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Abstract—This paper presents a robust adaptive optimal
control strategy for wave energy converters (WECs). We first
propose a new estimator in a simple form to address modeling
uncertainties and formulate the control of WECs as an optimal
control problem. Then a novel energy maximization control
strategy is developed based on the concept of adaptive dynamic
programming (ADP), where a critic neural network (NN) is used
to approximate the time-dependent optimal cost value. To achieve
guaranteed convergence, a recently proposed adaptive law based
on the parameter estimation error is further tailored to online
update the weights of critic NN. Consequently, the critic NN
output, e.g. the costate, can be used to compute the optimal
feedback control. The proposed robust ADP WEC control method
is not only effective in handling dynamic uncertainties, but also
computationally efficient with a very fast online convergence rate
for the weights of the critic NN (less than 20 seconds for irregular
sea waves as demonstrated in the simulations). These advantages
significantly enhance the real-time applicability of the proposed
method. Simulation results show that this approach is robust to
model uncertainties and has significantly reduced computational
costs for implementation.

Index Terms—Wave energy converter, adaptive optimal con-
trol, adaptive dynamic programming, uncertainty estimator.

I. INTRODUCTION

Ocean waves provide vast, persistent and spatially concen-
trated energy compared with other renewable energy resources
(e.g. solar and wind energies) [1], [2]. In the UK, between 200
and 300 MWs of wave and tidal energy may be harvested by
2020, and up to 27GWs by 2050 [3]. However, current wave
technology is still immature for commercial purposes because
the low energy extraction rate and the high risk of device dam-
age can cause much higher unit cost of generated electricity
than fossil fuels and even other relatively mature renewable
energies [4]. Hence, appropriate control strategies need to be
developed for WECs to solve the energy maximization and
guarantee their safe operation.

Although a large number of wave energy converters (WECs)
have been developed over the past decades, the corresponding
control strategy development has lagged behind, which makes
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the WECs’ performance far from being optimal [5]. The WEC
control problem is challenging since most conventional control
strategies developed for tracking or regulation are not directly
suitable for the energy maximization problem. Conventional
control strategies for WECs were mainly developed using
the impedance matching principle, that is, the output energy
can be maximized if the dominant frequency of the incoming
waves matches the WEC’s resonance frequency, e.g. [6]–[8].
However, these control approaches are effective for idealized
regular waves and can become very complicated to implement
for realistic irregular sea waves.

Development of advanced control strategies for WECs is
identified as one of the most promising cost-reduction path-
ways [4]. It is found that the control task of WECs is to
maximize energy generation from sea waves and reduce the
risk of device damage. The energy maximization problem can
be formulated as a constrained optimal control problem, which
is different from the conventional optimal control problems
for reference tracking or regulation. Recent studies show that
the WEC control problem can be potentially resolved using
an economic model predictive control (MPC) strategy [9]–
[12]. However, the main challenge for the MPC of WEC is
the heavy computational burden for resolving the constrained
optimization problem online. To reduce the computational
burden, some alternative methods have been proposed, such
as the approach based on a modified objective function lead-
ing to a convex optimization [13], linear noncausal optimal
control [14], adaptive control [15], nonlinear MPC based on
pseudospectral control [16], and nonlinear MPC based on a
combination of the pseudospectral method and the differential
flatness property [17].

The efficacy of the above WEC control strategies, especially
those model-based ones, is highly affected by the accuracy of
the WEC models. However, precise WEC modeling is not a
trivial task. In particular, some parameters of the WEC hydro-
dynamic model, e.g. damping ratio, can vary significantly due
to the change of sea conditions, and the nonlinearities from
wave-structure interaction sometimes treated as unmodeled
dynamic uncertainties can become more significant for large
waves. Neglecting such uncertainties can degrade WEC con-
trol performance on the one hand; on the other hand, explicitly
describing these uncertainties using highly complicated WEC
models can dramatically increase the design complexities of
the WEC controls. Therefore, it is highly promising to develop
a control strategy that can handle the WEC model uncertainties
efficiently.

Recently, reinforcement learning (RL) [18], [19] based on
the principle of learning from experience coupled with the
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reward and punishment for survival and growth has been used
in many control designs, which subsequently stimulated the
development of a new optimal control design methodology,
named approximate dynamic programming (ADP). In the
originally proposed actor-critic based ADP framework [20],
neural networks (NNs) are trained to approximate the solution
of the derived Hamilton-Jacobi-Bellman (HJB) equation and
the control action [21], [22]. In recent years, substantial work
has also been reported to address the online ADP control
for continuous-time systems with unknown dynamics [23],
[24]. However, note that these existing ADP methods have
been mainly proposed to solve regulation or reference tracking
problems and cannot be directly used to solve the energy
maximization control problem of WECs.

