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Abstract 

The type II secretion system (T2SS) is widespread in Gram-negative bacteria that 

cause disease in animals and plants. In human and animal pathogens toxins are 

secreted (e.g. cholera toxin) and in plant pathogens lytic enzymes that breakdown 

the plant cell wall are exported in to the extracellular milieu (e.g. pectate lyase). 

Structurally the T2SS comprises at least 11 core proteins that form three major 

subassemblies spanning the inner-membrane, periplasmic space and outer-

membrane: (i) the inner-membrane platform and associated cytoplasmic ATPase 

(E); (ii) the pseudopilus, which consists of five pseudopilins, G to K; and (iii) a large, 

pore-forming outer-membrane complex secretin D.  

The inner-membrane platform comprises three single transmembrane helix 

proteins, and one three transmembrane helix protein, OutF. The evidence from 

cryo-electron microscopy on the related type IVa pilus machine (T4PS) places the 

protein corresponding to OutF at the centre of this platform. This platform is 

responsible for assembling the pilus and for communicating between the periplasm 

and the cytoplasmic ATPase. To date, no high-resolution structure of a full-length 

OutF/PilC family protein is available. A low-resolution electron microscopy 

reconstruction of isolated PilG (PilC ortholog from Neisseria meningitides T4PS) 

showed a tetrameric two lobed structure. 

Here I report the results of studying the structure of the inner-membrane protein 

OutF from Dickeya dadantii and the complete inner-membrane platform comprising 

9 proteins: OutEFGHIJKLM. This work involved cloning the corresponding operon, 

purifying the proteins, and using crystallography and electron microscopy. Key 

results reported here are the crystal structure of the first cytoplasmic domain of 

Dickeya dadantii, OutF65-172 and a preliminary three-dimensional model of the 
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Dickeya dadantii inner-membrane platform. This model, and higher-resolution 

models to come, will provide valuable information about the oligomeric state, and 

arrangement of the inner-membrane proteins. These studies will help us to 

understand how the type II secretion system works.  



 

6 
 

Table of content 

 

Chapter 1 Introduction ............................................................................................... 20 

1.1 Secretion in bacteria .............................................................................................. 20 

1.1.1 Gram-negative bacteria secretion system....................................................... 20 

1.2 Type II secretion system ....................................................................................... 21 

1.2.1 The discovery of T2SS ................................................................................... 21 

1.2.2 T2SS related disease ...................................................................................... 22 

1.2.3 The function of T2SS ..................................................................................... 22 

a Assembly of surface organelles .................................................................................... 22 

b Protein transport ......................................................................................................... 23 

1.2.4 The secretion model ....................................................................................... 23 

1.3 The relationship between T2SS and other systems in bacteria and archaea ......... 24 

1.4 The structure of T2SS ........................................................................................... 26 

1.4.1 Pseudopilus .................................................................................................... 29 

a Major pseudopilins ....................................................................................................... 31 

b Minor pseudopilins ...................................................................................................... 32 

1.4.2 Inner-membrane platform .............................................................................. 33 

1.4.3 The secretin channel ....................................................................................... 34 

1.4.4 Pilotins ........................................................................................................... 36 

1.5 The inner-membrane platform proteins ................................................................ 37 

1.5.1 General secretion pathway protein, GspE ...................................................... 38 

1.5.2 General secretion pathway protein, GspF ...................................................... 40 

1.5.3 General secretion pathway protein, GspM ..................................................... 42 

1.5.4 General secretion pathway protein, GspL ...................................................... 42 

1.5.5 General secretion pathway protein, GspC ...................................................... 43 

1.6 Interactions within the inner-membrane platform................................................. 46 

Chapter 2 Material and methods ................................................................................ 48 

2.1 Materials ................................................................................................................ 48 

2.1.1 Water .............................................................................................................. 48 

2.1.2 Agarose gel electrophoresis ........................................................................... 48 

2.1.3 DNA clean-up ................................................................................................ 48 

2.1.4 Polymerase Chain Reaction ........................................................................... 49 

2.1.5 Broth and media ............................................................................................. 49 

a Luria-Bertani (LB) and YT broth .................................................................................... 49 



 

7 
 

b Terrific Broth (TB) media .............................................................................................. 49 

c Amp/X-gal/IPTG plates ................................................................................................. 49 

d M9 media ..................................................................................................................... 50 

f 4 x additives .................................................................................................................. 50 

2.1.6 Competent cells .............................................................................................. 51 

2.1.7 Buffers ............................................................................................................ 51 

2.1.8 Constructs and vectors ................................................................................... 52 

2.1.9 Vivaspin concentrators ................................................................................... 54 

2.1.10 Proteases and protease inhibitors ................................................................. 54 

2.1.11 Inducers ........................................................................................................ 54 

2.1.12 Detergents .................................................................................................... 55 

2.1.13 Chromatography ........................................................................................... 55 

2.1.14 Thermofluor assay ........................................................................................ 56 

2.1.15 Circular Dichroism ....................................................................................... 56 

2.1.16 Protein crystallization .................................................................................. 56 

2.1.17 NMR spectra ................................................................................................ 56 

2.1.18 TEM ............................................................................................................. 57 

2.2 Methods for molecular biology ............................................................................. 57 

2.2.1 PCR ................................................................................................................ 57 

a Primer design ............................................................................................................... 57 

b PCR reaction and programs ......................................................................................... 61 

c DNA analysis and purification ...................................................................................... 62 

2.2.2 Restriction enzyme digestion ......................................................................... 62 

2.2.3 Dephosphorylation ......................................................................................... 63 

2.2.4 Sticky-end ligation reactions .......................................................................... 64 

2.2.5 Blunt-end ligation .......................................................................................... 64 

2.2.6 In-Fusion cloning ........................................................................................... 65 

2.2.7 Construction of pET-14b-OutL1-257-OutE1-513-OutF1-172(or OutF65-172) ......... 66 

2.2.8 Transformation ............................................................................................... 68 

2.2.9 Positive colony confirmation and sequencing................................................ 68 

2.2.10 Making a recombinant construct .................................................................. 68 

2.3 Protein purification techniques ............................................................................. 69 

2.3.1 Protein over-expression .................................................................................. 69 

2.3.2 Bacterial lysis ................................................................................................. 70 

2.3.3 Membrane-fraction preparation ..................................................................... 71 

2.3.4 His tag purification ......................................................................................... 71 

2.3.5 Strep-tag purification ..................................................................................... 72 



 

8 
 

2.3.6 GST tag purification ....................................................................................... 73 

2.3.7 Gel filtration/size exclusion chromatography ................................................ 73 

2.3.8 Differential centrifugation .............................................................................. 75 

2.3.9 SDS-PAGE ..................................................................................................... 77 

2.3.10 Native gel ..................................................................................................... 78 

2.3.11 Western blot ................................................................................................. 78 

2.3.12 Determination of protein concentration ....................................................... 79 

2.4 Biochemical and biophysical techniques .............................................................. 80 

2.4.1 Dynamic light scattering ................................................................................ 80 

2.4.2 Circular dichroism .......................................................................................... 81 

2.4.3 Thermofluor assay .......................................................................................... 83 

2.4.4 Full length of OutE, cytoplasmic domain of OutL and cytoplasmic domain of 

OutF pull down assay .............................................................................................. 84 

2.4.5 NMR ............................................................................................................... 85 

a NMR principle............................................................................................................... 85 

b NMR sample preparation ............................................................................................. 86 

2.4.6 Peptide mass fingerprinting ........................................................................... 87 

2.4.7 Crystallization ................................................................................................ 87 

a Crystallography theory ................................................................................................. 87 

b X-ray crystallography ................................................................................................... 88 

c Molecular Replacement ............................................................................................... 90 

d Crystal vitrification ....................................................................................................... 92 

e Data collection and processing .................................................................................... 92 

f Synchrotron sources ..................................................................................................... 93 

g Structure validation ...................................................................................................... 93 

2.4.8 Single particle analysis using transmission electron microscopy .................. 94 

a Principle of single particle analysis .............................................................................. 94 

b Programs used for single particle analysis ................................................................... 97 

c 2% Uranyl acetate negative staining preparation ........................................................ 98 

d Sample preparation ..................................................................................................... 98 

e Nanogold labelling ....................................................................................................... 99 

Chapter 3 Structural studies of D. dadantii OutF .................................................... 100 

3.1 Overview ............................................................................................................. 100 

3.2 Results ................................................................................................................. 101 

3.2.1 Bioinformatics .............................................................................................. 101 

a Signal peptide prediction ........................................................................................... 101 



 

9 
 

b Prediction of transmembrane regions of OutF .......................................................... 102 

c Prediction of intrinsically disordered regions in OutF ................................................ 103 

3.2.2 Cloning outF, outL and outE ........................................................................ 104 

a Primer design ............................................................................................................. 104 

b PCR products of outF, outL and outE ......................................................................... 104 

c Construction of pET-24d-OutF ................................................................................... 106 

d Construction of pET-24d-OutF53-168 ............................................................................ 106 

e Construction of pET-14b-OutF65-172 ............................................................................ 107 

f Construction of pET-14b-OutF267-374 ........................................................................... 108 

g Construction of pOPINS3C-OutF1-408 .......................................................................... 108 

h Construction of pET-14b-OutL1-257-OutE1-513-OutF1-172(or OutF65-172) ......................... 108 

3.2.3 Expression and purification.......................................................................... 109 

a Expression and purification of OutF1-408 ..................................................................... 109 

b Expression and purification of SUMO-OutF1-408 ......................................................... 110 

c Expression and purification of OutF53-168 .................................................................... 112 

d Expression and purification of OutF65-172 ................................................................... 114 

3.2.4 Pull down assay of pET-14b-OutL1-257-OutE1-513- OutF65-172 ...................... 115 

3.2.5 Circular Dichroism (CD) Spectroscopy ....................................................... 116 

3.2.6 Dynamic Light Scattering (DLS) ................................................................. 117 

3.2.7 Crystallization trials ..................................................................................... 119 

a Crystallization trial using SUMO-OutF1-408 .................................................................. 119 

b Crystallization of OutF65-172 ........................................................................................ 120 

c Crystal structure determination ................................................................................. 122 

3.2.8 The crystal structure of OutF65-172 ................................................................ 125 

a Sequence and structure comparisons between members of the GspF family .......... 126 

b The nature of the OutF65-172 surface .......................................................................... 133 

c Potential dimerization factors .................................................................................... 135 

d Predicted model of OutF cytoplasmic domain II........................................................ 138 

3.2.9 Interaction of OutE, OutF and OutL assessed using NMR .......................... 140 

a Sample preparation for NMR spectroscopy ............................................................... 141 

b Thermoflour assay to determine sample conditions for NMR studies ...................... 142 

c NMR spectroscopy ..................................................................................................... 144 

3.2.10 Study of the interaction of OutF65-172 and OutE1-513-OutL1-257 by thermofluor 

assay ...................................................................................................................... 148 

3.3 Summary and discussion ..................................................................................... 150 



 

10 
 

Chapter 4 Structural studies of the inner-membrane platform of the D. dadantii T2SS

 152 

4.1 Overview ............................................................................................................. 152 

4.2 Results ..................................................................................................................... 153 

4.2.1 Cloning the genes corresponding to the inner-membrane complex ............. 153 

a Constructs .................................................................................................................. 153 

b PCR products .............................................................................................................. 154 

c Constructions of pASK3c: T2SSE-M, pASK3c: T2SSC-M, pASK3c: T2SSE, F, L and M and pASK3c: 

T2SSF-M ........................................................................................................................... 156 

d Enzyme cleavage to analyze the new constructs ....................................................... 156 

e Expression of pASK3c: T2SSE-M and pASK3c: T2SSO-M.................................................. 157 

4.2.2 Purification of the expressed inner-membrane complexes .......................... 159 

a Membrane fraction preparation ................................................................................ 159 

b Purification of membrane protein complex............................................................... 159 

c Sucrose gradient centrifugation of inner-membrane complex OutE-M .................... 163 

d Dynamic light scattering (DLS) ................................................................................... 164 

e Mass Spectrometry .................................................................................................... 165 

4.2.3 Initial three-dimensional model of inner-membrane platform ..................... 167 

a Sample preparation .................................................................................................... 167 

b Data collection ........................................................................................................... 167 

c Data processing programs .......................................................................................... 168 

d Particle selection and normalisation.......................................................................... 168 

e CTF estimation ........................................................................................................... 168 

f Getting templates for auto-picking ............................................................................. 169 

g Auto-picking and particles sorting ............................................................................. 169 

h 2D classification to remove bad particles .................................................................. 169 

i Generating template for 3D classification using SIMPLE ............................................ 171 

j 3D model refinement .................................................................................................. 174 

4.2.4 Domain localisation in the T2SS inner-membrane platform ....................... 178 

a Gold labelling.............................................................................................................. 178 

b Pilus-deleted and OutE-deleted mutations ............................................................... 180 

c ATPase localization in the inner-membrane platform ............................................... 180 

4.3 Conclusion .......................................................................................................... 182 

Chapter 5 Concluding comments ............................................................................. 184 

5.1 A status report on the type II secretion system ................................................... 184 



 

11 
 

5.2 Summary of achievements in this thesis ............................................................. 185 

5.3 Future work ......................................................................................................... 187 

 

 

 

 



 

12 
 

List of figures 

Figure 1.1 Secretion systems in Gram-negative bacteria (from Erin R, 2016). .............. 21 

Figure 1.2 Key components in T4P, T2SS, archaeal flagella and the competence 

systems in Gram-positive bacteria .................................................................................. 25 

Figure 1.3 Structural model of the V. cholerae Eps T2SS in its resting state. ................ 28 

Figure 1.4 Pseudopilus biogenesis steps. ........................................................................ 30 

Figure 1.5 The structures of the psudopilins. ................................................................. 32 

Figure 1.6 Structure and function of GspD. .................................................................... 36 

Figure 1.7 The Dickeya dadantii secretion-pilotin complex. .......................................... 37 

Figure 1.8 The inner-membrane platform. ...................................................................... 38 

Figure 1.9 Crystal structures of EpsF56-171, PilC53–168 and TcpE1-104 .............................. 41 

Figure 1.10 Structure of GspC and GspC/GspD complex. ............................................. 45 

Figure 2.1Construction of pET-14b-OutL1-257-OutE1-513 using the link and lock method.

 ......................................................................................................................................... 67 

Figure 2.2 A summary of steps for making a recombinant construct ............................. 69 

Figure 2.3 Summaries the step for over-expression of proteins ..................................... 70 

Figure 2.4 Columns involved in purifying proteins with different affinity tags. ............ 74 

Figure 2.5 Cell fractionation by differential centrifugation ............................................ 75 

Figure 2.6 Far-UV CD reference spectra ........................................................................ 82 

Figure 2.7 Crystallization phase diagram........................................................................ 88 

Figure 2.8 Satisfaction of Bragg’s law to obtain diffraction. .......................................... 89 

Figure 2.9 Molecular replacement method ..................................................................... 91 

Figure 2.10 Example of a 3D reconstruction from 2D projections. ................................ 97 

Figure 3.1 The predicted signal peptide of OutF. ......................................................... 101 

Figure 3.2 Predicted transmembrane regions of D. dadantii OutF. .............................. 102 

Figure 3.3 The predicted] intrinsically disordered regions of OutF.............................. 103 

Figure 3.4 Amplification of outF full-length and fragments. ....................................... 105 

Figure 3.5 Diagnostic cleavage of pET-24d-OutF1-408 .................................................. 106 

Figure 3.6 Diagnostic cleavage of pET-24d-OutF53-168. ............................................... 107 

Figure 3.7 Colony PCR and enzyme digest of pET-14b-OutF65-172.............................. 108 

Figure 3.8 Colony PCR and enzyme digestion of pET-14b-OutL1-257-OutE1-513- OutF65-

172 ................................................................................................................................... 109 



 

13 
 

Figure 3.9 Expression test of OutF1-408. ........................................................................ 110 

Figure 3.10 Purification of SUMO-OutF1-408 ................................................................ 112 

Figure 3.11 Expression and purification of OutF53-168. ................................................. 113 

Figure 3.12 Purification of OutF65-172 ........................................................................... 114 

Figure 3.13 Pull down assay of pET-14b-OutL1-257-OutE1-513- OutF65-172 .................... 115 

Figure 3.14 CD spectra of the first cytoplasmic domain, OutF65-172, and full-length 

OutF, OutF1-408. ............................................................................................................. 116 

Figure 3.15 DLS result for OutF65-172 and SUMO-OutF1-408 ........................................ 118 

Figure 3.16 Crystal hits of Sumo-OutF1-408 .................................................................. 119 

Figure 3.17 Crystal hits of OutF65-172 in 96-well screening plate after 48 hours and 96 

hours .............................................................................................................................. 121 

Figure 3.18 Crystal hits from optimized conditions ..................................................... 122 

Figure 3.19 Ramachandran plot statistics for the OutF65-172 crystal structure (PDB: 

5NBG). .......................................................................................................................... 125 

Figure 3.20 Comparison of predicted and solved structure of cytoplasmic domain I of 

OutF .............................................................................................................................. 126 

Figure 3.21 The predicted secondary structure of full-length of OutF and sequence 

alignment of GspF family members. ............................................................................. 129 

Figure 3.22 Conserved residues in the OutF65-172 structure. ......................................... 130 

Figure 3.23 Hydrophobicity mapped on the surface of the OutF65-172 .......................... 133 

Figure 3.24 Electrostatic potential mapped onto the OutF65-172 structure. .................... 134 

Figure 3.25 Interactions at the dimer interface of OutF65-172. ....................................... 136 

Figure 3.26 The predicted model of cytoplasmic domain II of OutF ........................... 138 

Figure 3.27 Two models of OutF245-379 dimer ............................................................... 139 

Figure 3.28 Size exclusion chromatography of 15N-labelled OutF1-172, OutF65-172 ....... 142 

Figure 3.29 Thermofluor plots ...................................................................................... 143 

Figure 3.30 Assessment of interactions between cytoplasmic domain I of OutF and 

OutE-OutL1-257 .............................................................................................................. 145 

Figure 3.31 Elucidation of OutF65-172 and OutE or OutL1-257 or OutE-OutL1-257 complex 

interactions .................................................................................................................... 148 

Figure 3.32 Thermofluor plots of interaction between OutF65-172 and OutE-OutL1-257 

complex ......................................................................................................................... 149 

Figure 4.1 Flow chart of single particle reconstruction process in Relion2(Fernandez-

Leiro and Scheres 2017)................................................................................................ 153 



 

14 
 

Figure 4.2 Genetic organization of T2SSs from E. coli IHE 3034 and D. dadantii. .... 154 

Figure 4.3 PCR products of T2SS gene operon from D. dadantii and IHE strain ........ 155 

Figure 4.4 Restriction enzyme results ........................................................................... 157 

Figure 4.5 Expression test of the inner-membrane platform from D. dadantii and the 

whole complex of the T2SS from IHE3034, respectively. ........................................... 159 

Figure 4.6 Purification of T2SS complexes and gene mutated complexes from D. 

dadantii and IHE using strep tactin resin. ..................................................................... 161 

Figure 4.7 Chromatographic separation on Superose 6 10/300 GL column of T2SSE-M 

complex ......................................................................................................................... 162 

Figure 4.8 Analysis of sucrose gradient fraction .......................................................... 164 

Figure 4.9 T2SSOutE-M DLS summary. .......................................................................... 165 

Figure 4.10 Mass spec result of T2SSE-M complex ....................................................... 166 

Figure 4.11 plots of distribution and resolution of 2D classes ...................................... 170 

Figure 4.12 Data process to generate the initial model for 3D classification ............... 173 

Figure 4.13 3D classification ........................................................................................ 173 

Figure 4.14 Refined 3D model of OutE-OutM complex .............................................. 175 

Figure 4.15 EM analysis of OutE-OutM ....................................................................... 178 

Figure 4.16 T2SSE-M/M-His gold labelling ....................................................................... 179 

Figure 4.17 Domain localisation in the type II secretion system inner-membrane 

platform. ........................................................................................................................ 181 



 

15 
 

List of tables  

Table 2.1 Components of LB broth ................................................................................ 49 

Table 2.2 Components required for making the TB media ............................................. 49 

Table 2.3 Components used for making Amp/X-gal/IPTG plates .................................. 50 

Table 2.4 Components used for making 200ml 100 x trace element stock .................... 50 

Table 2.5 Components used for making 1 Litre 10 x M9 Stock ..................................... 50 

Table 2.6 Components used for making 200ml 4 x additives ......................................... 51 

Table 2.7 Competent cells used for expression and cloning ........................................... 51 

Table 2.8 Buffers for protein purification and biochemistry .......................................... 52 

Table 2.9 Constructs kindly provided by Dr. Vladimir Shevchik (University of Lyon) 53 

Table 2.10 List of vectors used in Chapter 3 and 4 ......................................................... 53 

Table 2.11 An example of 15 bases of homology in primers for infusion cloning ........ 57 

Table 2.12 List of the primers used in Chapter3 to amplify outF, outL and outE genes 

and parts of these genes................................................................................................... 58 

Table 2.13 List of DNA primers used in Chapter 4 ........................................................ 59 

Table 2.14 PCR reaction ................................................................................................. 61 

Table 2.15 PCR program using Q5 High-Fidelity DNA Polymerase ............................. 61 

Table 2.16 Typical restriction enzyme digest for PCR products and vectors. ................ 63 

Table 2.17 20µl reaction for dephosphorylation ............................................................. 64 

Table 2.18 Typical sticky-end ligation reaction in 10µl volume. ................................... 64 

Table 2.19 Blunt ligation reaction in 10 µl volume ........................................................ 65 

Table 2.20 In-Fusion cloning reaction ............................................................................ 66 

Table 2.21 Recipe for SDS-PAGE. ................................................................................. 77 

Table 2.22 The buffer conditions screened in thermoflour assay ................................... 84 

Table 3.1 Optimization of the crystal hits condition ..................................................... 121 

Table 3.2 Crystallographic data and refinement statistics for OutF65-172 ...................... 124 

Table 3.3 Nomenclature of GspF for related filament systems in Gram-negative, Gram-

positive bacteria and archaeal flagella. ......................................................................... 127 

Table 3.4 Structure comparison of GspF family from T2SS, T4P in Gram-negative 

bacteria, T4P, Tad, Com in Gram-positive bacteria and archaeal flagella. .................. 131 



 

16 
 

Abbreviations 

T2SS            Type II secretion system 

Sec              general secretion route  

Tat              twin-arginine translocation pathway 

GSP             general secretory pathway 

ETEC            enterotoxigenic Escherichia coli  

EHEC            enterohaemorrhagic Escherichia coli  

HUS             haemolytic uraemia syndrome  

Com             competence systems  

TAD             tight adherence 

TMS             transmembrane helices 

PG              peptidoglycan  

SRP             signal recognition particle 

Cryo-EM         Cryo-electron microscopy 

HR              the homology region  

µl/µM            micro-litre/micro-molar 

Å                Angstrom 

EDTA            Ethylene diamine tetraacetic acid 

TAE             Tris-acetate-EDTA 



 

17 
 

PCR             polymerase chain reaction 

IPTG            Isopropyl β-D-1-thiogalactopyranoside 

LB              Luria-Bertani 

PMSF            phenylmethylsulfonyl fluoride 

CD              circular dichroism 

NMR            Nuclear Magnetic resonance 

AHT             Anhydrotetracyclin 

OD              Optical density 

SDS-PAGE       Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

CV              column volumes 

DDM            n-Dodecyl β-D-maltoside 

LDAO           N, N-dimethyl-1-dodecanamine-N-oxide 

DTT             Dithiothreitol 

PBS             phosphate buffered saline 

Ve              Elution volume 

Vo              Void volume 

Vt               total bed volume 

TEMED          Tetramethylethylenediamine 

TBS             Tris-buffered saline 

AP              alkaline phosphate  



 

18 
 

DLS             Dynamic light scattering 

Pd               polydispersity 

qPCR            Real-time polymerase chain reaction 

TCEP            tris(2-carboxyethyl) phosphine 

HSQC            heteronuclear single quantum correlation 

CCD             charge-coupled device  

MR              Molecular Replacement 

PG               propylene glycol 

EG               Ethylene glycol 

ESRF             European Synchrotron Radiation Facility 

SPA              Single particle analysis 

TEM             Transmission electron microscopy 

CTF              contrast transfer function 

FSC              Fourier shell correlation 

SUMO            Small Ubiquitin-like Modifier 

SEC              size exclusion column 

IMAC            Immobilized metal ion affinity chromatography 

XDS             X-ray Detector Software 

CCP4            Collaborative Computational Project Number 4 

COOT            Crystallographic Object-Oriented Toolkit 



 

19 
 

RMS             root-mean-square 

TD-PCR          Touch-down polymerase chain reaction 

PVDF            polyvinylidene difluoride 

IHE3034          Extra-intestinal pathogenic, O18:K1:H7         

DM-NPG         Decyl Maltose Neopentyl Glycol 

MALDI-TOF      matrix assisted laser desorption ionization-time of flight mass 

spectrometry 

EPU             E Pluribus Unum 

SIMPLE          Single-particle Image Processing Linux Engine 

RELION          REgularised LIkelihood OptimisatioN 

 

 

 

 

 

 



Chapter 1 Introduction 

20 
 

Chapter 1 Introduction 

1.1 Secretion in bacteria  

Secretion in bacteria is the transport or translocation of effector molecules 

including proteins, enzymes or toxins from the bacterial cytoplasm into the environment 

or host. Secretion is therefore a very important mechanism for bacterial growth, 

adaptation, and survival in their natural surroundings. 

1.1.1 Gram-negative bacteria secretion system 

Gram-negative bacteria have two membranes, inner- (also known as cytoplasmic) and 

outer-membrane which makes secretion more complex than in Gram-positive bacteria 

which have only a single, cytoplasmic, membrane. In Gram-negative bacteria the space 

between the inner- and outer- membrane is called the periplasmic space. Transport out of 

the cells must proceed either directly from the cytosol through a single step involving a 

tunnel through the periplasm (as in the T1SS, T3SS, T4SS and T6SS; Fig. 1.1), or using 

a two-step process with a periplasmic intermediate. In this latter process, secreted proteins 

are first translocated into the periplasm through Sec (secretory) or Tat (twin-arginine 

translocation) secretion systems and then transported across the outer-membrane by a 

second transport system (Green and Mecsas 2016). Protein effectors transported through 

type III secretion system (T3SS) are secreted mainly as unstructured proteins using a one-

step process and then the effectors fold into their native conformation post transport in 

the host cell (Demers et al. 2014). On the other hand, substrates of the type II secretion 

system (T2SS) are transported first to the periplasm via Sec or TAT systems and are fully 

folded in the periplasm before being secreted across the outer-membrane (Merritt et al. 

1994, Voulhoux et al. 2001, Fries et al. 2007, Richardson et al. 2012) 

http://en.wikipedia.org/wiki/Proteins
http://en.wikipedia.org/wiki/Enzymes
http://en.wikipedia.org/wiki/Toxin
http://en.wikipedia.org/wiki/Cytoplasm
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Figure 1.1 Secretion systems in Gram-negative bacteria (from Erin R, 2016).  

Secretion systems types I, III, IV, VI secrete direct from cytosol across the two membranes of the 

bacterial cell. In fact, types III, IV and VI secrete also across the host membrane. The Type II and 

V systems secrete from the periplasmic space, between the inner- and outer- membranes in to the 

environment. 

1.2 Type II secretion system  

The T2SS was initially considered as the main terminal branch of the general secretory 

pathway (Gsp), where unstructured substrates or native folded substrates first enter the 

periplasm via the SEC apparatus (Natale et al. 2008) or TAT pathway(Voulhoux, Ball et 

al. 2001) and are then secreted by the T2SS. Nonetheless, the term Gsp is often used to 

refer the ~15 protein components of the T2SS from GspA to GspO. The T2SS can secrete 

a variety of substrates out of the bacteria including biologically functional proteins like 

proteases, lipases and phosphatases (Korotkov et al. 2012). 

