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Abstract 

Although anti-inflammatory drugs are among the most common class of marketed 

drugs, chronic inflammatory conditions such as rheumatoid arthritis, multiple sclerosis 

or inflammatory bowel disease still represent unmet needs. New first-in-class drugs 

might be discovered in the future but the repurpose and further development of old 

drugs also offers promise for these conditions. This is the case of the melanocortin 

adrenocorticotropin hormone, ACTH, used in patients since 1952 but regarded as the 

last therapeutic option when other medications, such as glucocorticoids, cannot be 

used. Better understanding on its physiological and pharmacological mechanisms of 

actions and new insights on melanocortin receptors biology have revived the interest 

on rescuing this old and effective drug. ACTH does not only induce cortisol production, 

as previously assumed, but it also exerts anti-inflammatory actions by targeting 

melanocortin receptors present on immune cells. The endogenous agonists for these 

receptors (ACTH, α-, β-, and γ-melanocyte stimulating hormones), are also produced 

locally by immune cells, indicating the existence of an endogenous anti-inflammatory 

tissue-protective circuit involving the melanocortin system. These findings suggested 

that new ACTH-like melanocortin drugs devoid of steroidogenic actions, and hence 

side effects, could be developed. This review summarizes the actions of ACTH and 

melanocortin drugs, their role as endogenous pro-resolving mediators, their current 

clinical use and provides an overview on how recent advances on GPCR functioning 

may lead to a novel class of drugs. 
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1. Introduction  

Do we need new drugs to treat human diseases? Do we need novel therapeutic 

targets? Despite the over 2,000 drugs currently approved for the use in humans [1], 

the need for novel treatments is obvious for treating chronic, orphan, incurable and 

life-threatening diseases, cancer, difficult to manage conditions such as diabetes or 

sepsis, emergent infections, etc. These will undoubtedly require the discovery of new 

molecules or interventions to be successfully managed. However, another option is to 

apply old drugs to new diseases, a strategy known as drug repositioning [2]. The 

importance of such strategy is significant as the addition of a new indication to an 

already developed drug dramatically reduces the high cost and time of pharmaceutical 

R&D required to market a drug, factors of particular relevance for neglected, orphan 

or rare diseases. 

One might also wonder if most of pharmaceutically relevant targets have already been 

discovered. It has been estimated that current approved therapies are directed to less 

than 400 targets in addition to another <500 undergoing clinical trials [1]. Although 

limited by the number of potential molecular targets actually involved in a particular 

disease and the “only” 30 000 genes contained in the human genome, undoubtedly 

new targets will emerge. However, yet again, innovative approaches suggest 

alternative ways to activate known targets by the use, for instance, of biased agonists 

or allosteric modulators, as discussed later. 

This review focuses on the adrenocorticotropin hormone, ACTH, an old forgotten 

melanocortin peptide that might potentially be rescued and repurposed for new 

indications. ACTH was approved by the FDA for use in humans in 1952, only three 

years after it was first tested in rheumatoid arthritis (RA) [3]. By that time, ACTH -acting 

by stimulating the adrenal cortex to produce cortisol- was used for several conditions 

such as RA, gout, lupus, rheumatic fever, psoriasis or ulcerative colitis [4]. Philip S. 

Hench, Edward C. Kendall and Tadeus Reichstein were awarded in 1950 the Nobel 

Prize in Physiology or Medicine for these discoveries on ACTH and adrenal hormones. 

However, highly efficient methods for glucocorticoid (GC) synthesis were developed 

some years later causing a drop in price and oral forms also became available making 

GC the treatment of choice to the detriment of ACTH. 

 Interestingly, exactly 50 years after its approval, a novel mechanism of action was 

envisaged by Getting et al, who discovered that the anti-inflammatory actions of ACTH 

were retained in adrenalectomized rats using a model of knee gout [5]. This cortisol-

independent effect was mediated by the melanocortin (MC) receptor MC3, which is 



expressed in immune cells and in the brain, presenting this receptor as a novel 

therapeutic target for ACTH-like drugs devoid of cortisol-related side effects. These 

findings have pioneered a two-fold revived interest in ACTH therapy, first by 

reconsidering the use of ACTH for new indications, particularly in cases where GC are 

not recommended, and second by proposing innovative therapeutic targets, i.e. the 

melanocortin (MC) system for the development of endogenous-based anti-

inflammatory therapies. 

The MC system, quite unknown outside its field, is responsible for common features 

and processes within our body such as the colour of our eyes, our skin tanning ability 

upon sun exposure or whether we are lean or obese. This system can modulate blood 

pressure, exert anti-microbial actions or even predict anesthetics requirements [6, 7]. 

These wide-ranging actions make MC receptors very attractive for drug development. 

This review focuses on the anti-inflammatory actions of ACTH and other MC drugs and 

the current clinical use and future directions on drug development. 

 

2. Melanocortins and their receptors 

2.1 Melanocortin ligands 

Melanocortin receptors (MC1-5) belong to the class A (rhodopsin-like) family of G 

protein-coupled receptors (GPCRs). The broad and tissue-selective distribution of 

these receptors and their ligands accounts for their multiple and disparate actions of 

the MC system in the body. ACTH and α-,β-, and γ-melanocyte stimulating hormones 

(MSH) are the four endogenous melanocortin agonists, all derived from the common 

larger precursor pro-opiomelanocortin (POMC) protein. Cleavage of POMC is tissue 

specific and is performed by prohormone convertase (PC) 1 alone, leading to ACTH 

production, or by both PC1 and PC2, producing α,β, and γMSH (Figure 1) [8]. All MC 

agonists contain the common amino-acid motif HFRW, this being the minimum 

sequence required for receptor binding and activation. However, activation of MC2 also 

requires the sequence KKRRP, only present in ACTH (and the synthetic ACTH1-24) [9]. 

