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ABSTRACT 

Human porphobilinogen deaminase (PBGD), the third enzyme in the heme pathway, 

catalyzes four times a single reaction to convert porphobilinogen into hydroxymethylbilane. 

Remarkably, PBGD employs a single active site during the process, with a distinct yet 

chemically equivalent bond formed each time. The four intermediate complexes of the 

enzyme have been biochemically validated and they can be isolated but they have never 

been structurally characterized other than the apo- and holo-enzyme bound to the cofactor. 

We present crystal structures for two human PBGD intermediates: PBGD loaded with the 

cofactor and with the reaction intermediate containing two additional substrate pyrrole rings. 

These results, combined with SAXS and NMR experiments, allow us to propose a 

mechanism for the reaction progression that requires less structural rearrangements than 

previously suggested: the enzyme slides a flexible loop over the growing-product active site 

cavity. The structures and the mechanism proposed for this essential reaction explain how a 

set of missense mutations result in acute intermittent porphyria. 

 

 

Keywords: human porphobilinogen deaminase (PBGD), heme biosynthesis, acute 

intermittent porphyria, reaction intermediates, X-ray structure, enzyme mechanism 
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Introduction 

The linear tetrapyrrole hydroxymethylbilane (HMB, also named pre-uroporphyrinogen) is the 

precursor of a variety of essential metabolites including heme, chlorophylls and cobalamin. 

In particular, the heme group acts as a prosthetic addition to many enzymes, transporters, 

and receptors including hemoglobin, myoglobin, catalases, peroxidases, cytochromes P450, 

and in sensor proteins for diatomic gases such as O2 or NO [1]. There are three pathways to 

make heme [2] yet, in eukaryotes, heme synthesis appears to follow the protoporphyrin 

pathway [3]. Heme synthesis is accomplished by the sequential action of several enzymes 

(eight in humans, mainly expressed in liver and in erythroid cells). Porphobilinogen 

deaminase (PBGD, EC 2.5.1.61) is the third enzyme of this biosynthetic route, catalysing the 

condensation of four units of porphobilinogen (PBG) to yield HMB, which is the precursor to 

all the tetrapyrroles. Inborn errors in any of these enzymes ultimately lead to severe 

metabolic disorders family termed as porphyrias [4]. Specifically, mutations in HMBS are 

responsible for Acute Intermittent Porphyria (AIP) with more than 400 pathogenic mutations 

described so far (including nonsense, missense and other mutations) [5,6]. 

PBGD is a monomeric enzyme, highly conserved across different species, with a molecular 

mass ranging between 34 to 45 kDa. ApoPBGD is thermodynamically unstable and it 

spontaneously and covalently attaches a dipyrromethane cofactor (DPM) from the reaction 

of the apo-enzyme with hydroxymethylbilane to generate the active holoenzyme in its ES2 

form [7,8]. Human PBGD is comprised of 3 distinct domains [9] and shares over 45% 

primary sequence identity with its counterparts from E. coli and others [10]. Two isoforms 

have been reported: the 44-kDa ubiquitous (housekeeping) enzyme (PBGD1) and the 42-

kDa erythrocyte-specific enzyme (PBGD2) [11]. The ubiquitous PBGD1 has 17 extra 

residues in the N-terminal region when compared to erythrocytic PBGD2. The role for this 

tail in the N-terminal region is unclear but experimental evidence demonstrates that such 

residues remain unstructured, do not alter the overall fold, nor the catalytic activity, nor the 

enzyme's stability [12].  

PBGD catalyses the formation of HMB by incorporating four units of PBG in a multistep 

reaction (Fig. S1) [13]. Reaction initially involves deamination of the PBG, followed by the 

attachment of the resulting azafulvene to the free alpha position. The DPM cofactor serves 

as a primer for the loading of further PBG molecules and, remarkably, holoPBGD uses the 

same acidic residue (D99 in the human sequence) for the pyrrole condensation (four times), 

repeating reactions where each intermediate of the polypyrrole elongation remains 

covalently attached to the DPM cofactor [14]. The resulting linear hexapyrrole is unstable 

and cleaves off through an unknown mechanism to yield the linear tetrapyrrole HMB product, 

also restoring holoPBGD.  
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Two different mechanisms have been proposed to explain how the enzyme deals with the 

growing oligopyrrole chain during catalysis and how the cleavage of the product occurs 

[15,16]. The first one assumes that the enzyme structure is flexible, such that the active site 

is opened for the entry of a new PBG molecule and closed during the ring fusion. Such 

opening and closing of the active site in human PBGD would be accomplished by movement 

of protein domains around proposed hinge regions (S96, H120, L238) [9]. The second 

mechanism speculates that at least four pyrroles could be accommodated without significant 

movement of the protein domains. Rotation of the cofactor around the covalent bond, linking 

the methylene C atom of the C1 pyrrole with the Cys261 S atom would cause the C1 and C2 

rings to vacate their respective binding sites and potentially allow another pyrrole moiety to 

bind at the catalytic centre of the enzyme. The cofactor movement would be aided by the 

presence of two almost completely invariant glycine residues [17]. 

