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Abstract

Background: Self-management support can improve health and reduce health care utilization by people with long-term conditions.
Online communities for people with long-term conditions have the potential to influence health, usage of health care resources,
and facilitate illness self-management. Only recently, however, has evidence been reported on how such communities function
and evolve, and how they support self-management of long-term conditions in practice.
Objective: The aim of this study is to gain a better understanding of the mechanisms underlying online self-management support
systems by analyzing the structure and dynamics of the networks connecting users who write posts over time.
Methods: We conducted a longitudinal network analysis of anonymized data from 2 patients’ online communities from the
United Kingdom: the Asthma UK and the British Lung Foundation (BLF) communities in 2006-2016 and 2012-2016, respectively.
Results: The number of users and activity grew steadily over time, reaching 3345 users and 32,780 posts in the Asthma UK
community, and 19,837 users and 875,151 posts in the BLF community. People who wrote posts in the Asthma UK forum tended
to write at an interval of 1-20 days and six months, while those in the BLF community wrote at an interval of two days. In both
communities, most pairs of users could reach one another either directly or indirectly through other users. Those who wrote a
disproportionally large number of posts (the superusers) represented 1% of the overall population of both Asthma UK and BLF
communities and accounted for 32% and 49% of the posts, respectively. Sensitivity analysis showed that the removal of superusers
would cause the communities to collapse. Thus, interactions were held together by very few superusers, who posted frequently
and regularly, 65% of them at least every 1.7 days in the BLF community and 70% every 3.1 days in the Asthma UK community.
Their posting activity indirectly facilitated tie formation between other users. Superusers were a constantly available resource,
with a mean of 80 and 20 superusers active at any one time in the BLF and Asthma UK communities, respectively. Over time,
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the more active users became, the more likely they were to reply to other users’ posts rather than to write new ones, shifting from
a help-seeking to a help-giving role. This might suggest that superusers were more likely to provide than to seek advice.
Conclusions: In this study, we uncover key structural properties related to the way users interact and sustain online health
communities. Superusers’ engagement plays a fundamental sustaining role and deserves research attention. Further studies are
needed to explore network determinants of the effectiveness of online engagement concerning health-related outcomes. In
resource-constrained health care systems, scaling up online communities may offer a potentially accessible, wide-reaching and
cost-effective intervention facilitating greater levels of self-management.

(J Med Internet Res 2018;20(7):e238)   doi:10.2196/jmir.9952
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Introduction

Background
Online communities have the potential to influence health and
health care. Recent studies have suggested that the participation
of people with long-term conditions (LTCs) in online
communities (1) improves illness self-management [1], (2)
produces positive health-related outcomes [2-4], (3) facilitates
shared decision-making with health care professionals [5,6],
and (4) may even reduce mortality [7].

There is also evidence that self-management support
interventions can reduce health service utilization [8,9].

Online communities have experienced an upsurge in popularity
among people with chronic respiratory conditions such as cystic
fibrosis [10], asthma [11], pulmonary hypertension [12] and
chronic obstructive pulmonary disease (COPD) [13]. More than
15 million people in England suffer from a long-term condition
or disability, and they account for at least 50 percent of all
general practitioner appointments [14,15]. Thus, assessing how
these online communities function and evolve can have
important implications for health care provision.

This form of “user-led self-management” of LTCs bears
similarities with the “expert patient” model, an approach to
self-management of LTCs produced by the United Kingdom
(UK) Department of Health in 2001 [16]. Evidence of the
effectiveness of conventional off-line self-management programs
based on the expert patient model, though, has been weak [17].
Clinic-based self-management programs often failed because
of: (1) lack of awareness and engagement among patients and
staff, (2) failure to consider low health literacy or cultural norms,
(3) lack of attention to the need for family and social support,
and (4) a fragmented approach to the provision of health and
social care [18]. Although online health communities can be
seen as an extension of the expert patient model, network effects,
in addition to the online disinhibition effect [19], make them a
distinct and unique complex intervention mechanism.

On average, one in four people with an LTC who use the Internet
tries to engage online with others with similar health-related
concerns [20]. In particular, it has been suggested that the value
of participating in an online community lies in the possibility
of gaining access to a range of people and resources quickly,
easily [21], and anonymously [4], as well as obtaining tailored

information and emotional support [1,22-26]. However, most
of this evidence comes from qualitative studies [1,27], whereas
only recent years have witnessed an increasing interest in
quantitative assessments of online communities as intervention
mechanisms [28-33]. Recent studies have been concerned with
the users’ unequal contributions and engagement patterns, and
with the role of superusers. However, the contribution of
superusers to the sustainability of online health communities
and their structural properties remains mostly unclear.

