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Abstract. We prove that the recurrent random walk (RW) in random environ-
ment (RE) on a strip in bounded potential satisfies the Central Limit Theorem
(CLT).

The key ingredients of the proof are the analysis of the invariant measure
equation and construction of a linearly growing martingale for walks in bounded
potential.

Our main result implies a complete classification of recurrent i.i.d. RWRE
on the strip. Namely the walk either exhibits the Sinai behaviour in the sense
that Xt/(ln t)2 converges, as t → ∞, to a (random) limit (the Sinai law) or, it
satisfies the CLT.

Another application of our main result is the CLT for the quasiperiodic envi-
ronments with Diophantine frequencies in the recurrent case. We complement
this result by proving that in the transient case the CLT holds for all uniquely
ergodic environments.

We also investigate the algebraic structure of the environments satisfying the
CLT. In particular, we show that there exists a collection of proper algebraic
subvarieties in the space of transition probabilities such that
• If RE is stationary and ergodic and the transition probabilities are con-

centrated on one of subvarieties from our collection then the CLT holds;
• If the environment is i.i.d then the above condition is also necessary for

the CLT.
All these results are valid for one-dimensional RWRE with bounded jumps

as a particular case of the strip model.
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1. Introduction.

1.1. Brief history of the problem. It is well known that one dimensional
RWRE exhibit features which are very different from those of classical random
walks. This fact was first discovered in 1975 by Solomon ([36]) and by Kesten,
Kozlov, and Spitzer ([20]) for transient random walks on Z for i.i.d. environments
with jumps to nearest neighbours. In 1982, Sinai ([34]) found one of the most strik-
ing manifestations of that: he proved that for recurrent nearest neighbour RW in
i.i.d. RE the correct scaling is ln2 t, or, more precisely, that Xt/(ln t)

2 converges,
1
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as t → ∞, to a (random) limit. Below, we call this phenomena the Sinai law or
the Sinai behaviour.

Methods used in [34] (as well as in [36, 20]) rely heavily on the fact that the
random walk is on Z and is allowed to jump only to the nearest sites. Hence the
natural question asked by Sinai in [34]: would it be possible to extend his (and
other) results to more general models such as RW on Z with bounded jumps.

In 1984, Key [24] found a recurrence criterion for RWRE on Z for the so called
[−l, r] model, where r and l are the maximal lengthes of possible jumps of the
walk to the right and to the left respectively. Key’s criterion was stated in terms
of properties of the ”middle” Lyapunov exponents of products of random matrices
constructed from the parameters of the environment. This approach was devel-
oped by Letchikov [25] who in 1998 obtained a partial answer to Sinai’s question.
He proved that recurrent RWs on Z with bounded jumps in i.i.d. environment
exhibit the Sinai behaviour if the probabilities of jumps of length 1 dominate the
probabilities of other jumps. Further development by Brémont [5, 6, 7] of the
Key-Letchikov type approach lead to a number of interesting results for the [−l, r]
model. Comments on the relation between the relevant Brémont’s results and the
results of this work will be provided later.

We turn now to RWRE on a strip. This model was introduced by Bolthausen
and Goldsheid in [2] who also reduced the study of the RWRE with bounded jumps
on Z to that of RW on a strip and proved the recurrence and transience criterion
for the strip model. The technique used in [2] is completely different from that of
[24, 25, 5, 6, 7].

The approach of [2] was developed in [16] where conditions for the Law of Large
Numbers (LLN) and the CLT for transient RWs were provided in the quenched
setting (for almost all environments). Independently, Roitershtein in [33] obtained
the LLN and the annealed CLT for mixing RE.

A complete answer to Sinai’s question was obtained in [3] where further devel-
opment of methods from [2] and [16] allowed authors to prove that, unless the
parameters of the environment belong to a certain algebraic subvariety, recurrent
random walks in i.i.d. environments obey the Sinai law. The description of this
subvariety is quite explicit. In particular, this description was used in [3] to show
that recurrent finite range RWs in i.i.d. environments on Z exhibit either the Sinai
behaviour or the CLT behaviour. Moreover, the CLT alternative takes place if and
only if the walk on Z is a martingale.

Quasiperiodic environments form another class of environments where the CLT
behaviour is observed. The first CLT in the nearest neighbour quasiperiodic setting
(under the Diophantine conditions) is due to [1] in the transient case and due to
[35] in the recurrent case. Extensions of the above results to the [−l, r] model were
obtained in [7]. We note that the results of [16] imply the CLT for hitting times
for uniquely ergodic transient walks on the strip.
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In subsection 1.2 we describe how our results allow us to obtain a complete
classification of possible regimes in both i.i.d. and quasiperiodic Diophantine en-
vironments.

We remark that the papers cited above are only those closely related to our
setting. In particular, since the recurrent random walks are the main subject
of this work, we have mentioned only those papers on the transient case which
are related to our approach to the problem. A comprehensive overview of earlier
development of the subject can be found in [37, 4]. More recent results on the
transient walks are contained in [29, 15, 16, 33, 9, 13, 14, 31, 10, 32].

1.2. Motivation, goal, results, techniques. The main motivation and goal of
this paper is to answer the following question: does the Sinai/CLT alternative
mentioned above hold for recurrent walks on a strip?

The principle difference between the [−l, r] model and the general strip model
is that, unlike in the [−l, r] model, the fact that the RW in an i.i.d. RE on a strip
does not obey the Sinai behaviour does not, generally, imply that this walk is a
martingale. However, it does imply ([3]) that the potential of the environment is
bounded (see (3.5) for the definition of the potential).

This boundedness of the potential is the main assumption under which the main
result of the present work (Theorem 3.1) holds. It states that

• random walks in stationary ergodic environments with bounded potentials satisfy
the CLT.

(The precise formulations of this and other results we discuss in this Introduction
require some preparation and will be given later.)

It is important that this theorem does not use the i.i.d. property of the envi-
ronment.

The main technical advance of this work is Lemma 4.4 which is the crucial
ingredient in the proof of Theorem 3.1. This lemma provides a construction of
an asymptotically linear solution to a martingale equation. This requires a new
technique which is developed in Section 7.

Having said that, we should add that we use widely a number of both technical
and principal results obtained in [2, 3, 16, 10]. Most of these results are listed in
Section 2 which, on the one hand, is just necessary and on the other makes this
paper more self-contained.

The above CLT criterion implies the following corollary (and answers the ques-
tion which has motivated this work):

• In recurrent i.i.d. environments on a strip there is an alternative: either the walk
exhibits the Sinai behaviour or it satisfies the classical Central Limit Theorem.

This statement largely completes the classification of possible limiting distribu-
tions in i.i.d. environments of the RWRE on the strip (complementing the results
obtained in [2, 16, 3, 33, 10, 32]).

This criterion also allows us to show that
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• recurrent RWs in Diophantine quasi-periodic random environments generated by
sufficiently smooth functions satisfy the CLT.

Using a different method, we complement this statement by extending to the
strip model the result which was proved in [15] for walks on Z with nearest neigh-
bour jumps by proving that

• transient RWs on a strip in environments generated by continuous uniquely er-
godic transformations of a compact metric space always satisfy the CLT with pos-
itive drift.

Note that the last two statements provide complete classification of the walks in
Diophantine quasi-periodic environments. We would like to emphasize that in the
transient case no smoothness of the uniquely ergodic transformation is required
(in contrast to the recurrent case).

Finally as in [3], also here there is the algebraic side of the problem. We prove
that there exists a collection of proper algebraic subvarieties in the space of tran-
sition probabilities such that:

• If the RE is stationary and ergodic and the transition probabilities are concen-
trated on one of subvarieties from our collection then the CLT holds;

• If the environment is i.i.d then the above algebraic condition is also necessary
for the CLT.

Acknowledgement. The authors thank the referees for many useful comments,
and, in particular, for suggesting the formulas in the Remark 2.8. The research of
the first author was support by the NSF.

2. Definition of the model and some preparatory facts.

The following notations and definitions are used throughout the paper.
1 is a column vector whose components are all equal to 1.
For a vector x = (xi) and a matrix A = (a(i, j)) we set

‖x‖ def
= max

i
|xi| which implies ‖A‖ = sup

‖x‖=1

‖Ax‖ = max
i

∑
j

|a(i, j)|.

We say that A is strictly positive (and write A > 0), if all its matrix elements
satisfy a(i, j) > 0. A is called non-negative (and we write A ≥ 0), if all a(i, j)
are non negative. A similar convention applies to vectors. Note that if A is a
non-negative matrix then ‖A‖ = ‖A1‖.

2.1. The Model. We recall the definition of the RWRE on a strip from [2]. Con-
sider a strip S = Z× {1, . . . ,m} and a random walk on S. Let Ln = {(n, i) : 1 ≤
i ≤ m} be layer n of the strip. In our model, the walk is allowed to jump from any
point (n, i) ∈ Ln only to points in Ln−1, or Ln, or Ln+1. To define the correspond-
ing transition kernel consider a sequence of triples (Pn, Qn, Rn), −∞ < n <∞, of
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m ×m non-negative matrices such that for all n ∈ Z the sum Pn + Qn + Rn is a
stochastic matrix. That is,

(2.1) (Pn +Qn +Rn)1 = 1,

The matrix elements of Pn are denoted Pn(i, j), 1 ≤ i, j ≤ m, and similar notations
are used for Qn and Rn. We now set ω = (ωn)∞n=−∞ = ((Pn, Qn, Rn))∞n=−∞ and
define

(2.2) Qω(z, z1)
def
=


Pn(i, j) if z = (n, i), z1 = (n+ 1, j),
Rn(i, j) if z = (n, i), z1 = (n, j),
Qn(i, j) if z = (n, i), z1 = (n− 1, j),
0 otherwise,

For a given ω, a random walk ξt = (Xt, Yt), t ≥ 0, on S with transition kernel
Qω(·, ·) is defined as follows: for any starting point z = (n, i) ∈ S the law Pω,z for
the Markov chain ξ is given by

(2.3) Pω,z (ξ1 = z1, . . . , ξt = zt)
def
= Qω(z, z1)Qω(z1, z2) · · · Qω(zt−1, zt).

