genes were not found to cause familial MDS/AML 

so far, some known familial MDS/AML causing genes such as RUNX1, CEBPA and 

TERT have been involved with epigenetic mechanisms in sporadic forms of MDS and 

AML. Additionally, ANKRD26 mutations might have a role in transcriptional and 

translational regulation as it occurs in its 5’UTR. 

 

RUNX1 mutations were observed to be almost mutually exclusive with recurrent 

genetic abnormalities in sporadic AML, and they frequently co-occurred with 

mutations in epigenetic modifiers (ASXL1, IDH2, KMT2A, EZH2), components of the 

spliceosome complex (SRSF2, SF3B1) and STAG2, PHF6, BCOR (Gaidzik et al., 

2016). RUNX1 is also subject to translocations that promotes fusion proteins with 

aberrant transcriptional activities (Loke et al., 2018). The RUNX1-ETO t(8;21) is 

perhaps the most frequent chromosomal translocation associated with AML. The 

translocation creates a fusion protein that consists of N-terminal portion of RUNX1 on 

chromosome 21 and full-length eight-21 (ETO) on chromosome 8, producing the 

chimeric gene RUNX1-ETO. In addition to blocking differentiation, RUNX1-ETO is 

also shown to induce growth arrest in AML cells and leads to the silencing of myeloid 

maturation genes. RUNX1-ETO recruits histone deacetylases and DNMT1 to RUNX1 

DNA binding sites and acts as a potent negative regulator of transcription of the genes 

normally controlled by RUNX1, such as CEBPA. (Buchi et al., 2014). RUNX1-ETO 
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might suppresses endogenous DNA repair in cells to promote mutagenesis, which 

facilitates acquisition of cooperating secondary events. RUNX1 also induces DNA 

demethylation by recruiting DNA demethylation machinery to its binding sites, which 

likely contributes to hematopoietic development (Suzuki et al., 2017). 

 

It is well known that mutations in CEBPA cause cell differentiation inhibition in AML. 

However, Sinha et al. (2015) found that pathogenic somatic variants in CEBPA, WT1 

and IDH2 were found to be genetic drivers of DNA hypermethylation in sporadic AML 

using an integrative analysis of The Cancer Genome Atlas data (Cancer Genome 

Atlas Research Network, 2013) based on Boolean implications.  

 

Genetic and epigenetic regulations of TERT seem to play important roles in 

pathophysiology and clinical outcome in human cancers. The dysregulation of TERT 

in malignant cells can be explained by alteration of the TERT through mutations, DNA 

methylation, histone methylation, histone acetylation, non-coding RNA, and guanine-

quadruplexes (GQ) structures (Zhao et al., 2016). Normal human somatic cells have 

a non-methylated/hypomethylated CpG island within the TERT promoter region, while 

telomerase-positive cells have at least a partially methylated promoter region. 

Chromatin remodelling changes the state of histones present within the TERT 

promoter by influencing the binding of transcription factors. Non-coding RNAs can 

target epigenetic-modifying enzymes, as well as transcription factors involved in a 

post-transcriptional manner by binding to the 3’UTR of TERT mRNA, or by affecting 

the presence of transcription factors responsible for the transcription or repression of 

TERT (Lewis & Tollefsbol, 2016). 

 

The full epigenetic landscape of the TERT promoter region in sporadic AML is 

characterised by the heterogeneous upstream TERT promoter methylation profile 
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with conservative hypomethylated transcription start sites alleles. This distinct 

epigenetic change of TERT promoter implies alteration of the secondary or tertiary 

structure of the TERT promoter region such as CG structures.  These can modify 

configurational interactions with transcription factors and control TERT expression in 

leukaemia cells. GQ structures within the promoters in cancer related genes, such as 

MYC, KIT, KRAS and TERT, lead to down-regulation of gene expression (Zhao et al., 

2016). 

 

Finally, most of germline heterozygous mutations including missense, frameshift, 

nonsense, or deletion resulting in premature protein truncation, that cause familial 

MDS/AML were found in transcription factors genes (5) as well as in telomere 

maintenance (2), cell signalling (1) and RNA splicing (1) genes. Which is in contrast 

with sporadic form of these diseases where the majority of mutations were found in 

epigenetic modifiers and RNA splicing genes. Despite the progress made in the 

comprehension of these haematological malignancies, more study needs to be 

performed to fully characterise the occurrence of these somatic and germline variation 

in the biological and clinical setting. Furthermore, genes that are known to cause 

familial MDS/AML can be associated with complex phenotypes such as GATA2, 

TERC and TERT, or mainly with familial MDS/AML phenotype such as RUNX1, 

CEBPA, SRP72, ANKRD26, ETV6 and DDX41. 

 

Research on inherited forms of MDS/AML allowed the acknowledgement that these 

diseases are more common than initially realised and can frequently be present in 

adulthood, rather than exclusively in childhood. These disorders are heterogeneous 

regarding their underlying genetic mutations, clinical presentations, and progression 

to MDS/AML. However, as a group, they all share the unique requirement for a high 

index of clinical suspicion to allow appropriate genetic counselling, genetic testing, 
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and mutation-specific clinical management (University of Chicago Hematopoietic 

Malignancies Cancer Risk Team, 2016).  

 

 

1.5 Our cohort of families with familial MDS/AML  

 

Over the last 20 years our group has collected a significant number of families (n=115) 

that have two or more individuals with bone marrow failure (AA, MDS or leukaemia) 

with at least one individual who has MDS or AML. At the beginning of this project in 

2014, 12 MDS/AML families had their predisposing genetic variant to the disease 

identified using a range of genetic studies (Figure 1.4; Table 1.5).  

 

 

 

Figure 1.4. Genetically characterised MDS/AML families. Affected individuals are coloured as 

follows: red: MDS, black: AML, blue: AA, grey: thrombocytopenia, green: other 

leukaemia/cancer. The predisposing gene to the disease is indicated in each characterised 

family. 

  



61 
 

Table 1.5. Characterised MDS/AML families with their respective disease causing variant 

Characterised MDS/AML families 

Family Gene Variant Amino acid change 

1 GATA2 c.310 – 311insCC p.L105Pfs*15 

2 TERT c.1892 G>A p.R631Q 

3 TERC c.212 C>G N/A 

4 TERT c.2354 C>T p.P785L 

5 TERC c.309 G>T N/A 

6 SRP72 c.1064 – 1065del p.T355Kfs*19 

7 SRP72 c.620 G>A p.R207H 

8 GATA2 c.121 C>G p.P41A 

9 TERT c.248 G>C p.R83P 

10 GATA2 c.1187 G>A p.R396E 

11 GATA2 c.1061 C>T p.T354M 

12 RUNX1 c.602 G>A p.A201Q 

N/A: not applicable. 

 

 

During this PhD studies, an additional nine families from our familial MDS/AML cohort 

and further 10 families from our DC and idiopathic BMF registries have been 

characterised using WES and targeting sequencing, respectively. Currently there are 

33 MDS/AML families that remain uncharacterised and had whole exome sequencing 

undertaken (Figure 1.5).   
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Figure 1.5. Genetically uncharacterised MDS/AML families with WES undertaken. Affected 

individuals are coloured as follows: red: MDS, black: AML, blue: AA, grey: thrombocytopenia, 

green: other leukaemia/cancer. Families FML047 and FML051 have no family tree due to lack 

of information. 
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1.6 Aims of the project 

 

The overall aim of this project was to identify and characterise disease causing gene 

variants (functional variants such as missense, nonsense, deletions or insertions) that 

can lead to familial MDS/AML in the uncharacterised familial MDS/AML cases using 

whole exome and target sequencing. This includes diagnosis of uncharacterased 

families and/or identification of candidate genes that could be the genetic cause of 

the disease. This work will provide important information for the management of these 

families. 

 

In addition, investigations of these rare families are likely to provide a rare opportunity 

to understand key pathways underlying the susceptibility and the multistep 

progression to MDS/AML and allow the possibility of novel strategies for the 

prevention and treatment of both familial and sporadic forms of MDS/AML (Hahn et 

al., 2011). 
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Material and methods 
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2.1 Introduction 

 

The materials and methods described in this chapter are relevant to the results 

chapters 3 to 6 presented in this thesis. All techniques are presented together here 

as some of them were used across all chapters.  

 

 

2.2 Materials 

 

2.2.1 Patient samples 

 

All samples were part of our international registry of patients with bone marrow failure 

and related diseases. The samples were obtained with informed consent in 

accordance with the Declaration of Helsinki. These studies have received approval 

from the East London and The City Research Ethics Committee. The DNA for each 

sample was extracted from peripheral blood cells using a Gentra Purgene Blood Kit 

(Qiagen).  

 

 

2.2.2 Primers 

 

Primers were designed in the A plasmid Editor (ApE) software (Biology Labs) to have 

approximately 50% guanine and cytosine content and a melting temperature of 57-

60°C for standard PCR. Genomic and coding DNA sequences used were obtained 

from NCBI - The National Center for Biotechnology Information database 

(https://www.ncbi.nlm.nih.gov/). All primers were synthesised by Sigma-Aldrich and 

https://www.ncbi.nlm.nih.gov/
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dissolved in sterile water to a stock concentration of 100µM unless stated otherwise. 

Primer sequences can be found in Appendix 2 (Tables A2.1 – A2.7) .   

 

 

2.2.3 Chemicals and reagents 

 

All chemicals and reagents used were of analytical or molecular biology grade and 

were obtained from various suppliers, as will be stated throughout the methods 

section. 

 

  



67 
 

2.3 Methods 

 

2.3.1 DNA quantification  

 

A spectrophotometric analysis was done in all selected samples using ND-1000 

Nanodrop Spectrophotometer V3.7 (Thermo Scientific, MA, USA) to determine the 

average concentrations of DNA. In this spectrophometer, the sample is exposed to 

ultraviolet light at 260nm, and a photo-detector measures the light that passes through 

the sample. The more light absorbed by the sample, the higher the DNA concentration 

in the sample. Furthermore, the purity of DNA can be calculated by the ratio of the 

absorbance at 260 and 280nm (A260/280) that is ~1.8 for pure DNA. 

 

When it was required to detect and quantify small amounts of double stranded DNA, 

Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen, USA) was used as in this 

method there is no interference from contaminants, such as salts, urea, ethanol, 

chloroform, detergents, proteins, and agarose. In this method, DNA concentration is 

measured using fluorescent dye that binds to double-stranded DNA. The fluorescence 

intensity is related to the amount of DNA in the sample. A standard DNA sample at 

100µg/ml provided by the supplier, was diluted to 1:10 and then serially diluted to give 

standard curve samples of 500, 125, 31.25, 7.812 and 1.953ng/µl. PicoGreen master 

mix consisted of 0.3% PicoGreen dye in tris-EDTA (TE) was added to 100µl of the 

standard curve samples and the DNA samples being measured in wells of a 96-well 

plate. FLUOstar Optima microplate reader (BMG Labtech, Germany) was used to 

determine the fluorescence of the samples. The acquired data was then manipulated 

in Microsoft Excel to obtain the DNA concentrations. 
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2.3.2 Polymerase chain reaction – PCR 

 

Polymerase chain reaction (PCR) was performed using DNA Tetrad 2 Peltier Thermal 

Cycler (Biorad, USA) as follows: 30ng genomic DNA was amplified by PCR in a total 

volume of 20µl containing 1x Reaction Buffer IV (200mM Tris-HCl pH 8.4, 500mM 

KCl, Thermo Scientific, USA), 2mM MgCl2, 0.5µM forward and reverse primers, 2.5% 

dimethyl sulfoxide (DMSO), 280mM deoxynucleotide triphosphates (dNTPs) and, 

0.02 units/µl of Taq DNA polymerase (Thermo Scientific) were used. A non-template 

control was included in each instance to exclude the possibility of contamination. The 

cycling parameters were: initialization step of 5 minutes at 95°C, 35 cycles of 

denaturation step of 30 seconds at 95°C, annealing step of 30 seconds at 58°C and 

an extension step of 45 seconds at 72°C and finally, a final elongation of 5 minutes at 

72°C.  

 

 

2.3.3 Agarose gel electrophoresis 

 

PCR products were visualised and separated using an agarose gel electrophoresis. 

This consisted of 1.5% agarose in 100ml 0.5x TBE (tris-borate-EDTA) buffer and 

10mg/ml ethidium bromide. Samples were loaded with a 5x loading buffer (3x TBE, 

30% glycerol, 0.3% bromophenol blue) and electrophoresed at 120V in 0.5x TBE 

buffer for approximately 30 minutes. Gels were visualised by transillumination with 

ultra-violet light.  
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2.3.4 DNA restriction digestion 

 

Restriction digestion of DNA fragments were performed for rolling circle amplification 

reaction in chapter 5. About 0.5-1µg of genomic DNA was double digested with RsaI 

and HinfI for detecting telomeric-circles (T-circles) in our patient samples. Enzymes 

and their corresponding buffers were purchased from New England Biolabs at a 

concentration of 20,000 units/µl. A stated DNA quantity was digested with 20,000 

units of enzyme in 10x reaction buffer made to 100µl with sterilised water. Reactions 

were incubated at 37°C overnight followed by reaction precipitation. The pellet was 

precipitated by adding 10µl NaAcetate (3M, pH 5.2), 200µl 96% ethanol to the 

reaction, they were incubated 30 minutes at -20°C, spun 15 minutes at max speed, 

the pellet was then washed with 70% ethanol. The pellet was resuspended in 15.5µl 

distilled water after being air dried.  

 

 

2.3.5 Rolling circle amplification reaction 

 

A modified rolling circle amplification (RCA) protocol from Zellinger et al. (2007) was 

used in chapter 5 to detect T-circles in DNA from patient samples. It is a molecular 

technique for in vitro rolling nucleic acid synthesis from small single-stranded DNA 

minicircles using highly processive DNA polymerases. Briefly, DNA was digested by 

a frequently cutting restriction enzyme which digests the genomic DNA, but not 

telomeric sequence. T-circles then served as template for RCA using telomere-

specific primers and phi29 polymerase. This leads to a synthesis of ~ 100kb long 

single stranded telomeric molecules. The extension products were separated from 

DNA by alkaline electrophoresis and detected by Southern hybridisation.  
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The RCA primer annealing was performed in 0.2ml PCR tubes as follows (this mix is 

for two parallel reactions: +/- phi29): 

Template DNA: 15.5µl 

10 µM Thio-(C3TA3)3:  2,5µl 

10 x annealing buffer:  2µl 

10 x annealing buffer:  0.2M Tris.HCl pH 7.5 

  0.2M KCl 

  1mM EDTA 

 

These reactions were mixed well, spun down, and denatured for 5 minutes at 96°C in 

the PCR machine (DNA Tetrad 2 Peltier Thermal Cycler, Biorad, USA). Afterwards 

the tubes were again mixed by flicking and incubate at room temperature for 30-60 

minutes.  

 

Following primer annealing (primer sequences can be found in Table A2.1, Appendix 

2), RCA reaction was carried out by first splitting the 20µl of annealed DNA into 2 

tubes for +/- phi DNA polymerase reactions. A premix without enzyme were made, 

9µl of the premix were added per each 10µl reaction and then either 1µl (10 units) 

phi29 DNA polymerase (Thermo Fisher Scientific) or water were added. The reaction 

tubes were vortexed, spun down and, incubated at 30°C for 16 hours. Following the 

RCA the tubes were heated at 65°C in a PCR machine for 20 minutes to inactivate 

the enzyme. The whole reaction was then loaded in a denaturing gel.  

Premix: 

10x phi29 buffer (provided by supplier): 2µl 

2 mM dNTP mix: 2µl 

distilled water: 5µl 
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2.3.6 Alkaline gel electrophoresis 

 

Alkaline gel electrophoresis was carried out according to Sambrook & Russel (2006) 

in chapter 5 as part of the T-circle assay. A 0.8% agarose gel was made by boiling 

1.2g of agarose in 150ml of distilled water. 750µl of 10M NaOH and 300µl of 0.5M 

EDTA was added to the melted agarose after it was cooled down to 55°C as the NaOH 

makes the agarose gel fragile at high temperatures. The agarose gel was then mixed 

well and poured into an electrophoresis tray for 30 minutes before the run. 6x alkaline 

loading buffer (6x gel loading buffer II from New England BioLabs, NEB) 

supplemented with NaOH and EDTA (100µl 6 x LB II + 3µl 10M NaOH + 1.2µl 0.5M 

EDTA) was mixed into the DNA samples and then they were loaded and ran at < 3.5 

V/cm in 1L of fresh 1x running buffer (50mM NaOH, 1mM EDTA pH 8). The gel was 

ran at 25V (2 V/cm) for 16-18 hours.  

 

 

2.3.7 Southern blotting 

 

Southern blotting was performed in chapter 5 as part of the T-circle assay and it is a 

modified method from Ming et al. (1994). After the alkaline gel electrophoresis, the 

gel was incubated in 0.25M HCl (10.8ml concentrated HCl in 500ml distilled water) for 

10 minutes, then denatured by soaking it in denaturation solution (0.5M NaOH, 1.5M 

NaCl) for 30 minutes and neutralised in neutralisation solution (0.5M Tris.HCl pH 7.5, 

1.5M NaCl) for 30 minutes. A regular Southern blotting of the gel onto neutral nylon 

transfer membrane (Hybond-N, Amersham Pharmacia Biotech, UK) was carried out. 
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As seen in Figure 2.1, a sheet of nylon membrane was cut to the size of the gel and 

a plastic tray was half filled with the transfer buffer, 20x SSC (saline-sodium citrate) 

buffer. Then, by using a glass plate placed vertically on top of the tray a platform was 

made and covered with a wick made from three sheets of chromatography 3mm paper 

saturated in transfer buffer. The treated gel was carefully placed on the wick platform 

to avoid air bubble formation between the gel and the wick. The gel was surrounded 

with cling film to prevent the transfer buffer from being absorbed directly into the paper 

towels. Again, carefully placed the nylon membrane on top of the gel, avoiding air 

bubbles. Three sheets of chromatography 3mm paper cut to size and saturated in 

transfer membrane, were placed on top of the membrane, avoiding air bubbles. A 

stack of absorbent towels with about 10cm high were placed on top of the 

chromatography 3mm paper. Finally, a glass plate and a weight were placed on top 

of the paper stack. The transfer was performed overnight, and a mark was made on 

the membrane to allow identification of the tracks with a cut in the right bottom. The 

membrane was rinsed with 2x SSC and nucleic acid was fixed to the membrane by 

baking it at 80°C for 2 hours in the hybridisation oven (Amersham Life Science). The 

blot was then hybridised for identification of T-circle formation. The transfer pyramid 

was set up as shown in Figure 2.1. 
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Figure 2.1. Capillary blotting apparatus. 

 

 

2.3.8 Hybridisation and chemiluminescence detection 

 

Hybridisation of Southern blot membrane was performed using TeloTAGGG 

Telomere Length Assay version 9.0 (Roche), a non-radioactive chemiluminescent 

assay to determine telomere length that uses digoxygenin (DIG) label probes. Briefly, 

the blot was prehybridised with DIG Easy Hyb granules provided by the supplier for 

30-60 minutes at 42°C. The prehybridised solution was totally discarded, and the blot 

was hybridised with telomere probe overnight at 42°C with gentle agitation on 

Hybridiser incubator HB-1D (Techne). The blot was then washed with stringent buffer, 

blocked using a 1x blocking solution provided by the supplier for 30 minutes at 15-

25°C with gentle agitation. The membrane was incubated with Anti-DIG-AP working 

solution for 30 minutes at 15-25°C with gentle agitation and then washed with 1x 
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washing buffer. Then the membrane was incubated with 1x detection buffer for 2-5 

minutes at 15-25°C with gentle agitation. Detection buffer was discarded, and excess 

liquid was removed from the membrane. The wet membrane was immediately placed 

with DNA side facing up, on an opened hybridisation bag and very quickly ~40 drops 

of substrate solution were applied to it. The membrane was immediately and carefully 

covered with the second sheet of the hybridisation bag and it was incubated for 5 

minutes at 15-25°C. After sealing the hybridisation bag’s edges, the membrane was 

exposed to X-ray film for 20 minutes at 15-25°C. 

 

 

2.3.9 Gel extraction and purification 

 

The QIAquick Gel Extraction Kit was used for gel extraction and purification. This kit 

facilitates removal of nucleotides, enzymes, salts, agarose, ethidium bromide, and 

other impurities from DNA samples. Briefly, gel bands were removed under UV 

illumination and dissolved in a 3x volume of Buffer GE (agarose). DNA was 

precipitated with 100% isopropanol, applied to a Qiagen spin column and washed in 

Buffer PE and eluted in sterilised water or TE and stored at 2-8°C. Buffers GE and PE 

were provided by the manufacturer. 

 

 

2.3.10 Sanger sequencing  

 

Sanger sequencing was carried out by Barts and the London Genome Centre in 

Chaterhouse Square, London. It was used to validate results from WES and dHPLC 

results that were of interest. Prior to sequencing, PCR products were cleaned-up by 
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incubating 5µl of them with 2µl ExoSAP (0.5% exonuclease I, 10% Shrimp alkaline 

phosphatase) at 37°C for 15 minutes followed by 15 minutes at 80°C to deactivate 

the enzymes. Exo-SAP uses Exonuclease I to degrade residual single stranded 

primers and any extraneous single stranded DNA produced by the PCR.  Shrimp 

alkaline phosphatase hydrolyses any remaining dNTPs from the PCR mix, which 

could interfere with sequencing.  

 

Sequencing was carried out using a BigDye® Terminator Cycle Sequencing V3.1 kit 

(Invitrogen, USA). This kit utilises chain terminating chemistry. A mix is used which 

has a DNA polymerase, normal dNTPs and fluorescently labelled dideoxynucleotides 

(ddNTPs) which lack a 3’-OH group necessary for a phosphodiester bond to form 

between two nucleotides. As a result, when a ddNTP becomes incorporated into the 

DNA, the strand is terminated and the ddNTP can emit a fluorescent signal allowing 

the sequence of nucleotides to be established. The sequencing reaction consists of 

1µl purified PCR product, 0.5µl Big Dye Terminator mix, 2µl 5x buffer and 0.05µM 

primer made to 10µl with water. This reaction mix has 25 cycles of denaturation at 

96°C for 60 seconds, primer annealing for 15 seconds at 58°C and extension for 1 

minute at 60°C. Following PCR a standard salt-ethanol precipitation is performed by 

incubating the sample with 30µl 100% ethanol and 125mM EDTA on ice for 30 

minutes then spinning at 8°C for 30 minutes at 4000rpm. Samples were dried and 

washed in 70% ethanol before spinning again at 4000rpm for 10 minutes. Samples 

were dried before being resuspended in formamide. They were heated to 95°C for 3 

minutes to denature the DNA and the presence of formamide helps to maintain this 

state. Samples were then run on a 3130xl Genetic Analyser (Applied Biosystems, 

UK). 
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Occasionally, some PCR products were sent directly to Barts and the London 

Genome Centre for clean-up and sequencing with 10pmol/ml of an appropriate 

primer.  

 

 

2.3.11 Analysis of sequencing traces 

 

Chromas Lite (Technelysium) was used to examine quality and observe variants in 

the sequence traces (Figure 2.2). The sequence from traces were aligned using the 

online Basic Local Alignment Research Tool (BLAST, NCBI) to the human genome 

reference sequence hg19. References sequences are obtained from NCBI database 

(http://www.ncbi.nlm.nih.gov) and stored in the A plasmid Editor (ApE) software 

(Biology Labs, USA).  

 

 

 

Figure 2.2. Sanger sequencing trace view in Chromas Lite. Variant is highlighted by the red 

arrow. 
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2.3.12 RNA extraction 

 

RNA was extracted from primary and WI38-VA13 (foetal lung fibroblasts) cells 

(chapter 4). Cells were lysed using 1ml TRIzol Reagent (ThermoFisher Scientific). 

TRIzol™ Reagent is a monophasic solution of phenol, guanidine isothiocyanate, and 

other proprietary components which facilitate the isolation of RNA. After lysis, 0.2ml 

chloroform was added and samples centrifuged at 12,000rpm for 15m minutes at 4°C. 

This separates RNA into an upper aqueous layer, distinct from the red lower organic 

layer containing proteins and DNA. The clear aqueous phase was transferred to a 

fresh tube and 0.5ml 100% isopropanol and the RNA was precipitated, incubating at 

room temperature for 10 minutes then spinning at 4°C for 10 minutes to pellet the 

RNA. The pellet was washed in 75% ethanol to remove contaminants and air dried 

before resuspending in water. RNA was stored at 20°C. 

 

 

2.3.13 Reverse Transcriptase PCR 

 

cDNA was synthesised using reverse transcriptase PCR, where random hexamers 

and Superscript III reverse transcriptase (Invitrogen) were used according to the 

manufacturer's protocol. Briefly, up to 5µl RNA was incubated with 50ng of random 

hexamers (Invitrogen), 1µl 10mM dNTPs and sterile water to 10µl at 65°C for 5 

minutes then on ice for 1 minute to denature the RNA. The cDNA was then 

synthesised using a mix of 10x RT buffer, 25mM MgCl2, 0.1M dithiothreitol (DTT), 40 

units/µl RNaseOUT and 200 units/µl SuperScript III Reverse Transcriptase enzyme 

(Invitrogen). Samples were incubated as follows: 10 minutes at 25°C, 50 minutes at 
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50°C, 5 minutes at 85°C before chilling on ice. The cDNA was treated with RNase H 

(Invitrogen) for 20 minutes at 37°C to remove RNA and stored at -20°C. 

 

 

2.3.14 Monochrome multiplex quantitative PCR 

 

In chapters 4 and 5, patient’s telomere length was relatively compared to standard 

DNA in peripheral blood cells using DNA Monochrome multiplex quantitative PCR 

(MMqPCR) described by Cawthon (2009). This method compares the ratio of a 

telomeric PCR product (T) to a single-copy gene (S, T/S ratio). Genomic DNA 

samples were diluted to 50ng/µl in TE and allowed to equilibrate overnight. Samples 

were then diluted to 2ng/µl in distilled water. The reference DNA used for the standard 

curve was diluted to 15ng/µl and then serially diluted to 5.00, 1.67, 0.56 and 1.85ng/µl 

samples for a five-point standard curve. For each sample the final input of genomic 

DNA was 10ng and for the standard curve this was 75, 25, 8.33, 2.78 and 0.925ng. 

10µl of master mix was added to the DNA, this mix consisted of Roche SYBR Green 

Master I reaction mix (Roche Applied Science), telomeric primers at 30µlM each and 

S primers at 6nM each. Therefore, in the same reaction, telomeric primers amplified 

a 79bp telomeric amplicon and S primers amplified a single copy gene amplicon 

(human beta-globin, see Table A2.2, Appendix 2). The cycling parameters were: 

stage 1 consists of an initialization step of 15 minutes at 95°C, in stage 2, two cycles 

of denaturation step of 15 minutes at 94°C, annealing step of 15 minutes at 49°C and 

in stage 3, 40 cycles of denaturation step of 15 minutes at 94°C, annealing step of 15 

minutes at 62°C and an extension step of 15 minutes at 74°C with fluorescent signal 

acquisition for conventional qPCR. These are followed by two steps: an incubation at 

84°C for 15s and an incubation at 88°C for 15s with a second fluorescent signal 
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acquisition. The acquired data was then manipulated in Microsoft Excel to obtain the 

patient’s telomere length. 

 

 

2.3.15 Denaturing high-performance liquid chromatography 

 

Denaturing high-performance liquid chromatography (dHPLC) was used to scan 

variants in known disease causing genes and candidate genes in chapters 3 and 6. 

DNA fragments generated by standard PCRs (primer sequences can be seen in 

Tables A2.3 – A2.6, Appendix 2) were partially denatured at an ideal temperature in 

the range of 50–70°C, mixed pair wise, and scanned for variants by denaturing high-

performance liquid chromatography on a Transgenomic Wave DNA fragment analysis 

system (Glasgow, UK). Any fragments showing abnormal elution patterns were re-

amplified and the variant confirmed by forward and reverse Sanger sequencing.  

 

This technique employs the DNASep® cartridge that contains polymeric sorbent with 

alkylated nonporous polystyrene-divinylbenzene (PS-DVB) copolymer microspheres 

for high performance nucleic acid separations. Homoduplexes and heteroduplexes 

are formed from two amplified DNA fragments with different nucleotide sequences 

after denaturing and gradual annealing processes. More than one peak are present 

on the chromatogram because heteroduplexes and homoduplexes have different 

retention times due to less helical fraction in heteroduplexes (Figure 2.3) (Oefner 

& Huber, 2002).  

 

dHPLC method is capable of analysing accurately nucleic acid in a high resolution 

and is sufficiently sensitive for the reliable detection of nearly 100% of DNA sequence 

variations at optimized partially denaturing temperatures (Xiao & Oefner, 2001). 
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Figure 2.3. Denaturing high pressure liquid chromatography. This method can reveal single 

nucleotide variation through comparison of two DNA fragments by denaturing and reannealing 

the samples, then detecting the resulting duplex products. A. Reannealing of two identical 

DNA fragments forming a homoduplex chromatography elution pattern shown by the blue 

arrow. B. Reannealing of two different DNA fragments forming a heteroduplex chromatography 

elution pattern shown by the red arrow. 
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2.3.16 Whole exome sequencing  

 

Whole exome sequencing (WES) was undertaken on a total of 42 uncharacterised 

families with familial MDS/AML to identify disease causing genes during the course 

of this project. Of these, 8 families were processed by myself using Nextera Rapid 

Capture Exome and Expanded Exome Enrichment kit to prepare the libraries and the 

remaining samples were done by Dr Amanda Walne (Centre for Genomics and Child 

Health, Blizard Institute). WES was undertaken on multiple unrelated individuals from 

these families and when available, distantly affected individuals of the same family 

were also sequenced. Once a variant in a candidate gene of interest was found, 

dHPLC was used to screen additional families from our cohort for that specific gene. 

Abnormal patterns of elution were validated through Sanger sequencing.  

 

 

2.3.17 Nextera library preparation (enrichment of exonic fragments)      

 

A library of DNA was built and amplified (library enrichment), using the Nextera rapid 

capture enrichment kit (Illumina, UK). DNA was fragmented and adapter sequences 

(specific oligonucleotides) were added onto the ends of those fragments. Once 

constructed, these libraries were clonally amplified in preparation for sequencing 

(Metzker, 2010; Grada & Weinbrecht, 2013). 

 

The Nextera library preparation kit uses modified transposons for cleaving and adding 

adapter sequences onto DNA template to generate indexed sequencing libraries that 

can be carried through enrichment for targeted sequencing applications (Figures 2.4 

– 2.8).  
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Figure 2.4. Sample preparation. P5 and P7: adaptors for cluster generation generated for 

sequencing; Index 1 and Index 2: adaptors for identification of the DNA library after 

sequencing. Schematic illustration of the steps of sample preparation for whole exome 

sequencing using Illumina Nextera Rapid capture Exome Kit (adapted from 

http://www.gtbiotech.com.tw). 

 

 

The success of Nextera enrichment depends on using an accurately quantified 

amount of input DNA, adding too much of material can lead to undertagmentation and 

likewise adding to little can lead to overtagmentation. To achieve consistent DNA 

quantification is important to avoid UV absorbance methods. It is recommended that 

the Nextera library prep to have an optimal size range within 200bp to 1kb. Larger 

fragments cluster inefficiently in the flow cell leading to lower than expected output. In 

http://www.gtbiotech.com.tw/
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addition to excess DNA input, enzymatic inhibitors such as EDTA, detergents, 

proteins and phenol can also lead to undertagmentation. When little DNA input is 

added to the prep reaction, an overtagmentation can occur and it means that the DNA 

fragment is over cleaved. The clean up step is designed to remove fragments smaller 

than 200bp, so shorter DNA fragment will be removed resulting in lower unknown 

yield. Therefore, picogreen fluorescent assay was used for the genomic DNA 

quantification.  