To date, 14 crystal structures of the protein are available in the Protein Data Bank (2 of H. 

sapiens, 5 of E. coli, 5 of B. megaterium, 1 of A. thaliana and 1 of V. cholerae) [9,10,17-20]. 

Despite these efforts, the structures are either the apo- (50V4, D82A-PBGD of B. 

megaterium) or the holoPBGD and they provide little information on the intermediate 

catalytic stages of PBGD. Here, we present crystal structures of PBGD loaded with the 

cofactor (Eholo, 2.78 Å, PDB-ID: 5M7F) and PBGD with two additional substrate rings (ES2, 

2.73 Å, PDB-ID: 5M6R). Our structures, supported by additional Small Angle X-ray 

Scattering (SAXS) and NMR experiments, allow us to propose a mechanism for the reaction 

coordinate, with fewer enzyme structural changes than previously suggested, mostly 

effected by a change in volume at the active site. The latter change in turn results from a 

substrate-induced rearrangement of a flexible loop (R255-V263) sliding over the active site 

during reaction progression, in basic agreement with the static hypothesis. The large number 

of AIP-causing mutations occurring in this loop confirms the key relevance of this structural 

element not only for the reaction but also in disease.  

 

 

Materials & Methods 

Protein expression and purification. Freshly transformed E. coli BL21 (DE3) cells were 

used for protein expression. Cells to produce proteins for crystallization tests were grown in 

regular LB media, whereas cells to produce protein samples required for NMR experiments 

included ammonium chloride as the sole sources of nitrogen for protein synthesis. Protein 

purification was achieved as previously described [21], with the following modifications: the 

fractions containing pure PBGD were then loaded to an anion exchange chromatography 

column, either a HiTrap Q HP 5ml or MonoQ 5/50 GL. The resulting enzyme-intermediate 
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complexes were eluted with a linear gradient of buffer B; 0-30% in 35 CV or 0-20% in 50CV 

for respectively, Q or MonoQ column. Separated complexes, whose concentration were 

measured by UV-vis spectrometry at 280 nm, can be used immediately or flash frozen in 1 

ml aliquots and stored in -80 ºC. 

SAXS data collection and analysis. Synchrotron SAXS data were collected on beamline 

BM29 at ESRF (Grenoble, France) with a 2D detector (Pilatus 1M) over an angular 

range qmin = 0.01 Å−1 to qmax = 0.5 Å−1. X-ray scattering patterns were recorded for PBGD 

reaction intermediates at the concentration of 1.92 and 6.40 mg/mL (Eholo), 2.63 and 5.24 

mg/mL (ES), 2.10 and 4.26 mg/mL (ES2), 1.53 and 3.43 mg/mL (ES3) in standard size 

exclusion chromatography buffer (20mM Tris-HCl pH 8.5, 40mM NaCl). In order to generate 

an ab initio model, ten runs of DAMMIN[22] were performed, and after averaging and filtering 

a representative bead model with 732 beads was obtained. Superposition of the bead model 

on the relaxed crystallographic PBGD (3ECR) structure was carried out using the program 

SUPCOMB [22]. 

Crystallization and Structure Determination. Diffraction-quality PBGD crystals for 

holoenzyme (Eholo, PBGD2) and one of the reaction intermediate complexes (ES2, PBGD1) 

were obtained by hanging-drop vapour diffusion at 21 °C in a solution containing 0.1 M 

sodium cacodylate pH 6.5, 0.2 M sodium chloride, 2 M ammonium sulphate and 0.1 M Na 

HEPES pH 7.2, 0.9 M Na dihydrogen phosphate/0.9 M K dihydrogen phosphate, 

respectively. Individual crystals were cryo-protected by a brief soak in mother liquor 

supplemented with 25 % glycerol and flash frozen in liquid nitrogen.  Diffraction data were 

remotely collected at a wavelength of 0.972422 Å at the ID23-1 beamline at the ESRF 

synchrotron centre (Grenoble, France). Diffraction data were processed using the XDS and 

the Aimless programs [23]. Molecular replacement was carried out by the MOLREP program 

with E. coli PBGD (PDB ID: 3ECR) as the search model. Refinement was performed using 

the autoBUSTER computer program [24] and iterative cycles of model building achieved 

using COOT from the CCP4 suite [25]. 