The potential future integration of online health support systems
with formal health care provision should be underpinned by a
better understanding of how they are used and by evidence of
their effectiveness. Indeed, as suggested by the Medical
Research Council [34], integrating online support systems with
the more traditional health care provision would require the
identification and comparative assessment of potential
alternative intervention mechanisms.

An expanding body of literature concerned with social network
analysis has examined the structural patterns of relations among
interacting actors and the social mechanisms that enable them
to gain access to valuable resources [35]. There is also increasing
evidence that network approaches can be applied to
understanding the users’ “expertise” [36], their interactions, and
network effects on health-related outcomes in online health
communities [37,38]. Uncovering the mechanisms underlying
the formation of successful social networks requires a study of
how online connections among people, namely the social ties
or links, emerge and evolve, and how groups of individuals
gradually grow in membership and become interconnected with
one another. These processes of tie creation and group formation
in online patients’ communities are still mostly unexplored [1].

In this study, we performed a network analysis of the structure
and dynamics of two online communities of people with LTCs.
We chose the Asthma UK and the British Lung Foundation
(BLF) communities as an exemplar of such communities because
their users typically suffer from chronic respiratory conditions.
In particular, while Asthma UK users typically suffer from a
respiratory condition characterized by variable and recurring
symptoms, BLF users represent a more heterogeneous
population of participants affected by different diseases linked
to chronic symptoms of breathlessness (eg, COPD, pulmonary
fibrosis, cystic fibrosis, and lung cancer).
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Textbox 1. Research questions.

1. What is the network structure of online communities for people with long-term conditions, and how do they function and evolve over time?

2. Does posting activity follow a time pattern?

3. Are there (a minority of) users with a special role in maintaining integration and cohesion of the community?

4. Do superusers write their posts uniformly over time or do they produce peaks of activity separated by periods of inactivity?

5. For how long do superusers remain active in an online community?

6. Are superusers help-seekers or help-givers?

7. Do superusers preferentially write posts to each other or to users who write relatively few posts?

8. Is there any association between users’ interaction patterns and their potential for enhancing peer self-management support in the community?

9. Do online health communities function and evolve in the same way as other real-world complex systems?

We aimed to uncover and understand how these communities
function and evolve, and the role that some users have in
maintaining integration and cohesion (see Textbox 1 for research
questions). Ultimately, this study provides evidence for gauging
the effectiveness of different interaction patterns and the users’
structural positions and their potential for enhancing and
sustaining health online communities as scalable
self-management support interventions.

Methods

Data Collection
Data were collected by HealthUnlocked [39], the online platform
provider of the Asthma UK and BLF communities. Registered
users can choose to either write posts publicly or send private
posts to one another. In the latter case, posts are shared between
2 users only, whereas when posts are written publicly, a large
number of users can become connected through threads of posts.
Only posts that were shared publicly were collected and
analyzed. For this study, user identifiers (IDs) were anonymized
by HealthUnlocked, and no demographic information was
collected. The data sets included posts and their metadata (ie,
the anonymized user ID numbers), user roles (eg, user,
administrator, or moderator), date of posting, the hierarchical
level of the post within the corresponding thread, and the dates
in which the users joined and left the community. Both
communities were moderated, and HealthUnlocked moderators
(identified through metadata linked to posts) were included in
the analysis to assess their contribution and compare it with
other users. Online communities on the HealthUnlocked
platform benefit from additional functionalities compared to
other online forums, such as built-in patient groups that moderate
the content. In particular, the content accessed by users is
tailored to their interests, and profiles highlight users’ condition,
chosen community, medications and treatments they use or find
interesting. No data were collected on participants’
characteristics, though only people declaring themselves to be
older than 16 years were permitted to create an account and take
part in the online communities.

Data Analysis
We looked at the number of users, the number of posts and
connections per user and posting frequency. A connection (ie,
a tie, link, or edge) was established from one user to another

when the former replied to a post by the latter (see Textbox 2
for network analysis terminology). The pattern of connections
generated over time through the cumulative number of posts
and replies was examined. We were interested not just in the
number of posts and responses but in who responded to whom,
and when. To this end, we used social network analysis [40] to
visualize and study the structure of the relationships between
users. Both visualization and analysis were conducted using the
Gephi software. The network analysis was carried out through
additional custom computer code in python. Descriptive analysis
of the networks (ie, number of users, posts, and posting
frequency) were calculated using the Pandas library, an open
source library providing data structures and analysis tools for
the Python programming language.

As a result of the small percentage of users who wrote posts to
a disproportionally high number of users, the users’ activity
showed long-tailed distributions. Therefore, our analysis was
based not only on means and standard deviations but also on
medians.