Hence, ACTH, α,β, and γMSH can activate MC1,3,4,5 with varying affinities, with MC1 

and MC3 exhibiting the highest affinity for α-MSH and γ-MSH respectively [8] while 

MC2 can only be activated by ACTH. Interestingly the MC system is the only GPCR 

family for which naturally occurring antagonists have been identified [10, 11]. Agouti 

signaling (ASIP) and agouti-related (AGRP) proteins both act as inverse agonists by 

decreasing basal levels of constitutive agonist-independent activity of MCRs. 



However, if the complexity of the MC system was not sufficient, the antagonist AGRP 

was recently associated with Gi/o protein signalling activation and consequently it 

should be referred now as a biased agonist [12]. 

 

2.2 Melanocortin receptors 

The five MCRs present high degree of homology (Figure 2) with around 70 and 80% 

similarity between human MC1-MC3 and MC3-MC4 respectively, explaining the low 

selectivity that natural, and also synthetic, peptides present. MCRs are the smallest 

GPCRs known with an unusually small second extracellular domain and several 

potential N-glycosylation sites in the amino-terminus and potential phosphorylation 

sites particularly in the second cytosolic loop. Of importance is also the conserved Cys 

in the C-terminus, suggested to be involved in anchoring the receptor within the plasma 

membrane [13]. Despite this resemblance, their actions are very distinct, possibly, in 

part, due to their specific tissue distribution. MC1, with a extremely short C-terminus, 

is mainly expressed in melanocytes and regulates the conversion of pheomelanin 

(yellow/red) into eumelanin (dark), determining skin pigmentation. It is encoded by a 

highly polymorphic gene, which associates with skin cancer susceptibility [14]. MC2 is 

the responsible for the steroidogenic actions of ACTH. It is expressed in the adrenal 

cortex, where upon activation, causes the up-regulation of the enzymes responsible 

for the synthesis of cortisol [15]. Mutations in MC2 cause familial glucocorticoid 

deficiency type 1. MC3 possess the longest N-terminus of the five MCRs, and it is 

expressed in the brain and in cells of the immune system, where it regulates energy 

homeostasis and inflammatory responses, respectively. Along with MC3, MC4 plays a 

mayor role in regulating energy homeostasis and variants in MC4R gene represent the 

most common cause of monogenic obesity [16]. The last receptor of the family, MC5, 

was identified in 1994. Singular experiments using shampooed mice and swim tests 

demonstrated a role for this receptor in sebum production and thermoregulation [17] 

as well as their expression in other exocrine glands. Interestingly, MC5 is also 

expressed in immune cells where it seems to exert protective anti-inflammatory actions 

[18]. A more comprehensive review on these receptors can be found in [6, 8, 19].  

 

2.3 Signal transduction and melanocortin receptor regulation. 



GPCRs are associated with a very complex pharmacology, which is essential to 

understand to design and develop new drugs. They are generally very promiscuous 

receptors, able to bind multiple ligands of very different nature including peptides, 

lipids, aminoacids, hormones, nucleotides or even light [20]. It is also accepted now 

that GPCR signaling is not as simple as a linear sequence of events (ligand-receptor-

pathway-biological effect) as previously believed, but they rather act via a sort of 

organized network of pathways [21]. MCRs are coupled to Gαs proteins leading to the 

conversion of cytoplasmic ATP into cAMP by adenylyl cyclase. cAMP acts as a second 

messenger and activates protein kinase A (PKA). Besides this canonical pathway, 

other signaling cascades, dependent or not on cAMP, have also been described. 

Phosphorylation of extracellular-signal-regulated protein kinases ERK1/2 have been 

described for all MCRs and intracellular Ca2+ mobilization have been reported so far 

for MC3,4,5 [22-28]. ACTH can also induce phosphorylation of p38 kinase in 

keratinocytes via MC1 and MC2 [29]. In addition, activation of c-Jun N-terminal kinase 

(JNK) and Jak/STAT pathways have been observed in MC4 transfected HEK293 cells 

and Ba/F3 B lymphocytes expressing MC5, respectively [30, 31]. 

The signaling studies summarized above have been conducted using a mixture of 

conditions: primary or transfected cells, human or mouse receptors, natural or 

synthetic drugs and presumably a variety of culture conditions and experimental 

designs. Although generalizations are usually very tempting in terms of associating a 

receptor with a signaling pathway, caution should be taken when making these 

assumptions, considering the complexity of GPCRs biology. For example, the 

elevations in intracellular Ca2+ observed in MC3 transfected Hepa cells was only 

observed in the presence of the PKA inhibitor H-89 and not following αMSH treatment 

alone, indicating that MCR signaling can be context dependent [26].  In addition, MC3 

could induce ERK1/2 phosphorylation when activated by the peptide NDP-αMSH [24] 

but not by melanotan II (MT-II) [32] suggesting ligand-specific conformational states. 

Interestingly, single nucleotide polymorphisms (SNPs) can differentially affect MC1 

signaling by selectively reducing cAMP but not ERK1/2 signaling [33]. Taken together, 

deep analysis and consideration of differential signaling is of paramount importance 

for example when characterizing new drugs.  

Ligand-independent constitutive activity is a common feature of GPCRs and it has 

been demonstrated for MC1,3,4 and 5 [34, 35]. In particular, the intrinsic activity of MC1 

and MC4 is key for their physiological actions and of relevance for drug discovery as 

inverse agonists may be developed to modulate their activity. MC4 constitutive activity 

is required for maintaining energy homeostasis and it has been shown to be driven by 



the N-terminal domain of the receptor that acts as a "self-ligand" [35]. The relevance 

of the basal activity of MC1 however differs between human and mouse. In the mouse 

it is crucial in determining coat colour:  Pomc-/- mice are still black despite the absence 

of any endogenous agonist because MC1 constitutive cAMP level is sufficient to trigger 

full eumelanogenic activity [36]. On the other hand, POMC deficiency in humans leads 

to red hair pigmentation [37]. 

