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Abstract: An adaptive fuzzy neural network control scheme is proposed for a marine vessel with time-varying constraints, guar-
anteed transient response and unknown dynamics. A series of continuous constraint functions are introduced to shape the motion
of a marine vessel. To deal with the constraint problems and transient response problems, an asymmetric time-varying barrier
Lyapunov function is designed to ensure that the system states are upper bounded by the considered constraint functions. Fuzzy
neural networks (FNNs) are constructed to identify the unknown dynamics. Considering existing approximation errors when FNNs
approximating the unknown dynamics, an adaptive term is designed to compensate the approximation errors in order to obtain
accurate control. Via Lyapunov stability theory, it has been proved that all the states in the closed-loop system are uniformly
bounded ultimately without violating the corresponding prescribed constraint region. Two comparative simulations are carried out
to verify the effectiveness of the proposed control.

1 Introduction

Recently, some advanced control schemes have been widely used
and obtained a better control effect in modern offshore engineering
applications [1]. With the development of maritime trade, the impor-
tance of the marine vessel and accurate control of a marine vessel
is becoming increasingly prominent [2–6]. But traditional control
schemes like PID control hardly satisfy the requirement of modern
navigation safety as the complexity of control tasks increases for a
marine vessel. By analysing the cause of the current marine vessel
collision accidents, it is found that the inaccurate traveling control
over the desired trajectory accounts for these accidents. And aggres-
sive nature changes in the marine environment may result in marine
vessel collision accidents, therefore a more accurate controller is of
greater importance to the safety of the marine vessel. In recent years,
many researchers have tried to employ neural network control [7–
10], optimal control [11–14], robust control [15, 16] etc., to achieve
the accurate control of some complicated systems in an intelligent
and automatical form. If there exists an adaptive control constraining
the motion of a marine vessel in a prescribed region, marine vessel
collision accidents may decrease. To obtain such an adaptive control,
fuzzy neural networks and barrier Lyapunov functions are utilized.

There often exist unmodeled dynamics and unknown parameters,
thus it is very difficult to design an accurate controller satisfying the
requirement of control performance. As we know, neural networks
have been considered as a powerful tool in control and applica-
tions [17–19]. In [20, 21], the unknown marine vessel dynamics
are identified by appropriate neural network structures. Neural net-
work control can simulate the function of human to learn about the
system they are controlling online such that system performance
can be improved automatically. However, neural network control is
not straightforward to extract comprehensible rules from the neu-
ral network’s structure. In [22], in order to demand linguistic rules
instead of learning data as prior knowledge, a fuzzy system based
on the current output error and its time derivative is adopted to
determine the value of control parameters. The approach has been
shown to be effective in tracking a prescribed desired trajectory.
However, it does not have any automatic learning capabilities to

handle the uncertainty. After that, some research results have incor-
porated fuzzy techniques into neural network structure in order to
obtain learning capabilities [23]. Furthermore, fuzzy neural net-
works are hybrid intelligent systems that combine advantages of both
fuzzy systems and neural networks. As a result, the combination of
the two techniques can not only avoid the lack of interpretability
for neural networks but also enhance learning capabilities of fuzzy
systems. In [24–26], the recognizing capability of fuzzy neural net-
works is employed to approximate the unknown system dynamics,
which releases the need of accurate system information. In [27], an
adaptive fuzzy neural network control is proposed for a constrained
robot such that uniform boundedness is guaranteed. That strategy
can reduce online computation load by using few adjustable param-
eters. By the research work mentioned-above, fuzzy neural networks
can unite the advantage of both neural networks and fuzzy sys-
tem, exclude their disadvantage. But the previous works [20, 21]
don’t consider the effect of time-varying constraints or guaranteed
transient response performance for a marine vessel. Consequently,
adaptive fuzzy neural network control should further be developed
for a marine vessel with time-varying constraints and guaranteed
transient response performance.

State constraints are very general in most marine vessel sys-
tems, and violation of these constraints during operation may lead
to great performance degradation, safety issue, etc. And constraint
control on system states can make the motion of the marine vessel
remain in a small prescribed neighborhood of the reference trajec-
tory, which further improves the tracking accuracy and may decrease
the marine vessel collision accidents. It has been proved in [28–30]
that barrier Lyapunov function has the ability to prevent the vio-
lation of constraints. In [31], output constraints are guaranteed by
constructing an asymmetric time-varying barrier Lyapunov function
for nonlinear systems. [32], based on the barrier Lyapunov func-
tion, the authors design a controller for unmanned aerial vehicles
with full-state constraints. In [33], the barrier Lyapunov function is
designed to prevent the violation of output constraints for a flexi-
ble string system. In [34], the symmetric barrier Lyapunov function
is chosen to solve the control problems of the marine vessel with
multiple output constraints. Thought full-state constraints or output
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constraints have been solved successfully for the marine vessel in
[32–34], these constraints are constant constraints. However, in most
situations, a marine vessel is subject to the wind, the wave loads and
the ocean currents [5, 6], which would lead to a result that constant
constraints hardly satisfy the requirement of engineering. Therefore,
time-varying constraints of a marine vessel can meet the real demand
better and should be further guaranteed. From this point, the control
scheme in [32–34] is conservative. To overcome this conservatism,
as the improvement we will develop an adaptive fuzzy neural net-
work control for a marine vessel with time-varying constraints and
guaranteed transient response performance.