In this paper, we exploit the applicability of ADP to the
WEC control problem and present an alternative optimal
WEC control method based on a new ADP scheme [24],
[25]. The potential modeling errors are first online estimated
using a simple uncertainty estimator, which only imposes
filter operations on the measured system variables. We then
reformulate the control of WEC systems as a constrained
optimal control problem with a finite horizon, where the
derived time-dependent HJB equation needs to be solved. For
the purpose of online implementation, a critic NN with the
current system states and the time-to-go [26], [27] being its
inputs is constructed and used to approximate the solution
of the HJB equation. Finally, a new adaptive law originally
proposed in our previous work [28] is further tailored to update
the weights of critic NN online to achieve convergence. In
comparison to the existing ADP schemes, this adaptive law is
used to directly estimate the unknown NN weights as in [24]
rather than minimize the residual Bellman error as [23]. Thus,
by means of the Lyapunov method, we prove that the obtained
practical control action converges to the neighborhood around
the optimal solution. The advantages of the proposed control
approach are mainly in the following aspects: firstly, the
proposed ADP approach can suitably cope with the modelling
uncertainties of the WEC plant, where an online uncertainty
estimator is employed; secondly, the ADP-based method is
much more computationally efficient than other online optimal
control approaches, e.g. dynamic programming (DP) [12] or
MPC [9]–[11], [13], [17]. Although recent work [29] presented
a RL-based WEC control which can be implemented online
to retain the optimal WEC behavior, an offline learning phase
with several hours is required. Different from the control
method in [29], the ADP control approach proposed in this
paper does not require the offline learning phase, which
improves its computational efficiency in real time applications.
A WEC model is needed for the proposed ADP approach,
which is robust to modeling uncertainties.

Numerical simulations based on a typical WEC, called point
absorber, are used to demonstrate the efficacy of the proposed
ADP control. The point absorber has a relatively high energy
conversion rate among many different designs, and is mainly
studied in the WEC control community [30]. Simulation
results show that the proposed ADP control algorithm is robust
to modeling uncertainties and achieves stable energy output.

The structure of this paper is as follows. The model of the
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Fig. 1. Schematic diagram of the point absorber

selected WEC is established in Section II. The ADP approach
with the uncertainty estimator is developed in Section III. The
simulation results of the ADP are demonstrated in Section IV.
The paper is concluded in Section V.

II. MODELLING OF WEC AND PROBLEM FORMULATION

A point absorber type of WEC to be studied in this paper
has a float with a constant radius cylinder on the sea surface.
Wave energy can be captured using different power take-off
(PTO) mechanisms, for example the PTO based on a direct
linear generator [31], or the one based on a hydraulic motor
and converters [32]. Fig. 1 shows part of a possible hydraulic
PTO design: a hydraulic cylinder is vertically installed below
the float and is fixed to the bottom of the seabed; more details
on this design can be found in [32]. In Fig. 1, zw and zv
are the water level and the height of the mid-point of the float
respectively. The generator’s torque is proportional to the force
fu acting on the piston inside the cylinder. The extracted power
is P = −fuv, where the velocity on the piston is v = żv.

The dynamic equation for the float of a point absorber [33]
can be established using Newton’s second law

msz̈v = fs + fr + fe + fu (1)

where ms is the float mass, zv is the heave motion of the float,
fr, fe is the radiation force and excitation force, respectively;
fu is the PTO force acting on the piston. The buoyancy force
fs is calculated by

fs = −Kzv (2)

with K being the stiffness coefficient calculated by K = ρgS.
Here, ρ is the water density; g is the gravitational acceleration;
S is the water plane area of the floating body. The radiation
force fr is determined by

fr = −
∫ ∞

−∞
hr(τ)żv(t− τ)dτ −m∞z̈v (3)

where m∞ is the added mass, and hr is the kernel of the radi-
ation force, which can be calculated using hydraulic software
packages. Define the integral term as fR :=

∫∞
−∞ hr(τ)żv(t−

τ)dτ , which can be approximated by a causal finite dimen-
sional state-space model

ẋp = Apxp +Bpżv (4a)

yp = Cpxp ≈
∫ t

−∞
hr(τ)żv(t− τ)dτ (4b)
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with xp ∈ R
np as the state and yp = fR.