1.2.1 The discovery of T2SS 

The type II secretion system (T2SS) was discovered in the 1980s in the genus Klebsiella 

(d'Enfert et al. 1987) as the system responsible for the secretion of pullalanase A. 

Expression of the pullulanase secretion genes is required for the pullulanase to be 
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translocated across the outer-membrane. Cell surface localization of pullulanase is just a 

transient stage in the pullulanase secretion pathway, which eventually leads to the 

extracellular release of polypeptides (Pugsley et al. 1986).  

1.2.2 T2SS related disease  

Many bacterial pathogens use T2SSs to export virulence factors outside of the cells 

causing disease. Human pathogens include: Vibrio cholerae (secretes cholera toxin 

causing diarrhoeacholera) (Sandkvist et al. 1997), enterotoxigenic Escherichia coli 

(ETEC) , secretes two types of enterotoxins heat-labile and heat-stable enterotoxin 

causing watery cholera-like diarrhoea in animals and humans) (Tauschek et al. 2002) and 

enterohaemorrhagic Escherichia coli (EHEC which causes diarrhoea or haemorrhagic 

colitis and even lethal haemolytic uraemia syndrome (HUS))(Lathem et al. 2002), 

Pseudomonas aeruginosa which secretes exotoxins causing death in models of 

pulmonary infection (Bally et al. 1992, Jyot et al. 2011), Klebsiella pneumoniae which 

secretes pullulanase causing pneumonia in the form of bronchopneumonia and bronchitis 

(D'Enfert and Pugsley 1989) and Legionella pneumophila secretes acid phosphatases, 

lipases, phospholipases C (Rossier et al. 2004). The plant pathogen Dickeya dadantii, 

which we will discuss in this Thesis, secretes plant cell-wall degrading enzymes including 

pectinases which cause crop spoilage and threaten food security (Toth and Birch 2005).  

1.2.3 The function of T2SS  

a Assembly of surface organelles 

Like the type 4 pilus assembly system (T4PS), the T2SS can promote assembly of 

filaments via ATP hydrolysis. These filaments are localized in the periplasm and have 

been coined pseudo-pili which perform a range of functions in signalling, adhesion and 
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motility. Pseudopilus components and the assembly machinery are essential for 

exoprotein transport across the outer-membrane. 

b Protein transport 

A major function of the T2SS is nutrient acquisition. Most exoproteins identified so far 

are hydrolytic enzymes that degrade biopolymers (carbohydrates, lipids, proteins or 

nucleic acids). Additionally, the T2SS secretes toxins, slime proteins, adhesion proteins 

and cytochromes which affect respiration, motility or lead to biofilm formation 

facilitating other bacterial lifestyles and protecting the bacteria in the case of biofilm 

production. 

The majority of secreted enzymes are released into the surroundings to generate small 

nutrient pools available for uptake. The Klebsiella oxytoca pullulanase, a lipoprotein 

which degrades branched maltotriose polymers is a rare example of an exoprotein which 

remains surface-associated after secretion (Pugsley and Kornacker 1991). 

1.2.4 The secretion model 

Compared to several other secretion systems which transport unfolded proteins, the T2SS 

recruits and transports fully folded proteins. Thus, it is suggested that the secretion 

depends on a conformational signal which could be a patchwork of structural signals on 

the substrate surface but conserved in various substrates (Palomaki et al. 2002, Korotkov, 

Sandkvist et al. 2012). Recent mutagenesis, cross-linking and functional studies in D. 

dadantii showed that a 9-residues loop of pectate lyase PelI acts as a secretion signal 

which could interact with GspC and GspD directly (Pineau et al. 2014). Recent structure 

and functional study on PulA substrate of K. oxytoca has also revealed that several 

structurally flexible regions of this large protein are important for its secretion (East et al. 
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2016). Therefore, in some systems, a few surface exposed and highly flexible regions of 

secreted substrates act as secretion signals via their transient conformation on T2SS 

components. 

The recruitment of substrates into the periplasm is necessary to allow them to interact 

with T2SS components. Even though the periplasmic domain of GspD has been observed 

to interact with substrates in D. dadantii, V. cholera and P. aeruginosa, it is still not clear 

if these interactions represent periplasmic recruitment. It is generally acknowledged that 

recognition of secretion substrates by the periplasmic domain of GspC is important for 

their transport into the T2SS (Bouley et al. 2001, Gerard-Vincent et al. 2002). Once inside 

the secretion system, the secretion substrates are thought to lie on the top of the 

pseudopilus and as the pseudopilus assembles and grows it forces the substrate through 

the pore in the secretin and out of the cells. The energy for pilus assembly is provided by 

the ATP hydrolase GspE (Campos et al. 2013).  

1.3 The relationship between T2SS and other systems in bacteria 

and archaea  

The type II secretion system is closely related to several other systems in bacteria and 

archaea. The Type IV pili in Gram-negative bacteria (Korotkov et al. 2011), the 

competence systems (Com) and Tight adherence (Tad) in Gram-positive bacteria and 

archaeal flagella all have structural homologs of proteins found in the T2SS. The common 

feature is the ability to promote assembly of helical filaments composed of inner 

membrane-embedded pilin subunits. The common components in T2SS, T4P, archaeal 

flagella and the competence systems include (1) cytoplasmic ATPase, (2) the inner-

membrane protein with multiple transmembrane helices, (3) the pilin or pseudopilin or 
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flagellin, and (4) the specific membrane protease (Fig. 1.2). However, there is no secretin 

in archaeal flagella as expected as archaea lack an outer-membrane. Interestingly, the 

archaeal flagella has more similarities with the T4P and T2SS than with the bacterial 

flagella(Hobbs and Mattick 1993, Peabody et al. 2003). 

 

Figure 1.2 Key components in T4P, T2SS, archaeal flagella and the competence systems 

in Gram-positive bacteria 

ATPase is in orange, the inner-membrane proteins with a single transmembrane helix are in green, 

the inner-membrane proteins with multiple transmembrane helices are in purple, the outer-

membrane proteins are in blue, and the pilins, pseudopilins and flagellins are in pink (Korotkov, 

Sandkvist et al. 2012). 

 

Although the protein components of the T2SS, T4P and archaeal flagella are widely 

distributed between the bacterial and archaeal domains, no horizontal transfer has 

occurred between prokaryotes and eukaryotes (Peabody, Chung et al. 2003). It has been 

revealed that structurally archaeal flagella are more similar to bacterial type IV pili rather 

than to bacterial flagella (Ghosh and Albers 2011). There is an evidence that the 

components of these systems evolved from a single primordial precursor system (Nguyen 

et al. 2000, Cao and Saier 2001, Peabody, Chung et al. 2003). Among these components, 

the ATPase and multi-spanning TM proteins are the largest and most slowly diverging 
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proteins although these components have undergone sequence divergence at different 

rates. The number of transmembrane α-helical hydrophobic segments (TMSs) arose by 

the intergenic duplication (Kuan and Saier 1993, Saier 2003). A good example for this is 

that E. coli CorA protein has three TMSs with an N-terminal soluble periplasmic domain 

and C-terminal cytoplasmic domain (Saier 2003). The two TMS homologues have both 

domains in the cytoplasm, the situation of which is quite like GspF we study here. 

The first indication that Gram-positive bacteria possess Type IV pili (TFP-like) structures 

was provided by the Com system (Competent system) in Bacillus subtilis, in which the 

prepilin peptidase PilD homolog ComC cleaved the signal peptides producing a high 

molecular weight DNA-binding surface structure (Chung and Dubnau 1995, Chen and 

Dubnau 2004). The T4P in Gram-positive has been shown to be critical for biological 

processes Clostridium perfringens pil operon required for twitching motility and biofilm 

formation (Varga et al. 2006, Rodgers et al. 2011). Bacillus anthracis operon contains 

genes with some homology to Tad genes (tight adherence) which could be responsible 

for anthrax toxin secretion (Grynberg et al. 2007). 

1.4 The structure of T2SS 

There are 12 and 15 genes designated gsp (General Secretory Pathway) (Lindeberg and 

Collmer 1992) encoding T2S machines. This complex, two-membrane spanning machine 

comprises the following four sub-assemblies: (i) a secretion ATPase (GspE) providing 

the energy for secretion on the cytoplasmic side of the inner-membrane, which is closely 

associated with (ii) a sophisticated Inner-Membrane Platform (GspC, GspF, GspL, 

GspM), which senses the presence of a protein to be secreted and assembles (iii) the 

pseudopilus (GspG, GspH, GspI, GspJ and GspK) in the space between the membranes, 

whose tip pushes secreted proteins through and the prepilin peptidase, GspO, which is 
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responsible for processing of pseudo-pilin subunits. (iv) the large gated pore of the Outer-

Membrane Complex (GspD) (Fig. 1.3). The core genes are in one large operon 

gspCDEFGHIJKLMNO. Several other genes encode factors involved in the localization 

and assembly of the out membrane channel-forming protein GspD (also called the 

secretin (Korotkov, Gonen et al. 2011)), including gspS (pilotins) and gspAB or gspB. In 

V. cholera and D. dadantii, T2S systems express pilotins, small lipoproteins each with a 

unique structure, which enhance the kinetics of secretin targeting and assembly in the 

outer-membrane (Daefler et al. 1997, Shevchik and Condemine 1998, Nickerson et al. 

2011, Strozen et al. 2012).  In P. aeruginosa Hxc and X. campestris Xps T2SSs, the 

secretin contains its own lipid anchor and they can pilot and anchor themselves (Viarre et 

al. 2009). A crystal structure is already available for P. aeruginosa protein PA3611, which 

shares similar structure with the V. cholerae pilotin, AspS, although its function as a 

pilotin has still to be confirmed experimentally (Seo et al. 2009). 
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Figure 1.3 Structural model of the V. cholerae Eps T2SS in its resting state.  

All T2SS structures are represented as cartoons and either from V. cholera (Peri-EpsM PDB Re. 1UV7, 

EpsF Re. 3C1Q, major pseudopilin Re. 3FU1, Cyto-EpsI Re.1YF5, cytoplasmic domain of EpsE and EpsL 

2BH1, EpsI and EpsJ 2RET, EpsH 1QV8, GspD 5WQ8) or modelled based on homologous structures 

(EpsF PDB Re. 3C1Q, ETEC N-terminal domain of GspD 3EZJ, Thermus Thermophilus N-terminal 

domain of PilC 2WHN, GspsE hexamer 4KSS, GspE-cyto-GspL complex 4PHT) using the Phyre2. 

Structures were assembled using the EM model of the type Iva pilus system as a guide(Chang et al. 2016). 

The cholera toxin (CT) is shown as a grey surface (Gu et al. 2017) and to the same scale as the T2SS 

model(Zhang et al. 1995). 

 

In Aeromonas and Vibrio, GspA and GspB span the inner-membrane once and form a 

multimeric complex together which is thought to modify or organise the peptidoglycan 

(PG) to allow assembly of secretin (Ast et al. 2002, Li and Howard 2010, Vanderlinde et 

al. 2014). The periplasmic domain of GspA interacts with peptidoglycan and forms a 
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complex with GspB. The GspAB complex is essential for type II secretion in Aeromonas 

but not in Vibrio (Strozen et al. 2011). However, in D. dadantii, only OutB is present. 

OutB of D. dadantii interacts with the cognate secretin OutD but its precise function 

remains unclear (Condemine and Shevchik 2000). Recent unpublished work from the 

Pickersgill group in collaboration with Shevchik, University of Lyon, has shown that in 

D. dadantii OutB serves to anchor the outer-membrane secretin to the inner-membrane a 

function ascribed to OutC in other systems. GspAB and possibly also GspB might  attach 

the secretin complex to the peptidoglycan or help the secretin move across the 

peptidoglycan mesh (Li and Howard 2010, Strozen, Stanley et al. 2011, Vanderlinde, 

Zhong et al. 2014). Interestingly, although no additional genes are present in the L. 

pneumophila T2SS, its outer-membrane secretin LspD is predicted to contain a 

peptidoglycan binding domain at its N-terminus (Kelley et al. 2015). 

1.4.1 Pseudopilus  

The T2SS has been proposed to assemble a short filament termed “the pseudopilus” to 

push secreted protein substrates through the secretin channel by T4P-like extension and 

retraction dynamics acting which is a similar way to a piston (Douzi et al. 2011). T2SS 

pili are composed of one major subunit GspG and 4 minor pseudopilins GspH, GspI, GspJ 

and GspK (Johnson et al. 2006). The five pseudopilins have similar sequence: the N-

terminal tail (several positively charged amino acid residues) followed by a Gly or Ala 

residue which is the cleavage site for the prepilin peptidase; a hydrophobic α-helix 

embedded into the inner-membrane and a C-terminal periplasmic globular domain 

(Korotkov, Sandkvist et al. 2012). GspG has been shown to use the SRP pathway to insert 

into the inner- membrane (Francetic et al. 2007). The minor pilins may also utilize this 

pathway for insertion due to the sequence similarity with GspG. 
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Such sequence conservation allows unambiguous identification of fibre assembly in 

bacteria and archaeal (Arts et al. 2007, Francetic, Buddelmeijer et al. 2007) and suggest 

that a strict selection pressure shaped these segments (Campos, Cisneros et al. 2013). 

Pseudopilus biogenesis steps include the following several steps: the transmembrane 

segment of pseudopilins interacts with cellular and type II secretion system partners via 

the signal recognition particle (SRP) complex to the Sec translocase; the positively 

charged pre-peptide of the pseudopilins are removed and then methylation of the new N-

terminus by the prepilin peptidase after membrane insertion; the cleaved peptide interacts 

with at least one assembly factor in the membrane possibly the inner-membrane protein 

GspF/PilC; the TM segments contact with neighbouring pilins and become buried in the 

core of the fiber, while the globular pilin domains are exposed on the surface of 

pseudopilus (Campos, Cisneros et al. 2013), see Fig. 1.4. 

 

Figure 1.4 Pseudopilus biogenesis steps. 
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(A)The transmembrane segment of the pseudopilus (grey) target to the Sec translocase via the 

SRP complex; (B) Membrane insertion; (C) The prepilin peptidase cleaves the pre-peptide after 

the conserved Gly residue; (D) The cleaved peptide interacts with at least one component of the 

assembly inner-membrane platform; (E) The hydrophilic domains are exposed on the pseudopilus 

surface (Manuel, 2013), (Campos, Cisneros et al. 2013). 

a Major pseudopilins 

GspG which is restricted to the periplasm under physiological expression levels in liquid 

culture can build helical fibres (Kohler et al. 2004). Based on the predictions generated 

using structural modelling, the experimentally validated structure of T2SS pili revealed a 

right-handed helix protomer organization in the fibre (Campos et al. 2010). These 

hypothetical fibres could be visualized by overexpressing the pul genes in Klebsiella 

oxytoca (Sauvonnet et al. 2000), Escherichia coli(Vignon et al. 2003) and P. aeruginosa 

(Durand et al. 2003) . Interestingly, the pseudopili were assembled only when the xcpT 

(a GspG homolog) was introduced in the whole xcp gene cluster deleted strain. It was 

concluded that assembly of the type II pseudopilus depended on the function of other Xcp 

components (Durand, Bernadac et al. 2003).  

X-ray crystallography showed that the GspG has a long α-helical stem and a globular 

domain formed by three-strand β-sheet(Kohler, Schafer et al. 2004, Korotkov et al. 2009), 

see Fig. 1.5A. The C-terminal domain forms a stable loop folded around a calcium ion 

(Korotkov, Gray et al. 2009) and the residues binding the calcium atom are essential for 

secretion of the protein(Kohler, Schafer et al. 2004). In the Pul T2SS, the mutations of 

the calcium-binding sites could significantly reduce the level of the PulG (GspG) 

indicating the importance of calcium-ion in the major pseudopilin’s structure and stability 

(Campos, Nilges et al. 2010). 
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Figure 1.5 The structures of the psudopilins.  

A: Crystal structure of Enterohaemorrhagic E. coli GspG (PDB code: 3G20), calcium ions are 

shown as red balls; B: Solution structure of E. coli GspH (PDB code: 2KNQC); C: Crystal 

structure of Enterotoxigenic E. coli Gsp-K-J-I (PDB code: 3CI0). GspI is in magenta; GspJ yellow; 

GspK cyan and the calcium ions are shown as green balls.  

b Minor pseudopilins  

The studies of the Xanthomonas campestris T2SS show the presence of four minor 

pseudopilins under the physiological conditions (Kuo et al. 2005). The crystal structure 

of the GspJ–GspI–GspK periplasmic domain shows a complex with quasi-helical 

symmetry (Korotkov and Hol 2008), see Fig. 1.5C. GspI occupies a central place in the 

formation of the tip complex interacting with GspJ and GspK (Douzi et al. 2009). GspK 

caps this complex via its α-helical domain at the summit. Overexpression of GspK could 

reduce the pilus length while deletion mutant of xcpX (GspK) could assemble longer pili 

indicating that GspK could control the extension of the fibre (Vignon, Kohler et al. 2003, 

Durand et al. 2005).  A recent study on minor pseudopilins by immunofluorescence 

microscopy revealed that GspI and GspJ mutants can result in fewer and longer pili 

(Cisneros et al. 2012). The fourth pseudopilin GspH binds to GspJ at the bottom of this 

trimer and forms a quaternary complex (Douzi, Durand et al. 2009). But GspH does not 
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play a role in the initiation or termination of the pseudopilus assembly since there are no 

changes of length of the pilus on deleting GspH (Cisneros, Bond et al. 2012). Furthermore, 

there is only a small secretion decrease when GspH mutants are overexpressed (Cisneros, 

Bond et al. 2012). Therefore GspH which binds this initiating tip complex in vitro via its 

globular domain (Douzi, Durand et al. 2009), may ensure a transition between initiation 

and ATPase-catalysed elongation which is required for efficient protein secretion 

(Cisneros, Bond et al. 2012). Once activated, GspG is then recruited and incorporated 

into the pilus which allows the pseudopili to extend. But, the quaternary complex of the 

minor pseudopilins does not bind to the periplasmic domain of GspG suggesting that the 

TM segment of the GspG is required for the elongation in T2SS (Douzi, Durand et al. 

2009). The energy for assembly of the pilus has been established to be generated by 

conformational changes of ATPase GspE. A candidate to transduce the conformational 

change to promote pseudopilus assembly is the inner-membrane rotor, GspF (Nivaskumar 

et al. 2014). How the cytoplasmic ATPase controls the assembly of the pseudopilus 

remains to be elucidated in detail. 

1.4.2 Inner-membrane platform 

The inner-membrane assembly platform is a complex that contains: GspC, GspF, GspL 

and GspM. It is now established that the associated cytoplasmic ATPase, GspE, provides 

the energy for pseudopilus assembly and protein secretion (Patrick et al. 2011). In Vibrio 

and other T2SSs GspE has an extended N-terminal domain forming a complex with the 

cytoplasmic domain of GspL. The species-specific GspE–GspL interaction might be 

involved in energy transfer to inner-membrane assembly complex. The close genetic link 

between GspE and GspF suggests these proteins also may function as a complex. Yeast 

two-hybrid and pull-down studies suggest that the cytoplasmic domain I of GspF interacts 

with GspE and GspL (Py et al. 2001). 
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1.4.3 The secretin channel 

The channel forming protein secretin GspD in T2SS is the central component of this 

system. It is typically associated with GspC (Tammam et al. 2013). In T2SS adjacent 

gspCD genes are always co-transcribed. 

Analysis of K. oxytoca PulD and V. cholera GspD cryo-EM particles at low resolution 

reveals a dodecameric complex in the outer-membrane (Nouwen et al. 2000, Korotkov, 

Gonen et al. 2011), which is consistent with cryo-electron tomography and cryo-EM 

studies with Myxococcus xanthus and Neisseria Meniningitidis in T4PS, 

respectively(Berry et al. 2012, Chang, Rettberg et al. 2016). Recent published structure 

for the E. coli K12 and V. cholerae GspD proteins at near atomic resolution display 

predominantly 15-fold symmetry  (Yan et al. 2017) which is also observed in the 

Salmonella T3SS secretin (Worrall et al. 2016). While this difference may result from 

different recombinant expression strategies and sample preparations, the higher resolution 

of the latter structures reveals the pentadecameric structure of the secretin. 

GspD has three regions: N-terminal periplasmic domains, the secretin domain and a short 

C-terminal S-domain (Fig. 1.6B). The four N-terminal domains termed N0 to N3 extend 

from the outer-membrane into the periplasm (Fig. 1.6B), they act to funnel substrates into 

the membrane pore. The N-domains penetrating the peptidoglycan communicate with the 

inner-membrane platform and also interact with substrates (Shevchik et al. 1997, 

Korotkov, Gonen et al. 2011, Pineau, Guschinskaya et al. 2014). The secretin domain is 

required to form the membrane embedded core of the channel while the S-domain 

stabilize the mature structure by decorating the adjacent subunit (Worrall, Hong et al. 

2016, Yan, Yin et al. 2017).  



Chapter 1 Introduction 

35 
 

The intrinsic disorder within GspD (Fig. 1.6A) has been highlighted by the cryo-EM 

structure of E. coli and V. cholerae GspD and secondary structure predictions (McGuffin 

et al. 2000, Ward et al. 2004). The first disordered region is localized to about 10-residue 

linker between N0 and N1(Gu, Shevchik et al. 2017). The N0 domain is disordered and 

cannot be modelled in the absence of the inner-membrane platform to dock with in the 

structures of E. coli and V. chokerae GspD (Yan, Yin et al. 2017). Linkers connecting the 

N1-N2 and N2-N3 also show some flexibility between rings of N-domains (Sandkvist et al. 

1999).  

The second disordered region of GspD is located within the homologous loops of the N2 

and N3 domains, respectively. This loop in the N1 domain is only several residues and 

well-ordered, while in N2 there are up to 15 residues and disordered in all available 

structures (Korotkov et al. 2009, Van der Meeren et al. 2013, Yan, Yin et al. 2017). 

Moreover, this loop in the N3 contains up to 80 residues and revealed to be a flexible 

weak constriction site.  
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Figure 1.6 Structure and function of GspD.  

A: Intrinsic disorder plots of EpsD from V.cholerae and OutD from D. dadantii (Ward, McGuffin 

et al. 2004). Stars represent significantly disordered regions. B: Cryo-EM structures of the V. 

cholerae and E. coli GspD proteins (Yan, Yin et al. 2017). C: N-domain of GspD in P.aeruginosa 

and E. coli (Van der Meeren, Wen et al. 2013, Yan, Yin et al. 2017) (from Gu et al, 2017). 

1.4.4 Pilotins 

Several factors have evolved to target the secretin subunits to the outer-membrane. Small 

OM lipoproteins of the GspS family referred to as ‘pilotins’ (Hardie et al. 1996) allow 

efficient targeting to the OM via the lipoprotein sorting pathway (Collin et al. 2011). 

Recent studies have revealed the interaction between PulS/GspS and the C-terminal S 

domain of the secretin PulD/GspD, which is intrinsically disordered (Nickerson, Tosi et 

al. 2011).  D. dadantii OutS pilotin shows similar characters (Gu et al. 2012, Rehman et 

al. 2013) and these studies reveal the structure of the bound secretin / pilotin complex 

(Fig. 1.7). The absence of pilotin results in the mis-location and degradation of the 

secretin suggesting that the pilotin has a key role in targeting secretin to the outer-
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membrane (Daefler, Guilvout et al. 1997, Shevchik, Robert-Baudouy et al. 1997, 

Shevchik and Condemine 1998).  

During the T2SS biogenesis pilotins bind the S-domain of secretin which emerges from 

the Sec pathway in the inner-membrane and targets the outer-membrane via the LoL 

system (Collin, Guilvout et al. 2011). 

 

Figure 1.7 The Dickeya dadantii secretion-pilotin complex. 

(A) The interaction between the secretin and pilotin detected by far uv circular dichroism spectra. 

18-residue secretin peptide alone (black), pilotin alone (pink) and a stoichiometric ratio of both 

pilotin (OutS) and secretin peptide (OutD691–708) together (blue). The difference between the 

secretin/pilotin complex and the pilotin only is shown in red. (B) Structure of the secretin peptide 

bound (magenta) to the pilotin (green). (Gu, Rehman et al. 2012, Rehman, Gu et al. 2013). 

1.5 The inner-membrane platform proteins 

The inner-membrane platform, contains multiple copies of at least four different 

membrane proteins: the cytoplasmic “secretion ATPase” EpsE and the membrane 

proteins EpsL, EpsM, EpsC and EpsF (Fig. 1.8). Their role might be to coordinate 

substrate recruitment and pilus assembly (Nivaskumar and Francetic 2014). 



Chapter 1 Introduction 

38 
 

 

Figure 1.8 The inner-membrane platform. 

Known structures are shown in ribbon representation; unknown domain structures in GspF are 

shown as circles. The structures shown are: the HR domain of ETEC GspC (PDB: 3OSS) and the 

PDZ domain of V. cholerae EpsC (PDB: 2I4S); the periplasmic domain of V. parahaemolyticus 

EpsL (PDB: 2W7V); the complex of the cytoplasmic domain of EpsL and the N1 domain of EpsE 

from V. cholerae (PDB: 2BH1); the periplasmic domain of V. cholerae EpsM (PDB: 1UV7); and 

the first cytoplasmic domain of V. cholerae EpsF (PDB: 3C1Q) (Korotkov at el 2013) (Residue 

numbers are indicated). 

1.5.1 General secretion pathway protein, GspE 

It has been noted that GspE is a reluctant hexamer preferring to crystallize in different 

oligomeric states. X-ray structures of EspE (GspE) from V. cholera and XpsE from 

X.campestris show a bilobed monomer structure with the ATP binding site between the 

N-terminal and the C-terminal domains (Robien et al. 2003, Chen et al. 2005). When 

fused to the hexameric protein, Hcp1, a quasi-C6 GspE hexamer was produced showing 

increased ATPase activity (Lu et al. 2013). GspE has an extended N-terminal domain 

compared to other ATPases and forms a stable complex with the cytoplasmic domain of 
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GspL which is the membrane anchor for the ATPase (Abendroth et al. 2005, Shiue et al. 

2006). It has been shown that activation of the ATPase EpsE necessitates an interaction 

between the C-terminal end of the cytoplasmic domain of EpsL and the phospholipid 

bilayer (Camberg et al. 2007). This is consistent with EpsL displacement up onto the IM 

to activate the ATPase. Therefore, there is the possibility that coordinated displacements 

of the periplasmic and TM domains of GspC, GspL and GspM result in ATPase activation. 

Structural studies of the ATPase PilT shows that each PilT dimer has a different active 

site conformation corresponding to ATP binding and hydrolysis (Satyshur et al. 2007). 

This is consistent with two neighbouring subunits contributing to ATP-binding and 

hydrolysis resulting in a total of three ATPase active sites (Patrick, Korotkov et al. 2011). 

Interestingly, the arrangement of the pseudopilus initiation complex GspJ-GspI-GspK 

corresponds to the three state ATPase and may self-assemble to induce formation of the 

GspE motor (Cisneros, Bond et al. 2012). In a recent study, GspL was shown to interact 

with EpsG (GspG) by cross-linking in V. cholera (Gray et al. 2011) indicating that EpsL 

(GspL) transmits the ATPase driven conformational changes (Due to the presence of a 

flexible linker in the cytoplasmic ATPase (GspE), the N-terminal domain undergoes a 

large movement relative to the C-terminal domain on ATP hydrolysis and the release of 

inorganic phosphate(Gray et al. 2011)) to pseudopilins to force fibre assembly. Rotation 

could also be involved in the pilus assembly mechanism, by analogy with the bacterial 

flagella rotation (Mora et al. 2009), although in the T2SS the rotation element is probably 

part of the assembly machinery rather than the pilus. If GspL acts as an anchor for the 

ATPase in the inner-membrane, then GspF would be a candidate for the rotating 

component.  
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1.5.2 General secretion pathway protein, GspF 

The central protein of the inner-membrane platform and the only polytopic inner-

membrane protein GspF, which interacts with other members from the inner-membrane 

platform and is thought to be a key player in the T2SS and T4PB systems (Crowther et 

al. 2004). GspF is a highly hydrophobic protein containing approximately 400 amino acid 

residues. GspF and its orthologs interact in the cytoplasm with the conserved ATPase and 

function in complex with the other IM components; in T2SS there are GspL, GspM and 

GspC. Recent cryo-electron tomography of the T4PS in intact Myxococcus xanthus cells 

allowed to visualize PilC, the GspF ortholog, as a cytoplasmic dome located between the 

hexameric ATPase and the stem formed by pilin PilA (Chang, Rettberg et al. 2016). It is 

thought that ATP hydrolysis by GspE/PilB ATPase promotes rotation of GspF/PilC in 

complex with nascent pilus and hence facilitates incorporation of a new pilin subunit onto 

the base of the growing pilus (Nivaskumar, Bouvier et al. 2014, Chang, Rettberg et al. 

