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Abstract. We define and study dense Frechet subalgebras of compact quantum groups
realised as smooth domains associated with a Dirac type operator with compact resolvent.
Further, we construct spectral triples on compact matrix quantum groups in terms of
Clebsch-Gordon coefficients and the eigenvalues of the Dirac operator D. Grotendieck’s
theory of topological tensor products immediately yields a Schwartz kernel theorem for
linear operators on compact quantum groups and allows us to introduce a natural class
of pseudo-differential operators on them. It is also shown that regular pseudo-differential
operators are closed under compositions. As a by-product, we develop elements of the
distribution theory and corresponding Fourier analysis. We give applications of our con-
struction to obtain sufficient conditions for Lp − Lq boundedness of coinvariant linear
operators. We provide necessary and sufficient conditions for algebraic differential calculi
on Hopf subalgebras of compact quantum groups to extend to our proposed smooth sub-
algebra C∞D . We check explicitly that these conditions hold true on the quantum SU q

2 for
both its 3-dimensional and 4-dimensional calculi.

1. Introduction

In [HL36] Hardy and Littlewood proved the following generalisation of the Plancherel’s
identity on the circle T, namely

(1.1)
∑
m∈Z

(1 + |m|)p−2|f̂(m)|p ≤ Cp‖f‖pLp(T), 1 < p ≤ 2.

Hewitt and Ross [HR74] generalised this to the setting of compact abelian groups. Re-
cently, the inequality has been extended [ANR15a] to compact homogeneous manifolds. In
particular, on a compact Lie group G of topological dimension n, the result can be written
as

(1.2)
∑
π∈Ĝ

dπ
p( 2
p
− 1

2
)〈π〉n(p−2)‖f̂(π)‖pHS ≤ Cp‖f‖

p
Lp(G),

where 〈π〉 are obtained from eigenvalues of the Laplace operator ∆G on G by√
I −∆Gπij = 〈π〉πij , i, j = 1, . . . , dπ.

In [You08] the Hardy-Littlewood inequality has been extended to compact matrix quan-
tum groups of Kac type. For this purpose, the author introduced a natural length function
and extended the notion of ‘rapid decay’ to compact matrix quantum groups of Kac type.
On the other hand, the inequality (1.2) on a compact Lie group G can be given a differential
formulation as

(1.3) ‖FG(1−∆G)
n( 1

2
− 1
p

)
f‖

`p(Ĝ)
≤ Cp‖f‖Lp(G),
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where ∆G is the Laplacian on G and FG is the group Fourier transform. In the view of
[Lic90], the operator I−∆G is the square of the spinor Dirac operator restricted to smooth
functions on G. Thus, one can view the identity as associated to a ‘Dirac-like’ operator
understood broadly.

The Dirac operator was first introduced in 1928 by Paul Dirac to describe the evolution
of fermions and bosons and plays an essential role in mathematical physics and represen-
tation theory. The geometric Dirac operator D can be constructed on an arbitrary spin
Riemannian manifold (M, g) and Alain Connes showed [Con13] that most of the geome-
try of (M, g) can be reconstructed from the Dirac operator characterised abstractly as a
‘spectral triple’ (C∞(M), D, L2

spin(M)). The axioms of a spectral triple in Connes’ sense
come from KO-homology. However, it is known that q-deformed quantum groups and ho-
mogeneous spaces do not fit into Connes axiomatic framework[Con95] if one wants to have
the correct classical limit and various authors have considered modification of the axioms.
Another problem is that of ‘geometric realisation’ where a given spectral triple operator
(understood broadly) should ideally have an interpretation as built from a spin connec-
tion and Clifford action on a spinor bundle. A unified algebro-geometric approach to this
has been proposed in [BM15] starting with a differential algebra structure on a possibly
noncommutative ‘coordinate algebra’ and building up the geometry layer by layer so as to
arrive at a noncommutative-geometrically realised D as an endpoint.

Compact quantum groups are quantisations of Poisson Lie groups and it is natural to
expect that every compact quantum group should possess a spectral triple (A,H,D) by a
quantisation process of some sort. Following an approach suggested by [CL01], Chakraborty
and Pal constructed [CP08] a spectral triple on the quantum SU q

2 . A Dirac operator
agreeing with a real structure on SU q

2 has been suggested in [DLS+05], which required
a slight modification on the spectral triple axioms. More recently, inspired in part by
[Fio98], Nesheveyev and Tuset constructed [NT10] spectral triples on the q-deformation
Gq of a compact simply connected Lie group G. To the best of our knowledge, it seems
to be an open question whether there exists a spectral triple on an arbitrary compact
quantum groups. And there remains the question of linking proposed spectral triples to the
geometric picture. At the root of this problem is how to marry the analytic considerations
of compact quantum groups to the differential-algebraic notion of differential calculus in
the more constructive approach.