To uncover time patterns in posting activity, we used Fourier
transforms of the time series of the users’ activity [46], a known
method used for the analysis of signals. Through Fourier
transforms, we identified the frequency components, called
harmonics, that together made up the posting activity stream.
In other words, we regarded the posting activity over the entire
observation period in both communities as a complex signal
and identified the frequency components that made up such a
signal. This analysis was performed using custom code in Scipy,
a Python-based scientific computing library.

The “rich-club” coefficient is a metric designed to measure the
extent to which well-connected users tend to connect with one
another to a higher degree than expected by chance [43]. To
this end, for each value k of a node’s degree (ie, the number of
other users a given user is connected with), we computed the
ratio between the number of actual connections between nodes
with degree k or larger and the total possible number of such
connections [47]. We then divided this ratio by the one obtained
on a corresponding random network with the same number of
nodes and degree distribution (ie, the probability distribution
of the degrees over the whole network) as the real network, but
in which links were randomly reshuffled between nodes. Thus,
the rich-club coefficients may take values lower or higher than
1, depending on whether the real network has a higher or lower
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tendency to coalesce into rich clubs than randomly expected.
In particular, networks that display a high rich-club coefficient
(ie, greater than 1) are also said to show a “rich-club effect,”
namely the tendency to organise into a hierarchical structure in
which highly connected nodes preferentially create tightly knit
groups with one another, thus generating exclusive clubs of
(topologically) rich nodes, as illustrated in previous work [48].

In our study, superusers were defined according to their
cumulative activity over the entire observation period. In total,
we identified 400 superusers. To uncover how many superusers
were active within each week, we detected how many unique
users, among the 400 identified over the entire period, were
active within that time window.

Following Zhang et al [36], the “z-score” was used as a proxy
for users’ expertise. According to this measure, replying to many
questions suggests one’s expertise, while asking questions
indicates lack of expertise. In our analysis, we treated anyone

starting a thread as a help-seeker, and anyone commenting on
the thread as a help-giver [36]. Accordingly, the proposed
z-score aims to capture the combined help-seeking and
help-giving patterns. To this end, for each user, we measured
how many standard deviations the observed total number of the
user’s help-giving posts lies above or below the expected
number of help-giving posts for the whole system. We extended
the approach proposed by Zhang et al by empirically assessing
the probability of posting and answering a question across all
users over the entire observation period. In the BLF community,
we found that the probability of answering is Pa=2/3, while the
probability of posting is Pq=1/3. We assumed a Bernoulli
process of posting an answer or a question to the forum, with
probabilities defined as above. The z-score for a given user i
was calculated according to equation (a) in Figure 1, where ai
refers to the total number of answers user i posted to the forum,
qi is the total number of questions user i asked in the forum, and
ni=ai +qi is the total number of messages posted by user i.

Textbox 2. Network analysis terminology.

• Degree: the number of connections a user has established with other users through posts

• Ego(-centred) network: the subset of connections linking a focal user—“ego”—directly to other users—“alters”—and connections linking these
alters with each other

• Largest component: the network component (see below) with the largest number of members.

• Network Component: a subset of the network in which all members are directly or indirectly connected with one another (ie, all pairs of nodes
in the subset are reachable through at least one tie) [41,42]. Each isolated user can be regarded as a separate component

• Node: individual user in an online community

• Rich-club coefficient: the degree to which highly connected users preferentially connect to each other to a higher degree than would be expected
by chance. In a community with a rich-club coefficient higher than 1, users who post to many others preferentially communicate with each other,
thus forming rich clubs. Conversely, in a community with a rich-club coefficient lower than 1, users who post to many others preferentially
communicate with those who post to few others, thus generating an anti-rich-club behavior [43]

• Root post: the initial post in a thread of posts

• Superusers: top 1% of users characterised by the largest number of posts written in the community over the entire observation period [44]

• Tie, link, edge: online connection from a user to another, created when the former writes a post to the latter

• Triad: a group of 3 users—nodes i, j, and u —forming a path of length 2 (ie, node i is connected to node j, and node j is connected to node u).
When node i is also connected to node u, the path is closed, forming a loop of length 3 or a triangle

• z-score: a measure of users’ expertise, capturing the users’ combined “help-seeking” and “help-giving” patterns. If a user writes help-seeking
and help-giving posts equally often, then the user’s z-score would be equal to zero. Conversely, if a user writes more (or fewer) help-giving posts
than help-seeking ones, then the z-score would be positive (or negative) [36,45]

Figure 1. The z-score used as a proxy for users’ expertise.
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To obtain Zscorei, let us define a random user that posts the same
total number of messages nrandom to the forum as user i (ie,
nrandom=ni). We would expect this random user to post an average
number of answers to the forum given by equation (b). Plugging
in the value of Pa=2/3, we obtained equation (c). Similarly, we
would expect the random user to post answers with a standard
deviation given by equation (d). Plugging in the value of Pa=2/3,
we obtained equation (e). To measure how many standard
deviations above or below the expected random value a user i
lies, we then computed Zscorei according to equation (f). Plugging
in the values of μrandom and σrandom, we obtained equation (g).
Finally, by substituting ni=ai +qi, we obtained equation (h).