2016). 

To date, no high-resolution structure of a full-length GspF/PilC family protein is available. 

A low-resolution electron microscopy reconstruction of isolated PilG (PilC ortholog from 

Neisseria meningitides T4PS) showed a tetrameric bilobed structure (Collins et al. 2007). 

However, this structure is significantly larger than that of PilC visualized by cryo-electron 

tomography of the intact T4PS and provoked steric clash. The authors have therefore 

proposed that PilC forms a dimer under physiological conditions (Chang, Rettberg et al. 

2016). Several high-resolution structures of isolated N-terminal cytoplasmic domain of 

GspF/PilC have been reported, while the C-terminal domain has escaped from the 

crystallization attempts. More recently, Abendroth et al. have reported a crystal structure 

of truncated form of the first N-terminal of Vibrio cholera EpsF (Abendroth et al. 2009): 

This domain, termed cyto1-EpsF56-171, shows a six helix bundle structure, with the final 
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helix terminating at the point where the first TM helix is predicted to begin (Fig. 1.9A). 

The structure forms a tight dimer in the crystal, with an interface formed from the α1, α2, 

and α6 helices, and the two monomers are related by twofold symmetry. However, PilC, 

the GspF homologue involved in T4P biogenesis in Thermus thermophilus showed quite 

different mode of dimerization (Fig. 1.9B). The PilC N-domain forms an asymmetric 

dimer through a “helical ladder” of hydrophobic residues (Karuppiah et al. 2010). Each 

PilC53–168 monomer adopts a helical bundle structure, consisting of six helices arranged 

in a circular manner, with an up-down-up-down-up-down topology. Similar structures 

have been reported for the N-terminal cytoplasmic domain of TcpE from V. cholerae 

toxin-coregulated pilus (Kolappan and Craig 2013)(Fig. 1.9C). However, dimer interface 

of cyto-PilC is completely different from this of EpsF and cyto TcpE does not form a 

dimer in solution or in the crystal (Abendroth, Mitchell et al. 2009, Karuppiah, Hassan et 

al. 2010, Kolappan and Craig 2013). 

 

Figure 1.9 Crystal structures of EpsF56-171, PilC53–168 and TcpE1-104 

A: EpsF56-171; B: PilC53–168; C: TcpE1-104. Calcium marked as green ball. 

 

Bioinformatics analysis and in vivo topology studies using BlaM and alkaline 

phosphatase fusions indicate that GspF possesses three transmembrane segments (TMS) 

and two large cytoplasmic domains of high sequence similarity; only a small loop and a 

short C-terminal extension located in the periplasm, (Fig. 1.8 (Thomas et al. 1997, Arts, 
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de Groot et al. 2007, Abendroth, Mitchell et al. 2009)). A different topology, including 

four TMS and the second large domain in the periplasm has been suggested for E. coli 

EPEC T4P PilC homolog, BfpE (Lallemand et al. 2013) but it is not commonly accepted. 

Yet a more distantly related FlaJ component from archaeal flagella, is predicted to possess 

seven TMSs. Pull-down and Yeast two-hybrid studies suggest that GspF Cyto1 interacts 

with GspE and GspL, forming the so called T2SS assembly platform also including GspM 

(Py, Loiseau et al. 2001). GspF requires the presence of GspL and GspE for its full 

stability (Arts, de Groot et al. 2007). 

1.5.3 General secretion pathway protein, GspM 

GspM has a short cytoplasmic sequence, a transmembrane helix (TMH) and a periplasmic 

domain (Korotkov, Sandkvist et al. 2012).The closest homologues of GspM is EpsM is 

from V. cholera. Since full-length EpsM has not be crystallized so far. Jan Abendroth et 

al. crystallized the periplasmic soluble domain, which consists of two αββ-subdomains 

forming a sandwich of two α-helices and a four-stranded antiparallel β-sheet repeats that 

form a cyclic permutation of the ferredoxin fold (Abendroth et al. 2004). Interestingly, 

the structure contains an extra electron density forming the cleft between the two αββ-

domains, suggesting that this site might be used for substrate binding. Co-

immunoprecipitation experiments have shown that EpsM interacts with another 

cytoplasmic membrane protein, EpsL (Sandkvist, Hough et al. 1999). EpsM also appears 

to enhance the interaction between EpsE and EpsL (Sandkvist et al. 2000).  

1.5.4 General secretion pathway protein, GspL 

GspL consists of a cytosolic domain, a TMH and a periplasmic domain. The crystal 

structure of the cytoplasmic domain of V. cholerae EpsL consists of three β-sheet-rich 

domains. With domain I and III similar to the RNaseH-fold, cyto-EpsL shows structural 
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homology with the superfamily of actin-like ATPases (Abendroth, Murphy et al. 2005). 

However, no ATPase-binding site has been found in the structure. This is in contrast to a 

T4PS protein, PilM, which is homologous to the cytoplasmic domain of GspL and has a 

site that is capable of binding ATP (Karuppiah and Derrick 2011). Interestingly, the chain 

of the periplasmic domain of Vibrio parahaemolyticus EpsL adopts the same circular 

permutation of the ferredoxin fold that was first observed in the periplasmic domain of 

EpsM (Abendroth et al. 2009). Both peri-EpsL and peri-EpsM form dimers; however, the 

site of subunit–subunit interaction appears to be entirely different. The cytoplasmic 

domain of GspL binds to the extended N-domain of the assembly ATPase GspE forming 

a hetero-tetramer (Abendroth, Murphy et al. 2005), while its periplasmic domain interacts 

with GspM (Sandkvist, Keith et al. 2000). The two GspL domains correspond to PilM 

and PilN in P. aeruginosa Type 4 Pilus System(Ayers et al. 2009). 

1.5.5 General secretion pathway protein, GspC 

The GspC protein in D.dadantii is called OutC and is a 272 residues inner-membrane 

protein. They consist of a short cytoplasmic segment, a TMH (transmembrane helix) 

followed by a flexible linker (TMHR) and two periplasmic domains (the homology region 

(HR) domain and a PDZ domain, Fig. 1.10 A and B). The sequence of the HR domains 

with a 6-stranded β sandwich fold(Korotkov et al. 2011, Gu, Rehman et al. 2012), is 

relatively well conserved, whereas the TMHR shows very little sequence homology (Gu, 

Shevchik et al. 2017). Intrinsic disorder and secondary structure predictions(McGuffin, 

Bryson et al. 2000, Ward, McGuffin et al. 2004) suggest that the TMHR linker is not fully 

unstructured and contains a single α-helix(Gu, Shevchik et al. 2017). This has been also 

confirmed by NMR for OutC in D. dadantii(Gu, Rehman et al. 2012). In some cases, the 

PDZ domain is replaced by a coiled-coil domain (Bleves et al. 1999). The domain can 

adopt open and closed conformations (Korotkov et al. 2006). Although the PDZ and 
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coiled-coil domains can be swapped without loss of function (Gerard-Vincent, Robert et 

al. 2002), in D. dadantii deletion of the PDZ domain abolishes secretion of all proteins 

but one, so the PDZ domain might be involved in the regulation of secretion specificity 

(Bouley, Condemine et al. 2001).  

The GspC is thought to regulate the pore on the outer-membrane which can export the 

periplasmic proteins when it is open (Lee et al. 2004, Lee et al. 2005). GspC and GspD 

interact with each other via periplasmic domains. This interaction was confirmed by the 

following experiments: In Enterotoxigenic Escherichia coli (ETEC), the crystal 

structures of the GspC HR domain in complex with the GspD two or three N-terminal 

domains show that the HR domain adopt an all-β structure (Fig. 1.9C) (Korotkov, Johnson 

et al. 2011). And the HR domains is also reported to interact with the periplasmic domain 

of OutD biochemically by co-expressing method (Korotkov, Krumm et al. 2006). GspC 

was found partially in the Outer-membrane fraction in Klebsiella oxytoca (Bleves, 

Gerard-Vincent et al. 1999). This interaction between the GspC and GspD seems critical 

for the function and assembly of the T2SS (Lybarger et al. 2009).  

GspC works as a bridge which can not only interact with the secretin in the outer-

membrane but also communicate with the inner-membrane complex. The N-terminal 

region of the GspC can interact with GspL and GspM complex which could form a larger  

GspC-GspL-GspM complex (Robert et al. 2002, Tsai et al. 2002). 

Additionally, the PDZ domain of the GspC is involved in substrate recognition (Korotkov, 

Krumm et al. 2006). In Pseudomonas aeruginosa, the periplasmic domain of the GspC 

has been shown to interaction with exoproteins directly (Douzi, Ball et al. 2011). 

Similarly, it is also reported that the exoproteins interact with the periplasmic domain of 

the secretin (Shevchik, Robert-Baudouy et al. 1997, Reichow et al. 2010, Douzi, Ball et 
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al. 2011). These results suggested that both GspC and secretin are involved in substrate 

recognition. However, recent study also demonstrates the interaction between the 

substrate and the pseudopilin by  (Douzi, Ball et al. 2011). These studies may reflect 

different steps of the secretion. The GspC and GspD may involve in the early steps of the 

secretion which could be recognition and recruitment of the substrates(Pineau, 

Guschinskaya et al. 2014).  

GspC alone or GspC and GspD together are considered as the gatekeeper for the entry 

into the T2SS since many substrates are too large to go through the vestibule which will 

destroy of the hetero-dimer formed by the GspC-HR domain and periplasmic N-domain 

of GspD. Several different orientation of GspC and GspD have been demonstrated via 

structural studies and further trapped with in vivo cross-linking (Korotkov, Krumm et al. 

2006, Korotkov, Gonen et al. 2011, Wang et al. 2012, Van der Meeren, Wen et al. 2013).   

 

Figure 1.10 Structure of GspC and GspC/GspD complex. 

A: NMR structure of the D.dadantii OutC HR domain; B: Crystal structure of the V. cholerae 

EpsC PDZ domain; C: Crystal structure of the E. coli GspC HR-GspD N01 complex and the 

model of the D. dadantii OutC HR-OutD N0 complex, GspC are in cyan, N0 are in blue and N1 

is in grey (Gu at el 2017). 
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1.6 Interactions within the inner-membrane platform 

Cytoplasmic domain I of OutF instead of cytoplasmic domain II could interact with both 

OutE and OutL using yeast two-hybrid system in Erwinia chrysanthemi (Py, Loiseau et 

al. 2001). OutE, OutL and OutF could form a stable complex in vivo and OutL in required 

for the OutE and OutF complex but OutF is not required for the OutE and OutL complex. 

The cytoplasmic loop of XcpS(GspF) was also shown to be stable in the presence of 

XcpR(GspE) and XcpY(GspL). And the additional XcpZ(GspM) has slightly increased 

the amount of the GspF compared with only XcpR and XcpY (Arts, de Groot et al. 2007). 

Crowther et al., showed that BfpE which is the ortholog of GspF in enteropathogenic 

Escherichia coli is involved in recruiting the ATPase to the cytoplasmic membrane 

(Crowther, Anantha et al. 2004). GspM is also involved in the formation of the complex 

and there is strong evidence for the interaction between GspM and GspL. This interaction 

was confirmed using two-hybrid between the periplasmic domains of GspL and GspM 

(Py, Loiseau et al. 2001). Sandkvist et al. also found that EpsL (GspL) and EpsM (GspM) 

could interact with each other and form a stable complex without the presence of other 

Eps proteins (Sandkvist, Hough et al. 1999). In V.cholerae GspL interacts with EpsG 

(GspG) by cross-linking in vivo (Gray, Bagdasarian et al. 2011) indicating that (EpsL) 

GspL transmits the ATPase driven conformational changes to pseudopilins to prompt 

fibre assembly. In Neisseria meningitides, the major pilin subunit PilE was shown to 

interact with PilG (GspF in T2SS) and with PilO (GspM in T2SS) (Georgiadou et al. 

2012). 

1.7 Aims and objectives 
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The overall aim of my work was to better understand the architecture of the type II 

secretion system and thereby illuminate the mechanism of secretion. With the emergence 

of antimicrobial resistance in pathogenic bacteria we need new ways of defeating these 

potent adversaries and inhibiting the secretion system used may be one method of 

achieving this. 

The specific objectives of my Thesis are: 

1) To produce, purify and study the structure of the inner-membrane protein OutF.  

The first output from this work is the structure of the first cytoplasmic domain of 

D. dadantii OutF.  The structure is described and compared with other similar 

structures. 

2) To produce, purify, and study the structure of the intact inner-membrane complex, 

or sub-complexes of the platform complex.  The major achievement from this 

work is the expression of protein complexes and determination of electron density 

envelopes of inner-membrane protein complexes from D. dadantii. This Thesis 

provides a contribution to higher-resolution studies of the inner-membrane 

complex and hence entire type II secretion system. 

D dadantti is a plant pathogen threatening our food security, but ultimately the lessons 

learnt will be important for understanding the generic properties of the type II secretion 

system across plant, human and animal pathogens. 
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Chapter 2 Material and methods 

2.1 Materials 

2.1.1 Water 

The deionised water (dH2O) used in the experiments was purified using a PureLab option 

(Elga) which provide water of 15MΩ.cm resistivity. When the buffer was to be used for 

crystallization, the water was further deionised to 18.2 MΩ.cm resistivity using a PureLab 

Classic (Elga). Double distilled water(ddH2O) was achieved by autoclaving water from 

the PureLab purification system (15MΩ.cm resistivity) and used for molecular biology 

experiments. 

2.1.2 Agarose gel electrophoresis 

Agarose gels for analysing plasmids and inserts were made using: 

1 x TAE (Tris-Acetate EDTA) was made using the 50 x TAE stock.  

1% Agarose gel was made using agarose powder (VWR).  

The DNA marker was HyperLadder purchased from Bioline. 

2.1.3 DNA clean-up 

Purification of PCR products, enzyme digests and DNA gel extraction were using 

QIAquik Gel Extraction Kit (QIAGEN). 
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2.1.4 Polymerase Chain Reaction  

Primers for Polymerase Chain Reaction (PCR) reactions were ordered from Eurofins. 

Polymerase used for DNA amplification was Q5® High-Fidelity DNA Polymerase 

(NEB).  

2.1.5 Broth and media 

a Luria-Bertani (LB) and YT broth 

Table 2.1 Components of LB broth 

Component LB (g/liter) 2YT (g/liter) 

Tryptone (Sigma) 10 16 

Yeast Extract (Sigma) 5 10 

NaCl (Thermofisher) 5 5 

 

b Terrific Broth (TB) media 

Table 2.2 Components required for making the TB media 

Components  Yeast extract  Tryptone  Buffer  

g/liter 24 12 2.31 g of KH2PO4 and 12.54 g of K2HPO4  

 

c Amp/X-gal/IPTG plates 
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Table 2.3 Components used for making Amp/X-gal/IPTG plates 

Components  concentration solvent 

Ampicillin(Thermofisher) 100µg/ml ddH2O 

IPTG (Anatrace) 0.1mM ddH2O 

X-gal 80µg/ml DMSO 

 

d M9 media 

Minimal M9 media was used for 15N labelling of OutF65-172 for 2D NMR spectra. 

100 x trace element stock 

Table 2.4 Components used for making 200ml 100 x trace element stock 

EDTA FeCl3.6H2O CuCl2‧2H2O H3BO3 CoCl2‧6H2O MuCl2‧6H2O 

1g 166mg 3mg 2mg 2mg 0.32mg 

 

e 10 x M9 Stock 

Table 2.5 Components used for making 1 Litre 10 x M9 Stock 

Na2HPO4 KH2PO4 NaCl 

30g 15g 2.5g 

 

f 4 x additives  
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Table 2.6 Components used for making 200ml 4 x additives  

Thiamine Biotin CaCl2 
15N-Ammonium chloride 

(Cambridge Isotope laboratories) 

Glucose MgSO4‧ 

7H2O 

4mg 4mg 1.2mg 4g 16g 1g 

Sterile additives were obtained by filtration using a 0.02µm filter.  

2.1.6 Competent cells 

Table 2.7 Competent cells used for expression and cloning 

Cells used for cloning  DH5α (BIOLINE), Stellar™ Competent Cells 

(Clontech) 

Cells used for expression  BL21(DE3) (NEB), C41, C43 (Lucigen) 

 

2.1.7 Buffers 
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Table 2.8 Buffers for protein purification and biochemistry 

Buffer  composition 

Nickel column binding 

buffer  

20mM Tris pH 8.0, 500mM NaCl, 20mM Imidazole 

Nickel column wash buffer 20mM Tris pH 8.0, 500mM NaCl, up to 70mM Imidazole 

Nickel column elution buffer 20mM Tris pH 8.0, 500mM NaCl, 400mM Imidazole 

Strep column binding and 

wash buffer  

20mM Tris pH 7.4, 150-300mM NaCl, 1mM DTT, 0.04% n-Dodecyl β-

D-maltoside (DDM, thermofisher) (with or without 1mM N, N-

Dimethyldodecylamine N-oxide (LDAO) 

Strep column elution buffer 20mM Tris pH 7.4, 150-300mM NaCl, 1mM DTT, 0.04%DDM (with 

or without 1mM LDAO), 2.5mM desthiobiotin (IBA) 

Glutathione column binding 

and wash buffer  

20mM Tris pH 7.4, 150-300mM NaCl 

PreScission protease 

cleavage buffer  

20mM Tris pH 7.0, 150-300mM NaCl, 1mM EDTA 

Reduced glutathione buffer  20mM Tris pH 8.0, 10mM reduced glutathione  

Size exclusion superdex 

75/200  

20mM Tris pH 7.0-8.0, 150-300mM NaCl, 1mM DTT 

Biorad assay Working Biorad solution-1.25ml of Biorad stock solution was mixed 

with 4.5ml of dH2O 

Reaction: 47.5µl of working Biorad solution was mixed with 2.5µl of 

protein sample  

Membrane protein 

solubilizing buffer 

20mM Tris pH 7.4, 150-300mM NaCl, 1mM DTT, 1%DDM (with or 

without 10mM LDAO) 

 

2.1.8 Constructs and vectors 
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Table 2.9 Constructs kindly provided by Dr. Vladimir Shevchik (University of Lyon) 

Name Vector  Protein  

pGEX-6P-1-OutF pGEX-6P-1 OutF1-408 

pBAD-ELM pBAD OutE, OutL and OutM 

 

Table 2.10 List of vectors used in Chapter 3 and 4  

Plasmid  Description  Source 

pET-14b The pET-14b vector carries an N-terminal His•Tag® sequence 

followed by a thrombin site and three cloning sites. The vector 

carries the inducible T7 promoter/operator for the regulated 

expression of proteins and the ampicillin (Amp) Resistance 

cassette 

Novagen 

pET-3a The pET-3a-d vectors carry an N-terminal T7•Tag® sequence and 

BamHI cloning site. These vectors are the precursors to many pET 

family vectors. 

Novagen 

pOPINS3C The vector carries the inducible T7 promoter/operator for the 

regulated expression of proteins, the SUMO tag between the His-

tag and the protein of interest can be cleaved from the protein of 

interest with 3C protease. 

Oxford 

protein 

production 

facility 

pASK-

IBA3C 

The vector carries the inducible tetracycline promoter/operator for 

the regulated expression of proteins, the Strep-tag for C-terminal 

fusion to the recombinant protein and the Chloramphenicol 

Resistance cassette 

IBA 

solutions 

for life 

Sciences 

pOPIN-3c-

eGFP 

The vector carries the inducible T7 promoter/operator for the 

regulated expression of proteins, the GFP for C-terminal fusion to 

the recombinant protein and the ampicillin (Amp) Resistance 

cassette 

Oxford 

protein 

production 

facility 
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2.1.9 Vivaspin concentrators 

Proteins were concentrated in Vivaspin columns using swing bucket rotors in a centrifuge 

at 4,000g. Vivaspin500 (capacity 500µl), Vivaspin6 (capacity 6ml) and Vivaspin20 

(capacity 20ml) were purchased from Sartorius. The Molecular weight cut off of the 

polyethersulfone membranes were 10kDa, 30kDa or 30kDa.  

2.1.10 Proteases and protease inhibitors 

PreScission protease (GE healthcare) was used for GST tag cleavage. Thrombin 

(Novagen) was used for His tag cleavage. 

For bacterial lysis, protease inhibitors are an important class of additives. Generally, cell 

disruption will release lots of proteolytic enzymes. To reduce protein losses and increase 

the homogeneity of the protein produced, it is necessary to add protease inhibitors to the 

cell lysate. Pierce™ Protease Inhibitor Mini Tablets were used to inhibit protease activity. 

One tablet of Mini is sufficient in 10ml extraction solution. 

Alternatively, phenylmethylsulfonyl fluoride (PMSF) and EDTA protease inhibitors were 

used for serine and metalloproteases, respectively.  

PMSF has a short half-life time in water. Therefore, a stock solution of 200 mM in ethanol 

or isopropanol was made and diluted into buffer just before use. Since EDTA is not 

compatible with needed divalent metal cations (Mg2+, Ni2+) in the buffer, no EDTA was 

added to the buffers used for metal affinity chromatography on Ni2+-columns. 

2.1.11 Inducers 

Isopropyl β-D-1-thiogalactopyranoside (IPTG, Anatrace) was used to induce protein 

expression under the control of T7 promoter. For induction, a filtered 1 M stock solution 
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of IPTG was typically made and diluted 1000 -10000 times into a logarithmically growing 

bacterial culture, to give a final concentration of 0.1-1 mM.  

L-arabinose (Thermofisher) was used to induce protein expression under the control of 

the pBAD promoter. And various concentration of arabinose 

(0.2%,0.02%,0.002%,0.0002%) were tested for the efficiency of protein induction. 

AHT (Anhydrotetracycline, IBA) is an efficient inducer of the tetracycline promoter on 

pASK-IBA vectors(IBA)(Skerra 1994). Typically, 2mg/ml stock solution was prepared 

in DMF (N, N-Di-Methyl-Formamid) or ethanol and diluted into 200 µg/ml into the cell 

culture.   

2.1.12 Detergents 

Detergents were used to solubilize and enhance the stability of membrane proteins. 

Generally, 1% DDM was used to solubilize membrane fractions, alternatively 10mM 

LDAO was used. In the following purification step, 0.04% n-Dodecyl β-D-maltoside 

(DDM) or/and 1mM N, N-dimethyl-1-dodecanamine-N-oxide (LDAO) were added into 

the buffer to maintain the solubility of the proteins.10% DDM was prepared in water or 

buffer as a stock solution and kept in -20℃ for long term storage or 4℃ for short term 

storage.  

2.1.13 Chromatography 

Size exclusion chromatography made use of the ÄKTA FPLC machine (GE healthcare) 

connected to a Frac-950 fraction collector in the cold room (4℃). The system was 

monitored and operated by UNICORN control software.  
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2.1.14 Thermofluor assay 

Protein folding/ unfolding was monitored by mixed with SYPRO-Orange dye 

(Invitrogen).  

A CFX Connect™ Real-Time PCR Detection System (Bio-Rad) with 96-well PCR 

detection plate (AB gene AB-1100) was applied for the Thermoflour analysis.  

2.1.15 Circular Dichroism  

Far-UV circular dichroism (CD) measurements were made using a Jasco J-715 

spectropolarimeter equipped with a PTC-348WI temperature controller. 1mm path length 

fused silica cuvettes were used for all CD measurements. 

2.1.16 Protein crystallization 

The commercial crystal screen kits (Wizard I and II, MemGoldTM MD1-39 (molecular 

dimensions), MemGoldTM Eco Screen MD1-39-ECO, MemStart™ & MemSys MD1-

33 (molecular dimensions)) were used for initial screening.   

96-well microplates (Thermofisher) were setup using a Mosquito pipettor at 18℃. For 

further optimization, 24-well plates (Hampton Research) and siliconized cover slides 

(Hampton Research) were used and sealed with Silicone vacuum grease bought from 

Dow Corning.  

2.1.17 NMR spectra 

NMR spectra were acquired using Bruker Avance 700 and 600 MHz spectrometers at 

Crick Institute. Protein samples were prepared in Wilmad 5mm tubes (Sigma) with 10% 

D2O (Goss Scientific Instruments Ltd). 
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2.1.18 TEM 

Images were collected using Jeol 1230 TEM in Nanovision Centre of QMUL or using the 

FEI Tecnai F20 electron microscope at Imperial College operating at 200 kV and 

equipped with an FEI Falcon II CMOS direct electron detection camera. Micrographs 

were collected automatically using the EPU software. 

 

2.2 Methods for molecular biology 

2.2.1 PCR 

a Primer design 

The primers were designed using the Primer 5 or online software Primer 3 and followed 

the general considerations: 

The primers should be between 18-35 base pairs; 

The GC% should be between 40-60%; 

The primers within itself or between the forward and reverse should not contain any 

strong secondary structure such a hairpin. 

A. Primers for infusion cloning also required: 

12-18 bases homologous at the 5' end of the primer which is complementary to the termini 

of the linearized vector (Table 2.11). 
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Table 2.11 An example of 15 bases of homology in primers for infusion cloning  

vector Forward Primer Extension Reverse Primer Extension 

pOPINF AAGTTCTGTTTCAGGGCCCG ATGGTCTAGAAAGCTTTA 

 

B. Primer for sticky end ligation 

The restriction site should be designed in the 5' end of the primer according to the multiple 

cloning sites in the vector. Importantly, 2-6 extra bases should be added on either side of 

the recognition site to increase cleavage efficiency.  

C. Primer for blunt end ligation 

The primers for blunt ligation without restriction site should be 5’ phosphate which is 

optional for primer orders. 

Table 2.12 List of the primers used in Chapter3 to amplify outF, outL and outE genes and 

parts of these genes. 