An outline of the results is as follows. After the set-up in Section 2 of quantum group
Fourier transform, Paley-type inequalities in compact quantum groups G of Kac type are
developed in Section 3 following the classical case in [ANR15a]. Section 4 studies left
Fourier multipliers A (i.e. translation coinvariant operators) with associated symbol σA.
In Section 5 we introduce a ‘Dirac operator’ D : L2(G) → L2(G) defined by a sequence
{λπ} of eigenvalues according to the Peter-Weyl decomposition of G. In Theorem 5.1 we
obtain a formal version of Hardy-Littlewood inequaity (1.2) by applying Paley inequality
(3.2) and write this in a differential form formulation

‖FG |D|β( 1
2
− 1
p

)
f‖

`p(Ĝ)
≤ Cp‖f‖Lp(G), 1 < p ≤ 2,

where an unbounded D : L2(G)→ L2(G) is defined by Dπ = λππ and |D|−β is trace class.
This goes some way towards (G, L2(G),D) as a spectral triple in the sense of Alain

Connes, this being the case if D has bounded commutators. We analyse in Theorem 5.3
when D defined by {λπ} is an actual spectral triple in the case of compact matrix quantum
group in the sense of Woronowicz [Wor87]. Theorem 5.3 is then illustrated on the example
of [CP08] on SU q

2 with eigenvalues ±(2l + 1) in the spin l part of the decomposition.
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Section 6 studies smooth domains C∞D =
⋂
α>0

Dom(|D|α) associated with Dirac operator

D on compact quantum groups. We study elements of distributions and rapid decay using
C∞D (G). Grotendieck’s theory of topological tensor products immediately yields a Schwartz
kernel theorem for linear operators on C∞D (G) and allows us to introduce a natural class of
pseudo-differential operators in this context. In Theorem 6.13 the Schwartz kernel KAB of
composition of two regular pseudo-differential operators A,B : C∞D → C∞D is computed in
terms of the kernels KA and KB. In Theorem 6.14 we show that regular pseudo-differential
operators acting via right-convolution kernel can be represented by their global symbols
(see Definition 6.11). A similar construction of smooth domains for general operators in
Hilbert spaces has been carried out in [RT16].

Section 7 looks at how this notion of C∞D relates to the algebraic notion of differential
1-forms in the algebraic side of noncommutative differential geometry. We show that both
the standard 3D left covariant and 4D bi-covariant differential calculi on C[SU q

2 ] in [Wor89]

extend to C∞D if we take D with eigenvalues ±[2l + 1]q where [n]q = qn−q−n
q−q−1 is a q-integer.

Thus our approach to ‘smooth functions’ is compatible with these q-differential calculi, mar-
rying the analytic and algebraic approaches. This q-deformed choice of D no longer obeys
the bounded commutators condition for a spectral triple but is a natural q-deformation
of our previous choice. On the other hand it is more closely related to the natural q-
geometrically-realised Dirac[Maj03] and square root of a Laplace [Maj15] operators on SU q

2
which similarly have eigenvalues modified via q-integers.

The authors wish to thank Yulia Kuznetsova for her advice and comments. We also want
to express our gratitude to the anonymous referees for their helpful suggestions.

2. Preliminaries

The notion of compact quantum groups has been introduced by Woronowicz in [Wor87].
Here we adopt the defintion from [Wor98].

Definition 2.1. A compact quantum group is a pair (G,∆) where G is a unital C∗-algebra,
∆: G→ G⊗G is a unital, ?-homomorphic map which is coassociative, i.e.

(∆⊗ IdG) ◦∆ = (IdG⊗∆) ◦∆

and
span{(IdG⊗G)∆(G)} = span{(G⊗ IdG)∆(G)} = G⊗G,

where G⊗G is a minimal C∗-tensor product.

The map ∆ is called the coproduct of G and it induces the convolution on the predual
L1(G),

λ ∗ µ := (λ⊗ µ) ◦∆, λ, µ ∈ L1(G).

Definition 2.2. Let (G,∆) be a compact quantum group. A finite-dimensional represen-
tation π of (G,∆) is a matrix [πij ] in Mn(G) for some n such that

(2.1) ∆πij =

n∑
k=1

πik ⊗ πkj

for all i, j = 1, . . . , n. We denote by Ĝ the set of all finite-dimensional irreducible unitary
representations of (G,∆).

Here we denote by Mn(G) the set of n-dimensional matrices with entries in G. Let
C[G] denote the Hopf subalgebra space of G spanned by the matrix elements πij of finite-
dimensional unitary representations π of (G,∆). It can be shown [MVD98, Proposition
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7.1, Theorem 7.6] that C[G] is a Hopf ∗-algebra dense in G. Every element f ∈ C[G] can
be expanded in a finite sum

f =
∑
π∈If

nπ∑
i,j=1

cijπij ,

where If is a finite index set. It is sufficient to define the Hopf ∗-algebra structure on C[G]
on generators πij as follows

ε(πij) = δij , S(πij) = π∗ji for π ∈ Ĝ, i, j = 1, . . . , nπ,

where ε : C[G] → C is the counit and S : C[G] → C[G] is the antipode. These operations
satisfy the usual compatiblity conditions with coproduct ∆ and product mG.

Every compact quantum group possesses [DK94] a functional h on G called the Haar
state such that

(h⊗ IdG) ◦∆(a) = h(a)1 = (IdG⊗h) ◦∆(a).

For every π ∈ Ĝ there exists a positive invertible matrix Qπ ∈ Cnπ×nπ which is a unique
intertwiner in Hom(π, π∗) such that

(2.2) TrQπ = Tr(Qπ)−1 > 0.

We can always diagonalize matrix Qπ and therefore we shall write

Qπ = diag(qπ1 , . . . , q
π
nπ).

It follows from (2.2) that
nπ∑
i=1

qπi =

nπ∑
i=1

1

qπi
=: dπ,

which defines the quantum dimension dπ of π. If G is a compact quantum group of Kac
type, then dπ = nπ. The Peter-Weyl orthogonality relations are as follows

h((πij)
∗π′kl) = δππ′δikδjl

1

dπqπk
,

h(πkl(π
′
ij)
∗) = δππ′δikδjl

qπj
dπ
.

