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Abstract—This article deals with learning dictionaries for
sparse approximation whose atoms are both adapted to a training
set of signals and mutually incoherent. To meet this objective, we
employ a dictionary learning scheme consisting of sparse approx-
imation followed by dictionary update and we add to the latter
a decorrelation step in order to reach a target mutual coherence
level. This step is accomplished by an iterative projection method
complemented by a rotation of the dictionary. Experiments on
musical audio data and a comparison with the method of optimal
coherence-constrained directions (MOCOD) and the incoherent K-
SVD (INK-SVD) illustrate that the proposed algorithm can learn
dictionaries that exhibit a low mutual coherence while providing
a sparse approximation with better signal-to-noise ratio (SNR)
than the benchmark techniques.

Index Terms—Sparse approximation, dictionary learning, iter-
ative projections, mutual coherence.

I. INTRODUCTION: LEARNING INCOHERENT
DICTIONARIES

A. Sparse approximation and dictionary learning

IN this paper we consider a sparse synthesis model where
a signal y ∈ RN is approximated by a sparse linear

combination of elementary functions {φk}Kk=1,φk ∈ RN
called atoms. Arranging the atoms along the columns of the
dictionary matrix Φ, we can express the model as:

y ≈ Φx (1)

where x is a sparse vector of approximation coefficients, with
||x||0 ≤ S. Here the `0 pseudo-norm ||·||0 counts the number
of non-zero coefficients of its argument and S is the number of
active atoms. The parameters of this model can be determined
by solving a sparse approximation problem and optimising:

x? = arg min
x

||y −Φx||2 (2)

such that ||x||0 ≤ S.
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Note that the dual formulation where the objective function
is the number of the non-zero elements of the approximation
and the constraint is a fixed level of residual norm can be
also considered, although we will not employ it in the present
work.

A dictionary learning problem for sparse approximation
consists of optimising the set of K ≥ N atoms given a set
of M ≥ K observed data {ym}Mm=1, such that every signal
in the training set can be effectively represented by the sparse
model (1)[27]. This can be concisely written by arranging the
observed signals along the columns of the matrix Y ∈ RN×M :

Y ≈ ΦX (3)

where X is a sparse matrix whose columns contain the vectors
xm of approximation coefficients.

Optimising the dictionary Φ is a challenging problem
for which no general analytic solution can be found. The
numerical strategy commonly employed consists in iterative
algorithms that start from an initial dictionary and alternate
between the following steps:

• Sparse coding: given a fixed dictionary Φ, the matrix X
of sparse approximation coefficients is calculated using
any suitable algorithm for sparse approximation.

• Dictionary update: given a fixed approximation matrix
X , the dictionary Φ is updated in order to minimise the
residual cost function ||Y −ΦX||F.

In addition, the dictionary is usually constrained to belong
to a set D def

= {Φ ∈ RN×K : ||φk||2 = 1 ∀ k} of
admissible dictionaries whose atoms have unit `2 norm, and
for the reminder of the paper we will consider to work with
normalised dictionaries without further specification. Many
dictionary learning algorithms [1], [13], [18], [21], [29] that
follow this approach have been proposed in the literature.

The sparse approximation (2) that is at the core of the
sparse coding step of dictionary learning has been proved
to be a NP hard problem [11], and a great number of sub-
optimal algorithms that run in polynomial time [8], [23],
[24], [25] have been developed in order to tackle it. An
important research effort has been devoted to understand how
the different strategies and algorithms for sparse modelling
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perform in different settings. For example, sparse recovery
deals with retrieving a sparse signal from a set of incomplete
measurements and has applications in the field of compressed
sensing [7], [32], while sparse approximation is concerned
with how efficiently a general signal can be approximated by
linear combinations of a few atoms from an over-complete
dictionary [12].

The theorems that have been proposed in the literature to
this aim link the success of the algorithms with the coherence
of the dictionary.

B. The importance of incoherent dictionaries

The coherence of a dictionary indicates the degree of simi-
larity between different atoms or different collections of atoms.
A simple measure that has been proposed in the literature is
the mutual coherence µ(Φ), which is defined as the maximum
absolute inner product between any two different atoms of the
dictionary:

µ(Φ)
def
= max

i 6=j
|〈φi,φj〉|

where we use the ordinary euclidean inner product for real
vectors 〈v,w〉 def=

∑N
n=1 vnwn. In the reminder of this paper,

we will omit the dependancy on the dictionary Φ whenever
unambiguous from the context.

Tropp [32] showed that, given a sparse signal generated
according to the model (1), the orthogonal matching pursuit
algorithm (OMP) [25] is guaranteed to retrieve the correct
support of the representation coefficients if

µ <
1

(2S − 1)
(4)

and further refined this bound by defining the cumulative
coherence function as a measure of the correlation between
different groups of atoms in the dictionary. Schnass and
Vandergheynst [28] proved that essentially the same results
also hold for the thresholding algorithm [4].

Equation (4) implies that only signals which are synthesised
from S < 1

2 + 1
2µ active atoms are guaranteed to be correctly

recovered. However, for a N × K dictionary, the mutual
coherence is lower-bounded by [31]

µ ≥

√
K −N
N(K − 1)

. (5)

As an illustrative example, a dictionary containing 200 atoms
in R100 has a mutual coherence µ ≥ 0.07, and the sparse
representation of a signal generated with such dictionary is
guaranteed to be correctly retrieved if the number of active
atoms is Smax ≤ 7.