From now on we suppose that each such sequence is a realization of a strictly sta-
tionary ergodic process and let (Ω,F ,P, T ) be the corresponding dynamical system
with Ω denoting the space of all sequences ω = (ωn)∞n=−∞ = ((Pn, Qn, Rn))∞n=−∞ of
triples described above, F being the corresponding natural σ-algebra, P denoting
the probability measure on (Ω,F), and T being the shift operator on Ω defined by
(Tω)n = ωn+1.

We call ω the environment or the random environment on the strip S. Denote by
Ξz the set of trajectories ξ starting at z. Pω,z is the so called quenched probability
measure on Ξz. The semi-direct product P(dω)Pω,z(dξ) of P and Pω,z is defined on
the direct product Ω× Ξz and is called the annealed measure. The corresponding
mathematical expectations are denoted by E and Eω,z.

Remark 2.1. The study of one-dimensional RW with bounded jumps in a RE on
Z can be reduced to the study of the above model. The explanation of this fact
was given in [2] and later in [16] and [3] and shall not be repeated here.

Denote by J the following set of triples of m×m matrices:

J def
= {(P,Q,R) : P ≥ 0, Q ≥ 0, R ≥ 0 and (P +Q+R)1 = 1} .

Let J0 = J0(P) ⊂ J be the support of the probability distribution of the random
triple (Pn, Qn, Rn) defined above (obviously, this support does not depend on n).

Since Ω = J Z, it can be endowed by a metric (in many ways). We shall make
use of the following metric. For ω′ = {(P ′n, Q′n, R′n)}, ω′′ = {(P ′′n , Q′′n, R′′n)} set

(2.4) d(ω′, ω′′) =
∑
n∈Z

‖P ′n − P ′′n‖+ ‖Q′n −Q′′n‖+ ‖R′n −R′′n‖
2|n|

.
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Below, whenever we say that a function defined on Ω is continuous we mean that
it is continuous with respect to the topology induced on Ω by the metric d(·, ·).

The following two assumptions C1 and C2 listed below will be referred to as
Condition C and are supposed to be satisfied throughout the paper.

Condition C:
C1: (Pn, Qn, Rn), −∞ < n < ∞, is an ergodic sequence (equivalently, T is

an ergodic transformation of Ω).
C2: There is an ε > 0 and a positive integer number k0 < ∞ such that for

any (P,Q,R) ∈ J0 and all i, j ∈ [1,m]

(2.5) ||Rk0|| ≤ 1− ε, ((I −R)−1P )(i, j) ≥ ε, ((I −R)−1Q)(i, j) ≥ ε.

Observe that ((I −Rn)−1Pn)(i, j) is the probability that the walker starting from
(n, i) arrives to (n + 1, j) at her first exit from the layer Ln. The meaning of
((I −Rn)−1Qn)(i, j) is similar.

We note that condition (2.5) is trivially satisfied if for all (i, j) we have

(2.6) P (i, j) ≥ ε, Q(i, j) ≥ ε, R(i, j) ≥ ε.

However (2.6) never holds for the environments on a strip generated by one di-
mensional walks with bounded jumps while (2.5) holds in that case under mild
non-degeneracy conditions. We refer to [3] for a more detailed discussion.

2.2. Matrices ζn, An, αn and some related quantities. We recall the defini-
tions of several objects most of which were first introduced and studied in [2], [3].
In these papers, they arise naturally in the context of studying/solving equations
related to different aspects of the asymptotic behaviour of the RWRE on a strip;
they will play a crucial role also in this work.

For a given ω ∈ Ω, define a sequence of m×m stochastic matrices ζn as follows.
Fix an integer a and a stochastic matrix ψ. For n ≥ a define matrices ψn as follows.
Put ψa = ψ and for n > a define recursively

(2.7) ψn = ψn(a, ψ) = (I −Rn −Qnψn−1)−1Pn, n = a+ 1, a+ 2, . . . .

It is easy to show (see [2], Lemma 2) that matrices ψn are stochastic. Next, for a
fixed n define

(2.8) ζn = lim
a→−∞

ψn.

As shown in [2, Theorem 1] the limit (2.8) exists and is independent of the choice
of the initial matrix ψ.

Next, we define probability row-vectors σn = σn(ω) = (σn(ω, 1), . . . , σn(ω,m))
which are associated with the matrices ζn. Let σ̃a be an arbitrary probability
row-vector (by which we mean that σ̃a ≥ 0 and

∑m
i=1 σ̃a(i) = 1). Set

(2.9) σn
def
= lim

a→−∞
σ̃aζa . . . ζn−1.
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By the standard contraction property of the product of stochastic matrices, this
limit exists and does not depend on the choice of the sequence σ̃a (see [16, Lemma
1]). Vectors σn could be equivalently defined as the unique sequence of probability
vectors satisfying the infinite system of equations

(2.10) σn = σn−1ζn−1, n ∈ Z.

Combining (2.9) with standard contracting properties of stochastic matrices ζ we
obtain for k > n that

(2.11) ζn . . . ζk−1 = (σk(1)1, . . . , σk(m)1) +O
(
θk−n

)
,

where 0 ≤ θ < 1 and the implicit constant in the O(·) term depend only on the
width of the strip m, and the constants ε and k0 from (2.5).

Define

(2.12) αn = Qn+1(I −Rn −Qnζn−1)−1, An = (I −Rn −Qnζn−1)−1Qn.

Note that αnPn = Qn+1ζn and hence

(2.13) αn = Qn+1(I −Rn − αn−1Pn−1)−1.

Remark 2.2. The above definitions imply that when b > n we have

(2.14) αb−1αb−2...αn = QbAb−1Ab−2...An+1(I −Rn −Qnζn−1)−1.

Products of matrices An and αn arise naturally in the analysis of, respectively, the
martingale equation (Section 7) and the invariant measure equation (Section 6).
Even though relation (2.14) shows that their asymptotic behaviour is essentially
the same, an attempt to use just A’s or α’s would make many of our calculations
much more cumbersome. This is the main reason for introducing both of them.
It should be noted that, under ellipticity conditions (2.5), matrices A have good
contracting properties (see Lemma 2.3). This may not be so for α’s but their
products can be controlled via products of A’s.

The following is a slightly modified version of Lemmas 2 and 4 from [3].

Lemma 2.3. Suppose that matrices (P,Q,R) satisfy (2.5), ζ is a stochastic ma-
trix, and set a = I −R−Qζ and A = a−1Q. Then

(2.15) (a) ‖a−1‖ ≤ k0m
−1ε−2, (b) A(i, j) ≥ ε for all i, j, (c) ||A|| ≤ (mε)−1.

Proof. Notice that (I−R)−1Q+ (I−R)−1P is a stochastic matrix and hence, due
to (2.5), one has ||(I −R)−1Q|| ≤ 1−mε. Hence also

||(I −R)−1Qζ|| = ||(I −R)−1Qζ1|| = ||(I −R)−1Q1|| ≤ 1−mε.
Since

‖(I−R)−1‖ ≤
∞∑
k=0

‖R‖k =
∞∑
k=0

k0−1∑
i=0

‖R‖kk0+i ≤ k0

∞∑
k=0

‖R‖kk0 ≤ k0

∞∑
k=0

(1−ε)k = k0ε
−1
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and a−1 = (I − (I − R)−1Qζ)−1(I − R)−1 =
∑∞

k=0 ((I −R)−1Qζ)
k

(I − R)−1, we
obtain

||a−1|| ≤
∞∑
k=0

‖
(
(I −R)−1Qζ

)k ‖ ‖(I −R)−1‖ ≤ k0ε
−1

∞∑
k=0

(1−mε)k = k0m
−1ε−2

which proves (2.15) (a). Next, (2.15) (b) follows from

A =

(
∞∑
k=0

(
(I −R)−1Qζ

)k)
(I −R)−1Q ≥ (I −R)−1Q.

Finally, ‖A‖ ≤
∑∞

k=0 ‖(I −R)−1Qζ‖k ≤
∑∞

k=0(1−mε)k = (mε)−1. �

Since matrices An have properties (2.15) (b), (c), we can set

(2.16) vn = lim
a→−∞

AnAn−1 . . . Aa+1ṽa
‖AnAn−1 . . . Aa+1ṽa‖

.

As explained in [3, Theorem 4] this limit exists and does not depend on the choice
of the sequence of vectors ṽa ≥ 0, ||ṽa|| = 1.

Remark 2.4. The components of vectors vn are strictly positive. Moreover, vn ≥
mε21. Indeed if a vector v ≥ 0, ||v|| = 1 and a matrix A has properties (2.15)
then

mini(Av)i
‖Av‖

=
mini

∑
j A(i, j)vj

maxi
∑

j A(i, j)vj
≥

ε
∑

j vj

‖A‖
∑

j vj
=

ε

‖A‖
≥ mε2.

Next, for any sequence of row-vectors l̃b ≥ 0, ‖l̃b‖ = 1 such that l̃bQb 6= 0, define

(2.17) ln = lim
b→∞

l̃bαb−1 . . . αn∥∥∥l̃bαb−1 . . . αn

∥∥∥ .
Once again, the limit in (2.17) exists and does not depend on the choice of the

sequence l̃b. Vectors ln and vn play important roles in Sections 6 and 7.

Set

(2.18) λk = ‖Akvk−1‖ and λ̃k = ‖lk+1αk‖.
Then obviously

(2.19) lk+1αk = λ̃klk, Akvk−1 = λkvk

and for any n ≥ k we have

(2.20) ‖AnAn−1 . . . Akvk−1‖ = λn . . . λk, ‖ln+1αnαn−1 . . . αk‖ = λ̃n . . . λ̃k.

Corollary 2.5. If a sequence of triples (Pn, Qn, Rn)−∞<n<∞ satisfies (2.5) then

(2.21) ‖AnAn−1 . . . Ak‖ ≤ Constλn . . . λk,

where Const = 1/(mε2).
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Proof. By Remark 2.4 and (2.20),
‖An . . . Ak‖ = ‖An . . . Ak1‖ ≤ ‖An . . . Ak(Const vk−1)‖ = Constλn . . . λk. �

Remark 2.6. It should be emphasized that the proof provided in [2], [3] of the
existence of the limits (2.8) and (2.16) in fact works for all (and not just almost
all) sequences ω satisfying (2.5). If we define

(2.22)
ζ(ω) = ζ0(ω), A(ω) = A0(ω), α(ω) = α0(ω), σ(ω) = σ0(ω)

v(ω) = v0(ω), l(ω) = l0(ω) λ(ω) = λ0(ω), λ̃(ω) = λ̃0(ω)

then

(2.23)
ζn = ζ(T nω), An = A(T nω), αn = α(T nω), σn(ω) = σ(T nω),

vn = v(T nω), ln = l(T nω), λn = λ(T nω), λ̃n = λ̃(T nω).