NMR spectroscopy. 1H,15N-HSQC experiments were recorded at 37 ºC on an 800 MHz 

Bruker Advance III spectrometer from 15N isotopically enriched protein samples in PBGD 

purification buffer A. 1024x200 points where collected and water suppression was achieved 

using WATERGATE. The data were processed using NMRPipe [26] software and in-house 

built scripts. Processed data were analysed with NMRDraw. 

Docking simulations. A standard docking procedure was used for a rigid protein and a 

flexible ligand whose torsion angles were identified; ten independent runs per ligand. A grid 
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centred on macromolecule of 126, 126, and 126 points in x, y, and z directions was built with 

a grid spacing of 0.458 Å. The default settings were used for all other parameters. From the 

resulting ligand clusters those with best (lowest) binding energies and localized within the 

active centre area were analysed for hydrogen bonding using AutoDockTools and Discovery 

Studio Visualizer 4.5.  

Molecular Dynamics simulations. MD simulations (for structure relaxation before fitting 

model to the SAXS data) were performed with the NAMD2 program along with the 

CHARMM27 force field. Simulations were carried out in the constant volume-constant 

temperature (NVT) ensemble with the Leapfrog Verlet integrator employing an integration 

time step of 2 fs. A protein was solvated in a water sphere and the system was neutralized 

with NaCl. Covalent bonds between hydrogen atoms and heavy atoms were constrained by 

means of the RATTLE algorithm. A switching function was used to truncate the non-bonded 

interactions (Van der Waals and electrostatics) in the cut-off distance of 12 Å. The 

conjugated gradient method of minimization was used to relax the structure before the 

production for 5000 steps of force evaluations. MD run was performed for 17 ns (excluding 

the minimization). Coordinates were written to trajectory file every 50 or 100 steps and 

energy value were output every 10 steps. 

 

Results 

Isolation of human PBGD reaction intermediates. Investigation of the reaction 

mechanism requires the isolation of the PBGD reaction intermediates, which is a challenging 

task because each such species shows inherent reversibility, thus affecting the integrity of 

each isolated form over time. To address this issue, reaction intermediates of human PBGD 

(PBGD1 or PBGD2) were heterologously expressed in E. coli and purified as previously 

described [27] but adapting a protocol to ensure maximum purity and stability of the isolated 

intermediates (see Materials & Methods). Specifically, no ammonium ions were present at 

any time during the purification, not to shift the reaction balance to Eholo; and size exclusion 

chromatography was used as an early purification step, before optimizing the ion exchange 

chromatographic separation of the intermediates. As a result, five enzyme reaction 

intermediates could be isolated from each isoenzyme form, as determined by native gel 

analysis (Fig. 1). Mass spectrometry confirmed the chemical composition of each enzyme 

reaction intermediate (ESholo, ES, ES2 x2 and ES3, Fig. 1). Two ES2 intermediates can be 

separated by gel electrophoresis (Fig. 1) and ion exchange chromatography (Fig. S2), 

indicating the existence of two ES2 conformations with different solvent exposed charge. The 

purified reaction intermediates show long term stability (more than 1 month) and do not 

scramble upon reinjection onto the column. 
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Reaction intermediates do not show large conformational changes. We have used a 

set of biophysical techniques to characterize the conformational changes across the PBGD 

reaction intermediates. First, small-angle X-ray scattering (SAXS) was collected at a 

synchrotron source for each of the protein intermediates (obtained from the PBGD1 isoform). 

For all collected datasets, SAXS data is only compatible with a monomeric form of PBGD, in 

agreement with ion exchange chromatography elution profiles (Fig. S2). The low-resolution 

SAXS-derived structural models were compared to the human high-resolution structure 

(PDB-ID: 3ECR, Eholo). To that end, the 3ECR structure was completed with homology 

modelling to fill the portions missing from the crystal structure (1-20, 60-78, 361-364) and 

subjected to the MD simulations for structure relaxation (17 ns, see Star Methods section), 

while the cofactor and reaction intermediates were not included. The SAXS molecular 

shapes (colorful mesh) are in good agreement with the 3ECR structure (black cartoon) for 

Eholo, ES and ES2 reaction intermediates (Fig. 2A). The radius of gyration (Rg), estimated 

from the low-angle scattering region by a Guinier plot [28], also yields no significant 

differences among these enzyme variants (Fig. 2B and Table 1). In case of the last stage of 

reaction, before product release (PBGD ES3), SAXS reports a larger Rg value and increases 

in the maximum linear dimension Dmax and in the Chi parameter, but the 3ECR structure still 

fits the Eholo SAXS-derived low-resolution envelope rather well.  

