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Abstract 

 

Background 

Exposure to ambient air pollution is strongly associated with increased cardiovascular 

morbidity and mortality. Little is known about the influence of air pollutants on cardiac 

structure and function. We aim to investigate the relationship between chronic past exposure 

to traffic-related pollutants and the cardiac chamber volume, ejection fraction and left 

ventricular remodelling patterns after accounting for potential confounders. 

 

Methods  

Exposure to ambient air pollutants including particulate matter and nitrogen dioxide was 

estimated from the Land Use Regression models for years between 2005 and 2010. Cardiac 

parameters were measured from cardiovascular magnetic resonance imaging studies of 3,920 

individuals free from pre-existing cardiovascular disease in the UK Biobank population study. 

The median (interquartile range [IQR]) duration between the year of exposure estimate and the 

imaging visit was 5.2 (0.6) years. We fitted multivariable linear regression models to 

investigate the relationship between cardiac parameters and traffic-related pollutants after 

adjusting for various confounders.  

 

Results 

The studied cohort was 62±7 years old and 46% were men. In fully-adjusted models, fine 

particulate matter (PM2.5) concentration was significantly associated with larger left ventricular 

end-diastolic volume and end-systolic volume (effect size = 0.82%, 95% confidence interval 

[CI] = 0.09 to 1.55%, p = 0.027 and effect size = 1.28%, 95% CI = 0.15 to 2.43%, p = 0.027, 
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respectively, per IQR increment in PM2.5) and right ventricular end-diastolic volume (effect 

size = 0.85%, 95% CI = 0.12 to 1.58%, p = 0.023, per IQR increment in PM2.5). Likewise, 

higher nitrogen dioxide (NO2) concentration was associated with larger biventricular volume. 

Distance from the major roads was the only metric associated with lower left ventricular mass 

(effect size = -0.74%, 95% CI = -1.3% to -0.18%, p = 0.01, per IQR increment). Neither left 

and right atrial phenotypes nor left ventricular geometric remodelling patterns were influenced 

by the ambient pollutants.  

 

Conclusions 

In a large asymptomatic population with no prevalent cardiovascular disease, higher past 

exposure to PM2.5 and NO2 was associated with cardiac ventricular dilatation, a marker of 

adverse remodelling which often precedes heart failure development.  

 

Keywords: air pollution; PM2.5; NO2; cardiovascular phenotypes; cardiovascular magnetic 

resonance imaging 
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Clinical Perspective 

What is New? 

• Although ambient air pollutants are known to be associated with increased 

cardiovascular morbidity and mortality, limited information is available on the link 

between air pollutants and cardiac structure and function.   

• In this cross-sectional analysis of a large population free from pre-existing 

cardiovascular disease, higher past exposure to fine particulate matter (PM2.5) and 

nitrogen dioxide (NO2) were associated with larger cardiac biventricular volumes, 

which is a well-recognised pathophysiological adaptation, heralding heart failure 

development.  

• Proximity to major roads, a surrogate for chronic air pollution exposure, was 

additionally associated with higher left ventricular mass which is known to portend 

adverse outcomes.  

What Are the Clinical Implications? 

• The association between ambient air pollution and adverse cardiac phenotypic 

changes in individuals without prevalent cardiovascular disease suggests that air 

pollution should be recognised as a major modifiable risk factor which needs to be 

targeted via public health measures. 

• These cardiac morphological alterations are apparent despite relatively low exposure 

levels meeting the current air quality standards, making a strong case to double efforts 

to control emission of the noxious pollutants.      
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Introduction 

 

Deleterious effect of air pollutants on cardiovascular health is well established. Several 

studies have demonstrated strong associations between exposure to air pollution and 

increased risks of coronary artery disease, heart failure, stroke, cardiovascular mortality and 

all-cause mortality 1. Traffic-related environmental pollution consists of a complex mixture 

of gaseous and particulate components, alongside auxiliary elements such as noise and 

psychological stress. Amongst all air pollutants, particulate matter (PM) pollution – 

specifically fine particulates with an aerodynamic diameter less than 2.5µm (PM2.5) – has 

repeatedly been associated with cardiovascular morbidity and mortality. Inhalation of PM2.5 

can initiate and sustain physiological and biochemical changes through elevation of 

pulmonary and systemic inflammatory and oxidative stress, autonomic imbalance, 

endothelial dysfunction, hypertension, atherosclerosis, and thrombosis, which are all key 

substrates for adverse cardiac remodelling leading to detrimental outcomes 2.  

 

Cardiac morpho-functional parameters are prognostically important biomarkers in health and 

disease. Left ventricular (LV) mass, for example, is a well-recognised predictor of 

cardiovascular morbidity and mortality even in individuals without established cardiovascular 

disease (CVD) 3. LV geometric patterns and the morpho-functional indices of other cardiac 

chambers also carry prognostic information in the setting of CVD 4–11. Although the 

associations between ambient air pollutants and increased incidence of myocardial infarction 

and heart failure have been established 12,13, there is a paucity of information in the current 

literature about the influence of air pollution on cardiac structure and function. Determining 
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the impact of individual air pollutant on cardiac phenotypes is challenging for several reasons 

due to socioeconomic confounders, relatively small effect sizes and the variability of 

exposure and outcome measurement techniques.  

The UK Biobank is a large-scale prospective cohort study of half a million people, aged 

between 40-69 years. In addition to a rich repository of information on demographics, risk 

factors and environmental exposure data, a sub-group of UK Biobank participants undergo 

deep phenotyping with cardiovascular magnetic resonance (CMR), which is the reference 

imaging modality for quantification of the cardiac structural phenotypes 14. In this study, we 

aim to explore the association between chronic past exposure to traffic-related ambient air 

pollution and the cardiac imaging parameters after accounting for various potential 

confounders in the UK Biobank cohort. We hypothesised that annual average air pollutants 

and other traffic-related factors quantified approximately 5 years prior to cardiac imaging 

have a detectable adverse association with cardiac imaging phenotypes in individuals free 

from known cardiovascular disease.  