The wave excitation force fe can be expressed as

fe =

∫ ∞

−∞
hf (τ)zw(t− τ)dτ (5)

which can be written as a state-space model (see [33] for more
explanations)

ẋf = Afxf +Bfzw (6a)

yf = Cfxf (t+ tc) ≈
∫ t

−∞
hf (τ)zw(t− τ)dτ (6b)

with xf ∈ R
nf is the state and yf = fe. Note that fe is a

noncausal term depending on the upstream wave measurement,
and tc in (6b) denotes the causalizing time shift. We use x̃f :=
xf (t+ tc) to denote the noncausal information needed in the
convolution term.

Substituting (2), (3), (4b) and (6b) into (1) gives

mz̈v = −Kzv − Cpxp + Cfxf + fu (7)

with m := ms +m∞ being the lumped mass.
By defining x1 := zv, x2 := żv, y := żv and u := fu, we

derive a state-space WEC model

ẋ = Ax+Buu+Bww + ξ (8a)

y = Cx (8b)

with x :=
[
x1, x2, xT

p , x̃�
f

]�
, w = zw and

A =

⎡
⎢⎢⎣

0 1 0 0

−K
m 0 −Cp

m
Cf

m
0 Bp Ap 0
0 0 0 Af

⎤
⎥⎥⎦ , Bw =

⎡
⎢⎢⎣

0
0
0
Bf

⎤
⎥⎥⎦ ,

C =
[
0, 1, 01×np , 01×nf

]
, Bu =

[
0, 1

m , 0, 0
]�

.

where the current wave evolution w is assumed to be measur-
able.

It is noted that in the WEC model (8a), we include an
unknown vector ξ in the formulation, which denotes the effect
of uncertainties, modeling errors and disturbances. This term
will be explicitly considered in the following control design.
Thus, the proposed control in this paper can be extended
to more realistic WEC systems with unmodelled dynamic
uncertainties.

The WEC control strategy is therefore to solve the following
finite-horizon constrained optimal control problem:

min
u(t)

∫ T

0

u(t)y(t)dt

s.t. (8a), ∀t ∈ [t0,+∞)

(9)

In this paper, (9) is resolved based on the concept of ADP
and the measured current wave evolution w = zw, while the
wave prediction algorithm is not needed. Compared with other
noncausal optimal control strategies for WECs, which need
future wave prediction (e.g. MPC), this ADP control provides
a sub-optimal causal control solution. In some scenarios (sea
states and devices), the loss of energy can be trivial [34],
especially when compared to the benefit of computation load

reduction and the avoidance of the cost and maintenance of
wave prediction hardware.

Remark 1: Note that the control performance of some
existing model-based advanced control strategies for WECs,
e.g. MPC [9], [10], [13] or dynamic programming [12], can
heavily rely on the fidelity of the WEC models and have heavy
computational cost. Moreover, the existing ADP methods (e.g.
[23], [24] and references therein) have been developed for
optimal regulation or tracking control problems only, and
cannot be directly used for WECs, whose control objective
is to achieve energy output maximization. Hence, the main
contribution of this paper is to present a new fast online
optimal control design methodology for WECs to maximize
output energy and effectively handle modeling uncertainties.
This has been achieved by introducing a simple uncertainty
estimation and further tailoring the idea of ADP.

III. ADAPTIVE OPTIMAL CONTROL DESIGN

This section presents uncertainty estimation and optimal
control design based on the ADP concept. The model un-
certainties are addressed first by introducing an uncertainty
estimator. Moreover, the input u cannot be too big since the
torque of the generator has an upper limit, and the heave
motion of the float zv needs also to be limited to prevent
damage. We cope with these constraints by tuning weights
and adjusting the cost function appropriately.

A. Estimation of uncertainties

In the model (8a), the uncertainties are lumped into an
additive uncertain variable ξ, whose effect may degrade control
performance, and thus needs to be taken into account in
the controller design. We first present a simple estimator to
estimate ξ. For this purpose, the following filtered variables
based on x, w, and u are defined as

κẋg + xg = x, xg(0) = 0, (10a)

κẇg + wg = w,wg(0) = 0, (10b)

κu̇g + ug = u, ug(0) = 0, (10c)

where κ > 0 is a small positive constant. Then the following
estimator can be given as

ξ̂ =
x− xg

κ
−Axg −Buug −Bwwg. (11)

We show that the above estimator can achieve exponential
error convergence.

Lemma 1: For system (8a) with estimator (11), the es-
timation error eξ := ξ − ξ̂ is bounded by ‖eξ(t)‖ ≤√
e2ξ(0)e

− t
κ + κ2�2 with � = supt>0‖ξ̇‖ being the upper

bound of ξ̇. This implies that eξ(t) exponentially converges to
a small set. Specifically, one can verify that ξ̂ → ξ for any
κ → 0 and/or � → 0.