Motivated by above observations, this paper will propose an
adaptive fuzzy neural network control for a marine vessel with time-
varying constraints and guaranteed transient response performance.
Firstly, to obtain the prescribed transient response performance and
prevent the violation of time-varying output constraints, a series of
continuous constraint functions are introduced to shape the motion
of the marine vessel. Meanwhile, the asymmetric barrier Lyapunov
functions are introduced to ensure that the motion of the marine
vessel is always upper bounded by the constraint functions. By the
symmetric barrier Lyapunov functions, the velocity constraint can
be guaranteed. Secondly, adaptive fuzzy neural networks are con-
structed to identify the unknown system dynamics and an auxiliary
adaptive term is designed to compensate the approximation error of
fuzzy neural networks. Finally, by combining the above procedure,
an adaptive fuzzy neural network control is proposed. We intro-
duce a series of new continuous constraint functions which converge
to the exponential decay function as time intends to zero and the
sine function as time approaches infinite, while the constraint func-
tions considered in [20, 35, 36] only converge to constants as time
approaches infinite. As time approaches infinite, the constraint func-
tions considered in our paper can be considered as the time-varying
output constraint functions and from the standpoint of actual motion
control of a marine vessel, the time-varying constraints are more
general than constant constraints. In the previous works [17–27, 37–
40], the obtained design policy is based on an assumption that the
approximation error of fuzzy neural networks or neural networks can
converge to any small neighborhood of zero, however this assump-
tion isn’t always satisfied in the early stages of adaptation, which
may cause poor tracking performance and even instability. To fur-
ther solve this problem existing in [17–27, 37–40], we design an
adaptive term to compensate the approximation error of fuzzy neu-
ral networks such that more accurate control can be obtained. In this
paper, with respect to the traditional barrier Lyapunov functions used
in [32–34], the asymmetric ln-type barrier Lyapunov function is
designed to deal with the guaranteed transient response performance
and time-varying output constraints, and fuzzy neural network con-
trol is utilized to approximate the unknown system dynamics. This
type of proposed control is suitable for accurate trajectory tracking
and objection manipulation.

Comparing with the previous works, the main contributions of
this paper are summarized as follows: 1) A series of new continuous
constraint functions are introduced to shape the motion of the marine
vessel. By combining the asymmetric time-varying barrier Lyapunov
function technique, guaranteed transient response and time-varying
output constraints can be obtained. 2) Adaptive fuzzy neural net-
works are constructed to identify the unknown system dynamics,
which releases the need of accurate system information. 3) Adap-
tive parameters which update online depending on tracking errors
are designed to compensate the approximation error of FNNs such
that under the action of the proposed control, the system would have
a more accurate tracking performance.

2 Problem Formulation and Preliminaries

2.1 Problem Formulation

The motion and state variables of a single point mooring system are
defined and gauged relative to the earth-fixed frame and the body-
fixed frame, respectively. As shown in Fig. 1, (xe, ye) stands for
that earth-fixed frame whose origin is located at the connection of

the mooring line and the mooring terminal. The fixed body frame,
expressed as (xd, yd), is taped to the vessel body, and its origin is
consistent with the center of gravity of the moored vessel. The xd
axis is directed from rear to fore along the longitudinal axis of the
marine surface vessel, and the yd axis is directed to starboard. The
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Fig. 1: Geometric figure of the marine surface vessel system.

dynamics [21, 41] of the marine vessel is expressed as

q̇1 = J(q1)q2

Mq̇2 + C(q2)q2 +D(q2)q2 + g(q1) = F (1)

where q1 = [q1x, q1y, q1ψ] ∈ R3 denotes the Earth-frame posi-
tions and heading. F ∈ R3 stands for the control input. q2 =
[q2x, q2y, q2ψ]

T ∈ R3 denotes the velocity of a marine vessel.
M ∈ R3×3 denotes the symmetric positive definite inertia matrix.
C(q2) ∈ R3×3 denotes the Centripetal and Coriolis torque, and
D(q2) ∈ R3×3 denotes the damping matrix. g(q1) ∈ R3 denotes
the restoring forces resulted by gravity force, ocean currents, and
floatage. J(q1) ∈ R3×3 is the transformation matrix and assumed
to be nonsingular, and J(q1) is expressed as

J(q1) =

 cos q1ψ − sin q1ψ 0
sin q1ψ cos q1ψ 0

0 0 1

 (2)

Define x1 = q1, x2 = q2, (1) can be expressed as in the state-space
form

ẋ1 = J(x1)x2

ẋ2 = M−1[F − C(x2)x2 −D(x2)x2 − g(x1)] (3)

The control objective in this paper is to design an adaptive FNN
controller for a marine vessel such that a marine vessel can achieve
accurate trajectory tracking control and all the states in the closed-
loop system are uniformly bounded ultimately without violating the
corresponding prescribed constraint region.