Moreover, the functions ζ(·), v(·), l(·) are continuous in ω. The continuity of all
other functions is implied by the continuity of ζ, v, and l. In fact, we have a
stronger result, namely the above functions are Hölder with respect to the metric
d defined by (2.4), see Lemma A.2. This regularity plays important role in our
analysis.

Remark 2.7. Note that m = 1 corresponds to the random walks on Z with
jumps to the nearest neighbours. In this case pn = Pω(ξt+1 = n + 1|ξt = n) and
qn = 1− pn. The above formulae now become very simple, namely

ψn = ζn = 1, vn = ln = 1, An = λn =
qn
pn
, αn = λ̃n =

qn+1

pn
.

Remark 2.8. Let us describe the probabilistic meaning of some of the matrices in-
troduced above. For simplicity, we restrict ourselves to the recurrent case, referring
to [2] for the discussion of the transient regime. The statements we make within
this remark are not used in the sequel and because of that we only briefly explain
their proofs. We believe however that they provide some intuition concerned with
the behaviour of the RW in a RE with a bounded potential.

Denote tn = min{t > 0 : ξt ∈ Ln}. Then

ζn(i, j) = Pω(ξtn+1 = (n+ 1, j)| ξ0 = (n, i)).

Thus

σn(j) = lim
a→−∞

Pω(ξtn = (n, j)| ξ0 = (a, i)).

That is, σn(j) is the probability that the walk first enters level n at site (n, j)
“provided that it starts from −∞.” This follows from definition (2.9) and the just
mentioned meaning of ζ’s.

Next, denote R̃n = Rn +Qnζn−1 and let t
(k)
n be the kth hitting time of Ln. Note

that(
Qn+1R̃

k
n

)
(i, j) = Pω

(
ξ
t
(k)
n

= (n, j) and Xt ≤ n for all t ≤ t(k)
n

∣∣ ξ0 = (n+ 1, i)
)
.
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Then the formula αn = Qn+1

∞∑
k=0

R̃k
n shows that

(2.24) αn(i, j) = Eω(number of visits to (n, j) before tn+1| ξ0 = (n+ 1, i)).

The probabilistic meaning of matrices A is similar to α but it is slightly more
cumbersome so we will not provide it here.

Applying (2.24) twice we get

Eω(number of visits to (n− 1, j) before tn+1| ξ0 = (n+ 1, i))

=
m∑
k=1

[Eω(number of visits to (n, k) before tn+1| ξ0 = (n+ 1, i))

× Eω(number of visits to (n− 1, j) before tn| ξ0 = (n, k))]

=(αnαn−1)(i, j)

A similar argument shows that

(αnαn−1 . . . αn−l)(i, j) =(2.25)

Eω(number of visits to (n− l, j) before tn+1| ξ0 = (n+ 1, i)).

In this paper we study walks in a bounded potential (see below Definition 3.5 of
the potential). If the potential Pn is bounded then (2.14) and Lemma 2.3 imply
that also ln ‖αnαn−1 . . . αn−l)‖ is bounded. Relation (2.25) now shows that the
walks in bounded potentials are characterized by the condition that there is a
constant K̄ > 1 such that for each z1, z2 ∈ S the following property holds:

If the walk starts from z1 then the expected number of visits to z2 before the first
return to z1 is between 1/K̄ and K̄.

This provides some intuition about the walks studied here.

2.3. Recurrence and transience criteria. The following recurrence and tran-
sience criteria were proved in [2].

Theorem 2.9 ([2], Theorem 2.). Suppose that Condition C is satisfied. Then for
P-almost all ω the following holds:
RW is recurrent, that is Pω,z(lim inft→∞Xt = −∞ and lim supt→∞Xt = ∞) = 1,
iff E(lnλ) = 0
RW is transient to the right, that is Pω,z(Xt → +∞ as t→∞) = 1, iff E(lnλ) < 0,
RW is transient to the left, that is Pω,z(Xt → −∞ as t→∞) = 1, iff E(lnλ) > 0.

3. Statement of results

3.1. The Central Limit Theorem. We shall now state sufficient conditions
under which the asymptotic behaviour of a recurrent RW on a strip is described
by the CLT. As far as we are aware of, the only result of this kind was previously
established by Brémont in [5] for the [−l, 1] model which is a particular case of the
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[−l, r] model and the latter, in turn, reduces to the strip model (as has already
been mentioned in the Introduction).

Theorem 3.1. Consider an ergodic environment satisfying (2.5). Assume that
there exists a function β : Ω→ R such that

(3.1) λ(ω) =
β(Tω)

β(ω)
and E(β3 + β−3) <∞.

Then there is a constant D > 0 such that for P-almost all environments

Xn√
n
⇒ N (0, D).

Conditions (3.1) is related to matrices An. It will be convenient to have an
equivalent condition related to matrices αn. Namely, we shall prove the following

Lemma 3.2. For ergodic environments satisfying (2.5) condition (3.1) is equiva-

lent to the following one: there exists a function β̃ : Ω→ R such that

(3.2) λ̃(ω) =
β̃(Tω)

β̃(ω)
and E(β̃3 + β̃−3) <∞.

Moreover, the functions β, β̃ can be chosen so that for some constant c > 0

(3.3) c−1β̃(ω) ≤ β(ω) ≤ cβ̃(ω).

In subsection 3.2 we show how to apply the above results to independent and
to quasiperiodic environments.

Remark 3.3. Due to ergodicity, the existence of β (or β̃) implies that it is unique
up to a multiplication by a constant. Indeed, if say β and β̄ satisfy (3.1) then
β̄(Tω)
β(Tω)

= β̄(ω)
β(ω)

for a.a. ω and hence β̄(ω)
β(ω)

= Const.

Remark 3.4. If conditions (3.1), (3.2) are satisfied then it follows from (2.20)
that for any n ≥ k

(3.4)

‖AnAn−1 . . . Akvk−1‖ = λn . . . λk =
β(T n+1ω)

β(T kω)
,

‖ln+1αnαn−1 . . . αk‖ = λ̃n . . . λ̃k =
β̃(T n+1ω)

β̃(T kω)
.

The following definition of random potential was used in [3] and is analogous to
the one introduced in [35].

Definition. A potential is a random function of n defined by

(3.5) Pn(ω) ≡ Pn
def
=

 ln ||An...A1|| if n ≥ 1
0 if n = 0
− ln ||A0...An+1|| if n ≤ −1
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By Lemma 2.3, all matrix elements of matrices An are uniformly separated from
0. This, together with Corollary 2.5, implies that the map (ω, n)→ Pn is bounded
if and only if ln ‖An . . . Akvk−1‖ is bounded which, in turn, is equivalent to (3.1)
with bounded β. In one direction, this statement is immediate due to (3.4). The
other direction is implied by a well known result stated in Lemma C.1 in Appendix
C.

Conditions (3.1) and (3.2) may still appear artificial. In fact, as shown in [11],
they are necessary and sufficient for the existence of the invariant measure on the
space of environments which in turn is one of the basic ingredients of the proof of
Theorem 3.1. Moreover, as will be seen in the next subsection, these conditions
can be checked for some interesting classes of environments.

3.2. Applications. The following lemma describes one of the most important
classes of environments for which conditions (3.1) and (3.2) are satisfied.

Lemma 3.5. For i.i.d. environments satisfying (2.5) conditions (3.1) and (3.2)
hold iff the RW is recurrent but does not exhibit the Sinai behaviour. In this case
the functions β, β̃ can be chosen to be continuous.

Corollary 3.6. A recurrent random walk on a strip in an i.i.d. environment either
exhibits the Sinai behaviour, or satisfies the CLT.

To give more examples of environments satisfying conditions of Theorem 3.1 we
need the following definition. Call a set Λ ⊂ J admissible if there exists an i.i.d.
environment P such that the support J0(P) = Λ and the corresponding random
walk is recurrent and satisfies the CLT. Note that, due to Corollary 3.6 and the
continuity of functions β, β̃, equations (3.1) and (3.2) hold for all (not merely
almost all) environments in ΛZ. Thus Theorem 3.1 implies the following corollary.

Corollary 3.7. If Λ is admissible and P̃ is a stationary ergodic measure on ΛZ

then Xn is recurrent and satisfies the CLT for P̃ almost every ω.

Another class of examples is described by the following result.

Lemma 3.8. Suppose that there is a vector f = {fk}mk=1 such that Mn = Xn+fYn
is a martingale. Then (3.1) and (3.2) hold.

Corollary 3.9. The CLT holds for ergodic one dimensional environments where
the position of the walker is a martingale.

We have already mentioned above that the results of [3] show that the CLT
behaviour of recurrent walks is exceptional for the i.i.d environments. The same
need not be the case in other settings. For example, consider quasiperiodic random
walks. Namely, let Td be a d-dimensional torus and ω ∈ Td. Set

(3.6) (Pn, Qn, Rn)(ω) = (P̄ , Q̄, R̄)(ω + nγ),

where γ is a vector in Rd, the sum ω+nγ is defined (mod 1), and (P̄ , Q̄, R̄) are Cr

matrix valued functions on Td. The transformation ω → (ω+ γ)(mod 1) preserves
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the standard Lebesgue measure on the torus and the sequence defined by (3.6) is
stationary with respect to this measure. We assume that γ is Diophantine, that is
there are constants C, σ such that for each k ∈ Zd, k̃ ∈ Z
(3.7) |〈γ, k〉 − k̃| ≥ C|k|−σ.

Remark 3.10. Conditions (3.7) are satisfied whenever the coordinates of the
vector γ are rationally independent algebraic numbers. Additionally, they are
satisfied for Lebesgue-almost all γ.

Theorem 3.11. Assume that the matrices (P̄ , Q̄, R̄)(ω) satisfy (2.5) for all ω ∈
Td, the walk is recurrent, γ satisfies (3.7), and

(3.8) r > d+ σ,

where r is the smoothness of the RHS of (3.6). Then (3.1) holds (and hence the
random walk satisfies the CLT).