(2.3)

The quantum Fourier transform FG : L1(G)→ L∞(Ĝ) is given by

(2.4) f̂(π)ij = h(fπ∗ji), i, j = 1, . . . , nπ,

where L1(G) and L∞(Ĝ) are defined below. The inverse Fourier transform F−1
G is given by

f =
∑
π∈Ĝ

dπ Tr
(

(Qπ)−1πf̂(π)
)

=
∑
π

nπ∑
i,j=1

dπ
qπi
πjif̂(π)ij .

From this it follows that {
√
dπqπi πij : π ∈ Ĝ, 1 ≤ i, j ≤ nπ} is an orthonormal basis in

L2(G). The Plancherel identity takes the form

(2.5) (f, g)L2(G) =
∑
π∈Ĝ

dπ Tr
(

(Qπ)−1f̂(π)ĝ(π)∗
)
.

We denote by C(π) the coefficients subcoalgebra

C(π) = span{πij}nπi,j=1.



SMOOTH DENSE SUBALGEBRAS AND FOURIER MULTIPLIERS 5

The Peter-Weyl decomposition on the Hopf algebra C[G] is of the form

(2.6) C[G] =
⊕
π∈Ĝ

C(π).

Let L2(G) be the GNS-Hilbert space associated with the Haar weight h. We denote by
L∞(G) the universal von Neumann enveloping algebra of G. The coproduct ∆ and the
Haar weight h can be uniquely extended to L∞(G). In general, there are two approaches
to locally compact quantum groups: C∗-algebraic and von Neumann-algebraic.

Let ψ be a normal semi-finite weight on the commutant [L∞(G)]
′

of the von Neumann
algebra L∞(G). Let L1(G, ψ) be the set of all closed, densely defined operators x with
polar decomposition x = u |x| such that there exists positive φ ∈ L∞(G)∗ and its spatial

derivative dφ
dψ = |x|. Setting ‖x‖L1(G) = φ(1) = ‖φ‖L∞(G)∗ yields an isometric isomorphism

between L1(G, ψ) and L∞(G)∗. Analogously, we denote by Lp(G, ψ) the set of all closed,

densely defined operators x such that there exists φ ∈ L1(G, ψ) such that |x|p = dφ
dψ with

the Lp-norm given by ‖x‖Lp(G) = φ(1)
1
p . These spaces are isometrically isomorphic to the

Haagerup Lp-spaces [Haa79] and are thus independent of the choice of ψ.

One can introduce the Lebesgue space `p(Ĝ) on the dual Ĝ as follows

Definition 2.3. We shall denote by `p(Ĝ) the space of sequences {σ(π)}
π∈Ĝ endowed with

the norm

(2.7) ‖σ‖
`p(Ĝ)

=

∑
π∈Ĝ

dπnπ

(
‖σ(π)‖HS√

nπ

)p 1
p

, 1 ≤ p <∞.

Here by the Hilbert-Schmidt norm we mean

(2.8) ‖σ(π)‖2HS = Tr(Qπ)−1σ(π)σ(π)∗.

For p =∞, we write L∞(Ĝ) for the space of all σ such that

(2.9) ‖σ‖
L∞(Ĝ)

:= sup
π∈Ĝ

‖σ(π)‖HS√
nπ

<∞.

It can be shown that these are interpolation spaces in analogy to a similar family of spaces
on the unitary dual of compact topological groups. The latter spaces were introduced in
[RT10]. In this notation we can rewrite (2.5) as

(2.10) ‖f‖2L2(G) =
∑
π∈Ĝ

dπ‖f̂‖2HS.

It can be shown that FG : f 7→ f̂ = {f̂(π)} is a contraction, i.e.

(2.11) ‖f̂(π)‖op ≤ ‖f‖L1(G), π ∈ Ĝ.

Using the Hilbert-Schmidt norm and unitarity ππ∗ = Id of π’s, one can show

(2.12) ‖f̂(π)‖HS ≤
√
nπ‖f‖L1(G), π ∈ Ĝ.
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Hence, by the interpolation theorem for 1 < p ≤ 2 we obtain two versions of Hausdorff-
Young inequality∑

π∈Ĝ

dπ‖f̂(π)‖p
′

`p(Cnπ×nπ )

 1
p′

=: ‖f̂‖
`p
′
sch(Ĝ)

≤ ‖f‖Lp(G),(2.13)

∑
π∈Ĝ

dπnπ

(
‖f̂(π)‖HS√

nπ

)p′ 1
p′

=: ‖f̂‖
`p′ (Ĝ)

≤ ‖f‖Lp(G).(2.14)

A Hausdorff-Young inequality on locally compact quantum groups has been obtained in
[Coo10] and its sharpness explored in [LWW17].

We also present a version of a Marcinkiewicz interpolation theorem for linear mappings
between compact quantum group G of Kac type and the space of matrix-valued sequences
Σ that will be realised via

Σ :=
{
h = {h(π)}

π∈Ĝ, h(π) ∈ Cnπ×nπ
}
.

Thus, a linear mapping A : L∞(G)→ Σ takes a function to a matrix valued sequence, i.e.

f 7→ Af =: h = {h(π)}
π∈Ĝ,

where
h(π) ∈ Cnπ×nπ , π ∈ Ĝ.

We say that a linear operator A is of strong type (p, q), if for every f ∈ Lp(G), we have

Af ∈ `q(Ĝ,Σ) and
‖Af‖

`q(Ĝ,Σ)
≤M‖f‖Lp(G),

where M is independent of f , and the space `q(Ĝ,Σ) defined by the norm

(2.15) ‖h‖
`q(Ĝ,Σ)

:=

∑
π∈Ĝ

n
p( 2
p
− 1

2
)

π ‖h(π)‖pHS

 1
p

as in (2.7). The least M for which this is satisfied is taken to be the strong (p, q)-norm of
the operator A.