Ethical Considerations
Permission to research was obtained from Asthma UK and the
BLF before starting the study. The research protocol was
examined, and permission to research was obtained from Asthma
UK, BLF charities and HealthUnlocked. The study was
examined by the institutional Research Ethics board at Queen
Mary University of London and was exempt from full review.

Results

Descriptions of Data Sets
The data sets span, respectively, 10 years for the Asthma UK
and 4 years for the BLF communities (see Table 1).

Despite the shorter time span, as a result of the larger number
of users, the number of posts in the BLF community was higher
than in Asthma UK, namely 875,151 compared to 32,780
respectively. Moreover, BLF users wrote a higher number of
posts per user and were connected with a higher number of other
users when compared with people in the Asthma UK forum (see
Figure 2). In both communities, 60%-70% of registered users
wrote no posts (ie, they were lurkers). Users who wrote more
than one post contributed with a median of 8 (range 2-8947)
and 5 (range 2-1068) posts in the BLF and Asthma UK
communities, respectively.

The number of official moderators among the highly active
users was negligible; there were no moderators in the top 5%
contributors to BLF and only 2 in the top 5% for Asthma UK.
Thus, our network analysis predominantly reflects content
originated from registered users.

When classified according to posting activity (ie, number of
posts written to the forum), the top 5% users contributed to a
substantial proportion of all posts: 58% and 79% in the Asthma
UK and BLF communities, respectively. Superusers were those
who made a high number of connections with other users in
both Asthma UK and BLF communities (see nodes of large size
in Figure 2). Asthma UK superusers made a lower number of
connections than BLF ones. The posting activity of these
superusers will be analyzed in more detail in subsequent
sections.

Table 1. Description of the Asthma UK and British Lung Foundation data sets.

British Lung FoundationAsthma UKVariables

13/04/2012-06/09/201602/03/2006-06/09/2016Data set time span (mm/dd/yyyy)

230548Total time (weeks)

875,15132,780Total number of posts, n

815,184 (93.1)28,615 (87.3)Number of posts with reply, n (%)

59,967 (6.9)4165 (12.7)Number of posts with no reply, n (%)

19,8373345Total number of users, n

7814 (39.4)1053 (31.5)Users who wrote ≥1 post, n (%)

1186 (15.2)331 (31.4)Users who wrote 1 post, n (%)

6628 (84.8)722 (68.6)Users who wrote >1 post, n (%)

12,023 (60.6)2292 (68.5)Registered users who never posted (ie, lurkers), n (%)

66.9 (75.1)14.2 (55.0)Number of posts per user, mean (SD)

8.0 (2-8947)5.1 (2-1068)Number of posts per users who posted >1, median (range)

88.1 (458.6)20.4 (65.6)Number of posts per users who posted >1, mean (SD)

426,198 (48.7)10,457 (31.9)Posts contributed by top 1% superusers, n (%)

17.6 (69.0)2.1 (5.9)Number of connections per user, mean (SD)

1.0 (69.0)1.0 (5.9)Number of connections per user, median (SD)

141.0 (174.0)10.5 (16.5)Number of connections per top 1% superuser, mean (SD)

70.0 (174.0)7.0 (16.5)Number of connections per top 1% superuser, median (SD)
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Figure 2. Cumulative networks across the time span analyzed. Each node represents a user. (A) Asthma UK users (around 1000); (B) British Lung
Foundation users (around 8000). The coloring of nodes is based on modularity membership and the size of the node is proportional to its degree (ie, the
number of connections with other users).

Figure 3. Cumulative distributions of the number of posts as a function of time (weeks) within the Asthma UK (A) and the British Lung Foundation
(B) communities. Calendars dates are reported below week numbers. Panels C and D illustrate the average number of posts per user per week within
Asthma UK and British Lung Foundation, respectively.
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Posting Activity
The cumulative number of messages posted grew uniformly
over time in the BLF community. By contrast, in 2015, the
Asthma UK forum witnessed a substantial increase in posting
activity, at a time coinciding with its move to the
HealthUnlocked platform (see Figure 3A and B). This increase
in activity can be attributed to the online community
functionalities offered by HealthUnlocked, as described in the
Methods.