In order to obtain a complete description of RW in quasiperiodic Diophantine
environments we have to consider transient RWs in these REs. To do that we
extend the CLT result from [15] which applies to transient RWs on Z with jumps
to the nearest neighbours in a uniquely ergodic environment to transient RWs on a
strip in a uniquely ergodic environment. We note that quasiperiodic environments
are a particular example of uniquely ergodic environments.

To formulate this extension, consider the following setting. Suppose that

(3.9) (Pn, Qn, Rn)(ω) = (P̄ , Q̄, R̄)(fnω)

where f is a homeomorphism of a space Ω and (P̄ , Q̄, R̄) are continuous matrix
valued functions on Ω. Recall that a map f : Ω → Ω is called uniquely ergodic if
for any continuous real valued function Φ the limit

(3.10) lim
N→∞

1

N

N−1∑
n=0

Φ(fnω)

exists for all ω ∈ Ω and does not depend on ω. We recall ([8, Theorem 1.8.2])
that if Ω is a compact metric space then the unique ergodicity of f is equivalent
to uniform in ω ∈ Ω convergence of the averages (3.10) and also equivalent to the
existence of a unique f -invariant measure P(dω) on Ω (with the sequence (3.9)
being stationary with respect to this measure). If f in (3.9) is uniquely ergodic we
call (Pn, Qn, Rn) a uniquely ergodic environment.

The next result was proven in [15] for the one-dimensional nearest neighbour
walk (the case m = 1). In the Appendix, we prove it for arbitrary strip.

Theorem 3.12. A transient RW on a strip in a uniquely ergodic environment
generated by a continuous (P̄ , Q̄, R̄) satisfies the CLT.

A more precise statement of this result including the normalization is given in
Theorem B.2.



14 D. DOLGOPYAT AND I. GOLDSHEID

Corollary 3.13. CLT holds for RW on a strip in a Diophantine quasiperiodic
environment satisfying (3.8).

Proof. If the RW is recurrent the result follows from Theorems 3.1 and 3.11 and
if it is transient then it follows from Theorem 3.12. �

Remark 3.14. Alili in [1] proved the CLT for RW in smooth Diophantine quasiperi-
odic environments with jumps to nearest neighbours on Z. Brémont in [7] extended
this result to RW with bounded jumps (the [−l, r] model) in a quasiperiodic en-
vironment generated by a smooth enough function on the torus. In the recurrent
regime, Brémont’s result is a particular case of Theorems 3.1 and 3.11. In the
transient regime, Theorem 3.12 gives a much more general result as it works for
all uniquely ergodic environments and requires only continuity of the generating
probabilities.

Lemma 3.5 and Corollaries 3.6 and 3.7 lead naturally to the question of char-
acterizing the admissible sets. By Corollary 3.7 a subset of an admissible set is
admissible. Recall that the Zariski closure Ā of a set A is the smallest algebraic
variety containing A. The next result shows that maximal admissible sets are
algebraic subvarieties.

Lemma 3.15. The Zariski closure Λ̄ of an admissible set Λ is admissible.

3.3. Organization of the paper. Our main result, Theorem 3.1, is proven
in Sections 4–7. Namely, Section 4 describes the main ingredients of the proof,
Section 5 presents, in the case of the nearest neighbour RWs on Z, the simplest
version of the formulae for the density of the invariant measure and the martingale
which play a major role in the proof of the main result. Section 6 constructs the
invariant measure for the environment viewed from the particle, and Section 7
proves the existence of a martingale which is asymptotically linear with respect to
the Z-coordinate of the walk (the latter is often called the harmonic coordinate for
the system). The uniqueness of the martingale is established in Section 8. Section
9 contains the proof of Lemmas 3.2 and 3.5. Lemma 3.15 is proven in Section 10.
Section 11 contains the proof of Lemma 3.8. Two sections deal with quasiperiodic
environments. Namely, Theorem 3.11 is proven in Section 12 and Theorem 3.12 is
established in Appendix B.

4. Main ingredients in the proof of the CLT.

The proof of the main result of this paper (Theorem 3.1) explained at the end
of this section follows from Lemmas 4.2, 4.3, 4.4. But first, we need the following
definition.

Definition. The environment seen by the particle is the random process (ω̄n, Yn),
n ≥ 0, where ω̄n = TXnω and ξn = (Xn, Yn) is the position of the walk at time n.
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Denote by Ω̄ = Ω × {1, 2, ...,m} the phase space of the process (ω̄n, Yn) and

let P̄ def
= P × {m−1} be the probability measure on Ω̄ with P being the measure

on the set of environments Ω (as in section 2) and {m−1} denoting the uniform
distribution on {1, ...,m}. This process is a Markov chain (which is a simple but
important observation, see e.g. [4]).

Remark 4.1. This process was introduce by S. Kozlov [22, 23], as well as Papa-
nicolau-Varadhan [30] and played an important role in a number of papers (see
[4, 11] for futher references). The papers which are more closely related to this
work are [6, 7] where the environment viewed by the particle approach played a
major role in the context of the [−l, r] model and [33] where it was used for the
first time in the context of the RWs on a strip (but in transient regime).

Lemma 4.2. If (3.2) holds then the environment seen by the particle has an
invariant measure µ(dω, dy) on Ω̄ which is absolutely continuous with respect to P̄.

Lemma 4.3. The process (ω̄n, Yn) is ergodic with respect to µ.

Lemma 4.3 is a well known result. Its proof can be found in [4, Theorem 1.2].

Lemma 4.4. If (3.1) holds then there is a function M(x, y) = Mω(x, y) such that

(1) For almost all ω Mn = Mω(Xn, Yn) is a martingale;
(2) The increments of M are stationary and square integrable. More precisely,

for any l ∈ {−1, 0, 1}, Y, Ŷ ∈ {1, . . . ,m} the function

δl,Ŷ (X, Y ) = M(X + l, Ŷ )−M(X, Y )

is stationary with respect to X translations and square integrable with re-
spect to the measure µ(dω, dy)Pω,(0,y);

(3) For a.e. ω, the ratio Mω(x,y)
x
→ c, c 6= 0, for all y ∈ {1 . . .m} as |x| → ∞.

We note that the assumption that β and β−1 are in L3 is only used in the proof
of part (2) of Lemma 4.4. A weaker assumption that β and β−1 are in L1 would
suffice for Lemma 4.2.

Lemmas 4.2 and 4.4 imply Theorem 3.1 in a standard way which we now recall
for completeness.

Proof of Theorem 3.1. Observe that Lemma 4.4 implies that

(4.1)
Xn√
n

=
Mn

c
√
n

(1 + o(1)) + o(1) as n→∞.

Indeed, if |Xn| ≥ n1/4 then (4.1) holds due to Lemma 4.4(3) while if |Xn| ≤ n1/4

then (4.1) holds since both the RHS and the LHS are o(1). Due to (4.1) it suffices
to prove the CLT for Mn. By Corollary 3.1 on page 58 of [18], it suffices to show
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that Dn
n

converges for P-almost all ω to a non-random limit, where

Dn =
n−1∑
k=0

Eω
(
[M(Xk+1, Yk+1)−M(Xk, Yk)]

2 |(X0, Y0) . . . (Xk, Yk)
)

=
n−1∑
k=0

Eω
(
[M(Xk+1, Yk+1)−M(Xk, Yk)]

2 |(Xk, Yk)
)
.

Using the ergodicity of the (ω̄n, Yn) process and stationarity of the increments of
M we obtain that

lim
n→∞

Dn

n
=

∫
Eω,(0,y)

(
[M1 −M0]2

)
µ(dω, dy)

completing the proof of the theorem. �

5. Nearest neighbour walks on Z.

Below we present proofs of Lemmas 4.2 and 4.4 in the case of the nearest neigh-
bour walks on Z where the formulae for ρn and Mn are simple. They may seem
to be a result of a guess rather than a derivation. In fact, we borrow the form
of ρn from [35] and the formula for Mn results from the analysis of a solution to
(5.1) considered, for example, in [12]. (Of course, they could also be obtained as
simplified versions of formulae for ρn and Mn we derive in Sections 6 and 7.)

Note that in the case of walks on Z (see Remark 2.7), condition (3.1) takes the
form

An =
qn
pn

= λn =
βn+1

βn
, where βn = β(T nω).

Proof of Lemma 4.2 for Z. Let ρ be the density of the invariant measure and
ρn(ω) = ρ(T nω). Then ρ satisfies

ρn = pn−1ρn−1 + qn+1ρn+1.

We claim that this equation has a solution of the form ρn = 1
βnqn

. Indeed

pn−1ρn−1+qn+1ρn+1 =
pn−1

qn−1βn−1

+
1

βn+1

=
1

βn
+

pn
qnβn

=
1

βn

(
1 +

pn
qn

)
=

1

qnβn
= ρn.

�

Proof of Lemma 4.4 for Z. If Xt, t ≥ 0, is the nearest neighbour walk on Z in
random environment ω then Mω(Xt) is a martingale if the sequence {Mn =
Mω(n), n ∈ Z} satisfies the equation

(5.1) Mn = pnMn+1 + qnMn−1.
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The space of solutions to (5.1) is two-dimensional and we claim that a solution
linearly independent of Mn ≡ 1 has the form

Mn =


∑n

j=1 βj if n ≥ 1,

0 if n = 0,

−
∑0

j=n+1 βj if n ≤ −1.

Let us check this claim, say for n ≥ 1. In this case

pnMn+1 + qnMn−1 = pn(Mn + βn+1) + qn(Mn − βn) = Mn + pnβn+1 − qnβn = Mn.

�

6. Environment seen by the particle.

Proof of Lemma 4.2. We will construct the density ρ : Ω × [1, . . . ,m] → R as a
solution to (6.1) below. Denote by ρ = ρ(ω) the row-vector with components
ρ(ω, i) and let ρn = ρ(T nω) be a vector with components ρn(i) = ρ(T nω, i). For
ρ to be a density of the invariant measure of the Markov chain (TXtω, Yt), t ≥ 0,
the corresponding vectors ρn should satisfy the system of equations

(6.1) ρn = ρn+1Qn+1 + ρnRn + ρn−1Pn−1, −∞ < n <∞.