Proof: One can apply a low-pass filter 1/(κs+1) as [28]
on both sides of (8a), and then have

ẋg = Axg +Buug +Bwwg + ξg, (12)
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where ξg is the filtered version of ξ given by κξ̇g + ξg = ξ
with ξg(0) = 0 (Note the variable ξg is used for analysis only
since ξ is unknown).

Next, we can verify from (10) that ẋg = (x − xg)/κ. This
together with (12) imply that ξ̂ = ξg , which means that the
proposed estimate given in (11) is equivalent to the filtered
version of the unknown uncertainties ξ.

From the fact ξ̇g = − 1
κξg +

1
κξ = 1

κeξ, the estimation error
can be given as

ėξ = ξ̇ − ξ̇g = ξ̇ +
1

κ
ξg − 1

κ
ξ = − 1

κ
eξ + ξ̇. (13)

We choose a Lyapunov function as V = 1
2e

�
ξ eξ, then its

derivative with respect to time t can be calculated along (13)
as

V̇ = e�ξ ėξ ≤ − 1

κ
e�ξ eξ + ‖eξ‖� ≤ − 1

κ
V +

κ

2
�2, (14)

where � denotes the bound of the lumped uncertainties.
This further implies that V (t) ≤ e−

t
κV (0) + κ2

2 �2 and

thus ‖eξ(t)‖ ≤
√
e2ξ(0)e

− t
κ + κ2�2. Then the exponential

convergence of eξ(t) to zero can also be claimed for κ → 0
and/or ξ̇ → 0 (and hence � → 0).

It is shown in the above lemma that the estimation ξ̂ can
exponentially converge to a small set around the true value of
the lumped uncertainties ξ. In this case, we can reformulate
the original system (8a) as

ẋ = Ax+Buu+Bww + ξ̂ + eξ, (15)

where the estimation error eξ is vanishing for sufficiently small
κ. In the following control design, we will use the model (15)
instead of (8a).

B. Optimal control of WECs

In the control design, to add tuning flexibilities for the
magnitude of the control input u and the system state x1,
a modified cost-to-go function is introduced

V (x, t) =

∫ T

t

(
x2(τ)u(τ) +

ε

δ − |x1(τ)| + u(τ)�Ru(τ)
)
dτ

(16)

where ε > 0 is a small constant, and R > 0 is a positive
definite matrix with appropriate dimension.

Remark 2: The first term in (16) represents the output
energy; the second term is a barrier function aiming to handle
the constraint imposed on the system state [12]; the third term
aims to add a tuning parameter R to the control signal, so that
a trade-off between the input effort and energy output can be
adjusted.

The above optimal control can be solved based on the
Pontryagin’s minimum principle (PMP) and the dynamic pro-
gramming method [12]. However, their heavy computational
costs may be problematic for practical application when the
WEC dynamics need to be described by a high order model. In
the following, we present an efficient solution of the optimal
control of WEC using the Hamiltonian method.

To solve this optimal control design, we first define a
Hamiltonian as follows

H(x, u, V, t) = V �
x (Ax +Bww +Buu+ ξ̂ + eξ)

+ x2u+
ε

δ − |x1| + u�Ru
(17)

where Vx := ∂V (x, t)/∂x is the partial derivative of V (x, t)
with respect to x.

Suppose the optimal cost value under optimal control u ∗ is
V ∗(x, t). Then the HJB equation associated with the finite-
horizon cost function (16) can be derived (as (3) in [35])

V ∗
t =−min

u

[
l(x, u) + V ∗�

x (Ax+Bww +Buu+ ξ̂ + eξ)
]

(18)

where l(x, u) := x2u+
ε

δ−|x1|+uTRu, V ∗
t := ∂V ∗(x(t), t)/∂t

and V ∗
x := ∂V ∗(x(t), t)/∂x.

According to the optimization condition [21], we can solve
∂H(x, u∗, V ∗)/∂u∗ = 0 for the optimal control

u∗ = −1

2
R−1

(
x2 +B�

u

∂V ∗(x, t)
∂x

)
(19)

Since the optimal cost function (16) has a finite-horizon, we
know that V ∗, V ∗

t and V ∗
x are dependent on time t [26], [35],

and V ∗
t appears in the HJB equation (18) though it is not

involved in the optimal control (19) explicitly. For this case,
the HJB equation (18) is non-linear and with time-varying
nature, and thus it is generally difficult or even not possible
to find its analytical solution. In the next subsection, we will
present an alternative solution by using the principle of ADP,
where a critic NN is trained to approximate the optimal cost-
to-go function.