Isotope-enriched enzyme-intermediate complexes were also analyzed by NMR 

spectroscopy. Due to the exquisite sensitivity of chemical shift to changes in the nuclear 

environment the 1H,15N-HSQC is a fingerprint spectrum for a protein, suitable to monitor its 

conformational rearrangements. The 1H,15N-HSQC spectra for the different reaction 

intermediates are very similar (Fig. 2C), with a small number of peaks showing chemical shift 

perturbation. This is the expected outcome for localized changes instead of segmental 

domain motion, agrees with the SAXS data and suggests a reaction mechanism with 

localized segmental dynamics, ruling out the domain-reorienting mechanism. To confirm this 

hypothesis and to identify the involved structural elements, high-resolution structures are 

desirable.  

 

High resolution structures for Eholo and the ES2 reaction intermediate. To maximize 

chances of obtaining diffraction-quality PBGD crystals, trials using both PBGD variants 

(PBGD1 and PBGD2) were attempted, using crystallization screens based on the conditions 

reported in the literature or commercially available screens. The temperature was also 

varied. Crystals were always grown in the dark, to prevent cofactor and substrate photo-

oxidation and the protein concentration was finely tuned, since PBGD tends to form multiple 
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crystal plates that grow in tight stacks (Fig. S3). The yellow color of the crystals indicates 

partial oxidation of the polypyrrol moiety.  Out of the more than 160 crystals tested and more 

than 40 diffraction datasets collected, two crystals produced good resolution diffraction 

datasets for two reaction intermediates: Eholo (PBGD2, Fig. S4) and (ES2, PBGD1, Fig. S5).  

The diffraction data obtained from these crystals were processed to a resolution of 2.78 Å 

and 2.73 Å for Eholo and ES2-complex, respectively. The crystallographic data collection and 

refinement statistics are presented in Table 2. Both crystals belong to the monoclinic space 

group P21, with unit-cell parameters a = 70.42 Å, b = 80.95 Å, c = 76.22 Å, β = 95.70° for 

Eholo; and a = 68.91 Å, b = 81.20 Å, c = 79.69 Å, β = 93.01° for the ES2-complex. The 

Matthews coefficient[29,30], suggests that there is a single PBGD dimer per crystallographic 

asymmetric unit, with a solvent content of 57%, in both crystals. Structure solution by 

molecular-replacement used H. sapiens PBGD (PDB ID: 3ECR) as the search model. The 

final structures were validated using the MolProbity Server [31] and the final statistics were 

Rwork = 0.220 (0.260) and Rfree = 0.197 (0.246) for Eholo (ES2–complex), respectively. 

Coordinates were deposited in the PDB with the accession codes 5M7F (PBGD2:Eholo) and 

5M6R (PBGD1:ES2). 

 

Overall description of Eholo and ES2–complex and comparison with other PBGD 

structures. The human PBGD structures for Eholo and ES2–complex share the same fold, 

comprised of three α/β domains each of about 110 residues (domain 1: 1-116 and 216-239; 

domain 2: 117-215; domain 3: 240-361), linked together by flexible hinge regions (S96, 

H120, L238). Domains 1 and 2 are structurally close to periplasmic carbohydrate binding 

proteins [32]. The substrate-binding site is located in a cleft region between domains 1 and 

2, while the dipyrromethane cofactor is covalently attached to Cys261, in a loop connecting 

13 and 13 in domain 3 (residues 248-264). Residues S59–S76, previously uncharacterized 

in human (or E. coli) structures, show well defined electron density in the ES2–complex 

PBGD structure. These residues lie in a loop in the vicinity of the active site, forming a cap-

like structure that covers the entire cavity. 

Eholo is very similar to the previously elucidated human PBGD holo structures with r.m.s.d. 

values of 0.5 Å and 0.7 Å when compared 3ECR and 3EQ1 [9,10]. Such structural homology 

is largely maintained also for ES2, which compares well with 3ECR (0.8 Å) and 3EQ1 (0.9 

Å). A superposition of Eholo and ES2-complex shows their striking structural similarity, which 

is reflected in a C r.m.s.d. of 0.6 Å for the 316 common residues (Fig. 3A). The comparison 

is made with structures from different isoforms, underlining the structural/functional 

equivalence between PBGD1 and PBGD2 and we suggest that the 17 extra residues found 

in PBGD1 might be related to protein trafficking and/or the cellular localization of the 
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enzyme. When compared domain by domain, the r.m.s.d. between Eholo and ES2 become 

0.4, 0.3 and 0.8 Å for domains 1, 2 and 3 respectively. The most noticeable changes are 

concentrated in the flexible loop that contains Cys261, located in domain 3 (Fig. 3B). In the 

ES2 structure the loop is pulled back from the active site, displacing the Cys261 covalently-

linked cofactor to a novel binding site. Such rearrangement is key for understanding the 

mechanism of substrate elongation (vide infra) but it also underlines the fact that localized 

and not domain motions govern the conformational changes from Eholo to ES2, consistent 

with the SAXS and NMR data. 