Primer Sequence Restriction site  

pET-24d-OutF1-408-F CTAGCTAGCATGGCGCTGTTCCAGTATCA NheI 

pET-24d-OutF1-408-R CCGCTCGAGCATACTCATCAGGGTATT XhoI 

pET-24d-OutF53-168-F CTAGCTAGCATGAGCGGCTTCTCCCTG NheI 

pET-24d-OutF53-168-R CCGCTCGAGACGGCTGCGCATCTGCTG XhoI 

pET-14b-OutF59-172-F CGCCATATGTTGCGCCGTTC NdeI 

pET-14b-OutF59-172-R CGCGGATCCCTACGCCTGTTGGATA BamHI 

pET-14b-OutF65-172-F CGCCATATGATTAGCGCCAGCGATC NdeI 

pET-14b-OutF267-374-F CGCCATATGGCGCGGGGGCTTAACA NdeI 
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pET-14b-OutF267-374-R CGCGGATCCCTACCCCAGCGCCAGC BamHI 

pET-14b-OutF270-363-F CGCCATATGGGCCTTAACACCGCCCGCTA NdeI 

pET-14b-OutF270-363-R CGCGGATCCCTAGCGATCCTGATTGTCC BamHI 

pOPIN3C-OutF1-408-F GGGGTACCATGGCGCTGTTCCAGTATCAGGC KpnI 

pOPIN3C-OutF1-408-R CCCAAGCTTCTACATACTCATCAGGGTATTCAAC HindIII 

pET-3a-OutF1-172-F CGCCATATGGCGCTGTTCCAGTATCAGGC NdeI 

pET-3a-OutF1-172-R CATGGATCCCTAGCTAGCTCACGCCTGTTGGATAC BanHI,NheI 

pET-3a-OutF65-172-F CGCCATATGATTAGCGCCAGCGATC NdeI 

pET-3a-OutF65-172-R CATGGATCCCTAGCTAGCTCACGCCTGTTGGATAC BamHI,NheI 

pET-3a-OutE1-513-F CATCATATGAGCGATCAGCCCGTCAACACG NdeI 

pET-3a-OutE1-513-R CATGGATCCTTAGCTAGCTCATTCCTCTTTCGTT BamHI,NdeI 

pOPINF-OutE1-513-F GGGGTACCATGAGCGATCAGCCCGTCAACACGCCT KpnI 

pOPINF-OutE1-513-R CCCAAGCTTTCATTCCTCTTTCGTTACCCGCACCA HindIII 

pET-14b-OutL1-257-F CATCATATGAACAGGGCCGAGAACGCCA NdeI 

pET-14b-OutL1-257-R CATGGATCCCTAGCTAGCTCACGCCTGTTGGATAC BamHI,NheI 

 

 

 

 

 

 

 

Table 2.13 List of DNA primers used in Chapter 

Contrast name  Primer sequence (5’-3’) Enzy-



Chapter 2 Material and methods 

60 
 

me  

pASK3c: T2SSE-

Mhis+strep  

F: TCCGAGCTCAGCGATCAGCCCGTCAACACGCCTGA SacI 

R:CCGCTCGAGGTGATGATGATGATGATGCAGCACCCGTTCCAGCGA 

CAACCGGGTCACCTC 

XhoI 

pASK3c: T2SSC-

Mhis+strep 

F: TCCGAGCTCATGAATATCTCGAAATTGCCACCGCTATCTCCGTC SacI 

R:CCGCTCGAGGTGATGATGATGATGATGCAGCACCCGTTCCAGCGA 

CAACCGGGTCACCTC 

XhoI 

pASK3c: T2SSS-

Ohis+strep 

F: TCCGAGCTCCATGTATCTTCGCTAAAAGTGGTCCTTTTTGGTGTC 

TGTTGCCTG 

SacI 

R:CCGCTCGAGGTGATGATGATGATGATGCAGCACCCGTTCCAGCGA 

CAACCGGGTCACCTC 

XhoI 

pASK3c: T2SSO-

M his+strep 

(IHE) 

F: TCCGAGCTCCTTTTTGATGTTTTTCAGCAATACCCCGCGGCGATG 

CCCATACT 

SacI 

R:CCGCTCGAGGTGATGATGATGATGATGCCCCCGTCCAAACTCCAG 

CCGCTGCACATTCAC 

XhoI 

Popin-3C-

eGFP: T2SSE-M 

F: AGGAGATATACCATGAGCGATCAGCCCGTCAACAC N/A 

R: CAGAACTTCCAGTTTCAGCACCCGTTCCAGCGACA N/A 

pASK3c: 

T2SSEhis-M strep 

F: TCCGAGCTCCATCATCATCATCATCACAGCGATCAGCCCGTCAAC 

ACGCCTGAACTGCGACCG 

SacI 

R: TCCGAGCTCGAATTCGGGACCGCGGTCTCCCATTT SacI 

pASK3c: 

T2SSF-Mhis+strep 

F: TCCGAGCTCGCGCTGTTCCAGTATCAGGCAT 

TGAACGCCCAGGGAAAGAAAAG 

SacI 

R: TCCGAGCTCGAATTCGGGACCGCGGTCTCCCAT TT SacI 

pASK3c:T2SSE,L, 

F, M his+strep 

F: CGGGGTACCATGAACAGGGCCGAGAACGCCAGCGGCAAACA 

ACA 

KpnI 

R:CGGGGTACCCTACATACTCATCAGGGTATTCAACTGCAGAATCGG 

CTGGAGGATCGC 

KpnI 

pASK3c: T2SSO-

Mhis+strep+ 

Dhis(IHE) 

F: CGGGGTACCCATCATCATCATCATCACGTGTTTTGGCGTGATATG 

ACGTTGTCTATCTGGCGTAAGAAGACAACTGGCCTCAAAACA 

KpnI 

R: CGG GGT ACC TTAGCGCAGTGCGATGGAAATGTCGT KpnI 

pASK3c: T2SSO-

M strep+Dhis(IHE) 

  

F: CCGCTCGAGGTCGACCTGCAGGGGGACCATGGTCTCAGCGC XhoI 

R: CCGCTCGAGCCCCCGTCCAAACTCCAGCCGCTGCA XhoI 

T7 primer  T7 primer: TAATACGACTCACTATAGGG  

T7 Terminator: GCTAGTTATTGCTCAGCGG  



Chapter 2 Material and methods 

61 
 

b PCR reaction and programs 

PCR reactions were carried out using a PCR thermal cycler (BIO-RAD) and the Q5® 

High-Fidelity DNA Polymerase. All reactions were made in thin wall 200μl PCR tubes 

(Starlab) at the final volume of 50µl. A typical PCR reaction setup is shown in Table 2.14 

and a typical PCR reaction program setup is shown in Table 2.15. 

 

Table 2.14 PCR reaction 

Where possible primers were designed to conform optimized parameters: GC content 40-

60%, length 25-35 bases, G or C at the end of the primer. 

Reagent Final concentration 50µl reaction 

5×Q5 Reaction Buffer 1× 10 

10mM dNTPs 200µM 1 

10µM Forward Primer 0.5µM 2.5 

10µM Reverse Primer 0.5µM 2.5 

Template DNA ~100ng 3 

Q5 High-Fidelity DNA Polymerase 0.02U/µl 1 

5*Q5 High GC Enhance  1× 10 

Nuclease-Free Water  To 50µl 

 

Table 2.15 PCR program using Q5 High-Fidelity DNA Polymerase 

  Temperature(˚C) time 

1 Initial denaturation 98 30s 
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3-step cycling        Number of cycles   25~35 

2 Denaturation  98 10 

3 Annealing  55 20 

4 Extension  72 30s per kb 

Final step  

5 Final extension  72 10min 

c DNA analysis and purification 

1% Agarose gels were prepared and run according to standard procedures to separate 

DNA according to the size. PCR product and DNA fragment were purified using DNA 

Gel Extraction Kit: QIAquick Gel Extraction Kit (QIAgen). All plasmids were purified 

from overnight culture of E. coli alpha-select competent cells by QIAprep® Spin 

Miniprep Kit (Qiagen), according to manufacturer’s instruction. The final DNA 

concentration was determined by UV spectrophotometer according to the following 

formula: 

Concentration (μg/ml) =(A260-A320) x 50μg/ml 

Where the A260 reading is where DNA absorbs light most strongly (260 nm) and A320 

is measurement for turbidity (320 nm). DNA purity is estimated from the A260/A280 

ratio. An A260/A280 ratio between 1.7 and 2.0 generally represents high-quality DNA 

with little protein contamination. 

2.2.2 Restriction enzyme digestion 

Whenever double restriction enzyme digests were performed, buffer conditions 

compatible with both enzymes were chosen (according to NEB restriction enzyme buffer 
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chart). All digestions were carried out at 37 ˚C for at least 1 hour. A typical reaction 

mixture is shown in Table 2.1. 

Table 2.16 Typical restriction enzyme digest for PCR products and vectors.  

Regent Volume (µl) 

Restriction enzyme1 1 

Restriction enzyme2 1 

Reaction Buffer (10x) 2 

DNA 1~2 (~100ng/µl)  

dH2O add to reach 20µl total reaction volume 

 

Double digested DNA products were purified by electrophoresis using 1% agarose gel 

running in TAE buffer (40mM Tris Acetate, 1mM EDTA pH 8.0). Gels were stained with 

SYBR™ Safe DNA Gel Stain (Thermo Fisher) and visualized on UV transilluminator. 

The desired vector or PCR product was excised from gel using sterile scalpel blade and 

purified using Gel Extraction Kit (Qiagen). Each reaction was eluted with 15 μl water. 

2.2.3 Dephosphorylation 

To avoid self-ligation of the linearized vector after digestion especially for one enzyme 

digestion, the vector was dephosphorylated just before ligation. Alkaline Phosphatase, 

Calf Intestinal Phosphatase (CIP) can non-specifically catalyze the dephosphorylation of 

5´ and 3´ ends of DNA which prevents re-ligation of linearized plasmid DNA. The 

reaction is prepared as shown in Table 2.14 and incubated at 37°C for 30 minutes. After 

that, the DNA can be purified either by gel purification or spin-column. 
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Table 2.17 20µl reaction for dephosphorylation 

DNA  1 pmol of DNA ends 

CutSmart® Buffer (10X)  2 μl  

Alkaline phosphatase (CIP)  1 unit  

H2O, purified  to 20 μl 

 

2.2.4 Sticky-end ligation reactions 

Ligation reactions were prepared as in Table 2.15 and incubated for at least 2 hours at 

room temperature using T4 ligation kit (NEB). For blunt-end ligation, the incubation time 

should be extended one more hour. 

Table 2.18 Typical sticky-end ligation reaction in 10µl volume.  

The ratio between insert DNA and vector is at least 3 to 1. 

Reagent  Volume (µl) 

DNA insert 7 

Digested vector  1 

T4 Ligase 1 

T4 Ligase buffer (10X) 1 

 

2.2.5 Blunt-end ligation 

Blunt-end cloning is one of the easiest methods for cloning dsDNA into plasmid vectors. 

It is easy because the blunt-ended insert or vector requires little preparation. In this 
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method, the DNA does not require enzymatic digestion and subsequent purification which 

is needed for cohesive-end cloning. Without this preparation, the yield of the DNA is 

increased and the ligation efficiency also improved. 

In these studies, we used blunt-end ligation for site mutation which involved ligating 

dsDNA with no restriction sites at their termini. Since this reaction depended on the 

available 5’ phosphate and 3’ hydroxyl, a special option to add 5’ phosphate in the primer 

was chosen when ordering primers. A typical blunt-end ligation reaction is shown in 

Table 2.19. 

Table 2.19 Blunt ligation reaction in 10 µl volume 

Reagent  Volume (µl) 

DNA 5-8 

T4 ligase 1 

T4 ligase buffer  1 

Water  Add to 10 µl in total  

 

2.2.6 In-Fusion cloning  

In-Fusion cloning is designed for fast, directional cloning of one or more fragments of 

DNA into any vector. This technique could fuse DNA fragments (e.g. PCR-generated 

inserts and linearized vectors) efficiently and precisely by recognizing 15-bp overlaps at 

their ends. These 15-bp overlaps can be engineered by designing primers for amplification 

of the desired sequences. To achieve a successful In-Fusion reaction, I first generated a 

linearized vector (either by restriction enzymes or PCR). In this example, I linearized the 

pOPIN-3C-eGFP vector using double digestion with NcoI and PmeI at 37℃ overnight. 

Meanwhile, the insert was amplified using TD-PCR with primers which shared 15 
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homologous bases at each end with the vector. Both the linearized vector and PCR 

product were purified from the agarose gel. Then the In-Fusion cloning reaction was set 

up: the purified vector and insert were mixed in a 1:1 ratio with 50~200ng respectively, 

incubated with In-Fusion HD Enzyme Premix (Clontech) 50℃ for 15 minutes (Table 

2.20).  Finally, 2.5µl ligation reaction was transformed into stellar competent cells 

(Clontech).  

Table 2.20 In-Fusion cloning reaction  

Reagent  Volume (µl) 

5X In-Fusion HD Enzyme Premix 2 

Linearized vector  1-2 

Insert  1-2 

Cloning Enhancer 1 

H2O Add to reach 10 µl in total  

 

2.2.7 Construction of pET-14b-OutL1-257-OutE1-513-OutF1-172(or OutF65-172)  

To generate pET-14b-OutL1-257-OutE1-513-OutF1-172 (or OutF65-172) plasmid (with His-tag 

on OutL1-257), the link and lock method was used for the cloning (Fig. 2.1). OutE and 

OutF1-172 (or OutF65-172) genes were cloned into pET-3a without tags and the Cyto-OutL 

gene with hexa-histidine tag was cloned into pET-14b. 
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Figure 2.1Construction of pET-14b-OutL1-257-OutE1-513 using the link and lock method. 

 

The cartoon of construction of pET-14b-OutL1-257-OutE1-513 using link and lock strategy 

comprises: First, three plasmids were constructed harbouring outL1-257, outE1-513, and outF65-172(or 

OutF1-172), respectively. The pET-14b vector was digested with NdeI and BamHI and then ligated 

with OutL1-257 PCR fragment digested with the same enzymes to produce the pET14b-NdeI-

OutL1-257-NheI-BamHI plasmid. 

 

For pET3a-OutE and pET3a-OutF1-172 (or OutF65-172), pET3a digested with NdeI and 

BamHI was ligated with OutE and OutF1-172 (or OutF65-172) PCR fragment digested with 

the same enzymes to give pET3a-NdeI-OutE-NheI-BamHI and pET3a-NdeI- OutF1-172 

(or OutF65-172)-NheI-BamHI plasmids.  

To link and lock, pET14b-OutL1-257 digested with NheI and BamHI ligated with pET3a-

OutE digested with XbaI and BamHI since NheI and XbaI have the same cohesive ends 

and could ligate into each other, but after ligation both sites are destroyed and locked. At 

the 3’-end of OutE, the NheI site introduced by PCR is still present and ready do add the 
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next gene OutF1-172 (or OutF65-172). Then pET14b-OutL1-257-OutE digested with NheI and 

BamHI was ligated with pET3a- OutF1-172 (or OutF65-172) digested with XbaI and BamHI 

to yield the final pET-14b-OutL1-257-OutE1-513- OutF1-172 (or OutF65-172) plasmid.  

2.2.8 Transformation 

All transformations of bacterial competent cells were made according to the 

manufactures' instructions supplied with E. coli competent cells (NEB). A typical 

transformation was performed as follows: 

1 μl of DNA (or 10ul DNA from ligation) was added and mixed into 50 μl of competent 

cells, incubated on ice for at least 30 minutes, heat-shocked at 42 ˚C for 30-45 seconds, 

incubated on ice for 2 minutes, then shaken for 60 minutes at 37 ˚C after the addition of 

900μl of SOC and plated on appropriate media with antibiotic. All plates were incubated 

overnight at 37 ˚C. 

2.2.9 Positive colony confirmation and sequencing  

Colony PCR was used to confirm positive colonies using the T7 initiation primer and T7 

terminator primer. Each positive colony was picked from the plate and grown in 10 ml 

LB culture overnight. The plasmids were extracted from cell pellets using QIAprep® Spin 

Miniprep Kit (Qiagen). The DNA sequence was confirmed by Sanger sequencing 

(Eurofins). 

2.2.10 Making a recombinant construct  

Figure 2.1 shows the whole procedure to make a new construct. 
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Figure 2.2 A summary of steps for making a recombinant construct 

 

2.3 Protein purification techniques 

2.3.1 Protein over-expression 

Protein expression was tested using different conditions before large scale protein 

production. E. coli BL21(DE3) competent cells (NEB) and C41 (Lucigen) were selected, 

which were transformed according the manufacturer’s protocol. One colony from an 

overnight plate was picked to inoculate 10ml of LB media containing the appropriate 

antibiotics. The culture grown overnight at 30 ̊ C was used to initiate a large-scale culture. 
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1ml of starter culture was added to 1L of LB media or TB media with appropriate 

antibiotics. The culture was grown at 37 ˚C and induced with 1mM IPTG or 200µg/L 

AHT when the optical density (OD600) reached 0.6-0.8. Cells were harvested by 

centrifugation at 7,000g for 15 minutes post induction at 18 ˚C for 16 hours. The pellets 

were either stored at -20℃ or broken upon resuspension. Samples of pre- and post-

induced cells were stored at -20℃ for subsequent analysis by SDS-PAGE.  

Figure 2.2 shows each step for over-expression and cell pellet preparation.  

 

Figure 2.3 Summaries the step for over-expression of proteins 

 

2.3.2 Bacterial lysis 

All bacteria lysis was done at 4˚C. Bacteria pellets were fully suspended in 10 ml/g (lysis 

buffer /pellet mass) lysis buffer according to individual purification protocol and 

supplemented with 0.2mg/ml lysozyme (Novagen) to aid lysis and reduce lysate viscosity. 

Cells were lysed either by sonication (VibraCell) on ice at 60% of power with 3 bursts of 
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10s and 30s cooling in between or by Emulsiflex Avestin C3 at 1200psi for 3 rounds. The 

soluble protein fraction was obtained by centrifugation at 15,000g for 15 minutes to 

remove insoluble protein. Samples of lysed cells, soluble protein fraction and insoluble 

pellet were again used for SDS-PAGE analysis. 

2.3.3 Membrane-fraction preparation 

For membrane protein purification, five essential steps are required: 1. Harvest cells and 

lyse, 2. Isolate of the membrane fraction, 3. Solubilisation of the membrane fraction, 4. 

Removal of non-soluble membrane fraction, 5 Chromatography. The first step is the same 

as used for soluble proteins. Cells were pelleted by centrifugation at 6000g for 20 minutes 

at 4 ℃ and then re-suspended in 20ml lysis buffer (20mM Tris-HCl pH8.0, 200mM NaCl, 

1mM DTT, 1mM EDTA, 1mM lysozyme, 1mM PMSF and one tablet of EDTA-free 

protease inhibitor, Thermo Fisher Scientific). After 30 minutes’ incubation on ice, cells 

were broken by sonication or French press. Cell debris was removed by low-speed 

centrifugation at 10,000g for 10 minutes at 4℃. Membranes were pelleted by 

ultracentrifugation (BECKMAN COULTER FUGE Optimatm L100XP Ultracentrifuge) 

at 100,000g for 1h at 4℃. The pellet was re-suspended and homogenized (20ml glass 

homogenizer) in lysis buffer (20mM Tris-HCl, pH 8.0, 200mM NaCl, 1mM DTT, 1mM 

PMSF) and ultracentrifuged again. Finally, the membrane pellet was re-suspended in 

20mM Tris-HCl, pH 8.0, 200mM NaCl 10% glycerol, 1mM DTT, EDTA-free protease 

inhibitor. Aliquots were frozen in liquid nitrogen and stored at -80℃ until use. 

2.3.4 His tag purification 

All proteins expressed as hexa-histidine tagged fusion proteins were purified as follows: 

the cell pellet was first lysed in Ni-column binding buffer (20mM Tris, 500mM NaCl, 

20mM imidazole, pH8.0). The soluble protein fraction was then separated by 
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centrifugation at 15,000g for 15 minutes and loaded onto PD-10 column (GE Healthcare) 

packed with 1-2ml nickel beads. The column is pre-equilibrated in Ni-column binding 

buffer. Non-specifically binding proteins were eliminated by washing with 20 column 

volumes (CV) of Ni-column washing buffer (20mM Tris, 500mM NaCl, up to 70 mM 

imidazole, pH 8.0) until no more non-specifically bound protein was observed in the flow 

through (tested using Bradford solution). 

For the membrane proteins, after solubilisation with 1% DDM, proteins were 2-fold 

diluted with Ni-column binding buffer including 0.03% DDM before being loaded onto 

the Ni-column.  

2.3.5 Strep-tag purification  

The frozen membranes were thawed on ice and solubilized for 1h at 4℃ under gentle 

agitation in 1% DDM, 10mM LDAO, 20mM Tris-HCl, pH 7.4, 150mM NaCl 10% 

glycerol, 1mM DTT, 1mM PMSF, EDTA-free protease inhibitor. After 

ultracentrifugation (100,000 g, 1h at 4 °C) the supernatant was diluted 2-fold with 20 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 0.03%DDM (washing buffer). Then the supernatant 

bound for 2 h at 4 °C to Strep-Tactin® Sepharose® (IBA Lifesciences) or applied to the 

StrepTrap HP (GE Healthcare Life Sciences) using a flow rate 0.2ml/min. The column 

and the beads are pre-equilibrated in binding buffer. The beads were then loaded onto a 

spin column, washed with 5CV 20mM Tris-HCl, 200mM NaCl, 0.03% DDM, 1mM 

LDAO, 10% glycerol, 1mM TCEP, pH 7.4 at 4℃, and elute with the same buffer with 

2.5mM desthiobiotin (IBA). Aliquot of each elute fraction were checked using SDS-

PAGE. 
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2.3.6 GST tag purification 

Cells from a 1L culture were harvested by centrifugation at 10,000g for 20min then 

resuspended in 20ml phosphate buffered saline (PBS) (containing 0.01M phosphate 

buffer, 0.0027M KCl and 0.137M NaCl, pH 7.4) and lysed on ice by sonication as 

described before. Cell debris was removed by centrifugation at 15,000g for 20min and 

the supernatant was incubated with 2.5ml of Glutathione Sepharose beads (G.E. 

Healthcare) for 2-6h. The glutathione sepharose was then collected in a PD-10 column 

and washed with 50ml of PBS. 

On column cleavage of the GST tag required incubate Glutathione sepharose with 

PreScission protease buffer (containing 50mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 

mM DTT, pH 7.0) addition of 10µL of PreScission protease (G.E. Healthcare). Cleavage 

was done overnight at 4℃. Eluate containing proteins were then collected and analysed 

by SDS-PAGE. 

2.3.7 Gel filtration/size exclusion chromatography 

The eluate from affinity chromatography, described above, was concentrated to 1-2ml 

and loaded on to a Superdex prep grade S75/200 HR 10/30 column or Superose 6 10/30 

GL (GE Healthcare) using ÄKTA purifier system (GE Healthcare). The column was pre-

equilibrated with buffer and run at up to 0.5ml/min with 0.1-1 ml fractions collected. 

Fractions were checked using SDS-PAGE or the electron microscope and appropriate 

peaks were pooled, concentrated and stored at -80°C. Figure 2.3 shows different methods 

taken to purify different tag fused proteins.  
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Figure 2.4 Columns involved in purifying proteins with different affinity tags.  

 

Gel filtration was also used to determine the characteristics of the protein as it can usefully 

indicate the molecular mass of the protein and confirm the formation of a protein complex. 

The Superdex 75 and Superdex 200 were used to determine the molecular samples from 

calibration curves. 

1. A fresh, filtered solution of Blue Dextran 2000 was used to determine the void 

volume (Vo).   

2. Prepared the selected calibration references (BSA and lysozyme) in the running 

buffer (at concentrations recommended by the manufacturer) and applied the 

calibration solution to the column in a volume of 500µl.  

3. Elution volumes (Ve) for the references were determined by measuring the volume 

of the eluent from the point of application to the centre of the elution peak. 

4. 4. Kav values were calculated for the references and used to prepare a calibration 

curve of Kav/logarithm of their molecular weights, as follows:   Kav = (Ve – 

Vo)/ (Vt – Vo) where Ve = elution volume for the protein; Vo = column void 

volume (elution volume for Blue Dextran 2000); Vt = total bed volume. The Kav 

value was then plotted against the corresponding logarithmic molecular weight for 
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each standard protein and use Microsoft Excel to calculate the regression line.  

5. Apply the sample in a volume of 500µl of the total column volume (Vt) and 

determine the elution volume (Ve) of the molecule of protein sample.  

6. Calculate the Kav for protein sample and determine its molecular weight from the 

calibration curve. 

2.3.8 Differential centrifugation  

Differential centrifugation is used to separate organelles from cells or particles based on 

their different mass or density. The larger and denser particles will sediment faster. At 

first, different parts of the cells are pelleted and removed by increasing the centrifuge 

force (Fig. 2.4). Then protein purification can be achieved through sucrose gradient 

centrifugation (equilibrium centrifuge) and collecting the desired layer.   

  

Figure 2.5 Cell fractionation by differential centrifugation  

Organelles from cells were separated based on their different size or densities using increasing 

centrifugal force(2000).   

Protocol for the preparation of a 10%-50% sucrose gradient: 
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1. Sucrose gradients were prepared at least a day before use. First step, wash out       

centrifuge tubes (Beckman No.344061). 

2. Prepare 10% and 50% sucrose in 20mM Tris, 150mM Nacl, 0.03%DDM, pH 7.4. 

3. Add 2.2ml of 50% sucrose. Place in -80ºC to freeze.   

4. Mix 1.65ml of 50% sucrose plus 0.55ml of 10% sucrose and layer over frozen 

sucrose. Place in -80ºC to freeze. 

5. Mix 1.1ml of 50% sucrose plus 1.1ml of 10% sucrose and layer over frozen 

sucrose. Place in -80ºC to freeze   

6. Mix 0.55ml of 50% sucrose plus 1.65ml of 10% sucrose and layer over frozen 

sucrose. Place in -80ºC to freeze.  

6. Add 2.2ml of 10% sucrose over frozen sucrose. Place in -  80ºC to freeze   

8. Seal with parafilm and store at -80ºC until use. The night before use, thaw 

gradients in cold room for 1-2 hours. 

After the sucrose gradient has thawed, layer the membrane fraction on to the sucrose 

gradient. Use a thin needle to trickle the solution down the side of the tube without 

disturbing the sucrose gradient. 

1. Precool the centrifuge at 4℃ and keep the rotor (SW32) in the cold room before     

centrifugation. 

2. Load the sample into the centrifuge. 

3. Set the centrifuge at 16,000g for 16 hours at 4°C with slow acceleration and 

deceleration (set acceleration and deceleration both to 7). 

After centrifugation, label the tube with small scale using a ruler and collected each layer 

about 200-300µl volume using a plain tip needle. Check each fraction of the sample using 

SDS-PAGE, size exclusion chromatography, and/or transmission electron microscopy. 
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2.3.9 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), is a technique 

used to separate proteins according to their electrophoretic mobility, length, conformation 

and charge of molecule. It was used to track the expression and purification of proteins. 

According to the size of the protein to be resolved on the gel, 12% and 15% 

polyacrylamide gels were used. Prepare separating gel and stacking gel in Table 2.18. 

The gels are made by adding TEMED just before pouring the gel mixture into the Bio-

Rad Gel cassette (Bio-Rad). The running gel was poured into the cast first and followed 

by the stacking gel and a comb for 10 or 15 wells which was inserted before the gel was 

left to set. The cassette was filled to a level which allowed the comb to be inserted with 

5mm between the wells and the top of the running gel. 

Table 2.21 Recipe for SDS-PAGE.  

Separating gel are used at 12% or 15% and stacking gel is 4%. 

Solutions(ml) 4% stacking 

gel -(1.5ml)  

12% running gel (5ml) 15% running gel  

H2O  1.02 1.65 4.4 

Acrylamide/Bis-acrylamide 

(30%/0.8% w/v) 

0.255 2 10 

0.5 M Tris-HCl, pH 6.8 0.1875 - - 

0.5 M Tris-HCl, pH 8.8 - 1.25 5.2 

10% SDS 0.015 0.05 0.2 

10% (w/v) ammonium persulfate 

(APS) 

0.015 0.05 0.2 

TEMED 0.0015 0.002 0.02 

 

Protein samples were prepared by mixing equal amount of 2 x SDS protein loading buffer 

(100mM Tris, 200mM DTT, 4% SDS, 0.2% bromophenol blue, 20% glycerol) before 

heated at 100 °C for 5 min. Gels were run in SDS running buffer (25mM Tris, 192mM 
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Glycine, 0.1% SDS) at 200V till the protein loading buffer dye ran out in a Bio-Rad Mini-

Gel cell on a Bio-Rad powerPac 300 (Bio-Rad). Remove SDS-PAGE gel from glass and 

rinse once in ddH2O before gel was stained in coomassie staining buffer (0.1% coomassie 

blue, 30% methanol, 10% acetic acid) for 20 minutes on shaker and destained in detaining 

buffer (10% acetic acid, 30% methanol) until the protein bands were clearly observed. 

2.3.10 Native gel  

The native gel was made using a similar method as SDS-PAGE except that SDS was 

replaced with water and the gel was running in the running buffer without SDS. The 

protein sample was mixed with 2x loading buffer (62.5 mM Tris-HCl, pH 6.8, 25% 

glycerol and 1% Bromophenol Blue). The gel was run at 4℃ for 2 hours at 100V to avoid 

over-heating the gel. After that, the gel was stained using the same method as described 

for SDS-PAGE.  