 

 

2.3.18 Tagmentation of genomic DNA and first PCR amplification 

 

50ng of genomic DNA with a concentration of 5ng/µl was tagged and fragmented by 

Nextera transposome. The Nextera transposome simultaneously fragmented the 

genomic DNA and added adapter sequences to the ends allowing amplification by 

PCR. Following clean up, the purified tagmented DNA was amplified by a short PCR 

program of 10 cycles (Figure 2.4). The cycling program was as follows: 72°C for 3 

minutes, 98°C for 30s, 10 cycles of denaturation step of 10s at 98°C, annealing step 

of 30s at 60°C and an extension step of 30s at 72°C, a final elongation of 5 minute at 

72°C and finally, held at 10°C.  

 

Indexes needed for sequencing (indexes 1 and 2) as well as common adaptors 

required for cluster generation (P5 and P7) were added during the tagmented DNA 

amplification (Figure 2.4). 
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2.3.19 First hybridisation and first capture 

 

After the PCR clean-up, the DNA library was denatured, and the first hybridisation 

was performed (Figure 2.5 and 2.6). In this process the denatured DNA library was 

mixed with capture probes to targeted regions of interest. Following the binding of the 

probes to their specific region (Figure 2.6), streptavidin beads captured the probes 

hybridised to the targeted regions of interest (Figure 2.7). Two heated washes 

removed non-specific binding from the beads. The enriched library was then eluted 

from the beads (Figure2.8) and prepared for a second round of hybridisation, then 

second capture and finally second PCR amplification. 

 

 

 

Figure 2.5. Denaturation of double-stranded DNA library. Adaptors and indexes not shown, 

see Figure 2.4. Schematic illustration of the steps of sample preparation for whole exome 

sequencing using Illumina Nextera Rapid capture Exome Kit (adapted from 

http://www.gtbiotech.com.tw). 

 

 

http://www.gtbiotech.com.tw/


85 
 

 

Figure 2.6. Hybridisation of biotinylated probes to targeted regions. Schematic illustration of 

the steps of sample preparation for whole exome sequencing using Illumina Nextera Rapid 

Capture Exome Kit (adapted from http://www.gtbiotech.com.tw). 

 

 

 

Figure 2.7. Enrichment using streptavidin beads. Schematic illustration of the steps of sample 

preparation for whole exome sequencing using Illumina Nextera Rapid capture Exome Kit 

(adapted from http://www.gtbiotech.com.tw). 

 

 

http://www.gtbiotech.com.tw/
http://www.gtbiotech.com.tw/
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Figure 2.8. Elution of the enriched library from beads. Schematic illustration of the steps of 

sample preparation for whole exome sequencing using Illumina Nextera Rapid capture Exome 

Kit (adapted from http://www.gtbiotech.com.tw). 

 

 

2.3.20 Targeted resequencing – design of probes 

 

The targeted resequencing in chapters 4 and 5 was performed using the Illumina 

Truseq Custom Amplicon (TSCA) kit by Birmingham Women's NHS Foundation Trust 

in Birmingham, UK. TSCA permits to focus on genomic regions of interest through 

sequencing of customised amplicons. The Illumina Design Studio software 

(https://designstudio.illumina.com) was used to design the TSCA oligonucleotide 

probes. When the coordinates of the genomic region of interest is logged in this 

software, it is divided into ~250bp target regions and the probe design is automatically 

performed by using an algorithm that considers a range of factors, including GC 

content, specificity, probe interaction, and coverage. Probes are given estimated 

success scores and it can be filtered with user-defined tags, and then added to, or 

removed from, the design to improve coverage (the gene panel can be seen in Table  

http://www.gtbiotech.com.tw/
https://designstudio.illumina.com/
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A3.1, Appendix 3). 

 

 

2.3.21 Targeted resequencing library preparation 

 

Libraries containing the target regions were prepared for sequencing for each DNA 

sample and subjected to a clean-up and normalisation process following the protocol 

of the Illumina TSCA kit. The first step for library prep hybridisation of the costumed 

probes was to add 150ng of genomic DNA input per sample, 5µl of the customised 

probes and a hybridisation buffer provided by the manufacturer. These samples were 

incubated at 95°C for 1 minute, cooled slowly for 80 minutes to 40°C to denature 

double stranded DNA and allow the binding of the probes to their specific DNA 

fragment (Figure 2.9). The second step is the extension/ligation, in which a DNA 

polymerase adds bases from probe 1 and then extends all the way down the 

downstream probe. A ligase comes in and finishes the job by ligating the extended 

piece to the downstream probe. This fills the gap between the two probes, 

synthesising a strand complementary to the genomic DNA. Samples were incubated 

for 45 minutes at 37°C with an extension ligation mix provided by the manufacturer 

for this extension/ligation to happen. The amplicons are ready after the ligase fills the 

gap. 

 

The last step is PCR, when the indexes and the oligonucleotides complementary to 

the flow cell are added and finally the whole fragment is amplified. The probes have 

complementary sequences to the genomic DNA allowing them to bind either side of 

their target and also have a primer binding region (Figure 2.9).  
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Figure 2.9. Schematic of TSCA library preparation. Adapted from 

https://www.illumina.com/content/dam/illumina-

marketing/documents/products/datasheets/datasheet_truseq_custom_amplicon.pdf. 

 

 

A PCR reaction is carried out after the samples are denatured using 50mM NaOH, 

this reaction amplifies the single stranded products using primers complementary to 

the probes. Six base pair index sequence is used to tag the amplicons of an individual 

and it is incorporated into the primers which also contain a sequence complementary 

to an oligonucleotide on the flow cell for sequencing. This is similar to the adapters 

P5 and P7 seen in Figures 2.4 and 2.9, used in the preparation of samples for exome 

sequencing, as described in section 2.3.18. Extension/ligation product, PCR master 

mix, primers and TruSeq DNA polymerase provided with the Illumina kit were used 

for the PCR reaction. This PCR amplification was carried out under the following 

https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_truseq_custom_amplicon.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_truseq_custom_amplicon.pdf
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conditions: initialization step of 3 minutes at 95°C, 23 cycles of denaturation step of 

30 seconds at 95°C, annealing step of 30 seconds at 66°C and an extension step of 

60 seconds at 72°C and finally, a final elongation of 5 minutes at 72°C.  

 

Magnetic AMPure beads were used to enrich the amplicon library. They bind to DNA 

fragments of a preferred size (≥200bp), this is based on the ratio of DNA to beads 

(1:1). Samples were cleaned up from small unbound fragments of DNA by placing 

them on a magnetic stand. The amplicon library was removed from the beads with an 

elution buffer provided by the manufacturer. Each library has to have an equal quantity 

of DNA to ensure a good quality of the sequencing, for that libraries for each individual 

were normalised using a magnetic library beads provided by the manufacturer as they 

bind to a specific number of DNA. The beads were mixed and added to each DNA 

library and incubated for 30 minutes on a microplate shaker at 1800rpm. During this 

process the beads bound to DNA leaving excess in solution. Samples were placed 

on a magnetic stand and the excess DNA washed away. The library bound to the 

beads was removed using 0.1N NaOH freshly made. This solution denatures the DNA 

resulting in single stranded libraries which were mixed with a storage buffer provided 

by Illumina.  

 

The libraries for each individual were pooled into a single tube. The amplicons of each 

individual are distinguishable when pooled by the indices that were added to each 

amplicon in the PCR amplification step. The pooled library was denatured by 

incubating at 96°C for 2 minutes to break any bonds within and between fragments, 

removing hairpin structures to ensure the DNA remained single stranded and 

linearized. It was then immediately placed in an ice-water bath for 5 minutes. The 

prepared single stranded library was then ready for sequencing. 
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2.3.22 Sequencing of exome library 

 

Nextera Rapid Capture Kit was used for the preparation of exome libraries that were 

sequenced on the NextSeq 550 System at University College London while TSCA 

library was sequenced by Birmingham Women's NHS Foundation Trust in 

Birmingham, UK. 

 

Sequencing occurs on a flow cell which is a glass slide with lanes and clustering is 

the first step in which each fragment is isothermally amplified. Each lane has a 

channel coated with a lawn, composed of two types of oligos (shown as P5 and P7 in 

Figures 2.4 and 2.9). These are complementary to the adapters ligated to the ends of 

each DNA fragment during sample preparation (Figure 2.10). Single stranded DNA 

fragment can therefore hybridise to one of the oligos when the prepared samples are 

added to the flow cell. A complementary strand is synthesised by a polymerase 

enzyme and then the double stranded fragment is denatured, and the original 

template is washed away. 
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Figure 2.10. Schematic illustration of the cell flow and DNA fragment prepared for sequencing. 

Adapters such as indices and regions complementary to the cell flow oligos were added to the 

DNA fragment. Adapted from Illumina Sequencing Technology – 

https://www.youtube.com/watch?v=womKfikWlxM. 

 

 

The strands are clonally amplified through bridge amplification. In this process the 

strand folds over and the adapter region hybridises to the second type of oligo on the 

flow cell. This forms a single stranded bridge as polymerases generate the 

compliment strand. This is denatured to give two single stranded fragments which can 

form separate bridges and undergo bridge amplification for millions of time, resulting 

in clonal amplification of all the fragments (Figure 2.11). The clusters were sequenced 

using sequencing-by-synthesis, a method based on reversible dye-terminators that 

enable the identification of single bases as they are introduced into DNA strands.    

 

https://www.youtube.com/watch?v=womKfikWlxM
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Figure 2.11. Schematic illustration of bridge amplification and generation of clonal clusters of 

the DNA fragments. Adapted from Illumina Sequencing Technology - 

https://www.youtube.com/watch?v=womKfikWlxM. 

 

 

2.3.23 Variant calling 

 

The raw data generated from NGS is processed to remove adapter sequences and 

low-quality reads and then it is aligned to a reference sequence or assembled de novo 

(Pop & Salzberg, 2008) as described below.   

 

Variant calling of exome data was performed by our collaborator Dr Vincent Plagnol 

(Genetics Institute, University College London). WES reads were de-multiplexed and 

Novoalign version 2.08.03 (Novocraft Technologies) was used to align the raw fastq 

files to the GRCh37 reference genome (Figure 2.12).  

https://www.youtube.com/watch?v=womKfikWlxM
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Figure 2.12. Schematic illustration of data analysis. Sequences of pooled sample libraries are 

separated by the unique indices introduced in the sample preparation. Reads for each sample 

are locally clustered and forward and reverse reads are paired creating contiguous sequences. 

These contiguous sequences are aligned to the reference genome for variant identification. 

This figure has been adapted from Illumina Sequencing Technology (online video 

https://www.youtube.com/watch?v=womKfikWlxM). 

 

 

After binary alignment map (BAM) files were generated, duplicate reads were 

removed using Picard tools MarkDuplicates. Each sample had a genomic variant call 

format (gVCF) file containing the variant calling that was performed using the 

haplotype caller module of Genome Analysis Toolkit (GATK- 

https://www.broadinstitute.org/gatk, version 3.1-1). The individual patient gVCF files, 

in combination with UCL-exomes consortium that covers 2,500 clinical exomes, were 

combined into merged VCF files for each chromosome containing on average 100 

samples each. The final variant calling was performed using the GATK Genotype 

GVCFs module jointly for all samples (cases and controls). Variants quality scores 

were then re-calibrated according to GATK best practices separately for indels and 

single nucleotide polymorphisms (SNPs). Resulting variants were annotated using 

https://www.youtube.com/watch?v=womKfikWlxM
https://www.broadinstitute.org/gatk
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ANNOVAR based on Ensembl data. Candidate variants were filtered based on 

function (non-synonymous, presumed loss-of-function or splicing) and minor allele 

frequency of < 0.5% in our internal control group, as well as the National Heart, Lung, 

and Blood Institute (NHLBI - https://www.nhlbi.nih.gov/) exome sequencing dataset. 

Splice variants were flagged within 5bp of the exon-intron junction. All relevant 

variants identified were validated by Sanger sequencing on a 3130xl Genetic Analyzer 

with a BigDye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems) (Tummala 

et al., 2015). 

 

 

2.3.24 Mammalian cell culture 

 

Primary and WI38-VA13 cell lines have been used in to make cDNA in chapters 4 and 

5. These lines are adherent and were cultured in Dulbecco’s Modified Eagle Medium, 

high glucose ClutaMAX (DMEM, ThermoFisher Scientific) which was supplemented 

with penicillin (100units/ml) streptomycin (100ug/ml) and 10% foetal calf serum (Life 

Technologies). Cells were cultured in humidified conditions at 37°C with 5% CO2. 

Cells were passaged 1 in 10 when they reached 90% confluence by removing growth 

media, washing in 1x phosphate buffered saline (PBS) and applying 0.25% Trypsin-

EDTA for ~3 minutes. This allows cells to detach from the flask. DMEM was added to 

neutralise the reaction and the cells were pelleted, washed in PBS and seeded as 

required. Sterile technique was practised at all times. 

 

  

https://www.nhlbi.nih.gov/
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2.3.25 Polyacrylamide gel electrophoresis and Western blotting 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blotting were used to visualise specific proteins from lysates in chapter 5. 

Lysates were denatured in a sample loading buffer (2% SDS, 5% DTT, 0.002% 

bromophenol blue, 10% glycerol and 62.5mM Tris-HCl, pH 6.8) at 90°C for 5 minutes 

and loaded onto a 4-12% bis-tris polyacrylamide gradient gel (Invitrogen) alongside a 

10-250kDa protein size marker (Kaleidoscope Pre-stained Protein Standard, BioRad). 

Samples were run at 150V for ~90 minutes in Invitrogen NuPAGE MES SDS Running 

buffer (50mM MES - 2-ethanesulfonic acid, 50mM Tris base, 0.1% SDS, 1mM EDTA, 

pH 7.3) to separate proteins by size. Western blotting was performed using a 

WesternBreeze Chemiluminescent Kit (Invitrogen). Proteins were electrophoretically 

transferred onto a polyvinylidene difluoride (PVDF) membrane which was blocked for 

30 minutes in 10% bovine serum albumin (BSA) – based in tris-buffered saline 

supplemented with Tween-20 (TBS-T). The membrane was washed thoroughly 

before incubating with a primary antibody (against the protein of interest) in 3% BSA 

in TBS-T overnight at 4°C with gentle shaking. The primary antibody was removed, 

the membrane was washed in 1x PBS and the protein visualised using a secondary 

antibody (which targets the primary) conjugated to alkaline phosphatase. The 

chemiluminescent agent CDP-Star was applied which is dephosphorylated by alkaline 

phosphatase at the site of the protein on the membrane. This forms a metastable 

intermediate molecule that emits light as it decomposes. This is detected using X-ray 

film, thus indicating the presence of the protein under investigation. 
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2.3.26 In silico analyses  

 

Throughout chapters 3 to 5, in silico analyses were performed to investigate genetic 

variants and predict their biological impact. Eight databases were searched for 

specific information including: National Centre for Biotechnology Information - NCBI 

(https://www.ncbi.nlm.nih.gov/) and Ensembl (https://www.ensembl.org/) where the 

reference coding DNA and genomic DNA sequences were obtained from; Genome 

Bioinformatics Site (https://genome.ucsc.edu/) from University of California Santa 

Cruz (UCSC) was used to view DNA sequence and exon locations; The Exome 

Aggregation Consortium - ExAC (http://exac.broadinstitute.org/) was consulted to 

verify the minor allele frequency of relevant variants; Polyphen-2 (Adzhubei et al., 

2013; http://genetics.bwh.harvard.edu) and MutationTaster2 (Schwarz et al., 2014; 

http://www.mutationtaster.org/) web-based softwares were used to evaluate the 

pathogenicity of a variant; ClustalW2 Multiple Sequence Alignment program 

(https://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to investigate the 

conservation of amino acid residues and finally, UniProt (http://www.uniprot.org/) was 

used to view protein domains and motifs.  

 

  

https://www.ncbi.nlm.nih.gov/
https://www.ensembl.org/
https://genome.ucsc.edu/
http://exac.broadinstitute.org/
http://genetics.bwh.harvard.edu/
http://www.mutationtaster.org/
https://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.uniprot.org/
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3.1 Introduction 

 

Whole exome sequencing is a diagnostic approach for the identification of molecular 

defects in patients with suspected inherited disorders and a powerful resource for 

scientific discoveries. In this chapter we describe the families with MDS/AML from our 

cohort that were characterised during the course of these studies with variants in the 

known disease genes associated with familial MDS/AML and related disorders, 

including Shwachman-Diamond syndrome, Fanconi anaemia and Wiskott-Aldrich 

syndrome. However, many families in our cohort remain uncharacterised. This 

highlights the marked genetic heterogeneity of familial MDS/AML and suggests that 

further unknown genes are involved in the development of MDS/AML. Future studies 

will be necessary to determine the full spectrum of this genetic heterogeneity, reveal 

new insights to the biology of these diseases and help guide clinical management.    

 

 

3.1.1 Genetically uncharacterised familial MDS/AML patients 

 

At the beginning of these studies in 2014, seven genes (RUNX1, CEBPA, TERC, 

TERT, GATA2, SRP72 and ANKRD26) had been identified as predisposing to familial 

MDS/AML. Two other genes (DDX41 and ETV6) also associated with this disease 

were identified in 2015. Since 2014, nine MDS/AML families were genetically 

characterised using WES in this study. Of these, seven will be discussed in this 

chapter and the remaining two families will be discussed in chapter 4. 
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3.2 Results 

 

Rare germline variants likely to be damaging were identified in the known familial 

MDS/AML causing genes RUNX1, TERT, and GATA2 and also in genes known to 

cause blood related disorders including FANCA, SBDS, and WAS, in a total of seven 

families with MDS/AML (Figure 3.1). Segregation analysis were performed when DNA 

samples of the family members were available. The results are described below.  

 

 

 

Figure 3.1. Seven characterised families with MDS/AML from our cohort. The altered disease 

causing gene is indicated below each family. Affected individuals are coloured as following 

black: AML, red: AML, blue: AA and grey: thrombocytopenia. The arrow highlights the index 

case. 
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3.2.1 Variants identified in previously known familial MDS/AML 

causing genes 

 

3.2.1.1 Variants identified in RUNX1  

 

The core binding factor (CBF) is a transcriptional regulator complex composed of α 

and β subunits. Runt related transcription factor 1 (RUNX1), runt related transcription 

factor 2 (RUNX2) and runt related transcription factor 3 (RUNX3) code for the α 

subunits while CBFβ codes for the β subunits. The α subunits bind directly to the DNA 

in the regulatory regions of their targets and the β subunits stabilize the RUNX-DNA 

complex by interacting with the α subunits (Huang et al., 2001). Germline 

heterozygous variants, including nonsense, missense, deletion, frameshift throughout 

the gene and gene deletion or duplication in RUNX1 cause familial platelet disorder 

with propensity to myeloid malignancies (MDS, AML and T-cell ALL). The proposed 

mechanisms that underlie progression to leukaemia in RUNX1 are haploinsufficiency 

for tumour suppression, dominant-negative effects on normal RUNX1 function, 

acquisition of de novo variant in the wild type allele, and acquisition of cooperating 

variants (Jongmans et al., 2010). This disorder is an autosomal dominant syndrome 

characterised by thrombocytopenia and platelet abnormalities that typically can 

develop into AML (FPD/AML) (Owen et al., 2008). In addition, it is also known that 

chromosomal translocations and somatic variants in RUNX1 have been associated 

with several types of sporadic leukaemia and MDS. RUNX1 protein (Figure 3.2A) is a 

transcription factor that regulates enhancers and promoters of many haematopoietic 

genes and it is involved in the development of normal haematopoiesis (Hamadou et 

al., 2016).   
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Here we describe a germline deletion of 162kb in RUNX1 in the index case (II:3, 

Figure 3.2B) of family FML053 and his brothers (II:1 and II:5, Figure 3.2B). The index 

case (II:3, Figure 3.2B) presented with T-cell ALL when he was 10 years old and died 

at age 22 a year after the progression of the disease into AML at age 21 years. All 

siblings had altered platelet aggregation. His elder brother (II:1, Figure 3.2B) had AML 

at age 10 years and his youngest brother (II:5, Figure 3.2B) had mild 

thrombocytopenia. Comparative genomic hybridization-array (CGH-array) analysis 

performed by another group from Hospital das Clínicas da Faculdade de Medicina de 

São Paulo (Brazil) where these samples came from, revealed the deletion in RUNX1, 

chromosome 21q22.12 in Human Genome Issue hg18 (chr21:35,197,917-

35,360,669del). This deletion of 162,752bp of chromosome 21 (NCBI36/hg18) 

affected exons 1 and 2 of RUNX1, outside the cluster region of the Runt Homology 

domain and the transactivation domain (see in Appendix 4, Figure A4.1) and the 

region of 1,097,908bp just before RUNX1. This region included NR_073512 (RUNX1 

processed transcript that do not contain an open reading frame – Ensemble - 

https://www.ensembl.org) and the SET domain-containing protein 4 (SETD4) located 

in the Down syndrome critical region (Jiang et al., 2015). SETD4 encodes a histone 

lysine methyltransferase which is involved in breast carcinogenesis.  SETD4 

knockdown in breast cancer cell lines significantly suppressed their proliferation and 

delayed the G1/S cell cycle transition without affecting apoptosis (Faria et al., 2013). 

To determine the breakpoint location of this deletion in RUNX1, several combinations 

of forward and reverse primers located on either side of the deletion were made with 

no success (none PCR product was generated). 
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Figure 3.2. Characterisation of the RUNX1 germline variant in family FML053. A. Schematic 

of RUNX1 protein (XP_011528068.1). B. Affected individuals are coloured as following black: 

AML and grey: thrombocytopenia. The arrow highlights the index case. The heterozygous 

genotyping is denoted as (+/-). 

 

 

 

Of additional interest, a frameshift deletion of 21bp in the domain region of RUNX1 

(c.233-254del) was identified in the index case (II:1, Figure 3.3A) of family FML007 

(Figure 3.3A).  

 



103 
 

 

Figure 3.3. Example of a somatic RUNX1 variant in exon 3. A. Family FML007 with acquired 

RUNX1 deletion. Affected individuals are coloured as following black: AML, blue: AA and grey: 

thrombocytopenia. The black arrow highlights index case. The heterozygous genotyping is 

denoted as (+/-). B. Sanger sequence chromatogram, red arrow shows the variant in RUNX1. 

C. Schematic showing the position of the variant in RUNX1 protein (XP_011528068.1). 
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This variant is likely to cause loss of function, however it was found in 20% of the cells 

according to the peak of the traces from Sanger sequencing compared to the wild 

type sequence (Figure 3.3B). This observation raises the question as to whether this 

is a germline variant, since a germline variant would be expected to account for ~50% 

of the signal. Sanger sequencing done in DNA from fibroblasts confirmed that the 

variant c.233-254del is acquired and it is notable that acquired variants in RUNX1 are 

found in up to 32% of de novo cases with AML (Liew & Owen, 2011). This finding 

highlights the importance of identifying whether a variant is germline or somatic in the 

first instance. It also shows further studies are needed to characterise this family. 

 

 

3.2.2 Variants identified in genes associated with complex 

phenotypes 

 

3.2.2.1 Variants identified in GATA2  

 

GATA family consists of six zinc-finger transcription factor proteins that play essential 

roles in regulating transcription of genes involved in the development of many cell 

types, including haematopoietic, cardiac, and endodermal lineages. GATA1 (GATA 

binding protein 1), GATA2 (GATA binding protein 2) and GATA3 (GATA binding 

protein 3) are essential for normal haematopoiesis, and alterations in these genes 

lead to a variety of blood disorders. Germline variants in GATA1 cause sex-linked 

recessive forms of inherited thrombocytopenia and dyserythropoietic anaemia 

(Crispino & Weiss, 2014) and acquired variants in this gene are associated with 

transient abnormal myelopoiesis and AML associated with Down syndrome 

(Wechsler et al., 2002). Germline variants in GATA2 are responsible for GATA2 
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deficiency syndrome, while acquired variants are associated with sporadic forms of 

MDS and AML (Shiba et al., 2014; Collin et al., 2015). GATA2 expression is essential 

for maintenance of haematopoietic stem cells as it activates GATA1, which drives the 

differentiation of these stem cells into erythroid/megakaryocytic lineage (Grass et al., 

2003). Germline variants in GATA3 are responsible for the syndrome of 

hypoparathyroidism, deafness, and renal anomalities (Van Esch et al., 2000) and 

somatic variants are seen in breast cancer and ALL (Perez-Andreu et al., 2013; Ping 

et al., 2016). GATA4, GATA5 and GATA6 are involved in heart formation, and 

germline variants are associated with congenital heart disease (Peterkin et al., 2005). 

 

GATA2 deficiency syndrome is an autosomal dominant bone marrow failure disorder 

with systemic features caused by germline heterozygous variants in the gene GATA2 

causing a reduction of its expression consistent with this disorder being associated 

with haploinsufficiency of GATA2 (Collin et al., 2015). This disorder presents variable 

clinical manifestations, including many other predisposing syndromes to MDS/AML 

such as familial MDS/AML, Emberger syndrome, MonoMAC syndrome, and a range 

of bone marrow failures (Hahn et al., 2011; Hsu et al., 2011; Ostergaard et al., 2011; 

Dickinson et al., 2011). Emberger syndrome as described previously, is characterised 

by primary lymphedema in the lower extremities and genitals, MDS with predisposition 

to develop into AML, cutaneous warts, and sensorineural deafness. Emberger 

syndrome can be inherited in an autosomal dominant manner with incomplete 

penetrance and it can also occur sporadically (Ostergaard et al., 2011). The 

MonoMAC syndrome is characterised by severe monocytopenia and severe 

infections with nontuberculous Mycobacteria, typically M. avium complex (MAC) and 

may present with natural killer cell and B-cell lymphocytopenia, fungal infections, 

pulmonary alveolar proteinosis, and severely decreases dendritic cells, and 

predisposition to MDS/AML or chronic myelomonocytic leukaemia (Vinh et al., 2010).  
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GATA2 variants are typically loss of function with no genotype-phenotype correlations 

(Hyde & Liu, 2011). Several families with GATA2 variants with highly penetrant 

autosomal dominant inheritance have been described with no distinguishing 

phenotypic abnormalities other than early-onset familial MDS/AML (Hahn et al., 

2011). An acquired variant in ASXL1 frequently occur and monosomy 7 is the most 

commonly associated cytogenetic finding although trisomy 8 and trisomy 21 also may 

emerge (Spinner et al., 2014). Furthermore, the prognosis after the development of 

MDS/AML is usually poor (Churpek et al., 2015). 

 

We have identified two loss of function variants in GATA2 in two families from our 

cohort. In family FML026 (Figure 3.4), a stop gain variant in GATA2 (c.1084 C>T; p. 

R362*) was identified in the index case (II:1, Figure 3.4A) who developed MDS at 36 

years of age. She had congenital deafness, trisomy 8, had meningitis at age of 10 

years, vulval cancer and fever with no apparent infection. Her brother (II:2, Figure 

3.4A) had MDS and died following matched unrelated donor for monosomy 7. This 

novel nonsense variant is located in the highly conserved zinc finger 2 DNA binding 

domain (Figure 3.4 B and C) and causes truncation of the protein. As GATA2 plays 

an essential role in regulating transcription of genes involved in the development and 

proliferation of haematopoietic and endocrine cell lineages (Gao et al., 2014), it is 

likely that this GATA2 nonsense variant is the disease causing in this family. 
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Figure 3.4. Characterisation of GATA2 variant in exon 6. A. Family FML026 with GATA2 

variant. Affected individuals are coloured in red indicating MDS. The black arrow highlights 

index case. The heterozygous genotyping is denoted as (+/-). B. Sanger sequence 

chromatogram, red arrow shows the variant in GATA2. C. Schematic showing the position of 

the variant in GATA2 protein (NP_116027.2). 

 

 

The second GATA2 variant (c.630_643del, p.K212Tfs*65) was identified in family 

FML052 (Figure 3.5). The proband (II:3, Figure 3.5A) had MDS with lymphedema at 

age 16 years, however there was no family history. This GATA2 14bp deletion (Figure 

3.5B and C) is likely to be de novo (spontaneously arising variants that can be passed 

to the next generation) and a pathogenic variant as the protein would possibly lose its 

function. GATA2 deficiency syndrome often explains sporadic cases of bone marrow 

failure, in the absence of a family history, arising from de novo germline GATA2 

variants (Hirabayashi et al., 2012). 
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Figure 3.5. Characterisation of GATA2 variant in exon 4. A. Family FML052 with GATA2 

variant. Affected individuals are coloured in red indicating MDS. The arrow highlights the index 

case. The genotyping is denoted as follows: wild-type (+/+) or heterozygous (+/-). B. Sanger 

sequence chromatogram, red arrow shows the variant in GATA2. C. Schematic showing the 

position of the variant in GATA2 protein (NP_116027.2). 
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3.2.2.2 Variant identified in TERT  

 

Telomerase reverse transcriptase (TERT) gene is located on chromosome 5 and 

encode a protein of 1,132 amino acids, which is the catalytic subunit of telomerase. 

Telomerase is a ribonucleoprotein complex that consists of the protein TERT and its 

integral RNA subunit telomerase RNA component (TERC). It maintains the telomeres, 

which are essential structural elements that seal and protect the ends of 

chromosomes from recombination and end-to-end fusion. In normal somatic cells, 

telomeres gradually shorten after successive cell division, resulting in senescence 

(Gomez et al., 2012). Regulation of TERT impacts on telomerase activity and it is 

considered to have a critical role in tumour formation (Mosrati et al., 2015). Impaired 

telomerase activity and extremely short telomeres induce chromosomal instability, 

causing bone marrow failure, fibrosis of the lungs and liver, and tumour formation 

(Calado et al., 2012). 

 

High TERT expression is observed in about 90% of cancer cells that typically have 

high telomerase activity, protecting them from proliferation arrest, senescence and 

apoptosis (Hanahan & Weinberg, 2011). The dysregulation of TERT expression in 

these cells is a result from alteration of the TERT structure by variants, epigenetic 

modifications or aberrant chromatin environments (Zhao et al., 2016) and these are 

associated with melanoma, gliomas and haematological malignancies. Two somatic 

variants (228C>T and 250C>T) in the promoter region of TERT were reported at 

positions -124 and -146 base pairs upstream of the TERT translation start site in 

melanomas (Horn et al., 2013; Huang et al., 2013). Each variant independently 

generates a novel E-twenty-six (ETS) transcription factor biding site (GGA/T) and has 

been shown to increase the transcriptional activity of the TERT promoter (Killela et 

al., 2013). TERT promoter variants occur frequently in several tumours, including 
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gliomas, liposarcomas, urothelial carcinomas and hepatocellular carcinomas (Huang 

et al., 2015). Haematological malignancies are not reported to carry these variants in 

TERT promoter regions but display enhanced telomerase activity and shortened 

telomeres (Mosrati et al., 2016). However, abnormal hypermethylation of CpG islands 

in a variety of gene promoters is the hallmark epigenetic changes in both AML and 

MDS (Cancer Genome Atlas Research Network, 2013). Zhao et al. (2016) analysed 

the methylation status of the TERT promoter region and identified a distinct epigenetic 

landscape of the TERT promoter region in patients with AML and MDS/AML. In their 

studies, haematopoietic cell lines presented with a highly methylated upstream region 

and a hypomethylated region around the transcription start site. Furthermore, CpG 

methylation rates were much higher in the cell lines than their corresponding primary 

leukaemic cells. Primary cells and their cell lines displayed a trend of increasing 

methylation intensity toward the 5’ end while the regions around the transcription start 

site remained unmethylated in primary cell populations and relatively hypomethylated 

in the cell lines. These results demonstrated that methylation profiling of leukaemia 

cell lines does not represent the methylation pattern observed in the original primary 

leukaemic cells. This finding can be explained by the evolution of specific TERT 

promoter methylation patterns in regions occurring in cancer cell lines during the 

process of transformation from the original primary leukaemic cell (Smiraglia et al., 

2001; Ahmed et al., 2013; Varley et al., 2013). 

 

Germline variants in TERT can lead to familial MDS/AML and to telomere biology 

disorders including DC, HH (West et al., 2014). Telomere biology disorders are 

associated with abnormal telomere maintenance and predisposition to MDS/AML and 

patients may present initially with bone marrow failure, MDS, or pulmonary fibrosis, 

without demonstrating mucocutaneous features of DC (Yamaguchi et al., 2003). 