 

Structure of the active site and insights into the catalytic mechanism. In the Eholo PBGD 

structure, the dipyrromethane cofactor (pyrrole units C1 and C2, Fig. 4A) is positioned within 

a deep positively charged cleft formed between domains 1 and 2 (purple and orange 

volumes in Fig. 4E corresponding to the frontal and rear sub-cavities of the cleft). This ligand 

placement is also found in equivalent Eholo PBGD high-resolution structures and the cofactor 

is stabilized by well described interactions with surrounding residues (Fig. 4C) [10,18,33]. 

The C1 pyrrole unit is covalently attached to C261, which belongs to a loop (R255-V263) 

located in domain 3. In the ES2 PBGD structure, the R255-V263 loop pulls away from the 

active site, displacing the polypyrrole chain by about 5 Å, dragging the C1 and C2 pyrroles 

into a new pocket (expansion of the rear sub-cavity, orange in Figures 4B-D); while the S1 

and S2 units now occupy the positions the cofactor had in the Eholo structure, with the S1-S2 

pyrrole units in ES2 PBGD adopting exactly the same conformation and being stabilized by 

the same residues as the C1-C2 cofactor in Eholo PBGD. This suggests that the cofactor in 

Eholo is strongly bound and already adopts a catalytically relevant conformation. These 

observations are consistent with the large number of conserved surrounding residues and 

with the reaction's stereospecificity [34]. Yet, the ES2-complex is further stabilized by the 

extra interactions that the newly displaced C1-C2 cofactor creates with the protein at the rear 

cavity, mostly with T102, V215 and S262. Such added interactions provide a structural 

rationale for the empirical observation that ES2 is the most stable of the purified reaction 

intermediates [27,35].  

In the ES2-complex, D99, a key residue in the polypyrrole chain elongation, retains the 

hydrogen bonding with the N-H of S2 (C2 in Eholo), required for the elongation reaction, but it 

also falls at a reactive distance from the C2-S1 interface (3.8 Å to the S1 H-N), which is the 

product cleavage point (Fig. 4E-F). This proximity strongly suggests that D99 may also play 

a relevant role in the product release by catalyzing the hydrolysis reaction, in agreement with 

the spontaneous formation of Eholo when apoPBGD is incubated with HMB [36]. In the 
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context of our ES2 PBGD structure, D99 is located at about 8.5 Å from the cofactor C1 ring 

(Fig. 4F), which now would become protected from hydrolysis during the elongation process.  

In Eholo the active site is large (674 Å3, Fig. 4A) and rich in positively charged residues 

(mainly Lys and Arg residues) to compensate-for and attract the negative charges 

introduced with the ligands’ carboxylates during the elongation process. The placement of 

the cofactor and the location of D99 suggest that the PBG substrate enters the site from the 

frontal sub-cavity, as indicated by the arrow in Figure 3A. Remarkably, the displacement of 

the R255-V263 loop in the ES2 PBGD intermediate enlarges the overall cavity size to a final 

volume of 787 Å3 (Fig. 4D), creating a large empty space on the distal end of the catalytic 

site and dividing the cavity in two similar subspaces around D99: the frontal sub-cavity that 

remains largely unaltered as compared to Eholo (purple in Figures 4C,D, ES2 frontal sub-

cavity volume is 487 Å3); and the rear sub-cavity (orange in Figures 4C,D), which is very 

large for ES2 (300 Å3) and directly produced by the loop displacement. 

To investigate which parts of the cavity are relevant for the elongation reaction, we have 

used a set of competitive inhibitors that are able to effectively block the reaction (Ki  100 

M).  Specifically, computational docking of the inhibitors into the Eholo and ES2 structures 

allows pinpointing the areas that may accommodate the substrate. As is shown in Fig. S6, 

both sub-cavities are occupied by the inhibitors in ES2, while only the frontal sub-cavity is hit 

by the inhibitors in Eholo. This is consistent with substrates approaching the active site via the 

frontal sub-cavity. Interestingly, the extended size of the rear sub-cavity in ES2 would allow 

the tetrapyrrole to adopt a different placement, in which the S2 moiety would occupy the S1 

pocket and the S1 pyrrole ring would be completely inserted into the rear sub-cavity. Such a 

conformation would ease the entrance to the S2 site of a subsequent PBG molecule which 

would then proceed to fuse with ES2 and elongate the product to ES3. Based on this 

hypothesis, a computationally-derived model of the resulting ES3 complex is shown in Fig. 