 

Methods 

 

Data access 

 

The data, analytic methods, and study materials will be returned to the UK Biobank. The UK 

Biobank will make these data available to all bona fide researchers for all types of health-

related research that is in the public interest, without preferential or exclusive access for any 

person. All researchers will be subject to the same application process and approval criteria 

as specified by the UK Biobank. Please see the UK Biobank’s website for the detailed access 

procedure (http://www.ukbiobank.ac.uk/register-apply/). 
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Study population 

 

The UK Biobank is a large population-based prospective cohort study which has collected a 

wealth of information on health and lifestyle data, physical measurements, biological 

samples, and cardiac phenotypes derived from CMR. This ambitious project aims to provide 

resources to disentangle the genetic and environmental determinants of complex diseases 

affecting middle and old age. The study protocol has been described in detail previously 15. In 

brief, approximately 9.2 million UK residents aged between 40-69 years, who were registered 

with the UK National Health Service and living up to twenty-five miles from one of the 22 

study assessment centres, were invited to join the study. Amongst those who responded the 

invite, more than 500,000 people were enrolled in 2006 to 2010. The sample size of 500,000 

was calculated a priori for reliable detection of the effects of different exposures on a wide 

variety of conditions in nested case-control studies. Although the UK Biobank cohort is not 

designed to be representative of the UK general population (due to ‘healthy volunteer’ 

selection bias), it is well-suited to study exposure-disease relationships due to its large size 

and heterogeneity of exposure measures 16. The baseline summary characteristics of the 

cohort can be viewed in the data showcase on UK Biobank’s website 

(www.ukbiobank.ac.uk). The CMR imaging sub-study was commenced in 2014 and this 

study included the first 5,065 consecutive participants who returned for imaging 

enhancement in 2014-2015. The study complies with the Declaration of Helsinki and was 

approved by our institutional review body. All participants provided informed written 

consent. The UK Biobank’s scientific protocol and operational procedures were approved by 

the Northwest Research Ethics Committee in the UK.  
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Ambient air pollution, noise and traffic exposure 

 

The annual average concentration of PM2.5, PM10 (PM with an aerodynamic diameter of less 

than 10 µm), PMcoarse (PM with an aerodynamic diameter between 2.5 to 10 µm), PM2.5 

absorbance (a measurement of the blackness of PM2.5 filter – a proxy for elemental or black 

carbon), nitrogen dioxide (NO2) and nitrogen oxides (NOx) were calculated centrally by the 

UK Biobank using a Land Use Regression (LUR) model developed by the European Study of 

Cohorts for Air Pollution Effects (ESCAPE) project 17,18. LUR models calculate the spatial 

variation of annual average air pollutant concentration at participants’ home addresses given 

at the baseline visit, using the predictor variables obtained from Geographic Information 

System (GIS) such as traffic, land use, and topography. Since NO2 and PM10 annual 

concentration data were available for several years (2005, 2006, 2007 and 2010 for NO2 and 

2007 and 2010 for PM10), we averaged the values to get the mean estimate. All other 

particulate matter and nitrogen pollutants had the exposure data for a single year (2010). The 

median leave-one-out cross-validated variance explained by the model was 71% for PM2.5, 

77% for PM10, 68% for PMcoarse, 89% for PM2.5 absorbance, 82% for NO2 and 78% for NOx.  

 

Average exposure to noise for year 2009 was estimated from a model based on common 

noise assessment methods in Europe (CNOSSOS-EU) 19. This technique allows large-scale 

noise mapping for epidemiological studies using data on traffic flow, speed and composition, 

land cover, building heights, road network, air temperature, and wind direction. Noise 

pollution was represented by 24-hour (daily) sound pressure level (A-weighted sound level in 

decibels) averaged over a year as suggested by World Health Organization 20.  
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Traffic intensity on the nearest major road was defined as the total number of motor vehicles 

per 24 hours, averaged over the course of one year. The traffic count and road network data 

were provided by the UK Department for Transport and the Ordnance Survey Meridian 2 

(OSM2) road network (scale 1:50000, 1 metre accuracy) in year 2009. Proximity to traffic 

was characterised by the distance from home address to the nearest major road. 

 

CMR parameters 

 

The detailed CMR protocol and analysis methods have been described previously 21. In brief, 

all CMR studies were acquired with a wide bore 1.5 Tesla scanner (MAGNETOM Aera, 

Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany) and analyses were 

performed using cvi42 post-processing software (Version 5.1.1, Circle Cardiovascular 

Imaging Inc., Calgary, Canada). LV mass and volumes; right ventricular (RV) volumes; left 

atrial (LA) and right atrial (RA) volumes were manually measured from balanced steady-

state free precession (bSSFP) cine short and long axis images. The following cardiac 

phenotypes were included: LV end-diastolic volume (LVEDV), LV end-systolic volume 

(LVESV), LV ejection fraction (LVEF), LV mass (LVM), RV end-diastolic volume 

(RVEDV), RV end-systolic volume (RVESV), RV ejection fraction (RVEF), LA maximal 

volume, LA ejection fraction (LAEF), RA maximal volume, RA ejection fraction (RAEF), 

and LV geometric remodelling patterns. The LV geometric remodelling patterns were 

classified according to LV mass indexed to body surface area and LV mass to end-diastolic 

volume ratio (LVMVR, CMR-equivalent of relative wall thickness) as previously described 

22. Normal cut-off values for LV mass and LVMVR were obtained from the 95% prediction 

intervals of sex-specific reference ranges 21. Four distinct LV geometric remodelling patterns 

were defined: (i) Normal (normal indexed LV mass and LVMVR), (ii) Concentric 
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remodelling (normal indexed LV mass and increased LVMVR), (iii) Eccentric hypertrophy 

(increased indexed LV mass and normal LVMVR), and (iv) Concentric hypertrophy 

(increased indexed LV mass and increased LVMVR).  