Based on results for sparse recovery, Gribonval and Van-
dergheynst [16] extended the work of Tropp [32] and showed
that the residual error resulting from running matching pursuit
(MP) [22] for a finite number of steps TS on a signal y to
be approximated is upper bounded by a constant times the
residual error achieved by the best S-term approximant of y
(as it would be returned by a combinatorial search over all
the possible sets of S atoms). As for the results on sparse

recovery, the number of active atoms S is constrained by the
mutual coherence of the dictionary S < 1

4 + 1
4µ .

In addition, Tropp [33] showed that the coherence of a
dictionary is linked to the condition number of its sub-
dictionaries (i.e, matrices defined by selecting a subset of the
atoms), and used this relation to prove average-case results
on sparse recovery for `1 based algorithms. This implies that
achieving a low mutual coherence results in well-conditioned
sub-dictionaries and further motivates the objective of the
present work.

Incoherent dictionaries are desirable whenever sparse ap-
proximations are sought in order to reveal an underlying
structure or clustering in the data. For example, morphological
component analysis [6], [5] decomposes a signal over a set of
dictionaries that have been previously learned from different
training data consisting of morphologically dissimilar classes
(i.e., edges and textures for an image, or different classes of in-
struments for a musical audio signal). The mutual incoherence
between different learned sets of atoms is a prerequisite that
allows for a sparse coding where the position of the non-zero
coefficients can be informative for classification and source
separation applications.

Previous research attempting to join the approximation and
incoherence objectives will be reviewed in Section II. In
this paper we propose a novel technique which employs a
decorrelation step inspired by a method used to construct
Grassmannian frames [34]. Our main contributions are that
we employ this technique within the context of incoherent
dictionary learning, as explained in Section III, and adapt it
to the approximation objective through a novel rotation step.
Section IV presents numerical experiments on musical audio
data, and a comparison with the methods previously proposed
in [19], [26]. Section V contains our conclusions and plans
for further investigation.

II. PREVIOUS WORK

A. Method of optimal coherence-constrained directions
(MOCOD)

Ramirez et al. [26] proposed a dictionary learning algorithm
inspired by the method of optimal directions (MOD) [13] in
which the sparse approximation is performed using a novel
penalty term derived from a probabilistic formulation of the
sparse model (1), and the dictionary update step is modified
in order to promote mutually incoherent atoms.

In particular, the incoherence objective is pursued by in-
troducing into the dictionary learning optimisation the term
||G− I||F where each element gij of the Gram matrix G def

=
ΦTΦ contains the inner product between the i-th and the j-th
atom of the dictionary. This expression measures the Frobenius
distance between the Gram matrix of the dictionary and the
identity matrix, which corresponds to the Gram matrix of an
orthonormal dictionary whose mutual coherence is zero.
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Overall, the optimisation presented in [26] reads as:

(Φ?,X?) =arg min
Φ,X

||Y −ΦX||2F + τ
∑
m,n

log(|xkm|+ β)+

+ ζ ||G− I||2F + η

K∑
k=1

(
||φk||22 − 1

)2
(6)

In this unconstrained minimisation, the first term represents
the modelling error, while the desired properties of dictionary
and representation coefficients are enforced through penalty
terms. In particular, the penalty factor multiplied by τ pro-
motes sparsity of the representation coefficients, while the
factors multiplied by ζ and η promote mutual incoherence
and unit norm of the dictionary atoms respectively.

In order to solve this optimisation, the sparse approximation
is followed by a MOCOD dictionary update step, obtained by
setting to zero the derivative of the above cost function with
respect to the dictionary Φ. The resulting update can be written
as [26]:

Φ′ =
(
Y XT + 2(ζ + η)Φ

) [
XXT + 2ζG+ 2η diag(G)

]−1
.

Note that setting to zero the penalty factors ζ and η results in
the MOD update [13].

As will be detailed in Section IV, the MOCOD algorithm is
to some extent effective in constraining the mutual coherence
of a dictionary. However, the unconstrained optimisation (6)
makes it difficult to identify an explicit relationship between
the penalisation factor and the coherence level of the resulting
dictionary.

B. Dictionary decorrelation and INK-SVD

An alternative strategy for learning incoherent dictionaries
can be pursued by including a decorrelation step to the
iterative scheme illustrated in Section I. At each iteration of
the dictionary learning algorithm consisting of sparse approx-
imation followed by dictionary update, we add the following
optimisation problem:

Φ? = arg min
Φ∈D

C(Φ) (7)

such that µ(Φ) ≤ µ0

where the objective C(Φ) is a cost function that expresses the
approximation quality of the dictionary and µ0 is a fixed target
mutual coherence level. Mailhé et al. [19] proposed a matrix
nearness problem where

C(Φ) =
∣∣∣∣Φ̄−Φ

∣∣∣∣
F

(8)

and Φ̄ is the matrix returned by the dictionary step, which
translates as finding the closest dictionary (in a Frobenius norm
sense) to a given dictionary subject to a mutual coherence
constraint. In order to tackle this optimisation, the authors
propose an iterative algorithm which consists of identifying
a sub-dictionary of highly correlated atoms and decorrelating
pairs of atoms in a greedy fashion, until the desired mutual
coherence is achieved. This technique was used in conjunction
with the K-SVD algorithm [1] and is called incoherent K-SVD
(INK-SVD) dictionary learning.