S7. Presumably, further displacement of the R255-V263 loop would enlarge the rear sub-

cavity even more so the reaction can progress towards the formation of ES4. In support of 

this model, the R26H mutant located in the frontal volume has been associated only with a 

reduced capacity to incorporate new substrate units [34]. 

 

The active-site loop is a lid for the catalytic site. The active site is partially protected by a 

flap region constituted by residues 57-74 in human PBGD, which is likely relevant in binding 

the substrate and cofactor as well as in aiding catalysis. This active-site loop is missing in all 

the deposited structures so far except in the Eholo PBGD from A. thaliana (4HTG) [17]. In this 

structure one of two chains in the asymmetric unit of the ES2-complex crystal (5M6R_A) 
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displays ordered electron density for the flap region. The latter was revealed to form a cap-

like structure that covers the active site. The loop in the remaining human holo-structures 

described so far is only partially ordered, with residues G60-I71 adopting -helical 

secondary structure, while the equivalent region in PBGD ID 4HTG is much more disordered 

(Fig. 3C). Interestingly, the loop in our ES2 human structure folds towards the active site, so 

that residue E73 is able to form a hydrogen bond with the propionate side chain of the C2 

ring of the growing product, ultimately stabilizing the complex. In the A. thaliana structure, 

the equivalent residue to E73 is D66, which is solvent exposed and displays no interactions, 

in agreement with the Eholo contents of that active site. 

 

Discussion 

In this contribution, we report the first medium resolution structure of a reaction intermediate 

for PBGD (ES2 of human PBGD1, PBD ID 5M6R). The combined analysis of the ES2-

complex with the structure of human Eholo PBGD2 (PBD ID 5M7F, also presented here) 

reveals that the structural changes upon polypyrrole elongation are largely constrained to the 

R255-V263 loop, refuting the hypothesis of significant domain rearrangements during the 

reaction progression up to the ES2 intermediate (Fig. 3). It is entirely plausible to suggest 

that the only significant changes in the structure during the second part of the reaction 

(formation of ES4 and product release) would also only affect to the R255-V263 loop, in 

keeping with our SAXS, NMR and gel filtration chromatography data. 

In spite of the limited extent of the reported conformational changes among the reaction 

intermediates, the progressive increase in the electrophoretic mobility observed in the native 

polyacrylamide electrophoresis (Fig. 1) and their successful ionic exchange separation (Fig. 

S2) suggest a gradual increase in net negative charge compared to that of Eapo or Eholo, as 

previously suggested [37]. As shown in Table S1, this is actually the case, and it can be 

mainly attributed to the PBGD Arg residues, which experience a large reduction in their 

solvent accessible area in ES2 as compared to Eholo, due to salt-bridge interactions with the 

negatively charged pyrrole units. 

The structures reported here provide molecular detail on how the reaction process takes 

place within the confines of a single active site. At least three previously undescribed 

observations obtained from the structures appear to be relevant for the reaction mechanism: 

i) the displacement of the R255-V263 loop, which allows reaction progression up to the ES2 

stage allocating the cofactor (C1-C2 rings) into a new pocket and extracting it from the 

catalytic pocket; ii) the displacement of the same loop generates a new internal cavity, which 

is potentially suitable for hosting the further reaction intermediate; and iii) the relative position 
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of the ligands from the catalytic residue D99 [38], which is always at reactive distance from 

the S2(C2) elongation pocket, but also close enough to the C2 ring. Therefore, we propose 

that D99 is also responsible for product release. A scheme that embraces all these features 

into a mechanistic model of reaction progression is shown in Fig. 5. In the Eholo structure, the 

catalytic site is nearby the key residue D99 and occupied by the cofactor. The entrance of 

new PBG molecules occurs through the frontal sub-cavity and is facilitated by electrostatic 

complementarity. The entrance of the PBG into the rear sub-cavity likely produces the 

cofactor shift, mediated by the displacement of the loop containing Cys261. As a result, C1 

now occupies a new pocket whilst C2 occupies the former C1 position and the new pyrrole 

unit is allocated at the condensation catalytic site. The progressive enlargement of the rear 

sub-cavity produced by the concerted R255-V263 loop displacement would allow for this 

mechanism to be repeated twice, up to the formation of the ES4 intermediate. 