 

Statistical analyses 

 

Since air pollution estimates were modelled using participants’ home address given at the 

baseline visit, we restricted the data analysis to those who remained at the same address 

between the baseline and imaging visits. We also excluded individuals with any known 

cardiovascular disease based on the self-reported questionnaires and hospital episode data in 

order to mitigate the potential impact of established cardiac conditions on the imaging 

parameters. All continuous variables were assessed for normality using histograms and 

quantile-quantile plots. Natural logarithmic transformation was performed on non-Gaussian 

dependent variables where possible. Descriptive statistics for continuous variables were 

presented as mean (standard deviation [SD]) or median (interquartile range [IQR]) while 

categorical variables were presented as number (percentage).  

We imputed missing data by multiple imputation by chained equations (MICE) approach to 

create 50 complete datasets 23. We used predictive mean matching for continuous variables, 

logistic regression for binary variables, and polytomous regression for categorical variables. 

All covariates and interaction terms were included in the imputation models. The maximum 

iteration was set at 50 and convergence was confirmed by visual examination of trace plots.  

We constructed separate multiple linear regression models to examine the associations 

between each air pollutant and continuous cardiac CMR variables. For categorical LV 

geometric remodelling patterns, we used multinomial logistic regression to model the effect 

of pollution. In all statistical models, we adjusted for: (i) demographics – age at imaging visit, 
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sex, and ethnicity; (ii) anthropometrics – height, and body mass index (BMI); (iii) 

socioeconomic factors – average household income, employment status, Townsend 

deprivation index, and educational attainment; (iv) cardiac risk factors – systolic blood 

pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), smoking status, regular 

alcohol use, hypertension, diabetes mellitus, and respiratory disease; (v) medications – anti-

hypertensive medication, lipid-lowering medication, and insulin; (vi) physical activity –

seven-day average acceleration from accelerometer. All covariates were chosen a priori for 

their established or presumed influence on the cardiovascular structure and function. The 

measurement protocols and covariate definitions were provided in the “Definitions of 

covariates” section in Supplemental Methods. The beta-coefficients (effect estimates) of log-

transformed variables were anti-logged and expressed as percentage change. The mean 

estimates and standard errors of the beta-coefficients for the imputed datasets were combined 

with Rubin’s rules (see Supplemental Methods) 24. Since we have scaled all pollutants by 

their respective IQR before entering into the regression models, their effect estimates 

represent the change in dependent CMR variable per IQR increment in pollutant.   

 

We conducted the following secondary analyses: (i) an analysis of effect modification by age, 

sex, and smoking status by introducing cross-product terms, (ii) an analysis excluding 

hypertension, diabetes, SBP, DBP, and HR due to their potential mediating effects on the 

relationship between air pollution and cardiac phenotypes, (iii) an analysis of the 

confounding effects of noise and proximity to traffic on the significant associations between 

air pollutants and cardiac measurements, and (iv) an analysis of cases with clinically 

unrecognized myocardial infarction (MI) based on the evaluation of CMR images. Cases with 

possible MI were first selected by identifying thin left ventricular myocardial segments (end-

diastolic wall thickness < 5.5 mm for the basal and mid segments) and possible regional 
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hypokinesis (systolic wall thickening – end-systolic wall thickness minus end-diastolic wall 

thickness – of < 2mm) as recommended by Baer et al. 25,26. These cases were then manually 

evaluated by three analysts with significant experience in reporting clinical CMR studies 

(MK, NA – both EACVI CMR level 3-certified cardiologists – and KF with four years’ 

experience in reporting clinical CMR studies).   

 

Sensitivity analyses were conducted by: (i) restricting the sample to participants with 

complete data, (ii) indexing continuous CMR-derived phenotypes by height2.7 , and (iii) 

restricted cubic spline (RCS) transformation of exposure variables to investigate non-linear 

relationships. The optimal number of knots for RCS-transformed variables was determined 

by the Akaike information criterion. Non-linearity was assessed with the analysis-of-variance 

F statistics and visualized with line plots. The regression model assumptions were checked 

with residuals plots. A p-value of < 0.05 was considered significant. Multiple imputation, 

multinomial regression and restricted cubic spline transformation were performed using 

‘mice’, ‘nnet’ and ‘rms’ packages, respectively 27–29. We used R (version 3.4.3) for all 

statistical analyses 30. 

 

Results 

 

Baseline demographics  

 

A total of 5,065 individuals were considered for this study. Of these, we excluded 738 

individuals who had moved home between the baseline and imaging visit. A further 407 

individuals were excluded due to pre-existing CVD – highest prevalent CVD was coronary 

artery disease (n [%] = 198 [4.6%]), resulting in 3,920 individuals included in the final 
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analysis (Figure 1). The baseline characteristics of the final cohort are presented in Table 1. 

The mean age of the cohort was 61.7 years and 45.6% were men. The median (IQR) annual 

average concentration of the two main pollutants, PM2.5 and NO2, were 9.9 (1.32) µg/m3 and 

28.2 (11.4) µg/m3, respectively. The median (IQR) duration between the year of exposure 

estimate and the imaging visit was 5.2 (0.6) years. There was no clinically significant 

difference in characteristics between the whole cohort and complete cases without missing 

data (Supplemental Table 1).  

 

Relationship between particulate matter pollutants and cardiac phenotypes 

 

The associations between particulate matter pollutants and cardiac phenotypes are presented 

in Table 2 and Figure 2. After adjustment for all covariates, PM2.5 concentration was 

significantly associated with larger biventricular volume (effect size for LV EDV = 0.82%, 

95% confidence interval [CI]: 0.09 to1.55%, p = 0.027; effect size for LV ESV = 1.28%, 

95% CI: 0.15 to 2.43%, p = 0.027; effect size for RV EDV = 0.85%, 95% CI: 0.12 to 1.58%, 

p = 0.023, per IQR increment in PM2.5 concentration). Likewise, PM10 had identical 

association patterns with slightly smaller magnitude of effect sizes per IQR increment. 