These disorders are caused by a number of genes in three inheritance patterns. 
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Autosomal recessive DC and HH may be caused by variants in NOP1, TERT, NPH2, 

WRAP53, CTC1, RTEL1 and PARN (Dokal, 2011; Keller et al., 2012; Walne et al., 

2013b; Tummala et al., 2015). X-linked recessive DC is associated with variants in 

DKC1 (Heiss et al., 1998). Autosomal dominant DC results from variants in TERT, 

TERC, TINF2, and RTEL1 (Ballew et al., 2013; Savage et al., 2008; Vulliamy et al., 

2001). Heterozygous variants in TERT and TERC may result in familial MDS/AML 

predisposition syndromes (Kirwan et al., 2009). In familial MDS/AML, variants in 

TERT have an autosomal dominant form of inheritance with variable clinical 

manifestations and age at onset, incomplete penetrance and anticipation, in which 

progressively shorter telomeres passed down through generations (Vulliamy et al., 

2004; Armanios, 2009).    

 

The proband (III:5, Figure 3.6A) of family FML058 is a 40-year-old male with MDS 

and a complex karyotype including del(5q) and monosomy 18.  
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Figure 3.6. Characterisation of TERT variant in exon 2. A. Family FML058 with TERT variant. 

Affected individuals are coloured as following red: MDS, black: AML and grey: 

thrombocytopenia. The arrow highlights index case. The heterozygous genotyping is denoted 

as (+/-). B. Sanger sequence chromatogram, red arrow shows the variant in TERT. C. 

Schematic showing the position of the variant in TERT protein (NP_937983.2). 
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His mother (II:10, Figure 3.6A) died aged 60 years of MDS and had pulmonary 

infections and liver cirrhosis. Two of his uncles died of MDS with infections, one (II:9, 

Figure 3.6A) at 65 years old; and another (II:13, Figure 3.6A) at 56 years old with an 

addition of diabetes, arthritis and heart disease. His uncle aged 51 years (II:14, Figure 

3.6A) had thrombocytopenia evolving to MDS with lung infections and his cousin (III:1, 

Figure 3.6A) died of AML. Deletion of a single nucleotide (c.1445delA, p.H482Pfs*27) 

resulting in a frameshift and truncation of the protein (Figure 3.6B and C) was 

identified in TERT in individuals II:7, II:12, II:14, II:15, III:6 and III:8 seen in Figure 

3.6A through direct sequencing. Interestingly, this TERT variant has an incomplete 

penetrance as there are four asymptomatic carriers (II:7, II:12, II:15, III:8, Figure 3.6A) 

in this family and striking incidence of MDS occurring with pulmonary symptoms, and 

late onset of disease.  

 

 

3.2.2.3 TERT promoter region and ANKRD26 5’UTR screening 

in our cohort of patients by dHPLC 

 

As described above, two highly recurrent somatic variants in TERT promoter region 

were found in melanoma, bladder and hepatocellular cancer cells: C>T at -124bp 

(described as 228C>T) and C>T at -146bp (described as 250C>T), these positions 

are according to Human Genome Issue hg19 (Figure 3.7). In addition, Horn et al. 

(2013) identified one germline variant in a family with melanoma (T>G at -57, shown 

in light blue in Figure 3.7B) and two tandem variants (CC>TT, shown in pink in Figure 

3.7B) occurred at -124/-125bp and at -138/-139bp that also creates binding motifs for 

the transcription factors ETS and for ternary complex factors (TCFs) in sporadic 

melanoma.  
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Figure 3.7. TERT core promoter. A. Mutations 228C>T and 250C>T created Ets/TCF binding 

motifs in melanoma (adapted from Horn et al., 2013). B. TERT promoter region sequence 

showing the TERT coding sequence; the primer position used in this study to cover the full 

length of TERT promoter region; the novel variant and SNPs found in this study; the highly 

recurrent somatic and germline variants identified in melanoma by Horn et al., 2013. 

 

 

Since germline TERT variants can be found in both sporadic AML (Calado et al., 

2009) and familial MDS/AML (Kirwan et al., 2009), we investigated whether TERT 

promoter variants also occur in MDS/AML families as it had not been described to 

date. We screened 52 patients from our cohort of familial MDS/AML, 26 constitutional 

MDS/AML (individuals presenting MDS/AML alongside with one or more somatic 
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abnormalities), 12 familial MDS with other type of cancer beyond leukaemia and 10 

idiopathic cases for variants in the TERT full core promoter (489bp from -424 to +65) 

by dHPLC as the exome sequencing does not cover this region (Figure 3.8).  

 

 

 

Figure 3.8. BAM file of TERT promoter region. The horizontal red arrow shows that TERT 

promoter region is not fully covered by WES. 

 

 

The SNP rs35226131 (G>A at position -269) was found in four patients and in three 

of them another SNP rs2853669 (T>C at position -245) was also present (Figure 3.9). 

In addition, one of these patients have a novel variant G>A at -215bp upstream of the 

transcription start site (TTS) (Figure 3.9B and C). Overall, this novel variant identified 

in TERT promoter is likely to be of unknown significance as there is no sufficient 

evidence for pathogenicity. However, considering that there are available samples 

from the patient harbouring this novel variant, a Luciferase assay could be performed 

in cell lines established from a patient cell and in the controls. The promoter activity 

of the constructs containing this novel variant at -215bp of the TERT promoter could 

be compared to the wild type.  
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Figure 3.9. Denaturing high performance liquid chromatography (dHPLC) TERT promoter 

results. A and B. Abnormal dHPLC elution patterns in patient samples 2-5 shown by the blue 

arrows. The abnormal dHPLC elution patterns correspond to SNPs identified in patients 2-5 

as indicated by ‘rs’ numbers and an additional novel variant shown in red was identified in 

patient 5. The respective Sanger sequencing chromatograms are shown in C. 

 

 

Furthermore, the same group of patients described above was screened for the 5’ 

untranslated region (UTR) of ankyrin repeat domain 26 gene (ANKRD26) by dHPLC 
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as this region is also not covered by WES (Figure 3.10). ANKRD26 encodes a protein 

containing N-terminal ankyrin repeats which function in protein-protein interactions 

and, variants in ANKRD26 5’UTR were identified in families with an autosomal 

dominant thrombocytopenia 2 (THC2) (Pippucci et al., 2011).  

 

 

 

Figure 3.10. BAM file showing that ANKRD26 5’UTR (highlighted in green) are not covered 

by WES. 

 

 

Bluteau et al. (2014) demonstrated that THC2 is caused by the impaired binding of 

RUNX1 and Fli-1 proto-oncogene, ETS transcription factor (FLI1) to the altered 

ANKRD26 which results in the ANKRD26 down regulation by these same 

transcription factors and a subsequent ANKRD26 overexpression in megakaryocytes. 

Patients with variants in ANKRD26 are more predisposed to myeloid malignancies, in 

particular AML and the thrombocytopenia in these patients is characterised by normal 

platelet size, moderate thrombocytopenia, and absent or mild bleeding tendency 

(Noris et al., 2013; Marconi et al., 2017). Through dHPLC screening, few SNPs (c.1-

59G>A rs3737056, c.1-140C>G rs41299222 and c.1-229A>C rs7897698) were 

identified but there were no novel potentially damaging variants (Figure 3.11).   
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Figure 3.11. Denaturing high performance liquid chromatography (dHPLC) ANKRD26 5’UTR 

results. A. Abnormal dHPLC elution patterns of SNPs identified in patients 2-4, shown in blue 

arrow compared to the wild type (1) shown in red arrow. B. Sanger sequencing 

chromatograms. 

 

 

3.2.3 Variants identified in genes associated with inherited 

syndromes with predisposition to MDS/AML 

 

3.2.3.1 Shwachman-Diamond syndrome 

 

Ribosomes are essential machines that read genetic code in the cells, translating 

them into proteins. The ribosomal large 60S and small 40S subunits are pre-

assembled in the nucleus and then exported to the cytoplasm to be matured. Genetic 

variants that occur in genes involved in the ribosome biogenesis cause disorders 

called ribosomopathies such as Diamond–Blackfan anemia, DC, Shwachman–

Diamond syndrome, del(5q) myelodysplastic syndrome, Treacher Collins syndrome, 
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Cartilage–hair hypoplasia, North American Indian childhood cirrhosis and isolated 

congenital asplenia (Warren, 2017). 

 

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder caused 

by biallelic variants in SBDS and is associated with bone marrow failure and 

predisposition to MDS/AML. It is characterised by multiple developmental anomalies 

including skeletal abnormalities, cognitive impairment, exocrine pancreatic and poor 

growth (Myers et al., 2014). SBDS is a cofactor for elongation factor-like GTPase 1 

(EFL1) to disassociate the eukaryotic initiation factor 6 (eIF6) from the late subunit 

joining the 60S ribosomal subunit in the cytoplasmic maturation (Finch et al., 2011; 

Weis et al., 2015). Recently, biallelic variants in DnaJ heat shock protein family 

(Hsp40) member C21 (DNAJC21) were described by our group (Tummala et al., 

2016) and another (Dhanraj et al., 2017) causing SDS like disease. DNAJC21 plays 

a role in cytoplasmic maturation of the 60S ribosomal subunit (Myers et al., 2014). 

However, whilst no homozygotes for a loss of function variant have been reported in 

SBDS, suggesting that these alterations are embryonic lethal, two cases carrying 

homozygous nonsense variants were reported in DNAJC21 (Shammas et al., 2005; 

Tummala et al., 2016). 

 

Boocock et al. (2003) found that more than 90% of patients with SDS carry recurrent 

biallelic variants in SBDS including one of three common pathogenic SBDS variants: 

183_184TA>CT, 258+2T>C, or the combination of 183_184TA>CT and 258+2T>C. 

The variant 258+2T>C disrupts the donor splice site of intron 2, while 183_184TA>CT, 

introduces an in-frame stop codon (K62X). In our cohort, recurrent biallelic variants in 

SBDS (c.184A>T, p.K62*, rs120074160 and c.258+2T>C, rs113993993) were found 

in the family FML041 (Figure 3.12). This was possible through data analyses from 

whole exome sequencing performed in all our familial MDS/AML patients that had 
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good quality of DNA sample. The index case (II:2) and her twin (II:1, Figure 3.12A) 

did not fulfil the classical clinical criteria of SDS at the time of diagnosis. It is well 

known that inherited bone marrow failure syndromes are heterogeneous disorders 

with overlapping features and predisposition to MDS or AML. Patients with SDS often 

present with a combination of exocrine pancreatic insufficiency with malabsorption 

and neutropenia in infancy with propensity to develop bone marrow failure 

malignancies (Lindsley et al., 2017). In addition, they may have low birth weight, short 

stature, metaphyseal dysostosis, neurocognitive deficits, immunodeficiency among 

other less common findings (Myers et al., 2014).    

 

The index case (II:2, Figure 3.12A) of family FML041 was a 23 years old woman; she 

and her twin (II:1, Figure 3.12A) had longstanding history of MDS since 6 months of 

age. Both twins had an extensive past medical history including in the index case (II:2, 

Figure 3.12A) a cleft of her soft palate at birth, speech delay in childhood, hearing 

loss, a history of congenital hip dislocation, mild short stature, dysmorphic features 

with round face, small nose, pinched alae nasi, long smooth filtrum, rounded ears and 

mild joint hyperextensibility. Her twin sister (II:1, Figure 3.12A) was also noted to have 

recurrent chest infections and asthma. II:1 (Figure 3.12A) died following the 

transformation of MDS to AML. The index case (II:2, Figure 3.12A) died a year later 

with refractory AML post allograft. Whole exome sequencing data revealed biallelic 

variants (c.184A>T, p.K62* rs120074160 and c.258+2T>C, rs113993993) in exon 2 

of SBDS are likely to be the disease causing in this family (Figure 3.12B and C). These 

compound heterozygous germline variants are frequently seen in patients with SDS, 

although de novo variants are seen in 10% of SDS cases (Steele et al., 2014). 
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Figure 3.12. Characterisation of SBDS variants in exon 2. A. Family FML041 with SBDS 

variants. Affected individuals are coloured as following red: MDS and black: AML. The arrow 

highlights index case. The compound heterozygous state is denoted as (-/-). B. Sanger 

sequence chromatogram showing the variant in SBDS. C. Schematic showing the position of 

the variant by the red arrow in SBDS protein (NP_057122.2). 

 

 

3.2.3.2 Fanconi anaemia 

 

Fanconi anaemia (FA) is associated with congenital abnormalities in multiple organs, 

haematological manifestations at a young age such as bone marrow failure, MDS, 

and AML (Alter et al., 2010). FA is characterised by increased chromosomal breakage 
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upon exposure to DNA crosslinking agents, diepoxybutane (DEB), or mytomycin C. It 

is a rare recessive DNA repair deficiency resulting from biallelic damaging variants in 

one of at least 20 genes (FANCA, FANCC, FANCD1/BRCA2, FANCD2, FANCE, 

FANCF, FANCG, FANCI, FANCJ/BRIP1, FANCL, FANCM, FANCN/PALB2, FANCO, 

FANCP, FANCQ/ERCC4/XPF, FANCS/BRCA1, FANCT/UBE2T, FANCU/XRCC2, 

FANCV/MAD2L2/REV7 and FANCW/RFWD3). Damaging variants in the X-linked 

gene FANCB and heterozygous damaging variants in FANCR/RAD51 can also cause 

FA (Auerbach, 2009). These genes are involved in repairing DNA crosslinks 

associated with the FA/BRCA pathway. Complete molecular diagnosis of the disease 

causing gene and specific pathogenic variants are required for confirmation of FA and 

efficient clinical management (Flynn et al., 2014). This is due to the fact that different 

FA complementation groups demonstrate variable outcome. While variants in FANCA 

lead to a mild disease and later onset of bone marrow failure, variants in FANCG 

usually result in severe haematological malignancies (Faivre et al., 2000). 

 

Biallelic variants in Fanconi anaemia complementation group A (FANCA) (Figure 

3.13A) are responsible for the development of the disease in most cases of FA. Large 

and small deletions, small insertions, and single nucleotide variation are the type of 

disease causing variants found in FANCA (Kimble et al., 2017). We have identified 

biallelic variants in one family of our cohort of familial MDS/AML.  

 

The proband (III:2, Figure 3.13B) of family FML004 was a female with mild short 

stature associated with non-severe AA at the age of 38 years. She developed AA after 

receiving treatment for her tongue and throat cancer. Her mother (I:1, Figure 3.13B) 

had short stature and her brother (III:1, Figure 3.13B) died at age of 19 years with 

AML. Her maternal aunt had stomach cancer in her forties and a further maternal 

uncle who died in his sixties.  



123 
 

 

Figure 3.13. Characterisation of FANCA variants in exons 27 and 36. A. Schematic of FANCA 

protein (NP_000126.2). B. Family FML004 with FANCA variants. Affected individuals are 

coloured as following blue: AA and black: AML. The arrow highlights index case. The 

compound heterozygous state is denoted as (-/-). C. Sanger sequence chromatogram, red 

arrows show variants in FANCA. 

 

 

Two other maternal aunts have died of breast cancer in their fifties and further aunt 

had two thumbs. Her maternal grandmother had throat cancer and stomach problems 

and died in her sixties. The index case had some chromosome instability. This result 

was not within the normal range but neither was a diagnostic of FA. However, very 
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rare biallelic variants (c.2505-1G>T and c.3626+5G>C) likely to be pathogenic were 

identified in FANCA by exome sequence performed in the index case and validated 

by Sanger sequencing (Figure 3.13C). Hence, despite II:1 not presenting with typical 

congenital abnormalities nor radial-ray, which are features frequently seen in FA, our 

results support the diagnosis of FA for this patient.   

 

 

3.2.4 Variants identified in genes associated with other inherited 

syndromes  

 

3.2.4.1 Wiskott-Aldrich syndrome  

 

Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive disease characterised 

by thrombocytopenia, bloody diarrhoea, immunodeficiency, recurrent infections, 

inflammatory symptoms, and eczema. It was described in 1937 and 1954 by Dr. Alfred 

Wiskott and Dr. Robert Aldrich respectively. The presentation of WAS is very 

heterogeneous ranging from mild to severe, in which severe conditions such as the 

development of autoimmunity and lymphoproliferative disorders and lymphoid 

malignancies may occur. The presentation of these disorder typically occurs in early 

life while the diagnosis may sometimes be in adulthood due to its heterogeneity (Ochs 

et al., 2009; Worth & Thrasher, 2015). Damaging variants in WAS gene are 

associated with the development of WAS. These variants are typically missense, 

splice site, nonsense, insertions and deletions are distributed along WAS (Shcherbina 

et al., 2003; Jin et al., 2004). Furthermore, the WAS related disorder X-linked 

neutropenia (XLN) is a very rare type of severe congenital neutropenia and MDS with 

recurrent infections that develop in an early infancy with a diverse presentation from 
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that of WAS. Only four WAS missense variants have been reported to cause XLN to 

date, including p.L270P, p.S272P, p.I276S, and p.I290T (Devriendt et al., 2001; 

Ancliff et al., 2006; Beel et al., 2009; Kobayashi et al., 2017). WAS is located on the 

X chromosome and encodes the WAS protein (WASp) which is member of a family 

of actin nucleation-promoting factors that translate surface signals into actin 

polymerization through the actin-related protein, Arp2/3 complex. It is important in 

actin polymerization, cytoskeletal remodelling and it is only expressed in 

haematopoietic cells (Thrasher & Burns, 2010). As WASp regulates the actin 

cytoskeleton processes including immune synapse formation, cell signalling, 

migration and cytokine release in most haematopoietic lineages, it participates in 

innate and adaptive immunity and is consequently important for normal function of 

immunological processes (Baptista et al., 2016).  

 

Family FML032 (Figure 3.14A) from our cohort was found to have a single nucleotide 

deletion (c.1336delA, p.K446Rfs*24) causing premature stop codon in the WASp 

(Figure 3.15B and C). The index case (II:2, Figure 3.14A) was a three months old boy 

who presented with thrombocytopenia on day 1 and progressed to MDS. His six year 

old brother (II:1, Figure 3.14A) developed thrombocytopenia and splenomegaly at 

nine weeks of age and progressed to MDS. The WAS variant p.K446Rfs*24 was 

identified in both brothers. This deletion in WAS is likely to be disease causing in both 

brothers. 
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Figure 3.14. Characterisation of WAS variant in exon 10. A. Family FML032 with WAS variant. 

Affected individuals are coloured in red indicating MDS. The arrow highlights index case. The 

hemizygous genotype is denoted as (-). B. Sanger sequence chromatogram, red arrow shows 

the variant in WAS. C. Schematic showing the position of the variant in WAS protein 

(NP_116575.3). 
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3.3 Discussion 

 

The recognition of familial MDS/AML is essential for effective clinical management of 

patients with an inherited susceptibility and their families. Besides documentation of 

a complete family history, germline genetic testing is also important to help to clarify 

whether a patient may have inherited predisposition to MDS or AML. Germline genetic 

testing is becoming more common to aid this recognition. Such officially recognised 

tests exist for FPD/AML caused by variants in RUNX1; familial AML with variants in 

CEBPA; familial MDS/AML with variants in GATA2; and for inherited bone marrow 

failure syndromes including DC and FA (Nickels et al., 2013). It is important to note 

that the segregation of the germline variant with the disease within the family is crucial 

to assign its pathogenicity. Certain features of the history or laboratory values may 

increase the likelihood of a particular syndrome over others in individual cases.  

 

Here, we characterised seven families part of our familial MDS/AML cohort. Family 

FML053 had a large deletion in RUNX1, carriers exhibited heterogeneity in their 

degree of platelet dysfunction (individual II:5 is thrombocytopenic with no myeloid 

malignancy detected to date) and multiple individuals have developed T-cell ALL and 

acute myeloid leukaemia. Anticipation is a strong characteristic of FPD/AML and a 

close clinical follow up for members of the followed generations in the family is critical 

Disease anticipation leads to occurrence of MDS and AML in younger individuals in 

subsequent generations (Jongmans et al., 2010; Nickels et al., 2013; Sood et al., 

2017). Furthermore, we also identified an example of a deletion of 21bp in RUNX1 in 

FML007 that is actually acquired and, therefore it is not likely to be the disease 

causing variant in this family. This highlights that interpretation of genetic testing in 

blood can be confounding by the presence of somatic variants found in known disease 

causing genes. Despite the recommendation of use of a non-blood tissue to validate 



128 
 

a germline variant, we do not have it available in all our families. However, segregation 

analysis within the family can be useful in distinguishing inherited from somatic 

variants.  

 

We have not found CEBPA, SRP72, TERC nor ANKRD26 variants in our 

uncharacterised familial MDS/AML cohort in these studies. However, GATA2 variants 

were found in two families and they are possibly the underlying cause of the disease 

in these families. The proband of family FML026 harbours a nonsense variant with 

variable penetrance as the father did not present with the disease and she is also 

reported to have trisomy 8. Interesting GATA2 variants are usually highly penetrant 

with variable cytogenetic abnormalities, including monosomy 7, trisomy 8 and trisomy 

21 (Hahn et al., 2011).  The proband of the second family FML052 was diagnosed 

with Emberger syndrome and harbours a frameshift deletion of 14bp in GATA2. This 

is likely to be a de novo event as her parents and her brother do not carry this variant 

and it was found in about 50% of the cells according to the peak of the traces from 

Sanger sequencing compared to the wild type sequence.  

 

The large family FML058 with familial MDS/AML was characterised by a deletion of 

one nucleotide in TERT, which caused frameshift and truncation of the protein. 

Affected members in this family presented MDS/AML along with lung infections and 

liver cirrhosis common features seen in patients carrying variants in TERT (Dokal, 

2011).  

 

Patients with rare inherited bone marrow failure syndromes including FA, DC, 

Diamond Blackfan anaemia and SDS can be diagnosed during evaluation of 

haematological manifestations such as MDS or AML as a result of specific clinical 

phenotypes, screening tests or genomic studies (West & Churpek, 2017). This group 
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of disorders may present overlapping features and increased rates of malignancies. 

Despite the common features, these syndromes are very diverse in their 

manifestations and complications (Dietz et al., 2017). Here, we described families 

from our cohort of familial MDS/AML diagnosed with Fanconi anaemia and SDS as 

their initial presentation was atypical. 

 

Our case of FA in family FML004 shows the importance of a molecular diagnosis to 

elucidate a complicated case. The diagnosis of FA of the proband of FML004 was not 

confirmed until the identification of biallelic variants in FANCA. Taking into account 

that she did not present with classical FA clinical features such as abnormal skin 

pigmentation, radial ray defects, and organ and skeletal abnormalities and exhibited 

intermediate chromosome breakage instability for a classical diagnosis of FA. This 

marked heterogeneity means diagnosis of FA is not always straightforward and it is 

important to consider this diagnosis in young patients presenting with cancers (Fargo 

et al., 2014). 

 

Family FML041 was found to have recurrent biallelic variants in SBDS, however the 

proband of this family had not been diagnosed with SDS prior to these findings. 

Regardless of her and her twin sister’s longstanding MDS along with many other 

congenital anomalies, she did not present with the classical exocrine pancreatic 

insufficiency compatible with a diagnosis of SDS. Again, it was through genetic 

studies that a diagnosis of SDS was made.  

 

Family FML032 is another interesting case as both young brothers in this family were 

found to carry a frameshift variant in WAS. Although both boys presented with 

thrombocytopenia at an early age they both progressed to MDS. However, neither of 

them presented with immunodeficiency, eczema nor repeated respiratory infections 
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that are typically seen in WAS. This family highlights that early presentation of 

thrombocytopenia with evolution into MDS, can also arise from variants in WAS in the 

absence of typical WAS features. 

 

Finally, the incorporation of next-generation sequencing as a standard practice into 

clinic may change the clinician’s diagnostic approach. As a consequence, it is 

important to consider that diagnosis of an underlying germline variant raises the issue 

of using an allogeneic stem-cell transplant (STC) for consolidation therapy, since 

transplant is the only way to eradicate the bone marrow of the underlying predisposing 

allele. Furthermore, in order to get appropriate counselling and treatment, any new 

outcome that occurs after a STC in patients with inherited bone marrow failure 

disorders, needs to be distinguished from an event derived from STC or clinical 

feature acquired with aging.  
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4.1 Introduction 

 

Considering that germline heterozygous mutations have been identified in DEAD-box 

helicase 41 gene (DDX41) in patients with familial MDS/AML in 2015 by Polprasert et 

al., we have decided to investigate variants in this gene in our cohort using a 

combination of whole exome and targeted sequencing.  

 

Subsequently, heterozygous germline loss of function (LoF) variants in the gene 

DDX41 (canonical transcript, NM_016222.3, NP_057306.2, 622 amino acids) that 

segregate with disease in four families with MDS/AML were identified and are 

described in this chapter.  

 

 

4.1.1 Familial myelodysplasia and acute myeloid leukaemia with 

germline predisposing variants in DDX41  

 

Recently, alterations in DDX41 were identified to cause familial MDS/AML. Although, 

the age of onset and potential function of DDX41 differ this gene from the previous 

familial MDS/AML predisposing genes (Polprasert et al., 2015).      

 

The median age of MDS or AML onset in carriers of germline DDX41 variants is 62 

years, which is similar to the diagnosis age of sporadic MDS and AML. While the other 

predisposition syndromes occur in an earlier age of onset (Tawana & Fitzgibbon, 

2016). Another different aspect is that most of the carriers of variants in DDX41 have 

normal blood counts up until the development of MDS or AML, unlike other 

predisposing genes such as GATA2 and RUNX1 that are often characterised by 
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extended pre-leukemic cytopenic phases (Lewinsohn et al., 2016). These features 

make it harder to diagnose familial MDS/AML in patients carrying germline DDX41 

variants.  

 

Finally, DDX41 has been implicated by functional studies to be involved in innate 

immune response, mRNA splicing, ribosome biogenesis and post-transcriptional 

regulation of protein translation in cell growth (Cheah et al., 2017). Despite all these 

function implications, the role of DDX41 in leukemogenesis is yet to be established 

(Li et al., 2016). 

 

 

4.1.2 DDX41 – DEAD-box helicase 41 structure and function 

 

RNA and DNA helicases are considered to be enzymes that catalyse the separation 

of double-stranded nucleic acids in an energy-dependent manner. They utilise the 

energy derived from a nucleoside triphosphate (NTP) hydrolysis to dissociate 

duplexes or displace bound proteins (Linder & Jankowsky, 2011). However, not all 

helicases have purely a double-stranded unwinding activity and they might be 

involved in various functions (Cordin et al., 2006). 

 

DExD/H box family of RNA helicases are part of the large SF2 helicase superfamily. 

There are 59 highly conserved DExD/H helicases in eukaryotes (Zhang et al., 2011b) 

which play important roles in RNA metabolism, including ribosome biogenesis, RNA 

processing and folding, ribonucleoprotein modelling, RNA nuclear export, in the 

regulation of RNA translation and transcription, and in nonsense-mediated RNA 

decay. DExD/H box RNA helicases can have different functions in these processes 

such as RNA chaperones, ATP-dependent RNA helicases and unwindases, as 
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RNPases by mediating RNA-protein association and dissociation (Pyle, 2008) or as 

co-activators and co-repressors of transcription (Wortham et al., 2009). In addition, 

several DExD/H box family members are involved in viral replication. They are 

captured and regulated by viral proteins (Schröder, 2010), and are involved in viral 

RNA maturation (Yount et al., 2008). They can also mediate antiviral host defence 

activating the host innate immune response (Rehwinkel & Sousa, 2010).  

 

Within the DExD/H box family, RNA helicases share at least eight conserved motifs 

(I, Ia, Ib, II, and III in the N terminal domain and motifs IV, V, and VI in the C terminal 

domain) contained within two RecA-like domains joined by a short flexible link (Cordin 

et al., 2006; Jiang et al., 2017; Omura et al., 2016). These proteins are further 

distinguished based on variations within their amino acid sequence of the conserved 

helicase motif II (DEAD, DEAH, DExH and DExD helicases). Both RecA-like domains 

contribute to ATP hydrolysis and to the binding site for RNA substrates, facilitating the 

helicase activity of these proteins such as RNA unwinding or protein displacement. In 

addition, most DExD/H box contain variable N- and C- terminal regions that confer 

functional specificity to individual helicases (Fuller-Pace et al., 2006).    

 

DEAD box RNA helicases are the largest family from DExD/H box family, comprising 

more than 500 proteins (Silverman et al., 2003) and are characterised by the 

conserved motif II, Asp-Glu-Ala-Asp (DEAD). The motif DEAD provides the RNA 

helicase function to this protein family by the activities of ATPase and RNA unwinding 

(Jankowsky, 2011). Furthermore, members of this family are linked to human disease, 

including cancer, viral infections and hepatitis C (Schütz et al., 2010; Jiang et al., 

2017b). 
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DEAD-box helicase 41 (DDX41) contains a disordered N-terminal (amino acids 1-

152) which are responsible for its nuclear localisation, a DEAD domain that consists 

of motifs Q, I (Walker A, P-loop), II (Walker B, dead-BOX), Ia, GG, Ib and III and a 

helicase domain which consists of motifs IV, V and VI (Schmid & Linder, 1992; 

Caruthers et al., 2000; Cordin et al., 2006). Motifs Q, I and II are involved in nucleotide 

biding; motifs Ia, Ib, IV and V are involved in RNA binding and motifs III and VI are 

involved in ATP hydrolysis (Jiang et al., 2017) (Figure 4.1). 

 

 

 

Figure 4.1. Schematic of DDX41 protein. 

 

 

DDX41 has been shown to participate in the anti-viral innate immunity by functioning 

as a sensor for cytoplasmic viral DNA in mouse myeloid dendritic cells (Zhang et al., 

2011b) and also as a germline-encoded pattern recognition receptor when interacting 

with the bacterial second messengers cyclic di-GMP (c-di-GMP) and cyclic di-AMP 

(c-di-AMP), which results in the induction of genes involved in the innate immune 

response in mouse and human cells (Parvatiyar et al., 2012). In addition, Polprasert 

et al. (2015) suggested that DDX41 acts as tumour suppressor and demonstrated that 

alterations in this gene have an impact on mRNA splicing of important downstream 

genes in leukaemic cells. Furthermore, DDX41 has been implicated in ribosome 

biogenesis in studies with CD34+ from cord blood cells and leukaemia cell lines 
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(Kadono et al., 2016) and in post-transcriptional regulation of protein translation in 

studies using colon carcinoma cells (Peters et al., 2017). 

 

 

4.1.3 The role of DExD/H box helicases and DDX41 in the innate 

immunity response 

 

The recognition of pathogenic DNA from viruses, bacteria, fungi and parasites in the 

host organism is important to the initiation of innate immune response, which will help 

the host against the infection of pathogen (Bonjardim et al., 2009).  

 

Innate immune response is a conserved, nonspecific first defence of the organism. It 

includes various defence strategies such as physical barriers (for instance, skin), 

chemicals in the blood, and immune system cells. In innate cells such as 

macrophages, innate immunity response is based on the recognition of pathogen-

associated molecular patterns (PAMPs) through a set of pattern recognition receptors 

(PRRs) that stimulate downstream signalling cascades leading to production of pro-

inflammatory cytokines and type I interferons (IFN-α and IFN-β), which are cytokines 

with potent anti-viral activity (Takeuchi & Akira 2010).  

 

The induction of IFN are mediated by activation of the transcription factors interferon 

regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7) or nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB), and by signalling pathways 

downstream of anti-viral PRRs select kinases that phosphorylate and activate IRF3/7 

(Sato et al., 2000).   