C. Online adaptive optimal control via ADP

As shown in the last subsection, the above finite-horizon
cost-to-go function V ∗(x, t) is time dependent. To solve
this finite-horizon optimal control problem, the idea of ADP
has recently been explored for specific systems [26], [27],
[35]. In [35], a critic NN with time-dependent weights was
introduced to approximate the time-dependent cost function
(16). However, the time-dependent weights were calculated
through a backward integration, which is time-consuming and
computationally demanding. Alternatively, a critic NN with a
time-varying activation function (taking time-to-go as its input)
and constant weights was suggested in [26], [27] to derive an
iterative algorithm. In this paper, to implement the resulting
control algorithm online, we introduce a critic NN with a time-
varying activation function as [26], [27] to avoid inclusion of
future waves.

Assuming the optimal value function V ∗(x, t) is continuous
on a compact set Ω, then as shown in [26], [27], we can rep-
resent V ∗(x, t) by a critic NN with a time-varying activation
function within this compact set as:

V ∗(x, t) = W ∗�φ(x, T − t) + εn (20)

where W ∗ ∈ R
l defines the unknown ideal NN weights,

φ(x, T − t) = [φ1(x, T − t), · · · , φl(x, T − t)]� ∈ R
l denotes
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the time-varying activation function of the state x and the time-
to-go T − t as [26], [27]. l is the number of neurons, and ε n

is the NN approximation error.
Then its derivatives with respect to x and t are given by

∂V ∗(x, t)
∂x

= ∇φ�(x, T − t)W ∗ +∇εn (21)

∂V ∗(x, t)
∂t

= ∇φ�
t (x, T − t)W ∗ +∇εnt (22)

where ∇φ(x, T − t) = ∂φ/∂x, ∇φt(x, T − t) = ∂φ/∂t,
∇εn = ∂εn/∂x and ∇εnt = ∂εn/∂t are defined as the partial
derivatives of φ, εn regarding x and t, respectively.

Similar to [22], [26], [27], we make the following assump-
tion on the NN approximation:

Assumption 1: The ideal NN weight W ∗, regressor φ
and its derivatives ∇φ,∇φt of the critic NN are bounded by
‖W ∗‖ ≤ WN , ‖φ‖ ≤ φN , ‖∇φ‖ ≤ φM , ‖∇φt‖ ≤ φt. More-
over, the derivatives of approximation errors, e.g. ∇εn,∇εnt,
are bounded by ‖∇εn‖ ≤ φεn and ‖∇εnt‖ ≤ φεnt .

Note that we can design the critic NN regressor φ(x, T − t)
appropriately so that {φi(x, T − t) : i = 1, . . . , l} can provide
a completely independent basis. In this case, according to the
Weierstrass theorem [22], the approximation errors of critic
NN, e.g. εn, ∇εn,∇εnt, can converge to zero for l → +∞.

Then substituting (21) into (19) gives the ideal optimal
control u∗

u∗ = −1

2
R−1

[
x2 +B�

u (∇φ�(x, T − t)W ∗ +∇εn)
]

(23)

The optimal NN weight W ∗ is unknown, and thus the practical
critic NN used to approximate the optimal value function is
provided as

V̂ (x, t) = Ŵ�φ(x, T − t) (24)

where Ŵ denotes the estimated NN weights of W ∗. Then from
the estimated cost function (24), the approximated optimal
control u used for the practical control implementation is

u =− 1

2
R−1(x2 +B�

u ∇V̂x(x, t)) (25)

where ∇V̂x := ∇φ�(x, T − t)Ŵ is defined as the partial
derivative of V̂ (x, t) with respect to x based on (24).

Now the remaining issue is to determine the estimated
NN weights Ŵ , which need to converge to the ideal NN
weight W ∗. In this paper, an adaptive law is developed to
online update the NN weights Ŵ , which can guarantee the
convergence of Ŵ to a neighborhood of W ∗. This can be
achieved by further extending the idea of our previous work
[24], [28] and considering the Hamiltonian. To facilitate the
analysis, we substitute the critic NN (21) and (22) into the
HJB equation (18) and obtain:

W ∗�∇φt(x, T − t) +W ∗�∇φ(x, T − t)[Ax+Bww +Buu

+ ξ̂] + x2u+
ε

δ − |x1| + u�Ru+ εHJB = 0

(26)

We define εHJB := ∇ε�n (Ax + Bww + Buu + ξ̂ + eξ) +
W ∗�∇φ(x, T − t)eξ + ∇εnt to denote the residual HJB
equation error. This error comes from the NN errors ∇εn,

∇εnt and estimation error eξ, which are all bounded. Hence,
εHJB is also bounded.