Dimerization and desensitization are also important aspects on MCRs regulation. 

Homodimerization of MC1,3 and 4, as well as heterodimerization of MC1/MC3 have been 

reported and suggested to exist constitutively [38, 39]. Furthermore, heterodimers with 

non-melanocortin receptor have been found with MC3 and the growth hormone 

secretagogue receptor, and MC4 with GPR7 [40]. Homologous desensitization via 

ligand-induced internalization have been described for MC1,2,3 and 4 and some reports 

suggest that internalized receptors are likely degraded rather than recycled [41]. 

 

3. MC as pro-resolving molecules 

3.1 The resolution of inflammation 

Recent advances in drug discovery are questioning the classical and reductionist 'one-

drug one-target' approach to propose a new strategy called polypharmacology. This 

emerging approach in rational drug design proposes the use of drugs that can 

modulate several targets at a time for maximal efficacy, in contrast to the classical 

target-based rationale aiming for drugs with maximal selectivity and minimal side 

effects. This new vision is based on systems biology studies that understand biological 

functions as networks of events produced by the interaction of several components 

within the cells rather than by one single molecule [42]. Growing evidence suggests 

that affecting one single target is often insufficient because compensatory pathways 

usually counter-balance the inhibition of that given target.  It is not a coincidence that 

this "new" concept called polypharmacology actually resemblances the way that 

Nature wisely designed its own defensive mechanisms. Our body's anti-inflammatory/ 

pro-resolving repertoire includes a number of receptors and their endogenous ligands, 

that acting in coordination lead to the restoration of homeostasis after the inflammatory 

insult. It is not one single molecule or receptor that leads to resolution but rather an 

integrated and synchronized network of signals and events. It is not exceptional then 

to find most of the endogenous pro-resolving mediators -resolvins, lipoxins, galectins, 

protectins, maresins, melanocortins, annexin A1 [43, 44]- in, for example, peritoneal 



fluid from the zymosan-induced peritonitis, a mouse model commonly used to study 

resolution mechanisms [45].  

The resolution of inflammation as a field was formally established in 2007 during a 

meeting of the British Pharmacological Society, where a panel of experts defined a 

framework for the study of resolution mechanisms and their therapeutic exploitation 

[46]. A consensus report defined resolution as an active rather than a passive process, 

that counter-regulate pro-inflammatory signals for tissue protection, leading to the 

restoration of homeostasis, after tissue insult. Multiple endogenous mediators have 

been identified and characterized since then and extensively reviewed [43, 47, 48]. 

Likewise remarkable is the appreciation that inflammatory diseases could derive from 

excessive pro-inflammatory signals as much as from defective counter-regulatory, i.e. 

pro-resolving, signals, shifting the perception and potential therapeutic strategies for 

several conditions [49]. 

Endogenous pro-resolving resources, besides acting in an orchestrated manner as 

explained earlier, also present an interesting and unique feature: they exhibit mild to 

moderate effects in a wide variety of actions, rather than causing dramatic inhibition 

on one specific mediator or target (Figure 3). With exceptions, we have learnt that 

maximal selectivity does not necessarily equates to maximal efficacy. The pro-

resolving mode of action helps to bypass potential compensatory mechanisms that 

might explain, for example, why any targeted anti-chemokine therapy have been 

successfully developed yet to treat inflammatory conditions [50]. Another example 

includes strategies to inhibit the IL-6 pathway: it was found that mice lacking IL-6R on 

B cells develop exacerbated arthritis, as this cytokine is important for the development 

of protective IL-10-producing regulatory B cells [51]. This indicates that what we call 

'pro'-inflammatory mediators have also a protective role. The pro-resolving strategy is 

not about 'bad' mechanisms that need to be shut down, it is about modulation and 

reaching a balance between the different 'pro' and 'anti' mechanisms. What resolution-

based pharmacology proposes is to develop novel drugs that act by mimicking the way 

our body naturally resolves inflammation, by promoting the existing protective 

mechanisms using analogs of the natural mediators  or small molecules targeting their 

receptors [43, 44]. 

 

 

3.2 Anti-inflammatory and pro-resolving actions of ACTH and MC drugs. 



Melanocortins are molecules produced during inflammation with a role in controlling 

and balancing the inflammatory process, i.e. they are natural pro-resolving mediators. 

In general terms, they exert anti-inflammatory actions via two independent 

mechanisms. The first of them to be described consists on the induction of cortisol 

production by the adrenal cortex. This mechanism is restricted to the MC peptide 

ACTH, as it is the only natural peptide that can activate MC2 (Figure 4). On the other 

hand, this mechanism is also responsible for the major side effects of long-term ACTH 

therapy, which are similar to those produced by GC therapy: Cushing's syndrome, fluid 

retention, glaucoma, cardiovascular disorders, etc. It is worth noting that GC can be 

synthesized locally in organs such as the skin [52], where they modulate local 

inflammation although the role or contribution of the MC system in this process is still 

not known. Melanocortins extra-adrenal actions, first pointed out by Ferrari et al in 

1955 [53] when ACTH was already used in clinics, are exerted directly on cells of the 

immune system and play an important role in the anti-inflammatory actions of MC 

drugs. MC can be synthesized by immune cells [54] and hence be produced at sites 

of inflammation, such as the synovial fluid in RA patients [55], suggesting the existence 

of localized and finely regulated anti-inflammatory circuits independent of the 

hypothalamic-pituitary-adrenal (HPA) axis. The MC receptors are expressed in 

macrophages, mast cells, neutrophils and lymphocytes and of relevance for rheumatic 

diseases, they are also operative in osteoclasts, osteoblasts and chondrocytes and 

fibroblasts [56-60].  