2.2 Preliminaries

Lemma 1. [34] In this paper, a time-varying barrier Lyapunov func-
tion is introduced to cope with time-varying constraint problems. A
ln-type time-varying barrier Lyapunov function is presented as

Vf = ln
1

1−ϖ2
, |ϖ| < 1 (4)

which indicates that Vf is a positive function over the set |ϖ| < 1.
The following inequality holds for ϖ ∈ R in the interval |ϖ| < 1.

ln
1

1−ϖ2
≤ ϖ2

1−ϖ2
(5)

Property 1. [42] M ∈ Rn×n is a positive and symmetric matrix.
λmin and λmax stand for minimum and maximum eigenvalues of M ,
respectively. The following inequality holds:

λmin||x||2 ≤ xTMx ≤ λmax||x||2, ∀x ∈ Rn (6)
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A function N(η) is called a Nussbaum-type function which
satisfies

lim
s→∞

sup
1

s

∫s
0
N(η)dη = +∞ (7)

lim
s→∞

inf
1

s

∫s
0
N(η)dη = −∞ (8)

Commonly Nussbaum functions include: k2 cos(k), k2 sin(k),
k cos(k) and k sin(k) . In this paper, k cos(k) is exploited. The
following Lemma will be employed in the control design.

Lemma 2. [27] η(·) and V (·) are smooth functions defined in the
interval [0, tf ) with V (t) > 0, ∀t ∈ [0, tf ). N(η) = η cos(π2 η) is
a smooth Nussbaum-type function. If the following inequality holds:

V (t) ≤ κ1e
−κt + e−κt

∫ t
0
g(τ)N(η)η̇eτtdτ, ∀t ∈ [0, tf ) (9)

where κ, κ1 are positive constants. g(t) is a time-varying function
taking value in the unknown interval I1 := [l−, l+], where 0 ∈ I1.
Then, V (t) and

∫t
0 g(τ)N(η)η̇eτtdτ are bounded on [0, tf ).

2.3 Fuzzy Neural Networks

A fuzzy system consists of four parts: the knowledge base, the
fuzzifier, the fuzzy inference engine working on fuzzy rules, and
the defuzzifier [43]. Consider l fuzzy IF-THEN rules R(k): If x1
is Ak1 and · · · and xn is Akn, then y is W k, k = 1, · · · , l, where
R(k) denotes the k-th rule, 1 ≤ k ≤ l, (x1, x2, · · · , xn)T ∈ U ⊂
Rn, and y ∈ R are the linguistic variables that are associated with
the inputs and output of the fuzzy logic system, respectively, and Aki
and W k denote the fuzzy sets in U and R. The fuzzy logic system
performs a nonlinear mapping from U to R. In this paper, the fuzzy
logic system is

y(x) =

∑l
k=1 yk(Π

n
i=1µAk

i
(xi))∑l

k=1(Π
n
i=1µAk

i
(xi))

(10)

where x = [x1, x2, · · · , xn]T and µAk
i
(xi) is the membership

function of linguistic variable xi with µAk
i
(xi) = exp[− (xi−c2ik)

σ2
ik

].
Weight vectors and fuzzy basis function vectors are defined, respec-
tively, as θ = [y1, y2, · · · , yl]T and ϕ(x, c, σ) = [s1, s2, · · · , sl]T ,

where sk =

∏n
i=1 µAk

i
(xi)

[
∑l

k=1

∏n
i=1 µAk

i
(xi)]

, c = [cT1 , c
T
2 , · · · , cTn ]T and

σ = [σT1 , σT2 , · · · , σTn ]T . Therefore, (10) can be represented as

y = θTϕ(x, c, σ) (11)

It has been proven that the fuzzy logic system (11) has the capac-
ity to approximate any given real continuous functions over a
compact set to any degree of accuracy. Therefore, we have the fol-
lowing approximation for the unknown nonlinear function fi(xi),
i = 1, 2, · · · , n.

fi(xi) = θ∗Ti ϕ(xi) + ϵi (12)

where θ∗Ti is an unknown constant parameter vector, ϕ(xi) is the
fuzzy basis function and ϵi is the approximation error, which satisfies
maxZ∈ΩZ

||ϵi|| < ϵ∗i , where ϵ∗i > 0 is unknown bound [44].

3 Control Design

Before starting to control design, the following tracking errors are
defined.

z1 = x1 − xd, z2 = x2 − α (13)

where z1 = [z11, z12, z13]
T denotes the position tracking error of a

marine vessel, z2 = [z21, z22, z23]
T stands for the velocity tracking

error of a marine vessel. α = [α1, α2, α3]
T is a virtual controller

which is designed later and aims to make error z1 convergent.
xd = [xd1, xd2, xd3]

T is the reference trajectory of the marine ves-
sel. Assume that |xdi| is bounded, i.e., |xdi| ≤ Ci with Ci being a
positive constant. Fig. 2 gives the system structure.

