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Abstract. Generative models based on subband amplitude envelopes of
natural sounds have resulted in convincing synthesis, showing subband
amplitude modulation to be a crucial component of auditory perception.
Probabilistic latent variable analysis can be particularly insightful, but
existing approaches don’t incorporate prior knowledge about the physical
behaviour of amplitude envelopes, such as exponential decay or feedback.
We use latent force modelling, a probabilistic learning paradigm that
encodes physical knowledge into Gaussian process regression, to model
correlation across spectral subband envelopes. We augment the standard
latent force model approach by explicitly modelling dependencies across
multiple time steps. Incorporating this prior knowledge strengthens the
interpretation of the latent functions as the source that generated the
signal. We examine this interpretation via an experiment showing that
sounds generated by sampling from our probabilistic model are perceived
to be more realistic than those generated by comparative models based
on nonnegative matrix factorisation, even in cases where our model is
outperformed from a reconstruction error perspective.
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1 Introduction

Computational models for generating audio signals are a means of exploring and
understanding our perception of sound. Natural sounds, defined here as everyday
non-music, non-speech sounds, are an appealing medium with which to study
perception since they exclude cognitive factors such as language and musical
interpretation. McDermott [1] used synthesis as a means to demonstrate that the
human auditory system utilises time-averaged statistics of subband amplitudes
to classify sound textures. In a similar vein, Turner [2] constructed a synthesis
model based on probabilistic latent variable analysis of those same subband
amplitudes. One main advantage of a latent variable approach is the possibility
that the uncovered latent behaviour may represent either i) the primitive source
that generated the signal, or ii) the latent information that the human auditory
system encodes when it calculates time-averaged statistics.

Latent variable analysis captures correlations across multiple dimensions by
modelling the data’s shared dependence on some unobserved (latent) variable or
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function. It is, by its very nature, ill-posed; we typically aim to simultaneously
predict both the latent functions and the mapping from this latent space to
the observation data. As such, infinitely many potential solutions exist and we
cannot guarantee that our prediction will encode the true sound source or our
true perceptual representation.

The ill-posed nature of the problem necessitates the use of prior information.
It is commonly suggested that nonnegativity, smoothness and sparsity form a
suitable set of prior assumptions about real life signals. We argue that, even
after imposing such constraints, a simple scalar mapping between the latent
space and observation space is insufficient to capture all the complex behaviour
that we observe in the subband amplitude envelopes of an audio signal. We
construct a latent force model (LFM) [3] to incorporate prior knowledge about
how amplitude envelopes behave via a discrete differential equation that models
exponential decay [4].

Utilising the state space formulation [5], we augment the standard LFM by
explicitly including in the current state information from many discrete time
steps. This allows us to capture phenomena such as feedback, damping and to
some extent reverberation. In this probabilistic approach the latent functions are
modelled with Gaussian processes, which provide uncertainty information about
our predictions whilst also guaranteeing that the latent functions are smooth.
Nonnegativity is imposed via a nonlinear transformation.

Evaluating latent representations is not straightforward. Objective measures
of our ability to reconstruct the observation data don’t inform us about the
interpretability of our predictions. We hypothesise that if the latent functions
capture physically or perceptually meaningful information, then a generative
model based on synthesising latent functions that are statistically similar should
generate realistic data when projected back to the observation space.

In this paper we introduce a generative model, applicable to a wide range of
natural sounds, based on an extended LFM1 (Section 3). Comparative models
based on variants of nonnegative matrix factorisation (NMF) are implemented
to perform evaluation-by-synthesis, which shows how listeners often perceive the
LFM approach to generate more realistic sounds even in cases where NMF is
more efficient from a reconstruction error perspective (Section 4).

2 Background

The perceptual similarity of two sounds is not determined by direct comparison
of their waveforms, but rather by comparison of their statistics [1]. Hence it is
argued that prior information for natural sounds should take a statistical form
[2]. We argue in Section 3 that these statistical representations can be improved
through the inclusion of assumptions about the physical behaviour of sound,
resulting in a hybrid statistical-physical prior.