Viral PAMPs are mainly genomic RNA, DNA and replication intermediates (Saito & 

Gale, 2007). The main groups of PRRs sensing PAMPs are endosomal Toll-like 
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receptors (TLR), the RIG-like helicases (RLHs) which are part of DExD/H-box family, 

and cytoplasmic DNA receptors (Thompson et al., 2011). Most PRRs utilises the 

kinases TANK binding kinase 1 (TBK1) and inhibitor of κB kinase ε (IKKε) for 

phosphorylation of IRF3/7 while their upstream signalling is quite diverse. In the 

upstream signalling, TLR depends on the adaptor molecule TIR-domain-adapter-

inducing interferon-β (TRIF) (Yamamoto et al., 2002) or on the TIR-domain-adaptor 

molecule myeloid differentiation primary response gene 88 (MyD88) (Kawai et al., 

2004), the RLHs utilise a CARD-domain containing mitochondrial adaptor called 

MAVS (also called IPS-1, Cardif or VISA) (Seth et al., 2005), and most cytosol DNA 

or RNA receptors depend on stimulator of interferon genes (STING), an endoplasmic 

reticulum-resident adaptor molecule (Ishikawa & Barber, 2008).   

 

Several cytoplasmic DNA or RNA receptors have been identified, including RNA 

polymerase III, cyclic-GMP-AMP synthetase (cGAS), DNA-dependent activator of 

IFN-regulatory factors (DAI), gamma-inducible protein 16 (IFI16) and DDX41. Some 

of these intracellular sensors signal via the adaptor STING (Chiu et al., 2009; Sun et 

al., 2013; Takaoka et al., 2007; Unterholzner et al., 2010). 

 

Hence, DExD/H-box helicases are known to contribute to anti-viral immunity, either 

by acting as sensors for viral nucleic acids or by facilitating downstream signalling 

events. The RLH family has the ability to sense double strand RNA (dsRNA) in the 

cytosol and is constituted by DExD/H-box helicase 58 (DDX58, also known as RIG-

I), interferon induced with helicase C domain 1 (IFIH1, also known as MDA5), and 

DExH-box helicase 58 (DHX58, also known as LGP2) (Schmidt et al., 2012). The 

RLHs recognise their specific RNA ligands through their C-terminal regulatory domain 

and not the conserved helicase core region (Fullam & Schröder, 2013).     
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Other DEAD box helicases participate in the innate immune response, such as DEAD-

box helicase 3 (DDX3) which acts as a sensor for viral RNA in conjunction with RIG-

I and MDA5 (Oshiumi et al. 2010).  Additionally, DDX3 might function downstream of 

TBK1 and IKKε either as a signalling adaptor and/or transcriptional regulator (Soto-

Rifo et al., 2012). DExH-box helicase 9 (DHX9) has been identified as a sensor for 

dsRNA in myeloid cells (Zhang et al., 2011c), and DHX9 and DEAH-box helicase 36 

(DHX36) as sensors for CpG oligonucleotides in plasmacytoid dendritic cells (Kim et 

al., 2010). CpG oligonucleotides are known to induce INF-α and pro-inflammatory 

cytokine production (Krug et al., 2001). In myeloid cells, DEAD-box helicase 1 (DDX1) 

senses dsRNA and then triggers signalling via DExD-box helicase 21 (DDX21) and 

DDX36 that interact with the downstream protein TRIF to trigger type I interferon 

responses (Zhang et al., 2011a). DExD/H-box helicase 60 (DDX60) is proved to act 

in conjunction with RIG-I or MDA5 to mediate responses to viral dsRNA (Miyashita et 

al., 2011).   

 

Furthermore, certain bacterial species can release cyclic diguanosine 

monophosphate (c-di-GMP) or cyclic diadenosine monophosphate (c-di-AMP), which 

are secondary messengers that regulate the bacteria metabolism, motility and 

virulence and can also modulate the innate immune response in mammalians cell by 

acting as PAMPs. c-di-GMP and c-di-AMP can be detected by PRRs and activate the 

IFN response, however the cytoplasmic RIG-1 (DDX58) nor the Toll-like receptor 

family of PRRs are involved in the detection of cyclic dinucleotides (Hengge, 2009; 

McWhirter et al., 2009). STING and DDX41 were identified as an innate sensor of 

cyclic dinucleotides in the cytosol (Burdette et al., 2011; Lee et al., 2015).  

 

Parvatiyar et al. (2012) showed that DDX41 specifically and directly interacts with c-

di-GMP via its DEAD domain motif II and motif I, after being phosphorylated by 
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Bruton’s tyrosine kinase (BTK) followed by induction of type I interferon in mice and 

human cells. Lee et al. (2015) using mice and human cells, demonstrated that BTK 

kinase phosphorylates Tyr414 of DDX41, which is the same site that recognises DNA 

and bind to STING (Figure 4.2).  

 

DDX41 was also identified as an intracellular DNA sensor in myeloid dendritic cells 

that depends on STING to sense pathogenic DNA (Zhang et al., 2011b). Herein, 

DDX41 functions through the STING-TBK1-IRF3 pathway, where STING functions as 

a key scaffolding and adaptor protein to facilitate the signal transduction initiated from 

upstream cytosolic dsDNA receptors to downstream effectors TBK1, NF-κB and IRF3, 

leading to the expression of type I interferon (Liu & Wang, 2016) (Figure 4.2).    

 

Uncontrolled sensing of DNA or RNA and excessive production of type I interferon 

could induce autoimmune diseases, so DDX41 must be degraded or inactivated after 

immune response. Zhang et al. (2013) demonstrated that DDX41 in mice is degraded 

by the E3 ligase tripartite motif containing 21 (TRIM21), using Lys9 and Lys115 of 

DDX41 as the ubiquination sites (Figure 4.2).  

 

Interestingly, Lewinsohn et al. (2016) and Kadono et al. (2016) observed that DDX41 

full length protein 70kDa localises in the nucleus, contradicting the DDX41 function 

as a cytosolic DNA sensor. However, both groups described a short DDX41 isoform 

of 52kDa translated from the second methionine identified in both nucleus and 

cytoplasm in human cells. Although several studies showed that DDX41 is important 

for innate immunity, the exact mechanism of how it functions is still unknown (Jiang 

et al., 2017).    
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Figure 4.2. DDX41 as an intracellular DNA sensor through the STING-TBK1-IRF3 pathway. 

Adapted from Lee et al. (2015) and Jiang et al. (2017). 

 

 

Finally, in addition to its involvement in viral recognition and anti-viral immunity, DEAD 

box RNA helicases are also recruited by viruses to facilitate their replication. Some 

viruses do not encode their own RNA helicases and many cellular helicases have 

been identified as essential host factors for RNA unwinding in viral replication. The 

human immunodeficiency virus (HIV) and hepatitis C virus (HCV) are some examples 

(Lorgeoux et al., 2012). DDX1, DDX3 and DEAD-box helicase 5 (DDX5) are required 

for HCV replication (Owsianka & Patel, 1999; Goh et al., 2004; Tingting et al., 2006) 

and DDX1, DHX9, DDX5, DEAD-box helicase 17 (DDX17) and DDX21 have also 



141 
 

been reported to be important for the HIV-1 replication (Fang et al., 2004; Naji et al., 

2012). DHX9 is also required for the replication of the foot-and-mouth-disease virus 

(Lawrence et al., 2009) and the influenza virus (Lin et al., 2012).   

 

 

4.1.4 Association of DDX41 variants with myeloid neoplasms and 

defects in mRNA splicing 

 

Besides its roles in innate immunity response, DDX41 is one of the most frequently 

mutated familial MDS/AML predisposition gene, with acquired and inherited variants 

identified (Brown et al., 2017). DDX41 variants profile can be seen in Figure 4.3. In 

addition to poor survival, normal karyotype, long latency and advanced stage at 

diagnosis, familial DDX41 MDS/AML syndrome is also characterised by hypocellular 

bone marrow, erythroid dysplasia and high risk of MDS and AML (Lewinsohn et al., 

2016). Furthermore, DDX41 is located on chromosome 5 and is deleted in 

approximately 26% of MDS with del(5q) resulting in haploinsufficient expression 

(Polprasert et al., 2015). 

 

Polprasert et al. (2015) identified germline and somatic DDX41 variants in several 

MDS/AML cases and showed that half of the cases with germline variants also 

harboured an additional somatic DDX41 variant in the remaining wild-type allele. The 

somatic DDX41 R525H was the most frequent acquired variant and it is located in the 

conserved motif VI at the C-terminal helicase domain where adenosine triphosphate 

(ATP) hydrolyses occurs, causing a lower ATPase activity in the altered helicase 

(Kadono et al., 2016) (Figure 4.3 and Table 4.1). Biallelic variants were also found 

with AML progression in MDS/AML with CEBPA or RUNX1 variants (Pabst et al., 

2008; Preudhomme et al., 2009).  
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In addition, Lewinsohn et al. (2016) identified five DDX41 variants including missense 

and splicing variants predicted to result in truncated proteins in ten families with 

MDS/AML (Figure 4.3 and Table 4.1). They identified the recurrent germline 

D140Gfs*2 variant along with the germline M1I variant, seen subsequently by us and 

others (Cardoso et al., 2016; DiNardo et al., 2016; Berger et al., 2017). 

 

Further DDX41 variants were reported by Li et al. (2016), they have identified one 

family with MDS/AML harbouring two consecutive rare heterozygous germline 

variants (p.L237F and p.P238T) segregating with the disease (Figure 4.3 and Table 

4.1). Herein, the disease had a long latency period consistent with previous studies. 

These variants are located in the DEAD-box domain, affecting a conserved motif that 

includes the ATP binding site and they are both seen in ExAC database with allele 

frequency of 1 in 120,916 alleles. 
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Figure 4.3. Schematic of DDX41 protein with the type of DDX41 variants identified to date. 

For further variant details see Table 4.1. 
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Table 4.1. DDX41 variants reported to date 
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Table 4.1. Continued 
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Table 4.1. Continued 
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The late onset of familial MDS/AML characteristic of DDX41 variants make it harder 

to obtain an accurate diagnosis for this group of patients and misguided selection for 

an allogenic stem cell transplantation might take place. This is the case reported by 

Berger et al. (2017), where the proband of 58 years presenting AML had a blood stem 

cell transplantation from his healthy brother of 62 years at the time, followed by the 

proband achieving full recovered blood cells count. However, the proband had a 

relapse into MDS four years later to discover that the MDS clone emerged from the 

donor cells. Meanwhile, another brother carrying the recurrent DDX41 p.R525H 

variant was diagnosed with AML at the age of 68 years. The recurrent DDX41 

p.Met1Ile variant was identified in all three brothers.  

 

Polprasert et al. (2015) have demonstrated the tumour suppressor role of DDX41 from 

their DDX41 knockdown experiments in K562 (an immortalised human myelogenous 

leukemia cell line derived from a chronic myelogenous leukemia patient) and CD34+ 

cells results, which displayed an increase of cell growth compared to control. Further 

experiments in HEK293 (human embryonic kidney cells 293) cells using mass 

spectrometry identified spliceosomal proteins to associate and interact with DDX41 

and this was then confirmed by western blotting of endogenous DDX41 protein from 

primary and K562 cells.   

 

In addition, data from the mass spectrometry experiment mentioned above showed 

that the R525H variant reduced the DDX41 interaction with splicing factor 3b subunit 

1 (SF3B1) and pre-mRNA processing factor 8 (PRPF8), crucial components in 

spliceosomes. SF3B1 together with SF3B2 and SF3B3 forms the U2 small nuclear 

ribonucleoproteins complex (U2 snRNP) and somatic genetic alterations in SF3B1 

gene has been linked to MDS and chronic lymphocytic leukaemia patients by 

induction of aberrant transcription, altered pre-mRNA recognition and alternative 
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splicing (Cazzola et al., 2013; Jenkins & Kielkopf, 2017). While somatic genetic 

alteration in PRPF8 has been associated with MDS and AML, where decrease of 

PRPF8 expression is associated with increased exon skipping, probably as a result 

of splicing proofreading defect. PRPF8 is a scaffold protein component of both U2- 

and U12-dependent spliceosomes and is required for the assembly of the U4/U6-U5 

tri-snRNP complex (Kurtovic-Kozaric et al., 2015).   

 

Moreover, Polprasert et al. (2015) performed deep whole RNA sequencing in three 

cases that had deletion (5q-), one case with mutant (p.R525H), and one case that 

showed low expression of DDX41, and 11 wild-type cases. This demonstrated that 

defects in RNA splicing were associated with the altered DDX41 that resulted in 

aberrant exon skipping of 61 genes and exon retention in 95 genes. Zinc finger MYM-

type containing 2 (ZMYM2) was one of the top ten genes that had the most 

differentially misspliced exons. ZMYM2 encodes a zinc finger protein member of a 

family of myeloproliferative and mental retardation (MYM) domain involved in a 

histone deacetylase complex (Gocke & Yu, 2008). The difference of skipping ratio in 

ZMYM2 exon 3 was 13% between mutant and wild-type. The enhanced skipping of 

this exon, was recapitulated by DDX41 knockdown in K562 and CD34+ cells. In 

contrast, overexpression of wild-type DDX41 in U937 cells (monocytes isolated from 

the histiocytic lymphoma of a male patient) led to decreased exon skipping of ZMYM2 

in comparison to mock transduction. In addition to the changes in spliced isoform 

ratios, ZMYM2 mRNA was expressed at significantly lower levels in the cells with low 

DDX41 expression. Low ZMYM2 mRNA levels were associated with down-

modulation of structural maintenance of chromosomes 3 (SMC3), RAD21 cohesin 

complex component (RAD21), and RUNX1, which were also significantly under-

expressed in samples with low DDX41 expression.   
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Overexpression as well as variants or deletions of other members of DExD/H-box 

RNA helicase family have been described in several other cancers as well as in 

myeloid neoplasms, where they can act both as tumour suppressors and oncogenes 

(Fuller-Pace, 2013).   

 

Finally, DDX41 and other members of the DEAD/H-box family gene variants are 

identified functionally relevant as a novel family of variants with implications for 

prognosis and treatment of myeloid malignancies, which may lead to approaches of 

therapeutic schedule (Antony-Debré & Steidl, 2015). Nonetheless, the role of DDX41 

in haematopoiesis and leukemogenesis is not yet clear and further studies are 

required to better explain its function and molecular pathway (Jiang et al., 2017). 

 

 

4.1.5 The role of DDX41 in ribosome biogenesis and in post-

transcriptional regulation of protein translation in cell growth  

 

In addition to mRNA splicing deficiency due to defective DDX41 demonstrated by 

Polprasert et al. (2015), Kadono et al. (2016) reported three patients harbouring the 

somatic DDX41 R525H variant that commonly exhibited sporadic AML with bone 

marrow cytopenias and low blast counts as also seen in Lewinsohn et al. (2016). They 

suggested that the cell growth arrest seen in cells harbouring this somatic variant in 

their experiments is due to impaired pre-ribosome RNA (rRNA) processing by the loss 

of ATPase activity of the protein, suggesting that DDX41 plays a role in ribosome 

biogenesis in human cells.   
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To investigate the molecular functions of DDX41 in hematopoietic cells, Kadono et al. 

(2016) firstly observed that ectopically expressed DDX41 in murine fibroblasts and in 

THP- leukaemia cell line (human monocytic cell line derived from an acute monocytic 

leukaemia patient) was mostly nuclear regardless of the p.R525H presence. Then, 

they demonstrated that this acquired variant inhibits haematopoietic cell cycle growth 

in mutant cord blood-derived human CD34+ cells compared to the wild-type cells 

control. Subsequently, data from a gene set enrichment analysis in the cultured 

mutant and wild-type cord blood-derived human CD34+ cells, suggested that a certain 

ribosomopathy may occur in the cells expressing DDX41 pR525H as there was a 

suppression of mRNA encoding ribosomal proteins. They have also demonstrated 

that the altered DDX41 presented a lower ATPase activity by an ATPase assay.  

   

In humans, the processing of pre-rRNA occurs mainly in the nucleolus, where 

approximately 4,500 putative nucleoclar proteins and small nucleolar RNAs are 

thought to participate in this process (Ahmad et al., 2009). Kadono et al. (2016) 

proposed that the haematopoietic cell growth deficiency in patients with DDX41 

R525H variant is caused by the inhibition of E2F transcription factor 1 (E2F) activity, 

which is caused by an activation of retinoblastoma tumour suppressor (RB). The RB-

E2F pathway regulates the cell cycle progression and cell death and consists of 

inhibitors and activators of cyclin-dependent kinases, the RB, and the E2F-family of 

transcription factors. According to Kadono et al. (2016), the somatic DDX41 R525H 

variant negatively affects rRNA synthesis, which consecutively releases ribosomal 

proteins. Released ribosomal proteins eventually bind to MDM2 proto-oncogene 

(MDM2) and RB pathway is consecutively activated, resulting in cell growth arrest.  

 

On the other hand, data from Peters et al. (2017) studies in HCT116 colon carcinoma 

cells, supports an oncogene role for DDX41. They identified DDX41 as a negative 
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regulator of cyclin-dependent kinase inhibitor 1A (CDKN1A) or p21 protein translation 

via association with the 3’UTR of its mRNA in the presence of p53 independently of 

stress, however this mechanism is not associated with the transcriptional activity of 

p53. p21 functions as tumour suppressor in several cancer cell lines, including 

HCT116.  

 

p21 is the most studied cyclin-dependent kinase protein inhibitor. It tightly controls 

cyclin-dependent kinase proteins, which are serine/threonine kinases that regulates 

cell cycle. p21 regulates cell growth and apoptosis in the presence of the tumour 

suppressor protein p53 in response to a variety of stress stimuli. p21 also functions 

both as tumour suppressor and as oncogene important in stress pathways. Although 

nuclear p21 functions predominantly as a tumour suppressor by negatively regulating 

DNA replication and cell proliferation, cytoplasmatic p21 acts in an oncogenic manner 

by facilitating cell proliferation, inhibiting apoptosis, and regulating migration 

(Malumbres & Barbacid, 2009).  

 

Interestingly, Peter et al. (2017) also found that DDX41 requires its helicase activity 

to regulate p21 expression at the translational level by generating a DDX41 missense 

variant (G521S) in the motif VI (which is essential for ATP hydrolysis and, thus, 

helicase activity of DEAD-box proteins) and comparing luciferase activities in 

response to either the mutant or the wild-type DDX41 protein in HCT116 cells.  

 

Finally, other DEAD box proteins such as DDX3 and DDX5 have also been 

demonstrated to control expression of p21. They transcriptionally up-regulate p21 

indirectly in a p53-dependent manner (Wu et al., 2011; Nicol et al., 2013). 

Furthermore, as observed in DDX41 and p21, DDX3, DDX5 and DDX17 have been 

described functioning as both tumour suppressor and as oncogene under different 
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intracellular conditions, depending on the cancer type, treatment modalities, and 

several co-factors (Chao et al., 2006; Yang et al., 2007; Botlagunta et al., 2008; 

Germann et al., 2012). Nonetheless, further investigation is required to clarify how 

defected DDX41 in the cells could result into the development of haematological 

malignancies (Kadono et al., 2016).  
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4.2 Results 

 

We have undertaken a combination of whole exome and targeted sequencing to 

characterise 55 families from our independent cohorts (DC, idiopathic BMF and 

familial MDS/AML registries). The targeted sequencing employed a newly designed 

familial MDS/AML gene panel which included the nine genes, where germline 

heterozygous variants have been identified in association with development of familial 

MDS/AML to date. These are RUNX1, CEBPA, TERC, TERT, GATA2, SRP72, 

ANKRD26, ETV6, and DDX41. This analysis has enabled us to identify four families 

harbouring heterozygous germline DDX41 variants (Figure 4.4A-D); three families 

have novel frameshift variants (c.155dupA, c.1586_1587delCA and c.719delTinsCG) 

and the fourth family has a recurrent missense variant in the initiation codon (c.3G>A, 

rs141601766) described previously by Polprasert et al. (2015) and Lewinsohn et al. 

(2015). Collectively these four families comprise seven cases of MDS and two cases 

of AML (age range, 40 to 70 years). These patients did not have any extra-

haematopoietic features and therefore represent “pure” MDS/AML (Table 4.2).  
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Table 4.2. Characteristics and family history of index cases 
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4.2.1 DDX41 germline variants identified in our cohort  

 

In Family 1 (Figure 4.4A), a novel heterozygous germline variant c.155dupA 

(p.Arg53Alafs*16 showed in Figure 4.4E) in DDX41 was identified in the 49 year-old 

female index case (III:1, Figure 4.4A) diagnosed with MDS, refractory anaemia with 

excess blasts (RAEB). Sanger sequencing revealed that her maternal aunt and uncle 

who both developed RAEB also harbour this frameshift variant (individuals II:3 and 

II:2, Figure 4.4A respectively). There are two asymptomatic carriers (individuals II:1 

and II:4, Figure 4.4A), supporting previous observations that haploinsufficiency for 

DDX41 shows variable penetrance (Lewinsohn et al., 2015). Further family history 

included her father who died of chronic myeloid leukaemia (CML), unlikely to be 

related to the DDX41 variant. 

 

In Family 2 (Figure 4.4B), the index case is a 60 year-old male (II:1, Figure 4.4B) with 

AML harbouring a novel heterozygous frameshift variant c.719delTinsCG 

(p.Ile240Thrfs*108), predicted to cause truncation of the protein and consequent loss 

of function. His mother died of AML (I:1, Figure 4.4B). Segregation analysis was not 

possible as there were no family samples available, however the variant allele 

frequency in the index case is 0.494 indicating heterozygosity. This variant is located 

in the DEAD box domain of DDX41, in a highly conserved motif that includes the ATP 

binding site (Figure 4.4E).   
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Figure 4.4. Familial MDS/AML caused by LoF DDX41 variants. A-D. Families with MDS/AML 

with variants in DDX41, their age at diagnosis and their respective Sanger sequencing traces. 

Affected individuals are coloured as follows: red, MDS; yellow, CML; black, AML; and green, 

other non-haematological cancer. E. Schematic of DDX41 protein showing the heterozygous 

variants identified in this study. CML, chronic myeloid leukaemia. 
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The 58 year-old female index case in Family 3 (II:2, Figure 4.4C) with MDS, has a 

novel frameshift deletion variant c.1586-1587delCA (p.Thr529Argfs*12) in the 

helicase domain of DDX41 (Figure 4.4E), which is again predicted to cause truncation 

of the protein. Her brother had tongue cancer (II:4, Figure 4.4C), her mother had MDS 

(I:1, Figure 4.4C) and her father had stomach cancer (I:2, Figure 4.4C). In the absence 

of samples of the index case’s parents, Sanger sequencing was undertaken on 

samples from her siblings and children. The siblings (II:3 and II:4, Figure 4.4C) of the 

index case do not harbour the variant c.1586-1587delCA, whilst her daughter (III:2, 

Figure 4.4C) is an asymptomatic carrier. This suggests that the index case and her 

mother (both with MDS) have disease associated with the DDX41 variant, while the 

non-haematological cancers seen in her brother (II:4, Figure 4.4C) and father (I:2, 

Figure 4.4C) are unrelated to DDX41.  

 

The index case of Family 4 (Figure 4.4D) is a 41-year-old female (II:1, Figure 4.4D) 

diagnosed with MDS/RAEB. Her father (I:2, Figure 4.4D) was also diagnosed with 

MDS at age 64 years. The heterozygous missense variant c.3G>A (p.Met1Ile – 

rs141601766, showed in Figure 4.4E) in DDX41 which segregated with disease in 

these two individuals has been reported in ExAC database in 6/117,464 alleles 

(http://exac.broadinstitute.org/, accessed 15th March 2016). Interestingly, both cases 

with the c.3G>A variant also carried a linked 5’UTR variant (c.-44G>A showed in 

Figure 4.4D) previously observed by Lewinsohn et al. (2015). They also demonstrated 

that HEK293 cells ectopically expressing the Met1Ile mutant protein used an 

alternative translation initiation site yielding a smaller cytoplasmatic DDX41 protein 

when compared to the nuclear full-length of 70kDa. Their experiments suggest that 

this isoform may occur naturally and has an altered location.  

 

http://exac.broadinstitute.org/
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4.2.2 Telomere length analysis in patients harbouring DDX41 

variants 

 

Kirwan et al. (2009) demonstrated that TERC/TERT familial MDS/AML patients have 

a significant shorter telomere compared to controls. To investigate whether DDX41 

familial MDS/AML families present with short telomeres, we measured the telomere 

length by monochrome multiplex quantitative PCR method (Cawthon, 2009) in the 

DDX41 MDS/AML patients which we had available sample. We found a slightly 

shorter telomere length in these patients compared to controls (p<0.05, Figure 4.5). 

However, there is no evidence supporting the role of DDX41 in telomere maintenance 

to date. 
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Figure 4.5. Telomere lengths are slightly shorter in affected individuals (p<0.05). Telomere 

lengths were measured by MMqPCR using matched age control. 
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4.3 Discussion  

  

Here, we reported four new MDS/AML families harbouring LoF variants likely to be 

disease causing in DDX41 gene with probands presenting slightly short telomeres 

when compared to controls. Further functional studies would be necessary to confirm 

pathogenicity of the variants in these families. Three families presented novel 

frameshift variant causing premature stop in the protein and one is a recurrent variant 

missense in the start transcription codon. Most of the variants found in DDX41 to date 

are heterozygous LoF that cause truncated protein, suggesting that DDX41 familial 

MDS/AML is caused by haploinsufficiency. Additionally, the frequent occurrence of 

asymptomatic carriers demonstrates the variable penetrance of DDX41 variants as 

well as its association with the long latency period of this disease. Indeed, DDX41 has 

only recently been associated with the development of familial MDS/AML and the 

identification of more families with germline DDX41 variants is important to further 

clarify the prevalence and penetrance of these variants, as well as the prognosis of 

individuals that develop the disease (Li et al., 2016).                           

 

The recurrence of the Met1Ile variant in the ExAC database poses an interesting 

question as to the causative role of DDX41 variants in MDS/AML. Excluding any non-

canonical and dubious calls in this database, LoF variants (including Met1Ile) are seen 

to occur at a cumulative frequency of 1 in 1,189 people (46 LoF variants in an average 

of 109,354 alleles). This is in stark contrast to the few LoF variants reported in RUNX1 

(7), CEPBA (0), GATA2 (0) and ETV6 (4). We also note that in a screen of 1,045 

patients with MDS and secondary AML, 16 patients (1 in 65) had germline LoF 

variants in DDX41 (Polprasert et al., 2015). These data indicate that rather than 

establishing a causal Mendelian link between germline LoF DDX41 variants and 

MDS/AML, it is better to think of them as genetic risk factors. Comparing the frequency 
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of LoF DDX41 variants seen in MDS and secondary AML with the frequency seen in 

ExAC database we obtain an odds ratio of 8.05 (p = 5.65x10-5, Fisher’s Exact Test). 

Allowing for a 1/100 probability of getting the disease, this would translate to a relative 

risk of 7.51. It is inevitable therefore, that MDS/AML driven by DDX41 LoF variants 

will sometimes appear as familial. 

 

Patients described in this study presented median age at diagnosis of 58 years 

corroborating with the observation that DDX41 families with MDS/AML develop the 

disease at an age characteristic of de novo disease and this late presentation makes 

it difficult to distinguish hereditary factors from aging and cumulative environmental 

exposures (Sekeres, 2010). The late onset of MDS/AML cases suggests that germline 

variants in DDX41 alone does not cause MDS/AML. This is supported by the 

incidence of several other somatic variants in genes known to cause sporadic 

hematologic malignancies and familial MDS/AML such as TP53, RUNX1, LUC7L2, 

DNMT3A and ASXL1 alongside to the predisposition for somatic DDX41 variants in 

patients carrying germline DDX41 variants seen in Polprasert et al. (2015) and Berger 

et al. (2017). Polymorphisms in GATA2, TERT, ANKRD26, ASXL1 and DNMT3A were 

also found in our patients carrying DDX41 germline variants. In addition, population-

based studies have revealed that clonal haematopoiesis might occur during aging, 

whereby TET2, DNMT3A, TP53 and ASXL1 are the most altered genes (Jaiswal et 

al., 2014).  

 

Works on DDX41 function have so far implied the involvement of this RNA helicase 

in different pathways such as immune response, mRNA splicing, ribosome biogenesis 

and regulation of protein translation. Intriguingly, none of the reported DDX41 

MDS/AML families presented impaired immune system. As consequence, DDX41 

involvement in immune response is yet to be linked to a disease phenotype.   
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Despite of the genetic underlying cause of familial MDS/AML in patients with germline 

variants in DDX41, its precise mechanism is far to be elucidated. Polprasert et al. 

(2015) using different assays in myeloid and primary cells, demonstrated a tumour 

suppressor role for DDX41 along with the findings that DDX41 interacts with several 

spliceosome proteins and that the somatic DDX41 variant p.R525H altered the native 

DDX41 interactome especially for major components in U2 and U5 spliceosomes. 

Furthermore, they demonstrated that DDX41 defects impaired mRNA splicing of 

several genes in patient-derived cells. Additionally, while investigating the cause of 

sporadic AML in three patients harbouring the somatic DDX41 p.R525H variant, 

Kadono et al. (2016) demonstrated as expected that this somatic variant is 

responsible for the loss of ATP hydrolysis of DDX41 as well as for the cell growth 

arrest in mutated CD34+ cells from cord blood. This cell cycle inhibition was caused 

by a disruption of pre-rRNA synthesis. It is not yet clear how this disruption occurs, 

although their data from a gene set enrichment analysis from mutated CD34+ and 

patient-derived cells showed that the cell cycle was inhibited by the suppression of 

E2F activity through the RB-E2F pathway. They concluded that this event coupled 

with age-dependent epigenetic alterations or additional somatic variants might 

collaborate with the somatic DDX41 p.R525H to cause AML in the analysed patients.  

 

Conversely, Peters et al. (2017) identified DDX41 as negative regulator of p21 mRNA 

translation p53-dependent and independently of stress suggesting an oncogene role 

for DDX41 as p21 functions in several cancer cell lines in an antiapoptotic manner. 

This result is consistent with data from a genome-scale RNA-mediated interference 

screen in HeLa cells (human epithelial cells) demonstrating reduced cell numbers 

following knockdown of DDX41 (Kittler et al., 2007). Although being contradictory to 

Polprasert et al. (2015) results, other DExD/H-box RNA helicases were described as 

oncogene or tumour suppressor depending on the cancer type, treatments modalities, 
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and several co-factors. Comparatively, DDX5 transcriptionally up-regulates p21 

indirectly in a p53-dependent manner (Bates et al., 2005; Chao et al., 2006) exhibiting 

tumour suppressor activity (Nicol et al., 2013) whilst demonstrating oncogenic 

functions when up-regulating pro-proliferative genes such as cyclin D1 (CCND1) and 

MYC proto-oncogene, bHLH transcription factor (MYC), as well as genes required for 

DNA replication (Yang et al., 2007). Interestingly, Polprasert et al. (2015) identified 

variants in other members of the DExD/H-box RNA helicase family in about 4% of 

patients in their cohort, while we have identified rare variants in these genes in 18% 

of ours suggesting that RNA helicase variants represent an entire new family of 

variants in myeloid neoplasms.   

 

Furthermore, Peters et al. (2017) demonstrated that DDX41 requires its helicase 

activity to regulate p21 expression at the translation level. Thus, the somatic p.R525H 

variant is possibly hypomorphic as it severely affects the helicase activity of DDX41 

based on its location. Therefore, this somatic variant probably disrupts most of the 

putative DDX41 functions described to date.   

    

In summary, we reported on novel germline heterozygous LoF DDX41 variants 

exhibiting variable penetrance in families with MDS/AML and tendency to short 

telomeres. Our analysis suggests that rather than establishing a causal Mendelian 

link between DDX41 germline LoF variants and MDS/AML it is appropriate to consider 

these as genetic risk factors. Furthermore, additional studies are required in order to 

clarify DDX41 function and its role in haematopoiesis and leukaemogenesis. 
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RTEL1 variants leading to myelodysplasia and 

liver disease 
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5.1 Introduction 

 

Due to the fact that there is a considerable clinical heterogeneity and overlapping 

features seen in patients with dyskeratosis congenita and Hoyeraal Hreidarsson 

syndrome and that these are bone marrow failure disorders that can develop into 

myelodysplasia and/or acute myeloid leukaemia, we analysed our cohort of patients 

with dyskeratosis congenita, Hoyeraal Hreidarsson, aplastic anaemia, 

myelodysplasia and/or acute myeloid leukaemia families in search of disease causing 

variants in genes in patients with these phenotypes.  