The protective actions are related to inhibition of leukocyte transmigration, reduction 

on cytokines and production of anti-inflammatory signals. Both receptors MC1 and MC3 

are associated with reduction on leukocyte trafficking, as demonstrated by the use of 

mutant mice lacking either of these receptors in a model of vascular inflammation using 

intravital microscopy [61, 62]. In addition, αMSH reduced the expression of the 

adhesion molecules E-selectin, VCAM-1 and ICAM-1 induced by LPS in endothelial 

cells [63]. ACTH was able to reduce neutrophil infiltration in a model of crystal 

inflammation and to reduce the production of the chemoattractant cytokine CXCL-1, 

effects prevented when the MC3/4 antagonist SHU9119 was used [64]. Similarly, the 

synthetic αMSH analog AP214, reduced neutrophil influx in the zymosan peritonitis 

model and the release of IL-1β, IL-6 and TNFα by peritoneal macrophages [65]. 

Interestingly, αMSH stimulation of monocytes resulted in the production of the anti-

inflammatory cytokine IL-10 [66]. Melanocortins also promote strictly pro-resolving 

actions such as the clearance of apoptotic cells (efferocytosis) [65] and wound healing 

[67]. Protective actions on the joints are also associated with a reduction in osteoclast 



formation [68], reduced production of metalloproteases by chondrocytes [69] and 

increase in osteoblast differentiation, this latter effect driven by ACTH acting via MC2 

expressed in these cells [56]. At the molecular level, the anti-inflammatory actions of 

MC drugs have been associated with the inhibition of the nuclear transcription factor 

NF-κB [70]. 

 

 

4. Current use and clinical evidence of ACTH and MC drugs 

4.1. ACTH formulations 

The current clinical use of ACTH is paradoxically not based on the current knowledge 

on ACTH actions summarized in the previous section. In the practice, ACTH use is still 

supported merely by their ability to induce GC release.  It is worth noting that when 

ACTH was first commercialized, none of the extra-adrenal actions of ACTH had been 

discovered yet, and it is only now when the relevance of these effects is emerging [71-

73]. There are currently two ACTH formulations available in the U.S.A. One is known 

as H.P. Acthar® Gel [74], an injectable formulation consisting of porcine ACTH purified 

from pituitary extracts. It is mainly used for the treatment of infantile spasms and acute 

exacerbations of multiple sclerosis although it is also indicated for rheumatic, 

dermatologic, allergic or respiratory diseases, among others. The second formulation, 

marketed as CortrosynTM [75], is a synthetic form of ACTH consisting on the first 24 

amino acids, also referred as cosyntropin (see Figure 1 for nomenclature), which fully 

retains the steroidogenic activity of the full-length protein. This product, however, is 

only intended as a diagnostic agent for the screening of adrenal insufficiency. To this 

end, plasma cortisol concentration is measured generally 30 minutes after ACTH1-24 

administration. Synacthen® Depot [76] is the ACTH product available in the U.K. As 

CortrosynTM, its structure corresponds to ACTH1-24 although in this case it is indicated 

for both therapeutic and diagnostic use. As stated in its label, Synacthen Depot® can 

be used for short-term therapy in conditions for which GC are indicated in principle, in 

patients unable to tolerate GC therapy or when GC have been ineffective. 

 

4.2 Clinical uses and clinical trials 



ACTH may then be used for numerous conditions such as ulcerative colitis, Crohn's 

disease, rheumatoid arthritis, systemic lupus erythematosus, uveitis, etc, but the most 

common uses seem to be infantile spasms, multiple sclerosis, nephrotic syndrome and 

gout. Infantile spasms, also known as West syndrome, is a medical condition usually 

diagnosed within the first year of life consisting on seizures and mental retardation with 

poor prognosis. H.P. Acthar® Gel is the only treatment available in the U.S.A. for this 

condition although as stated in the leaflet , the mechanism of action is unknown. A 

review on clinical trials on ACTH for this condition can be found in [77]. The evidence 

for the efficacy of ACTH in the treatment of multiple sclerosis relapses dates from the 

60s, when Miller et al conducted a controlled study in 40 patients [78]. ACTH was 

considered at that time the gold standard therapy for multiple sclerosis relapses but its 

use decreased with the advent of GCs. The efficacy of ACTH in the treatment of 

nephrotic syndrome is well documented. This MC peptide is able to improve 

proteinuria, reduce kidney inflammation and correct dyslipidemia, actions not fully 

explained by induction of GCs [71]. The American College of Rheumatology also 

included ACTH in their guidelines for the management of gout [79], considering 

subcutaneous injections of 25-40 IU ACTH in patients unable to take oral anti-

inflammatory medications. A recent retrospective study on 181 gout patients reported 

positive response in 77.9% of patients within one day after ACTH injection [80]. 

Efficacy has been shown too for other crystal-induced joint inflammation such as 

pyrophosphate crystal arthritis [81]. 

For all the indications described above, there is now evidence that the alternative 

mechanism of action of ACTH discovered by Getting et al, involving the activation of 

MC3, might contribute to the efficacy of ACTH. This has been discussed in several 

reviews on infantile spasms [82], gout [83], proteinuric nephropaties [71], multiple 

sclerosis [84] and also lupus [85], suggesting a renaissance of ACTH therapy for 

several pathologies. However, most of these conditions can be treated with GCs. 

Given that the side effects of ACTH are similar to those produced by GCs, and possibly 

more importantly the elevated cost of some of the ACTH formulations, the use of this 

melanocortin peptide is very limited, usually regarded as a second choice when GC 

therapy is not possible. Hence, cheaper non-steroidogenic melanocortin drugs are 

needed. The pressure faced by pharmaceutical industry in developing the most 

innovative drugs might have sounded incompatible with the rescue or further 

development of an old drug that has been used for more than 60 years. As Cronstein 

and Terkeltaub wrote in their article "It is surprising that so few systematic studies on 

the best treatment [ACTH] of acute gouty arthritis have been carried out." [83]. This 



trend is sensibly changing and MC drug discovery is slowly progressing into industry, 

evidenced by the large number of companies and active clinical trials testing ACTH 

and other MC drugs. Table 1 summarizes the clinical trials currently compiled in the 

World Health Organization International Clinical Trials Registry Platform 

(http://apps.who.int/trialsearch/default.aspx). ACTH is further being tested for the 

indications described before such as gout or infantile spasms in addition to novel 

conditions such as rheumatoid arthritis, psoriatic arthritis, atopic dermatitis or diabetic 

nephropathy.  