To design an adaptive law based on (26), the known terms
are denoted as Ξ := ∇φt +∇φ(Ax + Bww + Buu + ξ̂) and
Θ := x2u + ε

δ−|x1| + u�Ru, and then equation (26) can be
represented as

Θ = −W ∗�Ξ− εHJB (27)

As shown in (26), the critic NN weights W ∗ are linearly
parameterized subject to the known dynamics Ξ. Then, we
denote the auxiliary matrix P , auxiliary vector Q as follows{

Ṗ = −γP + ΞΞ�, P (0) = 0

Q̇ = −γQ+ ΞΘ, Q(0) = 0
(28)

where γ > 0 is a forgetting factor parameter.
Another auxiliary vector M ∈ R

l is defined based on P
and Q as

M = PŴ +Q (29)

The adaptive law for updating the unknown NN weights Ŵ
is proposed as

˙̂
W = −ΓM (30)

where Γ > 0 is the learning gain, which is set as a constant
diagonal matrix.

To prove the convergence of the adaptive algorithm (30),
the following lemma is needed:

Lemma 2: The auxiliary variable defined in (29) is equiva-
lent to

M = −PW̃ + ϕ (31)

where W̃ = W − Ŵ is the critic NN weight error, and
ϕ = − ∫ t

0
e−γ(t−r)εHJB(r)Ξ(r)dr denotes the effect of the

bounded HJB residual error, i.e. ‖ϕ‖ ≤ εN holds for εN > 0.
Proof: One can solve the matrix equation (28) and obtain

its solution as{
P (t) =

∫ t

0
e−γ(t−r)Ξ(r)Ξ�(r)dr

Q(t) =
∫ t

0
e−γ(t−r)Ξ(r)Θ(r)dr

(32)

From (32), we have Q = −PW ∗ + ϕ. It is noted ϕ =
− ∫ t

0 e−γ(t−τ)εHJB(τ)Ξ(τ)dτ is also bounded because the
NN activation functions and the NN approximation errors are
all bounded, that is ‖ϕ‖ ≤ εN . Then by substituting (32) into
(29), one can obtain (31).

It is clearly shown in Lemma 1 that the suggested auxiliary
variable M in the adaptive law includes the NN weight error
W̃ perturbing by a small bounded residual variable ϕ, such
that the NN weight estimation convergence can be achieved
using the adaptive law (30) driven by the variable M [24].

Moreover, before proving the convergence of the proposed
adaptive law, we first investigate the positive definiteness of
the matrix P . Define λmax(·), λmin(·) as the maximum and
minimum matrix eigenvalues. We have the following lemma.

Lemma 3: [28] The condition λmin(P ) > σ > 0 holds for
any constant σ > 0 (i.e. P is positive definite) provided that
Ξ defined in (26) is persistently excited (PE).

Now, we have the main theoretical result of this paper as
follows:
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Theorem 1: Consider the adaptive law (30) with Ξ being
PE, then the weight error W̃ will ultimately converge to a
neighborhood of zero. Specifically, when ∇εn,∇εnt = 0
(i.e. the NN errors are zero), W̃ exponentially converges to
zero. Moreover, the practical control (25) will converge to a
neighborhood of the optimal solution (23).

Proof: We select a Lyapunov functional as V =
1
2W̃

�Γ−1W̃ , and calculate its time derivative along (30) as

V̇ = W̃�Γ−1 ˙̃W = −W̃�PW̃ + W̃�ϕ (33)

The residual error ϕ is bounded since the unknown NN errors
and critic NN regressor are all bounded. Then the equation
(33) can be presented as

V̇ = −W̃�PW̃ + W̃�ϕ ≤ −‖W̃‖(σ‖W̃‖ − εN ) (34)

Based on the extended Lyapunov theorem, we can show
that W̃ can uniformly converge to a set defined by Ω c =
{W̃ |‖W̃‖ ≤ εN/σ}. whose size is determined by the bound
of NN error εN and PE level σ. For the specific case with
εHJB = 0 and thus ϕ = 0, we know (34) can be reduced
to V̇ = −W̃�PW̃ < −σ‖W̃‖2 ≤ −μV , which implies
exponential convergence of W̃ to zero.

Based on the above analysis, one can find that the estimated
NN weights Ŵ converge to a small set around the ideal NN
weights W ∗. Moreover, the NN estimation error ∇εn is also
bounded. Consequently, it can be verified that the practical
control (25) will converge to a neighborhood of the optimal
solution (23).

The above analysis based on Lyapunov’s method for the
convergence of the estimator and critic NN are conducted for
the time going to infinity. However, as explained in [36] and
other ADP references (e.g. [27]), this type of analysis can be
used for finite horizon control problems though the final time
is bounded in this case.