Denote the distribution functions of f and h by µG(t; f) and νĜ(u;h), respectively, i.e.

µG(x; f) := h(E(x,+∞)(|f |)), x > 0,(2.16)

νĜ(y;h) :=
∑
π∈Ĝ

‖h(π)‖HS√
nπ

≥y

n2
π, y > 0.(2.17)

Then

‖f‖pLp(G) = p

+∞∫
0

xp−1µG(x; f) dx,

‖h‖q
`q(Ĝ,Σ)

=
∑
π∈Ĝ

n2
π

(
‖h(π)‖HS√

nπ

)q
= q

+∞∫
0

uq−1νĜ(y;h) dy.

A linear operator A : L∞(G)→ Σ satisfying

(2.18) νĜ(y;Af) ≤
(
M

y
‖f‖Lp(G)

)q
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is said to be of weak type (p, q); the least value of M in (2.18) is called weak (p, q) norm of
A.

Every operation of strong type (p, q) is also of weak type (p, q), since

y
(
νĜ(y;Af)

) 1
q ≤ ‖Af‖

Lq(Ĝ)
≤M‖f‖Lp(G).

The classical Marcinkiewicz interpolation theorem [Fol99, Theorem 6.28] has a natural
analogue [ANR16, Theorem 6.1] for compact Lie groups. As a special case of [BC12,
Theorem 2.1] we immediately obtain

Theorem 2.4. Let 1 ≤ p1 < p < p2 <∞. Suppose that a linear operator A from  L∞(G) to
Σ is simultaneously of weak types (p1, p1) and (p2, p2), with norms M1 and M2, respectively,
i.e.

νĜ(y;Af) ≤
(
M1

y
‖f‖Lp1 (G)

)p1
,(2.19)

νĜ(y;Af) ≤
(
M2

y
‖f‖Lp2 (G)

)p2
.(2.20)

Then for any p ∈ (p1, p2) the operator A is of strong type (p, p) and we have

(2.21) ‖Af‖
`p(Ĝ,Σ)

≤M1−θ
1 M θ

2 ‖f‖Lp(G), 0 < θ < 1,

where

1

p
=

1− θ
p1

+
θ

p2
.

A different special case of [BC12, Theorem 2.1] has been presented in [You08].

3. Hausdorff-Young-Paley inequalities

A Paley-type inequality for the group Fourier transform on commutative compact quan-
tum group G = C(G) has been obtained in [ANR15a]. Here we give an analogue of this
inequality on an arbitrary compact quantum group G of Kac type.

Theorem 3.1 (Paley-type inequality). Let 1 < p ≤ 2 and let G be a compact quantum

group of Kac type. If ϕ(π) is a positive sequence over Ĝ such that

(3.1) Mϕ := sup
t>0

t
∑
π∈Ĝ
ϕ(π)≥t

n2
π <∞

is finite, then we have

(3.2)

∑
π∈Ĝ

n2
π

(
‖f̂(π)‖HS√

nπ

)p
ϕ(π)2−p

 1
p

.M
2−p
p

ϕ ‖f‖Lp(G).

The main tool in the proof of Theorem 3.1 is a noncommutative version of the Marcinkiewicz
interpolation Theorem 2.4). Following the classical case in [ANR16] and [ANR15a], Youn
obtained [You08] a different version of Paley type inequalities on compact quantum groups
of Kac type.
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Theorem 3.2 (Hausdorff-Young-Paley inequality). Let 1 < p ≤ b ≤ p′ < ∞ and let G be

a compact quantum group of Kac type. If a positive sequence ϕ(π), π ∈ Ĝ, satisfies the
condition

(3.3) Mϕ := sup
t>0

t
∑
π∈Ĝ
ϕ(π)≥t

n2
π <∞,

then we have

(3.4)

∑
π∈Ĝ

n2
π

(
‖f̂(π)‖HS√

nπ
ϕ(π)

1
b
− 1
p′

)b 1
b

.M
1
b
− 1
p′

ϕ ‖f‖Lp(G).

Further, we recall a result on the interpolation of weighted spaces from [BL76]:

Theorem 3.3 (Interpolation of weighted spaces). Let us write dµ0(x) = ω0(x)dµ(x),
dµ1(x) = ω1(x)dµ(x), and write Lp(ω) = Lp(ωdµ) for the weight ω.
Suppose that 0 < p0, p1 <∞. Then

(Lp0(ω0), Lp1(ω1))θ,p = Lp(ω),

where 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
, and ω = w

p 1−θ
p0

0 w
p θ
p1

1 .

From this, interpolating between the Paley-type inequality (3.2) in Theorem 3.1 and
Hausdorff-Young inequality (2.13), we obtain Theorem 3.2. Hence, we concentrate on
proving Theorem 3.1. The proof of Theorem 3.1 is an adaptation of the techniques used in
[ANR15a].

Proof of Theorem 3.1. Let µ give measure ϕ2(π)n2
π, π ∈ Ĝ to the set consisting of the single

point {π}, π ∈ G, and measure zero to a set which does not contain any of these points, i.e.

µ{π} := ϕ2(π)n2
π.

We define the space Lp(G, µ), 1 ≤ p < ∞, as the space of complex (or real) sequences
a = {al}l∈Ĝ such that

(3.5) ‖a‖Lp(G,µ) :=

∑
l∈Ĝ

|al|pϕ2(π)n2
π

 1
p

<∞.