Regarding other MC drugs, afamelanotide (NDP-αMSH), a non-steroidogenic 

melanocortin peptide analog of the endogenous αMSH (see Figure 1) is awaiting 

marketing authorization from the European Medicines Agency for the treatment of the 

orphan disease erythropoietic protoporphyria and it is currently approved in Italy and 

Switzerland [86]. This highly potent analog presents improved stability due to the 

substitution of methionine at position 4 with norleucin (Nle), as biological activity 

decreases when this amino acid is oxidized. The modification at position 7 (D-Phe 

instead of Phe) also protects against proteolytic enzymes [87]. Marketed as 

Scenesse®, the product consists of a small subcutaneous implant, containing 16 mg 

of slowly released active ingredient. Erythropoietic protoporphyria is a rare disease 

characterized by severe phototoxicity resulting in intolerable pain and skin blistering 

shortly after the skin is exposed to sunlight. Afamelanotide confers UV protection in 

this disease by promoting melanin production [86]. This drug is also under clinical 

development for other skin conditions such as vitiligo, solar urticaria or acne vulgaris 

(Table 1). The anti-inflammatory peptide AP214 (ABT-719) is currently being 

developed by Abbvie, after being acquired from the former Action Pharma. Phase II 

studies for the treatment of acute kidney injury have been recently completed 

(NCT01777165). 

 

5. Therapeutic perspectives for MC drug discovery 

5.1 Understanding the needs 

Overall, MCRs are very attractive targets for drug development, covering an extensive 

repertoire of plausible indications including obesity, cachexia, melanoma, acne 

vulgaris, vitiligo, or cardiovascular disease, all of them in addition to the already 

established efficacy of the melanocortin ACTH in joint diseases, nephrotic syndrome, 

multiple sclerosis or lupus. Then, why these seductive targets for the pharmaceutical 



industry are still underused? Researchers have been focused on developing selective 

MC drugs for several decades, but achieving selectivity, in order to avoid off-targets 

side effects, is proven to be difficult. Amino acid substitution or other strategies based 

on modifications of the endogenous peptides led to new molecules with increased 

stability or potency, such as NDP-αMSH [87] or some degree of selectivity, such as 

DTrp8-γMSH [88], with preferential binding to MC3 over MC1. These two drugs have 

been invaluable for the characterization of the anti-inflammatory actions of 

melanocortins, as discussed earlier, although unsatisfactory receptor selectivity 

prevented their clinical use to treat inflammation. Small molecules selective for MC1 

and MC4 have also been discovered but thus far no MC3 selective drugs have been 

identified. We might, however, have been pursuing the wrong aim. Is it receptor 

selectivity what is needed or pathway selectivity, as the emerging field of ligand bias 

suggests? To treat obesity, can we assume that a drug that activates MC4 will also 

activate the mutated form of the receptor causing the disease? Shouldn't mutated 

variants of the receptors be included in the drug screenings? Similarly for drugs 

targeting MC1, will molecules active at the wild type receptor behave in the same 

manner in the more than 60 natural variants identified for the MC1R gene? If the aim 

is to treat inflammation, molecules that activate MC3 unable to cross the blood brain 

barrier would be ideal. But, would a promiscuous dual MC1/MC3 molecule be more 

advantageous, as the concept of polypharmacology suggests? In addition, considering 

that these two receptors are usually co-expressed in immune and joint cells (Figure 4) 

and they constitutively heterodimerize [38], this approach seems reasonable. 

Integration of all the new knowledge on MCRs structure and sequence homology, 

genetics, signal transduction, receptor regulation and biological outcomes described 

in this review is fundamental to understand what type of molecule is needed in each 

particular therapeutic indication and to undergo the conceptual innovation needed for 

successful development of MC drugs. 

 

5.2 Understanding MCRs pharmacology  

GPCRs represent a privileged class of membrane receptors as targets for drug 

discovery, accounting for approximately 50% of all marketed drugs [89] but these 

strikingly represent only the 7% of the 365 non-olfactory known GPCRs. Although 

many of them may not have clinical usefulness, the opportunities to develop new 

GPCR-based therapies are still enormous. There is however a more important reason 

why new drugs targeting GPCRs are expected to be developed. New concepts on 



GPCR biology such as ligand bias or allostery can be exploited pharmacologically to 

design molecules with improved therapeutic or safety profile. These concepts are 

slowly being introduced too into MC drug discovery and will be discussed next. 

An allosteric modulator is a molecule that, binding to a site distinct from that of the 

orthosteric/endogenous agonist, is able to potentiate (positive allosteric modulator, 

PAM) or to decrease (negative allosteric modulator, NAM) the activity of the 

endogenous ligand. In addition, allosteric modulators are inactive in the absence of the 

endogenous ligand [90]. Among the advantages of PAMs for melanocortin drug 

discovery is that selective drugs could potentially be identified, as the allosteric sites 

are less conserved than orthosteric sites (Figure 5). In addition, drugs are expected to 

have fewer side effects as they potentiate the effects of the natural ligand while being 

inactive on their own. The development of PAMs at MC4 are of interest for the treatment 

of severe obesity caused by MC4 haploinsufficiency, i.e. when one single copy of the 

gene is functional [91]. The rationale is that a PAM will return the levels of MC4 receptor 

activity to normal by making the healthy copy of the receptor more active. The first high 

throughput screening carried out, identified several molecules with PAM activity at 

MC4, although they did not display receptor selectivity [91, 92]. NAMs have also been 

identified at the receptor MC5. The physiological roles of this receptor are however not 

fully known and further research would be necessary to determine the therapeutic 

potential of these drugs [93]. 