The choice of the cost function (8) does not explicitly
measure the approximation accuracy, but it rather implicitly
assumes that dictionaries that are close to each other are well
suited to represent the same set of data. In contrast, we use in
the present work the cost function C(Φ) = ||Y −ΦX||F that
measures the Frobenius norm of the residual. In Section IV
both the MOCOD and the INK-SVD algorithms are compared to
the method proposed in this paper, which is shown to achieve
a better performance overall.

C. Other related work
Dai et al. [9] recently observed that the K-SVD dictio-

nary learning algorithm can converge to ill-conditioned sub-
dictionaries that perform poorly for sparse approximation.
To address this issue they proposed a penalised optimisa-
tion which promotes approximation coefficients with bounded
Frobenius norm. They show how this strategy results in well-
conditioned sub-dictionaries, and in a smaller approxima-
tion residual. A dictionary with small mutual coherence has
been shown to contain well-conditioned sub-dictionaries [33].
Therefore, even if the method proposed by Dai et al. does
not specifically attempt to learn incoherent dictionaries, it can
still be regarded as a related work that motivates the research
presented here.

Yaghoobi et al. [35] proposed a dictionary design method
for coding of audio signals where the parameters of gam-
matone atoms [30] are optimised in order to minimise the
mutual coherence of the resulting dictionary. In this work, the
authors are inspired by the iterative projections method that
also is at the core of our proposed dictionary learning, and
show through experimental results the advantages of using an
incoherent dictionary for sparse recovery and sparse approxi-
mation. Despite the similarity in the motivation and in part of
the optimisation technique, dictionary design is substantially
different from dictionary learning: while the former involves
optimising the parameters of a set of parametric functions
that are designed to be suited for a given class of signals,
the latter is adapted to an arbitrary set of observed variables
and can therefore be extended to classes of signals for which
an efficient dictionary is not known. Moreover, in the case
of dictionary design there is not a mixed objective consisting
of good approximation and mutual incoherence because the
former is implicitly assumed given the nature of the parametric
functions and of the signals to be analysed. For this reason
we limit our experimental comparisons to dictionary learning
techniques.

Apart from incoherent dictionary learning or design,
Schnass and Vandergheynst [28] presented a method for dic-
tionary preconditioning that aims at tackling the problem of
coherent dictionaries for sparse recovery. In this work, a sens-
ing matrix is multiplied by a coherent dictionary in order to
obtain an equivalent sparse recovery problem with low cross-
cumulative coherence (i.e. the cumulative coherence between
atoms of the sensing matrix and atoms of the dictionary),
and improve the performance of greedy sparse approximation
algorithms. Although related to the present work, we choose
not to further detail or benchmark this algorithm as it does not
involve dictionary learning.
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III. ITERATIVE PROJECTIONS AND ROTATIONS
ALGORITHM

In Section II we reviewed previous work on learning in-
coherent dictionaries, including the MOCOD dictionary update
and the INK-SVD algorithm. The former addresses the inco-
herence objective by defining an unconstrained optimisation
problem with penalisation terms, while the latter employes
a constrained minimisation that explicitly bounds the mutual
coherence of the dictionary. Both theses methods have disad-
vantages:
• MOCOD does not allow to specify a given mutual coher-

ence level, but rather relies on setting correct values of the
penalty factors η and ζ in equation (6). The relationship
between the two factors and the mutual coherence of the
learned dictionary is difficult to evaluate, and heuristic
choices or a computationally expensive search over the
space of parameters must be carried out. Moreover, in
Section IV we document that, even when performing such
search, the mutual coherence of the resulting dictionaries
does not drop below a level µ ≈ 0.3 with the experimen-
tal settings considered.

• INK-SVD does constrain the learned dictionary to a
fixed mutual coherence level, and defines a minimisa-
tion problem based on the cost function (8) to achieve
this goal. This objective does not take into account
the approximation performance of the dictionary, but
rather its Frobenoius distance from the output of the
dictionary update stage of dictionary learning. For this
reason, the dictionary resulting from INK-SVD does not
match the data set well and results in poor approximation
performance at low mutual coherence levels. This will
be documented in the numerical experiments presented
in Section IV.

In the present work, we propose a dictionary learning
algorithm that allows us to update the dictionary fixing a con-
strained mutual coherence, while at the same time minimising
the residual error of the resulting sparse approximation.

Φ? = arg min
Φ∈D

||Y −ΦX||F (9)

such that µ(Φ) ≤ µ0

||xm||0 ≤ S ∀m

For this purpose, we employ a standard dictionary learning
scheme consisting of sparse coding followed by dictionary
update, and we add to the latter a dictionary de-correlation
consisting of the following steps:
• Atoms decorrelation: obtained through an iterative projec-

tion algorithm, this step ensures that the mutual coherence
constraint is satisfied.