In order to analyse sound statistics, both McDermott [1] and Turner [2] utilise
the subband filtering approach to time-frequency analysis, in which the signal is

1 Matlab source code and example stimuli can be found at c4dm.eecs.qmul.ac.uk/

audioengineering/natural_sound_generation
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split into different frequency channels by a bank of band-pass filters. The time-
frequency representation is then formed by tracking the amplitude envelopes of
each subband. McDermott generates sound textures by designing an objective
function which allows the statistics of a synthetic signal to be matched to that
of a target signal. Turner utilises probabilistic time-frequency analysis combined
with probabilistic latent variable analysis to represent similar features. Turner’s
approach has the advantage that once the parameters have been optimised,
new amplitude envelopes can be generated by drawing samples from the latent
distribution. It should be noted that samples drawn from the model will not
exhibit the fast attack and slow decay we observe in audio amplitude envelopes,
since the model is temporally symmetric.

NMF is a ubiquitous technique for decomposing time-frequency audio data
[6–8], however a common criticism is its inability to take into account temporal
information. The most common approach to dealing with this issue is to impose
smoothness on the latent functions, the idea being that smoothness is a proxy
for local correlation across neighbouring time steps. Temporal NMF (tNMF)
imposes smoothness by penalising latent functions which change abruptly [8] or
by placing a Gaussian process prior over them [9]. An alternative approach is to
use a hidden Markov model to capture the changes in an audio signal’s spectral
make up over time [10]. High resolution NMF (HR-NMF) models the temporal
evolution of a sound by utilising the assumption that natural signals are a sum of
exponentially modulated sinusoids, with each frequency channel being assigned
its own decay parameter estimated using expectation-maximisation [11].

2.1 Latent Force Models

To incorporate our prior assumptions into data-driven analysis we use latent
force models (LFMs) [3], a probabilistic modelling approach which assumes M
observed output functions xm are produced by some R < M unobserved (latent)
functions ur being passed through a set of differential equations. If the chosen set
of differential equations represents some physical behaviour present in the system
we are modelling, even if only in a simplistic manner, then such a technique
can improve our ability to learn from data [12]. This is achieved by placing a
Gaussian process (GP) prior [13] over the R latent functions, calculating the
cross-covariances (which involves solving the ODEs), and performing regression.

It was shown by Hartikeinen and Särkka [5] that, under certain conditions,
an equivalent regression task can be performed by reformulating the model (i.e.
the ODE representing our physical knowledge of the system) into state space
(SS) form, reformulating the GP as a stochastic differential equation (SDE),
and then combining them into a joint SS model:

dx(t)

dt
= f(x(t)) + Lw(t) . (1)

Here x(t) represents the state vector containing {xm(t)}Mm=1 and the states of
the SDE {ur(t), u̇r(t), ...}Rr=1, w(t) is a white noise process, f is the transition
function which is dependent on θ, the set of all ODE parameters and GP / SDE
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hyperparameters, and L is a vector determining which states are driven by the
white noise. The model’s discrete form is

x[tk] = f̂(x[tk−1], ∆tk) + q[tk−1] , (2)

where ∆t is the time step size, f̂ is the discretised transition function and
q[tk−1] ∼ N(0, Q[∆tk]) is the noise term with process noise matrix Q. The
corresponding output measurement model is

y[tk] = Hx[tk] + ε[tk], ε[tk] ∼ N(0, σ2) , (3)

where measurement matrix H simply selects the outputs from the joint model.
The posterior process x[tk], i.e. the solution to (2), is a GP in the linear case

such that the filtering distribution p(x[tk] | y[t1], ...,y[tk]) is Gaussian. Hence
state estimation can be performed via Kalman filtering and smoothing [14].

However, if f is a nonlinear function, as is the case if we wish to impose
nonnegativity on the latent functions, then calculation of the predictive and
filtering distributions involves integrating equations which are a combination of
Gaussian processes and nonlinear functions. We may approximate the solutions
to these integrals numerically using Gaussian cubature rules. This approach is
known as the cubature Kalman filter (CKF) [15].