The number of posts per user per week oscillated around a
decreasing and an increasing trend (Figure 2C and D), while at
the same time the number of posts always went up over the
study period (Figure 1A and B). This suggests that there were
intervals of time during which the rate of increase in new users
was larger than the rate of increase in total posts. Moreover, in
the Asthma UK forum users wrote according to two time
patterns—they posted at an interval of 1-20 days or 6 months
(Figure 4A), while those in the BLF community at an interval
of 2 days (Figure 4B).

As more users joined the communities and connected to one
another through online posts, distinct groups of connected users
started to emerge. These groups, called network components
(see Textbox 2), have fundamental implications for the
effectiveness of processes of network dynamics such as
information diffusion [49]. In a relatively short period, both
communities underwent the formation of the “largest
component” of connected users, namely a connected subset of
users whose size increasingly outgrew the size of all other
components (see Figures 1 and 4, and Multimedia Appendices

1 and 2). The largest connected components in both communities
included 60%-100% of users.

Figure 5 suggests that, as time went by, the number of forum
participants and their posting activity increased, and the
proportion of users who were part of the largest components
decreased. This finding was expected because the number of
posts also rose exponentially, yet at times at a lower rate than
the one at which new users joined the communities (see Figure
1C and D). It, therefore, became more difficult for the network
to self-organize into a connected component that would include
100% of the users. Figure 5A also shows that around week 450,
when the forum moved to the HealthUnlocked platform, a larger
fraction of users began to join the largest connected component,
thus highlighting the role that the new online platform played
in strengthening the connectedness of the network (see also
Figure 3A and B).

Superusers
Superusers represented a small minority (ie, 1%-5%) within
both communities but were responsible for a high proportion
of the posting activity and the functioning of the communities.

Superusers’ Role
Sensitivity analysis showed that the removal of users with the
largest number of connections caused the largest component to
collapse (see Figure 6), thus suggesting that both communities
and lines of communication within them were held together
precisely by these highly connected users. In online
communities, the existence of groups of highly connected users
is critical for information diffusion [50].

Figure 4. Periodicity of posting activity in Asthma UK (A) and the British Lung Foundation (B), measured through the Fast Fourier Transform (FFT).
The component frequencies are denoted by f and are inverted to produce time period in days.
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Figure 5. Fraction of users that are part of the largest component as a function of time (weeks) for Asthma UK (A) and the British Lung Foundation
(B).

Figure 6. Sensitivity analysis: targeted removal of nodes (users) starting from the most connected ones within Asthma UK (A) and the British Lung
Foundation (B).

Figure 6 suggests that it only takes the removal of the top 5%
users by degree of connectivity for the largest connected
component to collapse to 10% and 50% of its original size in
the Asthma UK and BLF communities, respectively. This
corresponds to the removal of about 50 and 400 users in the 2
communities, respectively. These results shed light on how
many superusers are needed to sustain discussions and to serve
the needs of users in large communities of people with LTCs.

Superusers and the Rich-Club Effect
Both Asthma UK and BLF communities were characterized by
a low rich-club coefficient, which was consistently lower than
1 (see Figure 7). This anti-rich-club behavior, namely the
tendency to run counter to the formation of a rich club, suggests
that in both communities highly connected superusers
preferentially communicated with poorly connected ones or,
alternatively, that superusers tended to avoid each other and
instead communicated with those who were only connected
with very few others.

Anti-rich-club behavior may suggest competition between
superusers or merely the organization of the communities into
groups of users characterized by different degrees of “expertise”
or commitment: one group including the few committed experts
and another including the vast majority of those seeking
information when needed. It would, therefore, come as no
surprise if the former were to communicate with the latter to a
greater extent than randomly expected. We shall investigate this
hypothesis further below.

Involvement of Superusers Over Time
We have shown that the connectedness of both communities
depends crucially on the presence and activities of superusers,
who committed a significant amount of their time to writing
posts and targeting new users. We now look at whether their
activity was concentrated in relatively short periods of time or
instead it was uniformly distributed over time. How superusers’
involvement is distributed over time may have fundamental
implications for the cohesion of the whole system precisely in
light of the role these users play.
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Figure 7. Rich-club coefficient as a function of the richness parameter (ie, users’ degree).

Figure 8. Number of unique users among the top 400 superusers as a function of time (weeks) within Asthma UK (A) and the British Lung Foundation
(B).