α F
An constrained 

marine vessel
- -

FNNs
z1
z2 Adaptive law for Θ 

xd z2z1

x1
x2

Fig. 2: System structure.

3.1 Guaranteed Transient Response Performance and
Time-varying Output Constraint Design

To obtain the satisfactory tracking performance, especially transient
response performance (overshoot, undershoot and convergence rate),
we introduce a series of continuous constraint functions to shape the
motion of the marine vessel as

πi,j = (π0i,j − π∞i,j)e
−ξi,jt + ϱi,j cos(ωi,jt) + π∞i,j

i = 1, 2, 3 j = 1, 2 (14)

in which πi,j is the jth (j = 1 denotes upper bound and j = 2
denotes lower bound) prescribed time-varying bound of ith error
z1i. ϱi,j , π0i,j , π∞i,j , ξi,j and ωi,j are known constants which
determine the shape of error trajectories. It can be seen from

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

1.5

Prescribed time-varying 

constraint bound π
i,j

Tracking error z
1i

Fig. 3: Tracking error z1i and prescribed time-varying constraint
bound πi,j

Fig. 3 that (π0i,j − π∞i,j)e
−ξi,jt ≫ ϱi,j cos(ωi,jt) + π∞i,j is

obtained by choosing appropriate parameters as t → 0, in this
case πi,j ≈ (π0i,j − π∞i,j)e

−ξi,jt, which shows that πi,j can
shape the satisfactory transient response. Similarly, as t → ∞,
(π0i,j − π∞i,j)e

−ξi,jt ≪ ϱi,j cos(ωi,jt) + π∞i,j , thus it follows
that πi,j ≈ ϱi,j cos(ωi,jt) + π∞i,j , from which we know that
time-varying output constraints can be guaranteed as t → ∞. In
other words, (14) not only guarantees the satisfactory transient
response performance, but also prevents the violation of time-
varying output constraints.
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Remark 1. In [20, 35, 36], control design mainly focuses on the
transient response performance, but the disadvantage is that as
t → ∞, the considered constraint functions corresponding to (14)
converge to a constant, this point is very conservative. To over-
come this conservatism, we introduce a series of novel continuous
constraint function given by (14) and the constraint function (14)
will converge to time-varying function ϱi,j cos(ωi,jt) + π∞i,j as
t → ∞. From engineering standpoint, time-varying constraints are
more general than constant constraints.

Then, the control objective in this section is to design a proper vir-
tual controller such that tracking error z1 can satisfy the prescribed
performance shown in Fig. 3. To guarantee the prescribed perfor-
mance, the following transformation error is introduced and will be
used in the later design.

ϖa =

[
z11
π1,2

,
z12
π2,2

,
z13
π3,2

]T
, ϖb =

[
z11
π1,1

,
z12
π2,1

,
z13
π3,1

]T
,

ϖi = (1− hi(z1i))ϖa,i + hi(z1i)ϖb,i, i = 1, 2, 3 (15)

where πi1, πi2 are prescribed upper and lower bounds of error z1i,
respectively. ϖa,i, ϖb,i are ith element of ϖa, ϖb, respectively,
hi(z1i) is defined as a switching function given by

hi(z1i) =

{
1, z1i ≥ 0

0, z1i < 0
(16)

In the interval 0 < ϖa,i < 1 or 0 < ϖb,i < 1, an asymmetric time-
varying barrier Lyapunov function is constructed as

V1 =

3∑
i=1

(
hi
2

ln
1

1−ϖ2
b,i

+
1− hi

2
ln

1

1−ϖ2
a,i

)
(17)

Differentiating V1 with respect to time yields

V̇1 =

3∑
i=1

(
hi

1−ϖ2
b,i

ϖb,iϖ̇b,i +
1− hi

1−ϖ2
a,i

ϖa,iϖ̇a,i

)
(18)

According to the definitions of ϖa,i, ϖb,i, we have

V̇1 =

3∑
i=1

(
ϖ2
i

(1−ϖ2
i )z1i

ż1i

)
+

3∑
i=1

(
(1− hi)ϖ

2
a,i

(1−ϖ2
a,i)

π̇i,1
πi,1

)

+

3∑
i=1

(
hiϖ

2
b,i

(1−ϖ2
b,i)

π̇i,2
πi,2

)
(19)

Define control matrix Q as

Q =

[
ϖ2

1

(1−ϖ2
1)z11

,
ϖ2

2

(1−ϖ2
2)z12

,
ϖ2

3

(1−ϖ2
3)z13

]T
(20)

Therefore, we have

V̇1 =QT ż1 +

3∑
i=1

(
(1− hi)ϖ

2
a,i

(1−ϖ2
a,i)

π̇i,1
πi,1

)

+

3∑
i=1

(
hiϖ

2
b,i

(1−ϖ2
b,i)

π̇i,2
πi,2

)
(21)

Remark 2. For ith element ϖ2
i

(1−ϖ2
i )z1i

of matrix Q, the following

two cases are considered to show the singurality of ϖ2
i

(1−ϖ2
i )z1i

. If

z1i ≥ 0, ϖ2
i

(1−ϖ2
i )z1i

is rewritten as z1i
π2
i,1−z21i

, and z1i
π2
i,1−z21i

is well-
defined in the prescribed region z1i < πi,1. If z1i < 0, the results

are similar to above results. Therefore, ϖ2
i

(1−ϖ2
i )z1i

is well-defined in
the prescribed region πi,2 < z1i < πi,1, i = 1, 2, 3.