2.3.11 Western blot 

To confirm the identity of the protein a Western blot was used. The protocol is as follows: 

1. A semi-dry electrophoresis blot apparatus was used to transfer protein from gel to 

nitrocellulose filter membrane as follows: 

1. The nitrocellulose membrane and two extra filter papers were soaked with 

transfer buffer. 

2. The gel and membrane were sandwiched between the filter papers. The 

membrane was laid upon the gel. Each upper layer must be smaller than the one 

below to prevent a short circuit. The transfer was carried out at 15V for 15-30 

minutes depending on the molecular mass of the protein. 

3. After transfer of the protein to the membrane, the membrane was blocked in 5% 
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semi-milk/ Tris-buffered saline (TBS) for 1h at room temperature or 4℃ 

overnight. Blocking non-specific binding sites in this way can reduce the 

background and lead to a far clearer result.  

4. Rinse the blot in TBS for 1-2min. 

5. Incubate with primary antibody (mouse anti-His antibody) for 2 hours or 

overnight at 4℃. 

6. Wash 3 times with TBS (five min each wash) 

7. Incubate with secondary antibody (goat anti-mouse IgG, the second antibody was 

covalently coupled to alkaline phosphate) for 50 minutes at 4℃. 

8. Wash three times with TBS (five min each wash) 

9. Add alkaline phosphate. An AP detection kit from Novagen was used. Each tablet 

was dissolved in 10ml water and incubated with membrane until the band or 

bands appeared.  

 

2.3.12 Determination of protein concentration  

Protein concentration was determined by spectroscopic analysis using a UV-Vis 

spectrophotometer (HITACHI). Protein absorbance at 280 nm was measured. 

Concentration was determined according to: 

A280= ε. c. l 

Where c is the molar concentration (M-1), A280 is the protein absorbance value at 280nm, 

ε is the molar extinction coefficient (calculated using ExPASy ProtPram online software) 

and l is the path-length of the cuvette. 
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2.4 Biochemical and biophysical techniques 

2.4.1 Dynamic light scattering 

Dynamic light scattering (DLS) is a fast, low resolution method for determination the 

protein particle size and molecular weight in solution. It is also used to screen the buffer 

condition for crystal growth.  

In this method, the speed at which the particles are diffusing due to Brownian motion is 

measured. This is done by measuring the rate at which the intensity of the scattered light 

fluctuates when detected using a suitable optical arrangement. The rate of the scattering 

intensity fluctuation occurring depends on the size of particles. The small particles cause 

the intensity to fluctuate more rapidly than the large ones. The size of a particle is 

calculated from diffusion coefficient using the Stokes-Einstein equation: 

D=kBT/6πηr 

where r is the radius of the protein, kB is the Boltzmann constant, T is the temperature in 

Kelvin degrees and η is the viscosity of the solvent. In this study proteins’ molecular size 

is calculated from the radius using Rayleigh sphere module. 

Polydispersity (Pd)  

Pd represents the particle size distribution width of the protein. As a rule of thumb, if the 

average % Pd is under 20%, it indicates the protein is monodispersing while above 20% 

then it indicates the protein is polydisperse. Thus, this value is an indicator for ease of 

crystallization (20% or less suggests the sample may be more easily crystallized as the 

protein exists in single homogeneous form). 

Monomodal/ multi-modal distributions 
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The size distribution tends to be multi-modal when the protein is impurity or not stable 

in the buffer condition. When no impurity of proteins is detected, the buffer conditions 

(pH, salt and temperature) should be changed to make it more stable. 

Dynamic light scattering was measured using a DynaPro Molecular sizing instrument and 

DYNAMICS V6 software. The quartz cuvettes (45 μl) were washed with 1% Triton and 

subsequently with water and dried with compressed nitrogen air. The exterior surface of 

cuvette was wiped with ethanol and lens tissue to remove any dirt on the outside surface. 

The protein concentration used was 4mg/ml (or as stated). Each sample was passed 

through a 0.2μm filter and a minimal 20 measurements were recorded at 20℃. 

2.4.2 Circular dichroism 

Circular Dichroism (CD) is an excellent method to indicate the secondary structure of the 

protein (Greenfield 2006, Whitmore and Wallace 2008). Although it cannot give as 

detailed structure information as obtainable from crystallography and NMR, it can 

provide secondary structure information using small amounts of protein and very 

sensitive to changes in secondary structure and can also be used to monitor the changes 

in conformation. Unlike the polarised light which oscillates in one plane, the circularly 

polarised light has a rotating plane of oscillation which forms a helix as it travels. This 

helix can be clockwise or anticlockwise.  

A Circular Dichroism spectrometer measures the absorption spectrum with left circularly 

polarised light minus that with right. Structural characteristics can cause slight difference 

between these two spectra. A polarised modulator was applied on a plane light provided 

by a xenon lamp making the plain polar light change to left or right circularly polarised.  
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The far UV CD of protein reflect the secondary structure, such as α-helix, β-sheet and 

unordered (irregular). (Fig. 2.5). 

 

Figure 2.6 Far-UV CD reference spectra  

Typical far-UV CD spectra of (A) myoglobin (all-α: 4mbn.pdb); (B) prealbumin (all-β: 2pab.pdb) 

(C) acid denatured staphylococcal nuclease (irregular)(Martin and Schilstra 2008). 

 

All samples prepared for CD were at high purity level and the cuvettes were washed with 

15 times of 5% Decon90 followed by 20 times of ddH2O before totally being dried with 

nitrogen gas.  The final protein concentration was determined using absorbance at 280 

nm in 6M guanidine hydrochloride(Martin and Schilstra 2008). Protein samples used for 

CD were at a concentration of 50µM. 
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In this work, Far-UV CD measurements were made using a Jasco J-715 

spectropolarimeter equipped with a PTC-348WI temperature controller. Spectra were 

recorded in 20mM Tris, 150mM NaCl (pH7.0) at 15 ⁰C using 1mm path length fused 

silica cuvettes, spectra are presented as differential absorbance after baseline subtraction. 

Direct CD value were converted to mean residue molar ellipticity:  

[θ]=100(signal)/Cnl 

[θ]=mean residue ellipticity in deg cm2dmol-1; Signal=raw output in mdeg; C= protein or 

peptide concentration in mM; n=the number of amino acid residues; l=cell pathlength in 

cm. 

Data was averaged and baseline correct using Chirascan software. Raw data was uploaded 

to DICHROWEB http://dichroweb.cryst.bbk.ac.uk/html/home.shtml for structural 

analysis after formatted. SELCON3, K2D and CONTIN were used to make a prediction 

of the secondary structure. 

2.4.3 Thermofluor assay 

Thermofluor is a high-throughput protein stability test. In this case, protein OutF65-172, 

OutE1-513 and OutL1-238are used to test the stability of the proteins in different buffer 

conditions. The buffer that gives the higher melting point is providing the protein with 

greater stability. 

Protein folding/ unfolding was monitored by the dye SYPRO-Orange (Invitrogen). The 

SYPRO-orange signal is highly quenched in an aqueous environment. As the protein 

unfolds, hydrophobic surfaces that are buried in the native protein become exposed to 

solvent and SYPRO-orange binds to these hydrophobic sites resulting in a signal. 
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Thermofluor analysis exploited a qPCR machine with 96-well PCR detection plate (AB 

gene AB-1100). The screened buffer conditions are shown in Table 2.22.  For each 

screen mixture, a 25μl of screen mix was prepared, including 12.5μl screening buffer, 5μl 

25xSypro orange (Invitrogen, prepared by mixing 5μl of 5000x stock with 955μl of water) 

and 7.5μl protein (starting with 5mg/ml and diluting if necessary). The screen was 

between 25-95 ̊ C with one degree intervals. For each temperature, a 45 second incubation 

time was given between measurements. The emission signal was measured at 525nm. 

Table 2.22 The buffer conditions screened in thermoflour assay 

 100mMMES pH5.5 100mMMES 

pH6.0 

20mM Tris-HCl 

pH7.0 

20mM Tris-HCl 

pH7.5 

0 mM NaCl 1 2 3 4 

150 mM NaCl 5 6 7 8 

300 mM NaCl 9 10 11 12 

 

2.4.4 Full length of OutE, cytoplasmic domain of OutL and cytoplasmic 

domain of OutF pull down assay 

Chelating Sepharose columns was self-prepared by adding the Chelating Sepharose resin 

to an PD-10 column. The column was equilibrated with 20mM imidazole, 150mM NaCl, 

1mM TCEP, 20mM Tris-HCl, pH 8.0. The cell lysate containing the his-fusion OutL and 

no tag- fusion OuE and OutF was applied on the column and incubate for 30mintes at 4℃ 

and the flow through were collected subsequently. The column then was washed with the 

same buffer and the his-fused OutL along with the protein bound to it as a result of pull 

down assay were eluted using 300mM imidazole, 150mM NaCl, 1mM tris(2-

carboxyethyl) phosphine (TCEP), 20mM Tris-HCl, pH 8.0. Samples of the eluted protein, 

the beads before and after elution were analysed by SDS-PAGE.  



Chapter 2 Material and methods 

85 
 

2.4.5 NMR  

Both Nuclear Magnetic resonance (NMR) and X-ray crystallography can be applied to 

the study of protein three-dimensional structures at atomic resolution. NMR spectroscopy 

is the only method that allows to determine three-dimensional structures of proteins in 

the solution. Additionally, NMR spectroscopy is a very useful method for the study of 

weak interactions between proteins (Vaynberg and Qin 2006) which cannot be detected 

by other methods like pull down assay. 

NMR spectroscopy studies chemical properties by studying individual nuclei which is 

different from other methods. 

NMR spectroscopy can be most easily applied to structure determination for proteins in 

the size range up to 25 kDa. Structure determination is comparatively easy for proteins in 

this size range. However, there are many failed examples of structure determinations of 

proteins due to protein aggregation and reduced solubility. 

a NMR principle 

The nuclei with even numbers (12C and 14N) may or may not rotate around a given axis. 

This problem can be solved by replacing with 13C and 15N. Both these isotopes can be 

incorporated into recombinant protein by using 13C containing glucose and 15N 

ammonium chloride. The nucleus with a spin is in other words a spinning particle, which 

is essentially an electric current in a closed circuit, well known to produce a magnetic 

field. 

The difference between the magnetic field experienced by nuclei (which is caused by the 

environment of a nucleus and its type) and the applied field result in the chemical shift. 

Chemical shifts are valuable way of measuring interactions between proteins.  
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The simplest type of NMR is 1D 1H. However, a proton spectrum of a large protein may 

be cloudy and hard to interpret. A 2D 1H-15N HSQC spectrum (heteronuclear single 

quantum correlation) is a method used to record the coupling 1H-15N in the peptide bond 

which is present in every backbone amino acid residue in a protein except the N-terminal 

and the proline residues. In this spectrum, there is a 1H-chemical shift axis and a 15N 

chemical shift axis.  

b NMR sample preparation 

15N- labelled OutF1-172 (or OutF65-172) was expressed using the pET-14b vector in 

BL21(DE3), grown in M9 minimal media. 1L M9 minimal media contained Na2HPO4 

(6g), KH2PO4 (3g), NaCl (0.5g), MgS04 (0.25g), CaCl2 (0.015g), FeS04 (0.015g), 

thiamine (0.001g), Biotin (0.001g), 15NH4Cl (1g) (99% 15N from Cambridge Isotope 

laboratories Inc.), and ampicillin (100μg/ml). All minimal media was 0.2μm filter 

sterilized and 1L induced expression cultures were grown at 16oC for 16 hours. 

NMR spectra were acquired at 15℃ using Bruker Avance 700 and 600 MHz 

spectrometers. NMR samples contained 0.05mM uniformly labelled OutF1-172 (or 0.1mM 

OutF65-172) in 90% H2O/ 10% D2O containing 500mM NaCl and 20mM Tris-HCl, pH 7.0. 

OutF1-172 (or OutF65-172) and OutE-OutL1-257 in low salt buffer showed a tendency to 

aggregate, which was attenuated in high-salt buffers. Therefore, a 500mM NaCl buffer 

was chosen resulting in higher signal to noise ratio form NMR spectroscopy. pH 7.0 was 

chosen as higher values of pH speed up the amide proton exchange rate reduce spectral 

resolution. 
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2.4.6 Peptide mass fingerprinting  

The protein band was cut out of the Coomassie-stained gel and stored in a microtube 

containing 50µl double distilled water. The bands were sent to the Cambridge Centre for 

Proteomics for sequencing. The proteins were digested with trypsin followed by MALDI-

TOF mass analysis. The proteins were analysed using Mascot (Matrix Science, London, 

UK; version 2.5.0) and Scaffold (version Scaffold_4.3.0, Proteome Software Inc., 

Portland, OR) was used to validate MS/MS based protein identifications. 

2.4.7 Crystallization  

a Crystallography theory 

X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy were 

traditionally the major methods for solving the three-dimensional structures of proteins. 

Now transmission electron microscopy is ascendant as a structure-solution method as it 

can be used on larger complexes and allows heterogeneous samples to be used. The first 

and essential step of X-ray crystallography is to obtain well-diffracting protein crystals.   

A chemically and conformationally homogeneous protein solution is the key point for 

protein crystallization. Protein crystallization involves three common stages of 

crystallization: nucleation, crystal growth and cessation of growth. To generate the nuclei 

or seeds of crystallization, a supersaturated protein is obtained using a precipitant. In a 

hanging-drop vapor equilibration experiment once nucleation occurs, the concentration 

of soluble protein decreases and the system enters the metastable zone where the crystal 

grows slowly (Fig. 2.6). If the protein is too concentrated, or its solubility too low due to 

its intrinsic characteristics or the addition of too much precipitant, then the protein will 

precipitate. 
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Figure 2.7 Crystallization phase diagram.  

The solubility of protein is divided into undersaturation, saturation and supersaturation. The blue 

line indicates the crystal-growing path. (1) the starting point and (2) the formation of nuclei.  

b X-ray crystallography  

To be able to observe atomic level detail, electromagnetic radiation of similar wavelength 

to the distances to be resolved must be used. The wavelength of X-rays is around 1 Å 

which is similar to the distances to be resolved in an organic structure. 

Protein crystals have the ability to diffract X-rays. A protein crystal can be described as 

protein molecules arranged on a three-dimensional lattice. The crystal is made up of 

repeated unit cells related one to another by the crystal parameters: cell edges a, b, and c 

and α, β, γ the cell angles. The asymmetric unit is the basic building block of the unit cell, 

as the name implies it has no symmetry.  When the symmetry operators are applied to 

the asymmetric unit, the unit cell is the result. 
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Structure factor 

The X-ray beam beat the crystal and scattered X-ray waves provide information about the 

structure of the protein. To obtain diffraction, the scattered waves must combine in phase 

to give constructive interference. This satisfies Bragg’s law which is nλ=2d sinθ, where 

λ is the wavelength, n is an integer and d is the distance between the two Miller planes of 

the crystal lattice (Fig. 2.7)(Blow 2002). The resultant spacing of the diffraction spots 

depends on the size of the unit cell (a, b, c) and the intensity of the spots depends on the 

structure of the protein. 

 

 

Figure 2.8 Satisfaction of Bragg’s law to obtain diffraction.  

The scattered waves from the crystal planes must combine in phase to give constructive 

interference. 

 

To calculate the electron density at the certain point (x, y, z), it is necessary to know the 

amplitude and phase of the diffracted rays. The amplitude is the square root of the 
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intensity which can be detected by the CCD detectors. The phase cannot be measured 

directly and there are several ways to solve the phase problem including: use of 

anomalous dispersion, multiple isomorphous replacement, and molecular replacement 

(MR); MR is used in this work and will be discussed further. 

Once the phase is known, an electron density can be generated by Fourier Transform 

Function:  

 

 

Where ρ is the electron density; |F(hkl)| is the structure factor amplitude of reflection (h, 

k, l), x, y and z are the coordinates, and α (h, k, l) is the phase of reflections; V is the 

volume of the unit cell.  

The resultant electron density map can then be used to build a model of the protein 

structure. 

c Molecular Replacement 

Molecular replacement was used in this project, as the structure of cytoplasmic domains 

of GspF from Vibrio cholera and D. dadantii are homologous, and the Vibrio cholera 

structure was deposited in the protein databank (PDB: 3C1Q). Molecular Replacement 

was used to determine first the orientation and then the position of the cytoplasmic 

domain I of OutF from D. dadantii in the new unit cell using the solved structure of GspF 

family protein as the search model. Molecular replacement works best when the search 

and target molecules have high sequence identity (25% of higher is helpful, but the 

success will also depend on the number of molecules to be found in the asymmetric unit). 
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In this case, the proteins have 52% sequence identity. Molecular replacement involves 

two steps: rotation and translation (Fig. 2.8). In the first step, the rotation function allows 

the correct orientation of the search molecule to be found using self-vectors from the 

Patterson(Vagin and Teplyakov 2000). The success is usually judged by the height of the 

peak and the height of this peak compared to the next peak on the hit list. The translation 

function uses cross-vectors in the Patterson function to discover the position of the rotated 

search model in the new unit cell.  Therefore, the success of the translation function, and 

of molecular replacement overall was based on the highest correlation value.  

 

 

Figure 2.9 Molecular replacement method 

Once the search molecule is correctly positioned in the unit cell, this model will then be 

refined and rebuilt until the final model has the sequence of the target molecule, good 

stereochemistry, and maximal agreement with the observed diffraction data as judged by 

the crystallographic residuals (R-factor and R-free). 
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d Crystal vitrification  

In order to cryocool a crystal to liquid nitrogen temperature, it must be first passed 

through a cryoprotectant solution. Vitrification is achieved by plunging the loop with 

crystal into the liquid nitrogen quickly so the solution surrounding the crystal and within 

the crystal interstices forms a glass. Several common cryoprotectants were used (typically 

10%) PEG-400, glycerol, PG (propylene glycol) and EG (Ethylene glycol) and 0.4 - 0.6 

mm loops (Hampton Research) were used for transferring crystals and loading onto the 

goniometer head for data collection. 

e Data collection and processing  

Generally, two images were collected at 0 and 90 degrees and Mosflm (Battye et al. 2011) 

used to guide the data collection strategy. Auto-indexing was used to suggest the space 

group and crystal miss-setting parameters. Auto-indexing provides a list of space groups 

with a corresponding penalty, so the solution with highest symmetry and correspondingly 

low penalty was selected as hypothetical the space group. The mosaicity was also 

determined at this stage (ideally less than 0.5˚ as higher values indicate less order). Later 

the pattern of systematic absences and refinement statistics would confirm the correct 

choice of space group. Following this, the data collection strategy was calculated by 

running Testgen function providing the rotation angle and number of images to be 

collected.  

Once the data were collected, they were processed using Aimless(Evans and Murshudov 

2013) in CCP4 program suite (Winn et al. 2011) to scale and merge the data. 5% of the 

experimental data were flagged to be excluded from refinement and R-free was calculated 

using this set of reflections. The order of the crystal was determined by calculating Wilson 

B-factor (overall temperature factor, Å2). Matthew’s coefficient (Vm) and solvent content 
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were calculated to find out the number of molecules present in the asymmetric unit. The 

reduced data were then used for phasing and further refinement. 

Molecular replacement was used to determine the protein phases (Vagin and Teplyakov 

2000) . The initial model was built by the PHENIX autobuild procedure (Adams et al. 

2010). Coot(Emsley and Cowtan 2004) was then used to rebuild and refine the model 

manually (Emsley and Cowtan 2004). The model was then used in cycles of refinement 

using REFMAC5 (Murshudov et al. 1997) or PHENIX refinement(Adams, Afonine et al. 

2010). During refinement, the R-free and R-work values were monitored until good 

agreement was reached for a model with acceptable stereochemistry. 

f Synchrotron sources 

Data were collected from ESRF (European Synchrotron Radiation Facility, station ID 23-

1) remotely. 

g Structure validation 

In crystallography, the R-factor (Rwork) is a measure of the agreement between the 

crystallographic model and the experimental data. In other words, it is a measure of how 

well the refined structure predicts the observed data. It is defined by the following 

equation: 

 

where F is the so-called structure factor and the sum extends over all the reflections 

measured and their calculated counterparts respectively. The structure factor is closely 

related to the intensity of the reflection. Rfree computed according to the same formula as 
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Rwork, but on a small of data which never used in the refinement. If the Rfree is much more 

than Rwork, it is suggesting that the crystal model is over fitted. 

The stereochemistry of the structure was checked by plotting Ramachandran. 

Ramachandran plot is a way to visualize energetically allowed regions for backbone 

dihedral angles ψ against φ of amino acid residues in protein structure. Any distorted 

geometry was corrected manually using COOT. 

2.4.8 Single particle analysis using transmission electron microscopy 

a Principle of single particle analysis 

Single particle analysis (SPA) is another method to determine the three-dimensional 

structure of proteins and protein complexes at near-atomic resolution apart from X-ray 

crystallography and NMR spectroscopy. It is a bridge between the X-ray crystallography 

and light microscopy. One of the greatest advantages of cryo-electron microscopy 

compared to conventional structural biology techniques is it can be used to analyze large 

proteins or complexes with different conformations, sometimes also with different 

compositions. It can also be used to study complexes that cannot be produced in the 

quantities needed for crystallography. These include many biologically important 

proteins, especially membrane proteins with high flexibility.  

Transmission electron microscope is a microscope in which a beam of electrons is 

transmitted through an ultra-thin specimen interacting with the specimen as it passes 

through it. An image is formed from the interaction of the electrons transmitted through 

the specimen; the image is magnified and focused onto an imaging device or detected by 

a sensor such as a charge-coupled device. 
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TEMs are capable of imaging at a significantly higher resolution than light microscopes 

due to the small de Broglie wavelength of electrons. This instrument enables users to 

examine fine detail — even as small as a single atom. TEMs find application in cancer 

research, virology, materials science as well as pollution, nanotechnology and 

semiconductor research. 

Single particle analysis involves a series of techniques for image processing to analyze 

images from transmission electron microscopy (TEM) (Frank 2006). Therefore, 

computational techniques for image processing and 3D structure reconstruction play a 

key role in single-particle TEM. In the single-particle studies, heterogeneity of the sample 

is one of the major challenges since particles can adopt different conformations. Most 

commonly used computational methods assume that the collected particles have 

homogeneous shape and quaternary-structure.  

The procedure usually begins with extraction of single protein particles distributed in the 

raw micro-image. Contrast transfer function (CTF) parameters are used to help recover 

undistorted information that is buried in noise (Frank 2006). Single particles are then 

classified into different groups based on the similarity (2D classification), which represent 

various angular views of a 3D object that can then be used to estimate and iteratively 

reconstruct the 3D model (Fig. 2.9).  

CTF is the function which modulates the amplitudes and phase of the electron diffraction 

pattern formed in the back focal plane of the objective lens. It can be represented as: 

CTF(s) = sin γ(s)  

γ(s) = 2π [CSλ3s4/4 - Δzs2/2], 
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where s is the spatial frequency, γ(s) the wave aberration due to the spherical aberration 

CS and the defocus Δz, and λ the wave length.  

Given the equation above, it becomes apparent that the CTF would be 0 if imaging took 

place without spherical aberration and under in-focus conditions. This would result in the 

sample being invisible. Only spherical aberrations combined with defocus can lead CTF 

to a high contrast transfer.  

Fourier shell correlation (FSC) also known as spatial frequency correlation function is 

employed to estimate resolution of 3D model. It measures the normalised cross-

correlation coefficient between two 3D volumes over corresponding shells in Fourier 

space. Two 3D independent half that are always processed in parallel separately and then 

compared. 

In this work, negative stain was used to provide contrast between the (unstained) protein 

particles and the stained background. Individual images of stained particles are very noisy 

and hard to interpret, but by combining several images of similar particles together gives 

an image with stronger signal to noise ratio. A three-dimensional model can then be built 

based on the 2D images. Cryo-electron microscopy is planned for future work as it is 

possible to generate reconstructions with sub-nanometer resolution and near-atomic 

resolution. 
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Figure 2.10 Example of a 3D reconstruction from 2D projections. 

 

TEM images from micrographs corresponds to a 2D projection of the molecule and a 3D 

reconstruction is generated from these 2D projections. 

 

b Programs used for single particle analysis 

1. Ctffind4 (Rohou and Grigorieff 2015)is a program for estimation of the contrast 

transfer function (CTF). 

2. SIMPLE (Elmlund and Elmlund 2012) (Single-particle Image Processing Linux 

Engine). SIMPLE does ab initio 3D reconstruction from 2D projections only 

which applied in this work for generating initial 3D template. Its basis is global 

optimization with the use of Fourier common lines. The advance is the separation 

of the tasks of in-plane alignment and projection direction determination via 

bijective orientation search. Bijective orientation search divides the configuration 

space into two groups of paired parameters that are optimized separately. The first 
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group consists of the rotations and shifts in the plane of the projection; the second 

group consists of the projection directions and state assignments.  

3. RELION(Fernandez-Leiro and Scheres 2017) (REgularised LIkelihood 

OptimisatioN) is a software package used for particle selection, 2-D classification, 

3-D reconstruction and automatic refinement of 3-D reconstructions. 

4. Chimera is a 3-D data visualization, analysis and modelling program. In this 

Thesis, it was used for visualization and fitting of molecular models. 

c 2% Uranyl acetate negative staining preparation 

Uranyl Acetate (UA) is a mild gamma emitting radioisotope, this means that it is 

dangerous only in powder form if inhaled or ingested. The powder is stored in the poison 

cabinet. Weighing out was done in a fume hood. The stain was filtered through a 0.22 μm 

filter (VWR) that has been pre-rinsed with large volumes of double distilled water. The 

filtered stain was stored in the dark at 4oC. 

d Sample preparation  

1. TEM grids were made hydrophilic using a glow discharger;  

2. TEM grids were handled using the special negative pressure TEM tweezers; 

3. A grid was lifted from the slide and held in the air using the tweezers; 

4. The sample was applied to the grid; 

a. 5 µl of sample was added to the grid and left on grid for 1 minute; 

b. 5 µl of ddH2O was added to grid to wash off sample solution; left for 5 

seconds (filter paper was used to soak up the solution by lightly touching 

the side of the grid between steps); 

c. 5 µl of 2% Uranyl acetate was added; left between 1 and 30 seconds; 

d. The grid was then left to dry. 
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e Nanogold labelling 

Method 1: T2SSO-M/M-His or T2SSE-M/M-His complexes were loaded onto a glow-discharged 

carbon coated grid (SPI). After 1 min, excess liquid was blotted, and the grid was washed 

with a drop of cold purification buffer (20mM Tris pH 8, 100mM NaCl, 1mM DTT, 0.1% 

w/v digitonin, 0.06% w/v DM NPG) containing 50mM imidazole, quickly blotted and 

applied on a second drop of the same buffer in the presence of 5nM 5nm nanogold beads 

(Nanoprobes). After 2 min, the grid was rinsed sequentially for 20 s with one drop of 

purification buffer, one drop of the same buffer without detergent and three drops of 2% 

uranyl acetate. Incubation was for 1 min. Images were collected on a JEM-1230 

microscope operating at a voltage of 80 kV. Particles were selected manually using Relion 

(Fernandez-Leiro and Scheres 2017). 

Method 2: T2SSO-M/M-His or T2SSE-M/M-His complexes was incubated in the purified buffer 

supplemented with 5nM nanogold and 50mM imidazole at 4oC for 15 minutes. Then the 

TEM grids were prepared same as protocol described above.  
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Chapter 3 Structural studies of D. dadantii OutF 

3.1 Overview 

OutF is a key component of the inner-membrane platform of the type II secretion system 

for which only structural information on the first cytoplasmic domain is available. The 

objective of the work described in this Chapter was to explore the structure of D. dadantii 

OutF using X-ray crystallography. To study the structure and function of OutF at the 

molecular level, purified full-length and truncated variants of OutF were produced and 

crystallization trials made. Despite many attempts only the first cytoplasmic domain of 

OutF comprising 108 residues, OutF65-172, could be crystallized and using the diffraction 

from these crystals the structure could be solved at 2.15Å resolution. The determined 

structure is compared with those obtained from other species. 