• Dictionary rotation: this step optimises the dictionary
with respect to the objective function (9) without affecting
its mutual coherence.

A. Constructing Grassmannian Frames with Iterative Projec-
tions

A Grassmannian frame is a collection of atoms that have
unit norm and minimal mutual coherence. It can be proved

that, for an N×K dictionary, the mutual coherence is bounded
by (5), and the lower bound is reached when the dictionary
is an equiangular tight frame, that is, a Grassmannian frame
where any pair of different atoms have the same absolute inner
product [31]. It is also worth noting that equiangular tight
frames do not exist for any pair (N,K), but necessarily (and
not sufficiently) require K ≤ 1

2N(N+1) if the atoms are real
or K ≤ N2 if the atoms are complex.

Constructing Grassmannian frames is an open research
problem for which there is generally no analytic solution.
One possible approach is to use an iterative projection method
[34]. To illustrate this algorithm, we define two constraint
sets, namely the structural constraint set Kµ0 as the set of
symmetric square matrices with unit diagonal values and off-
diagonal values with magnitude smaller or equal than µ0:

Kµ0

def
= {K ∈ RK×K : K = KT ,diag(K) = 1,

max
i>j
|ki,j | ≤ µ0 ≤ 1}.

and the spectral constraint set F as the set of symmetric
positive semidefinite square matrices with rank smaller than
or equal to N :

F def
=
{
F ∈ RK×K : F = F T , eig(F ) ≥ 0, rank(F ) ≤ N

}
In the above expressions, the operators diag(·) and eig(·)

return the vector of diagonal elements and the vector of
eigenvalues of their arguments respectively.

The iterative projection algorithm starts from an initial
dictionary Φ, calculates its Gram matrix G, and iteratively
projects it onto the sets Kµ0 and F until a stopping criterion
is met.
• Projection onto the structural constraint set. Given an

arbitrary Gram matrix G, its projection K = PKµ0
(G)

onto the structural constraint set can be obtained by
setting its diagonal values to one and by limiting the
magnitude of its off-diagonal values:

1) Set diag(K) = 1
2) Limit the off-diagonal elements so that, for i 6= j,

ki,j = Limit(gi,j , µ0) =

 gi,j if |gi,j | ≤ µ0

µ0 if gi,j > µ0

−µ0 if gi,j < −µ0

• Projection onto the spectral constraint set. Given an arbi-
trary dictionary Φ, its Gram matrix G is by construction
a symmetric, positive semidefinite matrix. Its projection
F = PF (G) onto the spectral constraint set F can be
obtained through the following steps:

1) Calculate an eigenvalue decomposition (EVD) G =
QΛQT

2) Threshold the eigenvalues by keeping only the N
largest positive ones.

[Thresh(Λ, N)]i,i =

{
λi,i if i ≤ N and λi,i > 0

0 if i > N or λi,i ≤ 0

where the eigenvalues in Λ are ordered from the
largest to the smallest. Following this step, at most
N eigenvalues of the Gram matrix are different from
zero.
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3) Update the Gram matrix as F =
QThresh(Λ, N)QT , so that rank(F ) ≤ N .

Once the Gram matrix has been iteratively projected onto
the two sets and the stopping criterion has been met, it is
factorized as the product

G = ΦTΦ (10)

through the following steps:

1) Calculate an EVD G = QΛQT

2) Set Φ = Thresh(Λ, N)
1
2QT

so that ΦTΦ = QThresh(Λ, N)QT .
Note that at this point, the dictionary is not guaranteed to

have a mutual coherence bounded by µ0. The intersection
between the sets F and Kµ0

may be empty for certain values
of N,K and µ0 (in fact, it is empty whenever µ0 is lower
than the bound (5)). The iterative projections algorithm is
only guaranteed to converge to an accumulation point [34]
consisting of a pair of matrices F̄ ∈ F and K̄ ∈ Kµ0 that
are not necessarily located at a minimal distance between
the constraint sets. However, we found in our numerical
experiments that the algorithm works well for values of µ0

close to the lower bound (5), providing a dictionary with
constrained mutual coherence.

B. Dictionary rotation

We can use the iterative projection algorithm illustrated
so far to de-correlate a dictionary starting from the matrix
returned by the dictionary update step. However, optimising
the Gram matrix with the only objective being reducing the
mutual coherence means that the decomposition (10) is likely
to lead to an updated dictionary that does not approximate the
training set well. To resolve this issue, we employ a dictionary
rotation1 which does not modify the mutual coherence and that
is optimised for the dictionary learning objective (9).

The decomposition (10) is not unique, since for any orthog-
onal matrix W we obtain:

(WΦ)
T

(WΦ) = ΦTW TWΦ = ΦTΦ = G.

Therefore, it is possible to apply an orthogonal matrix to the
dictionary obtained from the iterative projection algorithm in
order to minimise the residual norm expressed in (9). The
resulting optimisation problem can be expressed aws:

W ? = arg min
W∈O(N)

||Y −WΦX||F (11)

where O(N) is the set of N × N orthogonal matrices. The
solution to this problem can be traced back to an algorithm
proposed by Horn et al. [17] to align sets of points measured
in different coordinate systems for stereo photogrammetry and
robotics applications.