 

As a result, in this chapter we associate heterozygous loss of function variants in the 

telomere maintenance gene regulator of telomere elongation helicase 1 (RTEL1), with 

liver disease and myelodysplasia, for the first time. Previously germline biallelic 

variants in RTEL1 have been shown to cause dyskeratosis congenita and Hoyeraal 

Hreidarsson syndrome and germline heterozygous variants in this gene are known to 

cause pulmonary fibrosis (which is present in approximately 20% of dyskeratosis 

congenita patients). This study therefore extends the range of phenotypes associated 

with germline RTEL1 variants by adding myelodysplasia and liver disease to the 

clinical spectrum of patients. 

 

 

5.1.1 RTEL1 protein structure and function  

 

RTEL1 is an iron-sulphur (FeS) ATP-dependent DNA helicase with 1,243 amino 

acids, classified as a RAD3-related helicase, which belongs to the DEAH subfamily 

of the Superfamily 2 (SF2) helicases. The Rad3-related DNA helicase is located in 
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the N-terminal side of the protein and consists of four domains: two Rec-A-like motor 

domains; helicase domain (HD1 and HD2); a Fe-4S cluster; and an ARCH domain 

(Figure 5.1). RTEL1 is part of a subclass of FeS cluster-containing DNA helicases 

known as XPD family, which includes the proteins Xeroderma pigmentosum group D 

(XPD), DEAD/H-box helicase 11 (DDX11) and Fanconi anemia group J protein 

(FANCJ) (Rudolf et al., 2006).  

 

 

 

Figure 5.1. Schematic of RTEL1 protein. Putative functions of RAD3, Hamonin-N-like 

(HN_RTEL1) and PIP domains are shown (NP_116575; ENST00000508582). 

 

 

The XPD family of helicases are characterised by a FeS cluster composed of four 

conserved cysteine residues attached to iron ions. Studies in XPD protein revealed 

that its helicase activity is lost when the FeS domain is removed and that this domain 

recognises single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) (Pugh 

et al., 2008). Therefore, it is likely that the other FeS cluster containing helicases, 
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including RTEL1 also recognise ssDNA and dsDNA based on the sequence similarity 

of the helicase core domain (Uringa et al., 2011).  

 

In addition to its helicase motifs and FeS domain, RTEL1 has a conserved eight amino 

acid PIP box (Warbrick, 1998) (Figure 5.1). PIP box is a proliferating cell nuclear 

antigen interacting protein (PCNA) interaction motif and PCNA is a highly conserved 

eukaryotic protein that functions in DNA replication and acts as a cofactor for DNA 

polymerases.  

 

Variants in XPD, FANCJ and DDX11 cause the genetic disorders xeroderma 

pigmentosum (XP) (Andressoo et al., 2005), Fanconi anaemia (Bridge et al., 2005) 

and Warsaw breakage syndrome (van der Lelij et al., 2010), respectively. 

Furthermore, variants in RTEL1 cause dyskeratosis congenita (Walne et al., 2013a), 

Hoyeraal Hreidarsson syndrome (Ballew et al., 2013; Deng et al., 2013; Le Guen et 

al., 2013), familial pulmonary fibrosis (Kannengiesser et al., 2015; Cogan et al., 2015) 

and myelodysplasia and liver disease (Cardoso et al., 2017; work presented in this 

chapter).  

 

RTEL1 is essential in maintaining genome stability by disassembling DNA secondary 

structures formed during DNA repair, DNA recombination, and DNA replication and it 

is also essential in telomere maintenance (Barber et al., 2008; Vannier et al., 2014).  

RTEL1 interrupts D-loop formation in homologous recombination upon DNA double-

strand breaks (DSBs) formation (Barber et al., 2008; Uringa et al., 2011; Vannier et 

al., 2012) and it is also crucial for the disruption of G-rich DNA secondary structures 

and T-loops during DNA replication, thereby protecting telomere length (Ding et al., 

2004; Vannier et al., 2012; Kannengiesser et al., 2015). 
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5.1.2 RTEL1 in homologous recombination 

 

The stability of the genome is critically dependent on the coordinate action of DNA 

repair pathways during cell cycle (Chapman et al., 2012). Homologous recombination 

(HR) is an essential conserved process for dividing cells. In mitosis, HR is required 

not only for the accurate repair of DNA DSBs but also for the restart of stalled 

replication forks. In meiosis, HR is crucial for DSB repair and limitation of excessive 

crossing over, which is required for accurate chromosome segregation at the first 

meiotic division (Youds et al., 2010).  

 

In HR, the sister chromatid or the homologous chromosome is used as a template for 

repair through synthesis-dependent strand annealing pathway (SDSA). This involves 

temporary engagement of a homologous DNA duplex that serves as an information 

donor by acting as a template for DNA synthesis at the repair site (Pâques & Haber, 

1999).  

 

Studies have shown that in HR DNA repair, a DSB is rearranged to produce 3’ single-

stranded DNA tails that are bound by the DNA strand exchange protein RAD51 to 

form a nucleoprotein filament (Sung et al., 2003). These filaments are the catalyst for 

strand invasion into homologous duplex DNA, resulting in the formation of a 

displacement-loop (D-loop) structure (Kasamatsu et al., 1971) (Figure 5.2).  
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Figure 5.2. RTEL1 role in homologous recombination. A. Homologous recombination 

pathways of double-strand break repair. B. Model for RTEL1 promoting synthesis-dependent 

strand annealing producing a non-crossover repair product. Adapted from Villeneuve (2008) 

and Uringa et al. (2010). 

 

 

The invading 3’ end forms a D-loop and provides a primer for DNA synthesis, which 

can be resolved either through displacement of the invading strand from the D-loop 

and annealing to the other DSB end (synthesis-dependent strand annealing), 

resulting in a non-crossover repair product, or by the capture of the other resected 

end by the altered strand of the D-loop to form a double Holliday junction (dHJ). HR 

can be completed by endonucleolytic cleavage of the two HJs, which may result in a 

crossover repair product (Barber et al., 2008). 
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Therefore, HR repairs DSBs through either a crossover or a non-crossover event 

(Bishop et al., 2004). Meiotic DSBs are not randomly distributed along chromosomes 

but tend to occur in specific regions (Handel & Schimenti, 2010). This ensures that 

each pair of homologs gets at least one obligate crossover, however how specific 

DSBs are selected to become crossover is unknown. A mechanism called crossover 

interference regulates the distribution of crossovers along the chromosome in such 

way that crossovers tend to occur further apart from each other than expected by 

chance. Furthermore, crossover homeostasis occurs when the number of meiotic 

DBSs is reduced, the number of crossover is maintained at the expense of non-

crossover (Martini et al., 2006). 

 

Barber et al. (2008) demonstrated that RTEL1 actively reverts HR at an early stage 

after strand invasion by D-loop dissociation activity in the presence of calcium, 

promoting a non-crossover repair product (Figure 5.2) and inhibiting the formation of 

D-loops in vitro. Biochemical studies done by the same group revealed that human 

RTEL1 disrupts D-loops in HR in both mitotic repair and regulating meiotic 

recombination. Subsequent studies demonstrated that RTEL1 controls excessive 

crossover products in meiosis and thus impacts on the outcome of the HR reaction 

(Sung & Klein, 2006; Youds et al., 2010). 

 

Inappropriate HR can give rise to genome instability and cancer as a result of 

erroneous chromosomal rearrangements and the persistence of intermediate 

recombination structures such as D-loops that cannot be resolved. Hence, HR must 

be tightly regulated and temporally coordinated with cell-cycle progression and 

replication (Barber et al., 2008). HR is also important for the formation of T-loop 

structure at telomeres, which protects the chromosome end from degradation and 

inappropriate repair (Vannier et al., 2014). 
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Although, Barber et al. (2008) were the first to demonstrate that RTEL1 is a conserved 

anti-recombinase protein, RTEL1 was originally identified through genomic mapping 

of loci that control telomere length in mice (Zhu, et al., 1998). Then the role of RTEL1 

in telomere homeostasis was proposed by Ding et al. (2004) when Rtel1 knockout in 

mice was found to be embryonic lethal and inefficient removal of DNA secondary 

structures at telomeres could be the reason. This was based on the fact that RTEL1 

is most related to human FANCJ and C. elegans DOG-1, which unwind DNA 

secondary structures.   

 

 

5.1.3 RTEL1 in telomere maintenance  

 

Telomeres are DNA-nucleoprotein complexes that maintain genomic stability by 

protecting the ends of eukaryotic chromosomes (Uringa et al., 2011). In most 

eukaryotic species, telomeric DNA consists of short G-rich repeat sequences 

synthesized by telomerase (Greider & Blackburn, 1985; Singer & Gottschiling, 1994). 

Telomeric DNA in vertebrates consists of a double-strand region composed of 

TTAGGG repeats associated to proteins, forming the sheltering complex (de Lange, 

2005) (Figure 5.3).   

 

An important function of telomeres is to distinguish normal chromosome ends from 

DSBs, which avoid chromosome end-to-end fusions and inappropriate recombination 

events (de Lange, 2009). Most proteins that are specific for telomere maintenance 

(such as telomerase and RTEL1) are recruited to telomeres via the shelterin complex 

that bind directly or indirectly to telomere repeats (Blackburn, 2001; Vega et al., 2003). 
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Figure 5.3. Schematic of the human telomere structure and the shelterin complex. Adapted 

from Titia de Lange (2004). 

 

 

The shelterin complex includes telomere-specific binding proteins such as telomere 

repeat binding factor 1 (TRF1), telomere repeat binding factor 2 (TRF2), repressor 

activator protein 1 (Rap1), TINF2-interacting protein 2 (TTP1), protection of telomeres 

1 (POT1) and ACD, shelterin complex subunit and telomerase recruitment factor 

(ACD) that function to regulate telomerase and protect the telomeres (de Lange, 2005; 

Bauman & Cech, 2001). In the absence of such proteins, DNA repair-specific proteins 

are recruited to chromosome ends to avoid chromosome fusions (Mieczkowski et al., 

2003), chromosome end reallocation (Hackett & Greider, 2003) or other forms of 

potentially lethal DNA damage (Takai et al., 2003; Zhu et al., 2003). 

 

Telomeric DNA shortens in each round of DNA replication because of incomplete 

replication of lagging strand DNA (Lansdorp, 2005) and it could also be lost by C 

strand degradation (Makarov et al., 1997), oxidative stress (von Zglinicki, 2002), and 

possibly other mechanisms. Telomere length is maintained by telomerase, a reverse 

transcriptase that utilizes an associated RNA component (TERC) as a template to 

add de novo telomeric sequences to the 3’ end of the G-rich strand of the telomere 

(Greider & Blackburn, 1985; Shippen-Lentz & Blackburn, 1990), or by an alternative 
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telomere length (ALT) maintenance mechanism that utilises HR in some cancer cells. 

Cells with short telomeres that lack telomerase activity typically lose the ability to 

proliferate after a variable number of cell divisions (Blackburn, 2001). It is known that 

a minimum number of telomere repeats is required at each chromosome end for 

proper telomere function and to distinguish telomeres from DSBs. Excessive telomere 

shortening accelerates aging, but telomere elongation may facilitate cancer (Deng et 

al., 2013). 

 

The telomere consists of a 3’ single-strand G-rich overhang that invades into duplex 

telomeric TTAGGG repeats to form a T-loop structure (Griffith et al., 1999; Doksani et 

al., 2013). The T-loop structure requires both HR and shelterin complex for its 

assembly as they catalyse the invasion of the single-stranded telomere end into the 

subtelomeric region, displacing the identical sequence strand of the duplex telomeric 

DNA generating a D-loop at the base of the T-loop (Figure 5.4) (de Lange, 2004; 

Verdun & Karlseder, 2006 and Amiard et al., 2007). The D-loop is also an intermediate 

in the DNA repair pathway via homologous recombination as described previously. 

 

HR has been shown to cause deletion of the protective T-loop to permit telomere 

replication (Wang et al., 2004). RTEL1 unwinds the T-loop structure by disrupting D-

loop to allow telomerase access to complete chromosome end replication during cell 

cycle. Failing to open the T-loop for replication and/or transcription may lead to large 

telomeric deletions (Barber et al., 2008; Vannier et al., 2012).  
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Figure 5.4. T-loop structure. T-loop protects the telomere from being identified as a DSB and 

it is formed by the telomere end that folds back onto itself. D-loop is created when the 3’ 

overhang invades the double-stranded telomere. Black spiral indicates RTEL1. Adapted from 

Uringa et al. (2010). 

 

 

In the absence of RTEL1, the T-loops are inappropriately resolved by SLX4 nuclease 

complex, resulting in loss of the telomere as a circle (T-circle) (Figure 5.5). SLX4 

nuclease complex consists of SLX4 structure-specific endonuclease subunit (SLX4) 

and its associated nucleases MUS81 structure-specific endonuclease subunit 

(MUS81), ERCC excision repair 1, endonuclease non-catalytic subunit (ERCC1), and 

SLX1 structure-specific endonuclease subunit (SLX1). Studies have shown that the 

SLX4 nuclease complex is a Holliday junction-resolving enzyme that colocalises and 

interacts with the shelterin components TRF2 and Rap1 at telomeres (Muñoz et al., 

2009; Svendsen et al., 2009; Svendsen & Harper, 2010; Wilson et al., 2013).  It is 

possible that SLX4 nuclease complex is located at the telomeres to resolve persistent 

HR intermediates that may arise infrequently in normal cells. In contrast, SLX4 activity 

to resolve T-loops in RTEL1 deficient cells can also lead to telomere damages 

(Vannier et al., 2012). 
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Figure 5.5. Schematic model of the role of RTEL1 in T-circle formation. Adapted from Vannier 

et al. (2012). 

 

 

Vannier et al. (2012) observed that inactivation of RTEL1 in vertebrate cells resulted 

in a rapid accumulation of T-circles and changes in telomere length and telomere loss. 

Furthermore, RTEL1 is required to prevent 3’ single strand telomere end from 

invading the telomeres of other chromosomes. This might prevent telomere 
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recombination events, chromosome entanglements and subsequent breakage when 

attached chromosomes attempt to segregate during mitosis (Uringa et al., 2011).   

 

Mammalian telomeres are difficult regions to replicate and resemble fragile sites, 

which are hot spots for deletions and other chromosome rearrangements and are 

associated with an increased frequency of HR (Miller et al., 2006). Sfeir et al. (2009) 

showed that TRF1 recruits RTEL1 and Bloom syndrome RecQ like helicase (BLM) to 

prevent telomere fragility by resolving telomeric G-quadruplex structures (Figure 5.6). 

Although, Vannier et al. (2012) established that RTEL1 and BLM act in different 

pathways to facilitate telomeric DNA replication. 

 

In addition to the T-loop configuration, the guanine (G)-rich nature of the telomere 

poses a challenge for telomere maintenance by causing telomere fragility. In vitro, 

single-stranded G-rich telomeric sequences are capable of forming stable secondary 

structures called G-quadruplex (G4-DNA) DNA that prevent DNA replication (Vannier 

et al., 2012). In vivo, G4-DNA might form at telomeres during lagging strand 

replication, repair and transcription of G-rich telomeric DNA (Ding et al., 2004). 

Vannier et al. (2013) found that RTEL1 is able to unwind telomeric G4-DNA structures 

in vitro, suggesting that it also plays a role in suppressing telomere fragility. Thus, 

RTEL1 performs two functions essential for telomere integrity: it facilitates T-loop 

disassembly and telomeric G4-DNA unwinding.  

 

Additionally, RTEL1 is essential to facilitate DNA replication as described previously. 

The presence of RTEL1 within the replication foci is dependent on a PIP box 

interaction with PCNA, which is a processitivity factor for DNA polymerase and an 

integral component of the replisome during S-phase. Telomeric G4-DNA unwinding 

activity of RTEL1 is dependent on the replisome association between RTEL1 and 
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PCNA. Moreover, the RTEL1-PCNA interaction is also necessary to prevent 

replication fork stalling, which affects genome-wide replication (Vannier et al., 2013). 

 

 

 

Figure 5.6. Schematic model of the role of RTEL1 in suppressing G4-DNA structure. Adapted 

from Vannier et al. (2012). 
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5.1.4 RTEL1 in human diseases 

 

5.1.4.1 RTEL1 germline biallelic variants leading to 

dyskeratosis congenita and Hoyeraal-Hreidarsson 

syndrome 

 

Germline biallelic variants in RTEL1 are associated with dyskeratosis congenita (DC) 

and its severe clinical variant Hoyeraal Hreidarsson syndrome (HH), which are caused 

by telomere dysfunction (Walne et al., 2013a; Deng et al., 2013; Jullien et al., 2016).  

 

DC is also known as Zinsser-Engman-Cole syndrome and it is a rare inherited multi-

system bone marrow failure syndrome which is characterised by the presentation of 

abnormal skin pigmentation, nail dystrophy, oral leukoplakia and a variety of other 

abnormalities including bone marrow failure, pulmonary, gastrointestinal, endocrine, 

skeletal, urological, immunological and neurological abnormalities (Walne et al., 

2013a; Walne et al., 2016). Its clinical features can manifest at variable ages, even 

within the same family (Alter et al., 2012).  

 

Usually ectodermal dystrophy is the first abnormality to appear in DC patients followed 

by over 50% of patients developing haematopoietic disorders (Walne & Dokal, 2008). 

A number of DC cases have been described where the patient has presented with 

anaemia or other related bone marrow failure disease, pulmonary fibrosis and/or liver 

disease with high risk of cancer development (Alter et al., 2009). Some studies have 

shown that pancytopenia associated with DC develops more as a result of an intrinsic 

defect in the haematopoietic stem cells rather than as a result of a defective 

haematopoietic microenvironment (Marsh et al., 1992). 
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Furthermore, Fanconi anaemia (FA) and DC are related disorders and clinical 

features overlap between them such as pancytopenia and bone marrow hypoplasia 

as well as a range of minor abnormalities in addition to mental retardation and 

generalised growth impairment (Dokal & Vulliamy, 2008). However, there are also 

clear differences between these two diseases, the main distinguishing feature is the 

difference in chromosomal breakage in culture when peripheral blood lymphocytes 

are stressed with clastogenic agents such as diepoxybutane, with breaks commonly 

appearing in FA. Whereas, in the majority of cases, chromosome breakage analysis 

of DC is reported as normal (Dokal, 2006). The chromosomal instability seen in DC 

patient cells usually tends to be chromosomal rearrangements such as end-to-end 

fusions instead of chromosomal breakage seen in FA patients. 

 

HH is a rare and severe multi-system disorder which is characterised by early onset 

of bone marrow failure, intrauterine growth retardation, developmental delay, 

microcephaly, cerebellar hypoplasia and immunodeficiency (Vulliamy et al., 2006). 

There is a high frequency of mortality from cancer and pulmonary fibrosis in patients 

with DC and HH (Tummala et al., 2015), however bone marrow failure is the major 

cause of death in this group of patients. 

 

DC and HH are clinically and genetically heterogeneous diseases with defective 

telomere maintenance being their principal pathology and they are associated with 

short telomeres (Dokal, 2011). Approximately two thirds of patients have germline 

variants in genes encoding components of telomerase (TERT, TERC, DKC1, NOP10, 

NHP2) (Jullien et al., 2016; Deng et al., 2013; Ballew et al., 2013; Tummala et al., 

2015; Walne et al., 2013b), or other factors related to telomere maintenance (TINF2, 

WRAP53, CTC1, RTEL1, PARN, and ACD) (Walne et al., 2013a; Tummala et al., 

2015 and Cogan et al., 2015). Rare damaging variants in these genes segregate with 
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disease in autosomal dominant (AD), autosomal recessive (AR) or X-linked (XL) 

recessive patterns of inheritance. The molecular basis of the various DC and HH 

pathologies is therefore thought to be an accelerated telomere shortening and a 

consequent impairment of cell proliferation (Pereboeva et al., 2013). Vulliamy et al. 

(2004) observed disease anticipation associated with progressive telomere 

shortening in the development of AD form of DC in families harbouring variants in 

TERC, which implies that the disease become more severe in successive generations 

and the telomere lengths were significantly shorter in the affected children compared 

to their affected parents. Genetic anticipation has been reported also in TERT and 

TINF2 pedigrees by Armanios et al. (2005) and Savage & Bertuch (2010). In addition, 

haploinsufficiency is the mechanism that leads to the AD-DC phenotype in most cases 

(Armanios et al., 2005).  

 

Walne et al. (2013a) and Deng et al. (2013), demonstrated that defective human 

RTEL1 has a damaging effect on telomere maintenance, suggesting that incorrect 

resolution of T-loops is a mechanism for telomere shortening in humans. 

 

Overall, about 30% of DC and HH cases remain genetically uncharacterised 

highlighting the need to search for new disease causing genes (Tummala et al., 2015). 

 

 

5.1.4.2 RTEL1 germline heterozygous variants leading to 

pulmonary fibrosis 

 

Up to 20% of cases of idiopathic interstitial pneumonia (IIP) occur in two or more 

members of the same family, comprising the syndrome of familial interstitial 

pneumonia (FIP). The most common and severe form of interstitial pneumonia is 
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pulmonary fibrosis; which is a progressive scarring of the alveolar interstitium, often 

leading to hypoxemic respiratory insufficiency. It is characterised by an accumulation 

of extracellular matrix and fibroblasts in the distal lung (Kannengiesser et al., 2015). 

Approximately one in five cases of pulmonary fibrosis run in families (King et al., 

2011).  

 

Familial and sporadic pulmonary fibrosis diseases are clinically and histologically 

indistinguishable, but familial pulmonary fibrosis tends to present at an earlier age and 

might differ slightly in radiological pattern (Spagnolo et al., 2014).  The age of disease 

onset is between 50 to 70 years and it can be associated with environmental 

exposures, such inhalation of fibrogenic dusts or aerosolised organic antigens; drug 

toxicity; systemic diseases such as connective tissue diseases; by genetic variation; 

or occur isolated, sporadic disease without extra-pulmonary involvement (as seen in 

IIP) (Steele, et al., 2005).  

 

Rare heterozygous variants causing FIP were identified in genes involved in 

pulmonary surfactant metabolism such as surfactant protein A2 (SFTPA2), surfactant 

protein C (SFTPC) and ATP-binding cassette subfamily A, member 3 (ABCA3) (Wang 

et al., 2009; Thomas et al., 2002; Nathan et al., 2012), and in genes related to 

telomere biology such as TERT, TERC, dyskerin (DKC1), TINF2, PARN poly(A)-

specific ribonuclease (PARN), RTEL1 and nuclear assembly factor 1 

ribonucleoprotein (NAF1) (Armanios et al., 2007; Tsakiri, et al., 2007; Kropski et al., 

2014; Fukuhara et al., 2013; Stuart et al., 2015; Cogan et al., 2015; Stanley et al., 

2016). These variants are reported to segregate with an autosomal dominant pattern 

of inheritance and are associated with short telomeres and variable penetrance. Short 

telomeres are commonly identified in blood cells in patients with sporadic and FIP 

also in the absence of known variants in telomere-related genes. 
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Interestingly, variants in TERT, TERC, DKC1, TINF2, PARN, and RTEL1 were 

primarily described being responsible for DC and HH and pulmonary disease is found 

in 20% of DC patients with variants in these genes. However, the mechanism by which 

telomerase dysfunction and short telomeres lead to lung fibrosis is unknown. It is 

possible that telomerase pathway variants lead to premature senescence of 

progenitor cells of the distal lung, resulting in a proliferative defect and failure of repair 

mechanisms following injury to the alveolar epithelium. Further studies are necessary 

to clarify the mechanistic role of RTEL1 and the other genes involved in telomere 

biology in the pathogenesis of lung fibrosis (Cogan et al., 2015; Kannengiesser et al., 

2015). 
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5.2 Results 

 

By undertaking whole exome and targeted sequencing in 429 patients with diverse 

bone marrow failure phenotypes (DC, HH, AA and MDS/AML) we have identified 35 

patients with 27 RTEL1 variants (canonical transcript, NM_032957.4, NP_116575.3, 

1,243 amino acids). These are detailed in Table 5.1. Based on the minor allele 

frequency (MAF) in the population reported on ExAC database, the type of variant 

(missense, nonsense and indels), the telomere length, the Combined Annotation 

Depletion (CADD) score (Kircher et al., 2014), and their segregation as well as 

information found in the literature, we classified these variants into four different 

groups: (1) biallelic variants, (2) heterozygous loss of function (LoF) variants, (3) 

heterozygous missense variants of unknown significance and (4) heterozygous 

missense variants likely to be benign.  
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Table 5.1. RTEL1 variants identified in 35 index cases 
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Table 5.1. Continued 
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5.2.1 RTEL1 germline variants identified in our cohort  

 

5.2.1.1 Patients with biallelic RTEL1 variants  

 

Four homozygous and one compound heterozygous (Table 5.1 and 5.2) were 

identified in five patients from unrelated families (Families 1 to 5), two of whom 

presented with AA, two with DC and one with HH. The six variants identified fall in the 

C-terminal half of the protein (Figure 5.7). 

 

 

 

Figure 5.7. RTEL1 variants. Biallelic variants are shown in blue, and heterozygous LoF 

variants are shown in red. Conserved protein domains (NP_116575.3) include the P-loop 

NTPase (yellow); the Rad3 domain (green) that includes the DEAD2 domain (red) and the 

Helicase C-terminal domain (purple); Harmonin N-like domain (blue); PIP-box – the 

proliferating cell nuclear antigen interacting protein domain (black). 
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Table 5.2. Characteristics of families with biallelic RTEL1 variants 
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The proband of Family 1 (II:2, Figure 5.8) was a 36 year old female presenting with 

AA and short stature who had the homozygous missense variant, c.2942 G>A, 

p.R981Q. This RTEL1 variant is seen in the ExAC database in a heterozygous state 

with a frequency of 1 in 119,934. Hence, the homozygous occurrence of c.2942 G>A, 

p.R981Q is predicted to be extremely rare and in the context of very short telomeres 

and a high CADD score (Table 5.1), we believe this variant is likely to be disease 

causing in this patient.  

 

In Family 2, the female proband (III:3, Figure 5.8) had AA and short telomeres (Table 

5.1 and 5.2). She had a bone marrow transplant at age 12 years from her HLA-

matched brother, but developed significant complications following post-transplant. 

This included bone marrow failure and pulmonary fibrosis and she died aged 16 years. 

Her donor (brother) went on to develop AA which was responsive to therapy with 

danazol (III:4, Figure 5.8). The proband’s maternal grandmother died of pulmonary 

fibrosis aged 70 years (I:1, Figure 5.8). Both siblings, offspring of a consanguineous 

marriage, were homozygous for the missense variant c.3286 G>T, p.G1096W, seen 

in ExAC in a heterozygous state with the frequency of 1 in 118,164. We believe this 

variant is pathogenic in this case. The proband’s asymptomatic parents in their forties 

were heterozygous for this variant (II:1 and 2, Figure 5.8).  

 

The proband of Family 3, was a 14-year-old male (II:2, Figure 5.8) from a 

consanguineous marriage with features of DC as well as very short telomeres (Table 

5.1 and 5.2). He was homozygous for the novel missense RTEL1 variant c.2300 G>A, 

p.R767Q, which we believe to be disease causing. His asymptomatic parents (I:1 and 

2, Figure 5.8) and one of his asymptomatic younger brothers (II:6, Figure 5.7) were 

all heterozygous for this variant.  
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Figure 5.8. Families with biallelic RTEL1 variants and sequencing traces of index cases. 

Families 1, 2, 3 and 5 are homozygous; Family 4 is compound heterozygous. The genotyping 

is denoted as follows: wild-type (+/+), heterozygous (+/-) or biallelic (-/-). The age at study is 

given in years. Affected individuals are coloured in black. NA: not available. 
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The proband of Family 4 (II:2, Figure 5.8) was a 15-year-old female with DC with short 

telomeres (Table 5.1 and 5.2). She was found to harbour a compound heterozygous 

variant, a novel in-frame deletion c. 2785_2787delCAG, p.Q929del and a recurrent 

nonsense variant c.2992 C>T, p.R998* (MAF: 2 in 119,914 in ExAC).  

 

The proband (II:4, Figure 5.8) in Family 5 was diagnosed with HH when she was 2 

years old. She came from a family with history of multiple consanguineous marriages 

through generations. She had intrauterine growth restriction, bone marrow failure, low 

B cell numbers, developmental delay, cerebellar hypoplasia. She also had ataxia and 

feeding and swallowing difficulties. She was found to be homozygous for a novel 

missense variant, c.1716 C>G, p.I572M. However, it is very unlikely this variant is 

causing the severe phenotype observed, as her asymptomatic mother (I:1, Figure 5.8) 

is also homozygous for this variant. We therefore, classified this variant as a likely 

benign. 

 

 

5.2.1.2 Patients with heterozygous loss of function RTEL1 

variants  

 

Three LoF RTEL1 variants (Table 5.1 and 5.3) were found in patients from four 

unrelated families (Families 6-9, Figure 5.9), one of whom presented with DC and the 

others with MDS and/or liver disease. Liver disease and myelodysplasia/BMF were 

the common clinical feature in families 6, 8 and 9 (Figure 5.9). The clinical features of 

the four families with LoF variants in RTEL1 are summarised in Table 5.3. The three 

LoF variants are seen to cluster at the C terminal end of the harmonin domain of 

RTEL1 (Figure 5.7).   
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Table 5.3. Characteristics of families with LoF RTEL1 variants 
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The proband of Family 6 (II:2, Figure 5.9) was diagnosed with DC at age 77 years. 

He progressively developed pulmonary fibrosis, liver disease and bone marrow failure 

(pancytopenia) with some dysplasia. He died shortly after diagnosis with multi-system 

complications. He harboured the heterozygous nonsense RTEL1 variant c.3028 C>T, 

p.R1010* (MAF: 10 in 119,716 in ExAC), reported previously in patients by Ballew et 

al (2013) and as a compound heterozygote by Moriya et al (2016). He had three 

daughters and one son (age 54, 52, 49 and 47 years, respectively), and all but one of 

his daughters (III:4, Figure 5.9) harboured this variant. Among his three children 

harbouring this nonsense variant, one of his daughters had features of liver disease 

(III:3, Figure 5.9), the other daughter and son were asymptomatic (III:2 and 5, Figure 

5.9). The variant was also identified in two of his asymptomatic granddaughters (IV:3 

and 6, Figure 5.9).     

 

The proband in Family 7 (II:1, Figure 5.9) was a 45 years old female with MDS, nail 

dystrophy and short telomeres (Table 5.1 and 5.3). She carried the same 

heterozygous nonsense variant c.3028 C>T, p.R1010* as seen in Family 6.  

 

In Family 8 (II:1, Figure 5.9), the proband was a 55-year-old male with MDS and liver 

disease, which progressed to cirrhosis and required liver transplantation. He was 

heterozygous for the nonsense variant c.2992C>T, p.R998* (MAF: 2 in 119,914 in 

ExAC) which has been reported as a compound heterozygote causing DC and HH 

(Walne et al., 2013a; Deng et al., 2013 and Ballew et al., 2013) and as a heterozygote 

causing familial interstitial pneumonia (Cogan et al., 2015). His brother (II:2, Figure 

5.9) aged 47 years harboured the same nonsense variant and also had MDS and liver 

cirrhosis.   
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Figure 5.9. Families with heterozygous LoF RTEL1 variants and sequencing traces of index 

cases. The genotyping is denoted as follows: wild-type (+/+) and heterozygous (+/-). The age 

at study is given in years. Affected individuals are coloured in black. NA: not available. 
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The proband of Family 9 (III:2, Figure 5.9) was diagnosed with MDS. He had liver 

disease, interstitial lung disease, abnormal skin pigmentation and severe 

osteoporosis. He died aged 54 years from multi-system complications. He harboured 

a novel 16bp deletion that caused a frameshift and a premature stop codon 

(c.3012_3028del, p.E1005Kfs*80). His parents were asymptomatic but his maternal 

grandmother (I:1, Figure 5.9) died aged 46 years with liver and lung disease. His 32-

year-old daughter (IV:1, Figure 5.9) was an asymptomatic carrier of the same variant.  