A plausible mechanism for the HMB release is also shown in Fig. 5.  According to our model, 

cleavage of the bilane attached to the cofactor and polypyrrole elongation are catalyzed by 

the same aspartic acid, which is always at reactive distance from the catalytic pocket (the 

location of the next PBG unit for condensation) and from the N-H of C2 (likely, the cleavage 

point in the polymer). We hypothesize that steric tension and the proximity of the C2 ring to 

D99 may trigger the cleavage hydrolytic reaction and product release. Essentially, the 

mechanism we propose corresponds to the reverse condensation reaction mechanism, also 

involving an azafulvene intermediate. In this context, both reactions are reversible and they 

could spontaneously occur at the appropriate stage of the elongation reaction. The interplay 

between the two opposite reactions (condensation and hydrolysis) is governed by a delicate 

balance between the S2 and C2 distances to D99. According to this hypothesis, the 

condensation reaction would dominate from Eholo to ES4 due to a closer distance of D99 to 

the reaction site than to C2 (confirmed for ES2: D99 is at 2.2 Å and 3.8 Å of the N-H of S2 

and C2 respectively), with some aid from the chemical driving force of the substrate excess. 

During the elongation reaction, it is plausible that the D99(O)-C2(NH) distance shortens to 

favor the hydrolysis reaction, as reflected in the structural model for the ES3 reaction 

intermediate (Fig. S7). This feature, combined with the increasing steric tension of the 

reaction intermediate, may favor the hydrolysis reaction. The active site loop (residues 57-74 

in the human isoform) is forming a contact with the C2 ring that could presumably fine tune 

the distance between D99 and the pyrrole unit. The experimental reconstitution of Eholo 

starting from Eapo and HMB [36] supports this model. 

The reported structures also allow rationalization of the relative stability of the reaction 

intermediates. Clearly, ES2 is more stable than Eholo, because it integrally maintains the 

same cofactor-protein interactions as observed in Eholo, whilst being further stabilized by the 
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interactions generated between the C1/C2 pyrroles and the residues lining the new pocket. 

Consistent with these observations, the ES reaction intermediate would be more stable than 

Eholo and less stable than ES2. We predict that progression from ES2 to ES4 might generate 

further interactions between the polypyrrole and the cavity residues but likely at the cost of 

generating a tensioned and, therefore, ultimately unstable conformation. 

Last but not least, the reported structures and the proposed reaction mechanism allow 

rationalization of previously unexplained missense mutations in human HMBS that result in 

AIP. As it is common in porphyria [21], most of the 168 missense mutations reported in the 

Human Mutation Database [5] can be associated with reduced protein stability. Yet, a subset 

of the point mutations has already been associated to a loss of interactions between protein 

residues and the C1-C2 pyrrole units in the Eholo structure, affecting the stability of the 

reaction intermediates [10,39]. Here we highlight the relevance of the sliding loop, key for 

reaction elongation, which also contains seven residues (E250, A252, L254, H256, E258, 

G260 and C261) that produce AIP upon mutation. It is likely that these mutations constrain 

the loop mobility, ultimately compromising reaction progression. Furthermore, the V215M 

and V215E mutations, which would abrogate the V215-mediated stabilization of the C2 ring 

at the shifted position in the ES2 structure, also results in AIP. Other residues in the rear 

cavity are also involved in AIP upon mutation: L254, R149, A214 and Y213. These mutants 

may be amenable to stabilization by pharmacological chaperones, opening new therapeutic 

intervention avenues against the disease. 
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Figure Captions 

Figure 1. Native polyacrylamide electrophoresis for the different reaction intermediates 

isolated for human PBGD. The band downshift suggests a gradual increase in net negative 

charge as compared to Eapo. ES2 and ES2' both correspond to the reaction intermediate with 

two PBG condensed units. The presence of multiple bands probably indicates incomplete 

separation between the intermediates. The asterisk indicates the intermediate that was 

successfully crystallized. 

Figure 2. Biophysical properties of the PBGD reaction intermediates. (A) Superimposition of 

the relaxed model structure (3ECR, after 17 ns MD simulation) with the SAXS-derived low-

resolution protein volumes. (B) Fitting of the experimental scattering spectra with a simulated 

fit obtained from the relaxed structure. (C) 1H,15N-HSQC spectra for the isolated PBGD 

reaction intermediates show chemical shift perturbations consistent with localised structural 

changes. 

Figure 3. (A) Overall structure of human PBGD. Cartoon representation of human PBGD 

bound with dipyromethane cofactor (Eholo, erythrocytic PBGD isoform, green) overlaid with 

the reaction intermediate (ES2, housekeeping isoform, blue). The arrow indicates the likely 

pathway for a new PBG unit as well as the direction of the loop displacement. (B) Root mean 

square deviation values between the residues of Eholo (reference) and ES2-complex 

structures. Values below the average (r.m.s.dav = 0.434) covered with grey color. (C) 

Cartoon representation of ES2 PBGD showing the loop region covering the active site, red 

highlighted. The two orientations correspond to a 90º rotation along the ordinate reference 

axis. 