The restriction of this equation to a finite strip a ≤ n ≤ b was analyzed in
[2, section 3]. The solution found there satisfies certain (reflecting) boundary
conditions and has a meaning different from the one we are interested in here.

However, we borrow from [2] the following fact. For any m-dimensional vector
h set ρhb = h and define ρhn for n ≤ b− 1 by the recursion ρhn = ρhn+1αn, where the
matrices αn are defined in (2.12). Then the vectors ρhn solve (6.1) for all n ≤ b− 1.
For the sake of completeness, we shall check this statement. Obviously, if n ≤ b−1
then

(6.2) ρhn = hαb−1 . . . αn

and hence

ρhn+1Qn+1 + ρhnRn + ρhn−1Pn−1 = hαb−1 . . . αn+1(Qn+1 + αnRn + αnαn−1Pn−1)

(∗)
= hαb−1 . . . αn+1αn = ρhn,

where (∗) follows from the relation αn = Qn+1 +αnRn+αnαn−1Pn−1 which in turn
is equivalent to (2.13).

Next, note that for vectors ln defined in (2.17) it follows from (2.19) and condi-
tion (3.2) that

(6.3) ln+1αn = λ̃nln =
β̃(T n+1ω)

β̃(T nω)
ln and so

1

β̃(T n+1ω)
ln+1αn =

1

β̃(T nω)
ln.



18 D. DOLGOPYAT AND I. GOLDSHEID

Remember that ln = l(T nω). Set

(6.4) ρ(ω) =
1

Zβ̃(ω)
l(ω), where Z = E

[
1

β̃(ω)

m∑
i=1

l(ω, i)

]
.

Then the second equation in (6.3) has the form ρn = ρn+1αn, where ρn = ρ(T nω)
for all n ∈ Z. Hence, the ρn, n ∈ Z, solve (6.1) which means that ρ defined by
(6.4) is the density of the invariant measure of our Markov chain. �

7. Construction of the martingale.

In this section we prove Lemma 4.4. The idea behind the proof is the following
one. Let M(·) be a martingale with the properties listed in Lemma 4.4. Consider
z = (x, y) ∈ S and a, b ∈ Z such that x− a� 1, b− x� 1 and let τa,b be the first
time the walker reaches La or Lb. Set

pa,b(z) = Pω(Xτa,b = a|ξ0 = z)

(we recall the notation ξt = (Xt, Yt)). By the Optional Stopping Theorem

M(z) = Eω,z(M(ξτa,b)) = Eω,z(M(ξτa,b)1Xτa,b=a) + Eω,z(M(ξτa,b)1Xτa,b=b).

If z is far from both La and Lb then the distributions of Yτa,b1Xτa,b=a in La and

Yτa,b1Xτa,b=b in Lb is approximately given by pa,b(z)σ−a and (1 − pa,b(z))σb respec-

tively. So we expect that

Eω,z(M(ξτa,b)1Xτa,b=a) ≈ pa,b(z)Ma, Eω,z(M(ξτa,b)1Xτa,b=b) ≈ (1− pa,b(z))Mb,

where Mb =
∑m

j=1 σb(j)M(b, j), Ma =
∑m

j=1 σ
−
a (j)M(a, j) (see (2.9) and Remark

2.8 explaining the meaning of σb). This would give

M(z) = pa,b(z)(Ma −Mb) +Mb,

that is M(z) is obtained from pa,b(z) by an affine transformation. In the proof
below we will show using the formula for pa,b(z) obtained in [2], that a proper
rescaling of pa,b indeed gives a linearly growing martingale.

Proof. Let mn denote a vector with components mn(i) = M(n, i). For the process
M(Xt, Yt), t ≥ 0, to be a martingale with respect to the measure Pω,z, the vectors
mn should satisfy the equation

(7.1) mn = Pnmn+1 +Rnmn +Qnmn−1.

The analysis of the solution to this equation on a finite part of the strip, a ≤ n ≤ b,
has played a crucial role in [2]. Inevitably, some calculations are similar to those
in [2] but here the analysis goes in a very different direction. We would like to
emphasize that, apart of the fact stated in (7.7) and the preceding comment, the
proof presented below is self-contained.
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As in [2], define a sequence of m×m matrices ϕn, n ≥ a+ 1 by setting ϕa = 0
and computing ϕn recursively

(7.2) ϕn = (I −Rn −Qnϕn−1)−1Pn, if n ≥ a.

The solutions to (7.1) with boundary conditions ma = 0, mb = f can be presented
in the following form:

(7.3) mn = ϕnϕn+1 . . . ϕb−1f, a ≤ n ≤ b.

For n = a or n = b this statement is obvious and for a < n < b it can be verified
by substituting the right hand side of (7.3) into (7.1).

In order to construct a linearly growing solution of (7.1) we consider the solution
mn corresponding to f = 1 (in which case mn(i) = pa,b((n, i))) and study some
related limits of this solution as a → −∞, b → ∞ so that |a| � b. So, from now
on and to the end of this section our b > 0 and a < −b.

Set ∆n = ζn − ϕn, where ζn are matrices defined in (2.7), (2.8). Following [2],
we present this difference as

(7.4)
∆n = (I −Rn −Qnζn−1)−1Pn − (I −Rn −Qnϕn−1)−1Pn

= (I −Rn −Qnζn−1)−1Qn∆n−1(I −Rn −Qnϕn−1)−1Pn = An∆n−1ϕn.

Iterating the last relation gives, (cf. [2, equation (2.13)]) that if |n| < b then

(7.5) ∆n = An . . . A−b+1∆−bϕ−b+1 . . . ϕn.

The immediate corollary from here is the inequality ‖∆n‖ ≤ ‖An . . . A−b+1‖ ‖∆−b‖
which in turn, together with (2.21) and (3.1), gives

(7.6) ‖∆n‖ ≤ Constλn . . . λ−b+1 ‖∆−b‖ ≤ H(ω, b) ‖∆−b‖
where

H(ω, b) = Const
max|n|≤b β(T n+1ω)

β(T−b+1ω)
.

We note that in order to complete the argument the precise form of the RHS of
(7.6) is not important, we just need that it is linear in ‖∆−b‖ and the prefactor H
is uniform in n and a.

Next, it follows from (3.1) that E(lnλ) = 0 and hence by Theorem 2.9 the walk
is recurrent. Recall (see [2, formula (2.3)]) that ϕn(i, j) is the Pω,(n,i)-probability
that a RW starting from (n, i) reaches layer n + 1 before layer a and that it hits
layer n+ 1 at (n+ 1, j). So, due to recurrence, we have that for any i

(7.7)
m∑
j=1

ϕn(i, j) = Pω,(n,i){reach layer n+ 1 before a} → 1 as a→ −∞.

Since ∆a = ζa, (7.4) implies that ∆n ≥ 0. Therefore

‖∆n‖ = ‖∆n1‖ = ‖(ζn − ϕn)1‖ = 1−min
i

m∑
j=1

ϕn(i, j)→ 0 as a→ −∞.
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Define εb(a) = ||∆−b||. Obviously

(7.8) εb(a)→ 0 as a→ −∞ and b is fixed.

Next, (7.4) also gives

(7.9) ∆n = An∆n−1(ζn −∆n) = An∆n−1ζn − An∆n−1∆n.

Substituting ∆n−1 = An−1∆n−2ζn−1 −An−1∆n−2∆n−1 only in the term An∆n−1ζn
we obtain

∆n = AnAn−1∆n−2ζn−1ζn − AnAn−1∆n−2∆n−1ζn − An∆n−1∆n.

Continuing this process we obtain

(7.10) ∆n = An . . . A−b+1∆−bζ−b+1 . . . ζn −
n−1∑
k=−b

An . . . Ak+1∆k∆k+1ζk+2 . . . ζn,

where by convention An . . . Ak+1 = I if k + 1 < n and ζk+2 . . . ζn = I if k + 2 > n.
Equality (7.10) together with (7.6) implies that

(7.11) ∆n = An . . . A−b+1∆−bζ−b+1 . . . ζn +O(ε2
b(a)H(b, ω)2b).

Applying similar reasoning to (7.3) with f = 1 and ϕj = ζj −∆j gives

mn = 1−
∑

n≤k≤b−1

ζn . . . ζk−1∆kζk+1 . . . ζb−11 +O(ε2
b(a)H(ω, b)2b2)

= 1−
∑

n≤k≤b−1

ζn . . . ζk−1∆k1 +O(ε2
b(a)H(ω, b)2b2).

Substituting (7.11) into the last equation gives

mn = 1−
∑

n≤k≤b−1

ζn . . . ζk−1Ak . . . A−b+1w−b +O(ε2
b(a)H(ω, b)2b2)

where w−b = ∆−b1. Now set

m̄a,b
n =

1−mn

||w−b||
.

m̄a,b
n satisfies (7.1) since it is a linear combination of two solutions. Note that

(7.12) m̄a,b
n =

∑
n≤k≤b−1

ζn . . . ζk−1Ak . . . A−b+1u−b +O(εb(a)H(ω, b)2b2),

where u−b = w−b/||w−b||.
We shall now compute the limit of m̄a,b

n as a→ −∞. To this end note that

(7.13) lim
a→−∞

u−b = lim
a→−∞

A−b . . . Aa+1ζaϕa+1 . . . ϕ−b1

‖A−b . . . Aa+1ζaϕa+1 . . . ϕ−b1‖
= v−b,
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where we first use (7.5) and then proceed as in (2.16) with ṽa = ζaϕa+1···ϕ−b1
‖ζaϕa+1···ϕ−b1‖

.

Passing to the limit a → −∞ in (7.12) and using (7.8) we obtain the following
solution on (−b, b):

m̄b
n =

∑
n≤k≤b−1

ζn . . . ζk−1Ak . . . A−b+1v−b.