 

 

5.2.1.3 Families with heterozygous variants of unknown 

significance and heterozygous likely benign variants  

 

A variant might be of unknown significance (VUS) when there is no validated 

association of this variant to a disease risk. In this study, we have identified 12 

unrelated patients harbouring heterozygous missense variants of unknown 

significance (Table 5.1 and 5.4), as these variants are missense that are either not 

seen in the ExAC population or are present at an allele frequency of less than 1 in 

10,000. This makes it difficult to assign a clear status to these and hence we have 

categorised them as VUS. We notice that there is lower average CADD score for 

these VUS (average 15.43, range 0.001 – 33), compared to those that we believe to 

be disease causing (average 30.13, range 12.9 – 37, Table 5.1). 

 

Additionally, 14 unrelated patients were identified with nine heterozygous missense 

variants that we believe to be likely benign (Table 5.1 and 5.4) due to their occurrence 

at an allele frequency of less than 1 in 3,000 in the ExAC population.   
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Table 5.4. Characteristics of index cases with heterozygous VUS and likely benign RTEL1 

variants 
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5.2.2 Short telomeres and T-circles in distinguishing the pathogenic 

status of RTEL1 variants 

 

We have measured telomere lengths by MMqPCR (Cawthon, 2009) in peripheral 

blood DNA acquired from all patients bar one, which had poor DNA quality (Table 5.1, 

Figure 5.10).  

 

 

 

Figure 5.10. Age adjusted telomere length of RTEL1 patients. Age adjusted telomere length 

values (delta-tel) were measured by subtracting the observed T/S ratio from the expected T/S 

ratio, using the equation derived from the line of best fit through the plot of T/S ratios from 

healthy control samples against age. Patients with TERC variants are included as a group with 

known short telomeres. Centiles were calculated from the control delta-tel values as follows: 

99th centile = 0.95, 90th centile = 0.42, 50th centile = 0.06, 10th centile = -0.34, 1st centile = 

-0.54. The different genotypes are represented as follows, TERC: circles (n=44); RTEL1 

variants: biallelic: squares (n=5); loss of function (LoF): triangles (n=6); variants of unknown 

significance (VUS): diamonds (n=12); likely benign: inverted triangles (n=13); controls: grey 

squares (n=202). 
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In agreement with previous studies reporting the impact of RTEL1 variants on 

telomere length, we observed that patients with biallelic variants and those with 

heterozygous loss of function variants had significantly shorter telomeres than 

controls as determined by the age-adjusted T/S ratio (p = 0.0005 and p = 0.003 

respectively, 1 way ANOVA with Dunn’s multiple comparison test). The median age 

adjusted T/S ratio for the biallelic group is below the 1st centile (-0.6 compared with -

0.54) and for the LoF group is below the 10th centile (-0.43 compared with -0.34). It is 

interesting to note that in the VUS group there appears to be two subgroups. The 

lower four points correspond to the variants p.G664V, p.P908R, p.R981W and 

p.T1377A. Three of these variants affect key domains within the protein and may 

impact on the function of RTEL1. These are the helicase C domain (G644V) and the 

harmonin domain (P908R and R981W). 

 

The T-circle amplification assay (Zellinger et al., 2007) was undertaken in patients 

where good quality DNA was available and revealed a significant increase in intensity 

of T-circle formation in a patient harbouring RTEL1 LoF variant p.R998* (Family 5.8, 

Figures 5.9 and 5.11) in comparison to patient with RTEL1 p.R70C, which is a variant 

of unknown significance (patient 13 in Table 5.1). These studies suggest that LoF 

status in heterozygous RTEL1 variants could be established based on the T-circle 

formation assay and most importantly these LoF variants impact RTEL1 function in 

telomere maintenance. 
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Figure 5.11. T-circle amplification using Phi29 polymerase detected by Southern blot analysis. 

Samples: p.R70C - patient with sporadic DC carrying this variant of unknown significance 

(patient 13 in Table 5.1); p.R998* - proband of Family 8 carrying this LoF variant (Table 5.1); 

positive control - genomic DNA extracted from WI-38 VA-13 cells (human fibroblasts), known 

to produce T-circle. 
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5.3 Discussion 

 

In this study, we have undertaken analysis of RTEL1 in 429 patients with DC, AA, 

MDS and related phenotypes. We have identified 35 variants, where 5 are biallelic (4 

homozygous and 1 compound heterozygous) and 30 are heterozygous. Nine variants 

are novel. As a result, we have been able to probe further into the relationship 

between variants in the RTEL1 gene and this spectrum of disease. 

 

The initial disease association was made when biallelic RTEL1 variants were shown 

to cause early onset of a severe form of DC and HH (Walne et al., 2013a; Jullien et 

al., 2016; Deng et al., 2013; Ballew et al., 2013). Herein, we describe five new biallelic 

families. Interestingly, in one of these the index case presented in adulthood with 

aplastic anaemia. In another, the index case presented with HH at the age two years, 

but in this patient, we consider the homozygous RTEL1 variant to be likely benign 

because her mother who was asymptomatic was also homozygous for this variant 

(Family 5.8). 

 

In amongst the earlier papers, there was an exceptional pair of sibs, both 

heterozygous for an RTEL1 variant who presented with a severe phenotype (Ballew 

et al., 2013). Since then, several papers have clearly shown that heterozygous 

variants in RTEL1 are more often associated with pulmonary fibrosis, occurring later 

in life, often in large families, but with variable penetrance (Kannengiesser et al., 2015; 

Cogan et al., 2015; Stanley et al., 2016). The frequency of heterozygous RTEL1 

variants in idiopathic pulmonary fibrosis as a whole is yet to be firmly established. 

 

In this study, we have extended the phenotype associated with heterozygous loss of 

function RTEL1 variants to include late onset of MDS and liver disease (Families 6, 8 
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and 9, Figure 5.9). This triad of late onset pulmonary, haematological and liver 

disease is very reminiscent of that established for heterozygous variants in another 

telomere related gene, TERT, which can also present with a severe early onset 

disease when the variants are biallelic. 

 

The families we present clearly illustrate the variable penetrance of heterozygous 

RTEL1 variants. This is exemplified by Family 6 where the index case had DC 

features, which did not become apparent until age 77 years. His daughter had liver 

disease at age of 52 years, and segregation analysis identified four asymptomatic 

carriers at age below 50 years old. This family highlights not only variable penetrance 

of heterozygous LoF variants but also suggests a late onset disease predisposition. 

The same RTEL1 variant was identified in Family 7, where it was associated with 

MDS and nail dystrophy in the 45 years old index case.  Interestingly, this is the same 

variant as reported by Ballew et al. (2013) in a heterozygous state as being the cause 

of HH in two siblings (aged three and one years) with very short telomeres. In that 

family, the mother also harboured the variant and had short telomeres but was 

asymptomatic.  

 

Indeed, in most of the families where the index case has disease due to biallelic 

RTEL1 variants, both here and in previous reports, the heterozygous parents are 

generally asymptomatic. However, we must now note that these individuals may 

nevertheless be predisposed to developing disease in their later years. This is 

suggested by Family 2 (with p.G1096W) where there is a history of pulmonary disease 

in the grandmother in her 70s and for the R998* variant which has been seen in both 

severe recessive (Walne et al., 2013a; Deng et al., 2013 and Ballew et al., 2013) and 

late onset dominant settings (Family 7 and Cogan et al., 2015). Thus, it is important 

to be careful when counselling families. 
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Previously we reported the recurrent missense variant c.2941C>T; p.R981W (MAF: 6 

in 119,930 in ExAC) as a compound heterozygote in three young probands (under 12 

years old) from unrelated families causing HH (Walne et al., 2013a). Here, we 

observed the same variant in a heterozygous state in a 24-year-old patient with AA 

from a consanguineous family (patient 14 in Table 5.1). In this case, there is no strong 

evidence that this variant (c.2941C>T; p.R981W) is the cause of AA on account of the 

relatively high frequency of this variant in the ExAC population. However, we do note 

the short telomeres in this patient and the very high CADD score of this variant, 

indicating the possibility that it acts as a risk factor for disease.  

 

A key point arises, therefore, when a patient presents with an RTEL1 variant, as to 

whether or not it should be considered pathogenic, as there are a multitude of rare 

coding RTEL1 variants in the population at large. Using the ExAC database, the sum 

of number of very rare heterozygous coding alleles (at a frequency of <0.0001) is 

1,195 in an average of approximately 56,700 people. This is significantly lower than 

the number very rare coding variants that we have identified in our cohort (22 in 429 

patients, Fisher’s exact test, P = 0.003), but on a case-by-case basis this background 

poses a problem. 

 

In addition to looking at the ExAC database for population frequency there are several 

parameters that we have used to assign pathogenic status. The association of the 

rare variant with the pathology is a given, if the patient under review is presenting with 

one the RTEL1 related disease features. Telomere length measurement is now widely 

used, and our experience here is that the heterozygotes, who are often more elderly, 

may have telomere lengths that are short, but not necessarily very short. We have 

also looked at T-circles, and shown that in some cases their presence is clearly 

increased where there is a LoF variant compared to a common missense variant. 
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However, this test is not very ‘user-friendly’ and a normal range has not been 

established. The in silico prediction tools are helpful and improving, but remain a 

guide, and by no means a definitive test.  

 

Finally, the segregation of the variant with disease can be decisive. This is more often 

the case in exclusion rather than inclusion as we show in Family 5, where the index 

case presented with HH and a novel homozygous missense variant which was 

predicted to be damaging. However, this did not segregate with the disease in this 

family as the asymptomatic mother is also homozygous for this same variant. This 

suggests that this homozygous RTEL1 variant is not disease causing in this index 

case. No other candidate genes were identified in this family by whole exome 

sequencing. 

 

In summary, this study identifies several important observations. Firstly, heterozygous 

LoF RTEL1 variants are associated with myelodysplasia and liver disease in 

adulthood. Secondly, biallelic RTEL1 variants can present with just bone marrow 

failure in adulthood. Thirdly, many heterozygous variants and even some biallelic 

RTEL1 variants are likely benign. Therefore, in order to assign an accurate status to 

each RTEL1 variant, detailed clinical and laboratory studies are necessary. 

 

  



202 
 

 

 

 

 

 

 

 

 

 

Variants identified in familial MDS/AML 

candidate genes   

 

  



203 
 

6.1 Introduction 

 

Whole exome sequencing (WES) entails the capture, sequencing and analysis of all 

protein coding genes in the human genome. Regardless of recent improvement in 

databases and software tools, interpretation of damaging variants and variants of 

unknown significance (VUS) is one of the major challenges presented by WES data 

analysis. This technique generates a long list of variants with a large number of them 

likely to have no known clinical significance. Nevertheless, WES can be used as a 

diagnostic approach for the identification of genetic alterations in patients with 

suspected inherited disorders. In this chapter, we present the analysis we have 

performed on our WES data to search for the gene responsible for the disease in our 

uncharacterised MDS/AML families. 

 

 

6.1.1 Genetically uncharacterised familial MDS/AML patients 

 

In our cohort (2018) there are 68 genetically uncharacterised MDS/AML families. 

Whole exome sequencing was performed on a total of 51 unrelated cases in 42 of 

these MDS/AML families (Figure 6.1).  Initially, WES was performed in 19 MDS/AML 

families and this number was expanded at different times during the course of this 

study to include the new MDS/AML families recruited into our cohort. Therefore, data 

analysis was undertaken at different times under various criteria to try to identify the 

underlying disease causing gene in these families. 
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Figure 6.1. All MDS/AML families with WES done. Affected individuals are coloured as follows: 

red: MDS, black: AML, blue: AA, grey: thrombocytopenia, green: other leukaemia/cancer. 

Note: families with MDS/AML FML047 and FML051 have no family trees due to lack of 

sufficient family information. 
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DNA or blood samples on our familial MDS/AML cohort came from all over the world 

and it constitutes patients who presented at different ages at the time of diagnosis 

ranging from newborn to adulthood. Most index cases had undergone prior genetic 

testing, which could consist of chromosomal analysis, DNA sequencing studies, 

telomere length assays, chromosomal breakage analysis or a combination of tests. 

Available samples of parents, siblings, cousins or uncles/aunties were sequenced in 

approximately 30% of the cohort, in the remaining 70% of the families principally the 

index case has been analysed. 

 

  



206 
 

6.2 Results 

 

6.2.1 Data analysis   

 

Analyses of the generated WES sequence data has been undertaken assuming an 

autosomal dominant (AD) or an autosomal recessive (AR) pattern of inheritance 

depending on which group of MDS/AML families were analysed. This is because two 

families of our cohort are likely to have an AR pattern of inheritance in which there 

was history of consanguinity (Figure 6.1) and, additionally four other MDS/AML 

families could be analysed as AD or AR due a lack of family information on them 

(Figure 6.1).  Multistep filtering was used to select potentially damaging variants in 

canonical transcripts of putative candidate disease genes on the basis of allele 

frequency, functional consequence and occurrence in multiple unrelated families 

(Figure 6.2). Depending on the set of criteria selected at this point, different candidate 

genes can be proposed.  

 

In the AD analysis, WES data was firstly filtered for novel germline heterozygous 

variants when compared against the Exome Sequencing Project (ESP) and 1000 

Genomes Project (1000G) databases, which are publicly available data sets of human 

DNA sequence variation. Exome Variant Server (EVS) was created as part of the 

National Heart, Lung, And Blood Institute Exome Sequencing Project and contains 

frequency information spanning 6,503 exomes (http://evs.gs.washington.edu/EVS/), 

while 1000G includes individual-level genotype data from whole-genome and exome 

sequence data for 2,504 individuals (http://www.internationalgenome.org/). 

Subsequently, allele frequency was verified against ExAC as it is approximately 10 

fold bigger than the former databases.  

http://www.internationalgenome.org/
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Figure 6.2. Workflow of a typical autosomal dominant analysis of WES data. 

 

 

It is known that the efficacy of filtering of candidate disease variants by frequency 

depends on the size of the data and its ancestral diversity data (Lek et al., 2016). For 

this reason, we used the ExAC database to filter rare variants (novel, MAF≤0.001 or 

MAF≤0.0001) out of our WES data. As described elsewhere ExAC is an aggregation 

of high quality exome data for 60,706 individuals of diverse ancestries. This catalogue 

of human genetic diversity contains an average of one variant every eight bases of 

the exome (http://exac.broadinstitute.org/). For the AR analysis, the variants were 

filtered for rare germline biallelic variants (MAF≤0.001) when compared against the 

databases mentioned above. 
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More than 96% of the variants selected were confirmed by Sanger sequencing. The 

remaining 4% variants were found to be false positive results and these usually would 

be calls that had unequal allele fractions, poor mapping scores, or sequence data 

indicating suboptimal alignment to the reference sequence. Positive cases met each 

of the diagnostic criteria regarding variant severity, appropriate inheritance patterns 

(when other family member’s data were available), and disease-phenotype 

concordance. The candidate gene description in this chapter was carried out using 

NCBI - National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/), 

UniProt (http://www.uniprot.org/), OMIM - Online Mendelian Inheritance in Man 

(https://www.omim.org/) and ExAC databases. 

 

 

6.2.1.1 All MDS/AML families  

 

Analysis of WES data of 30 MDS/AML families was performed assuming autosomal 

dominant as pattern of inheritance. A total of 34,888 variants somewhat rare 

(MAF≤0.05) variants were found by comparison with the current reference haploid 

human genome sequence (human genome 19). Of these, 8,100 were novel non-silent 

variants compared against ESP and 1000G project databases and further filtering 

revealed 3,857 variants segregating within families (when samples from more than 

one member were analysed, which was undertaken in 12 families). These putative 

germline variants were than filtered by rare allele frequency (MAF≤0.0001) compared 

against ExAC. Pathogenicity of the selected variants was assessed using predictable 

damaging tools such as Polyphen2 (http://genetics.bwh.harvard.edu/pph2/) and 

MutationTaster2 (http://www.mutationtaster.org/). As a result, 12 candidate genes 

with probably damaging rare heterozygous variants were identified in at least three 

MDS/AML families (Table 6.1) and 22 candidate genes with probably damaging rare 

http://www.uniprot.org/
https://www.omim.org/
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heterozygous variants were identified in at least two MDS/AML families (Table 6.2). 

Interestingly, 10 candidate genes harbouring rare putative germline LoF variants 

(including stopgain, frameshift indel and variants within the consensus splice site 

dinocleotides) were identified in at least two unrelated MDS/AML families (Table 6.3). 

Genes known to be associated with another AD disorder were removed. After all this 

filtering two candidate disease genes harbouring probably damaging rare 

heterozygous variants were selected (Table 6.4 and Figure 6.3). Detailed description 

of these candidate genes is shown in Table 6.5. Unfortunately, there is insufficient 

evidence to date to conclusively say whether any of these can be definitively 

considered as the disease causing gene in our families.  Hence, these probably 

damaging rare heterozygous variants identified in the selected candidate genes 

(Table 6.4 and 6.5) are currently considered to be of unknown significance.  
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Figure 6.3. Workflow of the autosomal dominant analysis of WES data of 30 uncharacterised 

MDS/AML families. 
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Table 6.1. Rare possibly damaging variants (MAF≤0.0001) in the same gene in at least three 

MDS/AML families 
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Table 6.2. Rare possibly damaging rare heterozygous variants (MAF≤0.0001) in the same 

gene in at least two MDS/AML families 
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Table 6.2. Continued 
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Table 6.3. Rare heterozygous loss of function variants (MAF≤0.0001) in the same gene in at 

least two families 
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Table 6.4. Candidate genes with possibly damaging rare heterozygous variants 

(MAF<0.0001) in 3 or more families and not associated with other AD disorders 
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Table 6.5. Description of the candidate genes with possibly damaging rare heterozygous 

variants (MAF≤0.0001) in 3 or more families 
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6.2.1.2 Family FML012  

 

Thirteen MDS/AML families had WES performed in more than one family member 

(FML009, FML012, FML029, FML031, FML035/FML073, FML036, FML054, FML061, 

FML075, FML081, FML109 and, FML112 seen in Figure 6.1). Here, we describe the 

autosomal dominant analysis of WES data of family FML012, specifically from 

individuals III:7 and the index case IV:2 (Figure 6.4). This is a large family with 

MDS/AML history along with various solid cancers. The index case (IV:2, Figure 6.4) 

was a male who died of ALL at age 36 years. His grandmother (II:3, Figure 6.4) died 

of AML at the aged 46 years and his great grandfather (I:2, Figure 6.4) also died of 

AML at age 50 years. One of his grandaunts (II:5, Figure 6.4) had stomach cancer 

and another grandaunt had pancreatic cancer (II:8, Figure 6.4). His granduncle (II:7, 

Figure 6.4) had AML. Furthermore, the index case had two cousins with AML (III:4 

and III:7, Figure 6.4) and another with cervical cancer (III:5, Figure 6.4). Conveniently, 

the number of germline variants shared between these two cousins are diminished as 

they are distantly related. 

 

 

Figure 6.4. MDS/AML family tree of FML012. Affected individuals are coloured as following, 

black: AML and green: other cancer. The arrow highlights index case. 
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 WES of the proband (IV:2, Figure 6.4) and his cousin (III:7, Figure 6.4) revealed an 

overall of 461 non-silent rare heterozygous variants with MAF≤0.0001, where 446 

were novel when compared to ESP and 1000G and 32 were loss of function variants 

(including stopgain, frameshift indel and variants within the consensus splice site 

dinocleotides). Strikingly, ten germline variants were found in total in family FML012 

(Table 6.6) with just two rare germline heterozygous variants in the canonical 

transcripts with MAF≤0.0001 in genes that are not associated with other autosomal 

dominant disease (CDKL1 and CEP68) (Table 6.7). Consequently, cyclin-dependent 

kinase-like 1 (CDKL1) and centrosomal protein 68kDa (CEP68) are the only 

candidate genes found in FML012 in this analysis.  

 

Additionally, dHPLC was performed on 30 constitutional MDS/AML cases as 

described in section 3.2.2.3 in chapter 3 for both genes. No further rare heterozygous 

variants in neither of the genes CDKL1 nor CEP68 were found. 

 

Unfortunately, neither CDKL1 nor CEP68 presented enough evidence to be 

considered the underlying cause of disease in this family. For instance, Sanger 

sequencing of the rare heterozygous variant (c.416C>T; p.S139F) located in CDKL1 

domain performed in two additional members (III:8 and III:9, Figure 6.5 A) of FML012 

revealed the presence of this variant in one of them (III:8) (Figure 6.5 A, B and C). 

III:8 (Figure 6.5 A) was diagnosed with arthritis and monoclonal gammopathy of 

unknown significance (MGUS). The amino acid serine in the position 139 in CDKL1 

is well conserved among mammals (Figure 6.5 D) and this amino acid substitution to 

F is considered to be probably disease causing by MutationTaster2 but not by 

Polyphen2, where this variant is predicted to be benign (Table 6.8). Furthermore, no 

additional family from our cohort was found to have a germline variant in CDKL1 to 

strengthen its case to be a disease gene. 
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Table 6.6. All germline heterozygous variants in FML012 
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Table 6.7. Rare germline heterozygous variants with MAF ≤0.0001 shared in both affected 

members (III:7 and IV:2) of FML012 

 

 

 

Figure 6.5. CDKL1 variant analysis. A. MDS/AML family tree of FML012. Affected individuals 

are coloured as following; black: AML and green: other cancer. The arrow highlights index 

case. B. Sanger sequencing trace representing the nucleotide substitution in CDKL1. C. 

Schematic CDKL1 protein showing the location of the amino acid change. D. Multiple CDKL1 

protein amino acid alignment in the position 139.   

 Gene AAChange ExAC (MAF) PolyPhen2 MutationTaster 

1 CEP68 c.A1373G:p.Q458R NR D B 
2 CDKL1 c.C416T:p.S139F 0.00001648 NA D 
3 HTT c.C55A:p.Q19K NR NA B 

 HTT c.G57T:p.Q19H NR NA B 

MAF: minor allele frequency; D: damaging; B: benign; NA: not available. 
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Table 6.8. Description of candidate genes identified in FML012 
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Sanger sequencing of the novel heterozygous CEP68 variant (c.1373A≥G; p.Q458R) 

located immediately after CEP68 domain, was performed on the additional other two 

members of FML012 (III:8 and III:9, Figure 6.6 A). The CEP68  variant was identified 

in III:9 who is reported to be asymptomatic to date (Figure 6.6 A, B and C). The amino 

acid Q is conserved among mammals (Figure 6.6 D) and this variant is predicted to 

be benign by both MutationTaster2 and Polyphen 2 tools (Table 6.8). No additional 

family with similar phenotype was identified to harbor a rare heterozygous variant in 

CEP68. Further information on CDKL1 and CEP68 can be seen in Table 6.8.  

 

 

 

Figure 6.6. CEP68 variant analysis. A. MDS/AML family tree of FML012. Affected individuals 

are coloured as following, black: AML and green: other cancer. The arrow highlights index 

case. B. Sanger sequencing trace representing the nucleotide substitution in CEP68. C. 

Schematic CEP68 protein showing the location of the amino acid change. D. Multiple CDKL1 

protein amino acid alignment in the position 458. 

 

 



223 
 

6.2.1.3 Family FML003  

 

MDS/AML families FML003 (Figure 6.7) was analysed assuming autosomal recessive 

as pattern of inheritance. Here, we describe the AR analysis of WES data of one 

member (II:6, Figure 6.7) of family FML003. It was a consanguineous marriage in 

which both parents were asymptomatic and five out of six children were affected. The 

oldest child had MDS (II:1, Figure 6.7), another three died with AA at age 10 years 

old (II:3, II:4 and II:5, Figure 6.7) and, the proband (II:6, Figure 6.7) presented with 

monosomy 7, MDS and died at age 14 years old after an autologous bone marrow 

transplant.   

 

 

Figure 6.7. MDS/AML family tree of FML003. Affected individuals are coloured as following, 

red: MDS and blue: AA. The arrow highlights index case. 

 

WES of the proband (II:6, Figure 6.7) revealed 769 non-silent variants, in which 281 

were novel when compared to ESP and 1000G databases and 33 loss of function 

variants. 23 biallelic variants were found in FML003 with MAF≤0.001, 16 were 

homozygous and 7 were compound heterozygous. From these, five genes harbouring 

rare homozygous missense variants were identified and four that carried predicted 

damaging variants were selected to be the candidate genes in this family as they were 

not associated with any autosomal recessive disease (Table 6.9 and Table 6.10). 
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Segregation analysis in these five candidate genes were carried out as DNA samples 

from both parents were available (Figure 6.8) in an attempt to exclude any of the 

identified candidate genes as disease causing. Nonetheless, the variants found in the 

selected candidate genes were also present in a heterozygous estate in both parents 

making it a challenge to identify the best disease causing gene in this family. 

 

 

Figure 6.8. Segregation analysis of candidate genes in FML003. A. MDS/AML family tree of 

FML003. Affected individuals are coloured as following, red: MDS and blue: AA. The arrow 

highlights index case. B-F. Sanger sequencing showing the amino acid changes present in 

both parents of the index case. 
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Table 6.9. Rare homozygous variants with MAF≤0.001 in FML003 
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Table 6.10. Candidate genes harbouring rare homozygous variants (MAF≤0.001) identified in 

FML003 
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6.2.1.4 All MDS/AML families – gene-level and variant-level 

metrics combined to assess potential pathogenicity of 

a variant  

 

From WES of 51 unrelated cases in 42 uncharacterized MDS/AML families, 

approximately 70,000 somewhat rare (MAF≤0.05) variants were found by comparison 

with the current reference haploid human genome sequence (human genome 19) 

and, 26,435 of these were non-silent variants (Figure 6.9). Further filtering resulted in 

19,801 variants that segregated within the families (when samples from more than 

one member were analysed, which was undertaken in 12 families). Therefore, we 

have analysed 19,801 possibly germline somewhat rare considering autosomal 

dominant as pattern of inheritance. A further filtering using ExAC retained 4,676 

possibly germline variants with MAF≤0.0001 in a total of 1,976 genes (Table 6.11 and 

Figure 6.9). 

 

 

Table 6.11. Genes with variants MAF≤0.0001 identified in multiple MDS/AML families 

  Number of 
families 

Altered genes     

 
12 FLG 

 

 
 

11 RYR1 
 

 
 

10 DNAH14, MUC16, AHNAK2 
 

 
 

9 MACF1, MUC12, OBSCN 
 

 
 

7 LRP2, MYH13 521 genes  
 

6 8 genes 
 

1976 genes 
 

5 16 genes 
 

 
 

4 83 genes 
 

 
 

3 404 genes 
 

 

  2 1,455 genes    

 

 



228 
 

 

Figure 6.9. Workflow of the autosomal dominant analysis of WES data of 42 uncharacterised 

MDS/AML families. 

 

 

Analysing manually all 4,676 rare variants on basis of their predictability effect to the 

protein using Polyphen2 and MutationTaster2 tools would be a laborious task. 

Instead, we worked alongside with a new pipeline based on the assumption that some 

genes in the human genome are sensitive to alterations and they would be the most 

likely to contribute to disease when mutated. We used two metrics including missense 

Z and loss of function pLI (probability of LoF intolerance) scores according to 

Samocha et al., 2014 and Lek et al., 2016 to evaluate the proportion of common 

functional variation in each gene, thereby identifying genes that appeared to be 

intolerant of variants. The knowledge that damaging variants are expected to have 
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lower allele frequencies than neutral ones and the deep discovery of rare variation in 

ExAC allows inference of the degree of selection against specific functional classes 

of variation (for instance, missense or LoF) on a gene basis. It is done by examining 

the proportion of variation that is missing compared to expectations under random 

variants (Samocha et al., 2014; Lek et al., 2016).   

 

Gene-level measures of constraint such as missense Z and loss of function pLI scores 

offer additional information to variant-level metrics (such as Polyphen 2 and 

MutationTaster2) in assessing potential pathogenicity. As rare variants found in genes 

that are altered in multiple unrelated families with similar phenotypes are more likely 

to be pathogenic, we prioritised the analysis on rare variants in genes that were 

altered in 3 or more families. Hence, we further filtered 1,766 rare variants 

MAF≤0.0001 identified in 521 genes by selecting genes with missense Z score≥2.9 

or pLI≥0.9 present in 3 or more families. We have set the threshold missense Z 

score≥2.9 as Samocha et al. (2014) found that missense Z score≥3.09 corresponded 

to excessively constrained genes in their data analyses. This anlaysis resulted in 83 

genes with Z≥2.9 or pLI≥0.9 harbouring rare germline heterozygous variants 

(MAF≤0.0001). From these, 30 genes were removed as they were observed to be 

associated with other autosomal dominant diseases. This left us with 179 rare 

germline heterozygous variants in 53 candidate genes. A further filtering based on 

variants with MAF≤0.00001 and, genes with Z≥2.9 and pLI≥0.9 identified 

approximately 80 germline heterozygous rare variants in 46 genes present in 3 or 

more unrelated families. As result, eight selected candidate disease genes presented 

damaging rare variants predicted by the Polyphen 2 and MutationTaster2 tools in 3 

or 4 families (Table 6.12). The analysis workflow is described in Figure 6.10. 

Description of these candidate disease genes can be seen in Table 6.13. 

 



230 
 

 

Figure 6.10. Workflow of the AD analysis of WES data of 42 uncharacterised MDS/AML 

families using gene-level and variant-level metrics combined to assess potential pathogenicity 

of a variant and select candidate genes. 
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Table 6.12. Candidate genes based on possibly damaging rare heterozygous variants with 

MAF≤0.00001, Z≤2.9 and/or pLI≥0.9 scores in 3 or more families 
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Table 6.13. Description of candidate disease genes identified by using a combination of gene-

level and variant-level metrics of constraint 
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Table 6.13. Continued 
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Table 6.13. Continued 

 

  

7
 

T
N

R
C

6
C

 -
  
tr

in
u
c
le

o
ti
d

e
 

re
p
e
a
t 
c
o

n
ta

in
in

g
 6

C
 

P
la

y
s
 
a
 
ro

le
 
in

 
R

N
A

-m
e
d
ia

te
d
 
g

e
n

e
 
s
ile

n
c
in

g
 
b

y
 
m

ic
ro

-R
N

A
s
 

(m
iR

N
A

s
).

 
R

e
q
u

ir
e
d
 

fo
r 

m
iR

N
A

-d
e
p

e
n
d

e
n
t 

tr
a
n
s
la

ti
o

n
a
l 

re
p
re

s
s
io

n
 

o
f 

c
o
m

p
le

m
e
n
ta

ry
 

m
R

N
A

s
 

b
y
 

a
rg

o
n

a
u

te
 

fa
m

ily
 

p
ro

te
in

s
. 

A
s
 

s
c
a
ff

o
ld

in
g
 

p
ro

te
in

 
a
s
s
o
c
ia

te
s
 

w
it
h
 

a
rg

o
n

a
u
te

 
p
ro

te
in

s
 

b
o

u
n
d
 

to
 

p
a
rt

ia
lly

 
c
o
m

p
le

m
e
n
ta

ry
 

m
R

N
A

s
 

a
n
d

 
s
im

u
lt
a
n
e
o
u
s
ly

 
c
a
n
 
re

c
ru

it
 
C

C
R

4
-N

O
T

 
a
n
d

 
P

A
N

 
d
e

a
d
e
n

y
la

s
e
 

c
o
m

p
le

x
e
s
 (

F
a
b
ia

n
 e

t 
a

l.
, 

2
0
1
1
).