We will show that the sub-linear operator

T : Lp(G) 3 f 7→ Tf = a =

{
‖f̂(π)‖HS√
nπϕ(π)

}
π∈Ĝ

∈ Lp(Ĝ, µ)

is well-defined and bounded from Lp(G) to Lp(Ĝ, µ) for 1 < p ≤ 2. In other words, we
claim that we have the estimate

‖Tf‖
Lp(Ĝ,µ)

=

(∑
π∈G

(
‖f̂(π)‖HS√
nπϕ(π)

)p
ϕ2(π)n2

π

) 1
p

. K
2−p
p

ϕ ‖f‖Lp(G),
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which would give (3.2) and where we set Kϕ := sups>0 s
∑
π∈G
ϕ(π)≥s

n2
π. We will show that A is

of weak type (2,2) and of weak-type (1,1). More precisely, with the distribution function

νG(y;Tf) =
∑
π∈Ĝ

|Tf(π)|≥s

ϕ2(π)n2
π

we show that

νG(y;Tf) ≤
(
M2‖f‖L2(G)

y

)2

with norm M2 = 1,(3.6)

νG(y;Tf) ≤
M1‖f‖L1(G)

y
with norm M1 = Kϕ.(3.7)

Then (3.2) will follow by the Marcinkiewicz interpolation Theorem 2.4). Now, to show
(3.6), using Plancherel’s identity (2.10), we get

y2νG(y;Tf) ≤ ‖Tf‖2L2(G,µ) =
∑
π∈Ĝ

(
‖f̂(π)‖HS√
nπϕ(π)

)2

ϕ2(π)n2
π

=
∑
π∈Ĝ

nπ‖f̂(π)‖2HS = ‖f̂‖2
`2(Ĝ)

= ‖f‖2L2(G).

Thus, T is of type (2,2) with norm M2 ≤ 1. Further, we show that T is of weak-type (1,1)
with norm M1 = C; more precisely, we show that

(3.8) νG{π ∈ Ĝ :
‖f̂(π)‖HS√
nπϕ(π)

> y} . Kϕ

‖f‖L1(G)

y
.

The left-hand side here is the weighted sum
∑
ϕ2(π)n2

π taken over those π ∈ Ĝ for which

‖f̂(π)‖HS√
nπϕ(π)

> y.

From definition of the Fourier transform it follows that

‖f̂(π)‖HS ≤
√
nπ‖f‖L1(G).

Therefore, we have

y <
‖f̂(π)‖HS√
nπϕ(π)

≤
‖f‖L1(G)

ϕ(π)
.

Using this, we get {
π ∈ Ĝ :

‖f̂(π)‖HS√
nπϕ(π)

> y

}
⊂
{
π ∈ Ĝ :

‖f‖L1(G)

ϕ(π)
> y

}
for any y > 0. Consequently,

µ

{
π ∈ Ĝ :

‖f̂(π)‖HS√
nπϕ(π)

> y

}
≤ µ

{
π ∈ Ĝ :

‖f‖L1(G)

ϕ(π)
> y

}
.

Setting v :=
‖f‖L1(G)

y , we get

(3.9) µ

{
π ∈ Ĝ :

‖f̂(π)‖HS√
nπϕ(π)

> y

}
≤

∑
π∈Ĝ

ϕ(π)≤v

ϕ2(π)n2
π.
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We claim that

(3.10)
∑
π∈Ĝ

ϕ(π)≤v

ϕ2(π)n2
π . Kϕv.

In fact, we have

∑
π∈Ĝ

ϕ(π)≤v

ϕ2(π)n2
π =

∑
π∈Ĝ

ϕ(π)≤v

n2
π

ϕ2(π)∫
0

dτ.

We can interchange sum and integration to get

∑
π∈Ĝ

ϕ(π)≤v

n2
π

ϕ2(π)∫
0

dτ =

v2∫
0

dτ
∑
π∈Ĝ

τ
1
2≤ϕ(π)≤v

n2
π.

Further, we make a substitution τ = s2, yielding

v2∫
0

dτ
∑
π∈Ĝ

τ
1
2≤ϕ(π)≤v

n2
π = 2

v∫
0

s ds
∑
π∈Ĝ

s≤ϕ(π)≤v

n2
π ≤ 2

v∫
0

s ds
∑
π∈Ĝ
s≤ϕ(π)

n2
π.

Since

s
∑
π∈Ĝ
s≤ϕ(π)

n2
π ≤ sup

s>0
s
∑
π∈Ĝ
s≤ϕ(π)

n2
π =: Kϕ

is finite by the definition of Kϕ, we have

2

v∫
0

s ds
∑
π∈Ĝ
s≤ϕ(π)

n2
π . Kϕv.

This proves (3.10). We have just proved inequalities (3.6), (3.7). Then by using
Marcinkiewicz’ interpolation theorem (see Theorem 2.4) with p = 1, q = 2 and 1

p = 1−θ+ θ
2

we now obtain∑
π∈Ĝ

(
‖f̂(π)‖HS√
nπϕ(π)

)p
ϕ2(π)n2

π

 1
p

= ‖Tf‖
Lp(Ĝ)

. K
2−p
p

ϕ ‖f‖Lp(G).

This completes the proof. �

4. Fourier multipliers on compact quantum groups

Definition 4.1. Let (G,∆) be a compact quantum group. A linear operator
A : G→ G is called a left Fourier multiplier if

(4.1) ∆ ◦A = (Id⊗A) ◦∆.