Neither PM2.5 nor PM10 was associated with other cardiac parameters and LV geometric 

remodelling patterns. PMcoarse and PM2.5 absorbance did not have any association with the 

cardiac phenotypes.   

 

Relationship between oxides of nitrogen and cardiac phenotypes 

 

Table 3 presents the relationships between nitrogen pollutants and cardiac parameters after 

adjustment for all covariates. Higher NO2 concentration was significantly correlated with 
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larger LV EDV and RV EDV (effect size for LV EDV = 0.91%, 95% CI: 0.12 to 1.7%, p = 

0.025; effective size for RV EDV = 0.85%, 95% CI: 0.06 to 1.65%, p = 0.035, per IQR 

increment in NO2 concentration) (Figure 2). However, NOx had no significant association 

with CMR-derived measurements.  

 

Relationship between noise, road traffic factors and cardiac phenotypes 

 

The associations between noise, distance to the nearest major road and traffic intensity and 

CMR-derived phenotypes are detailed in Table 4. Being exposed to higher ambient sound 

level was associated with larger LV ESV (effect size = 0.69%, 95% CI: 0.03 to 1.35%, p = 

0.041, per IQR increment in 24-hour sound level averaged over a year). Interestingly, in 

addition to the significant association with biventricular volume, living further away from 

major roads was also associated with lower LV mass (effect size =   -0.74%, 95% CI: -1.3 to 

-0.18%, p = 0.01, per IQR increment in distance to major roads). There was no significant 

relationship between traffic intensity and any of the cardiac morpho-functional phenotypes.  

 

Effect modification and mediator analyses 

 

We investigated if age, sex, and smoking status modify the significant relationships between 

each pollutant and cardiac phenotypes. Smoking status was the only important effect 

modifier, where being a current smoker significantly enhanced the positive association 

between PM10 concentration and RVEDV (effect size difference = +3.3% for current smoker 

compared to non-smoker, 95% CI: 0.06 to 6.7%, p = 0.046). The regression models which 

were not adjusted for hypertension, diabetes, SBP, DBP and HR produced results with 
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similar magnitude in effect size when compared with the fully-adjusted models 

(Supplemental Tables 2-4).  

 

The wall motion assessment to determine unrecognized MI cases revealed 600 cases with 

possible regional wall motion abnormalities (RWMA) based on cut-off values of LV end-

diastolic wall thickness < 5.5mm and LV systolic wall thickening of < 2mm. After manual 

evaluation, we discovered 43 CMR studies with truly hypokinetic LV segments (10 studies 

with global hypokinesis and 33 studies with regional hypokinesis). The distribution of 

hypokinetic segments in the 33 cases with RWMA are displayed in Supplemental Figure 1. 

We observed that mid to apical inferior and lateral segments were most commonly affected. 

Due to the limited number of cases with probable unrecognised MI based on cine CMR data 

(<1% of the entire cohort), we were not able to assess the relationship between air pollution 

and unrecognised or unreported MI.  

 

We found that the associations between PM2.5 and NO2 concentrations and LV volume were 

not independent of noise or distance to major roads and vice-versa (i.e., the relationships 

between noise/distance to major roads and LV volume were also confounded by PM2.5 and 

NO2). The associations between PM2.5 and NO2 and RV volume were independent of noise 

but not from distance to major roads. 

 

Sensitivity analyses 

 

Sensitivity analyses including only participants with complete data gave no materially 

different results. Equivalently, fitting the models with continuous CMR parameters indexed 

to height2.7 produced similar findings. There was no consistent evidence to support non-linear 
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relationships between air pollutants and cardiac measurements (Supplemental Figure 2). The 

fitted model diagnostic plots showed no evidence of heteroscedasticity or deviation from 

normality of residuals.  

 

Discussion 

 

In a cross-sectional investigation of 3,920 individuals free from known cardiovascular 

disease, this study identified the following important findings: (i) higher concentration to 

PM2.5 and NO2 were associated with biventricular enlargement; (ii) the lack of association 

between PMcoarse and cardiac phenotypes suggests that the association between PM and 

cardiac chamber size was predominantly driven by the finer particles; (iii) other 

environmental stressors such as noise pollution and proximity to major roads were also 

correlated with LV dilatation; (iv) amongst all traffic-related factors, only proximity to major 

roads was predictive of higher LV mass; (v) no perceptible difference in traditional LV 

geometric remodelling pattern in relation to differing air pollutant concentration was found.  

 

Accumulating evidence based on meta-analyses indicates an increased risk of heart failure 

hospitalisation associated with higher PM2.5 and NO2 exposure (1.28% increase in risk per 10 

µg/m³ increase in PM2.5 and 1.7% increase in risk per 10 parts per billion increase in NO2) 

13,31. However, the connection between air pollution and cardiac remodelling, which is likely 

to precede the development of heart failure by months to year, had not received an in-depth 

investigation. Previous studies in this arena typically examined a limited number of pollutants 

or cardiac phenotypes 32–34, animal models 35,36 or had relatively small sample sizes 37,38. Our 

study is the largest single epidemiological study to date that investigated the association 

between chronic exposure to several traffic-related pollutants and cardiac structural variations 
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using highly precise and reproducible CMR measurements, which further enhanced the 

statistical power.   

This is the first study to report the association between PM2.5 and NO2 concentration and LV 

dilatation – an ominous sign which often heralds cardiac decompensation – in a population 

free from pre-exiting cardiovascular disease.  