Let us define Ỹ def
= ΦX as the matrix containing the sparse

approximation of the observed data. The minimisation problem

1Rotation is from now on employed with an abuse of terminology, referring
to any linear transformation obtained through an orthonormal matrix that
include flips and rotations.

(11) can be expressed as [17]:

W ? = arg min
W∈O(N)

Tr
(
Y TY

)
+Tr

(
Ỹ T Ỹ

)
−2 Tr

(
Y TWỸ

)
.

Since the first two terms do not depend on W and since for
every pair of matrices A and B, Tr(AB) = Tr(BA), we
can instead consider the maximisation problem:

W ? = arg max
W∈O(N)

Tr
(
WỸ Y T

)
. (12)

The notation C def
= Ỹ Y T indicates the sample covariance

between the observed signals and their approximations, which
can be decomposed using an SVD as C = UΣV T . The
objective function in (12) can be written as:

Tr
(
WUΣV T

)
= Tr

(
ΣV TWU

)
= Tr (ΣQ)

where the matrix Q
def
= V TWU is orthonormal because

resulting from the product of three orthonormal matrices.
Considering that Σ is diagonal, the following holds:

Tr (ΣQ) =

N∑
n=1

σnqnn. (13)

The singular values σn are non-negative because resulting
from the SVD decomposition of a covariance matrix, and the
entries qnn are upper-bounded by 1 because the norm of the
vectors qn is unitary. Therefore, the value qnn = 1 maximises
the above equation, and implies Q = I . This can be obtained
by setting:

W ? = V UT .

C. Iterative projections and rotations (IPR) algorithm

The dictionary rotation can be performed only once after
the decorrelation algorithm, or at every step of the iterative
projections. We chose the latter strategy as it leads to an
algorithm that adapts the dictionary to the approximation
objective (9) at each step of the decorrelation and resulted
in superior experimental results. It is worth mentioning that
the whole dictionary decorrelation could be performed only
once after dictionary learning, but we found in our numerical
experiments that this strategy led to poor approximation results
too.

We initialise the algorithm with the dictionary Φ(0) returned
by the update step of dictionary learning and perform at each
iteration t the following steps summarised in Algorithm 1:

• Compute the Gram matrix: G(t) = Φ(t)TΦ(t).
• Calculate the projection onto the structural constraint set:
K(t) = PKµ0

(
G(t)

)
.

• Factorise K(t) as in (10) including thresholding its eigen-
values. This returns an updated dictionary Φ(t+1) whose
Gram matrix G(t+1) = PF (K(t)) is projected onto the
spectral constraint set.

• Rotate the dictionary using an optimal orthonormal trans-
form by updating Φ(t+1) = W ?Φ(t+1).

Note that the rotation step does not modify the Gram matrix
of the dictionary, and therefore is irrelevant for the purpose
of the convergence of the iterative projections algorithm to a
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dictionary with bounded coherence. The convergence analysis
of the general dictionary learning optimisation described by (9)
is very difficult and is outside the scope of the present paper.
The interested reader can find insights on related problems by
reading the work of Aaron et al. [2], Gribonval and Schnass
[15], Geng et al. [14] or Mailhé and Plumbley [20].

Nonetheless, it is worth highlighting the fact that the rotation
step finds the optimal solution of the problem (11), and
therefore is guaranteed to improve (or leave unchanged) the
cost function (9) without violating its constraints set. This is
sufficient to say that adding a rotation step to the dictionary
decorrelation algorithm improves the approximation quality
of dictionary learning if compared to the iterative projections
algorithm alone.

It is possible to quantify this improvement by considering
the bounds of the square of the residual cost function (11)
with respect to the rotation matrix W defined as C(W ) =∣∣∣∣∣∣Y −WỸ

∣∣∣∣∣∣2
F

. Letting K = ||Y ||2 +
∣∣∣∣∣∣Ỹ ∣∣∣∣∣∣2 be a constant,

and recalling that equation (13) provides bounds for the
quantity Tr

(
Y TWỸ

)
, the cost function can assume values

within the interval

C(W ) ∈

[
K − 2

N∑
n=1

σn,K + 2

N∑
n=1

σn

]
where σn refers to the singular values of the covariance matrix
C = Ỹ Y T = UΣV T . The lower bound is reached in
correspondence with the optimal rotation matrix C(W ?). The
value obtained discarding the rotation step is C(I) = K −
2
∑N
n=1 σnqnn, where qnn = 〈vn,un〉 ∈ [−1, 1] depends on

the inner products between vectors from the unitary matrices
V and U .

It is worth noting that when the covariance matrix is zero
(i.e., when the signals and their sparse approximations are
uncorrelated), then the rotation step does not lead to any
improvement of the cost function. However, this case is
unlikely to happen as Ỹ is produced to approximate Y .

The IPR algorithm includes the calculation of the optimal
rotation matrix described in III-B which replaces our early
formulation based on a Lie group method [3]. Beside offering
a closed-form solution to a problem that was previously
tackled with an iterative method, this substantially improved
the computational time required by the algorithm and allowed
for a simpler analysis of its complexity.

Since M ≥ K ≥ N , the running time of the algorithm per
iteration is dominated (in order) by the following steps:
• Computation of the EVD of the Gram matrix G requiring
O(K3) operations.