For a compact topological group this means an operator that commutes with left trans-
lation on the group and defines a global symbol σA of A.



SMOOTH DENSE SUBALGEBRAS AND FOURIER MULTIPLIERS 11

Theorem 4.2. Let G be a compact quantum group and let A : G → G be a left Fourier
multiplier. Then

(4.2) Âf(π) = σA(π)f̂(π), f ∈ L2(G),

where σA(π) ∈ Cnπ×nπ are defined by Aπ = πσA(π).

Proof of Theorem 4.2. By the Peter-Weyl decomposition (2.6), it is sufficient to establish
(4.2) on the coefficient sub-colagebra C(π). Suppose A is left invariant and write

Aπij =
∑
π′∈Ĝ

nπ∑
i,k=1

π′klc
π′
ijkl

for some coefficients cπ
′
ijkl. Then by left invariance,

∆Aπij =
∑

π′,k,l,m

cπ
′
ijklπ

′
km ⊗ π′ml = (id⊗A)∆πij

=
∑
m

πim ⊗Aπmj =
∑
m

∑
l,k

Cπ
′

mjklπim ⊗ π′kl

Comparing these, by the Peter-Weyl decomposition, we see that only π′ = π can contribute.
Moreover, since the {πij} are a basis of C(π) we must have cπijkl = 0 unless k = i. So we

have
∑

l,m c
π
ijilπim ⊗ πml =

∑
m πim ⊗Aπmj . Comparing these we see that

Aπmj =
∑
l

πmlσA(π)lj

from some matrix σA(π)lj = cπijil which can not depend on i. Finally, setting f = πkl we
have

π̂kl(π
′)ij = h(πklπ

′∗
ji) = δπ,π′

qπk
dπ
δkjδli,

and we check that

Âπkl(π
′)ij =

∑
m

π̂km(π′)ijσA(π)ml = δπ,π′
qπk
dπ
δkjσA(π)il,

(σA(π′)π̂kl(π
′))ij =

∑
m

σA(π′)imπ̂kl(π
′)mj = σA(π)ilδπ,π′

qπk
dπ
δkj ,

which is the same. This proves Theorem 4.3. �

Essentially similar arguments can be found in an earlier paper by [CFK14]. Also note
from the proof that the same result applies to any coinvariant linear map A : C[G]→ C[G].
We refer to the operators A acting in this way on the Fourier side as quantum Fourier
multipliers. In greater generality, such result was also shown in [JNR09] for every locally
compact quantum group; the authors thank the referee for pointing out this reference. In
the classical situation on G = Tn, left Fourier multipliers are essentially operators acting
via convolution with measures whose Fourier coefficients are bounded.

Let A : G→ G be a left Fourier multiplier. We are concerned with the question of what
assumptions on the symbol σA guarantee that A is bounded from Lp(G) to Lq(G).
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Theorem 4.3. Let G be a compact quantum group of Kac type. Let 1 < p ≤ 2 ≤ q < ∞
and let A : L2(G)→ L2(G) be a left Fourier multiplier. Then we have

(4.3) ‖A‖Lp(G)→Lq(G) . sup
s>0

s

 ∑
π∈Ĝ

‖σA(π)‖op>s

n2
π


1
p
− 1
q

.

Proof of Theorem 4.3. By definition

(4.4) Âf(π) = σA(π)f̂(π).

Let us first assume that p ≤ q′ (where 1
q + 1

q′ = 1). Since q′ ≤ 2, for f ∈ C[G] the

Hausdorff-Young inequality gives

‖Af‖Lq(G) ≤ ‖Âf‖`q′ (Ĝ)
= ‖σAf̂‖`q′ (Ĝ)

=

∑
π∈Ĝ

n2
π

(
‖σA(π)f̂(π)‖HS√

nπ

)q′ 1
q′

≤

∑
π∈G

n2
π‖σA(π)‖q′op

(
‖f̂(π)‖HS√

nπ

)q′ 1
q′

.

(4.5)

The case q′ ≤ (p′)′ can be reduced to the case p ≤ q′ as follows. The Lp-duality yields

(4.6) ‖A‖Lp(G)→Lq(G) = ‖A∗‖Lq′ (G)→Lp′ (G).

The symbol σA∗(π) of the adjoint operator A∗ equals to σ∗A(π),

(4.7) σA∗(π) = σ∗A(π), π ∈ Ĝ,

and its operator norm ‖σA∗(π)‖op equals to ‖σA(π)‖op. Now, we are in a position to apply

Theorem 3.2. Set 1
r = 1

p −
1
q . We observe that with σ(π) := ‖σA(π)‖ropIdπ , π ∈ Ĝ, and

b = q′, the assumptions of Theorem 3.2 are satisfied and we obtain

∑
π∈Ĝ

n2
π‖σA(π)‖q′op

(
‖f̂(π)‖HS√

nπ

)q′ 1
q′

.

sup
s>0

s
∑
π∈Ĝ

‖σ(π)‖rop>s

n2
π


1
r

‖f‖Lp(G)

for all f ∈ Lp(G), in view of 1
q′ −

1
p′ = 1

p −
1
q = 1

r . Thus, for 1 < p ≤ 2 ≤ q <∞, we obtain

(4.8) ‖Af‖Lq(G) .

sup
s>0

s
∑
π∈Ĝ

‖σ(π)‖rop>s

n2
π


1
r

‖f‖Lp(G).
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Further, it can be easily checked thatsup
s>0

s
∑
π∈Ĝ

‖σ(π)‖rop>s

n2
π


1
r

=

sup
s>0

s
∑
π∈Ĝ

‖σA(π)‖op>s
1
r

n2
π


1
r

=

sup
s>0

sr
∑
π∈Ĝ

‖σA(π)‖op>s

n2
π


1
r

= sup
s>0

s

 ∑
π∈Ĝ

‖σA(π)‖op>s

n2
π


1
r

,

where in the last equality we used the continuity of the s
1
r . �

5. Hardy-Littlewood inequality and spectral triples

As a corollary of Theorem 3.1, we obtain a formal compact quantum group version of the
Hardy-Littlewood inequality by using a suitable sequence {λπ}. This is formal in the sense
that we do not study underlying inherent geometric data, but nevertheless by formulating
this data in terms of an operator D our quantum Hardy-Littlewood type inequality (5.2)
presents in a manner similar to the compact Lie group inequality (1.3).