 

N
o
n
e

 
N

A
 

 
1
7
2
6

 a
a
; 

 2
4

 e
x
o
n
s
 

 
 

 
z
:1

.3
4
; 

p
L
I:

1
 

 
 

 
E

N
S

T
0
0
0

0
0
3

3
5
7

4
9
: 

N
M

_
0

0
1
1

4
2
6

4
0
.1

 →
 

N
P

_
0

0
1

1
3
6

1
1
2
.1

 

 
 

8
 

Z
Z

E
F

1
 -

 z
in

c
 f

in
g

e
r 

Z
Z

-
ty

p
e
 a

n
d
 E

F
-h

a
n

d
 

d
o
m

a
in

 c
o
n
ta

in
in

g
 1

 

N
o
 d

e
s
c
ri
p

ti
o

n
 o

f 
it
s
 f

u
n
c
ti
o

n
 o

n
 N

C
B

I 
n
o
r 

U
n
ip

ro
t.
 N

o
 O

M
IM

. 
N

o
n
e

 
N

A
 

 
 2

9
6

1
 a

a
; 
 5

5
 e

x
o
n
s
 

 
 

 
z
:0

.5
5
; 

p
L
I:

1
 

 
 

  
E

N
S

T
0
0
0

0
0
3

8
1
6

3
8
: 
 

N
M

_
0

1
5
1

1
3
.3

 →
 

N
P

_
0

5
5

9
2
8
.3

 

  
  

N
A

: 
n

o
t 

a
p

p
lic

a
b

le
. 
In

fo
rm

a
ti
o
n

 a
s
s
o
c
ia

te
d

 w
it
h

 l
e
u

k
a
e

m
ia

 i
s
 h

ig
h
lig

h
te

d
 i
n

 r
e

d
. 



235 
 

6.3 Discussion 

 

Searching for the underlying disease gene in families with MDS/AML is a massive 

challenge due to the vast clinical and genetic heterogeneity of this rare disorder. We 

have undertaken WES in 42 uncharacterised families with MDS/AML and have not 

identified the disease causing gene in half of them. Generally in this study, the 

selection of candidate genes were performed by selecting rare predicted damaging 

variants in genes not previously associated with other disease and that occurred in 

multiple families. This generated a number of candidate genes that are listed fully in 

Tables 6.12, 6.4, 6.7, and 6.9 in chapter 6. However, with the data to hand it is not 

possible to say, which if any, will turn out to be definitive disease causing genes.  

 

One of the initial issues when analysing sequencing data is defining the threshold at 

which a variant should be considered rare or a polymorphism. Traditional methods for 

setting allele frequency thresholds for variant classification are based on the expected 

incidence of disease. However, accurate incidence and penetrance numbers of very 

rare diseases such as familial MDS/AML are not available (Shearer et al., 2014; 

Kobayashi et al., 2017). The frequency of a variant in the general population is crucial 

as the rarity of a variant is a prerequisite for pathogenicity. However, population allele 

frequency is a potential empirical data for improving variant interpretation as an allele 

frequency greater than expected for disorder is strong evidence for a benign 

classification. Without careful consideration, aggressive allele frequency thresholds 

may increase the risk of incorrectly classifying pathogenic variants with elevated allele 

frequencies as benign. If done carefully, a very low allele frequency threshold 

(including novel, MAF≤0.0001 or MAF≤0.00001) can be adopted to more accurately 

interpret sequence variants (Richards et al., 2015).  
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The approach of using a small cohort of presumed healthy individuals to distinguish 

benign polymorphisms from potentially pathogenic variants, as any variants observed 

in unaffected individuals are unlikely to be disease causing, is effective for early-onset 

dominant disorders with high penetrance. It is essential to consider that the likelihood 

of the presence of disease causing variants in population databases such as ExAC 

and ESP is high as they include non-healthy individuals. This likelihood increases 

even further when analysing recessive disorders or disorders with low-penetrance or 

late-onset in which unaffected carriers are expected to be present. However, the size 

of the ExAC population database is a comprehensive representation of very rare 

variants that allows for more accurate minor allele frequency calculations. 

Furthermore, scientific literature can also be used in agreement with population data 

for variant classification as rare pathogenic variants are frequently published. Overall, 

this is a scalable approach that allows for rapid adoption of new datasets and 

refinements to MAF thresholds as larger and higher-quality datasets are published 

(Walsh et al., 2016). 

 

On the other hand, variant classification is a complex process involving the evaluation 

and interpretation of multiple pieces of evidence, which in turn requires considerable 

knowledge and expertise. A variant’s absence or presence in ExAC at very low 

frequency is clearly not sufficient to indicate that the variant is pathogenic. Many 

variants are private, novel, or rare, and the vast majority of these are also not 

pathogenic (Richards et al., 2015). However, finding rare predicted damaging variant 

in the same gene in multiple families with similar phenotype and where alterations in 

the gene in question is not linked to other disease are some strong lines of evidence 

to identify a good candidate disease causing gene. 
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Furthermore, missense variants are a common finding in our cohort and the 

assessment of their protein functional impact is demanding without adequate 

functional studies. Therefore, the use of an intolerance ranking system can facilitate 

identification of high impact variants through the gene in which they occur. Gene-level 

score can be integrated with well-established variant-level scores to highlight 

candidate casual variants (Petrovski et al., 2013).  

 

Genes intolerant to genetic variation in the human population are more likely to cause 

some disorders. The most highly constrained missense (top 25% missense Z score) 

and LoF (pLI≥0.9) genes show higher expression levels and broader tissue 

expression than the least constrained genes and are involved in core biological 

processes (spliceosome, ribosome, and proteasome components). Genes intolerant 

of LoF variation would be expected to be dosage-sensitive, as in such genes natural 

selection does not tolerate a 50% deficit in expression due to the loss of single allele. 

Therefore, smaller changes in the expression of these genes are more likely to 

contribute to medically relevant phenotypes. Although, this extreme constraint does 

not necessarily reflect a lethal disease or status as a disease gene, but probably 

points to genes in which heterozygous LoF confers some non-trivial survival or 

reproductive disadvantage (Table 6.14). Disease genes that act after post-

reproductive age – do not necessarily have a high pLI values (e.g. BRCA1).  

 

LoF intolerant genes include virtually all known severe haploinsufficient human 

disease genes and yet there are 3,230 genes in ExAC with near complete depletion 

of predicted protein-truncating variants, with 72% of these genes having no currently 

established human disease phenotype in the OMIM (https://www.omim.org/) or 

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) databases (Lek et al., 2016). 

https://www.omim.org/
https://www.ncbi.nlm.nih.gov/clinvar/
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Table 6.14. Z and pLI scores of genes associated with familial MDS/AML 

  Gene Z  score pLI score  

 RUNX1 2.8 0.45 
 

 CEBPA NA NA 
 

 TERC NA NA 
 

 TERT 6.3 0.87 
 

 GATA2 2.88 0.98 
 

 SRP72 0.45 0.01 
 

 ANKRD26 -2.05 0 
 

 ETV6 2.2 1 
 

 DDX41 2.97 0 
 

NA: not available.  
 

 

Finally, it might be necessary to use different approaches combined with WES such 

as other types of next generation sequencing methods that can identify variants in 

non-coding regions, large insertions/deletions and copy numbers variants to search 

for the underlying gene disease in the uncharacterised MDS/AML families. This 

combined use of various techniques would increase genome coverage and decrease 

the chances of missing a causal genetic alteration. Additionally, new WES data from 

further registered MDS/AML families will supplement this dataset and increase 

germline allelic series and therefore it may facilitate disease gene identification.  
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7.1 Variants identified in known disease genes associated with familial 

MDS/AML and related disorders  

 

In chapter 3, seven MDS/AML families that were genetically characterised during this 

study have been discussed. Interestingly, in addition to the identification of known 

disease causing genes associated with familial MDS/AML, three MDS/AML families 

harboured variants in genes that are associated with other bone marrow failure 

syndromes including FANCA, SBDS and WAS. This highlights the marked clinical and 

genetic heterogeneity of these disorders. Bone marrow failure syndromes are a 

heterogeneous group of diseases that includes familial MDS/AML, DC, HH, FA, 

Diamond–Blackfan anaemia, Shwachman–Diamond syndrome among others. They 

present with cytopenias in at least one haematopoietic cell lineage that may develop 

into pancytopenia and with an increased risk of haematological or solid cancers (Alter, 

2017). Although the classical expression of these syndromes is very distinct, it is well 

known that they have overlapping clinical features. Furthermore, phenotypic variability 

even among patients sharing the same variant in a disease gene is recognised in 

these group of disorders (Dokal et al., 2015; Bertuch, 2016). The atypical cases of 

bone marrow failure syndromes may initially present with isolated MDS or AML and, 

the classic features may manifest over time or alternatively they may present with 

reminiscent characteristics but not entirely coherent with a known inherited disorder 

as observed in our families FML004, FML032 and FML041. Indeed, Rochowski et al. 

(2012) reported that approximately 1% of patients recovering from leukaemia after 

chemotherapy had undiagnosed FA. As also exemplified by our results, genomic 

evaluation using next generation sequencing is efficient to identify the pathogenic 

variant in genes known to cause the disease and to define a complex diagnosis 

(Zhang et al., 2015; Ghemlas et al., 2015). Use of next generation sequencing in these 

atypical patients and in healthy individuals will help further understanding the biology 
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of bone marrow failure diseases. An additional important consideration when working 

up a challenging diagnosis is to be aware of revertant somatic mosaicism. This refers 

to a rare genetic event when a pathogenic disease variant spontaneously reverts into 

a benign variant. Revertant mosaicism is likely to have taken place in cases where 

children are affected, and the asymptomatic parents do not harbour the pathogenic 

variant. This event has been observed in FA and in patients with DC harbouring TERT 

variants (Soulier et al., 2005; Jongmas et al., 2012).  

 

The specific pathway disrupted by a variant in a known disease causing gene also 

contributes to the progress and specific disease outcome. Each of these diseases 

causing genes are affected by their unique variant types (missense, LoF, indels or 

nonsense) and location (throughout the protein or in specific regions) and, by the 

mechanisms that causes the disease such as haploinsufficiency or dominant-negative 

effects, although, autosomal dominant pattern of inheritance and haploinsufficiency 

seem to be a general characteristic of familial MDS/AML. Germline heterozygous 

variants, including nonsense, missense, deletion, frameshift throughout the gene and 

gene deletion or duplication in RUNX1 cause familial platelet disorder with propensity 

to myeloid malignancies (MDS, AML and T-cell ALL). GATA2 variants are typically 

loss of function with no genotype-phenotype correlations. Impaired telomerase activity 

(due to germline variants in TERC and TERT) and extremely short telomeres induce 

chromosomal instability, causing bone marrow failure, fibrosis of the lungs and liver, 

and tumour formation. Somatic variants in the promoter region of TERT have been 

reported in melanomas, gliomas, liposarcomas, urothelial carcinomas and 

hepatocellular carcinomas. Biallelic germline variants in TERT can lead to telomere 

biology disorders including DC and HH and TERT heterozygous variants cause 

familial MDS/AML.  
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In our study, rare variants were classified as likely pathogenic, VUS and likely benign 

according to the joint consensus recommendation for the interpretation of sequence 

variants by the American College of Medical Genetics and Genomics (ACMG) and 

the association for Molecular Pathology (AMP). Likely to be pathogenic and VUS were 

further analysed in order to assign a variant as causal. This involved strict criteria for 

determining pathogenic variants: a) families that carried proven variants in known 

disease causing genes were expected to have similar disease presentation in 

accordance with the literature, b) recurrent variants were favourable to assign 

pathogenicity to a variant, c) protein impact was assessed for all proven variants using 

prediction software as a guide, d) family segregation studies were carried out when 

possible and, e) investigation of all likely pathogenic variants were performed in the 

literature and databases. 

 

The index case in FML007 who harbours a large RUNX1 deletion (described in 

section 3.2.1.1 in chapter 3) highlights that interpretation of genetic testing in blood 

can be confounding by the presence of somatic variants found in known disease 

causing genes. Despite the recommendation of use of a non-blood tissue to validate 

a germline variant, we do not have it available for all our families. However, 

segregation analysis within families can be useful in distinguishing inherited from 

somatic variants. Furthermore, it is also possible to identify if a variant is germline or 

somatic through Sanger sequencing trace analysis when the variant is a 

heterozygous indel. This is carried out by calculating an average of the ratio of the 

chromatogram peak heights of the variant and the sum of the chromatogram peak 

heights of wild type plus variant, the variant in question is likely germline when the 

results are near 50%. For obvious reasons, this method could not be performed on 

missense nor nonsense variants.  
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In conclusion, the observations in these known disease genes serve to highlight the 

complexity in assigning pathogenic status to a newly identified variant. They also 

show the value of next generation sequencing in picking up pathogenic variants in 

cases which have an atypical clinical presentation.  
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7.2 Germline heterozygous LoF DDX41 variants in a subset of familial 

myelodysplasia and acute myeloid leukaemia 

 

In chapter 4 we have described four families with MDS/AML from our cohort 

harbouring heterozygous LoF variants in DDX41, a relatively new gene associated 

with familial MDS/AML. Variants in DDX41 were reported in various families with 

MDS/AML and it is characterised by late onset, advanced state of the disease at 

diagnosis, normal karyotype and poor overall survival. This makes DDX41 different 

from the other known familial MDS/AML disease genes identified to date along with 

its unclear function in leukaemogenesis. DDX41 is shown to be involved in 

spliceosomes defects when altered in patients with familial MDS/AML, however the 

exact mechanism leading to disease is not yet established. Nonetheless, DDX41 is 

known to participate in innate immunity response by acting as an intracellular DNA 

sensor and direct interactions with bacteria pathogenic particles stimulating the 

immune response. Interestingly, Shwartz et al. (2017) reported mutations in 

SAMD9/SAMD9L to be the cause of familial MDS/AML in children. And these genes 

present some similarities with DDX41 such as a) monosomy of chromosome 7 causes 

haploinsufficiency in familial MDS/AML indicating a loss of tumor suppressor role as 

it happens with monosomy of chromosome 5, b) there are cases in paediatric familial 

MDS/AML patients with germline mutations in SAMD9/SAMD9L harbouring somatic 

mutations in the other allele, and c) SAMD9L is also involved in immune response 

(Nagamachi et al., 2013). 

 

There is data suggesting association of DDX41 variants with post-transcriptional 

regulation of protein translation in cell growth in Peters et al. (2017) studies. This 

group suggested an oncogenic role for DDX41. In addition, DDX41 deletions and 

frameshift variants as well as its reduced expression demonstrate a tumour 
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suppressor function in MDS/AML reported by Polprasert et al. (2015). Similarly, 

variants in other members of the DEAD/H-box RNA helicase family can act as tumour 

suppressors and oncogenes in cancer (Fuller-Pace, 2013). In addition, Polprasert et 

al. (2015) demonstrated the interaction of DDX41 with spliceosome proteins and that 

altered DDX41 impaired this interaction. Spliceosome defects caused by mutated 

genes can result in alterations in the balance of isoforms and in the inactivation of 

tumour suppressor genes, promoting cell proliferation. Further studies are needed in 

order to clarify the precise role of DDX41 variants in haematopoiesis and leukaemia.  

 

Patients harbouring germline variants in DDX41 are phenotypically very similar to 

sporadic AML cases. In many cases the disease develops with an acquisition of a 

second DDX41 somatic variant in the other allele, however total inactivation of DDX41 

appears to be cell-lethal. DDX41 is located on chromosome 5 and is deleted in some 

sporadic cases of MDS with del (5q) resulting in haploinsufficient expression. 

However, frameshift germline variants have not been found to be accompanied by 

deletions of the DDX41 locus on 5q (Maciejewski et al., 2017). 

 

Virtually all families with MDS/AML carrying DDX41 germline LoF variants reported in 

our study (chapter 4) had a late onset of the disease, except for family FML037 (Figure 

4.5, chapter 4) in which the index case was diagnosed aged 41 years. In addition, the 

recurrent DDX41 variant (c.3G>A, p.M1I) found in family FML037 is seen in ExAC 

with frequency of 1 in 1,189 people, raises a query about the pathogenicity of DDX41 

germline LoF variants. Deleterious variants are seen in DDX41 with a high frequency 

in the population compared to variants in other known familial MDS/AML disease 

genes. The frequency of a variant in the general population is important as rarity of a 

variant is essential for pathogenicity. According to the ACMG and AMP guidelines, an 

“allele frequency greater than expected for disorder” is strong evidence for a benign 
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classification (Richards et al., 2015). In that context, DDX41 germline variants can 

easily be mistaken and excluded as polymorphisms or interpreted falsely as 

pathogenic from some applied analysis strategies in many studies. Thus, it is 

necessary to carefully use a combination of evidence that rigorously assess the 

pathogenicity of DDX41 variants.   

 

Finally, the late onset of familial MDS/AML characteristic of DDX41 variants makes it 

harder to obtain an accurate diagnosis for this group of patients and inappropriate 

selection of asymptomatic family donors for allogenic stem cell transplantation might 

take place. Clinically, recognition of DDX41 mutated cases may have implications for 

surveillance, assessment of prognosis, and, perhaps, for design of targeted therapies. 

Further functional studies are necessary to confirm the pathogenicity of the variants 

in these families. 
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7.3 RTEL1 LoF variants leading to myelodysplasia and liver disease 

 

RTEL1 variants in our cohort of patients with bone marrow failure disorders (DC, HH, 

AA and, familial MDS/AML) are very interesting starting with the amount of variants 

found in this gene. We have found 29 RTEL1 variants in 35 patients. The next step 

was to interpret these variants in order to identify the disease causing variant by 

filtering, annotating the variants (population variant allele frequencies in the canonical 

transcript) and using in silico variant function impact prediction. Most of these RTEL1 

variants were classified as heterozygous missense likely benign (9 variants in 14 

patients), many were heterozygous missense of unknown significance (12), few were 

biallelic likely pathogenic (4) bar one was biallelic likely benign variant and, some were 

identified as LoF variants likely pathogenic (three in four unrelated families) as 

described in chapter 5. In this section of our study, we were able to use the prediction 

tool Combined Annotation Depletion score (Kircher et al., 2014) as variant call format 

files were available on this data.  

 

CADD is a method that measures deleterious variants systematically across the 

genome. It combines many different annotations including allelic diversity, 

annotations of functionality, pathogenicity, disease severity, experimentally measured 

regulatory effects and complex trait associations into the C score, a specific measure 

for each variant. This highly ranks known pathogenic variants within individual 

genomes (Kircher et al., 2014). However, Polyphen2 and MutationTaster2 were the 

prediction tools used in all other chapters as they are also well-established 

annotations important in the identification of disease causing genes (Kircher et al., 

2014).  
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It is largely known that biallelic variants in RTEL1 are associated with DC and HH and 

RTEL1 heterozygous variants have been associated with idiopathic and familial cases 

of interstitial pulmonary fibrosis. In this study we have identified five families carrying 

RTEL1 biallelic variants and four families carrying heterozygous RTEL1 LoF variants. 

However, the clinical phenotypes of these families vary from what is already 

established in the literature and consequently it expands the disease spectrum of 

RTEL1 (Cardoso et al., 2017). RTEL1 biallelic variants were found in two families with 

DC, however RTEL1 biallelic variants also were identified in family 5 (Figure 5.8 seen 

in chapter 5) and it is unlikely to be the disease causing in this family as the 

asymptomatic mother harbours the same biallelic variants. Furthermore, other two 

families harbouring RTEL1 biallelic variants presented with AA in adulthood again 

expanding what is reported in the literature to date. Marsh et al. (2018) have just 

reported similar data whilst this thesis was being prepared. Finally, RTEL1 

heterozygous LoF variants were identified in four families with MDS and liver disease 

in adults, expanding the spectrum of RTEL1 associated diseases. 

 

It is noteworthy that patients with complex diseases do not always present with a clear 

classical phenotype at the time of presentation. From the families described in chapter 

5 that present with MDS and liver disease with variants in RTEL1, only family 8 is 

classified as familial MDS/AML (defined by us as being when there are two or more 

members with bone marrow failure in the family, where at least one of them presents 

with MDS or AML). This family prompted us to search for further RTEL1 variants in 

independent cohorts from our lab (dyskeratosis congenita, idiopathic bone marrow 

failure). 

 

RTEL1 is part of the telomere biology- associated genes (DKC1, TERC, TERT, USB1, 

CTC1, NHP2, NOP10, WRAP53, TINF2, PARN and ACD) that cause telomeropathies 
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where germline variants result in short telomeres and bone marrow, lung, liver, and 

skin can be affected. In agreement with the literature on patients carrying biallelic or 

LoF variants presented short telomeres compared to age-matched controls. 

Furthermore, RTEL1 defect is associated with production and accumulation of T-

circles in cells and we have seen that one case carrying a LoF variant presented with 

increased T-circles when compared to a case carrying a missense variant. Further T-

circle tests should be undertaken in a larger group of samples in order to establish a 

normal range of T-circle production in RTEL1 patients. Furthermore, if enough 

samples of affected patients and resources were available, the following functional 

experiments could be performed to verify the biological impact of the germline 

heterozygous LoF RTEL1 variants identified in this study: a) demonstrate the 

expected lower expression of RTEL1 in the patients with heterozygous germline LoF 

variants compared to a control by Western blotting; b) mass spectrometry to identify 

the proteins associated with RTEL1 in the patients and in a control along with RNA 

seq and gene set enrichment analysis to recognise the possible affected biological 

pathways; c) analyse all results and verify whether there is a plausible explanation for 

the MDS and liver disease phenotypes present in these patients. 

 

In conclusion, the data from this section clearly extends the spectrum of RTEL1 

related telomeropathies. It also shows that RTEL1 can be added to the list of disease 

genes associated with familial MDS/AML. 
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7.4 Variants identified in familial MDS/AML candidate genes   

 

We have been analysing WES data from MDS/AML families from the beginning of 

this project, working on different numbers of families, using adequate criteria for 

searching the genetic disease cause and generating different lists of candidate genes 

at each time. However, we have not identified the definite disease causing gene in a 

significant number of these uncharacterised MDS/AML families. Certainly, we first 

searched for predicted damaging variants in the known familial MDS/AML disease 

genes and only few of these families were characterised by predicted pathogenic 

variants in these known genes. This left us with many uncharacterised families with 

possibly variants in new disease causing genes. Finding these new disease causing 

genes is a very challenging task for many reasons including quality of the acquired 

information on the family history and the type and quality of collected sample(s). 

Consequently, new challenges arise from the chosen approaches as not only one 

technique would be enough to identifying these new causal genes. In addition, there 

are some technical problems that might occur from sample collection to preparation, 

storage and interpretation of data. Not to mention the technical challenges relating to 

genome coverage. 

 

Considering these previously mentioned challenges, the first encountered issue was 

the selection of an adequate variant allele frequency that could be considered rare 

enough to cause familial MDS/AML. We have first chosen to analyse novel variants 

as the majority of published variants in the known familial MDS/AML disease genes 

are novel. No plausible candidate gene was identified using this criteria. We have then 

analysed predicted to be damaging variants with MAF≤0.0001 as damaging variants 

in DDX41 were reported within this allele frequency. Again, no evident candidate gene 

was found. The second challenge in the analysis was the variant classification into 
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likely to be damaging and variant of unknown significance, mainly because missense 

variants are found in abundance in our WES data. Although there are many prediction 

tools to evaluate the pathogenicity of a variant, they are not enough to define its 

pathogenicity. Finally, the decision of a specific candidate gene being the possible 

underlying cause of the disease in a family is not straightforward even after the 

identification of a handful number of candidate genes that are not previously 

associated with other AD disease and that harbour predicted damaging rare germline 

variants which segregate with the disease in multiple families. This is because a) the 

results we obtained are not conclusive as about half of the families harbour variants 

in more than one identified candidate gene, b) the majority of the identified variants 

are missense making it harder to predict their pathogenicity and, c) lastly, it would 

help if any identified candidate gene was functionally linked to known familial 

MDS/AML disease genes to explain the disease development.   

 

AD analysis of WES data from 30 MDS/AML families was performed based on 

predicted damaging rare germline variants that segregate with the disease in three or 

more families generated two candidate genes seen in Table 6.4 in section 6.2.1.1 in 

chapter 6 and Figure 7.1. In addition, AD analysis of WES data from 42 MDS/AML 

families was performed based on predicted damaging rare germline variants that 

segregate with the disease in three or more families generated eight candidate genes 

that presented Z≤2.9 or pLI≥0.9 seen in Table 6.13 in section 6.2.1.4 in chapter 6 and 

Figure 7.1. These analyses identified only one candidate gene in common, which is 

trinucleotide repeat containing 6C (TNRC6C). Hence, the first interpretation would be 

that TNRC6C might be one of the genes we were searching for. However, family 

FML018 has a consanguineous marriage and AR is likely to be the inheritance mode 

in this family even though there is a possibility of it being AD due to family history.  
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Figure 7.1. Uncharacterised families with MDS/AML that harbour predicted damaging 

heterozygous rare variants in the candidate genes seen in Table 7.1. Affected individuals are 

coloured as following black: AML, red: AML, blue: AA, grey: thrombocytopenia and green: solid 

cancer. The arrow highlights the index case. *: families that harbour variants in at least two of 

the candidate genes here presented. Family FML047 presents history of leukaemia, but there 

is no sufficient information for designing a family tree. 
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Segregation analysis is important to clarify the inheritance pattern in family FML018, 

however there are no DNA samples available from other members of this family. 

Furthermore, it was observed that families had variants in more than one candidate 

genes, which made it harder to distinguish which variant could be pathogenic (Table 

7.1). 

Table 7.1. Candidate genes selected from AD analysis of WES data from 30 and 42 MDS/AML 

families 

1 FAT1   FML033* FAT1 is a receptor for a signalling pathway that regulates growth, gene 
expression, and cell polarity. FAT1 is up regulated in 11% of AML, 29% 
of preB acute lymphoblastic leukaemia (ALL) and 63% of T-cell acute 
lymphoblastic leukaemia (T-ALL). 4588aa 

  
FML002*   
FML042  

  FML059 

2 TNRC6C FML054 Plays a role in RNA-mediated gene silencing by micro-RNAs (miRNAs). 
1726aa 
  

 
  FML109   

FML018* 

3 ARNTL FML116* Transcriptional activator which forms a core component of the circadian 
clock. Alterations in this gene have been linked to infertility, problems 
with gluconeogenesis and lipogenesis, and altered sleep patterns. 
625aa 

  
FML113  

  FML018* 

4 BRD1 FML019 The encoded protein is a component of the MOZ/MORF 
acetyltransferase complex and can stimulate acetylation of histones H3 
and H4, thereby potentially playing a role in gene activation. It is related 
to the AF10 leukaemia gene (involved with translocations). 1189aa 

  
FML116*  

  FML009  
    

5 KIF13A FML045 Involved in intracellular transport and regulating various processes such 
as mannose-6-phosphate receptor (M6PR) transport to the plasma 
membrane, endosomal sorting during melanosome biogenesis and 
cytokinesis. 1805aa 

 
  FML033*  
  FML112 

6 NCOR2 FML002* Mediates transcriptional silencing of certain target genes. This protein 
acts as part of a multisubunit complex which includes histone 
deacetylases to modify chromatin structure that prevents basal 
transcriptional activity of target genes. Aberrant expression of this gene 
is associated with certain cancers. 2514aa 

  
FML018*   
FML017  

  FML089 

7 PTPN4 FML047 It is a tyrosine phosphatase (PTP) protein. PTPs are known to be 
signalling molecules that regulate a variety of cellular processes 
including cell growth, differentiation, mitotic cycle, and oncogenic 
transformation. PTPN4 prevents cell death. 926aa 

 
  FML060 

 
 

FML116* 

8 SCAF1 FML002* SCAF1, interact with the C-terminal domain (CTD) of the large subunit 
of RNA polymerase II and participate in pre-mRNA splicing. 1312aa 

  
FML056  

  FML111   

9 ZZEF1  FML075 No description of its function on NCBI nor Uniprot. No OMIM. 2961aa   
FML082 

 

    FML083   

*: families that harbour variants in at least two of the candidate genes here presented.  
Information associated with leukaemia is highlighted in red. 
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Further analysis using The human protein atlas (https://www.proteinatlas.org/) 

allowed a refined selection of more suitable candidate genes from the list presented 

in Table 7.1. This showed that FAT1, BRD1, PTPN4, and ZZEF1 are unlikely to be 

good candidate genes as they are not expressed in haematopoietic cells. In addition, 

KIF13A and SCAF1 present low protein expression in haematopoietic cells. These 

results leave us with ARNTL, NCOR2, and TNRC6C as good candidate genes. 

However, one of the families that harbour germline damaging heterozygous variant in 

ARNTL and NCOR2 is FML018, the same family that was discussed previously for 

also carrying a germline damaging heterozygous variant in TNRC6C. Hence, without 

FML018, there are two other families (FML113 and FML116) harbouring variants in 

ARNTL. Finally, NCOR2 seems to be the reasonable candidate gene to have its 

pathogenicity further validated at this moment from results of this analysis as still there 

are three other families (FML002, FML017 and FML089 see Figure 7.2) that carry 

predicted damaging variants in this gene. One novel predicted to be damaging in 

frame deletion (c.1523_1525delGCT; p.508_509del) and two rare variants predicted 

to be damaging (MAF: 0.0000647, c.3179_3180insC, p.R1060fs and, MAF: 

0.00001192, c.2364G>C, p.E7888D) were identified in NCOR2 in these families. 

 

NCOR2 (2,514aa, Z:2.09 and pLI:1) is a well known transcriptional co-repressor that 

mediates transcriptional silencing of target genes and is part of NCOR complex, which 

includes histone deacetylases to modify chromatin structures that prevents basal 

transcriptional activity of target genes. NCOR2 plays key roles in the cell cycle, 

apoptosis and proliferation of many cancer cells, including head and neck squamous 

cell carcinoma and breast cancer. Furthermore, cellular differentiation of human in 

vitro generated monocytes is regulated by NCOR2 and time-dependent Interleukin-4 

signalling (Sander et al., 2017). 

  



255 
 

 

Figure 7.2. Familial MDS/AML candidate gene NCOR2. A. Uncharacterised families with 

MDS/AML that harbour predicted damaging heterozygous rare variants in NCOR2. Affected 

individuals are coloured as following black: AML, red: AML, blue: AA, grey: thrombocytopenia 

and green: solid cancer. The arrow highlights the index case. *: families that harbour variants 

in at least two of the candidate genes presented in Table 7.1. B. Schematic of RUNX1 protein 

(NP_006303.4). 

 

 

Although the role of NCOR2 in the FLT3/p65 signalling pathway and aberrant cell 

growth is unclear, NCOR2 nuclear protein levels are significantly increased when 

FLT3 and p65 are downregulated in vitro and in vivo (Wang et al., 2012).  FLT3 is an 

independent poor prognostic marker of sporadic AML, it has an important role in the 

survival, proliferation and differentiation of haematopoietic cells and AML blasts. 

Overexpression of FLT3 is present in 70-90% of sporadic AML. Activating mutations 
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of FLT3 may disrupt transcriptional repressor function resulting in aberrant gene 

regulation and abnormal leukaemia cell growth.  In addition, between 20% and 30% 

of AML patients have either an internal tandem duplication region or a point mutation 

in the FLT3 receptor leading to the constitutive activation of downstream signalling 

pathways and aberrant cell growth.  FLT3 internal tandem duplication induced 

translocation of NCOR2 protein from the nucleus to cytoplasm as well as it inhibited 

the function of transcriptional repressors by blocking protein interactions with NCOR2 

(Takahashi et al., 2004). A gene fusion NCO2/SCARB1 and a missense variant of 

unknown significance were identified in AML cases in the TCGA published in The 

Cancer Genome Atlas (Cancer Genome Atlas Research Network, 2013). 

 

It would be interestingly to see the differences in NCOR2 protein expression between 

the affected individuals compared to a control, considering available samples of these 

patients by Western blotting. If there were significant differences, it would be important 

to discover the pathway that might have been disrupted to give rise to MDS/AML 

phenotype by designing new experiments to be performed. Furthermore, CRISPR-

Cas9 system could be used to introduce the NCOR2 variants identified in this study 

into haematological cells and a cell culture of these modified cells and a wild type 

NCOR2 cell would be useful to verify the differences in cell growth as a result of 

specific NCOR2 variants. 