Remark 3: Lemma 3 states that the well-known PE
condition is sufficient to guarantee the required condition
λmin(P ) > σ > 0, which is necessary to the proof of con-
vergence of (30). This condition can be true for generic WEC
systems since there is external sea wave input w perturbing the
system (8a). In particular, it is possible to numerically online
verify this condition by testing the minimum eigenvalue of P
as shown in [28].

Remark 4: The stability of WEC control is an important but
not fully addressed problem in the literature. In the case study,
this approximated optimal solution can stabilize the WEC
system within the reasonable ranges of device parameters,
because the WEC system (8a) in our study is inherently stable
(i.e. the matrix A is Hurwitz), and the sea wave w is bounded.

IV. SIMULATIONS

This section presents simulation results based on a point
absorber to validate the proposed online optimal control strate-
gies. The nominal values of the WEC model’s parameters are
exactly the same with those in [33], which are summarized
in Table I. We adopt this WEC model from [33] because
it has a relatively high energy conversion rate among many

TABLE I
NOMINAL SYSTEM PARAMETERS.

Parameters Values
r 0.35 (m)
ms 242 (kg)
m∞ 83.5 (kg)
K 3775.3 (N/s)
ρ 1000 (kg/m3)
g 9.81 (m/s2)

Time (s)
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Fig. 2. A 50 seconds period of wave profile (wave elevation).

different designs, and has been widely studied in the WEC
control community.

The state-space description of the impulse function for
calculating the wave excitation force is

Af =

⎡
⎢⎢⎢⎢⎣
0 0 0 0 −400
1 0 0 0 −459
0 1 0 0 −226
0 0 1 0 −64
0 0 0 1 −9.96

⎤
⎥⎥⎥⎥⎦ Bf =

⎡
⎢⎢⎢⎢⎣
1549886
−116380
24748
−644
19.3

⎤
⎥⎥⎥⎥⎦

Cf =
[
0 0 0 0 1

]
The state-space description of the impulse functions for the

radiation force is

Ap =

⎡
⎣0 0 −17.9
1 0 −17.7
0 1 −4.41

⎤
⎦ Bp =

⎡
⎣36.5394
75.1

⎤
⎦ Cp =

[
0 0 1

]
A realistic sea wave heave trajectory gathered from the coast

of Cornwall, UK, is used in the simulations. For demonstration
purpose, only 50 secs of the collected wave data are used, as
shown in Fig. 2. The magnitude of this wave profile is small
and its maximum is less than 2 m.

In the simulations, the parameters for the
ADP algorithm were chosen as: φ(x, tn) =
[x1t

3
n, x2t

3
n, 0.5x

2
1t

5
n, 0.5x

2
2t

5
n, x1x2t

5
n]

� with tn = (T − t)/T
and T = 50 being the normalised time-to-
go, Ŵ (0) = [0, 0, 0, 0, 0]�, ε = 1, δ = 1,
Γ = diag([0.5, 5, 5, 5, 5]) and γ = 10. The design of
the activation function of the critic NN is usually based on
engineering experience as [26], [27]. The parameter R is used
for tuning the magnitude of control input depending on the
limit of the PTO control force. In general, a big value of R
can penalize the required control actions, which in turn helps
to retain safe operations of a WEC with a small limit of PTO
control force and a large magnitude of sea wave profile. To
demonstrate this effect, we choose different values for R in
our simulations for comparison purpose.

Moreover, to verify the efficacy of the proposed estimator
and test the robustness of the ADP controller, we assume
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model mismatch exists between the WEC model and the model
used in the ADP controller. In this case, the WEC model is
designed based on the above nominal parameters, while these
parameters in the ADP controller model have different values.
In the simulations, the model mismatch due to the variation
of the mass m∞ depending on the radiation force variation is
taken into account. We can also assume parameter variation
for the damping ratio in a similar way.

The simulations were conducted in the following 3 cases.
Case 1: No model mismatch between the WEC model and
the controller model. Different R values are tested.
Case 2: With model mismatch. The added mass used in the
control is 18.4 kg which is 78% less than the nominal value
of WEC added mass. Thus the total mass used in the control
design is 242 + 18.4 = 260.4 kg, which is 20% less than the
nominal value of WEC total mass. R = 1× 10−4 is chosen.
Case 3: With model mismatch and estimator. The added mass
used in the control is 18.4 kg and the estimator (11) is used
to estimate and compensate for the parametric uncertainties in
the control. R = 1× 10−4 is chosen.