GPCRs can be seen as switches, maintained in an inactive state, and activated to elicit 

an intracellular response when bound to an agonist. It is now known however that 

multiple active states can exist for a given receptor, and that each of those active 

conformations could be able to activate a different signalling cascade. An agonist with 

the ability to stabilize only a subset of the possible active conformations is what is 

known as a biased agonist [94]. The term biased is always relative to the endogenous 

ligand. For example, if the endogenous melanocortin αMSH activates cAMP, 

intracellular Ca2+ influx and ERK1/2 phosphorylation, a drug that only induces ERK1/2 

phosphorylation when acting on the same receptor would be considered a biased 

agonist. The relevance of this new kind of agonists relates to the possibility of 

developing drugs that selectively activate a particular pathway to achieve functional 

selectivity. To this end, it is crucial to understand what is the functional outcome of all 

these pathways, and very importantly, if the pathways leading to side effects are 

distinct from the therapeutically relevant ones. This has been shown for opioids 

analgesics. The side effects of respiratory depression and constipation, could be 

eliminated with drugs that do not induce β-arrestin 2 recruitment, while preserving the 



analgesic properties [95]. Ligand bias has been identified for MC drugs, including some 

endogenous ligands. As mentioned earlier in section 2.1, the natural antagonist AGRP 

is now considered a biased agonist because in addition to the antagonism on the cAMP 

pathway at MC4, it can also activate Gi/o protein-induced signaling [12, 96]. The impact 

of this finding is enormous. Can we conclude if a novel molecule is an agonist or an 

antagonist by measuring only one signalling pathway? How many of the drugs 

currently characterized as antagonists could actually be acting as biased agonists? 

Drug screening programmes should be updated to incorporate the therapeutically 

relevant signalling cascades instead of focusing on the most easily automated 

screening method. In MC drug discovery, cAMP is almost the only pathway used for 

screening although the identification of ligand-specific conformational states for 

synthetic molecules at MC4 alerted about the importance of ligand bias in MC 

pharmacology. It was found that non-peptide and peptide ligands signal differently: 

while peptide agonists such as αMSH induce cAMP and internalization, several non-

peptide small molecules induce cAMP but do not cause internalization of the receptor 

[97, 98]. The finding that non-conserved amino acids seem to be responsible for the 

non-peptide ligand bias might help to rationally design novel biased ligands at MC4 

although the advantage or potential value of biased agonists at MC4 still needs to be 

elucidated. 

The relevance of biased agonists at MC1 might be more patent. The pigmentary side 

effects derived from MC1 activation (although whether or not this is an unwanted effect 

is another debate), are known to be dependent on cAMP and could be prevented with 

a biased agonist. Some reports associate cAMP pathway with the anti-inflammatory 

actions of MC drugs [70]. However, Doyle et al found that the MC1 selective molecule 

BMS-470539 retained its anti-inflammatory activity on MC1R variants in which ligand-

induced canonical cAMP signalling is compromised [33] suggesting that other 

pathways are involved. In addition, we recently found that the drug AP1189 exerts anti-

inflammatory actions independently of cAMP. This drug acts as a biased agonist by 

inducing ERK1/2 phosphorilation and Ca2+ mobilization via MC1 and MC3, while not 

activating the cAMP pathway, leading to anti-inflammatory actions without promoting 

melanogenesis (Montero-Melendez et al, 2015 The Journal of Immunology, in press).  

MCRs genetic variants represent another fundamental aspect to be considered for MC 

drug discovery. Many of the MC1R gene variants (reviewed in [13]) are associated 

with decreased cAMP response to αMSH or reduced constitutive activity, measured 

as cAMP too. However, mutations of this receptor can impact differently on the 

signalling pathways. For example, the variant D294H, associated with red hair, was 



unable to induce cAMP synthesis upon ligand binding (NDP-αMSH) but was fully 

responsive in terms of ERK1/2 phosphorylation [99]. Mutations can then create biased 

receptors with different signalling preferences compared with the wild type form. 

Furthermore, mutations can also lead to receptors that signal differently depending on 

the ligand. For example, the MC1R variant R163Q showed reduced ERK1/2 

phosphorylation when treated with αMSH but normal response when stimulated with 

BMS-470539 [33]. Besides the complexity, the key message of these findings is that 

the clinical efficacy of any drug candidate should be addressed in receptors variants 

as found in the pathology of interest as they could affect clinical outcome. In fact, this 

has been addressed for the drug afamelanotide, under clinical development for vitiligo 

(see section 4.2) for its tanning ability. It was found that MC1R gene polymorphisms 

associated with red hair did not interfere with the ability of afamelanotide to induce 

eumelanin synthesis [100]. Variants at MC4R gene are also of relevance for the 

development of anti-obesity drugs. The importance of considering genetic variants in 

drug discovery programmes was recently recognized by Haslach et al. In their study 

they identified a number of peptides that can restore the defective response of MC4R 

variants carrying loss-of-function mutations associated with obesity [101].  

Other aspects of MCRs pharmacology such as dimerization events or receptor 

desensitization might also have an impact on drug actions although further 

investigation is necessary to understand the functional consequences and relevance 

of these processes for drug discovery programmes. 



Conclusions 

GPCRs are very sophisticated components of the cell. The features that make them 

unique targets for drug discovery -ligand bias, allostery, oligomerization, ligand 

promiscuity, genetic variants, endogenous agonists/antagonists, etc- need to be fully 

understood and incorporated into the drug discovery process. ACTH therapy was once 

abandoned due to the unawareness of its real potential at that time and the limited 

knowledge of its extra-adrenal actions. The advances achieved during the last few 

decades on the understanding of MCRs biology and pharmacology and the recognition 

of melanocortins as part of the tightly coordinated repertoire of pro-resolving 

mediators, have revived the interest on ACTH and melanocortin drugs for inflammatory 

conditions. The current interest of industry in developing MC drugs reinforces this view. 