The evidence from cryo-EM on the related type IVa pilus machine places OutF at the 

centre of the inner-membrane platform responsible for assembling the pilus and for 

communicating between the periplasm and the cytoplasmic ATPase. Thus, the 

interactions between the OutF65-172 and cytoplasmic domain of OutL, OutF65-172 and full 

length of OutE, OutF65-172 and cytoplasmic domain of OutL-full length of OutE complex 

are also studied in this Chapter.  
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3.2 Results 

3.2.1 Bioinformatics 

a Signal peptide prediction 

A signal peptide, sometimes referred to as signal sequence, leader or targeting sequence, 

is a short N-terminal peptide located at the N-terminal of proteins that are transported 

across a membrane, in Gram-negative bacterial cells this would be transport across the 

inner-membrane.  The online SignalP server was used to establish if OutF possessed a 

signal sequence (http://www.cbs.dtu.dk/services/SignalP/) .  

 

Figure 3.1 The predicted signal peptide of OutF. 

Output from SignalP 4.1 suggests that D. dadantii OutF does not possess a signal sequence.  The 

C-score, raw cleavage site score, is trained to be high at the position immediately after the 

http://www.cbs.dtu.dk/services/SignalP/
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cleavage site, the first residue in the mature protein; S-score (signal peptide score); Y-score 

(combined cleavage site score)-A combination (geometric average) of the C-score and the slope 

of the S-score, The Y-score distinguishes between C-score peaks by choosing the one where the 

slope of the S-score is steepest. 

 

I conclude that there is no discernable signal peptide in the OutF sequence (see output 

from SignalP in Fig. 3.1).  Like most multi-spanning membrane-bound proteins which 

are targeted to the secretory pathway by the first transmembrane domain resembling a 

signal sequence but it is not cleaved due to no signal peptidase cleavage site (Goder and 

Spiess 2001).  

b Prediction of transmembrane regions of OutF 

The transmembrane regions of OutF were predicted using the online servers:  

http://www.cbs.dtu.dk/services/TMHMM-2.0 and http://www.sacs.ucsf.edu/cgi-

bin/memsat.py. 

 

Figure 3.2 Predicted transmembrane regions of D. dadantii OutF. 

A: predicted result from MEMSAT; B: predicted result from TMHMM. 

 

http://www.cbs.dtu.dk/services/TMHMM-2.0
http://www.sacs.ucsf.edu/cgi-bin/memsat.py
http://www.sacs.ucsf.edu/cgi-bin/memsat.py
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Both predicted results from MEMSAT and TMHMM indicate there are three 

transmembrane domains in OutF. But for the prediction of two soluble domains with the 

first comprises residues 1 to 172 and the second one between the second and third 

transmembrane regions, two software got opposite results. Two domains are predicted 

as cytoplasmic domains from TMHMM while periplasmic domains from MEMSAT 

(Fig. 3.2).   

c Prediction of intrinsically disordered regions in OutF 

Intrinsic disorder within the OutF protein sequence were predicted using the online 

server http://bioinf.cs.ucl.ac.uk/psipred/. 

 

Figure 3.3 The predicted] intrinsically disordered regions of OutF. 

The yellow line shows potential protein binding sites within the OutF sequence and the blue line 

shows the probability of the sequence being disordered. 

 

http://bioinf.cs.ucl.ac.uk/psipred/
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The first 65 residues (cytoplasmic) and the extreme C-terminal residues (periplasmic) 

of OutF are predicted to be disordered (Fig. 3.3).  Additionally, the N-terminal region, 

residues 1 to 65 might form a protein binding site. 

3.2.2 Cloning outF, outL and outE 

a Primer design 

Based on the outF, outL and outE gene sequences and the vector restriction sites, primers 

were designed using program Primer3 as shown in Chapter 2. 

b PCR products of outF, outL and outE 

PCR products of outF, outL and outE were generated from standard three-step PCR 

method as described in Chapter 2. 
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Figure 3.4 Amplification of outF full-length and fragments.  

(A): the PCR products of full length OutF; (B) OutF53-168. (C) OutF267-374. (D) full length of OutE. 

(E) [1] and [2]: the PCR products OutF65-172; [3] and [4]: the PCR products OutL1-257.  The size 

of the PCR products are all consistent with that expected for the primers used. 
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c Construction of pET-24d-OutF 

The DNA sequence coding for OutF was amplified from pGEX-6p-OutF (which had been 

constructed from the genome of the plant pathogen D. dadantii by Dr Vladimir 

Shevchek’s group), using the primer in Table 2.1. The PCR product was digested using 

NheI and XhoI and ligated into the pET-24d expression vector (Novagen), to yield an 

expression construct with hexa-histidine tag at the C-terminus. 

 

Figure 3.5 Diagnostic cleavage of pET-24d-OutF1-408 

Lane 1 and 2 show products following incubation of the pET-24d-outF plasmid with the 

restriction enzymes; two bands (1224 bp and 5301 bp) are visible at the expected positions. 

 

Figure 3.5 shows the result of cleaving the pET-24d-OutF1-408; the bands have the correct 

size so were sent for sequencing.  

d Construction of pET-24d-OutF53-168 

The DNA sequence coding for OutF53-168 was amplified from the pET-24d-OutF1-408 

plasmid. The ligation product was cleaved using the same restriction sites as pET-24d-

OutF1-408. 
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Figure 3.6 Diagnostic cleavage of pET-24d-OutF53-168. 

Lanes 2 and 3 show products following incubation of the pET-24d-outF (53-168) plasmid with 

the restriction enzymes; the wo bands of 348 bp and 5301 bp are visible at the expected masses, 

though the 348 bp product is faint on this reproduction of the agarose gel. 

 

e Construction of pET-14b-OutF65-172 

The DNA sequence coding for the first cytoplasmic domain of OutF (cytoplasmic domain 

I), OutF65-172, was amplified from pGEX-6p-OutF. The PCR product was digested using 

NdeI and BamHI and ligated into the similarly cleaved pET-14b expression vector 

(Novagen), to yield an expression construct with hexa-histidine tag at the N-terminus 

separated from the protein sequence by a thrombin cleavage site.  
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Figure 3.7 Colony PCR and enzyme digest of pET-14b-OutF65-172 

(A) The colony PCR product of outF65-172. PCR product from lane 1, 2, 4 and 5 are potential 

positive colonies. (B) The pET-14b-OutF65-172 plasmids from four colonies are digested into two 

band: the size of one is corresponding to that of the vector, the small band is at the expected size 

of OutF65-172. 

 

f Construction of pET-14b-OutF267-374 

The DNA sequence coding for the second cytoplasmic domain (cytoplasmic domain II) 

OutF, OutF267-374, was amplified using the primers shown in Chapter 2 and digested and 

ligated using the same methods as OutF65-172.  

g Construction of pOPINS3C-OutF1-408 

The DNA sequence coding for full length OutF (OutF1-408) was amplified using the primer 

in Table 2.1. The PCR product was digested using KpnI and HindIII and ligated into the 

pOPINS3C expression vector (Clontech), to yield an expression construct with hexa-

histidine tag and a fusion protein Small Ubiquitin-like Modifier (SUMO) at the N-

terminus which can be cleaved with 3C protease (pOPINS3C-OutF1-408). 

h Construction of pET-14b-OutL1-257-OutE1-513-OutF1-172(or OutF65-172)  

The pET-14b-OutL1-257-OutE1-513-OutF1-172 (or OutF65-172) plasmid (with His-tag on 

OutL1-257) was created by the method of link and lock described in chapter 2.  

The colony PCR and diagnostic cleavage are shown in Fig. 3.8. 
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Figure 3.8 Colony PCR and enzyme digestion of pET-14b-OutL1-257-OutE1-513- OutF65-

172 

(A) Lanes [1] to [5] are the colony PCR product of OutL1-257, lanes [2] and [4] are positive colonies; 

lanes [6] to [10] colony PCR product of OutF65-172, lanes [6] and [8] to [10] are positive colonies; 

lanes [11] to [13] colony PCR product of OutE1-513, lanes [12] is positive colony. All the positive 

colony PCR product are consistent with the expected size. (B) shows products following 

incubation of the pET-14b-OutL1-257-outE1-513-OutF65-172 plasmid with the restriction enzymes 

NdeI and BamHI; four bands (4671bp, 1539bp, 771bp and 324bp) are visible at the expected 

positions. These four bands are corresponding to the pET-14b vector, OutE1-513, OutL1-257 and 

OutF65-172. 

 

3.2.3 Expression and purification  

a Expression and purification of OutF1-408 

pET-24d- OutF1-408 was transformed into C41 E. coli competent cells (Lucigen) and 

grown in LB medium at 37℃ until the absorbance of the media at 600nm reached 0.6-

0.8. Expression was induced with 0.3mM IPTG for 16h at three different temperatures 

16℃, 25℃ and 37℃. Cells before and after induction from different temperature were 

collected and analysed with SDS-PAGE and western blot. 



Chapter 3 Structural studies of D. dadantii OutF 

110 
 

 

Figure 3.9 Expression test of OutF1-408.  

(A) Western blot and (B) SDS-PAGE. No OutF1-408 was expressed after confirmed by SDS-

PAGE and western blot. To help to enhance the expression and stability of OutF1-408, a new 

construct with SUMO tag was generated.  

 

b Expression and purification of SUMO-OutF1-408 

POPINS3C-OutF1-408 was transformed into C41 E. coli competent cells and induced at 

different conditions as described above for pET-24d-OutF1-408. After protein production 

was confirmed by SDS-PAGE. Large scale cells were harvested by centrifugation at 

7000g for 30 min at 4 ℃. The cells were disrupted by sonication and pelleted by low 

speed centrifugation at 10000g for 20 min at 4℃. Then the membrane fraction was 

purified by ultracentrifugation at 100000g for 1h at 4℃ as described in Chapter 2.  
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The membrane fractions were suspended and homogenized in 20mM Tris-HCl, 200mM 

NaCl, 1% DDM, 10% glycerol, 1mM TCEP, pH 8.0 and solubilized at 4℃ for 2 hours. 

Insoluble protein was removed by ultracentrifugation for 30min. The supernatant was 

then diluted 2-fold with wash buffer (20mM Tris-HCl, 200mM NaCl, 0.03% DDM, 

20mM imidazole, 10% glycerol and 1mM TCEP, pH 8.0) and bound to nickel beads (0.5 

ml bed volume) at 4 ℃. After 2 hours, the beads were poured into a gravity flow column, 

washed with wash buffer (20 column volumes), and eluted with 3ml wash buffer 

augmented with 400mM imidazole. The eluted solution was subsequently concentrated 

using a Viva spin 50kDa cut-off concentrator to 2ml and loaded onto a Superdex200 

10/300 GL column (GE HealthCare) pre-equilibrated with 20mM Tris-HCl, pH 8.0 

200mM NaCl, 0.03% DDM, 10% glycerol and 1mM DTT.
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Figure 3.10 Purification of SUMO-OutF1-408 

(A) IMAC and SEC purification of SUMO-OutF1-408. (B) SUMO-OutF1-408 eluted at 

approximately the molecular mass of the dimer. A Superdex 200 10/300 GL size exclusion 

chromatography column was equilibrated with buffer (20mM Tris-HCl, 200mM NaCl, 0.03% 

DDM, pH 8.0) and calibrated with the following proteins used as standards: bovine serum 

albumin monomer (66 kDa), dimer, tetramer and lysozyme (14.4KDa). The molecular mass of 

OutF was calculated as 123kDa.  

 

The expression level of SUMO fused OutF1-408 increased substantially compared to 

OutF1-408 alone indicating that the SUMO tag helped to increase protein solubility and 

stability. The mass of the SUMO- OutF1-408 was calculated by calibrating the S200 

column using several standard proteins. The results of size exclusion chromatography 

of OutF1-408 were consistent with an OutF dimer a result confirmed later by the DLS 

results, these results are not consistent with measurements reported previously for PilG 

(Collins, Saleem et al. 2007), but the presence of the SUMO-tag could influence the 

oligomeric state. 

c Expression and purification of OutF53-168 

PET24d-outF53-168 was transformed into BL21 (DE3) E. coli cells (NEB) and grown in 

LB medium at 37℃ until the absorbance of the media at 600 nm reached 0.6. Expression 

was then induced with 0.5mM IPTG for 16 hrs at 16℃ and cells are harvested in the same 

way as described for OutF1-408.  

Protein was purified using the method described in Chapter 2. The eluted protein was 

concentrated using a Viva spin 10kDa cut-off concentrator to 2mL and loaded onto a 

Superdex75 10/300 GL column (GE HealthCare) pre-equilibrated with 20mM Tris-HCl 

(pH 8.0), 250mM NaCl and 1mM DTT. 
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Figure 3.11 Expression and purification of OutF53-168. 

(A) SDS-PAGE analysis of the expression level of OutF53-168 in different expression regimes. (B) 

Western blot using an anti-His tag antibody. (C) IMAC purification of OutF53-168 (the sample was 

washed with wash buffer plus 20, 50, 70 and 100mM imidazole sequentially and eluted with 

elution buffer containing 400mM imidazole). (D) Size exclusion chromatography of OutF53-168. 

 

OutF53-168 can be expressed and purified from nickel column. But the result of the size 

exclusion indicated that the protein aggregated severely and almost all the protein went 

into the void volume. Buffer screening should be done to test the best condition for the 
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stability of this protein. An alternative route forward is to explore a different construct, 

as described in the next section. 

d Expression and purification of OutF65-172 

pET-14b-OutF65-172 was transformed into BL21 and expressed and purified in the same 

method as OutF53-168. 

 

Figure 3.12 Purification of OutF65-172 

A: IMAC purification of OutF65-172; B: SEC purification of OutF65-172. C: Superdex 75 10/300 GL 

size exclusion chromatography of OutF65-172 and protein elutes at the expected dimer molecular 

weight which is calculated using the method described in Chapter 2. 
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About 15mg of   trials. The elution position from the Superdex 75 10/300 GL column 

(Fig. 3.13C) corresponds to a molecular mass of 31 kDa suggesting this domain is a dimer 

which is in agreement with the finding that the cytoplasmic domain of BfpE forms dimers 

in the yeast two-hybrid system (Crowther, Anantha et al. 2004). This measurement was 

confirmed by the light scattering results in a following section 3.2.6. However, in Vibrio 

cholera, gel permeation chromatography indicated that the corresponding domain, cyto1-

EpsF56-171,is monomeric in solution (Abendroth, Mitchell et al. 2009). 

3.2.4 Pull down assay of pET-14b-OutL1-257-OutE1-513- OutF65-172 

The pET-14b-OutL1-257-OutE1-513-OutF65-172 was expressed using the same method as 

used with OutF65-172. Non-specifically binding proteins were washed off using washing 

buffer with 20mM imidazole (Fig. 3.14A).  Bound protein was eluted with elution buffer 

(20mM Tris, 150mM NaCl, 400mM imidazole, pH8.0). To further confirm the presence 

of OutF in the complex, four different proteins or complex were purified simultaneously 

as control (Fig. 3.13B).  

 

Figure 3.13 Pull down assay of pET-14b-OutL1-257-OutE1-513- OutF65-172 
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A: The OutL1-257-OutE1-513- OutF65-172 complex was purified with his tagged OutL; B: The 

purification of OutL1-257-OutE1-513- OutF65-172 complex compared to OutL1-257-OutE1-513, OutF65-

172 and different inducing temperature of OutL1-257-OutE1-513- OutF65-172 complex. 

 

OutE1-513 can be pulled down with OutL1-257, but not OutF65-172. This result is not 

consistent with a previous study (Py, Loiseau et al. 2001). To further study these 

interactions NMR experiments were used.   

3.2.5 Circular Dichroism (CD) Spectroscopy 

Spectra of OutF65-172 were recorded in 20mM Tris-HCl, 100mM NaCl (pH 8.0) and 

SUMO-OutF1-408 were in 20mM Tris, 200mM NaCl, 10% glycerol and 0.03% DDM 

(pH 8.0) at 20 ℃ using 1 mm path length fused silica cuvettes. The spectra are presented 

as differential absorbance after baseline subtraction. Calculations employed K2D 

(Greenfield 2006), CONTIN and SELCON3 (Sreerama et al. 2000).  

 

Figure 3.14 CD spectra of the first cytoplasmic domain, OutF65-172, and full-length OutF, 

OutF1-408. 

The mean residue ellipticity of OutF65-172, 0.21 mg ml-1 (B) and OutF1-408, 0.07mg/ml (A) in a 

0.1 cm path length cell. Note: OutF65-172 was in 20mM Tris-HCl, 100mM NaCl, pH 8.0. OutF1-

408 was in in 20mM Tris, 200mM NaCl, 10% glycerol and 0.03% DDM (pH 8.0). The protein 

concentration was determined using the predicted extinction coefficient of 0.1% of 0.217 and 

0.810 respectively. 
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The circular dichroism spectra for both OutF65-172 and Out1-408 (Fig. 3.14A and B) have 

minima at 208 and 220 nm which is characteristic of proteins with a high helical content. 

Analysis of the spectra for Out65-172 gives approximately 70% α-helical content which is 

consistently predicted using SELCON3, K2D and CONTIN. 

3.2.6 Dynamic Light Scattering (DLS) 

45μl of the eluent were transferred to a square cuvette for DLS measurements. OutF1-408 

and OutF65-172 were measured and molecular weight determined by the instrument and 

the results shows in Fig 3.16. 
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Figure 3.15 DLS result for OutF65-172 and SUMO-OutF1-408 

(A) and (B) DLS results for OutF65-172 and OutF1-408, respectively. 
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The light scattering result of OutF65-172 reveals a molecular mass of 26 kDa (17.6% 

polydispersity) a result consistent with that from size exclusion chromatography. 17.6% 

polydispersity indicates this protein is substantially monodispersing in solution and 

might therefore be crystallized. 

The DLS results of SUMO-OutF1-408 shows a mass of 133 kDa is consistent with the 

size exclusion chromatography but not consistent with measurements reported 

previously on PilG (Collins, Saleem et al. 2007). 

3.2.7 Crystallization trials 

a Crystallization trial using SUMO-OutF1-408 

The crystal screening of the SUMO-OutF employed the following commercial kits at 

18℃ using the hanging drop vapour diffusion method in 96-well microplates: 

MemGoldTM MD1-39 (molecular dimensions), MemGoldTM Eco Screen MD1-39-

ECO, MemStart™ & MemSys MD1-33. 

 

Figure 3.16 Crystal hits of Sumo-OutF1-408 

A: 0.1M Sodium chloride; 0.1M magnesium chloride hexahydrate; 0.1M CAPSO((3-

(Cyclohexylamino)-2-hydroxy-1-propanesulfonic acid)) pH 9.5; 12% w/v PEG 4000; B: 1M 

sodium chloride; 0.1M magnesium chloride hexahydrate; 0.1M Sodium HEPES, pH7.5; 30% v/v 

PEG 400; C: 0.1M sodium chloride; 0.1M magnesium chloride hexahydrate; 0.1M sodium 

HEPES, pH 7.5 30% v/v PEG 400. Scale bar=200µm. 
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Several attempts were made to improve the size and quality of these crystals but no 

improvement in size or shape was observed. 

b Crystallization of OutF65-172 

Crystals of OutF65-172 were grown at 18℃ using the hanging drop vapor diffusion 

method in 96-well microplates. A Hampton Research sparse matrix screen was used to 

explore crystallization conditions. Crystallization trials were using 1µl OutF65-172 and 

1μl of 100mM sodium cacodylate pH 6.5, 200mM Li2SO4 and 30% v/v PEG-400 for 

optimization.  

Data were collected from these crystals at ESRF ID23-1 and processed using XDS 

(Kabsch 2010). The structure was solved using molecular replacement and an initial 

model built using COOT (Emsley et al. 2010) and refined using CCP4 refmac5. The 

final model comprises 234 amino acid residues (chain A 116, chain B 118) and 21 water 

molecules. 
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Figure 3.17 Crystal hits of OutF65-172 in 96-well screening plate after 48 hours and 96 

hours 

(A)100mM Na/K phosphate, pH 6.2, 200mM sodium chloride, 20% PEG-1000; (B) the same 

drop as (A) but after 96 hours; (C) 100mM cacodylate, pH6.5, 200mM magnesium chloride, 

20%PEG-1000; (D) 100mM Na/K phosphate, pH 6.2, 10% w/v PEG-3000; (E) 100mM 

cacodylate, pH 6.5, 200mM lithium sulfate, 30% v/v PEG-400. Scale bar=200µm. 

 

Two different shapes of crystals appeared in five different conditions and the crystal size 

did not change after 96 hours compared to after 48 hours. These conditions were further 

optimized in the following experiments to get larger crystals (Table 3.1). 

Table 3.1 Optimization of the crystal hits condition 
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Figure 3.18 Crystal hits from optimized conditions 

(A) 0.1M Na/K phosphate buffer, 0.2M NaCl, 20% PEG-1000, pH6.4; (B) 0.1M MES 0.1M NaCl 

20% PEG-1000 0.1 M CaAc2, pH 6.6; (C) 0.1M cacodylate, 32% PEG-400, 0.2M Li2SO4 pH 6.2; 

(D) 0.1M cacodylate 0.2M, 34% PEG-400, Li2SO4, pH 6.2; (E) 0.1M Na/K phosphate buffer, 

0.2M NaCl, 20%PEG-1000, pH 6.4. Scale bar=200µm. 

 

1 µl 15mg/ml of OutF65-172 in 20mM Tris pH 8.0, 200mM NaCl and 1mM DTT buffer 

was mixed with an equal volume of precipitating solution. The tetragonal crystals in 

which grew using a reservoir of 0.1M cacodylate, 32% PEG-400, 0.2M Li2SO4 pH 6.2 

gave the best diffraction and were used for structure determination. 

c Crystal structure determination 

Crystals of OutF65-172 grew under several conditions with the best crystals obtained in the 

tetragonal space group P4212 with two molecules in the asymmetric unit (built using 

chains A and B, respectively). The Vibrio cholera GspF (PDB Re. 3C1Q) was used as the 

search model in molecular replacement using MOREP from CCP4 program suite(McCoy 
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et al. 2005). The model of OutF65-172 was refined at a resolution of 2.15 Å to a Rwork value 

of 20.7% (Rfree value 24.6%) and consists of 216 residues of OutF (Table 3.2) with 

reasonable stereochemistry (Fig. 3.19 shows that 98.57% residues are located in the 

preferred region of the Ramachandran plot).
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Table 3.2 Crystallographic data and refinement statistics for OutF65-172 

Data collection                           overall  

Space group P4212 

Cell dimensions 

a, b, c (Å) 

α, β, γ (˚) 

 

116.1, 116.1, 48.0 

90, 90, 90 

Number of images 840 

Wavelength(Å) 0.972 Å 

Resolution limits (Å) 41.45-2.15 (2.23-2.15) 

Number of unique reflections  18328 (1764) 

Completeness (%) 99.5(99.8) 

Mean I/sigma(I) 16.5(2.3) 

Wilson B-factor (Å2) 42.76 

Mn(I) half-set correlation CC1/2 0.999(0.665) 

Rmerge 0.058(0.804) 

multiplicity 5.5(5.9) 

Refinement 

Reflections 101006(10371) 

R-factor/R-free (%) 20.7(24.6) 

Rmsd bond(Å)/angle (°) 0.009(1.005) 

Number of protein (solvent) atoms 1555 (66) 

Ramachandran plot statistics (%) 

Residues in most favored regions 99.05% 

Residues in additional allowed regions (%) 0.95% 

Highest resolution shell is shown in parentheses. 
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Figure 3.19 Ramachandran plot statistics for the OutF65-172 crystal structure (PDB: 5NBG). 

Pink: preferred regions; Yellow: allowed regions; White: Outliers. The percentage of residues 

in preferred region is 99.05% indicating a model with very good stereochemistry of 

OutF65-172. Triangles are glycine residues, which are not subject to the same torsion angle 

restraints as the other residues. 

 

3.2.8 The crystal structure of OutF65-172 

OutF65-172 has a structure predominantly α-helical structure: each domain has six 

antiparallel α helices and two domains come together to form a dimer. This structure is 

consistent with the predicted structure by online server Phyre2 (Fig. 3.20). 
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Figure 3.20 Comparison of predicted and solved structure of cytoplasmic domain I of 

OutF  

The predicted structure of cytoI of OutF was superimposed onto the crystal structure and got a 

RMSD at 0.575 with 614 atoms. Cyan: predicted structure of cytoplasmic domain I of OutF by 

Phyre2; green: experimentally solved structure of OutF65-172. 

 

a Sequence and structure comparisons between members of the GspF family 

The T2SS is ancestrally related to the Type 4 Pili System (T4PS) and both systems share 

common structurally equivalent components. Furthermore, some inner-membrane 

platform components are spread more broadly and present in T4PS, Tad and Com pili of 

Gram-positive bacteria as well as in archaeal flagella. We first compare the sequence of 

GspF family proteins across 9 species (Table 3.3 and Fig. 3.21).  
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Table 3.3 Nomenclature of GspF for related filament systems in Gram-negative, Gram-

positive bacteria and archaeal flagella. 

 Proteins in system 

 Gram-negative bacterial 

systems 

Gram-positive bacterial 

systems 

 

Protein category T2SS T4P TAD COM T4P archaeal 

flagella 

Inner-membrane 

core protein  

GspF/OutF PilC TadB, 

TadC 

ComGB PilC FlaJ 

 

The Dali online server was then used to search for similar structures to OutF65-172 and the 

three most similar structures were found: EpsF53-171, TcpE1-102 and PilC53-168. These 

solved GspF family proteins in addition with several unknown structure GspF family 

proteins were compared with OutF65-172 based on sequence and structure (Fig. 3.21 and 

Table 3.4). 
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Figure 3.21 The predicted secondary structure of full-length of OutF and sequence 

alignment of GspF family members. 

(A) The predicted secondary structure of full length of the OutF predicted using SACS, TMpred 

Server and TMHMM Server. (B) The alignment of cytoplasmic domain I of GspF homologues in 

nine species: OutF [Dickeya dadantii] GenBank accession number WP_013318808.1; EpsF53-171 

[Vibrio cholera] accession NO. WP_000718700.1, PDB reference 3c1q; Toxin coregulated pilus 

biosynthesis protein E TcpE1-102 [Vibrio cholerae serotype O1] accession NO. OJZ63583.1, PDB 

reference: 4hhx; PilC53-168[Thermus thermophilus] accession NO. WP_011228203.1, PDB 

reference 2whn; pilus assembly protein TadC [Shewanella pealeana] accession NO.  

WP_012155257.1; Fimbrial assembly protein PilC [Clostridium perfringens] accession NO. 

WP_011590966.1; TadB [Pseudomonas aeruginosa] accession NO. CDO79668.1. competence 

protein; ComGB [Pediococcus acidilactici] accession NO. WP_008842339.1; flagella assembly 

protein j [Halogeometricum pallidum] accession NO. WP_008389602.1. The position of the α-

helices is indicated by the letter H in red colour in the secondary structure row. Conserved residues 

are shaded in the consensus line. Red box: conserved and negatively charged residues in the 

bottom of the structure. (C) Phylogenetic tree of GspF family members. This is a neighbour-

joining tree without distance corrections based on sequence alignment generated by Clustal 

Omega. 

 

The sequence alignment and phylogenetic results support the close relationship between 

the T2SS and the T4PS. The sequence conservation was then mapped on the surface of 

the OutF65-172 (Fig. 3.22). 
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Figure 3.22 Conserved residues in the OutF65-172 structure. 

A: conserved residues in the “bottom view” of OutF65-172. B: All the conserved residues mapped 

in the OutF65-172 structure. Magenta: conserved residues.  

 

There are eight conserved residues with at least 70% consensus in these nine species 

mapped on to the structure of OutF65-172 (Fig. 3.22B):  Ala 84, Leu 87, Leu 91, Val 114, 

Gly 117, Ala 123, Gly 146 and Leu 152. Five of the residues are located inside the 

cylinder formed by the six α helices and these residues play a key role in the helix bundle 

stabilization and the stability of the domain (Fig. 3.22). The conserved residues mapping 

to the surface (Fig. 3.22A) are presumably as a domain interface with another domain of 

OutF or other component of the T2SS (see below). 
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Table 3.4 Structure comparison of GspF family from T2SS, T4P in Gram-negative 

bacteria, T4P, Tad, Com in Gram-positive bacteria and archaeal flagella.  