Figure 8 suggests that there was no scarcity of superusers
throughout the whole period of observation. In particular, the
number of superusers in the Asthma UK community remained
stable across almost the entire period until it increased
substantially when the forum moved to the HealthUnlocked
platform in 2015. Since then about twenty superusers have been
active in the forum. On the other hand, in the BLF community
the number of unique superusers increased steadily over the
first 50 weeks (1 year) since inception (2015), and subsequently
there were about 80-100 superusers regularly engaged with the
community.

Superusers’ Posting Activity
We then investigated whether superusers’ posting activity was
frequent and regular over time. To this end, for each of the top
5% users by post contribution, calculated cumulatively over the
entire observation period, we measured the time interval
separating every two subsequent posts to both communities.
We then computed the inter-event time distributions for both
communities to assess frequency and patterns of activity. Figure
9 suggests that 70% of interposting times were shorter than 3.1
days in the Asthma UK community, while 65% of interposting
times in the BLF community were shorter than 1.7 days.

Superusers’ Expertise
For each user, a z-score was calculated in both communities to
gauge the user’s expertise (see Data Analysis section). Figure

10 suggests that the more users became active in the
communities, the more likely they were to write posts (assumed
to be “help-giving” posts) [36,45] than to start new threads
(assumed to be “help-seeking” posts). Such a finding might
indicate that superusers were also those with the necessary
degree of expertise to answer a large number of questions.

Thus, superusers not only play a topologically important role
in the communities, but they are also likely to provide the
expertise needed to answer queries.

Ego Networks of Superusers
Next, we examine whether the ego networks of different types
of users were topologically different, and what generated such
differences. Users commonly started a discussion thread by
writing a root post (ie, the post at level 1 of the thread). Several
users could then directly respond to these posts at level 1, thus
creating level-2 posts. More generally, according to the design
of the communities, by posting a response to a level–(t) post,
users created a level–(t+1) post. There was no limitation to how
a post thread could evolve, and therefore to the complexity of
the thread hierarchy. Information on post levels was made
available through the post metadata. In our analysis, any post
at level 2 or higher was classified as a level–2+ post. Here the
analysis was restricted to the BLF forum, as the Asthma UK
community was significantly smaller with simpler hierarchical
levels.

J Med Internet Res 2018 | vol. 20 | iss. 7 | e238 | p.9http://www.jmir.org/2018/7/e238/
(page number not for citation purposes)

Joglekar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Cumulative distribution function (CDF) of the interposting time for the top 5% of users by post contribution within the Asthma UK (A) and
the British Lung Foundation (B) communities.

Figure 10. Z-score values of all users as a function of the number of posts written in the Asthma UK (A) and British Lung Foundation (B) communities.
The top panels represent the normalized distributions of the number of users who wrote various numbers of posts.

Figure 10A and B show the ego networks of two types of users:
one where the help-seeker, called root poster, contributed back
multiple times to the thread itself, and the other where this
pattern did not happen. In both cases, the thread received similar
community engagements in terms of responses from other users.
Figure 11B suggests that the highly active root poster developed
a more cohesive network, rich in third-party relationships. In
this ego network, many alters indeed connected with one
another, thus creating closed triads centered on ego. In simple
words, these users’ posting activity had the effect of making
other users talk to each other, thus increasing integration and
cohesion within the community. By contrast, the ego network
developed by the root poster characterized by a lower
contribution to the thread (Figure 11A) had a star-like shape
and was rich in structural cleavages between alters. In this ego
network, alters were disconnected from each other, and ego
acted as the broker enabling indirect connections between alters.

In simple words, these users did not favor connections between
other users.

By replying to other users’ posts, superusers contributed
significantly to level 2 or above. Figure 11C shows that there
was a significant correlation between the number of triads in
an ego network and the number of times ego (the root poster)
contributed to the thread itself. The correlation coefficient
between the number of triads and the number of posts at level
2 or above written by the top 5% of users by post contribution
is 0.44 (P<.001).

When root posters responded back to the posts received, they
created a more cohesive network structure. Most of these highly
active users were superusers. This suggests that superusers, by
posting “help-giving” posts, enabled other users to talk to each
other, thus facilitating the formation of ties between them.
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Figure 11. Topology of two illustrative ego networks created by a user with low (A) and high (B) posting activity in the British Lung Foundation
community. Panel C shows the number of closed triads in ego networks as a function of posting activity of superusers (top 5% of users by post
contribution).

Discussion

Summary of Main Findings
In this study, we applied network analysis to two online
communities for patients with chronic respiratory conditions to
shed light on potential structural mechanisms underlying the
role of these communities as scalable, peer-to-peer
self-management support intervention systems. We found that
the number of users and posts increased steadily over the years
in the period of analysis. The majority of users were mutually
reachable, either directly or indirectly, and formed a large
connected component, which underlies the strength of the
network as a means for widespread diffusion of information.