We have a better perception of the relevance of identifying the needs: should we target 

MC1 or MC3? The wild type form or the mutated one? We have a different perspective 

on how new drugs should be screened and characterized by including more than one 

signalling pathway or by identifying the therapeutically relevant ones. We now know 

strategies to avoid side effects with biased agonists or PAMs. In summary, we are now 

in a better position to develop translational melanocortin drugs. 

Clearly, the once forgotten therapy is now the starting point for a novel promising class 

of drugs. 
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Tables 

Table 1. Clinical trials on melanocortin drugs according to the WHO International 

Clinical Trials Registry Platform. 



Figure Legends 

Figure 1. Schematic representation and nomenclature of the natural 

melanocortin peptides and some of the synthetic derivatives developed. 

Melanocortin (MC) peptides (ACTH, αMSH, βMSH and γMSH) derive from the 

common precursor protein pro-opiomelanocortin (POMC), which is cleaved and 

processed by several enzymes to produce the different melanocortin peptides. These 

enzymes include prohormone convertases 1 and 2 (PC1 and PC2), peptidyl α-

amidating monooxygenase (PAM), carboxypeptidase E (CPE) and N-

acetyltransferase (NAT). Other non-melanocortin but biologically active peptides are 

also generated from POMC processing such as β-endorphin. All MC peptides contain 

the common sequence HFRW, necessary for binding to all MC receptors. Only 

steroidogenic MC peptides (i.e. those able to activate MC2 in the adrenal cortex to 

induce cortisol production) also contain the sequence KKRRP. ACTH, usually referred 

as corticotropin, is the major component of the H.P. Acthar® Gel. The synthetic 

derivative ACTH1-24, also known as cosyntropin or tetracosactide (and marketed as 

Synacthen® Depot in U.K. and Cortrosyn™ in the U.S.A.) retains full MC2-derived 

steroidogenic activity. αMSH derivatives (non-steroidogenic) under clinical 

development include afamelanotide, with the structure [Nle4,D-Phe7]-αMSH (usually 

referred as NDP or NDP-αMSH) and marketed as Scenesse®, and AP214, also known 

as ABT-719, with the structure (Lys)6-αMSH. DTrp8-γMSH is a synthetic analog of 

γMSH in which the amino-acid tryptophan at position 8 was substituted by its D-isomer. 

This peptide has been used extensively to study the anti-inflammatory actions of 

melanocortins. 

 

Figure 2. Melanocortin receptors structure and sequence comparison. Amino 

acid sequence alignments of the human MCRs were generated with the software T-

Coffee version 9.03.r1318. The highest variable regions are coloured in green and low 

variable ones are uncoloured. Highly variable regions include the extracellular (EC) N-

terminus and first EC loop, and the intracellular (IC) C-terminus and third IC loop. 

Transmembrane domains (orthosteric sites) are the most well conserved regions. 

 

Figure 3. The concept of pro-resolving based pharmacology. Target-based 

approach consists on the development of a drug that affects a specific target with a 

specific mode of action. Anakinra, Infliximab and Natalizumab are examples of biologic 



therapies targeting IL-1β, TNFα and α4 intergin respectively. Biologics against the 

monocyte chemoattractant chemokine CCL-2 are also under investigation. Neutrophil 

elastase (NE) inhibitors are undergoing clinical trials for cardiovascular disease. RGD-

AnxAV is a synthetic variant of annexin AV that enhances engulfment of apoptotic 

cells. On the other hand, pro-resolving mediators such as αMSH exert moderate 

actions but targeting, with one single drug, multiple aspects of the inflammatory 

response simultaneously. 

 

Figure 4. Anti-inflammatory mechanisms of action of melanocortin drugs. ACTH 

is a major component of the hypothalamic-pituitary-adrenal (HPA) axis. It is released 

by the anterior pituitary gland upon stimulation with the hypothalamic corticotropin 

releasing hormone (CRH), produced by the paraventricular nucleus in response to 

biological stress. ACTH activates the receptor MC2 on the adrenal cortex, leading to 

the production of corticosteroids. This mechanism explains the glucocorticoid (GC) 

dependent anti-inflammatory actions of ACTH. Cortisol binds to the GC receptor and 

via genomic and rapid non-genomic mechanisms reduce the inflammatory response. 

This potent anti-inflammatory mechanism is only employed by steroidogenic 

melanocortins (ACTH and ACTH1-24) although it is also responsible for significant and 

limiting side effects. However, ACTH and non-steroidogenic melanocortins also deliver 

anti-inflammation by activating other MCRs expressed in immune cells, in particular 

MC1, MC3 and MC5. Macrophages, neutrophils, lymphocytes and cells of the 

endothelium express these receptors, which upon activation lead to the reduction in 

leukocyte infiltration, inhibition of cytokines production and increased phagocytosis, 

among other actions. MCRs are highly expressed in bone, cartilage and other cells of 

the joints (chondrocytes, osteoclasts, osteoblasts, fibroblasts) bringing in actions of 

relevance for rheumatoid arthritis and joint inflammatory conditions. Another GC-

independent mechanism, less explored therapeutically, is afforded by MC3 and MC4 

expressed in the brain via efferent anti-inflammatory signals (cholinergic and 

sympathetic neurons). This central control of peripheral inflammation leads to the 

activation of adrenergic and nicotinic receptors in immune cells causing inhibition of 

NF-κB. Drugs with the ability to cross the blood-brain barrier may also act via this 

mechanism although side effects related to alterations in the blood pressure may 

occur. 

Figure 5. Opportunities for MC drug discovery. The orthosteric sites (i.e. the 

regions were the endogenous peptides bind) present very low variability among the 



five receptors (MC1-MC5). Asterisks indicate the regions of highest variability. 