Theorem 5.1. Let 1 < p ≤ 2 and let G be a compact quantum group of Kac type. Assume
that a sequence {λπ}π∈Ĝ grows sufficiently fast, that is,

(5.1)
∑
π∈Ĝ

n2
π

|λπ|β
<∞.

Then we have

(5.2)
∑
π∈Ĝ

n2
π |λπ|

β(p−2)

(
‖f̂(π)‖HS√

nπ

)p
. ‖f‖pLp(G).

In terms of an unbounded D : L2(G) → L2(G) defined by Dπ = λππ, (5.1) and (5.2) are
respectively equivalent to |D|−β trace class and

(5.3) ‖FG |D|β( 1
2
− 1
p

)
f‖

`p(Ĝ)
≤ Cp‖f‖Lp(G).

Proof of Theorem 5.1. By the construction

(5.4) C :=
∑
π∈Ĝ

n2
π

|λπ|β
< +∞.

Then we have

C ≥
∑
π∈Ĝ
|λπ |β≤ 1

t

n2
π

|λπ|β
≥ t

∑
π∈Ĝ
|λπ |β≤ 1

t

n2
π = t

∑
π∈Ĝ
1

|λπ |β
≥t

n2
π.

Then by Theorem 3.1, we get (5.2). For the second part, we equivalently view {λπ} as
defining an operator D and in the case of Kac type, summability with power β reduces to
condition (5.1). Clearly,

|D|β( 1
2
− 1
p

)
πij = |λπ|β( 1

2
− 1
p

)
πij .

Using this and the right-hand side in inequality (5.2), we obtain (5.3). �
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Although the operator D is not immediately geometric, it can fit into Connes non-
commutative geometric framework of a ‘spectral triple’.

Definition 5.2. A spectral triple (A,H,D) is a triple consisting of an associative ∗-
subalgebra A of the algebra B(H) of bounded operators in a separable Hilbert space H and
a linear unbounded self-adjoint operator D : H → H with compact resolvent and such that
such that

(5.5) A 3 a 7→ ∂(a) := [D, a] ∈ B(H).

A spectral triple (A,H,D) is called summable if |D|−β is trace-class for some β ≥ 0. The

infimum of β ∈ R+ such that |D|−β+ε is trace-class for every ε > 0 is called the spectral
dimension [Con96].

Definition 5.2 is very minimal in the sense that we do not impose any conditions on
reality and chirality operators and their interrelations with D as in [Con95]. It is certainly
possible for D in Theorem 5.1 to obey the further boundedness condition for a spectral
triple in the Kac type case, a topic to be explored further elsewhere.

For now, we turn to an explicit construction of spectral triples more relevant to q-

deformed examples. If πk, πs ∈ Ĝ (with labels as shown) then the tensor product πk ⊗ πs
is a completely reducible finite-dimensional representation. The matrix elements of πk⊗πs
are given by

πk ⊗ πs = [πkijπ
s
pr]

nk,ns
i,j=1,p,r=1.

We shall define the coefficients Ckswijprut as follows

(5.6) Ckswijprut = (πkijπ
s
pr, π

w
ut)L2(G).

It then follows from (5.6)

(5.7) πkijπ
s
pr =

∑
w∈Iks

nm∑
u,t=1

Ckswijprutπ
w
ut,

where Iks is a finite subset of N. These Clebsch-Gordan coefficients are important to write
down the action of the commutator ∂(a) = [D, a] explicitly. In [CP08], these coefficients
were computed for the quantum groups SUq

2l+1, allowing the authors compute the action

of the left multiplication operator on L2(SUq
2l+1) and leading in turn to growth restriction

on the eigenvalues λk. In order to consider this more generally, we take a slightly different
approach and leave the Clebsch-Gordan coefficients in the bound as they depend on the
compact quantum group.

It is convenient, however, to focus on the compact matrix quantum group case [Wor87,
MVD98]. Here there is a matrix of generators umn of C[G] corresponding to a defining
unitary representation. We can expand them as

(5.8) umn =
∑
k

∑
ij

αijkmnπ
k
ij .

It can be clearly seen from the Peter-Weyl decomposition that there are only finitely many

non-zero αijkmn for each generator umn. These coefficients are closely related to the Clebsch-
Gordan coefficients.

Theorem 5.3. Let (G,∆) be a compact matrix quantum group and D : L2(G)→ L2(G) the
unbounded linear operator given by Dπkij = λkπ

k
ij. Then (G, L2(G),D) is a spectral triple if
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and only if

(5.9)

√√√√∑
i,j,k

|λk − λs|2
∑
w∈Iks

nw∑
t=1

∣∣∣αijkmnCkswijprtt

∣∣∣2 qwt
dπw
≤ C

√
qsr
dπs

holds for all s,m, n, r and some constant C.