The comparison result was shown as RMS (root mean square deviation). The unknown structures 

are predicted by PHYRE2. 

Structure 1 Structure 2 RMS 

OutF65-172 

[Dickeya dadantii] 

EpsF56-171 

[Vibrio cholera] 

PDB: 3C1Q 

 

0.523(575 

atoms); 

1.232(1244 

atoms) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PilC53-168 

[Thermus 

thermophilus] 

PDB: 2whn 

 

 

 

1.034(562atoms); 

13.85(1279 

atoms) 

TcpE1-102 

[Vibrio cholerae] 

PDB: 4hhx 

 

 

2.15(421 atoms) 

Fimbrial assembly 

protein PilC12-110 

[Clostridium 

perfringens] 

predicted 

  

  

0.475(299 atoms) 
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FlaJ504-614 

[Halogeometricum 

pallidum] 

Predicted  

 

9.401(475atoms) 

ComGB1-91 

[Pediococcus 

acidilactici] 

Predicted  

 

1.035(308atoms) 

TadB98-206 

[Pseudomonas 

aeruginosa] 

Predicted  

 

2.39(375atoms) 

TadC176-182 

[Shewanella 

pealeana] 

Predicted  

 

13.040(521 

atoms) 

 

Eight structures of GspF family members including the three solved structures and five 

predicted structures were compared to OutF65-172 in Table 3.6. The most similar structure 

to OutF65-172 is V. Cholerae-EspF53-171 and the predicted structure of PilC12-110 in T4PS 

from Gram-positive bacteria with RMS 0.523 (575 atoms) and 0.475 (299 atoms) 

respectively. This result further supports the T4PS has close relationship with the T2SS. 
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b The nature of the OutF65-172 surface  

To study the surface characteristics of OutF65-172, the hydrophobicity and electrostatic 

properties were mapped on to the surface of OutF65-172 (Fig. 3.23 and 3.24). 

 

Figure 3.23 Hydrophobicity mapped on the surface of the OutF65-172 

A: The front view of the OutF dimer. B: The bottom view of the dimer. Orange: hydrophobic 

residues; blue: hydrophilic residues; red: negatively charged residues; black rectangle: conserved 

residues.  

 

Seven hydrophobic residues form a narrow and shallow groove in the bottom and Ala 

114 and Leu 87, Leu 148 and Leu 120 are conserved in the GspF family proteins in T4PS 

and T2SS (Fig. 3.24). This hydrophobic area is located between two conserved negatively 

charged residues Glu 143 and Asp 149. This groove may provide the interaction area with 

other proteins in the secretion machine. 
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Figure 3.24 Electrostatic potential mapped onto the OutF65-172 structure. 

(A) The electrostatic potential mapped onto the OutF65-172 surface. (B) Electrostatics of the top 

surface of the structure. Positive residues are labelled on the map: five arginine and two lysine 

from each chain of the dimer. (C) Electrostatic properties of the bottom surface of the structure. 

Negative residues are labelled: six glutamates and one aspartate from each chain of the dimer. 

Red and blue are negative and positive potential, respectively. 

 

This positively charged top and negatively charged bottom suggests that the top of the 

molecule is close to the membrane, this orientation is consistent with an extension of the 

α6 helix extending into the inner-membrane as transmembrane helix 1. 
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c Potential dimerization factors  

In the crystal, there is a dimer in the asymmetric unit which is consistent with the dynamic 

light scattering and size exclusion chromatography results in solution. The structure 

suggests how this dimerization may occur at the atomic level, in this analysis hydrogen 

bonding, hydrophobic burial, conserved residues and metal binding sites at the interface 

are taken into account. 
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Figure 3.25 Interactions at the dimer interface of OutF65-172. 

(A) The hydrogen bonds at the OutF65-172 homodimer interface. Seven hydrogen bonds at the top 

and bottom of dimer interface involve the following residues: Thr 79 provided by helix α1; Gln 

97 from helix α2; Glu 99 from the loop between α2 and α3; Gln 164,Ser 167 and Arg 168 from 

α6; Thr 79 provide by helix α1’; Gln 97 from the loop between α2’ and α3’; Gln 164,Ser 167, 

Asn 153 and Arg 168 from α6’. (The prime indicates the symmetry related molecule.)  Sticks: 
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residues forming hydrogen bond on the interface of the dimer;yellow dot: hydrogen bond. (B) 

Hydrophobic residues on the interface of the OutF65-172 dimer. The hydrophobic residues are 

shown in sticks. There are total eight hydrophobic residues from chain A and chain B forming a 

hydrophobic core at the bottom of the OutF 65-172 dimer: Leu 72, Leu 80, Ala 82, Ala 83 from α1, 

Leu 85 from the loop between α1 and α2, Ala 93 from α2; Leu 72, Leu 80, Ala 82, Ala83 from 

α1’, Leu 85 from the loop between α1’ and α2’; Ala 93 from α2’. (C) Conservation of the OutF65-

172 in the front side based on the sequence alignment of seven GspF family members from T2SS 

and T4P in Gram-negative bacteria: conservation of the interface the OutF65-172 dimer (D) and 

backside of interface (E). (F) Sequence alignment. (G) Schematic of the calcium-binding site of 

EspF (cyan) and superimposed the OutF structure (green) that lacks the calcium-binding site. The 

calcium-binding site of V. cholera EspF53-171 (cyan) is absent in D. dadantii OutF65-172(green). 

Notably glutamate 151 in V. cholera is substituted by asparagine in D. dadantii and calcium no 

longer binds, despite its inclusion in crystallization media. Calcium is shown as the small green 

sphere and waters coordinating the calcium by red spheres. Figure 3.26A, 3.26B and 3.26G were 

produced using PYMOL and Figure 3.26C, 3.26D and 3.26E were produced using Chimera. 

 

Figure 3.25 shows the potential interaction on the interface which could stabilize the 

dimer. Unlike V. cholera-EspF53-171 the most similar structure to OutF65-172, there is no 

calcium or other metal in this structure. The reason appears to be because the calcium-

binding site glutamate, Glu 151 in V. cholera, is substituted by asparagine in D. dadantii. 

Seven hydrogen bonds at the top and bottom of dimer interface and total eight 

hydrophobic residues from chain A and chain B forming a hydrophobic core at the bottom 

play an important role in the dimerization. Additionally, the conservation at the interface 

compared to the back of the molecule highlights the higher level of conservation at the 

dimerization interface (Fig. 3.25 C, D and E). 

However, this dimerization interface is not the strongest association between molecules 

in the crystal as judged by PIZA, http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver. 

This will be further discussed in the discussion section. 

http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
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d Predicted model of OutF cytoplasmic domain II 

Cytoplasmic domain II, OutF245-379, is 22% identical in sequence to cytoplasmic domain 

I, OutF65-172 (Fig. 3.26A). When the sequence identity is 20% or more, spread evenly 

across the compared sequences, then the structures will be similar(Krissinel 2007). 

OutF245-379 was also predicted to be a six helix bundle similar in structure to OutF65-172 by 

Phyre2 (3.27 B).

 

Figure 3.26 The predicted model of cytoplasmic domain II of OutF  

(A) Sequence alignment of cytoplasmic domains I and II of OutF. (B) The predicted model of OutF 
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cytoplasmic domain II using Phyre2. (C) The structure of cytoplasmic domain II (cyan) superimposed on 

cytoplasmic domain I (OutF65-172) (green) with RMSD 2.448 Å (406 equivalent atoms). D Hydrophobicity 

of OutF245-379 mapped to the molecular surface. Orange: hydrophobic residues; red: negatively 

charged residues; black rectangle: conserved residues. The potential binding site in this area are 

compared with that in the OutF65-172 in E. green: OutF245-379, cyan: OutF65-172.  

 

Two models of the OutF245-379 dimer were built based on the sequence similarity with 

OutF65-172 and PilC53-168, respectively (Fig. 3.27). 

 

Figure 3.27 Two models of OutF245-379 dimer  

A. The predicted monomer OutF245-379 was superimposed onto OutF65-172 and a dimer built. Two 

arginines from each chain at the modelled dimer interface are shown in B. It seems unlikely that 

these arginine residues would be so close, unless they are in an unusual protonation state. A 
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monomeric structure or a different dimerization interface therefore seems more likely. Thus, the 

second possible dimer model was built by superimposing OutF245-379 onto PilC53-168 in C. D. 

Hydrophobic residues in the center of the dimer interface. These 7 hydrophobic residues are 

conserved based on sequence alignment of 5 species. 

 

Figure 3.27 shows that when the OutF245-379 dimer is modelled on the OutF65-172 dimer, 

where α1, α2 and α6 forms the interface, two arginine residues from each chain of the 

dimer are close, making dimer formation improbable, unless the ionization state of the 

arginine residues is unusual. A monomeric structure or a different dimerization interface 

seems more likely. Thus, a second dimer model was built using PilC53-168 as template 

where α5 and α6 helices from each chain form the interface. This dimer seems much more 

stable by forming a hydrophobic core in the center of the interface. Additionally, these 

hydrophobic residues are quite conserved. 

3.2.9 Interaction of OutE, OutF and OutL assessed using NMR 

The outE, outF and outL genes are organized on a single operon and an interaction 

between these proteins is known to be important for assembly of an inner-membrane 

platform in T2SS.  

Beatrice Py et al (1999) have shown using a yeast two-hybrid experiment that the first N-

terminal of 172 residues of GspF in Erwinia chrysanthemi could interact both with the 

cytoplasmic domain of OutL and OutE. The first cytoplasmic domain of OutF, the 

cytoplasmic domain of OutL and OutE were shown to form a stable complex in vivo using 

co-immunoprecipitation experiments in Erwinia chrysanthemi (Py, Loiseau et al. 2001). 

GspL is required for the formation of the GspE-GspF complex while OutL and OutE were 

able to form a complex without the requirement of OutF (Py et al. 2001). This OutF region 
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contains the cytoplasmic domain I helical domain preceded by a 64 residue, disordered 

region, with high intrinsic disorder predicted for the first 50~60 residues (Fig. 3.3). The 

pull-down assay results in section 3.2.4 show a strong interaction between the 

cytoplasmic domain of OutL and full length of OutE but no interaction between these 

proteins and cytoplasmic domain of OutF. To further analyze whether this intrinsically 

disordered OutF region could participate in the interaction with OutE and OutL and 

whether OutF could interact with OutE and OutL independently, NMR spectroscopy and 

thermofluor assay were used.  

a Sample preparation for NMR spectroscopy 

15N-labelled OutF1-172 (or OutF65-172) was expressed using the pET-14b vector in 

BL21(DE3) cells, grown in M9 minimal media. 1L M9 minimal media was prepared as 

the method in Chapter 2 supplemented with ampicillin (100μg/ml). All minimal media 

was 0.2μm filter sterilized and 1L induced expression cultures were grown at 16oC. 

All protein samples for NMR experiments: OutE1-513, OutL1-257, 15N-OutF1-172, 15N-

OutF65-172 and OutE1-513-OutL1-257 complex were purified using size exclusion 

chromatography after elution from the Nickel affinity column. The buffer condition for 

15N- labelled or non-labelled proteins are determined by Thermofluor assay.  

Figure 3.28 shows the purified 15N-labelled proteins prepared from gel filtration 

chromatography for NMR experiments. 
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Figure 3.28 Size exclusion chromatography of 15N-labelled OutF1-172, OutF65-172  

Superdex 75 10/300 GL exclusion chromatography column was equilibrated with buffer (20mM 

Tris-HCl, 150mM NaCl, 1mM DTT, pH 7.0) 

A: 15N-labelled OutF65-172 S75 column size exclusion trace measured at 280 nm. B: Purified 15N-

labelled OutF65-172 protein. Corresponding fractions were collected from after the size exclusion. 

C: 15N-labelled OutF1-172 S75 column size exclusion trace measured at 280 nm. D: Purified 15N-

labelled OutF1-172 protein. 

 

After purification using size exclusion chromatography, the proteins were concentrated 

to 0.1-1 mM for subsequent NMR experiments.  

b Thermoflour assay to determine sample conditions for NMR studies 

Sypro orange dye diluted from stock solution was added to the protein (at least 5µM 

protein). The screening mixture was then made by mixing 5ul of protein sample and 20 

µl of screening buffer. The temperature screen was between 25-95℃ at one-degree 
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intervals with measurements every minute. The fluorescence emission signal was 

measured at 525 nm. 

Buffer conditions used for the thermofluor assays were described in Chapter 2. 

Thermofluor experiments used buffers made for NMR experiment purposes. The highest 

screening temperature is measured at pH 7.5. At pH values above 7.5, the amide proton 

exchange rate is high and it is difficult to study interaction by NMR. Four different pH 

values under 7.5 were chosen for thermofluor assay.  

 

Figure 3.29 Thermofluor plots  

(A) Thermofluor plot of OutL1-257. (B) Thermofluor plot of OutF65-172. (C) Thermofluor plot of 

OutE1-513 and OutL 1-257 complex. (D) Thermofluor plot of OutE1-513.  

Finally, the condition 11(20mM Tris-HCl 150mM NaCl pH 7.0) was chosen as the buffer to be 

used for NMR experiments since only this buffer ensures the stability of: OutL1-257, OutF65-172, 

OutE1-513 and OutE1-513 / OutL 1-257 complex. 
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c NMR spectroscopy 

NMR spectra were acquired at 15℃ using Bruker Avance 700 and 600 MHz 

spectrometers. At first, since no buffer screening was performed before the NMR 

experiments, a 500mM NaCl buffer was chosen to avoid protein aggregation resulting in 

higher signal to noise ratio in the recorded spectra. NMR samples contained 0.05-1 mM 

uniformly labelled OutF1-172 (or 0.1mM OutF65-172) in 90% H2O/ 10% D2O. pH 7.0 was 

chosen for the data collection as higher pH values speed up the amide proton exchange 

rate reduce the spectral resolution. 

1H NMR spectra were first measured to evaluate the quality of the protein sample. Then 

1H-15N-HSQC spectra of OutF65-172 (or OutF1-172) were measured in the absence and 

presence of OutE-OutL1-257 binary complex.  
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Figure 3.30 Assessment of interactions between cytoplasmic domain I of OutF and OutE-

OutL1-257 

(A) 1H spectra of OutF1-172 in the absence (red) and presence of OutE-OutL1-257(blue). The ration 

between OutF1-172 and OutE-OutL1-257 is 1:1.2. There is no peak shift in 1D spectra indicating that 
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the pH of Tris buffer doesn’t change at all. Purified OutE-OutL1-257 complex with approximate 

1:1 stoichiometric ratio. Titration of OutE-OutL1-257 into labelled OutF1-172(or OutF65-172). OutF1-

172 concentration is 0.05mM and OutF65-172 concentration is 0.1mM. (B) 1H-15N-HSQC spectra of 

OutF1-172 in the absence of OutE-OutL1-257 (blue spectra). (C) Spectra of OutF1-172 in the presence 

of OutE-OutL1-257(green spectra). Binding results in loss of signal due to spectral broadening. (D) 

OutF65-172 in the absence of OutE-OutL-257 (yellow spectra). (E) Spectra of OutF65-172 in the 

presence OutE-OutL1-257(red spectra).  

 

Both 15N-OutF65-172 and 15N-OutF1-172 signals decrease upon addition of OutE-OutL1-257 

due to the formation of a high molecular weight complex (Fig. 3.30) (the initial size of 

OutF65-172, OutF1-172 and OutE-OutL1-257 are 13kDa, 20kDa and 81kDa, respectively).  

These results indicate that the first cytoplasmic domain of OutF interacts with the OutE-

OutL1-257 complex and that the first 65 residues seem not to be essential for this interaction. 

The N-terminal intrinsic disorder region which was predicted to be a potential protein 

binding site therefore plays no role in this interaction.  

To further investigate the interaction between the OutF65-172 and OutE-OutL1-257 complex, 

1H-15N-HMQC spectra of OutF65-172 were measured in the absence or in the presence of 

OutE, OutL1-257 and OutE-OutL1-257 complex respectively. 20mM Tris-HCl 150mM NaCl 

pH 7.0 buffer was used as selected from thermofluor assay shown in Fig. 3.29. 
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Figure 3.31 Elucidation of OutF65-172 and OutE or OutL1-257 or OutE-OutL1-257 complex 

interactions  

A: 1D spectra of OutF65-172 (purple) alone, in presence of OutE (red), OutL1-257 (green) and OutF65-

172 and OutE-OutL1-257 complex (blue). No peak shifts indicate that pH of Tris buffers is the same. 

B: 1H-15N-HMQC spectra of the OutF65-172 alone. C: OutF65-172 in the presence of OutL1-257. OutF65-

172 concentration is 0.05mM. The ratio between OutL-257 and OutF65-172 is 1.2:1. D: Spectra of 

OutF65-172 in the presence OutE1-513. (E) Spectra of OutF65-172 in the presence of OutE1-513-OutL1-

257 complex.  

 

Binding of OutF65-172 with OutL-257 or OutE1-513 or OutE1-513/ OutL1-257 results in loss of 

signal. These results show that both OutL1-257 and OutE1-513 can individually interact with 

OutF65-172 which are consistent with previous yeast two-hybrid assay in which the 

interactions depend on measurement of β-galactosidase activity (Py, Loiseau et al. 2001). 

3.2.10 Study of the interaction of OutF65-172 and OutE1-513-OutL1-257 by 

thermofluor assay  

To study the interaction between OutF65-172 and the OutE1-513-OutL1-257 complex, the 

thermofluor assay was used. The sample was prepared as described above. Two different 

ratios between OutF65-172 and the OutE1-513-OutL1-257 complex were prepared based on a 

previous study (Lu, Turley et al. 2013).  Since the GspE forms a hexamer (Lu, Turley et 

al. 2013) and GspF may form a dimer in this study a 3:1 ratio of OutF65-172 : OutE1-513-

OutL1-257 complex was prepared (Fig. 3.32). To make sure all the individual OutF65-172 

was titrated, a 1:1 ratio of that was also prepared (Fig. 3.32).  
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Figure 3.32 Thermofluor plots of interaction between OutF65-172 and OutE-OutL1-257 

complex 

A: 1:1 ratio between OutF65-172 and OutE-OutL1-257 complex; B: 3:1 ratio between OutF65-172 and 

OutE-OutL1-257 complex. The buffer was 20mM Tris, pH 8.0, 500mM NaCl. 
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This experiment was repeated several times but no obvious change was observed between 

the measured and calculated melting temperature of OutE-OutL1-257 complex after adding 

OutF65-172.  

3.3 Summary and discussion 

In this Chapter I report cloning, production, crystallization, and the crystal structure of 

the first cytoplasmic domain of OutF (residues 65 to 172; cyto I OutF) solved at 2.15 Å 

resolution. This domain consists of 108 residues which form a bundle of six anti-parallel 

helices. Two OutF65-172 domains form a reasonably tight dimer organised so the following 

trans-membrane helices (TMH1, Fig. 3.21) can insert into the inner-membrane. In 

contrast to the structure of Vibrio cholera EpsF, OutF65-172 does not have the calcium-

binding sites that stabilize the dimer interface and does not need calcium for stabilization. 

I also compare the sequences and structures of nine species of GspF family proteins from 

T2SS and T4PS in Gram-negative bacteria, T4PS, Com and Tad in Gram-positive 

bacteria and archaeal flagella. Across these structures eight residues are conserved at the 

inside face of the cylinder formed by the cytoI α helix bundle. The sequence and structure 

comparison results show the close relationship between T2SS and T4PS. Two different 

dimer models of cytoplasmic domain II were built by similarity with known dimer 

structures, the one that was formed based on the PilC structure is more stable than that of 

cytoplasmic domain I of OutF indicating the two cytoplasmic domains of OutF may forms 

a dimer in different ways, both allowing the insertion of the following transmembrane 

helices into the inner-membrane. In this Chapter, I also explore the interaction between 

OutF and the other inner-membrane proteins using NMR spectroscopy, pull down assay 

and thermofluor. OutF65-172 was shown to interact with OutL, with OutE, and with the the 

OutL/OutE complex using NMR spectroscopy. While pull down assays detect the strong 
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interaction between OutL and OutE, the weaker interaction between OutF cyto I and the 

OutL/OutE complex can only be detected using NMR spectroscopy which can detect 

much weaker interactions. 

Constructs producing full-length OutF were also successfully made, protein produced, 

solubilized using 1%DDM, and small crystals grown. Further work on the membrane 

protein OutF could be beneficial, but I decided to concentrate future studies on the inner- 

membrane complex of proteins as described in the next results Chapter (Chapter 4). 



Chapter 4 Structural studies of the inner-membrane platform of the D. dadantii T2SS 

152 
 

Chapter 4 Structural studies of the inner-membrane 

platform of the D. dadantii T2SS 

4.1 Overview 

The inner-membrane platform of T2SS comprises three single transmembrane helix 

proteins (OutL, OutM and OutC) and one polytopic membrane protein, OutF. In the D. 

dadantii secretion system there is an additional single transmembrane protein, OutB, 

which is responsible for locking the inner-membrane platform to the outer-membrane 

secretin. GspC has this function in other species including Vibrio cholera. Several crystal 

structures of the soluble domains of the inner-membrane proteins have been solved, 

however the overall architecture of this platform remains exclusive. In this Chapter, I first 

cloned the gene operon EFGHIJKLM and purified the inner-membrane complex 

(including three inner-membrane proteins OutF, OutL, OutM, five pseudopilus subunits 

(OutG, OutH, OutI, OutJ and OutK) and the ATPase (OutE) with the molecular size of 

approximately 1million Dalton as estimated by gel filtration and dynamic light scattering 

(DLS). The purified protein complex was then subsequently analysed by mass 

spectrometry and negative staining transmission electron microscopy (TEM). Finally, I 

built a model at 32.7Å resolution solved by single particle analysis, using the workflow 

described in Figure 4.1, and fitted a ring in the structure with crystal structure of the 

hexameric ATPase, GspE. However, due to the conformational variability of the particles, 

this model was built from only 11952 particles of the 1300000 imaged in total. Future 

work will focus on increasing the homogeneity of the particles. 
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Figure 4.1 Flow chart of single particle reconstruction process in Relion2(Fernandez-

Leiro and Scheres 2017). 

4.2 Results 

4.2.1 Cloning the genes corresponding to the inner-membrane complex 

a Constructs 

Constructs generated in this chapter are listed in Figure 4.2. 
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Figure 4.2 Genetic organization of T2SSs from E. coli IHE 3034 and D. dadantii. 

Operons are separated by green lines.  

 

b PCR products 

The gene operon EFGHIJKLM from outE to outM was amplified from the genome of D. 

dadantii, using the primers presented in Table 4.3 and the gene operon 

OSCDEFGHIJKLM from gspO to gspM was amplified from the genome of E. coli IHE 

strain using the touch-down polymerase chain reaction as described in Chapter 2. Two 

further constructs outE-deleted and pseudopilus-deleted DNA were amplified from the 

pASK3c: T2SSE-M plasmid. 
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Figure 4.3 PCR products of T2SS gene operon from D. dadantii and IHE strain 

A: PCR product of inner-membrane platform from outE to outM (lane1 and lane2) and T2SS  

proteins from outC to outM (lane3) with strep tagged OutM from D. dadantii; B: Inner- and outer-  

membrane protein gens OutS-OutM from D. dadantii (lane1 and lane 2) and GspO-GspM from 

IHE strain (lane 3 to lane 4); C: PCR product of OutE to OutM plus pask-3c vector with his tagged 

OutE; D: Inner-membrane proteins without pilus proteins (lane1 and lane 2) and OutE-deleted 

inner-membrane platform (lane 4 and lane 5) from D. dadantii. 

The PCR products were then purified from the agarose gel and cut using restriction 

enzymes. 
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c Constructions of pASK3c: T2SSE-M, pASK3c: T2SSC-M, pASK3c: T2SSE, F, L and M and 

pASK3c: T2SSF-M 

The PCR product EFGHIJKLM was digested using SacI and XhoI and ligated into the 

pASK-IBA3C (IBA) vector to produce the vector pASK3c: T2SSE-M which was linearized 

by cutting using SacI and XhoI. Ligation was performed as described in chapter 2. In this 

construct, the His tag and Strep tag were incorporated at the C-terminal of OutM used for 

purification of the T2SSE-M complex. 

The PCR product OSCDEFGHIJKLM from E. coli IHE was cloned into the pASK-

IBA3C (IBA) vector (pASK3c: T2SSC-M) using the same method as the T2SSE-M complex.  

Two further constructs OutE-deleted and pseudopilus-deleted PCR product included the 

vector sequence and subsequent to self-ligation with sticky or blunt end as described in 

Chapter 2.  

d Enzyme cleavage to analyze the new constructs 

After miniprep from the positive colonies, the new constructs are confirmed by double 

digestion with XhoI and SacI restriction enzymes which are the same enzyme used before 

ligation. 
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Figure 4.4 Restriction enzyme results 

A: Lane 1 and lane 3 are the positive constructs of inner-membrane platform from D. dadantii 

and T2SS proteins from E. coli IHE, respectively; B: Lane1 and lane 3 are the positive constructs 

of pilus-deleted inner-membrane platform from D. dadantii; C: The double digestion results of 

OutE-deleted inner-membrane platform. 

 

The positive constructs were then sent for sequencing before transformation into the 

expression cells.  

e Expression of pASK3c: T2SSE-M and pASK3c: T2SSO-M 

Small volume expression tests were used to explore the usefulness of the two vectors: 
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pASK3c: T2SSE-M and pASK3c: T2SSO-M. The expression method was as described in 

Chapter 2. Samples (200µl) were collected before and after induction using AHT. 20µl 

of each sample was used for SDS-PAGE analysis. The proteins were then transferred 

from the gel to the PVDF membrane and a Western blot was employed to detect the 

presence of the target proteins. 
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Figure 4.5 Expression test of the inner-membrane platform from D. dadantii and the 

whole complex of the T2SS from IHE3034, respectively. 

A: Production of the inner-membrane platform proteins OutE, OutF, OutL and OutM from the 

pASK3c: T2SSE-M construct.  The level of protein expression at 16℃ (lane 2) is similar to that 

at 37℃ (lane 3) and greater to the level before induction (lane 1). B: Expression of the inner-

membrane and outer-membrane proteins including the prepilin peptidase GspO from GspO to 

OutM: it is hard to see the proteins expression either at 16℃ or at 37℃ from SDS-PAGE analysis. 

However, the subsequent purification step indicated that at least some of the proteins were 

produced successfully. C: Western blot result of expression of inner-membrane platform and 

T2SS. The anti-His antibody was used for detection.  

 

It is clear from the SDS-PAGE and Western blot that proteins are being successfully 

produced from the D. dadantii construct.  OutM, and presumably a breakdown product 

of OutM, with His-tag are being detected on the western, and there is reasonable evidence 

of a greater quantity of OutM, OutL, and OutE being produced after induction. 

4.2.2 Purification of the expressed inner-membrane complexes  

a Membrane fraction preparation 

All the membrane fractions were prepared using the method described in Chapter 2 except 

the cells were broken using French press rather than sonication. The cell pellets for outer-

membrane expression were used immediately after harvesting without freezing. Both 

membrane fractions of inner- and outer-membrane were used immediately without 

freezing. 

b Purification of membrane protein complex 

T2SSE-M complex, OutE deleted complex and OutE, OutF, OutL and OutM complex were 

purified using the methods described in Chapter 2, but with modifications as described 

below: 0.5% DDM (Fisher Scientific), 0.75% w/v Decyl Maltose Neopentyl Glycol (DM-
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NPG,Anatrace), 0.1% w/v digitonin (Anatrace) in 20mM Tris, 150mM NaCl, pH 7.4 

buffer was used to solubilize the membrane fraction at room temperature for 40 min. The 

suspension was then clarified by centrifugation at 100,000g for 20 min. The supernatant 

was diluted two-fold and loaded onto a PD-10 column packed with Strep-Tactin® 

Sepharose® and then washed with 20mM Tris-HCl pH 7.4, 150mM NaCl, 0.06% w/v 

DM-NPG, 0.1% w/v digitonin, 1mM DTT and 1mM EDTA at 4°C. The purified T4SSO-

M complex was eluted in the same wash buffer supplemented with 2.5mM desthiobiotin 

(IBA). The sample was used immediately for electron microscopy. 
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Figure 4.6 Purification of T2SS complexes and gene mutated complexes from D. dadantii 

and IHE using strep tactin resin. 