 

We have analysed MDS/AML families where we had undertaken WES in more than 

one member within the family. In chapter 6, the AD analysis of WES data from family 

FML012 (Figure 6.4, section 6.2.1.2) was described. In this family we were left with 

only two germline variants in the genes CDKL1 and CEP68 (Table 6.9, section 

6.2.1.2). As occurred previously, there is not sufficient evidence on either of these 

candidate genes to be considered disease causing in this family. Reasons for these 
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conclusion are: a) both variants are missense not predicted to be damaging by both 

prediction tools used in this study (Polyphen2 and MutationTaster2), b) both were 

found in another asymptomatic family member, c) no additional families from our 

cohort were found to harbour damaging variants in neither of these genes. Despite all 

discussed above, it is important to note CDKL1 might be the best candidate gene in 

FML012 as the individual III:8 (Figure 6.5 A) harboured a germline heterozygous 

CDKL1 variant (c.416C>T; p.S139F). She was at the time of this study asymptomatic, 

although described to have monoclonal gammopathy (MGUS). People with MGUS 

usually do not present with symptoms, but it can develop into myeloma or a related 

blood disorder (Umemura et al., 2018). To investigate the pathogenicity of this CDKL1 

missense variant, it would be reasonable to a) verify the expression of CDKL1 in the 

patient’s blood cells compared to a control by Western blotting and qPCR as CDKL1 

is known to be overexpressed in malignant tumors such as melanoma, breast cancer, 

and gastric cancer (Qin et al., 2017); b) the next decision should be made upon 

obtained results from the CDKL1 protein levels present in the affected individuals. 

Family FML003 (Figure 6.7, section 6.2.1.3 in chapter 6) is another inconclusive case 

as AR analysis generated five genes that harboured rare homozygous variants (Table 

6.10, section 6.2.1.3 in chapter 6). However all of them were found in a heterozygous 

state in both parents of the index case. This finding left us five genes as candidates. 

From these genes only epidermal growth factor receptor pathway substrate 15 

(EPS15) variant is predicted to be benign by Polyphen2 and MutationTaster2 and 

therefore this is a weak candidate gene; this still leaves four candidate genes in 

FML003 (Table 6.10, 6.2.1.3 in chapter 6). Thus, it would be necessary to have DNA 

sample from one of the affected siblings (which was not possible) in order to identify 

the likely disease causing variant in this family as well as the identification of likely 

damaging variants in the same candidate gene in other affected MDS/AML families.  
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Finally, after such an extensive search for the disease gene (s) in these 

uncharacterised families with no conclusive disease gene to date, there are some 

points that need to be considered: a) the pathogenic variant might be in a region not 

covered by WES, and b) a technical or procedure issue that need to be identified and 

resolved.  
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7.5 Future work 

 

Firstly, collection of ideal germline tissue (blood and another non-blood samples) and 

complete documentation of family history when possible are essential in order to 

distinguish germline from somatic variants when segregation analysis is not possible. 

Furthermore, as studies have suggested that AML occurs after a process of genetic 

and epigenetic changes that are found in preleukaemic clone before the cells are 

transformed into AML by an acquisition of additional alterations (Pandolfi et al., 2013), 

it would be interesting to perform clone evolution studies of patients with familial 

MDS/AML. Thus, collection of appropriate samples is important. The initial germline 

variant in patients with familial MDS/AML could be considered a preleukaemic event, 

required but sometimes not sufficient for cancer development as in principle, both 

germline and somatic variants of the same gene lead to AML progression. Additional 

somatic variants are reported in CEBPA, RUNX1 and DDX41 patients and clonal 

architecture of leukaemic clones revealed DDX41 variants could be a founder event 

in some patients (Polprasert et al., 2015). 

 

The whole exome sequencing technology is proven to be of great value for 

identification of pathogenic variants in inherited disorders, although many of the 

families with MDS/AML from our cohort remain uncharacterised. Performing a 

combination of techniques such as array comparative genomic hybridisation (aCGH) 

and RNA sequencing (mRNA expression analysis) when feasible, in order to cover all 

DNA regions and assemble a more complete variant information may provide 

additional help in search for the genetic cause of these families. A comprehensive 

genomic landscape of our familial MDS/AML cohort could be described using WES 

along with RNA sequencing and computational analysis. In addition, copy number 

variation could be analysed from our WES data.  
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Following up of potential disease causing variants by screening additional family 

samples and by performing segregation studies are also very good future approaches 

to strengthen the genetic evidence for the pathogenic role of identified variants (for 

instance, for the four candidate genes identified in family FML003 and for the 

candidates listed in Table 7.1). 

 

In conclusion, the recruitment of new families (to increase the allelic series of subtypes 

of patients) together with incorporation of new techniques (such as RNA sequencing) 

as well as functional analysis of specific candidate genes should enable the 

identification of new disease causing genes in familial MDS/AML.  
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7.6 Concluding remarks 

 

Familial MDS/AML occurs in both children as well as in adults and studies of this 

disease is providing better understanding of the biology of both sporadic and familial 

forms. Furthermore, understanding when to suspect germline predisposition in a 

patient is essential as early and accurate diagnosis influence clinical care of these 

patients and their families. Hence, identification of causal genetic variants is critical 

for this diagnosis. Knowledge of which genes contribute to familial MDS/AML 

predisposition and attention to the acquired variants in genes associated with this 

inherited disease is very important. This is crucial for ensuring that appropriate donors 

are selected for allogeneic transplantation. Although complete human genomes 

alteration are not obtained from any currently single sequencing technology, exome 

sequencing is an effective disease causing variant detection method because it 

targets protein-change and amino acid substitutions which currently account for 

approximately half of the known gene alterations responsible for human inherited 

disease (Ng et al., 2010). However, WES as well as other next generation sequencing 

bring some technical, data management and interpretation issues. Many guidelines 

are being proposed in order to help overcome these challenges. 

 

Variant interpretation is one of the most encountered challenge in WES data analysis 

as it is a collaborative work of different highly trained specialists that require a long 

and complex research process. Certainly, the creation of large scale databases by 

sharing sequencing results from many different studies will help to exclude variants 

with higher minor allele frequency as causal. Computational prediction of variants on 

protein impact is a good guide on the clinical interpretation of variants of uncertain 

significance and on genome studies of diseases. However, it is important to be clear 

that these well-established in silico prediction tools are indicators and for confirming 
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a variant pathogenicity it is essential to perform a combination of approaches such as 

functional analysis, use of population database as ExAC to verify the population 

variant allele frequency and family investigation. Overall, there is a need to develop 

more efficient and standardised bioinformatics tools to filter, analyse and interpret 

WES variants.  

 

Our results also reflected the extensive genetic heterogeneity and phenotypic 

complexity of bone marrow failure diseases including familial MDS/AML. These 

disorders present significant overlapping features and variable expressivity and 

penetrance within syndromes. These along with absent, subtle, or previously 

unreported clinical findings add to the challenges of a timely and precise diagnosis.  

 

Finally, it is essential that clinicians, genetic counsellors, basic scientists and patients 

work together for establishing a better understanding and new therapies to improve 

patient outcomes. 
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Appendix 1 – Known familial MDS/AML causing genes – published 

mutations to date 

 

Table A1.1. Published RUNX1 mutations in familial MDS/AML cases to date 

Paper Families Variant 

Song et al. 1999 
Nature Genetics 
  

1 intragenic deletion 

2 cryptic splice acceptor to stop 

3 nonsense 

4 nonsense 

5 c.R201Q 

6 c.R166Q 

Owen et al., 2008 
Blood 
  

1 c.1007_1013del;p.G336fsX563 

2 c.83insG;p.A28fsX109 

3 cG286C; p.D96H 

4 c.+3G>A; p.K90fs 

5 cC877T; p.R292X 

Ripperger et al., 2009 
Leukemia 

1 c.C520T; p.R174X 

    

Jongmans et al., 2010 
Leukemia 

1 162 kb duplication in chromosome 
21 

2 105bp deletion 

Langabeer et al., 2010 
European Journal of 
Haematology 

1 c.507delA; p.W169fsX182 

    

Schmit et al., 2015 
Leukemia Research Reports 
 
about 30 affected families have 
been reported since 1999  
(Yoshimi et al., 2014 Nature 
communications) 

1 c.G837A; p.W279X  
c.422_423insAAGGC; 
p.S141_A142insRP 
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Table A1.1. Continued 

Antony-Debré et al., 2016 
Leukemia  
 
less than 45 affected families 
have been reported since 1999  
  

1 p.R177Q 

2 p.Q308RfsX259 

3 Complete deletion of RUNX1 

4 p.R139X 

5 p.P218S 

6 p.G108V 

7 p.D305TfsX262 

8 p.H377PfsX191 

9 p.G108V 

10 p.G143RfsX43 

11 p.T169R 

12 Complete deletion of RUNX1 

13 p.T219RfsX8 

14 p.T121HfsX9 

15 p.A129E 

Haslam et al., 2016 
British Journal of Haematology 

1 c.496C>T; p.Arg166X  

    

Sakurai et al., 2016 
Blood Cancer Journal 

1 285 kb heterozygous deletion 
including the promoter and the 5'-
half of RUNX1 

2 2 Mb heterozygous deletion in 
chromosome 21 encompassing the 
entire RUNX1 
gene and a large genomic region of 
5ʹ-RUNX1 

Yoshimi et al., 2016 
Annals of Oncology 
  

1 p.Thr233fs 

2 p.Phe303fs 

3 p.Arg174 

4 p.Gly262fs 

5 p.Ser140Asn 

6 p. Gly172Glu 

7 p.Asn438Lys 

8 p.Leu445Pro 

Hamadou et al., 2016 
Annals of Hematology 

1 p.L56S 

    

Latger-Cannard et al., 2016 
Orphanet Journal of Rare 
Diseases 
  

1 c.320G > A; p.Arg107His 

2 c.467C > A; p.Ala156Glu 

3 c.602G > A; p.Arg201Gln 

4 c.611G > A; p.Arg204Gln 

5 c.587C > G; P.Thr196Arg 

6 c. 999_1003dup; 
p.Gln335Argfs261 

7 c. 1092del; p.Ile364Metfs230 

8 c. 442_449del; p.Thr148Hisfs9 

9 c. 496C > T; p.Arg166X 
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Table A1.1. Continued 

DiNardo et al., 2016 1 c.582A > C; p.K194N 

Clinical Lymphoma 
myelomaLeukemia  

2 c.610C > T; p.Arg201X 

3 c. 1098_1103dupCGGCAT; 
p.I366_G367dup 

Badin et al., 2017 1 c.583dupA; p.Ile195AsnfsX18  

Haemophilia   c. G>A; p.T246M 

Tawana et al., 2017 1 c.601C>T; p.Arg201* 

European Journal of human 
genetics 

    

Kanagal-Shamanna et al., 2017 1 c.582A>C p.K194N 

Haematologica 2 c.719delC p.Pro240Hisfs and 
c.167T>T p.Leu56Ser  

3 Partial gene deletion (at least 
exons 1-6)  

4 c.836G>A p.W279*  
5 c.496C>T p.R166*  
6 c.308dup p.T104fs 

  7 c.1098_1103dupCGGCAT 
p.I366_G367dup 

de Andrade Silva et al., 2018 1 Deletion of exon 1 and 2 of RUNX1 

Cancer genetics     

 

 

 

Table A1.2. Published CEBPA mutations in familial MDS/AML cases to date 

Paper Families Variant 

Smith et al. 2004 
The new England 
Journal of Medicine 

1 c.212delC 

  c.1050_1085dup; 
p.302_313KAKQRNVETQQK 

Sellick et al., 2005 
Leukemia 
  

1 c.217insC;p.fsX106  
c.1071delGAGACGCinsCTGGAGGCCA; 
p.E308_Q310delinsLEAK 

  c.107ins GAC; p.E308dup 

Nanri et al., 2006 
Blood 
  

1 c.350_351insCTAC; p.I68fsX107  
c.1063ins18bp  
c.1079ins3bp 

  c.1083ins3bp 
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Table A1.2. Continued 

Pabst et al., 2008 
Journal of Clinical 
Oncology 
  

1 c.744-745GC>TT;p.A199L  
c.1167G>A;p.G340S 

2 c.563-564insCG;p.Y138fsX160  
c.1094-1095insCTG;p.L315-316ins 

3 c327-328insC.;p.E59fsX107  
c.1098-1099insGTC;p.V316-317ins 

4 c.551G>A;p.A134A  
c.742-743insGCCGCCCC;p.P199fsX318 

5 c236-237insGC.;p.A29fsX160 

6 c.395del;p.F82fsX159  
c.1076-1077insAAG;p.K309-310ins 

7 c.213delC;p.S21Q  
c.1088-1089insTCT;p.P22fsX159  
c.212C>A;p.S313-314ins 

8 c.1083C>T;p.Q312X 

9 c.672C>G;p.L175V  
c.676C>T;p.A176V  
c.678-679GG>TT;p.G177F  
c.683C>T;p.L178L  
c.688C>A;p.P180H  
c.692C>G;p.Y181X 

10 c.1079-1080insTCT;p.S310-311ins 

11 c.420-421insT;p.A91fsX107 

12 c.327-328insC;p.E59fsX107  
c.1098-1099insGTC;p.V316-317ins 

13 c.465insT;p.D106fsX107  
c.1089insAAG;p.314insK  
c.1207G>C  
c.1210A>C  
c.1089insAAG 

14 c.291delC;p.A47fsX159  
c.1086insCAG;p.313insQ  
c.1086insCAG 

15 c.245delG;p.G32fsX159 

16 c.216-217insCG;p.P23fsX160  
c.1165G>C;p.R339P 

17 c.286-287insTC;p.P46fsX160  
c.1076-1077insCCG;p.K309-310ins 

18 c.1094-1095insCTG;p.L315-316ins 

  c.687T>C;p.P180P 

Renneville et al., 
2009 
  

1 c.217–218insC  
c.1083–1085delAAG 

  c.1065–1066insGGG 
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Table A1.2. Continued 

Nanri et al., 2010 
Genes, 
Chromosomes & 
Cancer 

1 c.350_351insCTAC; p.I68fsX107  
c.1063–1064ins18-bp  
c.1079–1080insCAG 

  c.1085–1086insAAG 

Stelljes et al., 2011 
Leukemia  
  

1 c. 338delC; p.  
c.1085insGAA; p. 

  c. 1072_1083dup; p. 

Green et al., 2013 
British Journal of 
Haematology 

1 c.68delC, p.P23fs 

  c.K302_K313dup 

Tawana et al., 2015 
Blood 
  

1 c.218delC; p.P23RfsX137   
c.1054_1089dup; p.K302_K313dup  
c.1087_1089dup; p.K313dup 

2 c.218_219insC; p.H24AfsX84  
c.991_992insGA; p.N281RfsX38  
c.1067_1068insGCG; p.R306dup 

3 c.218_219insC; p.H24AfsX84  
c.1047_1088dup; p. R300_K313dup 

4 c.297_315del; p.E50AfsX104  
c.1087_1089dup, c.1061_1210del; p.K313dup, 
p.K304_A353del  
c.1087_1089dup; p.K313dup 

5 c.351_352 ins CTAC; p.I68LfsX41  
c.1067_1068insGGCCCTCGCCCCCCCGCG; 
p.R306_N307insALAPPR  
c.1087_1089dup; p.K313dup 

6 c.218_219insC; p.H24AfsX84  
c.1075_1081delinsCTGGAGGCCA; 
p.E309_Q311 delins LEAK  
c.1075_1077dup; p.E309dup 

7 c.339delC; p.D63EfsX97  
c.1087_1089dup; p.K313dup  
c.1076_1087dup; p.E309-Q312dup 

8 c.308delG; p.G53AfsX107  
c.1126_1127ins1079_1227; p.K326 
insT310_X359 

9 c.291delC; p.A48PfsX112  
c.1085_1087dup; p.Q312dup 

10 c.464_465insT; p.F106LfsX2  
c.G1207C; c.A1210C; p.A353P; p.M354L 

  c.1087_1089dup; p.K313dup 

Pathak et al., 2016 
Haematologica 

1 c.932A>C; p.Q311P 

    

Ram et al., 2017 
Blood Advances 

1 c.68dupC; p.H24fs*84 

  c.442G.T; p.Glu148* 
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Table A1.3. Published TERC mutations in familial MDS/AML cases to date 

Paper Families Variant 

Kirwan et al. 2009 
Human mutation 
and in 
Holme et al., 2012 
British Journal of Haematology 

1 c.212C>G 

2 c.309G>T 

 

Table A1.4. Published TERT mutations in familial MDS/AML cases to date 

Paper Families Variant 

Kirwan et al. 2009 
Human mutation 
and in  
Holme et al., 2012 
British Journal of Haematology 

1 c.1892G>A; p.Arg631Gln 

2 c.2354C>T; p.Pro785Leu   

1 c.248G>C; p.Arg83Pro 

 

Table A1.5. Published GATA2 mutations in familial MDS/AML cases to date 

Paper Families Variant 

Hahn et al. 2011 
Nature Genetics 
  

1 c.1007_1013del;p.G336fsX563 

2 c.83insG;p.A28fsX109 

3 cG286C; p.D96H 

4 c.+3G>A; p.K90fs 

Hsu et al., 2011 
Blood 
  

1 c.1192C>T; p. R398W 

2 c.1192C>T; p. R398W 

3 c.1192C>T; p. R398W 

4 c.1061>T; p.T354M 

5 c.243_244delAinsGC; p.G81fs 

6 c.1192C>T; p. R398W 

7 c.1113 C>G; p.N371K 

8 c.1083_1094del 12 bp; p.R361delRNAN 

9 c.1–200_871; 527del 2033 bp M1del290 

10 c.1186 C>T; p.R396W 

11 c.1061 C>T; p.T354M 

12 c.1187 G>A; p.R396Q 

13 c.1061 C>T; p.T354M 

14 c.778_779ins 10 bp D259fs 

15 c.1192C>T; p. R398W 

16 c. 951_952ins 11 bp N317fs 

17 c. 751 C>T; p. P254L 

18 c. 1018–1 G>A; p.D340–381 
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Table A1.5. Continued 

Ostergaard et al., 2011 
Nature Genetics 

1 c.310_311insCC; p.Leu105ProfsX15 

2 c.230-1_230insC; p.Arg78ProfsX107 

Dickinson et al., 2011 
Blood 

1 c.1192C>T; p. R398W 

2 c.1018-1 G>T; del 340-381 

Kazenwadel et al., 2012 
Blood 

1 c.; p.Thr354Me 

2 c.;p.Met1del290 

Holme et al., 2012 
British Journal of 
Haematology 
  

1 c.310_311insCC; p.Leu105ProfsX15 

2 c.121C>G; p.Pro41Ala 

3 c.1187G>A, p.Arg396Glu 

4 c.1061C>T, p.Thr354Met 

Bodor et al., 2012 
Haematologica 
Secondary mutations in 
ASXL1 

1 c.; p.Thr354Met   

    

Pasquet et al., 2013 
Blood 
  

1 c.1187G>A; p.R396Q 

2 c.1114G>A,; p.A372T 

3 c.1162A>G; p.M388V 

4 c.c.988C>T; p.R330X 

5 c.610C>T,; p.R204X 

6 c.670G>T; p.E224X 

7 deletion of 61 kb 

Green et al., 2013 
British Journal of 
Haematology 

1 c.310_311insCC; p.L321F 

  c.310_311insCC; p.R330Q 

Gao et al., 2014 
Journal of Haematology 
and Oncology 

1 c.; p.p.Thr358Asn 

2 c.; p.Leu359Val 

Churpek et al., 2015 
Blood 
  

1 c.10171+572 C>T 

2 c.1192C>T; p.R398W 

3 c.1061C>T; p.T354M 

Malhi et al., 2016 
Pediatric Transplantation 

1 c.917G>A; p.Trp306* 

2 c.1009 C>T; p.Arg337X 

Fisher et al., 2017 
Blood Advances 
  

1 c.1018-1G>A 

2 c.1018-2A>C 

3 c.1144-1G>C 

4 c.599delG, p.G200VfsX18 

5 3.1-3.3 Mb het del encompassing GATA2 

 

Table A1.6. Published SRP72 mutations in familial MDS/AML cases to date 

Paper Families Variant 

Kirwan et al. 2009 
The American Journal of 
Human Genetics 

1 c.1064_1065del; p.Thr355Lysfs*19 

2 c.620G>A; p.Arg207His 
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Table A1.7. Published ANKRD26 5’UTR mutations in familial MDS/AML cases to date 

Paper Families Variant 

Pippucci et al. 2011 
American Journal Human Genetics 
  

1 c.-118C>T 

2 c.-127A>T 

3 c.-128G>A 

4 c.-134G>A 

5 c.-127A>T 

6 c.-128G>A 

7 c.-125T>G 

8 c.-116C>T 

Noris et al., 2011 
Blood 
  

1 c.-113A>C 

2 c.-118C >T 

3 c.-118C>A 

4 c.-119C>A 

5 c.-121A>C 

6 c.-125T>G 

7 c.-126T>G 

8 c.-127A>T 

9 c.-127A>G 

10 c.-128G>A 

11 c.-128G> A 

12 c.-134G>A 

Noris et al., 2013 
Blood 
  

1 c.-116C.G* 

2 c.-118C>A 

3 c.-118C>T 

4 c.-119C>A 

5 c.-126T>G 

6 c.-127A>G 

7 c.-127A>G 

8 c.-127A>T 

9 c.-127A>T 

10 c.-127delAT* 

11 c.-128G>A 

12 c.-128G>A 

13 c.-128G>A 

14 c.-128G>A 

15 c.-128G>A 

16 c.-128G>A 

17 c.-128G>A 

18 c.-128G>A 

19 c.-128G>A 

20 c.-134G>A 

21 c.-134G>A 

22 c.-134G>A 

23 c.-134G>A 
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Table A1.7. Continued 

Perez Botero et al., 2015 
Blood Cancer 

1 c.-116 C4T 

  ASXL1 c.2290delC 

Ouchi-Uchiyama et al., 2016 
Pediatric Blood Cancer 
  

1 c.-118C >T 

2 c.-118C >T 

3 c.-134G>A 

4 c.-134G>A 

Yoshimi et al., 2016 
Annals of Oncology 

1 c.-134G > A 

    

Vincenot et al., 2016 
Annales de Biologie Clinique 

1 c.-127A>T 

    

Tsang et al., 2017 
Modern pathology 

1 c.-134G > A 

2   

Marconi et al., 2017 
Journal of Haematology and Oncology 

1 c.-125T>G 

    

Averina et al., 2017 
Thrombosis Research 

1 c.-128G>T 

    

Ferrari et al., 2017 
Platelets 
  

1 c.-128G>A 

2 c.-134G > A 

3 c.-140C > G 

Guison et al., 2017 
Mediterranean Journal of Hematology 
and Infectious Diseases 

1 c.-127C>A 

    

Zaninetti et al., 2017 
Journal of Thrombosis and Haemostasis 

1 c.-128G>A 

2 c.-128G>A 

 

Table A1.8. Published ETV6 mutations in familial MDS/AML cases to date 

Paper Families Variant 

Zhang et al. 2015 
Nature Genetics 
  

1 c.1106G>A ; p.Arg369Gln 

2 c.1195C>T; p.Arg399Cys 

3 c.641C>T; p.Pro214Leu 

Noetzli et al., 2015 
Nature Genetics 
  

1 c.641C>T; p.Pro214Leu 

2 c.641C>T; p.Pro214Leu 

3 c.1252A>G; p.Arg418Gly 

Topka et al., 201 
Plos Genetics 

1 c.T1046C; p. L349P 

2 c.1153-5_1153_1delAACAG; p. N385fs 

Poggi et al., 2017 
Haematologica 
  

1 p.A377T 

2 p.Y401H 

3 c.641C>T; p.Pro214Leu 

4 p.Y401N 

5 p.I358M 

6 p.R396G 
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Table A1.8. Continued 

Melazzini et al., 2016 
Haematologica 
  

1 c.641C>T; p.P214L  

2 c.1252A>G; p.R418G  
c.1153-1_1165del; p.N385Vfs*7 

3 c.1138T>A; p.W380R 

4 c.1105C>T; p.R369W 

5 c.641C>T; p.P214L  

6 c.1153-1_1165del; p.N385Vfs*7 

Duployez et al., 2017 
European Journal of 
Haematology 

1 R378X 

 

Table A1.9. Published DDX41 mutations in familial MDS/AML cases to date 

See Table 4.1 in chapter 4, section 4.14, page 144. 
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Appendix 2 – Primer sequences 

 

Table A2.1. Primers used for rolling circle amplification 

 Primer sequence 

Arqbidopsis Thio-(C3TA3)3 5'-CCCTAAACCCTAAACCCTaaa-3' 

Homo sapiens hC21Thio 5'-CCCTAACCCTAACCCTAAccc-3' 

 

Table A2.2. Primers used for monochrome multiplex qPCR 

 Primer sequence 

telg ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT 

telc TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA 

hbgu CGGCGGCGGGCGGCGCGGGCTGGGCGGCTTCATCCACGTTCACCTTG 

hbgd GCCCGGCCCGCCGCGCCCGTCCCGCCGGAGGAGAAGTCTGCCGTT 

 

Table A2.3. Primers used for dHPLC – TERT promoter 

 Forward primer Reverse primer Oligo 

length 

(bp) 

TERT promoter GGCCGATTCGACCTCTCT AGCACCTCGCGGTAGTGG 453 

 

Table A2.4. Primers used for dHPLC – ANKRD26 5’UTR 

 Forward primer Reverse primer Oligo 

length 

(bp) 

ANKRD26 5’UTR CCAGTCGCCGAGATTTGC CTTGCCGAGATCTCGGTC 396 
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Table A2.5. Primers used for dHPLC - CDKL1 

CDKL1 

exons 

Forward primer Reverse primer Oligo 

length 

(bp) 

1 TCTCCTGAGTTGCTGGGAC GAGGCAGAAGCATGGCTT G 362 

2 GGACAAACAACTTACTTTTTATTGG GCCTTACCTAGTCTTAAAAAGAG 315 

3 CTAAGATTTTTCACTACTAAAGCC GTGTGACATAAACTTTGTACAAG 402 

4 TAGTCATGTGTTTCATTTATCCC TAGAGCATTTAGATCCTTTGTTG 358 

5 CCACAAAATTGGGCACAGG TGAGACTGAGAACTTGGCTC 391 

6 CAGCATTGATGGAAGAAAACC GGCTCAGGAGGTGAATAAC 432 

7 GGACGTGAGGAAGGTGC TTTCATTGCATGGATTGACATAAG 321 

8 GACTGGTGTGTTTTCCTGC CTCAAGTCTAGATTCCAACTC 384 

9 CTCTTTTGTGATATATTCTAAATAATG GGCCTCCCAGTTTCTTGC 359 

 

Table A2.6. Primers used for dHPLC – CEP68 

CEP68 

exons 

Forward primer Reverse primer Oligo 

length (bp) 

2A GCAAGACTTCCTGAACACAG GGTCAGTCCCAATCCAGC 324 

2B TCCTATGGGAGAGGGAGC GAAAGGATGCAAGATGGTGAG 386 

3A CCACAAGGAAACTCCTGGG CCTGTGGAGGAAGCAGAG 341 

3B TGAGCCTTCCCAGAACAAC TGCCTAGCCCAGAAGCATC 387 

3C GCATCTCTGCTTCCTCCAC ACGGCTATCAAGGTGCTTTG 377 

3D CTCTCCTTCCAGGCTGAG CCATGCCACCCTGTTTCTG 370 

3E TGATAGCCGTGTGCCAGC GGGAGAGCCCATATCAAGG 352 

3F TAAGCAGTGGCCCTCCAG GAAACCTGTGTCAGCCGAG 354 

3G GCAAGCACCTTGATATGGG AGCTGGCTTTGGCTGGAG 334 

3H GGA AGTGGAAAGTGATGACG CAGCAGTCCAGAGGAGAC 340 

3I CAGACAGTGATGGGCCAG GGGGGAAGAGACAAGACAC 375 

4 AGTCTGTCT CCAAGTCCTC GCGTTCCGCTTTAAGAATGTG 382 

5 ACACATTAGAGGGGA ATAAGG TACCAGGGATAGTGCGGT C 285 

6 TGCCAGGTCCTACTTTGTG TGTTACAGCAGGGTTGGTG 343 
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Table A2.7. Primers used for Sanger sequencing validation 

 Forward primer Reverse primer Oligo 

length 

(bp) 

RUNX1 exon 3 CTACACAAATGCCCTAAAAGTG ACCGAGTTTCTAGGGATTCC 330 

GATA2 exon 4 CCACCCAAAGAAGTGTCTCCTGA GCCGGCACATAGGAGGGGTAG 392 

GATA2 exon 6 GTCAGGGAGGGGGGTC GCCCTTCTGGCGCTCAC 345 

TERT exon 2 GTTTCTGGAGCTGCTTGGGA AGCCCCTACTGCATTCAGCT 455 

SBDS exon 2 GGCTGAGGTTACAGTGACC TGCTTGGTTAGTCTTTCCTCC 478 

FANCAexon 27 TGCTCAGGCCATCCAGTTC CCTGAGATGGGCACAAAGC 322 

FANCAexon 36 GTA GTG GCC TGT AGG AGC CCACCACCACGAGAACTC 368 

WAS exon 10 ACTGGACGTTCTGGACCAC CCAACCTTTCAACCCTATCAC 353 

DDX41 exon 1 CTCCGAGGTCGTTCCTAC GTCCTCGTCGTCCTCATC 200 

DDX41 exon 3 GACCGACGGCTTGATCTG GACTCTTTGCGCGCTGAG 402 

DDX41 exon 8A CAACACCCATTCAGATCCAG GTCTCCATCTGCTCTTTCAC 510 

DDX41 exon 15 AGAACTATGGTAAGAGCCTGG GGTCCATCAGCACTGACTC 319 

RTEL1 exon 20 AGCACTGAGGCCTGAGGTC AAGCTGTGAGAGGCAGGGG 423 

RTEL1 exon 25 GCAGCAGATGAGGGTCTTC CAAAGCCAGGTGAGTCGC 362 

RTEL1 exon 29 TTTCTCAGGCAGCAGCCC AGAGAACAGAGACCACCTTG 351 

RTEL1 exon 30A CCAAGGTGGTCTCTGTTCTC CCACGCAGGAGTCTGAGG 326 

RTEL1 exon 30B ACTACAAGGGTTCCGATGAC GGTCGTCGTCTTGCTTATAG 513 

RTEL1 exon 32 GCAGTTGTCCTGAGCAGC TCAATCAGACCCGGCACAG 415 

DUT Exon 3 GGTAATTCATCATAGCAAGGTTG GGTGCTTCTTTTAGGACACAG 365 

EPS15 Exon 23 TGAGCTGTTTTTGGTTTGATCT AGAATGAATGACAGCAGCAGG 549 

PDIA3 Exon 9 TCTGCATATTGAGAGATGAGAG AACGAAGTCTTCATTTAGACCC 339 

UNC13C Exon 3 GGAGCTGACCCTGCTTAG CAGCATCTTGCACTCAAAGC 294 

ZNF333 Exon 12 TTGCACCAGAGAAACCACAC TTCGCATGTGACTCTTCAGG 349 
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Appendix 3 – TSCA studies 

 

Table A3.1. TSCA gene panel performed in some DNA samples described in chapters 4 and 

5 

Genes 

ACD NOP10 

ANKRD26 PARN 

CEBPA PAX5 

CTC1 RECQL4 

DDX41 RMRP 

DKC1 RTEL1 

DNAJC21 RUNX1 

ERCC6L2 SLX4 

ETV6 SRP72 

FANCA TERC 

FANCC TERT 

FANCD2 TINF2 

FANCG TP53 

GATA2 USB1 

GRHL2 WAS 

LIG4 WRAP53 

NHP2  
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Appendix 4 – Deletion of RUNX1 in family FML053 

 

 

Figure A4.1. Deletion of RUNX1 in family FML053. An UCSC Genome Browser 

(https://genome.ucsc.edu/) window showing the position of the 162kb RUNX1 deletion in the 

chromosome 21. The horizontal red bar indicates the deletion. B.BAM file showing the RUNX1 

position in the chromosome 21. The horizontal red bar indicates the region that is included in 

the 162kb RUNX1 deletion (NR_073512 and SETD4). 
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