 

Association between ambient pollutants and cardiac parameter – summary of evidence 

 

The findings from this study should be interpreted in the context of the currently available 

evidence in animal and human studies. In a controlled-exposure study with mice, prolonged 

exposure to concentrated PM2.5 (mean exposure chamber concentration of 85.3 µg/m3) led to 

increased LV dimensions, decreased fractional shortening and reduction in contractile reserve 

to dobutamine 36. Similarly, in-utero and early life exposure to concentrated PM2.5 in mice 

appeared to increase LV cavity size and impair LV function with histological evidence of 

cardiac collagen deposition 39,40. A human study which assessed the cross-sectional 

association between residential air pollution and cardiac measurements derived from 

echocardiogram (ECHO) in 671 White Europeans found a reduction in LV longitudinal strain 

and strain rate with higher levels of PM2.5, PM10, NO2 and black carbon 38. Similar to our 

study, no association was found between the ambient pollutants and the LA volume, LV mass 

or LV EF. However, in contrast to our study, they found no correlation between LV 

dimension and the ambient pollutants, which could be explained by the well-recognised 

limitation of two-dimensional (2D) ECHO in measurement of LV dimensions and the study 

being significantly underpowered. The Study on the Influence of Air Pollution on Lung 

(SALIA) cohort with 264 elderly women (mean age of 74.4 years) reported some signals of 

association between larger indexed LA volume and higher PM2.5, NO2 and NOx exposure 41. 
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The lack of association between LA size and pollution concentration in our study could be 

due to much lower level of exposure (mean PM2.5 of 9.86 µg/m3 in our cohort vs 17.4 µg/m3 

in SALIA cohort) and younger age of the participants.  

 

Another ECHO-based study by Weaver et al. in 4,866 African-American individuals 

(Jackson Heart Study (JHS)) did not find any association between the distance to major roads 

and LV EF and LA diameter index, in parallel to our results 42. Intriguingly, they reported a 

small increase in pulmonary artery systolic pressure (PASP) in those living 300-999m from 

major roads (compared to those who lived ≥ 1000m) – a finding which may explain the 

mechanism of RV dilatation in relation to the distance to major roads observed in our study. 

A follow-up study in the same JHS cohort found a 1.2mm larger LV end-systolic diameter in 

participants residing < 150m from a major road in comparison to those living ≥ 1000m), 

although no association was detected between indexed LV mass and proximity to major roads 

43.  

 

Perhaps, the most comparable study to-date was conducted in the Multi-ethnic Study of 

Atherosclerosis (MESA) cohort (sample size of 3,827; age 45-84 years), which also 

underwent CMR imaging 32. Interestingly, they only investigated the impact of PM2.5 and 

proximity to traffic on LV EF and LV mass. In their fully-adjusted models, living within 50m 

of a major road was associated with higher indexed LV mass while PM2.5 did not influence 

LV mass or LV EF – these results are consistent with our findings. Another MESA study by 

Leary and colleagues which explored the relationship between NO2 and NOx exposure and 

RV phenotypes observed a small increase RV mass and RV EDV per IQR increase in NO2 33; 

the latter finding was replicated in our study, however, RV mass was not available in our 

cohort for comparison.   
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All available epidemiologic evidence to-date including our findings suggests that ambient 

particulate and nitrogen pollutants predominantly affect the ventricular chamber size and 

possibly, the long-axis function, while exerting a minimal influence on other cardiac indices 

such as LV radial function or LA size. Residential proximity to major roadways is regarded 

as a surrogate for long-term exposure to traffic-related pollutants and has been known to be 

associated with adverse cardiovascular and pulmonary outcomes 44. Unlike the ambient 

pollutants, it is associated with higher LV mass, a well-recognised cardiovascular 

prognosticator, which could be due to the contributions from unmeasured noxious elements 

(such as sympathetic stimulation from stress and annoyance) and residual confounding from 

latent socioeconomic factors. Given the known links between coronary artery disease and air 

pollution, the effect estimates of the associations between air pollutants and cardiac 

parameters in our study are likely to be conservative due to a priori exclusion of individuals 

with pre-existing CVD. 

 

Biological mechanisms mediating cardiac remodelling 

 

Air pollution exposure is known to be associated with elevation of oxidative stress, immune-

mediated systemic inflammation and hypercoagulation which can induce atherosclerosis, 

myocardial ischaemic damage and associated cardiac remodelling 45–48. Indeed, ventricular 

enlargement in association with PM2.5 and NO2 in our cohort free from known cardiovascular 

disease could be due to adverse remodelling secondary to unrecognized or silent MI. In our 

study, the prevalence of probable MI based on cine CMR data was low (<1% of the entire 

cohort). Although the true prevalence of silent MI is likely to be higher, we were unable to 

ascertain subtle subendocardial infarction in the absence of late gadolinium contrast 
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enhancement images. The population prevalence of unrecognized MI was previously reported 

to be 16.7%  in an Icelandic cohort 49, although the latter imaged a much older population 

(mean age of 76.7 years vs 61.7 years in our study) and had benefited from augmented 

sensitivity and specificity afforded by the aforementioned contrast agent. Another potential 

contributing mechanism is through vasoconstriction and systemic hypertension due to a 

combination of endothelial dysfunction and autonomic imbalance. However, in our study, 

systolic and diastolic components of blood pressure and presence of hypertension do not 

appear to mediate the association between air pollution and cardiac parameters, suggesting 

that oxidative stress is likely to be predominantly responsible for cardiac phenotypic 

alterations which often precede clinical heart failure.  

 

Strength and Limitations 

 

Our study is the first to report the deleterious influence of a wide range of ambient pollutants 

on prognostically important cardiac chamber size in humans free from any pre-existing 

cardiovascular disease. The strengths of this study include a large sample size, highly 

accurate and reproducible measurements by CMR imaging and uniform data collection 

protocols which increase the precision of effect estimates. Our study has a number of 

limitations. First, we used estimated outdoor pollution at participants’ home address which 

does not take into account (i) individual activity pattern such as time spent at home or in 

traffic, (ii) degree of pollutant infiltration into buildings, and (iii) indoor air pollution and 

workplace exposure. Second, biomarkers of oxidative damage such as malondialdehyde 

(MDA), 4-hydroxy-2-nonenal (4-HNE), 4-oxo-2-nonenal (4-ONE), and acrolein, were not 

measured in our cohort which prevented us from validating our findings mechanistically. 