Superusers played a central role in these communities as a result
of the characteristics of their posting activity and their constant
online engagement. They preferentially replied to posts from
peripheral users who were not equally well connected. In doing
so, they additionally facilitated tie formation between users.
Sensitivity analysis showed that gradual removal of superusers
induced the network to collapse. Thus, superusers were
responsible for holding the network together and, in particular,
for ensuring the emergence of a large connected component.
As a result, without superusers, there would be no effective
spread of information within the community. Superusers acted
as a continuously available resource over time. As users became
more active within the community, they became more likely to
reply to posts than to ask questions. This suggests that superusers
gradually became “experts” providing others with advice and
support, which is in agreement with what has recently been
suggested by other qualitative studies [6,51].

Strengths and Limitations
Based on social network analysis, this work has started
elucidating crucial mechanisms underlying the potential of
online health communities to promote effective self-management
support interventions, in particular regarding the role of
superusers in sustaining and providing integration and cohesion
to the network. By analyzing the communities over more than
five years, we have shown that superusers are a resource
naturally present, able to sustain a network and make it thrive

over time. This could prompt future studies to understand their
role as a potential scalable health care workforce [1].

Limitations of this study include the lack of demographic and
clinical information of participants as well as verification and
validation of the information shared online [52], although
previous qualitative work by the authors has identified Asthma
UK superusers as adolescents with asthma [25]. Moreover,
findings were not validated through the semantic analysis of
the posts.

We did not investigate the reasons explaining the oscillating
number of posts per user per week in the 2 communities, nor
the time patterns of posting activity, nor the higher and regular
number of posts of BLF users compared with Asthma UK ones.
Time patterns of posting activity may reflect the nature of
symptoms of the underlying lung conditions (see Figure 4). In
particular, the uniformity of posting activity of BLF users might
reflect daily self-management activities, whereas the time
patterns uncovered for Asthma UK users might reflect
self-management activities triggered by episodic exacerbations
of symptoms.

More research is also needed to explore the mechanisms
sustaining the effectiveness of health online communities and
online engagement [53] in terms of the users’ quality of life
and, more generally, the generation of beneficial health-related
outcomes [54]. The role of superusers in the spread of
information within online communities calls for further research
to investigate how they can improve quality of information and
reduce any potential harm [55]. Future work along these lines
will integrate available evidence that incorrect or misleading
information is, in many cases, efficiently corrected by peers
[6,56]. Moreover, recent research has suggested that leveraging
superusers to promote users’ online engagement may not achieve
improved health-related outcomes, at least in connection with
smoking cessation [57]. More qualitative work should, therefore,
shed light on the role of superusers as actual providers of help
and advice to other users.

Finally, 90% of people accessing patients’ online communities
are passive readers who do not engage in online discussions
[44,58]. This means that the number of registered users who
post in the forum may represent only 10% of the people who
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access the community. However, how this large majority of
patients that passively access patients’ online communities can
benefit from reading others’ posts requires further investigation
[59]. In particular, it remains unclear whether passive users can
improve their self-management and other health-related
behaviors, although previous work has shown that participation
in online communities can increase passive users’ sense of
belonging [60]. Change in behaviors of passive readers needs
to be fully accounted for to examine the cost-effectiveness of
peer-based online support interventions, compared with more
traditional intervention tools. Moreover, it remains to be
investigated whether there are variations in cost-effectiveness
across active users and sub-groups of them with different
patterns of social ties [61].

Comparison With Related Work
Previous studies on medical online communities agree that users
can benefit from the emotional support as well as the cumulative
experiential information provided by others [1,62,63]. The value
of online self-management support lies in the availability of
co-created experiential knowledge and the presence of
distributed health literacy. This enables users to find the
information they require to manage their condition, and thus
allows them to benefit from the health literacy of others in the
network [1].

A qualitative study that was performed on a forum of people
with stroke has shown that up to 95% of users’ intents for
writing posts were met by replies [22]. In agreement with
previous reports [45], we found that superusers represented a
small proportion of the users in both communities, though they
contributed to a considerable proportion of the overall posts.
Superusers were members who assumed leadership roles by
providing support, advice, and direction to other members
[64,65].

This is in qualitative agreement with recent work on an online
community for people with stroke, where superusers were shown
to play an essential role in nurturing the ability of the forum to
provide feedback and identify inappropriate information and
health behaviors in the context of secondary prevention
medications [6]. Interestingly, a related study using linguistic
analysis showed that as users’ engagement in the community
increased, their use of language changed. For example, it has
been documented that the frequency of imperative verbs rose
steadily through membership length, as superusers explicitly
directed new members to do certain things [51].