The Kalman update steps provide us with the means to calculate the marginal
data likelihood p(y[t1:T ] | θ). Model parameters θ can therefore be estimated
from the data by maximising this likelihood using gradient-based methods.

3 Latent Force Models for Audio Signals

To obtain amplitude data in the desired form we pass an audio signal through
an equivalent rectangular bandwidth (ERB) filter bank. We then use Gaussian
process probabilistic amplitude demodulation (GPPAD) [16] to calculate the
subband envelopes and their corresponding carrier signals. GPPAD allows for
control over demodulation time-scales via GP lengthscale hyperparameters. We
are concerned with slowly varying behaviour correlated across the frequency
spectrum, in accordance with the observation that the human auditory system
summarises sound statistics over time [1]. Fast-varying behaviour is relegated to
the carrier signal and will be modelled as independent filtered noise.

The number of channels in the filter bank and the demodulation lengthscales
must be set manually during this first analysis stage. Keeping the number of
total model parameters small is a priority (see Section 3.1), so we typically set
the number of filters to 16, and the lengthscales such that we capture amplitude
behaviour occurring over durations of 10ms and slower.

3.1 Augmented Latent Force Models for Amplitude Envelopes

We use a first order differential equation to model the exponential decay that
occurs in audio amplitude envelopes [4]. However this overly simplistic model
does not take into account varying decay behaviour due to internal damping, or
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feedback and other nonstationary effects which occur as a sound is generated
and propagates towards a listener.

Since we require nonnegativity of our latent functions, which is imposed via
nonlinear transformation, we use the nonlinear LFM whose general from is (2)
with nonlinear f̂ . For a first order ODE its discrete form is

ẋm[tk] = −Dmxm[tk] +

R∑
r=1

Smrg(ur[tk]) , (4)

for m = 1, ...,M where M is the number of frequency channels. Dm and Smr are
the damping and sensitivity parameters respectively and g(u) = log(1+eu) is the
positivity-enforcing nonlinear transformation. The model progresses forwards in
time with step size ∆t using Euler’s method: xm[tk+1] = xm[tk] +∆tẋm[tk].

To account for the complex behaviour mentioned above that occurs in real
audio signals, we extend this discrete model such that predictions at the current
time step tk can be influenced explicitly by predictions from multiple time steps
in the past. As in [4] we augment the model by adding a parameter γm which
controls the “linearity” of decay. Our final model becomes

ẋm[tk] = −Dmx
γm
m [tk] +

P∑
p=1

Bmpxm[tk−p] +

P∑
q=0

R∑
r=1

Smrqg(ur[tk−q]) . (5)

We restrict γm ∈ [0.5, 1], and for sounding objects with strong internal damping
we expect γm to be small, representing an almost linear decay. Parameters Bmp
are feedback coefficients which determine how the current output is affected by
output behaviour from p time steps in the past. Smrq are lag parameters which
determine how sensitive the current output is to input r from q time steps ago.

The lag term is important since modes of vibration in a sounding object tend
to be activated at slightly different times due to deformations in the object as
it vibrates, and due to the interaction of multiple modes of vibration. It can
also capture effects due to reverberation. The feedback terms allow for long and
varied decay behaviour that can’t be described by simple exponential decay.

The challenge is to incorporate (5) into our filtering procedure. We do this
by augmenting our state vector x[tk] and transition model

f̂(x[tk−1], ∆tk) = x[tk] +∆tẋ[tk] (6)

with new rows corresponding to the delayed terms. Fig. 1 shows how after
each time step the current states X[tk] = {xm[tk]}Mm=1, U [tk] = {ur[tk]}Rr=1

are “passed down” such that at the next time step they are in the locations
corresponding to feedback and lag terms. When performing the Kalman filter
prediction step, augmented states are included since they influence predictions
for the current state, however the predictions for these augmented entries are
simply exact copies from the previous time step.