Notice that motion ẋ1 = J(x1)x2 and z1 = x1 − xd, z2 =
x2 − α, thus ż1 = J(x1)(z2 + α)− ẋd. To further obtain virtual
control α, substituting ż1 into (21) yields

V̇1 =QT (J(x1)(z2 + α)− ẋd) +

3∑
i=1

(
(1− hi)ϖ

2
a,i

(1−ϖ2
a,i)

π̇i,1
πi,1

)

+

3∑
i=1

(
hiϖ

2
b,i

(1−ϖ2
b,i)

π̇i,2
πi,2

)
(22)

The virtual control α is proposed as follows

α = J+(x1)(ẋd −K1z1 − γz1) (23)

where J+(x1) is the Moore-Penrose pseudoinverse of J(x1), K1 =
KT

1 is a positive definite gain matrix, γi is a positive constant
satisfying

γi >

√(
π̇i,1
πi,1

)2

+

(
π̇i,2
πi,2

)2

, i = 1, 2, 3 (24)

and γ = diag[γ1, γ2, γ3]. Then, substituting virtual control α into
(22) yields

V̇1 ≤ −QTK1z1 +QT J(x1)z2 (25)

In the subsequent design, the coupling term QT J(x1)z2 will be
removed.

Remark 3. As can be observed from (17), a time-varying barrier
function is integrated into the designed Lyapunov function. It is clear
that |ϖa,i|, |ϖb,i| cannot be greater than one. Combining (15), we
can conclude that the prescribed performance shown in Fig. 3 is
guaranteed. And by choosing appropriate parameters, the designer
can obtain the satisfactory tracking performance.

3.2 Adaptive Fuzzy Neural Network Control with Full-state
Constraints

An adaptive FNN control scheme with self-learning ability will be
presented to address full-state constraints and unknown dynamics
for a marine vessel. The recognizing capacity of fuzzy neural net-
works is employed to identify the unknown plant of a marine vessel.
In Guaranteed Transient Response Performance and Time-varying
Output Constraint Design, tracking error z1 has been constrained by
the time-varying constraint region πi,2 < z1i < πi,1(i = 1, 2, 3).
Then, error z2 should be constrained to satisfy ||z2|| < b, provided
that ||z2(0)|| < b, with b being a positive constant, the detailed
design is presented as follows.

Since there exist uncertainties in M,C(x2), D(x2), g(x1), a
traditional non-adaptive controller based on error signals hardly
achieves such a complicated control goal. FNNs have the ability to
approximate these uncertainties [27, 45]. Therefore, the following
unknown term is approximated by FNNs.

θ∗Tϕ(Z) + ϵ(Z) = C(x2)x2 +D(x2)x2 + g(x1) +Mα̇ (26)

where Z = [xT1 , x
T
2 , α

T , α̇T ] is the input of FNNs. θ̃, θ̂, θ∗ are
error weights, actual weights and optimal constant weights, respec-
tively, and there is θ̃ = θ̂ − θ∗. ϵ(Z) = [ϵ(Z)1, ϵ(Z)2, ϵ(Z)3]

T

denotes the unknown approximation error. Assume that P ∗ =
[P ∗

1 , P
∗
2 , P

∗
3 ]
T stands for an unknown upper bound of ϵ(Z), namely

sup{|ϵ(Z)i|} ≤ P ∗
i , i = 1, 2, 3 (27)

Define P̂ = [P̂1, P̂2, P̂3]
T as an estimation value of P ∗, P̃ denotes

estimation errors satisfying P̃ = [P̃1, P̃2, P̃3]
T = P̂ − P ∗, and in
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the subsequent design P̂ will be used to compensate the FNN
approximation error ϵ(Z). Then, an adaptive FNN controller is
designed as

F =−K2z2 − K3z2

bT b− zT2 z2
+ θ̂Tϕ(Z)

−

 P̂1 tanh(
z21
δ )

P̂2 tanh(
z22
δ )

P̂3 tanh(
z23
δ )

− JT (x1)Q (28)

where K2 = diag[k21, k22, k23], δ is a small positive constant. To
further improve the system performance, the updating laws of θ̂, P̂
are designed as

˙̂
θi = −Γi[ϕ(Z)z2i + σiθ̂i], i = 1, 2, 3 (29)

˙̂
Pi = tanh(

z2i
δ

)z2i − σpiP̂i, i = 1, 2, 3 (30)

where Γi = ΓTi is a positive gain matrix. σi, σpi are positive con-
stants which improve the robustness of the system. By combining
(3), (13) and (26), the following closed-loop error dynamics is
obtained.