A: Purification of the inner-membrane platform from the pASK3c: T2SSE-Mhis+strep construct 

coding from OutE to OutM. B: Purification of the inner- and Outer-membrane complex from the 

pASK3c: T2SSO-Mhis+strep construct coding from GspO to GspM. C: Purification of the OutE 

deleted mutation of inner-membrane platform form the pASK3c: T2SSF-Mhis+strep construct coding 

from OutF to OutM (F-Ms: supernatant, F-Mp: pellet). D: Purification of the inner-membrane 

platform from the pASK3c: T2SSE, L, F, Mhis+strep construct coding OutE, OutL, OutF and OutM. 

 

After purification from the strep tactin, the proteins are loaded onto the size exclusion 

column Superose 6 and further purified according to proteins size after concentrating the 

elution fraction using a 100kDa cutoff concentrator. 
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Figure 4.7 Chromatographic separation on Superose 6 10/300 GL column of T2SSE-M 

complex 

A: Superose 6 10/300 GL size exclusion chromatography column was equilibrated with buffer 

(20mM Tris-HCl, 150mM NaCl, 0.05%DDM, 1mM DTT, pH 8.0).  The inner-membrane 

complex elutes at molecular weight of around 1000kDa based on calibration result with standard 

proteins (blue dextran 2000 (2000kDa), Urease (545kDa), BSA (66kDa) and lysozyme 

(14.4kDa)). Approximately 24 ml volume were collected with each fraction corresponding to 

400µl retention volumes and 30 µl of each were analyzed by 15% SDS-PAGE (B).  
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c Sucrose gradient centrifugation of inner-membrane complex OutE-M 

After the membrane fraction was solubilized and cleared by ultracentrifugation the 

supernatant was loaded onto a 10-50% linear sucrose gradient prepared as described in 

Chapter 2 but in addition with 0.03% DDM. The gradients were centrifuged at 150,000 g 

for 16 h at 4°C in a swinging-bucket rotor in a Beckman ultracentrifuge. Each fraction 

was collected and analysed by TEM and SDS-PAGE. Figure 4.8 D-H show the TEM 

images of the sucrose gradient factions prepared in Figure 4.8A and B. 
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Figure 4.8 Analysis of sucrose gradient fraction 

A: Gradient fractionate; B: SDS-PAGE of each fraction of sucrose gradient. C: Image of peak 

fraction from size exclusion column. D-H: TEM images of sucrose gradient fractions number 11, 

13, 14, 15, 17 (B) respectively.  

Since the molecular weight of the OutE-M particle is around 1000kDa according to the 

SEC and DLS results (Fig. 4.7A and Fig. 4.9), the protein is anticipated to be located in 

approximately 30% sucrose solution which is a little below the middle of the gradient 

(Fig. 4.8 A – numbers 13, 14, 15). However, quite a lot of protein was found close to the 

bottom of the gradient (40%~50% sucrose) indicating larger molecular masses formed 

which is consistent with the SEC result with a large peak in the void volume. 

As dispersed protein complexes are anticipated in fraction 13, 14 and 15, the images of 

particles from these fractions were then compared with that from gel filtration. The results 

confirmed that the size of particles from number 11 fraction is a little smaller than that 

from SEC peak fraction. The proteins tend to aggregate in fraction 17 and form very large 

particles. The size of particles from fractions 13, 14, 15 is correct but the particles are still 

heterogeneous.  This result is consistent with predicted location of protein according to 

the concentration of the sucrose gradient. 

d Dynamic light scattering (DLS) 

45μl of the eluent from the peak of the gel filtration column were transferred to a square 

cuvette for DLS measurements. The light scattering intensity caused by the Brownian 

motion of the protein were measured and molecular weight determined by the instrument. 
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Figure 4.9 T2SSOutE-M DLS summary.  

OutE-OutM was measured in 20mM Tris,150mM NaCl, 0.04%DDM, pH7.4 at 15℃. 

 

The OutE-OutM sample shows a polydispersity of 54%, which indicates OutE-OutM 

complex is heterogenous in solution consistent with single particle analysis result. The 

average molecular mass calculated from the radius of the protein is approximately 

1159kD, the size of which is close to that from size exclusion column (Fig. 4.7A).  

e Mass Spectrometry 

Mass spectrometry was used to identify the proteins expressed and purified from the 

T2SSE-M construct. Two different methods were used to prepare the protein samples for 
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protein fingerprint. The elution from the Superpose 6 column was exchanged into low 

salt and low detergent buffer using PD10 column. Proteins were separated by SDS-PAGE 

analysis and stained using coomassie brilliant blue G-250 (1% coomassie G-250, 40% 

methanol, and 10% acetic acid). The bands of interest (55 kDa, 46kDa, 22kDa and 20kDa) 

were cut out cleanly and put in Eppendorf tubes (with 50 µL HPLC water) separately. 

The eluted solution and gel bands were sent to Cambridge Centre for Proteomics for 

sequencing. The proteins were analysed using Mascot (Matrix Science, London, UK; 

version 2.5.0) and Scaffold (version Scaffold_4.3.0, Proteome Software Inc., Portland, 

OR) was used to validate MS/MS based protein identifications. 

 

Figure 4.10 Mass spec result of T2SSE-M complex   

(A)T2SSE-M co-elute as single peak during gel filtration. T2SSE-M complex elute at 11.3 ml with 

molecular weight of ~1million Dalton. (C) SDS-PAGE of T2SSE-M. Gel bands of OutE, OutL and 

OutF, OutM and OutH were confirmed by following mass spectrometry. Black labelled proteins: 
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identified protein after MALDI mass spec of gel slices. Red labelled proteins: the possible existing 

proteins according to the protein size and N-terminal sequencing result from elution. (B) 

Summary of the mass spec (MALDI-TOF) result of identified proteins from the elute solution. 

(D) Summary of mass spec result of proteins from gel slices (fragment tolerance: 0.100Da 

(Monoisotopic), parent tolerance: 10.0 PPM (Monoisotopic), fixed modification: +57 on C 

(Carbamidomenthyl), digestion enzyme: trypsin, mass missed cleavages: 2, peptide threshold: 95% 

minimum, protein threshold: 95% minimum, peptide FDR: 0.5%, protein FDR: 0.0%).  

 

Figure 4.10 shows the purified T2SSE-M complex from strep tactin resin and SEC column 

included all the proteins expressed from gene operon EFGHIJKLM. The mass spec result 

also confirmed the 4 clear bands on SDS-PAGE to be OutE, OutL (and OutF), OutM and 

OutH respectively.  

4.2.3 Initial three-dimensional model of inner-membrane platform 

a Sample preparation 

TEM grids were glow discharged in air and used immediately. 5l of 5µg/mL T2SSE-M 

complex in 20mM Tris-HCl, 150mM NaCl, 1mM DTT, 0.04%DDM, pH7.4 buffer was 

deposited on glow discharged carbon coated grids (SPI) (300 meshes) for 1 min followed 

by blotting with or without washing with ddH2O and staining with 2% (v/v) uranyl 

acetate for 0.5-1.5 minutes once or twice.  

b Data collection 

The JEOL JEM-1230 was used to check sample quality before large scale data collection, 

gold labelling image collection, and mutated sample image collection in QMUL. Large 

data sets were collected at Imperial College using the FEI Tecnai F20. 
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Images taken on FEI Tecnai 20 transmission electron microscope operating at 200 kV 

were recorded with FEI Falcon II CMOS direct electron detection camera. 834 

micrographs were collected automatically without intermediate frames using the EPU 

(Tan et al. 2016) software at a nominal magnification of 29,000 corresponding to a pixel 

size of 3.48 Å/pixel using an electron dose of 7 e/Å2/s, a defocus range of -0.5 to -3.5m 

and an exposure time of 1s.  

c Data processing programs 

Programs used for data processing and model evaluation are described in Chapter 2. 

d Particle selection and normalisation 

After image collection, single T2SSOutE-M particles were selected using manual particle 

picking in RELION 2. Since the maximum dimension measured for a T2SSOutE-M particle 

was around 250 Å shown in the TEM micrographs (Fig. 4.8C), the box size was set to 

~556.8Å (160 pixels) to fully accommodate the particle in the box and also cover enough 

background for processing. Picked particles were digitally cut out of the micrograph and 

stored in an array of individually addressable pictures in a star file. The particles were 

normalised by matching the grey value in RELION.  

e CTF estimation 

The CTF can be estimated since the exact value of defocus and astigmatism values of an 

images can be obtained by comparing the power spectra of micrographs with simulated 

CTF. The defocus values are required to correct CTF on images. In this work, CTF was 

estimated by running CTFIND4 in RELION.   
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f Getting templates for auto-picking 

2213 particles were manually picked and the Reference-free 2D classification (RELION2) 

was then executed for these particles. 10 2D classes were obtained with 350Å mask size. 

In this method, the entire data set was used for alignment. All particle images are initially 

averaged to centre the particles before doing maximum likelihood calculations for each 

particle to belong a separate class.  

g Auto-picking and particles sorting  

The particle auto-picking process was used with 10 2D classes as template and in total, 

127283 single OutE-OutM particles were extracted from 834 micrographs. 

h 2D classification to remove bad particles  

300 class averages were generated and each contained a few hundred particles that shared 

similar size, shape and orientation so that the signal was intensified and physical detail of 

the protein could be seen. The class distribution and resolution plot were generated by 

gnuplot and used to get rid of bad classes (Fig. 4.11). 
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Figure 4.11 plots of distribution and resolution of 2D classes 
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A: Plot of distribution of 2D classes; B: Plot of resolution of 2D class (e. g. No. 3 class). Classes 

with few particles are low resolution while particles with many classes are high-resolution. Lower 

signal-to-noise ratios will lead to lower resolution. 

 

The plots of distribution and resolution of 2D classification were used to monitor the 

quality of particles in each of 2D classes and get rid of bad particles. Bad particles do not 

average well as there are often few particles in each bad class, and the resolution of the 

corresponding class average is thus very low. These classes look like ghost. These bad 

classes are removed using Subset Selection in RELION. 220 2D classes were selected 

from 300 classes with 90580 particles selected. 

i Generating template for 3D classification using SIMPLE 

SIMPLE software was used to generate an initial 3D model. This model was generated 

from 220 2D classes with 350Å circular mask same as 2D classification.   
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Figure 4.12 Data process to generate the initial model for 3D classification 

The process was described as following:  

a and b: 2213 manually selected particles using RELION were extracted and stored in a star file. 

c: CTF were estimated by using CTFFIND4 and images with good CTF were selected. d: 10 2D 

classes were generated from manually picked particles and 8 classes were selected as templates 

for auto-picking. e: 127283 particles were auto-picked using the 2D reference and 120139 

particles were selected after particle sorting and selection. f: 300 2D classes were generated from 

those sub-selected particles and the quality of the classes were monitored by the plots of 

distribution and resolution. 220 classes were selected and used for initial 3D model building. g: 

Initial 3D model was obtained from SIMPLE and were used for 3D classification in Relion. 

 

 

Figure 4.13 3D classification  

Initial classification of 90580 particles into three 3D classes (II), after performing rounds of 2D 

classification step in RELION. Selected particles from each of the three classes was used for 

another 40 iterations of 3D classification (III, IV and V). The particles contributing to the class 

exhibiting the highest level of structural detail was used for the 3D refinement (IV). 
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To avoid introducing reference bias into 3D classification, the initial low-pass filter value 

of 60 Å was used to starting the auto-refinement process before getting a reference for 

3D classification. Since it is recommended to use a consensus model from the data 

themselves, I first combined all selected particles in a single 3D auto-refine procedure. 

This model was used as the starting model in the subsequent three-dimensional 

classification with 3 classes, an angular sampling of 1.8Å and 60 Å initial low-pass filter 

again. Particles from each of 3 classes occupied 25.6%, 29.5% and 35% of total 90850 

particles. By checking the particle quality from each of the classes, particles from class 

IIa looks most heterogeneous with highly different shape and size. Even though particles 

from both class IIb and class IIc have good qualities, they share different shape and size 

from each other. And the second round of 3D classification from each class shows that 

the 3 sub-classes from class IIb have similar structure and lower noise while the sub-

classes from class IIc looks quite noisy. I chose one of sub-class IVa with most particles 

for the following 3D refinement to get better resolution. 

j 3D model refinement  

To further clean bad particles, the 3D class with 11952 particles were subsequent to two 

rounds of 2D classification and finally 11621 particles were selected and used for 3D 

refinement.  
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Figure 4.14 Refined 3D model of OutE-OutM complex  

Three orthogonal views of the complex are shown in A, B and C. 

 

The structure of OutE-OutM is ~161 Å in height, ~265 Å length, and ~216 Å width.  

Assuming all proteins have approximately the same density about 1.37g/cm3(Erickson 

2009). The protein mass of OutE-OutM can be calculated by using the average partial 

specific volume 0.73 cm3/g which is the reciprocal of the density. 
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V(nm3) =(
0.73cm^3/g)×(10^21nm^3/cm^3)

6.023×1023/g
) × M(Da)  

               =1.212×10-3(nm3/Da) × M(Da) 

MW(Da)=825Volume (nm3) = 825×(2.7248e+06)/1000=906kDa.  

The volume was measured using Measure and Color blobs in Chimera with threshold 

0.0243. 

This calculated molecular weight from volume of the model is close to that from DLS 

result which is 1159kDa.  

The “gold standard” refinement without symmetry applied yielded a final reconstruction 

(11621particles) at 32.7 Å resolution, according to the FSC = 0.5 threshold. The back-

projections of the EM models were obtained using the “Relion_project” tool in RELION. 
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Figure 4.15 EM analysis of OutE-OutM 

A: Euler plots for the angular distribution of OutE-OutM model; B: Plot of Fourier Shell 

Correlation curve for the OutE-OutM reconstruction. The blue line shows FSC = 0.5.; C and D: 

Comparison between the reference‐free class averages (C), the back‐projections of the non‐

symmetrized OutE-OutM model (D). Box size: 160 pixels; mask size: 350 Å. 

 

Figure 4.15 shows even though the angular assignment of particle orientations is well 

distributed, few preferential orientations are observed. There is a clear correlation 

between the class averages and the model back‐projections. The model shows an 

estimated resolution of 32.7 Å based on the Fourier Shell Correlation. 

4.2.4 Domain localisation in the T2SS inner-membrane platform 

To localise the individual components within the inner-membrane platform complex, the 

deleted mutations deletions of the cytoplasmic ATPase (E) and that of pilin subunits (G, 

H, I, J, K) have been cloned and expressed. In addition, nanogold labelling of OutM is 

also used to confirm the organisation of proteins within the complex. Initial fitting of 

crystal structures of ATPase(E) into the electron density envelopes was done using 

Chimera. 

a Gold labelling  

Two gold labelling methods were applied for T2SSE-M/M-His as described in chapter 2. One 

is incubated with NI-NTA nanogold beads before loading the sample on the grid and the 

other is incubated with nanogold beads after loading the sample on the grid. These two 

methods were compared in the following figure. 
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Figure 4.16 T2SSE-M/M-His gold labelling 

NI-NTA nanogold beads incubated with T2SSE-M/M-His after sample was loaded on the grid for (A) 

2 minutes, (B) 5minutes and (C) 30 minutes respectively. D: NI-NTA nanogold beads were 

incubated with T2SSE-M/M-His in solution at 4℃ before loaded on grid.  Ni-NTA Nanogold 

labelling of C-terminal His tagged OutM. Particles of Nanogold bound to the OutE-M complex 

are indicated in the micrograph using orange arrows. 

 

More T2SSE-M/M-His were labelled using the second method than the first without any 

severe non-specific labelling. However, the particle details are not clearly observed and 

it is
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hard to compare with the unlabelled images. More and better-quality images need to be 

collected with gold labelled particles. 

b Pilus-deleted and OutE-deleted mutations  

To improve the homogeneity of the particles and locate the ATPase in the complex, two 

mutations were made: pilus-deleted complex and OutE-deleted complex (Fig. 4.17).  

c ATPase localization in the inner-membrane platform 

To fit crystal structure of hexamer GspE into the map of OutE-OutM, the generated EM 

map of OutE-OutM was segmented into 20 regions based on the immersive watershed 

algorithm and scale-spaced grouping(Pintilie et al. 2010). 
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Figure 4.17 Domain localisation in the type II secretion system inner-membrane 

platform. 
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A: Pseudopilus subunits G-K deletion (i.e. E, F, L, M complex). B: F, L, M complex with ATPase 

OutE deleted. The left of each panel is the SDS-PAGE gel and to the right the negatively stained 

micrograph. The deletion complexes in A and B are less stable than the intact E-M complex 

showing that the presence of the ATPase and H pilin subunit stabilises the inner-membrane 

platform. C and D Preliminary fitting of the GspE homo-hexamer (PDB code: 4PHT) into the 

preliminary inner-membrane platform density of the T2SS using Chimera. E and F: The ATPase 

hexamer was fitted into three regions in the segmented OutE-OutM map (correlation: 0.85 density 

occupation: 0.71). 

 

Figure 4.17 A and B shows the TEM images of pilus-deleted complex and OutE-deleted 

complex from 6 litres of cell cultures after Strep tag column and Superose 6 column 

without any dilution respectively. These two mutations are less stable than the intact E-

M complex showing that the presence of the ATPase and H pilin subunit stabilises the 

inner-membrane platform.  

To locate the ATPase, the crystal structure of hexamer GspE (PDB: 4PHT) from Vibrio 

vulnificus was fitted in the map of OutE-OutM using Chimera software and got 0.8547 

correlation and 0.03013 average map value. In additional, the single ring in this structure 

can only be segmented into one or three regions indicating the ATPase hexamer may be 

formed by 3 dimers rather than 6 monomers. 

4.3 Conclusion 

In this Chapter, I reported cloning and expression of the inner-membrane platform OutE 

to OutM which includes three trans-membrane proteins F, L and M, the ATPase OutE 

and five pseudopilus subunits and further analysed the product by SDS-PAGE and mass 

spectrometry. However, only 5 single and clear bands were observed on the SDS-PAGE 

and the result from mass spec confirmed these bands are OutE, OutL and OutF, OutM 

and OutH respectively. The heterogeneity/instability of the inner-membrane platform 
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could be due to improper localisation of pseudopilus in the complex because of the 

absense of the prepilin peptidase O and the other core inner-membrane proteins OutC and 

OutB. The membrane domains of the pseudopilus cannot be cleaved without prepilin 

peptidase O, which may lead to faulty assembly of the pilins. OutB plays an important 

role in connection between the inner- and outer-membrane of T2SS, which may result in 

an unstable inner-membrane platform. Future plan will include adding these two genes 

into the inner-membrane platform I am producing. 

Finally, I built an initial model of the inner-membrane complex. Even though the 

resolution is limited to 32Å because of the heterogeneous nature of the particles a clear 

ring located in the bottom of this structure can be fitted with the crystal structure of 

ATPase hexamer with a correlation of 0.855. By using the segmented function in chimera, 

this area can only be segmented into 1 or 3 regions indicating the hexamer ATPase may 

be formed by three dimers rather than six monomers.  

To decrease the heterogeneous of the particles, I plan to stall larger complexes using non-

hydrolysable ATP analogues, Walker motif mutations, and directed cross-linking 

according to in vivo engineering studies. 
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Chapter 5 Concluding comments 

5.1 A status report on the type II secretion system 

In the past decade, the structure of many isolated soluble protein domains of the T2SS 

have been solved. Several high-resolution structures of the T2SS secretin channel have 

been solved using Cryo-TEM (Hay et al. 2017, Yan, Yin et al. 2017); the cytoplasmic 

regions of GspF and L and the periplasmic regions of GspC, L and M were solved by X-

ray crystallography(Abendroth, Rice et al. 2004, Abendroth, Murphy et al. 2005, 

Abendroth, Kreger et al. 2009, Abendroth, Mitchell et al. 2009); a GspE hexamer and 

several GspL-GspE complexes in 1:1 ratio have also been solved by X-ray 

crystallography (Abendroth, Murphy et al. 2005, Lu, Turley et al. 2013, Lu et al. 2014). 

A structural model of the V. cholera T2SS was built based on the solved structures and 

models by phyre2 (Gu, Shevchik et al. 2017). However, there is still limited knowledge 

about how the components assemble to form a fully functional secretion system.  

In this thesis, I focused on the inner-membrane complex, the heart of the T2SS which 

recognizes secretion substrates and assembles the short pilus that pushes the substrate 

through the outer-membrane secretin. I successfully produced and solved the crystal 

structure of a cytoplasmic domain of OutF from the inner-membrane platform assembly 

which comprises three major integral membrane proteins: OutF, OutL, OutM (augmented 

by OutB/C see below and Chapter 1) and OutE. The pilus subunits and auxiliary 

components are also involved. 
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5.2 Summary of achievements in this thesis 

In Chapter 3, I describe how I produced and solved the structure of cytoplasmic domain 

I of D. dadantii OutF, OutF65-172, using X-ray crystallography. This domain is a bundle 

of six anti-parallel α-helices and two of these domains form a homodimer in the 

asymmetric unit of the unit cell. This structure shares high similarity with the first 

cytoplasmic domain of EpsF from Vibrio cholera (Abendroth, Mitchell et al. 2009), but 

OutF65-172 doesn’t possess the calcium-binding sites which help to stabilize the 

homodimer of EpsF. I compared the structure and sequence of OutF65-172 with nine 

species of GspF family proteins from T2SS and T4PS in Gram-negative bacteria, T4PS, 

Com and Tad in Gram-positive bacteria and archaeal flagella. The eight totally conserved 

residues face inside of the cylinder formed by 6 α-helices and help to stabilize the helical 

bundle structure. The sequence and structure comparisons further confirmed the close 

relationship between components of the T2SS and T4PS. By sequence comparison and 

structure superimposition, two different dimer models of cytoplasmic domain II were 

built, the one formed in the same way as PilC is more stable than that of cytoplasmic 

domain I of OutF indicating the two cytoplasmic domains of OutF may associate to form 

dimers in different ways. In Chapter 3, the interactions between OutF and the inner-

membrane proteins OutL and OutE were also studied using several methods including 

NMR, pull-down and thermofluor assays. NMR results suggest that OutF65-172 interacts 

with OutL and OutE, but the interaction is not sufficiently strong to be confirmed by pull-

down or thermoflour assay. Pull-down assay demonstrated a strong interaction between 

OutL and OutE and a 1:1 ratio was also observed on the SDS-PAGE. This interaction has 

been previously characterized in the Vibrio cholerae system (Py, Loiseau et al. 2001). 
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In Chapter 4, I described cloning and expression of the inner-membrane platform from 

OutE to OutM in D.dadantti and T2SS from prepilin peptidase to GspM in E.coli (Fig. 

5.1).  The inner-membrane complex from OutE to OutM was further purified by size 

exclusion column Superose 6 and eluted from a single peak eluting after the void volume. 

The molecular size of this complex was initially checked by dynamic light scattering and 

shows average size of ~1000 kDa with high heterogeneity. The purified complexes, 

comprising mainly OutF, OutL, OutM and OutE, were subsequently used for negative 

stained transmission electron microscopy. 

 

 

Figure 5.1 Genetic organization of T2SSs from E. coli and D. dadantii 

Genes are labelled as single letters based on the Gsp nomenclature. Genes encoding GspC proteins 

are coloured brown, the secretins are coloured blue, the inner-membrane platform proteins are 

orange, the pseudo-pilins are coloured green, pre-pilin peptidases are yellow and accessory 

components are grey. Pilotins are coloured magenta. Operons are separated by double lines (Gu, 

Shevchik et al. 2017).  

 

Also in Chapter 4, I describe the collection of 834 micrographs which were collected 

automatically using the FEI EPU (Tan, Cheng et al. 2016) (E Pluribus Unum) software 

at a magnification of 29,000x corresponding to a pixel size of 3.48 Å/pixel on FEI Tecnai 

20 transmission electron microscope operating at 200 kV. The contrast transfer function 

was estimated using CTFFIND4(Rohou and Grigorieff 2015) and 127283 particles were 

auto-picked using the 2D reference generated from 2213 manually selected particles. 220 

of 300 2D classes were selected and used for initial 3D template building by SIMPLE 
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2.0(Elmlund and Elmlund 2012).  This template was used for 3D classification in 

Relion(Fernandez-Leiro and Scheres 2017). 

After two rounds of 3D classification, the best 3D class was chosen and used for 3D 

refinement. Even though the final resolution was only 32Å due to the heterogeneity of 

the particles, a ring can be observed in the bottom of model.  To further validate the 

location of ATPase and the assembly of the complex, ATPase deleted and pilus deleted 

mutations were cloned and expressed. However, there were quite limited protein 

expressed resulting in poor-quality purifications and low quality TEM images. The fitting 

is therefore speculative at this point and will be confirmed by future work.  Global 

searching and segment fitting were used to fit each of the known crystal structures into 

the density map of OutE-OutM complex. A high correlation 0.8547 was achieved after 

fitting the simulated model of crystal structure of ATPase hexamer into the map (model 

resolution was 20Å).  

5.3 Future work 

There is much work still to do to reveal the architecture of the inner-membrane complex 

of the type II secretion system of D. dadantii. Only four bands are observed on the gel 

after purification of the inner-membrane sub-complex from the construct OutE - OutM 

from D. dadantii and even for the entire gene operon GspO - GspM from E. coli.  Even 

though these bands have been confirmed to be OutE, OutL and OutF, OutM and OutH 

respectively by mass spectrometry, the reason why pseudopilus subunits were excluded 

from the complex is still unknown, but is presumably because of the absence of the D. 

dadantii prepilin peptidase O. 

Future work includes investigating the following: 
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a) Supplementation of the sub-complex with OutB/C may facilitate production of 

more complete and stable inner-membrane complexes. 

b) To localise the individual components within the inner-membrane platform 

complex, the deletion of ATPase and pilin subunits have been cloned and 

expressed. However, only few proteins were expressed even from 6 litres of 

culture which resulted in bad quality of TEM images. To improve the expression 

and purification of these two constructs, different expression vectors, induction 

reagents, expression conditions and detergents need to be screened in the future 

work. More deletion constructs and nanogold labelling of other members in this 

complex will be made to help to confirm the organisation of proteins within the 

complex validate and aid the fitting of crystal structures of protein domains and 

homology models into the electron density envelopes using Chimera. 

c) Even though ~130000 particles were used to building the 3D model, only ~10000 

particles were included in the final model with the highest resolution at 32.7Å due 

to the serious heterogeneity of the particles. To decrease the heterogeneity of the 

particles, I therefore plan to add a non-hydrolysable ATP analogue to inhibit the 

ATPase, as well as optimize the purification protocols including use of additional 

tags, detergent screening and gradient centrifugation techniques to increase 

compositional homogeneity before initiating cryo-TEM trials. 

d)  The lack of the prepilin peptidase might prevent the full assembly of the system. 

ATP hydrolysis mutants of OutE/GspE might lead to assembly of a more stable 

complex mimicking the preassembled inactive state. 

e) Introducing purified secretion substrates might provide interesting insights into 

the secretion intermediates especially when combined with the inactive ATPase. 
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f) Establish cryo-EM conditions for the complexes including the use of thin-film 

carbon-coated grids. Depending on the resolution of the cryo-EM analysis, which 

might not reach residue level, it may be important to apply more advanced 

strategies for structural modelling of the complexes. 

 

Clearly there is much work to do, but the goal of understanding how the type II secretion 

system works is closer as a result of the work described in this Thesis.
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