Fig. 2 shows the latent prediction for a metal impact sound with one latent
force, R = 1. The mean of the distribution is the minimum least squares error
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Fig. 1. The augmented LFM stores terms from previous time steps in the state vector.
Blue represents output predictions X (amplitudes), green represents latent predictions
U . Each step, predictions pass down to feedback and lag state locations. The entire
state is used to predict the next step’s outputs and latents via Kalman filtering.

estimate, so we pass it through discrete model (5) to reconstruct the amplitude
envelopes. Despite the single latent force, we observe that some of the complex
behaviour has been learnt. Additionally, the latent force is both smooth and
sparse, and the reconstructed envelopes have a slow decay despite this sparsity.

3.2 Generating Novel Instances of Natural Sounds

A significant benefit of probabilistic approaches such as LFM or tNMF is that,
as well as providing us with uncertainty information about our predictions, they
provide the means to sample new latent functions from the learnt distribution.
By passing these new functions through the model we can generate amplitude
envelopes. These envelopes modulate carrier signals produced using a sinusoids-
plus-noise approach based on analysis of the original carriers. The subbands are
then summed to create a new synthetic audio signal distinct from the original
but with similar characteristics.

Sampling from the prior of the learnt distribution generates functions with
appropriate smoothness and magnitude, however the desired energy sparsity is
not guaranteed. Latent functions are modelled independently, but in practice
they tend to co-occur and are activated in similar regions of the signal. We use
GPPAD again to demodulate our latent functions with a slowly varying envelope,
then fit a GP with a squared exponential covariance function to this envelope
[13]. We sample from this high-level envelope and use it to modulate our newly
generated latent functions; the results of this product is latent behaviour with
sparse energy, as demonstrated in Fig. 3(d).

3.3 Optimisation Settings

The set of model parameters {Dm, Bmp, Smrq, γm, λr}, with GP lengthscales λr,
becomes large asR, P increase. To alleviate issues that occur when our parameter
space becomes large we sparsify the feedback and sensitivity parameters. For
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Fig. 2. LFM applied to a metal impact sound, with mean and 95% confidence of the
latent distribution shown. The mean is passed through the model (5) to reconstruct
the envelopes. Complex behaviour is maintained despite using a single force.

example, if P = 10, we may manually fix Bmp to zero for p ∈ [3, 4, 6, 7, 9] such
that only half the parameters are included in the optimisation procedure.

Reliability of the optimisation procedure suffers as the number of parameters
increases, so in practice all M frequency channels are not optimised together.
We select the 6 envelopes contributing the most energy and train the model
on the observations from only these channels. The remaining channels are then
appended on and optimised whilst keeping the already-trained parameters fixed.
This improves reliability but prioritises envelopes of high energy. We also skip
prediction steps for periods of the signal that are of very low amplitude, which
speeds up the filtering step. Despite these adjustments, optimisation still takes
up to 72 hours for a 2 second sound sample.

4 Evaluation

To evaluate our method we collated a set of 20 audio recordings, selected as
being representative of everyday natural sounds2. Music and speech sounds were
not included, nor were sounds with significant frequency modulation, since our
model doesn’t capture this behaviour. We compare against NMF, optimised
using alternating least squares, and the GP-based implementation of tNMF [9].

4.1 Reconstruction Error of Original Sound

We analyse our ability to reconstruct the original data by projecting the latent
representation back to the output space. For the LFM this means passing the
mean of the learnt distribution through model (5). Fig. 4 shows reconstruction
RMS error and cosine distance of LFM and tNMF relative to NMF for the
20 recordings. The smoothness constraint enforced by placing a GP prior over
the latent functions negatively impacts the reconstruction. This is demonstrated
by the fact that tNMF performs poorly from an RMS error perspective. Despite
this, the LFM has much descriptive power, and is sometimes capable of achieving
a lower RMS error than the unconstrained NMF. Interestingly however, tNMF
consistently outperforms the other two models based on cosine distance.