ż1 = J(x1)(z2 + α)− α̇ (31)

ż2 = M−1(F − θ∗Tϕ(Z)− ϵ(Z)) (32)

According to the closed-loop error dynamics (31) and (32), the fol-
lowing positive barrier Lyapunov function is defined in the interval
∥z2∥ < b.

V2 =V1 +
1

2
ln

1

bT b− zT2 z2
+

1

2
zT2 Mz2

+
1

2

3∑
i=1

θ̃Ti Γ
−1
i θ̃Ti +

1

2

3∑
i=1

P̃ 2
i (33)

The derivative of V2 with respect to time yields

V̇2 =V̇1 +
zT2 ż2

bT b− zT2 z2
+ zT2 Mż2 +

3∑
i=1

θ̃Ti Γ
−1
i

˙̂
θi

+

3∑
i=1

P̃i
˙̂
Pi (34)

Substituting (26)-(30) into (34) yields

V̇2 ≤ V̇1 +
zT2 ż2

bT b− zT2 z2
− zT2 K2z2 − zT2 K3z2

bT b− zT2 z2
−QT

× J(x1)z2 + P ∗T

 |z21| − z21 tanh(
z21
δ )

|z22| − z22 tanh(
z22
δ )

|z23| − z23 tanh(
z23
δ )

+ zT2

× θ̃Tϕ(Z)−
3∑
i=1

θ̃Ti [ϕ(Z)z2i + σiθ̂i]−
3∑
i=1

P̃iσpiP̂i (35)

Note that the following inequalities hold in terms of the Young’s
inequality,

−
3∑
i=1

σiθ̃
T
i θ̂i ≤ −σi

2

3∑
i=1

θ̃Ti θ̃i +
σi
2

3∑
i=1

||θ∗i ||
2 (36)

−
3∑
i=1

P̃iσpiP̂i ≤ −
σpi
2

3∑
i=1

P̃ 2
i +

σpi
2

3∑
i=1

P ∗2
i (37)

And the following inequality holds for any η > 0 and z ∈ R [46]

|z| − z tanh(
z

η
) ≤ νη (38)

where ν is a constant satisfying ν = e−(ν+1), i.e., ν = 0.2785.
Therefore, there is

0 ≤ P ∗
i (|z2i| − z2i tanh(

z2i
δ

)) ≤ 0.2785P ∗
i δ, i = 1, 2, 3 (39)

, and

P ∗
1 (|z21| − z21 tanh(

z21
δ

)) + P ∗
2 (|z22| − z22 tanh(

z22
δ

))

+ P ∗
3 (|z23| − z23 tanh(

z23
δ

)) ≤ 0.2785δ(P ∗
1 + P ∗

2 + P ∗
3 )

≤ 0.8355δ||P ∗|| (40)

Notice that

zT2 θ̃Tϕ(Z) =

3∑
i=1

θ̃Ti ϕ(Z)z2i (41)

Considering Lemma 1, Property 1 and substituting (36), (37), (40),
(41) into (35), we have

V̇2 ≤ −QTK1z1 +
zT2 ż2

bT b− zT2 z2
− zT2 K2z2 − zT2 K3z2

bT b− zT2 z2

− σi
2

3∑
i=1

θ̃Ti θ̃i +
σi
2

3∑
i=1

||θ∗i ||
2 −

σpi
2

3∑
i=1

P̃ 2
i

+
σpi
2

3∑
i=1

P ∗2
i + 0.8355δ||P ∗||

≤ −κ2V2 + C2 +
zT2 ż2

bT b− zT2 z2
(42)

where

κ2 = min

{
2λmin(K1), 2λmin(K3),

2λmin(K2)

λmax(M)
,

min
i=1,2,3

{ σi

λmin(Γ
−1
i )

}, min
i=1,2,3

{σpi}
}

C2 =

3∑
i=1

σpi
2

P ∗2
i +

3∑
i=1

σi
2
||θ∗i ||

2 + 0.8355δ||P ∗||

3.3 Stability Analysis

Multiply eκ2t on both sides of (42), one can obtain

V̇2e
κ2t + κ2V2e

κ2t ≤ C2e
κ2t + g(t)N(z2)ż2e

κ2t (43)

where

g(t) =
zT2

(bT b− zT2 z2) cos(
π
∑3

i=1 |z2i|
6b )

N(z2) = cos(
π
∑3
i=1 |z2i|
6b

)

Integrating (43) results in

V2(t) ≤ V2(0) +
C2

κ2
+ e−κ2t

∫ t
0
g(τ)N(z2)ż2e

τtdτ (44)
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It can be known from Lemma 2 that
∫t
0 g(τ)N(z2)ż2e

τtdτ is
bounded, i.e., |

∫t
0 g(τ)N(z2)ż2e

τtdτ | ≤ C0 with C0 being a pos-
itive constant. Thus, we have V2(t) ≤ V2(0) +

C2
κ2

+ C0 on condi-
tion that κ2 > 0, C2 > 0. Then, the following theorem is employed
to summarize the control design.