Finally, superusers’ engagement with the online community
and their daily commitment raise questions about what motivates
their behavior. Recent work has suggested that their behavior
can be motivated by perceived improvements in sense of
well-being [4]. Thus, superusers can themselves profit from
their engagement with online health communities. However,
what remains to be investigated is whether and to what extent
spending so much time in online health communities might be
detrimental to superusers’ self-management.

Implications for Policy, Practice, and Research
As a result of the voluntary basis of users' contributions,
self-management support through online health communities

offers high potential for cost-effectiveness from the perspective
of formal services. Current health care challenges [66] include
supporting self-care and management of LTCs. A key to future
changes in models of health and social care are the expansion
of health services offered locally as well an increasing role for
patient self-management of LTCs. Initiatives to improve access
to care in the community include expanding health care team
to incorporate more allied health care professionals [67]. The
benefits of self-management have not been realized through
conventional face-to-face channels [18]. Could superusers
represent an allied health care workforce, providing a means
for health and social care integration? The impact and benefit
of this novel approach could be huge and include: (a) increasing
the confidence of a large number of people to self-care, (b)
reducing demand on general practices [15], emergency care
services and hospitals, and (c) saving money within health care
systems, and across society as a whole. The potential scale of
societal benefits would likely outweigh the opportunity costs
associated with the time contributed by users. Understanding
the mechanisms underlying effectiveness and uncovering how
online communities are organized and evolve are vital preludes
to developing and testing effective interventions and are required
by the Medical Research Council Complex Interventions
Framework [34]. However, little work has addressed this area
to date. Although there is evidence that highly engaged users
play a role as active help-providers to other users [45], this is
to our knowledge the first study showing that superusers in
online health communities: (1) are responsible for holding the
community together, (2) engage with other users with low
posting activity, and (3) indirectly contribute to tie formation
between other users.

This work has drawn on social network analysis to uncover
fundamental mechanisms underlying the potential of online
communities to promote effective self-management support
interventions. In particular, our study contributes to a better
understanding of the role played by superusers in sustaining
and providing integration and cohesion to the network. By
analyzing the communities over more than five years, we have
shown that superusers can sustain and make the network thrive
over time. The presence of both a large connected component
and superusers is a crucial feature of successful health
communities. It is well known that components are critical for
information diffusion [50,68]. Without a large connected
component, users would be members of small isolated islands,
and information would be unable to flow from one island to
another. An online community needs a large component to
function effectively. As edges between users are added over
time, a large component is likely to emerge [69]. Our work has
shown not only that superusers play a critical role in the
emergence of a connected component, but also that, even
without being “appointed” externally, superusers would emerge
as the community grows large enough. Our findings will,
therefore, prompt and inform future research interested in
understanding superusers’ role as a potential scalable health
care workforce in online self-management support interventions
[1,70].

Moreover, our study has uncovered temporal patterns of posting
activity. This will prompt further research aimed at investigating
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differences in these patterns across communities using
qualitative analysis. This would include the analysis of whether
users’ intents were met by replies [22] and the potential
correlation between the amount of time spent online and
improved disease self-management.

Across a variety of empirical domains, it has been documented
that hubs (ie, nodes with a disproportionally large number of
connections) are valuable resources that help spread information
widely and amplify information cascades [71], help design
effective vaccination campaigns and selective immunization
strategies against disease diffusion and epidemics [72,73], and
help improve the system’s robustness and vulnerability to
random failures [74]. Here we have shown that health online
communities are no exception. Our results suggest that
superusers indeed represent a crucial resource for the integration
and functioning of such communities, which therefore seem to
be governed by the same network mechanisms as other
real-world networks. This study will, therefore, inform future
research interested in uncovering the common organizing
principles underpinning a variety of real-world systems.

Conclusions
This study shows that patients’ online communities share the
same network features as other complex networks across a
variety of empirical domains. Our analysis highlighted the
special role played by superusers, their topological positions
and behavior in the communities. In this sense, our results shed
light on the topological mechanisms underlying the ability of
patients’ online communities to provide self-management
support and may, therefore, suggest levers for improving the
quality of health care intervention.

At a time when health care services are working beyond capacity
and patients are finding it difficult to access care, online
communities provide the potential for addressing critical health
care challenges. They offer a feasible way for patients with
LTCs to find helpful advice and support, and a potentially
cost-effective and scalable solution to the vast and rising costs
associated with long-term disease management. Even though
our results showed that there was no scarcity of superusers
throughout the whole period of the study, nonetheless ensuring
that such networks will become a core component of illness
self-management on a broader scale requires proper research
investment leading to randomized control studies and potentially
a change in the concept of the health care team.
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