Third, multiple testing correction was not performed for the regression models. However, the 
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inflation of type-I error may be somewhat diminished, although not completely removed, by 

correlation within exposure and outcome variables – approximately 70% of ambient air 

pollutants (exposure) and directly-measured CMR variables (outcome) were at least 

moderately inter-correlated (Pearson correlation coefficient [r] > 0.5) and ~ 30% of both 

exposure and outcome variables were significantly correlated (Pearson r > 0.7). Finally, the 

intrinsic weaknesses of the cross-sectional study design mean that the findings should be 

interpreted with caution while corroborating longitudinal data is pending.  

 

Clinical implications 

 

The current European standard of acceptable annual PM2.5 concentration is less than 25 

µg/m3 while the World Health Organisation (WHO) air quality guidelines stipulate a more 

stringent long-term target of 10 µg/m3 50,51. Although the relatively low average 

concentration level in our study population not only achieves the WHO target but surpasses 

the current European standard by a significant margin, we observed a detectable cardiac 

remodelling effect which usually heralds detrimental outcomes. Although the effect sizes 

found in our analyses are relatively small, they are comparable to the impact of other 

cardiovascular risk factors on cardiac phenotypes (for example, a previous study in the same 

cohort reported a 2% larger LV ESV per SD [18.1 mmHg] increase in SBP vs  a 1.28% larger 

LV ESV per IQR [1.32 µg/m3] increase in PM2.5 concentration in this study) 52.  

 

Conclusions 

 

In this large UK-wide middle-aged population, we found a significant association between 

higher annual average PM2.5 and NO2 concentration and larger biventricular volume, which is 
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a hallmark of adverse cardiac remodelling. These cardiac structural alterations in the absence 

of known cardiovascular disease alludes to a silent pathophysiological adaptation which 

should be monitored and targeted for treatment. Our findings add to the growing evidence of 

the damaging effects of ambient pollution even in the setting of relatively low exposure 

levels. Efforts to reduce air pollutant emission should be prioritised accordingly in public 

health initiatives and legislative measures.  
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Figure titles and legends 

 

Figure 1. Case selection flowchart 

Figure 2. Association between annual average concentrations of PM2.5 and NO2 and cardiac 

parameters 

The figure shows the marginal means (with 95% confidence interval) of cardiac parameters at 

different levels of PM2.5 and NO2 concentrations. Marginal means were estimated from the 

linear regression models adjusted for all covariates. Intervals of pollutant concentrations (x-

axis) were chosen to closely represent the range of pollutant concentration observed in the 

cohort.  

Higher levels of PM2.5 and NO2 were associated with larger LVEDV and RVEDV. No 

significant association was observed between air pollutants and other cardiac parameters.  

LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right atrium; EDV, end-diastolic 

volume; EF, ejection fraction 
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Table 1. Participant characteristics 
 
 Entire cohort 

(N=3,920) 

Demographics  

Age, years 61.7 (7.4) 

Male sex 1787 (45.6) 

Caucasian ethnicity 3805 (97.1) 

Height, cm 169.5 (9.4) 

Weight, kg 75.1 (15.1) 

BMI, kg/m2 26.6 (4.3) 

Average household income  

< £18,000 480 (13.6) 

£18,000 to £30,999 1036 (29.3) 

£31,000 to £51,999 1054 (29.9) 

£52,000 to £100,000 750 (21.2) 

> £100,000 210 (5.9) 

Townsend deprivation index -2.00 (2.65) 

Degree-level or professional education 2495 (63.6) 

Employment status  

Skilled job 3097 (79.1) 

Unskilled job 693 (17.7) 

Unemployed 121 (3.1) 

Retired 4 (0.1) 
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Clinical characteristics  

Systolic blood pressure, mmHg 137 (18) 

Diastolic blood pressure, mmHg 79 (10) 

Heart rate, bpm 71 (12) 

Hypertension 1108 (28.3) 

Dyslipidaemia 866 (22.1) 

Diabetes mellitus 175 (4.5) 

Antihypertensive medication 786 (20.1) 

Lipid-lowering medication  718 (18.3) 

Insulin  25 (0.6) 

Smoking status  

Never 2398 (61.3) 

Previous 1342 (34.3) 

Current 171 (4.4) 

Regular alcohol use (≥ 3 times per week) 1757 (44.8) 

Seven-day average acceleration, milli-gravity 28.19 (9.17) 

  

Cardiac phenotypes  

LV EDV, ml 142.3 (33.0) 

LV ESV, ml 58.1 (18.3) 

LV SV, ml 84.2 (19.3) 

LV EF, % 59.5 (6.2) 

LV mass, g 88.4 (24.0) 

LV remodelling patterns  
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Normal 3504 (92.2) 

Concentric remodelling 140 (3.7) 

Eccentric hypertrophy 123 (3.2) 

Concentric hypertrophy 33 (0.9) 

RV EDV, ml 151.2 (37.1) 

RV ESV, ml 66.7 (22.3) 

RV SV, ml 84.5 (19.4) 

RV EF, % 56.5 (6.5) 

LA maximal volume, ml 66.7 (20.2) 

LA minimal volume, ml 27.6 (12.1) 

LA SV, ml 39.1 (11.2) 

LA EF, % 59.5 (8.3) 

RA maximal volume, ml 78.4 (25.4) 

RA minimal volume, ml 45.2 (18.1) 

RA SV, ml 33.2 (12.5) 

RA EF, % 42.7 (10.3) 

  