2 From freesound.org and from the Natural Sound Stimulus set: mcdermottlab.mit.
edu/svnh/Natural-Sound/Stimuli.html
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Fig. 3. LFM generative model with 3 latent forces applied to an applause sound. The
high-level modulator (black line in (b)) is calculated by demodulating the latent forces.

4.2 Listening Test for Novel Sounds

Objective results suggest that smoothness constraints harm reconstruction of
the original signal. However, our aim is to learn realistic latent representations
that will be the foundation of a generative model. To test their suitability, we
designed an experiment to compare generative models based on LFM, NMF and
tNMF. The approach outlined in Section 3.2 was used for all model types. Since
NMF is non-probabilistic, it does not provide an immediate way in which to
sample new data, therefore GPs were fit to the latent functions after analysis.

Our experiment followed a multi-stimulus subjective quality rating paradigm3:
24 participants were shown 20 pages (order randomised), one per sound example,
and asked to listen to the reference recording and then rate 7 generated sounds
(2 from each model plus an anchor) based on their credibility as a new sound of
the same type as the reference. Ratings were on a scale of 0 to 1, with a score
of 1 representing a very realistic sound. Fig. 5 shows the mean realism ratings.
Whilst variation was large between sound examples, LFM was generally rated
as more realistic than the other methods.

To test for significance we applied a generalised linear mixed effects model
(GLMM), with beta regression, in which sound example and participant were
treated as random effects. Table 1 shows that the mean realism rating was highest
for LFM regardless of number of latent functions. The difference was significant
at a 5% level except for LFM vs. NMF with 3 latent functions. This suggests
that for sounds requiring many latent functions to capture their behaviour, such

3 The test was run online and implemented with the Web Audio Evaluation Tool:
github.com/BrechtDeMan/WebAudioEvaluationTool
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Fig. 4. Reconstruction error of LFM and tNMF plotted relative to NMF. Crosses
represent the median, error bars range from first to third quartile.

as textural sounds, LFM may not offer a significant gain over purely statistical
approaches. For example, the wind recording in Fig. 5, a textural sound whose
envelopes do not exhibit clear exponential decay, was captured best with tNMF.

All sounds 1 latent fn. 2 latent fns. 3 latent fns.

Estimate p value Estimate p value Estimate p value Estimate p value

LFM vs. NMF 0.3839 <1e-04 0.8248 <1e-05 0.3140 0.0448 0.2052 0.2867

LFM vs. tNMF 0.4987 <1e-04 0.7976 <1e-05 0.5134 <0.001 0.3243 0.0285

NMF vs. tNMF 0.1148 0.3750 -0.0272 0.9980 0.1994 0.3218 0.1191 0.7154

Table 1. GLMM with three-way comparison applied to listening test results. LFM
received higher mean ratings, but confidence decreases with number of latent forces,
indicated by increasing p values. Estimate can be interpreted as the ratio increase in
realism rating when choosing model A over model B.

5 Conclusion

Our results show that in order to extend existing synthesis techniques to a larger
class of sounds, it is important to utilise prior knowledge about how natural
sound behaves. We achieved this by using latent force modelling to capture
exponential decay, and augmented the standard approach to include feedback
and delay across many discrete time steps. Doing so allowed us to make smooth,
sparse latent predictions that we argue are more representative of the real source
that generated a given sound.

This claim is supported by the fact that a generative model based on LFM
was consistently rated as more realistic by listeners than alternatives based on
variants of NMF, even in cases where it was not superior in reconstruction of the
original signal. Resonance, decay and modulations in the subband amplitudes
were captured well by our model, which is flexible enough to be applicable to
sounds ranging from glass breaking to dogs barking.

The nonlinear ODE representing our physical knowledge contains a large
number of parameters, making our approach impractical in some cases, so a more
compact model would be of huge benefit. Efficient nonlinear filtering methods
or numerical ODE solvers would make the computation time more acceptable.
Future work includes amplitude behaviour occurring on multiple time scales at
once, and models for frequency modulation and other nonstationary effects would
further expand the class of sounds to which such techniques can be applied.
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Fig. 5. Mean realism ratings obtained from the listening test.
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