By (2.20) and (3.4) we have

(7.14) Ak . . . A−b+1v−b = λk . . . λ−b+1vk =
β(T k+1ω)

β(T−b+1ω)
vk

and by (2.11)

(7.15) ζn . . . ζk−1vk = (σk(1)1, . . . , σk(m)1)vk +O
(
θk−n

)
= (σkvk)1 +O

(
θk−n

)
,

where here and below we denote (σkvk)
def
=
∑m

i=1 σk(i)vk(i). We thus see that

β(T−b+1ω)m̄b
n =

b−1∑
k=n

β(T k+1ω)(σkvk)1 +
b−1∑
k=n

β(T k+1ω)O
(
θk−n

)
is also a solution to (7.1) on (−b, b) and so is

m̂b
n

def
= β(T−b+1ω)m̄b

n −
b−1∑
k=0

β(T k+1ω)(σkvk)1

= −
n−1∑
k=0

β(T k+1ω)(σkvk)1 +
b−1∑
k=n

β(T k+1ω)O
(
θk−n

)
The series

∑∞
k=n β(T k+1ω)O

(
θk−n

)
converges absolutely because of (2.11) (note

that the terms of the last sum do not depend on b). Hence setting M(x, ·) =
limb→∞ m̂b

x we obtain a solution

(7.16) M(x, ·) =
x−1∑
k=0

β(T k+1ω)(σkvk)1 + B(T xω),

where

B(ω) =
∞∑
k=0

β(T k+1ω)(ζ0 . . . ζk−1vk − (σkvk)1).

It remains to check statements (2) and (3) of Lemma 4.4.
Denote by Eµ the expectation with respect to the measure µ. To check that (2)

holds, we have to show that

D def
= Eµ

(
Eω (Mω(Xt+1, Yt+1)−Mω(Xt, Yt))

2)(7.17)

= Eµ
(
Eω (Mω(X1, Y1)−Mω(X0, Y0))2) <∞.(7.18)
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Note that equality (7.18) holds since µ is an invariant measure of the Markov chain
(TXtω, Yt), t ≥ 0. Now D can be presented as

D = E

(
m∑
i=1

ρ(ω, i)
∑

s=0,±1;1≤j≤m

Qω((0, i), (s, j))(Mω(0, i)−Mω(s, j))2

)
,

where Qω((0, i), (s, j)) is defined by (2.2). Equation (7.16) implies that

|Mω(0, i)−Mω(s, j)| ≤ C

∞∑
k=0

θkβ(T kω),

where, as before, C and θ depend only on the ε from (2.5). This inequality,
together with (6.4) and (3.3), implies

D ≤ CE

( ∑
k≥0,j≥0

θk+jβ−1(ω)β(T kω)β(T jω)

)
.

But

E(β−1(ω)β(T kω)β(T jω)) ≤ 1

3
E(β−3(ω)+β3(T kω)+β3(T jω)) =

1

3
E(β−3(ω)+2β3(ω))

finishing the proof of property (2).

Remark 7.1. Note that in the case of a RWRE on Z with nearest neighbour
jumps condition (3.1) can be replaced by E(β(ω) + β−1(ω)) <∞. On a strip, we
need the stronger requirement (3.1) because of the term B in (7.16).

Finally, property (3) follows from the ergodic theorem. In fact, for the mar-
tingale constructed above, c > 0 since β, σk and vk in the RHS of (7.16) are all
positive. �

8. The Liouville Theorem.

The construction of the martingale in the previous section was based on a choice
of two particular solutions of the martingale equation on finite intervals. The fol-
lowing lemma shows that the final result is essentially unique. And even though
this lemma is not used in the rest of the paper, it provides an important contribu-
tion to the understanding of the whole picture.

Let M denote the space of martingales satisfying conditions (1)–(2) of Lemma
4.4 and such that if M(·, ·) ∈M then

lim
x→±∞

M(x, y)

x
= 1.

(Clearly, we can scale the martingale from Lemma 4.4 to achieve this condition.)

Lemma 8.1. If M1,M2 ∈M then M1 −M2 = Const.
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Proof. Let M̄(x, y) = M1(x, y) − M2(x, y). Then Theorem 3.1 implies that, for
almost all ω, Xn√

n
is tight. Since M̄(x, y) grows sublinearly, for almost all ω,

M̄(Xn,Yn)√
n

→ 0 in probability with respect to the Pω,z measure on the space of

trajectories. On the other hand the proof of Theorem 3.1 shows that M̄(Xn,Yn)√
n
→ 0

iff D̄n
n
→ 0 where

D̄n =
n−1∑
k=0

E
(
Eω

([
M̄(Xk+1, Yk+1)− M̄(Xk, Yk)

]2 |Xk

))
.

By Ergodic Theorem,

lim
n→∞

D̄n

n
=

∫
Eω,(0,y)

[(
M̄1 − M̄0

)2
]
µ(dω, dy)

and this expression vanishes iff M̄1 ≡ M̄0 which implies, due to the stationarity,
that M̄ is a constant. �

9. Equivalent conditions for boundedness of the potential.

Proof of Lemma 3.2. Suppose that β(·) satisfying (3.1) exists. Define an = I −
Rn − Qnζn−1. In these notations, we have An = a−1

n Qn and αn−1 = Qna
−1
n−1 and

hence anAn = αn−1an−1 = Qn. Multiplying all parts of this equality by vectors ln
and vn−1 we obtain

lnanAnvn−1 = lnαn−1an−1vn−1 = lnQnvn−1

and this, by (2.18) and (2.19), gives

(lnanvn)λn = (ln−1an−1vn−1)λ̃n−1 = lnQnvn−1.

Since ln > 0 and vn > 0 for all n and since Qn has no zero columns (because of
(2.5)), also lnQnvn−1 > 0 and therefore (lnanvn) > 0 for all n. We thus can write

(9.1) λ̃n−1 =
(lnanvn)

(ln−1an−1vn−1)
λn =

(lnanvn) β(T n+1ω)

(ln−1an−1vn−1)β(T nω)
.

We now set

(9.2) β̃(ω) = (l(ω)a(ω)v(ω))β(Tω) = (l(ω)a(ω)v(ω)λ(ω))β(ω).

With this definition of β̃(ω), equation (9.1) reads λ̃n−1 = β̃(Tnω)

β̃(Tn−1ω)
which in partic-

ular proves that (3.2) holds.
Similarly, (3.2) implies (3.1).
It remains to notice that the factor l(·)a(·)v(·)λ(·) in (9.2) is a continuous func-

tion of ω and this, together with strictly positivity of this function and compactness
of the space of environments satisfying (2.5), implies (3.3). �
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Proof of Lemma 3.5. Suppose that the walk is recurrent but does not exhibit the
Sinai behaviour. It is proven on pages 273–274 of [3], that in this case condition
(iii) of Theorem 6 of [3] holds. This condition says that there exists a function F
defined on the space of pairs (φ,w), where φ is a stochastic matrix and w is a unit
vector such that for each triple (P,Q,R) ∈ J0

(9.3) ln ||Bw|| = F (φ,w)− F
(

(I −R−Qφ)−1P,
Bw

||Bw||

)
,

where B = (I − R − Qφ)−1Q. To obtain (9.3) from equation (2.19) of [3] we
observe that, due to recurrence, Theorem 2.9 tells us that E(lnλ) = 0 (note that
this expectation is denoted by λ in [3]).

Applying (9.3) to (P,Q,R) = (Pn, Qn, Rn) (φ,w) = (ζn−1, vn−1) we obtain

lnλn = F (ζn−1, vn−1)− F (ζn, vn).

This proves (3.1) with

β(ω) = e−F (ζ(T−1ω),v(T−1ω)).

It remains to note that β is continuous due to continuity of F which is evident
from the explicit formula for this function, namely formula (4.11) from [3].

Conversely if (3.1) and (3.2) hold then the RW does not exhibit the Sinai be-
haviour by Theorem 3.1. �

10. Periodic boundary conditions.

Here we describe a criterion for recurrence and the CLT in terms of periodic
approximations to our random environment. We remark that the results below
are analogous to the Livsic theory for hyperbolic dynamical systems (cf. [27, 28]).

Given N let πN(n, y) denote the invariant measure for the random walk on
[0, N − 1]× [1 . . .m] with periodic boundary conditions. Let πNn denote the vector
with components πNn (y) = πN(n, y).

Proposition 10.1. Suppose that Condition (2.5) is satisfied and that for any
N ≥ 1 the support of the measure P contains all periodic sequences generated by
periodic repetition of finite sequences of the form ((Pn, Qn, Rn))N−1

n=0 ∈ J N
0 .

Then condition (3.1) holds for all ω ∈ Ω with | ln β| bounded if and only if for
each N and for each ((Pn, Qn, Rn))N−1

n=0 ∈ J N
0 the following identity holds

(10.1) πN0 Q01 = πNN−1PN−11.

The proof consists of two steps.

Lemma 10.2. (3.1) holds with | ln β| bounded if and only if for each N and for
each environment ω such that TNω = ω we have

(10.2) λ0λ1 . . . λN−1 = 1.



CLT FOR RANDOM WALKS WITH BOUNDED POTENTIAL 25

Proof. By Lemma C.1 we need to show that (10.2) is equivalent to

(10.3)
n−1∑
j=0

lnλ(T jω)

being uniformly bounded in ω ∈ Ω and n ∈ N.
(a) If (10.3) is bounded for each ω it is in particular bounded for periodic ω and

hence
kN−1∑
j=0

lnλ(T jω) = k

[
N−1∑
j=0

lnλj

]
is uniformly bounded in k which is only possible if (10.2) holds.

(b) Suppose that (10.2) holds. Given ω, N let ω̃ be the environment such that
ω̃j = ωj for j ∈ {0, . . . N − 1} and such that ω̃ is periodic with period N. Then
due to Lemma A.2∣∣∣∣∣
N−1∑
j=0

lnλ(T jω)

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
j=0

lnλ(T jω)−
N−1∑
j=0

lnλ(T jω̃)

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
j=0

[
lnλ(T jω)− lnλ(T jω̃)

]∣∣∣∣∣
≤ Const

N−1∑
j=0

ds(T jω, T jω̃) ≤ Const
N−1∑
j=0

2−α(min(j,N−j)) ≤ Const

where s is the Hölder exponent of lnλ given by Lemma A.2. It follows that (10.3)
is bounded. �

Lemma 10.3. For each periodic environment (10.1) and (10.2) are equivalent.

Proof. Since periodic environments are stationary and ergodic, Theorem 2.9 im-
plies that in this case recurrence is equivalent to 1 being the top eigenvalue of any
of the products AN+k−1...Ak, which is what (10.2) says.