Figure 4. Active site of human PBGD. (A-B) Electron density for the cofactor/ligand in Eholo 

and ES2. The interactions between the cofactor or the reaction intermediate and the residues 

from the active site are shown in (C) and (D) for Eholo and ES2, respectively. The cavity 

volume enclosing the active site is shown in (E) and (F) for Eholo and ES2. For clarity, the 

cavity has been divided into the frontal (purple) and rear (orange) sub-cavities, as indicated. 

Distances between the catalytic residue D99 and some atoms relevant for the reaction are 

shown in (G) and (H) for Eholo and ES2-complex. 

Figure 5. Scheme showing the active site cavity as a function of the reaction progression. 

The R255-V263 loop hosts C261 which covalently binds the cofactor. The loop displaces 

during polypyrrole elongation. At all times, D99 is at reactive distance of the S2 and C2 

positions in the ES2 complex. According to our model, once the ES4 complex is reached, the 

hydrolysis occurs spontaneously and mediated by D99 (reverse reaction), as indicated. The 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

cavities for Eholo and ES2 (dash gray line highlight) are depicted from the high-resolution 

structures while the other cavities are theoretical models. 
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Table 1.  SAXS data analysis statistics 

Protein sample Rg [Å] Dmax [Å] Chi NSD
(1)

 

PBGD1 Eholo 2.39 +/- 0.01 8.38 1.094 0.8212 

PBGD1 ES 2.45 +/- 0.07 8.59 2.04 0.8169 

PBGD1 ES2 2.43 +/- 0.04 8.51 1.788 0.8117 

PBGD1 ES3 2.92 +/- 0.12 10.23 5.037 0.8114 
(1) Normalized Spatial Discrepances. 
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Table 2. PBGD crystallographic data collection and refinement statistics 

Values in parentheses refer to the outer resolution range 

 

PDB ID 5M7F (Eholo) 5M6R (ES2) 

X-ray data collection statistics 

X-ray source ESRF ID23-1 ESRF ID23-1 

Detector Dectris Pilatus 6M-F Dectris Pilatus 6M-F 

Wavelength (Å) 0.972422 0.972422 

Space group P 1 21 1 P 1 21 1 

Cell constants 
a, b, c, α, β, γ 

70.42Å, 80.95Å, 76.22Å, 90.00º, 
95.70º, 90.00º 

68.91Å, 81.20Å, 79.69Å, 
90.00º, 93.01º, 90.00º 

Resolution limits  (Å) 80.95–2.78 (2.83–2.78) 81.20–2.73 (2.78–2.73) 

Completeness (%) 98.9 (83.1) 97.7 (65.7) 

Unique reflections measured 21353 22971 

Multiplicity 3.3 (2.6) 9.2 (3.8) 

Rmerge(I) 0.247 (1.265) 0.194 (1.377) 

CChalf 0.946 (0.477) 0.996 (0.655) 

Average I/σ(I) 3.1 (0.9) 11.7 (1.2) 

Refinement statistics 

Resolution range  (Å) 29.77–2.78 (2.92–2.78) 56.84–2.73 (2.86–2.73) 

Completeness (%) 98.5 (91.77) 95.8 (77.95) 

Unique reflections refined 
against 

21279 (2509) 22510 (2306) 

Free set 1112 (112) 1104 (127) 

R 0.222 0.200 

Rwork 0.220 (0.250) 0.197 (0.239) 

Rfree 0.260 (0.301) 0.246 (0.289) 

RMSD bond lengths (Å) 0.01 0.01 

RMSD bond angles (º) 1.16 1.14 

Ramachandran outliers 
(protein backbone) 

0 3 

Ramachandran favoured 
(protein backbone) 

97% 95% 

Residues modelled (range) A: 20–57, 75–353, B: 20–56, 
75–353 

A: 18–357, B: 18–61, 76–353 

Waters modelled 49 23 

Non-protein molecules 2 DPM, 6 SO4 2 7J8, 3 PO4, 1 EPE 

Total number of atoms 10034 10597 

Average B, all atoms (Å
2
) 45.0 91.0 
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Highlights 

 First crystal structure of a PBGD reaction intermediate.  

 Structural data reveal molecular basis for tetrapyrrole elongation by 

PBGD.  

 Identification of a mobile loop and a cavity of variable size, key for 

reaction. 

 Rationalization of a set of mutations causing acute intermittent 

porphyria. 
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