• Computation of the covariance matrix C requiring
O(N2M) operations.

• Computation of the SVD of the covariance matrix C
requiring O(N3) operations.

In the numerical experiments presented in Section IV, we
observed that these three operations accounted for around 90%
of the computational time required by every iteration of the
IPR algorithm, which order of magnitude is comparable to the
one relative to the time required by running a dictionary update
step using K-SVD or MOD.

Algorithm 1 Iterative Projections and Rotations: Φ =
IPR(Y ,Φ,X, µ0,nIter)

Require: Y ,Φ,X, µ0,nIter
iIter ← 1
while iIter ≤ nIter and µ(Φ) > µ0 do

{Calculate Gram matrix}
G← ΦTΦ
{Project onto structural constraint set}
diag(G)← 1
G← Limit(G, µ0)
{Factorise Gram matrix and project onto spectral con-
straint set}
[Q,Λ]← EVD(G)
Λ← Thresh(Λ, N)
Φ← Λ1/2QT

{Rotate dictionary}
C ← Y (ΦX)

T

[U ,Σ,V ]← SVD(C)
W ← V UT

Φ←WΦ
iIter ← iIter +1

end while

IV. NUMERICAL EXPERIMENTS

We tested the proposed decorrelation method with the K-
SVD dictionary learning algorithm in order to assess if it
converges to a dictionary that exhibits bounded mutual coher-
ence and good approximation quality. The test signal we used
is the musical excerpt music03_16kHz, a 16 kHz guitar
recording that is part of the data included in SMALLBOX
[10], a Matlab toolbox for testing and benchmarking dictionary
learning algorithms used in our evaluation and containing
the code needed to reproduce the results presented here2. A
musical audio signal was chosen because previous informal
experiments resulted in K-SVD learning a highly coherent
dictionary for this type of data.

We divided the recording into 50% overlapping blocks
of 256 samples (corresponding to 16ms) with rectangular
windows and arranged the resulting time-domain signals as
columns of the training data matrix Y . Then, we initialised a
twice over-complete dictionary for sparse approximation using
either a randomly chosen subset of the training data or an over-
complete Gabor dictionary. We run the dictionary learning
algorithms for 50 iterations, allowing for S = 12 non-zero
coefficients in each representation (which corresponds to about
5% of active elements if compared with the dimension of
the audio frames N ). When testing the algorithm proposed in
[26], we used OMP as a sparse approximation step setting the
stopping criterion to the maximum number of active atoms S
and MOCOD for the dictionary update. INK-SVD and IPR were
implemented using OMP for the sparse approximation step and
K-SVD for the dictionary update. Table I summarises the tested
algorithms.

2http://small-project.eu/software-data/smallbox

http://small-project.eu/software-data/smallbox
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Algorithm (Reference) Sparse Approximation Dictionary Update Dictionary Decorrelation
Sapiro et al. [26] OMP MOCOD -
Mailhé et al. [19] OMP K-SVD INK-SVD

Proposed method OMP K-SVD IPR

Table I: Algorithms for learning incoherent dictionaries

A. MOCOD updates

The unconstrained optimisation illustrated in (6) relies on
the penalty factors ζ and η in order to promote incoherence
of the dictionary and unit norm of the atoms respectively.
To evaluate the MOCOD dictionary update for the purpose of
incoherent dictionary learning, we tested different values of
these factors on a logarithmic scale between 10−2 and 104,
assessing the resulting mutual coherence and signal-to-noise
ratio (SNR) achieved by the optimised dictionary, the latter
being defined as:

SNR(Y ,ΦX) = 20 log10

||Y ||F
||Y −ΦX||F

.

Figure 1 depicts the results of our experiment using re-
spectively randomly chosen data from the training set and a
twice over-complete Gabor dictionary for the initialisation. We
run the experiment 5 times to increase the significance of our
results whenever the initialisation involved choosing a random
subset of the training data as the initial dictionary.

When ζ → 0 and η → ∞, the optimisation (6) converges
to a standard dictionary learning where the atoms are not
forced to be incoherent, but are constrained to be unit norm.
This case corresponds to the left corner of the surf plots in
Figure 1. We can note that a data initialisation produces a
highly coherent dictionary with the best approximation quality,
while a Gabor initialisation results in a lower coherence at
the expense of a worse SNR. Continuing our analysis in the
case of data initialisation, keeping η →∞ and increasing the
coherence penalty factor ζ results in a dictionary with lower
mutual coherence, but also in a worse approximation quality.
This behaviour is further illustrated by the mutual coherence-
reconstruction scatter plot, which depicts µ against SNR of the
sparse approximation for every learned dictionary and exhibits
a clear (although highly variable) trend. In the case of Gabor
initialisation, on the other hand, it seems that the parameter
ζ does not affect mutual coherence and reconstruction error
for high values of η, while decreasing the penalty factor η has
generally a negative effect on both µ and SNR of the learned
dictionaries.