However, the allosteric sites of MC receptors present very high variability providing 

opportunities for the development of new drugs selective for the receptor of interest, 

such as positive allosteric modulators (PAMs). The high variability of intracellular 

regions may be associated with differential signal transduction and hence different 

biological outcomes, suggesting the development of biased agonists for maximal 

therapeutic effect and minimal toxicity.  
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Table 1 

Acc. No. Intervention Health condition Primary Sponsor Country 

ACTH and ACTH1-24 (steroidogenic melanocortins) 

EUCTR2006-
000788-27-GB 

Synacthen Depot® Infantile spasms 
Royal United Hospital Bath NHS 
Trust 

UK, 
Germany 

EUCTR2011-
000069-11-ES 

Tetracosactide Acute gout Fernando Perez Ruiz Spain 

ISRCTN70791258 Synacthen Depot® Idiopathic membranous nephropathy University Hospital in Lund Sweden 

ISRCTN78654111 ACTH Infantile spasms Beijing Children’s Hospital China 

JPRN-
UMIN000012511 

ACTH Atopic dermatitis and aged skin Tsurumai Kouen Clinic Japan 

NCT00694863 Tetracosactide Idiopathic membranous nephropathy Radboud University Netherlands 

NCT00805753 H.P. Acthar® Gel Idiopathic membranous nephropathy Mayo Clinic US 

NCT00947895 H.P. Acthar® Gel Multiple sclerosis Neurologique Foundation, Inc US 

NCT00986960 H.P. Acthar® Gel Multiple sclerosis University at Buffalo US 

NCT01021540 H.P. Acthar® Gel Nephrotic syndrome 
Arizona Kidney Disease and 
Hypertension Center 

US 

NCT01028287 H.P. Acthar® Gel 
Diabetic nephropathy, nephrotic 
syndrome 

Southeast Renal Research 
Institute 

US 

NCT01049451 ACTH Multiple sclerosis University of Southern California US 

NCT01093157 H.P. Acthar® Gel Glomerulonephritis 
University Health Network, 
Toronto 

Canada 

NCT01129284 H.P. Acthar® Gel Resistant nephrotic syndrome Columbia University US 

NCT01155141 H.P. Acthar® Gel Idiopathic glomerulosclerosis Stanford University US 

NCT01367964 ACTH Infantile spasms 
Ann & Robert H Lurie Children's 
Hospital of Chicago 

US 

NCT01386554 H.P. Acthar® Gel Idiopathic membranous nephropathy Questcor Pharmaceuticals, Inc Canada 

NCT01601236 H.P. Acthar® Gel Diabetic nephropathy Questcor Pharmaceuticals, Inc US 

NCT01764711 Cosyntropin 
Postural orthostatic tachycardia 
syndrome 

Vanderbilt University US 

NCT01769937 H.P. Acthar® Gel Systemic lupus erythematosus Fiechtner, Justus J US 

NCT01838174 H.P. Acthar® Gel Acute optic neuritis Elliot Frohman US 

NCT01888354 H.P. Acthar® Gel Multiple sclerosis 
The University of Texas Health 
Science Center, Houston 

US 

NCT01906372 H.P. Acthar® Gel 
Refractory dermatomyositis or 
polymyositis 

University of Pittsburgh US 

NCT01906658 H.P. Acthar® Gel Amyotrophic lateral sclerosis Questcor Pharmaceuticals, Inc US 

NCT01939132 H.P. Acthar® Gel Psoriatic arthritis Fiechtner, Justus J US 

NCT01950234 H.P. Acthar® Gel Multiple sclerosis University of Minnesota US 

NCT01966718 H.P. Acthar® Gel Rheumatoid arthritis 
Arthritis Treatment Center, 
Maryland 

US 

NCT02006849 H.P. Acthar® Gel Kidney disease Wake Forest School of Medicine US 

NCT02030028 H.P. Acthar® Gel Rheumatoid arthritis University of Pittsburgh US 

NCT02092883 ACTH Infantile spasms Wayne State University US 

NCT02113735 H.P. Acthar® Gel Acute respiratory distress syndrome Questcor Pharmaceuticals, Inc US 

NCT02132195 H.P. Acthar® Gel Nephrotic syndrome Emory University US 

SLCTR/2010/010 ACTH Infantile spasms Faculty of Medicine, Colombo Sri Lanka 

Other melanocortin drugs (non-steroidogenic) 

EUCTR2008-
002143-16-GB 

Afamelanotide Solar urticaria Clinuvel Pharmaceuticals Ltd UK 

EUCTR2009-
017359-92-DE 

Afamelanotide Polymorphic light eruption Clinuvel Pharmaceuticals Ltd 
Belgium, 
Germany, 

Netherlands 

EUCTR2009-
018024-15-DE 

Afamelanotide Acne vulgaris Clinuvel Pharmaceuticals Ltd Germany 

EUCTR2010-
022630-92-DK 

AP214 
Prevention of postsurgical kidney 
injury after cardiac surgery 

Action Pharma A/S Denmark 

NCT00004496 αMSH Acute renal failure 
FDA Office of Orphan Products 
Development 

US 

NCT00829192 Afamelanotide 
Actinic keratoses, carcinoma, 
squamous cell 

Clinuvel Pharmaceuticals Ltd 
Australia, 
Europe 

NCT01430195 Afamelanotide Vitiligo Clinuvel Pharmaceuticals Ltd US 

NCT01605136 Afamelanotide Erythropoietic protoporphyria Clinuvel Pharmaceuticals Ltd US 

NCT01777165 ABT-719 (AP214) Acute kidney injury AbbVie 
Denmark, 

US 

NCT01897519 ABT-719 (AP214) Cardiothoracic or vascular surgery AbbVie 
Denmark, 

US 



NCT02041195 RM-493 Obesity Rhythm Metabolic, Inc US 
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