On the other hand, in the periodic environment, the recurrence holds if and only
if the walker has zero speed. Let h(x) denote the integer part of x/N. Then the
speed is zero if and only if

lim
t→∞

h(X(t))

t
= 0.

But h(X(t+ 1)) may differ from h(X(t)) only if X(t) is comparable to either 0 or
to N − 1 mod N. Therefore by the Ergodic Theorem for Markov chains

lim
t→∞

h(X(t))

t
= πNN−1PN−11− πN0 Q01,

so the walk is recurrent iff (10.1) holds. �

Proof of Lemma 3.15. For given matrices

(P0, Q0, R0), (P1, Q1, R1), . . . , (PN−1, QN−1, RN−1)
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the entries πN(n, y) are rational functions of the coefficients. Accordingly equation
(10.1) can be written as

FN((P0, Q0, R0), (P1, Q1, R1) . . . (PN−1, QN−1, RN−1)) = 0

where FN is a certain polynomial. In other words (3.1) holds if and only if for
each N, FN vanishes on ΛN . But then it also vanishes on Λ̄N and hence Λ̄ is also
admissible. �

11. Stationary case.

Proof of Lemma 3.8. The condition that Mn = Xn + fYn is a martingale is equiv-
alent to

(11.1) f = (P +R +Q)f + (P −Q)1 for all (P,Q,R) ∈ J0.

Let Jε,f be the set of all triples (P,Q,R) ∈ J satisfying (2.5) and (11.1). Consider
the random environment where (Pn, Rn, Qn) are iid and are uniformly distributed
on Jε,f . Then by [18, Theorem 4.1] given ε̄ there exists δ > 0 such that

P(|Xn| > δ
√
n) > 1− ε̄

for large n. Accordingly, Xn does not exhibit the Sinai behaviour. Therefore by
Lemma 3.5, (3.1) and (3.2) are satisfied for all environments in (Jε,f )Z. �

12. Quasiperiodic case: proof of Theorem 3.11

We turn now to the quasiperiodic case with the sequence (Pn, Qn, Rn) defined

by (3.6). Note that by stationarity there exist functions ζ̄ , Ā, ᾱ, v̄, l̄, λ̄, ¯̃λ on Td
such that

ζn(ω) = ζ̄(ω + nγ), An(ω) = Ā(ω + nγ), αn(ω) = ᾱ(ω + nγ),

vn(ω) = v̄(ω+nγ), ln(ω) = l̄(ω+nγ), λn(ω) = λ̄(ω+nγ), λ̃n(ω) = ¯̃λ(ω+nγ).

Lemma 12.1. The functions ζ̄ , Ā, ᾱ, v̄, l̄, λ̄ and ¯̃λ are Cr smooth.

This lemma is proven in Appendix A.
Next, by Theorem 2.9 ([2, Theorem 2]) recurrence is equivalent to

(12.1)

∫
Td

ln λ̄(ω)dω = 0

Now [21] tells us that if Φ ∈ Cr(Td) has zero mean and (3.7) and (3.8) are satisfied
then there is Φ̃ ∈ C0(Td) such that

(12.2) Φ(ω) = Φ̃(ω + γ)− Φ̃(ω) and hence
n−1∑
k=0

Φ(ω + kγ) = Φ̃(ω + nγ)− Φ̃(ω).

Applying (12.2) with Φ = ln λ̄ we obtain (3.1).
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Appendix A. The Invariant Section Theorem

The following result is useful for ascertaining the regularity of auxiliary se-
quences of matrices considered in this paper.

Let X and Y be complete metric spaces.
Consider a skew product transformation F : X×Y → X×Y given by F (x, y) =

(f(x), g(x, y)) and such that

(1) F is a continuous transformation;
(2) f : X→ X is a homeomorphism;
(3) g(x, ·) : Y → Y is a fiber contraction, that is, there exists θ < 1 such that

d(g(x, y′), g(x, y′′) ≤ θd(y′, y′′).

Proposition A.1. ([19, Theorem 3.5]) (a) F admits an invariant section. That
is, there exists a map Γ : X→ Y such that g(x,Γ(x)) = Γ(f(x)).

(b) If F is Cδ, f and f−1 are Lipshitz, and θ[Lip(f−1)]δ < 1 then Γ belongs to
a Hölder space Cδ.

(c) If X is a manifold and Y is a manifold with boundary and g(x, ·) : Y →
Int(Y) for each x ∈ X and if F is a Cr diffeomorphism such that

(A.1) θ[Lip(f−1)]r < 1

then Γ is Cr smooth.

Lemma A.2. The maps

ω → ζ(ω), ω → A(ω), ω → α(ω), ω → v(ω), ω → l(ω), ω → λ(ω), ω → λ̃(ω)

defined by (2.22) are Hölder continuous with respect to the metric d defined by
(2.4).

Proof. We start with the smoothness of ζ. To this end we apply Proposition A.1
to the map F1 defined on the product of Ω×Z, where Z is the space of stochastic
matrices by the formula

F1(ω, ζ) = (Tω, (I −Q(ω)ζ −R(ω))−1P (ω)).

Thus f is a shift T and so Lip(T−1) = 2. On the other hand due to [10, Proposition
D.1], there are constants K̄ > 0, θ̄ < 1 which depend only on the width of the strip
m and on ε in (2.5) such that

d(F n
1 (ω, ζ ′), F n

1 (ω, ζ ′′)) ≤ K̄θ̄nd(ζ ′, ζ ′′).

Applying Proposition A.1 to F n0
1 where n0 is such that K̄θ̄n0 < 1 we get that ζ is

Cδ where δ is such that

2δn0K̄θ̄n0 < 1.

(Since n0 can be arbitrarily large we can optimize with respect to n0 and conclude
that ω → ζ(ω) is Cδ provided that 2δθ̄ < 1.)

Since ω → ζ(ω) is Cδ, (2.12) shows that ω → A(ω) and ω → δ(ω) is Cδ as well.
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Next, A(ω) are positive matrices and therefore preserve the positive cone in Rm.
Moreover they act as contractions in the so called Hilbert metric (see e.g [26]).
Consider now the map F2 acting on Ω× Sm−1

+ by the formula

F2(ω, v) =

(
Tω,

A(ω)v

||A(ω)v||

)
,

where Sm−1
+ is the set of unit vectors with positive coordinates. This map is a

fiber contraction in the metric induced on Sm−1
+ in a natural way by the Hilbert

metric. Thus Proposition A.1 implies that ω → v(ω) is Cδ. The Hölder property
of ω → l(ω) is established similarly by looking at the projective action of α.

Finally the Hölder property of λ(ω) follows from the Hölder property of A and

v, and the Hölder property of λ̃(ω) follows from the Hölder property of α and l. �

Proof of Lemma 12.1. The proof of Lemma 12.1 is similar to the proof of Lemma
A.2 except that now we apply Proposition A.1 to skew products with the base map
being toral translation f(ω) = ω+γ rather than the shift of Ω. Thus f−1(ω) = ω−γ
is an isometry and thus Lip(f−1) = 1. Accordingly, (A.1) holds for all r implying

that ζ̄ , Ā, ᾱ, v̄, l̄, λ̄ and ¯̃λ are Cr smooth. �

Appendix B. CLT for transient uniquely ergodic environments.

In this section we consider uniquely ergodic environments defined by (3.9). Be-
low, whenever there is no danger of confusion, we write, with a slight abuse of
notation, f−1ω for f−1(ω) and, more generally, fnω for fn(ω).

By stationarity there exist functions ζ̄ , Ā, v̄, λ̄(ω) = ||Ā(ω)v̄(f−1ω)|| on Ω such
that

ζn(ω) = ζ̄(fnω), An(ω) = Ā(fnω), vn(ω) = v̄(fnω), λn(ω) = λ̄(fnω).

Applying C0 Invariant Section Theorem (Proposition A.1(a) and Lemma A.2)
we conclude similarly to Section 12 that the above functions ζ̄ , Ā, v̄ and hence
also λ̄ are continuous.

Without loss of generality we assume that Xt → +∞ as t→∞ and hence λ =
E(ln λ̄) < 0. We recall the general results proven in [16] for ergodic environments
satisfying the following assumption:

(B.1)
E
(
||An(ω) . . . A2(ω)A1(ω)v0(ω)||2

)
= E

([
λ̄(fn−1ω) . . . λ̄(fω)λ̄(ω)

]2)
decays exponentially as n→∞.

In our case (B.1) is satisfied. Indeed, due to the unique ergodicity

(B.2)

∑n−1
i=0 ln λ̄(f jω)

n
→ λ as n→∞ uniformly in ω.
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Hence for any ε > 0 there is Nε such that for all n > Nε and all ω ∈ Ω there is
ε(n, ω) satisfying |ε(n, ω)| ≤ ε and such that

(B.3)

||An(ω) . . . A2(ω)A1(ω)v0(ω)|| = λ̄(ω)λ̄(fω) . . . λ̄(fn−1ω) =

exp

(
n−1∑
i=0

ln λ̄(f jω)

)
= exp(n(λ + ε(n, ω)))

which implies the exponential decay in (B.1).

Remark B.1. One more immediate corollary of (B.3) is the following inequality
which holds uniformly in ω ∈ Ω for all n ≥ 1:

(B.4)
||An(ω) . . . A2(ω)A1(ω)|| = ||An(ω) . . . A2(ω)A1(ω)1||
≤ Const||An(ω) . . . A2(ω)A1(ω)v0|| ≤ Constenλ/2.

This follows from the property v0 ≥ mε21 explained in Remark 2.4.

The CLT holds for any initial distribution of the walk. In order, to simplify
several formulae below we choose the initial distribution as follows:

(B.5) Pω,(0,·){ξω(0) = (0, i)} = σ0(i), 1 ≤ i ≤ m,

where σ0 is defined by (2.9). We would like to emphasize that the proof presented
below works, with minor modifications (see e.g. the comment following formula
(B.6)), for arbitrary initial distribution.

Let us list some properties of the vectors σn which will be used below. It follows
directly from (2.10) that σn = σkζk . . . ζn−1 for any k < n (here we also use the
relation ζn(ω) = ζ(fnω)). Next, σ0(ω) is a continuous function of ω. This fact
follows form Proposition A.1 applied to Ω × U , where U is the set of probability
vectors of dimension m. The corresponding skew product transformation is given
by (ω, y) → (fω, yζ(ω)). The related fiber contraction property is the standard
property of stochastic matrices ζ with ζ(i, j) ≥ ε, where ε is the same as in (2.5)
(because (I −R−Qζ)−1P ≥ (I −R)−1P ; see proof of (2.15) (b)).