To understand the poor performance of the MOCOD algo-
rithm, especially when initialised with a Gabor dictionary, we
inspected µ and SNR of the sparse approximation at every
iteration, along with the percentage change of the dictionary
with respect to the Frobenious norm, that is defined as:

100

∣∣∣∣Φ(t+1) −Φ(t)
∣∣∣∣
F∣∣∣∣Φ(t)

∣∣∣∣
F

(14)

were Φ(t) indicates the dictionary at iteration t.
The main observation that underlies the poor performance

of MOCOD is that the percentage change of the dictionary does
not converge to zero as the number of iterations increases and,
therefore, the algorithm does not converge to a fixed point of
the objective function (6). Whenever η is set to be small (that
is, when the dictionary atoms are not forced to be unit norm),
the optimisation is very unstable and we often observed that
the mutual coherence ends being greater than the one of the
initial dictionary, especially for low values of ζ.

When η is set to be large, the algorithm still does not
converge to a fixed point of the objective function, but the
mutual coherence and SNR are much more stable. In this
case different initialisations lead to different solution paths
as evaluated in terms of SNR and mutual coherence as a
function of the optimisation iterations. In the case of data
initialisation, the mutual coherence drops and the SNR oscil-
lates, while in the case of Gabor initialisation, the SNR does
not change significantly and the mutual coherence slightly
increases. Moreover, the minimum mutual coherence achieved
by MOCOD in the results shown is never smaller than 0.3, and
further experiments with penalisation terms η = ζ = 1010

confirmed that the algorithm is unable to reach lower mutual
coherence levels.

Unlike MOCOD, INK-SVD and the proposed IPR algorithm
allow us to set a target coherence µ0 and to run the dictionary
decorrelation iteratively until it is achieved.

B. IPR and INK-SVD

After experimenting with different combinations of dictio-
nary learning and decorrelation iteration numbers, we found
that consistently good results can be achieved by performing
50 iterations of the K-SVD dictionary learning combined with
5 iterations of the relevant decorrelation method. This also led
to comparable running times, as will be discussed in Section
IV-C. We set the target mutual coherence in logarithmically
spaced intervals from 0.05 to 1 and compared the two algo-
rithms by evaluating the achieved SNR. When applying the
methods to an initial dictionary formed by randomly selected
vectors from the training set, we run the experiment for 10
independent trials to obtain more significant results.

Figure 2 depicts the results of our experiment. As can
be noted, both algorithms succeed in matching the target
coherence levels for both initialisations except for the lower
end on the left side of the plots, with IPR performing slightly
better in achieving the smallest mutual coherence in the case of
data initialisation, reaching a value of around 0.055 compared
to the 0.06 of INK-SVD. Whenever the target coherence µ0 is
larger than the coherence level achieved without dictionary de-
correlation, the two methods simply act as a K-SVD without
any mutual coherence constraint. In the case of data initial-
isation, we can observe that INK-SVD obtains a good SNR
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Figure 1: Mutual coherence and reconstruction error achieved using the MOCOD dictionary update and (a) randomly chosen
samples from the training set or (b) a Gabor frame as the initial dictionary. The surf plots show the mutual coherence and SNR
of the sparse approximation as a function of the two regularisation parameters η and ζ in equation (6). In the scatter plots, the
levels µmax = 1 and µmin =

√
(K −N)/N(K − 1) indicate the maximum and minimum coherence attainable by a N ×K

dictionary.
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Figure 2: Mutual coherence and reconstruction error achieved
using the proposed iterative projections and rotations (IPR)
algorithm and INK-SVD dictionary decorrelation, initialised
with (a) randomly chosen samples from the training set as
the initial dictionary or (b) a twice over-complete Gabor dic-
tionary. The error bars in (a) represent the standard deviation
resulting from 10 independent trials of the experiment and
indicate that the results are consistent, regardless the random
element introduced in the initialisation.

for mutual coherence values greater than µ = 0.3, after that
its performance degrades substantially. On the contrary, the
proposed IPR does not perform as well for high coherence
values, but does not significantly degrade from µ = 0.3 to
µ = 0.05. The results for Gabor initialisation, on the other
hand, favour the proposed algorithm showing a better SNR
and no significant approximation degradation for all the target
coherence values.

It is worth noting that using the IPR algorithm both data and
Gabor initialisations lead to incoherent dictionaries producing
similar SNR values. This suggests that the algorithm might
converge to equivalent fixed points of the optimisation function
regardless of its initialisation. Despite this being a desirable
result, we cannot claim it to be a general property of the
IPR algorithm, as we would require a formal analysis of the
convergence of dictionary learning that is outside the scope
of the present paper. On the other hand, the particular SNR
value of about 15 dB reached by the optimisation depends on
the training set used to learn the dictionary, as will be sown
in Section IV-D that presents results obtained with a different
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Figure 3: Running times of IPR and INK-SVD for different
mutual coherence levels and dictionaries initialised with (a)
randomly chosen samples from the training set or (b) a twice
over-complete Gabor dictionary. The error bars indicate the
standard deviation resulting from 10 independent trials of the
experiments.

training set.

C. Running times

Figure 3 shows the running times of the IPR and INK-
SVD algorithms for different coherence levels, tested on a
iMac with a 3.06GHz Intel Core 2 Duo processor running
MATLAB R2011a and the cputime function. The IPR values
are not dependant on the coherence level and are just below
100 seconds, whereas INK-SVD takes longer to compute less
coherent dictionaries. This is because INK-SVD acts in a
greedy fashion by decorrelating pair of atoms until the target
mutual coherence is reached (or until a maximum number
of iterations) and therefore the number of pairs of atoms to
decorrelate increases for low values of the target coherence.