Ambient pollutants  

PM2.5*, µg/m3 9.9 (1.32) 

PM10*, µg/m3 18.8 (2.11) 

PMcoarse*, µg/m3 6.1 (0.72) 

PM2.5 absorbance (elemental carbon)*, per meter 1.13 (0.29) 

NO2*, µg/m3 28.2 (11.4) 

NOx*, µg/m3 41.5 (17.1) 

24-hour sound level averaged over 1 year*, dB 54.9 (3.6) 
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Distance to the nearest major road*, m 356 (555) 

Traffic intensity on the nearest major road per day 

averaged over 1 year*, vehicles/day 
15896 (10947) 

Duration between exposure estimate and imaging visit*, 

years 
5.2 (0.6) 

Numbers are mean (SD) or number (%), unless otherwise stated.  
BMI, body mass index; LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right 
atrium; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, 
ejection fraction; MVR, mass to end-diastolic volume ratio. 
*Indicates data presented as median (interquartile range) 
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Table 2. Associations between annual average particulate matter concentration and cardiac phenotypes  
 

Phenotype 

PM2.5 (per IQR [1.32 µg/m3] 
change) 

PM10 (per IQR [2.11 µg/m3] 
change) 

PMcoarse (per IQR [0.72 
µg/m3] change) 

PM2.5 absorbance (per IQR 
[0.29 m-1] change) 

Effect size 
[95% CI] 

P-
value 

Effect size 
[95% CI] 

P-
value 

Effect size 
[95% CI] 

P-
value 

Effect size 
[95% CI] 

P-
value 

LV EDV* 0.82 [0.09 - 1.55] 0.027 0.81 [0.12 - 1.5] 0.021 0.37 [-0.03 - 0.76] 0.069 0.34 [-0.26 - 0.94] 0.272 

LV ESV* 1.28 [0.15 - 2.43] 0.027 1.07 [0 - 2.15] 0.049 0.47 [-0.14 - 1.09] 0.133 0.28 [-0.64 - 1.21] 0.557 

LV EF -0.16 [-0.45 - 0.13] 0.269 -0.09 [-0.36 - 0.18] 0.507 -0.05 [-0.2 - 0.1] 0.527 0.01 [-0.22 - 0.24] 0.948 

LV mass* 0.4 [-0.39 - 1.2] 0.321 0.4 [-0.35 - 1.16] 0.292 0.22 [-0.21 - 0.66] 0.316 0.06 [-0.59 - 0.71] 0.865 

RV EDV* 0.85 [0.12 - 1.58] 0.023 0.77 [0.08 - 1.46] 0.028 0.27 [-0.12 - 0.67] 0.176 0.36 [-0.24 - 0.96] 0.245 

RV ESV* 1.11 [-0.01 - 2.25] 0.051 0.66 [-0.39 - 1.73] 0.218 0.39 [-0.22 - 1] 0.209 0.42 [-0.49 - 1.35] 0.364 

RV EF -0.08 [-0.36 - 0.21] 0.598 0.07 [-0.19 - 0.34] 0.6 -0.05 [-0.2 - 0.1] 0.503 -0.03 [-0.26 - 0.2] 0.783 

LA maximal 
volume* 0.55 [-0.75 - 1.86] 0.409 0.46 [-0.74 - 1.68] 0.457 0.23 [-0.46 - 0.92] 0.516 0.7 [-0.35 - 1.76] 0.191 

LA EF -0.06 [-0.47 - 0.35] 0.778 -0.13 [-0.5 - 0.25] 0.504 -0.04 [-0.26 - 0.17] 0.686 -0.07 [-0.4 - 0.26] 0.672 

RA maximal 
volume* -0.23 [-1.5 - 1.05] 0.719 -0.85 [-2.01 - 0.33] 0.159 -0.55 [-1.22 - 0.13] 0.114 -0.61 [-1.63 - 0.41] 0.24 

RA EF -0.1 [-0.57 - 0.37] 0.678 -0.1 [-0.55 - 0.34] 0.65 -0.01 [-0.27 - 0.24] 0.911 0.23 [-0.16 - 0.62] 0.247 

LV geometric 
patterns         

Concentric 
remodelling† 1.03 [0.15 - 7.25] 0.976 1.04 [0.15 - 7.33] 0.97 1.01 [0.14 - 7.11] 0.995 1.06 [0.15 - 7.45] 0.957 
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Eccentric 
hypertrophy† 1.11 [0.67 - 1.85] 0.682 0.98 [0.61 - 1.58] 0.938 0.84 [0.6 - 1.18] 0.314 0.95 [0.62 - 1.45] 0.811 

Concentric 
hypertrophy† 1.02 [0.41 - 2.51] 0.974 1.11 [0.45 - 2.73] 0.826 1.13 [0.46 - 2.79] 0.785 1.05 [0.43 - 2.59] 0.914 

All estimates were fully-adjusted for age, sex, ethnicity, height, body mass index, socioeconomic factors, cardiac risk factors, medications and 
physical activity.  
*log-transformed dependent variables – their effect estimates represent percentage change per IQR increase in exposure variable. 
†The effect estimates for these variables represent the odds ratio, where reference is normal LV geometry.  
IQR, interquartile range; CI, confidence interval; LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right atrium; EDV, end-diastolic 
volume; ESV, end-systolic volume; SV, stroke volume; EF, ejection fraction 
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Table 3. Associations between annual average nitrogen dioxide and nitrogen oxides concentration and 
cardiac phenotypes  
 

Phenotype 

NO2 (per IQR [11.4 µg/m3] 
change) 

NOx (per SD [17.1 µg/m3] 
change) 