Remark 4. σi > 0, σpi > 0 are the σi-modification and σpi-
modification to prevent the estimation from drifting to large values
in the presence of estimation errors [47]. Furthermore, it is easy to
see that θ̂i ≤ 0, P̂i ≥ 0 provided the updating laws (29) and (30),
the non-negative initial values and z2i ≥ 0.

Theorem 1. For the marine vessel system given by (1) with the con-
troller (28), updating laws (29) and (30), given that initial values of
states are bounded, it can be concluded that all the system states are
uniformly bounded ultimately without violating the corresponding
constraints and the system output x1 goes into a small neighborhood
of the reference trajectory xd. The following statements summarize
the control design in detail.

1) Tracking error z1 is uniformly bounded ultimately and satisfies
Ci ≤ z1i ≤ C̄i for ∀t > 0. The time-varying output constraint can
be guaranteed, namely Ci + xdi < x1i < C̄i + xdi, i = 1, 2, 3 for
∀t > 0, where Ci = πi,2

√
1− e−2ρ, C̄i = πi,1

√
1− e−2ρ, ρ =

V2(0) +
C2
κ2

+ C0.
2) Tracking error z2 is uniformly bounded ultimately and satis-

fies ||z2|| ≤
√

bT b− e−2ρ for ∀t > 0. The constraint on x2 can be
guaranteed, i.e., ∥x2∥ < sup ∥α∥+

√
bT b− e−2ρ for ∀t > 0.

Proof: It is known from (44) that V2(t) ≤ V2(0) +
C2
κ2

+ C0.
Combining (33), we have

V1 ≤ V2(0) +
C2

κ2
+ C0 (45)

1

2
ln

1

bT b− zT2 z2
≤ V2(0) +

C2

κ2
+ C0 (46)

For z1i ≥ 0, i = 1, 2, 3, we have

1

2
ln

1

1−ϖ2
b,i

≤
3∑
i=1

1

2
ln

1

1−ϖ2
b,i

≤ V2(0) +
C2

κ2
+ C0 (47)

thus

|ϖb,i| ≤
√

1− e−2ρ, i = 1, 2, 3 (48)

Since ϖb,i =
z1,i
πi,1

, we have

z1i ≤ πi,1
√

1− e−2ρ, i = 1, 2, 3 (49)

For z1i < 0, considering ϖa,i =
z1,i
πi,2

, we have

πi,2
√

1− e−2ρ ≤ z1i, i = 1, 2, 3 (50)

Therefore,

πi,2
√

1− e−2ρ ≤ z1i ≤ πi,1
√

1− e−2ρ, i = 1, 2, 3 (51)

Note that z1 = x1 − xd, thus

πi,2
√

1− e−2ρ + xdi ≤ x1i

≤ πi,1
√

1− e−2ρ + xdi, i = 1, 2, 3 (52)

For 1
2 ln 1

bT b−zT2 z2
≤ V2(0) +

C2
κ2

+ C0, we have

||z2|| ≤
√

bT b− e−2ρ (53)

Similarly, we have

||x2|| ≤ sup ∥α∥+
√

bT b− e−2ρ (54)

The proof is completed.

4 Simulation Studies

The model used for simulation is the Cybership II, which is a 1 :
70 scale supply vessel replica built in a marine control laboratory
in the Norwegian University of Science and Technology [21]. The
reference trajectories of x1 are expressed as

x1xd = 0.5 sin(t)

x1yd = 0.14 cos(2t)

x1ψd = tan−1( ẋ1xd
ẋ1yd

)

(55)

The following two different cases are investigated for simulation
studies. First, we examine the effectiveness of proposed control (28).
Second, to better show superiority of the proposed control (28), PD
control is implemented.

4.1 Adaptive FNN control

For the proposed control, control parameters are chosen as follows:
K1 = diag[1, 1, 1], K2 = diag[1, 1, 1], K3 = diag[1, 1, 1], δ =
0.0001. Updating law parameters are given as Γ1 = Γ2 = Γ3 =
50I76×76 , σ1 = σ2 = σ3 = 0.001, σp1 = σp2 = σp3 = 0.001.
Initial values are given as x1(0) = [0.0031, 0.14501, 0.001]T ,
x2(0) = [0.4, 0,−1.4]T , P̂ (0) = [0, 0, 0], and θ̂1(0) = θ̂2(0) =
θ̂3(0) = [0, . . . , 0]T76×1.
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Fig. 4: (a) Tracking performance of variable x1 with FNN con-
trol (solid blue: actual; dashed red: reference). (b) Tracking error
z1 = x1 − xd with FNN control (red: upper constraint bound; blue:
error; green: lower constraint bound). (c) Tracking error z2 with
FNN control (red: upper constraint bound; blue: error; green: lower
constraint bound). (d) Control input F with FNN control.