Fig. 3 shows the power outputs and energy outputs of Case
1) with R = 1 × 10−4. It is shown that the proposed control
algorithm can lead to stable energy output, which indicates
its efficacy. Moreover, the generated power approaches to
negative values at some time instant, which indicates a power
flow from the grid to the ocean may happen. This bi-directional
power flow can be achieved by some hardware design, e.g.
[32], and it can generate more energy than the one-directional
power flow from ocean to the grid, as demonstrated in e.g.
[17]. However, since in these simulations, the negative power
flow only happens occasionally, this means that if we restrict
the PTO to unidirectional power flow, the energy loss cannot
be significant.

To specifically show the effect of the tuning parameter R on
the control response, Fig. 4 gives the tendency of the maximum
control input (|u|), maximum float heave (|x1|) and energy
output with different R, from which, one may find that with
the increase of R the maximum control input decreases, which
indicates that the control constraints on u can be satisfied
using large R. However, the maximum float heave increases
for larger R, which may cause device damage (in this case,
the parameter δ should be increased). Hence, the trade-off
between the control constraints and operation safety should
be considered in the control implementation. Moreover, one
may find from Fig.4 that the generated energy increases with
R when R < 1 × 10−4, but decreases when R > 1 × 10−4.
This is because the addressed WEC optimal control problem
with the given optimal cost function may be nonconvex for
small R. The proposed optimal control using the concept of
ADP can solve this issue even when R is small, which cannot
be easily resolved using conventional MPC method, e.g. [13].

Figs 5-7 illustrate the control input trajectories, float heave
trajectories, and energy outputs of the studied three cases,
respectively. To guarantee energy output, we use R = 1×10−4

with maximum energy as shown in Fig.4. This group of
comparisons are dedicated to validate the effectiveness of
the proposed uncertainty estimator. One may find that the
trajectories of Case 1 and Case 3 are very close because
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Fig. 3. The energy outputs of Case 1.

TABLE II
COMPARISON OF CONTROL PERFORMANCE OF ADP IN DIFFERENT

SCENARIOS.

Case 1 Case 2 Case 3
Energy output (J) 27598 26609 27354
Maximum input (N) 3321 3005 3294
Minimum input (N) -3746 -3615 -3585
Maximum heave (m) 1.00 0.96 0.99
Minimum heave (m) -0.96 -0.91 -0.95

the modeling uncertainty due to the variation of the added
mass can be precisely estimated using the proposed uncertainty
estimator (as shown in Fig.8). Hence, the mismatch between
the nominal WEC plant and the model used in the control
design can be compensated when the estimated uncertainty
is incorporated into the ADP control implementation. Conse-
quently, the generated power and energy for Case 1 and Case
3, as shown in Fig.7, are very similar. However, for Case 2
where the model mismatch is not considered (the uncertainty
estimator is turned off) in the control design, the generated
power and energy are smaller than both Case 1 and Case 3.
This result clearly indicates that the proposed estimator can
improve the robust performance of the controller. Finally, Fig.
9 provides the profile of the critic NN weights, which can
achieve convergence after a transient period, illustrating the
efficacy of the proposed adaptive law.

The above mentioned conclusions can also be demonstrated
using a quantitative analysis. For this purpose, Table II shows
the maximum and minimum values of the control inputs
and float heaves, and the energy outputs of the three cases,
respectively. Again, it is shown that the ADP control with
estimator (Case 3) outperforms Case 2 when the estimator is
not used.

In the simulation, we also note that the computational
burden for implementing the developed ADP control is very
small even for this 10th-order WEC system, since it can be
implemented online without any offline learning phases. The
low computational burden of the proposed ADP control is one
of the main advantages over the MPC controllers developed for
the WEC control problem. Moreover, since the ADP algorithm
does not require the future wave information, which requires
a wave prediction technique, economic hardware is sufficient
for the implementation of the proposed algorithm in this paper.
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V. CONCLUSION

In this paper, a new optimal control strategy based on ADP
is proposed for a particular WEC device (point absorber). The
energy maximization control problem is solved by introducing
a critic NN with time-to-go as its input to approximate the
unknown time-varying cost function. Modeling uncertainties
are online estimated using a simple yet robust uncertainty
estimator, which is incorporated into the control design. To
achieve a fast convergence rate, we use a new adaptive law
to online update the critic NN weights, which is driven
by the obtained NN weight error information. Numerical
simulations demonstrate that the proposed ADP method can
handle uncertainties effectively, which helps to maintain the
control performance of the WECs. The proposed approach has
the potential to be extended to the control of other types of
WECs, and even other energy maximization control problems.
It is also noted that the proposed approach has some tuning
parameters to cope with input saturation. In the future work,
we will explicitly incorporate the control constraints into the
ADP optimization algorithm.
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