Effect size 
[95% CI] P-value Effect size 

[95% CI] P-value 

LV EDV* 0.91 [0.12 - 1.7] 0.025 0.63 [-0.05 - 1.33] 0.071 

LV ESV* 0.88 [-0.35 - 2.12] 0.161 1 [-0.07 - 2.09] 0.066 

LV EF 0.01 [-0.3 - 0.32] 0.965 -0.13 [-0.4 - 0.14] 0.334 

LV mass* -0.35 [-1.2 - 0.51] 0.424 0.13 [-0.62 - 0.89] 0.73 

RV EDV* 0.85 [0.06 - 1.65] 0.035 0.58 [-0.11 - 1.26] 0.099 

RV ESV* 0.64 [-0.58 - 1.87] 0.306 0.83 [-0.22 - 1.89] 0.123 

RV EF 0.13 [-0.18 - 0.43] 0.421 -0.08 [-0.35 - 0.18] 0.535 

LA maximal volume* 0.74 [-0.65 - 2.15] 0.299 0.48 [-0.74 - 1.71] 0.442 

LA EF -0.33 [-0.78 - 0.11] 0.145 -0.2 [-0.59 - 0.19] 0.309 

RA maximal volume* -0.66 [-2.02 - 0.72] 0.347 -0.42 [-1.61 - 0.77] 0.486 

RA EF -0.14 [-0.65 - 0.37] 0.594 -0.14 [-0.59 - 0.3] 0.532 

LV geometric patterns     

Concentric remodelling† 0.93 [0.13 - 6.61] 0.946 0.93 [0.13 - 6.6] 0.945 

Eccentric hypertrophy† 1.05 [0.61 - 1.8] 0.855 1.03 [0.65 - 1.64] 0.891 

Concentric hypertrophy† 0.86 [0.35 - 2.11] 0.735 0.93 [0.38 - 2.3] 0.876 

All estimates were fully-adjusted for age, sex, ethnicity, height, body mass index, socioeconomic factors, cardiac 
risk factors, medications and physical activity.  
*log-transformed dependent variables – their effect estimates represent percentage change per IQR increase in 
exposure variable. 
†The effect estimates for these variables represent the odds ratio, where reference is normal LV geometry.  
IQR, interquartile range; CI, confidence interval; LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right 
atrium; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, ejection fraction 
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Table 4. Associations between annual average 24-hour sound level, distance to nearest major road and annual average 
traffic intensity on the nearest major road over 24 hour and cardiac phenotypes 

 

Phenotype 

Average 24-hour sound level 
(per IQR [3.6 dB] change) 

Distance to the nearest major 
road (per IQR [555 m] 

change) 

Average traffic intensity (per 
IQR [10947 vehicles/24h] 

change) 
Effect size 
[95% CI] 

P-
value 

Effect size 
[95% CI] 

P-
value 

Effect size 
[95% CI] 

P-
value 

LV EDV* 0.36 [-0.07 - 0.78] 0.1 -0.45 [-0.95 - 0.06] 0.082 0.16 [-0.08 - 0.41] 0.195 

LV ESV* 0.69 [0.03 - 1.35] 0.041 -0.99 [-1.77 - -0.2] 0.014 0.02 [-0.36 - 0.41] 0.906 

LV EF -0.12 [-0.29 - 0.04] 0.141 0.2 [0 - 0.4] 0.05 0.05 [-0.05 - 0.15] 0.302 

LV mass* 0.36 [-0.1 - 0.82] 0.126 -0.74 [-1.3 - -0.18] 0.01 0.11 [-0.16 - 0.38] 0.415 

RV EDV* 0.05 [-0.37 - 0.48] 0.808 -0.65 [-1.16 - -0.15] 0.011 0.17 [-0.08 - 0.42] 0.19 

RV ESV* 0.28 [-0.37 - 0.94] 0.402 -1.02 [-1.8 - -0.25] 0.01 0.12 [-0.26 - 0.5] 0.541 

RV EF -0.09 [-0.26 - 0.07] 0.259 0.15 [-0.05 - 0.35] 0.134 0.02 [-0.08 - 0.11] 0.705 
LA maximal 

volume* 0.21 [-0.55 - 0.98] 0.583 -0.32 [-1.22 - 0.58] 0.48 0.01 [-0.42 - 0.45] 0.954 

LA EF -0.06 [-0.31 - 0.18] 0.602 0.11 [-0.18 - 0.4] 0.46 -0.01 [-0.15 - 0.13] 0.865 
RA maximal 

volume* -0.12 [-0.85 - 0.63] 0.759 -0.36 [-1.24 - 0.53] 0.429 -0.29 [-0.72 - 0.14] 0.189 

RA EF -0.05 [-0.32 - 0.23] 0.749 -0.05 [-0.39 - 0.28] 0.751 0.05 [-0.11 - 0.21] 0.548 
LV geometric 
patterns       

Concentric 
remodelling† 1.02 [0.14 - 7.17] 0.986 0.99 [0.14 - 6.99] 0.992 1.01 [0.14 - 7.13] 0.992 

Eccentric 
hypertrophy† 0.93 [0.68 - 1.27] 0.659 0.91 [0.62 - 1.35] 0.654 0.83 [0.61 - 1.12] 0.216 

Concentric 
hypertrophy† 1.01 [0.41 - 2.49] 0.985 1.06 [0.43 - 2.61] 0.904 1.1 [0.44 - 2.71] 0.841 

All estimates were fully-adjusted for age, sex, ethnicity, height, body mass index, socioeconomic factors, cardiac 
risk factors, medications and physical activity.  
*log-transformed dependent variables – their effect estimates represent percentage change per IQR increase in 
exposure variable. 
†The effect estimates for these variables represent the odds ratio, where reference is normal LV geometry.  
IQR, interquartile range; CI, confidence interval; LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right 
atrium; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, ejection fraction 
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Participants with CMR 
studies

(N=5,065)

Change of address 
between baseline and 

imaging visits
(N=738)

Participants with a fixed 
home address between 
baseline and imaging 

visits
(N=4,327)

Prior cardiovascular 
disease
(N=407)

Participants included in 
the final analysis

(N=3,920)