For parameters of time-varying constraint function (14),
upper bound parameters are given as follows, initial val-
ues π01,1 = π02,1 = π03,1 = 0.01, steady-state values π∞1,1 =
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π∞2,1 = π∞3,1 = 0.002, attenuation rate ξ1,1 = ξ2,1 = ξ3,1 = 2,
amplitude of vibration ϱ1,1 = ϱ2,1 = ϱ3,1 = 0.001, and vibration
frequency ω1,1 = ω2,1 = ω3,1 = 8, and lower bound parameters
are given as follows, initial values π01,2 = π02,2 = π03,2 = −0.01,
steady-state values π∞1,2 = π∞2,2 = π∞3,2 = 0.002, attenuation
rate ξ1,2 = ξ2,2 = ξ3,2 = 2, amplitude of vibration ϱ1,2 = ϱ2,2 =
ϱ3,2 = −0.001, and vibration frequency ω1,2 = ω2,2 = ω3,2 = 8.
Velocity constraint bound b is set as b = 0.0287.
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Fig. 5: (a) Adaptive parameter P̂ with FNN control. (b) two-norm
of FNN weights with FNN control. (c) ∥z2∥ with FNN control (red:
upper constraint bound; blue: error; green: lower constraint bound).
(d) transformation error ϖ.

Simulation results are given in Figs. 4-5. Fig. 4(a) illustrates ref-
erence trajectory xd and actual trajectory x1. From Fig. 4(a), we
can see that x1 can track reference trajectory xd in desired accuracy.
Fig. 4(b) states that tracking error z1 remains in the prescribed time-
varying constraint region (πi,2 < z1i < πi,1, i = 1, 2, 3) when the
proposed control (28) is applied on the system (3), which also
demonstrates that the introduced constraint function (14) is satisfac-
tory, and the overshoot and stability time of z1 are very small and
satisfactory. In Fig. 5(d), transformation error ϖ is presented, and
from this figure we clearly know that ϖ is less than one, which shows
that tracking errors z1i still remain in the prescribed time-varying
constraint region πi,2 < z1i < πi,1, i = 1, 2, 3. Fig. 4(c) and 5(c)
show error z2 still remains in the predefined region ||z|| ≤ b. Fig.
4(d) gives control input F bounded by an unknown constant. Fig.
5(a) gives adaptive parameter P̂ designed to compensate for the
approximation error of FNNs. Fig. 5(b) presents two-norm of FNN
weights which are bounded by an unknown constant. From the above
discussions, we can know that Theorem 1 is reasonable.

4.2 PD Control

The PD controller is designed as follows

F = Kpz1 +Kdż1 (56)

where Kp ∈ R denotes the proportional gain, Kd ∈ R denotes
the differential gain. To further demonstrate the advantage of the
proposed control (28), five different gain parameters are set as fol-
lows, Kp = Kd = −300, Kp = Kd = −500, Kp = Kd = −700,

Kp = Kd = −900 and Kp = Kd = −1100. Initial values are the
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Fig. 6: (a)-(c) Tracking error z1 with PD control (red: upper con-
straint bound; green: lower constraint bound; others denote tracking
error z1 based on five different gain parameters). (d) Control input
F with PD control.

same as ones in adaptive FNN control simulation. Simulation results
are given in Fig. 6. In Figs. 6(a)-6(c), tracking error z1 is plotted
based on five different gain parameters. In Fig. 6(d), control input F
based on five different gain parameters is presented, respectively.

4.3 Analysis of adaptive FNN control and PD control

By analysing the above simulation results, it is known from Fig.
4(b) that under the action of the proposed control (28), track-
ing error z1 still remains in the prescribed time-varying constraint
region, while shown in Figs. 6(a)-6(c), after adjusting gain param-
eters Kp,Kd five times, tracking error z1 cannot been bounded by
the prescribed time-varying constraints. That is because barrier Lya-
punov function (17) is positive on condition that tracking error z1
must remain in the prescribed time-varying constraint region πi,2 <
z1i < πi,1, i = 1, 2, 3, and tracking error z1 would decrease with
time. PD control stabilizes the closed-loop system without prescrib-
ing the shape of tracking error z1, in other words, PD control only
ensures that tracking error z1 is bounded, and however this bound is
difficult to determine. Thus, in dealing with output constraint prob-
lems and transient response problems, the proposed control in this
paper for relative to PD control has greater advantage. It is known
from Fig. 4(b) and Figs. 6(a)-6(c) that after adjusting gain param-
eters Kp,Kd five times, tracking error z1 based on PD control
is greater than that based on adaptive FNN control. Consequently,
the proposed FNN control is more suitable for accurate trajectory
tracking.

5 Conclusion

In this paper, an adaptive FNN control scheme is investigated for
a marine vessel with full-state constraints and guaranteed transient
response. A series of continuous constraint functions are introduced
to shape the motion of a marine vessel. Adaptive parameters are
designed to compensate the approximation errors of fuzzy neural
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networks. Via Lyapunov stability theory, it has been proved that
the proposed control has the ability to make the system possess
a satisfactory transient response performance, and all the states in
the closed-loop system are uniformly bounded ultimately without
violating the prescribed constraint region. Simulation results have
verified the effectiveness of the proposed control. It is known that
guaranteed transient response is very important to tracking accuracy,
consequently the future work is to design a finite-time convergence
control scheme for a marine vessel.
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