The time required to compute a non de-correlated dictionary
can be found in the right end of the plots and is around 20
seconds, which is also consistent with the average time of 23
seconds needed by the MOCOD algorithm. This means that the
cost of IPR is about 5 times the cost of a standard K-SVD for
the problem sizes considered in our experiments.

D. Sparse approximation results

The relation between the coherence of a dictionary and
its approximation properties for different classes of signals
is a complex topic. In this section we do not attempt a
formal convergence analysis of the tested dictionary learning
algorithms as this is outside the scope of the present paper.
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The trade-off between mutual coherence and SNR of the
sparse approximation visible in Figures 1a, 2a and 2b is
consistent with the fact that the different decorrelation methods
aim at solving penalised or constrained optimisation problems.
If we compare the general dictionary learning problem intro-
duced in Section I-A to the incoherent formulations presented
in this paper, the penalty factors used to promote incoherence
in the unconstrained optimisation (6) and the feasible set con-
sisting of dictionaries with bounded mutual coherence in the
constrained problem (9) suggest that an incoherent dictionary
is expected to have a worse approximation performance if
compared to a coherent one. On the other hand, dictionary
learning is a non-convex optimisation problem that to the
best of our knowledge lacks strong and general convergence
results, relying instead on the ability of practical algorithms
to converge to local minima of the optimisation cost function.

For the purpose of the experimental evaluation of the IPR
algorithm, we tested whether the mutual coherence versus
SNR trade-off is consistent over different training and testing
signals. We considered the following test material:

• music03_16kHz, a guitar recording distributed as part
of the SMALLBOX that was used to train the dictionaries
in the experiments presented so far.

• track n.6 of the jazz section of the RWC music
database3, which is an electric guitar recording.

• track n.1 of the jazz section of the RWC music
database, which is an acoustic piano recording.

After running the IPR dictionary learning algorithm on the
guitar recording track n.6 using the data initialisation,
the same problem parameters specified in Section IV and
the target mutual coherence levels specified in Section IV-B,
we employed the learned dictionaries to approximate the two
remaining test signals, using the OMP algorithm and 5% of
active atoms, as in the learning phase.

Figure 4 displays the results of the experiment. If we
compare these values to the ones presented in Figure 2a,
we can note that the trade-off between mutual coherence
and SNR is no longer present, and that the approximation of
the training set (which in the case of the training guitar is
inversely proportional to the residual norm in the cost function
(9)) is around 12 and 13 dB for the two guitar signals and
around 10 dB for the piano signal. The absence of a steep
peak in correspondence with a dictionary with high mutual
coherence and the overall worse approximation performance
can be explained by the fact that music03_16kHz is a
relatively short signal, that as a consequence when learning
a dictionary from this signal the number of training vectors
compared to the size of the dictionary is relatively low and
that we observed a few signals that could be approximated
very well using only one atom in the dictionary. This does not
happen when learning a dictionary from a longer training set
obtained using track n.6 and results in overall worse but
more consistent results.

3available at http://staff.aist.go.jp/m.goto/RWC-MDB/
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Figure 4: Mutual coherence versus SNR of the sparse approx-
imation using a dictionary learned from track n.6 of the
jazz section of the RWC database using data initialisation, OMP
and 5% of active atoms in the sparse coding step of dictionary
learning. In the testing phase, OMP with 5% of active atoms
was also used to approximate signals from the training set,
from music03_16kHz that is a different guitar recording
and form track n.1 of the jazz section of the RWC database
that is a piano recording.

V. CONCLUSIONS AND PLANS FOR FUTURE
INVESTIGATION

We presented the iterative projections and rotations (IPR)
decorrelation algorithm, a method for dictionary decorrelation
to be used within the context of dictionary learning. Our
technique is based on an iterative projection optimisation used
to construct Grassmannian frames and includes a dictionary
rotation step that makes it suitable for the approximation
objective (9) of dictionary learning. Experiments on musical
audio data demonstrate the performance of IPR and suggest
that it can outperform state-of-the-art algorithms especially
when a very low mutual coherence is required. The computa-
tional time of IPR is of the same order of magnitude than the
time required by a standard K-SVD dictionary learning.

Exploring the applications of the proposed work is one of
the main objectives for future investigation. On one hand,
incoherent dictionary learning can be adapted and applied
to compressed sensing technologies, both for audio and for
other types of signals that are amenable to sparse approxima-
tions. On the other hand, classification and separation tasks
can benefit from the proposed algorithm in the context of
morphological component analysis. IPR acts on the Gram
matrix by thresholding the correlation between the atoms of
the dictionary, and can be easily adapted to decorrelate only
certain subsets of the dictionary that correspond to different
morphological components or sources.

Finally, extending the decorrelation strategy to more accu-
rate measures of coherence, such as the cumulative coherence
proposed by Tropp [32], and a better theoretical understanding
of the interplay between coherence and approximation perfor-
mance are both objects of current endeavours.
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