In what follows, we use the following notations and conventions. ξt = ξω(t) =
(X(t), Y (t)) is the walk in RE ω starting from a random point in layer 0 which is
distributed according to (B.5). More precise notations, such as e. g. ξω,(0,·)(t) will
also be used where appropriate. The same convention applies to Pω and Eω.

As in Remark 2.8, denote tn the hitting time, by the RW, of layer n, tn = min{t :
Xt = n}. Recall that if a RW is recurrent or transient to the right then the entries
of the matrix ζn have the following probabilistic meaning:

ζn(i, j) = Pω (RW starting from (n, i) hits Ln+1 at (n+ 1, j)) .

Since ξ is a Markov chain, it follows for n ≥ 1 that

(B.6) Pω,(0,·) (ξ(tn) = (n, i)) = σn(i), 1 ≤ i ≤ m.
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(If the initial distribution of the walker is different from σ0 then σn in (B.6) has
to be replaced by some σ̃n which is exponentially close to σn.)

It is proven in [16] that if (B.1) holds then there are positive constants v and σ
such that with probability 1

(B.7)
Eω(tn)

n
→ 1

v

and

(B.8)
tn − Eω(tn)

σ
√
n

converges in distribution to a standard normal distribution.

Define bn by the condition

Eω(tbn−1) < n ≤ Eω(tbn).

We are now in a position to prove the precise version of Theorem 3.12.

Theorem B.2. Xn−bn
σv3/2

√
n

converges to a standard normal distribution almost surely.

Proof. We need the following estimate of the probability of return from layer Ln
to La which is uniform in ω: there is a θ > 0 such that for all a, n, a < n, n ≥ 0
and all ω ∈ Ω

(B.9) Pω (RW visits La after visiting Ln) ≤ Conste−θ(n−a)

This estimate is a strengthening of Lemma 3.2 from [10]. Its proof relies strongly
on the unique ergodicity property of the environment and is different from that of
Lemma 3.2 in [10].

We also need two strengthenings of (B.7) for uniquely ergodic environments.
First, as k →∞

(B.10)
Eω(tk)

k
→ 1

v
uniformly in ω

and hence

(B.11)
Eω(ti+k − ti)

k
=
Ef iω(tk)

k
→ 1

v
uniformly in i and ω.

Second

(B.12) Eω(t1) is bounded

and hence

(B.13) Eω(tbn) = n+O(1).

The proofs of (B.9), (B.10) and (B.12) will be given later. Let us first see how
these facts imply the theorem. Given x we have

Pω(tbn+
√
nx+lnn ≤ n)− Pω(An) ≤ Pω

(
Xn − bn ≥

√
nx
)
≤ Pω(tbn+

√
nx ≤ n)
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where An is the event that X returns to level bn +
√
nx after visiting level bn +

x
√
n+ lnn. By (B.9)

Pω(An) ≤ Const e−θ lnn =
Const

nθ
.

Therefore to complete the proof of the CLT for X it suffices to obtain the as-
ymptotic behaviour of Pω(tbn+kn ≤ n) under the assumption that kn/

√
n → x as

n→∞. Next,

Pω(tbn+kn ≤ n) = Pω

(
tbn+kn − Eω(tbn+kn)√

bn + kn
≤ n− Eω(tbn+kn)√

bn + kn

)
.

By (B.11) and (B.13), we have

Eω(tbn+kn) = Eω(tbn) + Ef tbnω(tkn) = n+O(1) + Ef tbnω(tkn).

This, together with bn = nv + o(n) and Ef tbnω(tkn) = kn/v + o(kn), shows that

lim
n→∞

n− Eω(tbn+kn)√
bn + kn

=
−x
v3/2

.

So (B.8) gives

lim
n→∞

Pω(tbn+kn ≤ n) =

∫ −x/(σv3/2)

−∞

e−s
2/2

√
2π

ds

proving the CLT for X.
It remains to establish (B.9), (B.10) and (B.12). We start with (B.10) and

(B.12).
Denote by en the column vector whose ith coordinate en(i) is Eω,(0,i)(tn) (the

expectation of tn conditioned on ξ(0) = (0, i)). By [16, equation (4.27)] for n ≥ 1

en =
n−1∑
j=0

ζ0 . . . ζj

∞∑
i=0

Aj . . . Aj−i+1(I −Qj−iζj−i−1 −Rj−i)
−11,

where we use the following conventions: for any k ζk . . . ζk = I, Aj . . . Aj+i−1 = I
if i = 0, and Aj . . . Aj−i+1 = Aj if i = 1. Since Eω(tn) =

∑m
i=1 σ0(i)en(i), we have

Eω(tn) = σ0en =
n−1∑
j=0

σj

∞∑
i=0

Aj . . . Aj−i+1(I −Qj−iζj−i−1 −Rj−i)
−11

and in particular

Eω(t1) = σ0

∞∑
i=0

A0 . . . A−i+1(I −Q−iζ−i−1 −R−i)−11.

Estimate (2.15) (a) means that ‖(I −Q−iζ−i−1 −R−i)−1‖ ≤ Const and hence

Eω(t1) ≤ Const
∞∑
i=0

||A0 . . . A−i+1||.
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Due to (B.2) and (B.3)

(B.14) ||Ai . . . A0|| ≤ Const
i−1∏
k=0

λ̄(fkω)

proving (B.12). Next, denote u(ω) = Eω(t1). Obviously Eω(tn) =
∑n−1

j=0 u(f jω)

and since u is continuous the unique ergodicity implies that 1
n

∑n−1
j=0 u(f jω) con-

verges uniformly in ω which proves (B.10).

We next prove (B.9). Define events Aa,n
def
= {RW visits La after visiting Ln}

and Ba,n,b
def
= {RW visits Lb before La after visiting Ln}, where n < b. Due to the

choice of the initial distribution σ0 of the walk (see (B.5)) and the fact that the
walk is transient to the right we have

(B.15) Pω(Aa,n) ≡ Pω,(0,·)(Aa,n) = Pω,(n,·)(Aa,n),

where the distribution of the starting point in Ln is now given by σn (see (B.6)).
So, from now on we shall be proving (B.9) for the walk starting from n.

Observe next that

(B.16) Pω,(n,·)(Aa,n) = 1− lim
b→∞

Pω,(n,·)(Ba,n,b).

We shall now compute Pω,(n,·)(Ba,n,b) in terms of of products of matrices ϕ defined in
(7.2). Let ha,n,b = (hn,a,b(j))1≤j≤m be a column vector with components ha,n,b(j) =
Pω,(n,j) (Ba,n,b) (in words, they are the probabilities of reaching b before a starting
from (n, j)). It is routine (see [2]) that vectors ha,n,b solve equation (7.1) with
ha,a,b = 0 and ha,b,b = 1 and therefore, by (7.3),

ha,n,b = ϕnϕn+1 . . . ϕb−11 = (ζn −∆n)(ζn+1 −∆n+1) . . . (ζb−1 −∆b−1)1,

where as before ∆j = ζj − ϕj. Since (ζj − ∆j)1 = 1 − ∆j1 ≥ (1 − ‖∆j‖)1 and
‖∆j‖ ≤ 1, we obtain by induction (on b) that

ha,n,b ≥ (1− ‖∆n‖)(1− ‖∆n+1‖) . . . (1− ‖∆b−1‖)1 ≥

(
1−

∞∑
j=n

‖∆j‖

)
1.

But then Pω,(n,·)(Ba,n,b) = σnha,n,b ≥ 1−
∑∞

j=n ‖∆j‖ and therefore (B.16) gives

(B.17) Pω,(n,·)(Aa,n) ≤
∞∑
j=n

‖∆j‖ .

From (7.11) (with −b replaced by a) we have for any n > a

(B.18) ‖∆n(ω)‖ = ‖An(ω) . . . Aa+1(ω)∆aϕa+1 . . . ϕn‖ ≤ ‖An((ω) . . . Aa+1(ω)‖ .

Due to (B.4) and since (B.18) holds uniformly in ω, we obtain that

‖∆n(ω)‖ ≤ Conste−(n−a)θ,
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where θ = −λ/2. Finally this together with (B.17) implies

Pω,(n,·)(Aa,n) ≤ Conste−(n−a)θ

and this finishes the proof of (B.9). �

Note that Theorem B.2 requires a random centering by bn(ω). On the other
hand if f is a translation on Td, (P̄ , Q̄, R̄) are Cr, and (3.7) and (3.8) hold then σ0

and hence u are Cr. We now set ū =
∫
Td u(ω)dω and apply (12.2) to u − ū. This

gives u(ω) = ū + Φ̂(ω + γ)− Φ̂(ω), where Φ̂ is continuous and hence

Eω(tn) = nū + Φ̂(ω + nγ)− Φ̂(ω) =
n

v
+O(1), where

1

v
= ū

Accordingly bn = vn+O(1) and we obtain

Corollary B.3. In the quasiperiodic environment satisfying (3.7), (3.8) and v 6= 0

(Xn − nv)√
nv3/2σ

converges to a standard normal distribution where σ is the constant from (B.8).

Appendix C. Bounded ergodic sums.

The following lemma is a variation of the Gottschalk-Hedlund Theorem [17,
Theorem 14.11]. We include the proof of this lemma for the sake of completeness
and because it is very short.

Lemma C.1. Let T be an ergodic transformation and Φ be a measurable function.
Then there exists a constant K such that for almost all ω and all n ∈ N

(C.1)

∣∣∣∣∣
n−1∑
j=0

Φ(T jω)

∣∣∣∣∣ ≤ K

if and only if there exists a bounded function Φ̃ such that

(C.2) Φ(ω) = Φ̃(Tω)− Φ̃(ω)

Proof. (C.2) implies (C.1) since in that case
∑n−1

j=0 Φ(T jω) = Φ̃(T nω) − Φ̃(ω).

Conversely, if (C.1) holds then one can set Φ̃(ω) = − lim inf
n→∞

n−1∑
j=0

Φ(T jω). �
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