Example 5.4 (Equivariant spectral triples on the quantum SUq
n). Condition (5.9) imposes

certain growth condition on consecutive differences
∣∣λk − λs(k)

∣∣ of the eigenvalues λk. For

G = SUq
n, it is possible to compute [CP08] the coefficients Cksmijprut. In more detail, the

authors showed that the Cksmijprtt’s are essentially powers of q, i.e.

(5.10) Cksmijprtt = qC
′
,

where the exponent C ′ = C ′(k, s,m, i, k, p, r, t) is determined by k, s,m. For more details
we refer to [CP08, pp. 30-32].

Proof of Theorem 5.3. The generators umn are dense in C[G]. Therefore we concentrate on
showing that the commutator

(5.11) ∂(a) : H 3 b 7→ ∂(a)b = [D, a]b ∈ H

is bounded on umn if and only if condition (5.9) is true. Let umn ∈ C[G], πs ∈ Ĝ and take
a = umn and b = πspr. The action of D on umn is as follows

(5.12) Dumn =
∑
k

λk
∑
ij

αijkmnπ
k
ij .

Assume that ∂(a) = [D, ·] is bounded for all a ∈ C[G], i.e.

(5.13) ‖∂(a)b‖L2(G) ≤ Ca‖b‖L2(G), b ∈ C[G].

In particular, for a = umn ∈ C[G] and b = πspr ∈ C[G], we get

(5.14) ‖∂(umn)πspr‖L2(G) ≤ Ca‖πspr‖L2(G).

Then by the direct computation∥∥∥∂(umn)πspr

∥∥∥2

L2(G)
= ‖(Dumn)πspr − uij(Dπspr)‖2L2(G)

=
∥∥∥
∑

k

λk
∑
ij

αijkmnπ
k
ij

πspr − λs
∑
k

∑
ij

αijkmnπ
k
ijπ

s
pr

∥∥∥2

L2(G)

=
∑
i,j,k

|λk − λs|2 ‖πkijπspr‖2L2(G)

=
∑
i,j,k

|λk − λs|2
∑
w∈Iks

nw∑
t=1

∣∣∣αijkmnCkswijpqtt

∣∣∣2 qwt
dπw

.

(5.15)

Using that

‖πspr‖2L2(G) =
qsr
dπr

and (5.15), we obtain (5.9). The converse is also true. Indeed, writing inequality (5.15) in
the reverse order, we get (5.14). �

Example 5.5. Let G = C(G) where G is a compact Lie group. One can take D =
√

1−∆G

where ∆G is the Laplacian on G.
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Example 5.6 ([CP08]). Let G = SU q
2 and L2(SU q

2 ) be the GNS-space. Let D be a Dirac

operator operator acting on the entries tlij of the irreducible corepresentations tl ∈ ŜU q
2 of

SU q
2 as follows

(5.16) Dtlij = ±(2l + 1)tlij , i, j = 0,
1

2
, . . . , l, l ∈ 1

2
N0.

In this example, we have C∞D = SU q
2 . The Chern character corresponding to (SU q

2 , L
2(SU q

2 ),D)
is non-trivial [CP08].

We do not consider β-summability in Theorem 5.3. It is known to hold for some β in the
case of Example 5.6, see [CP08]. Also note that we cannot immediately apply Theorem 5.3
to G = SU q

2 with λk given more naturally by q-integers as we will do later. Indeed, it
has been already observed in [Con08] that standard quantum group examples do not very
naturally fit into the classical theory of spectral triples, which may need to be replaced by
a twisted version for example in the commutator (5.11). In this context it is also possiblel
to demand a ‘quantum summability’ condition

(5.17)
∑
k∈N

d2
k

|λk|β
< +∞

for some β > 0, i.e. with respect to a modified ‘quantum’ trace. This reduces correctly for
classical compact Lie groups and compact quantum groups of Kac type, and also holds for
G = SU q

2 if we use q-integers for the λk but not if we use the classical values in Example 5.6.

6. Schwartz kernels

Definition 6.1 (Smooth domain). Let G be a compact quantum group and let D : C[G]→
C[G] be a linear map extended to L2(G) → L2(G) as a closed unbounded linear operator.
Then the smooth domain C∞D ⊂ G of D is defined as follows

C∞D :=
⋂
α≥0

Dom(|D|α).

The Frechet structure is given by the seminorms

(6.1) ‖ϕ‖α = ‖ |D|α ϕ‖L2(G), ϕ ∈ C∞D , α ≥ 0.

The powers |D|α are defined by the spectral theorem. It can be checked that C∞D is a
locally convex topological vector space.

We show that every linear operator A : C∞D → C∞D continuous with respect to the Frechet
topology can be associated with a distribution KA ‘acting’ on G×G. In other words, every
linear continuous operator A : C∞D → C∞D possesses a Schwartz kernel KA. This allows us
to define the global symbol of A in line with the pseudo-differential calculus on compact
Lie groups [RT13], [RT10]. The global symbols have been recently studied [LNJP16] on the
quantum tori Tnθ , n ∈ N, θ ∈ R.

Definition 6.2 (Rapidly decreasing functions on Ĝ). Denote by S(Ĝ) the space of matrix-
valued sequences {σ(π)}, σ(π) ∈ Cnπ×nπ satisfying the conditions

S(Ĝ) =

σ = {σ(π)}
π∈Ĝ :

∑
π∈Ĝ

dπ |λπ|2α ‖σ(π)‖2HS < +∞ for any α ≥ 0

 .
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The space S(Ĝ) becomes a locally convex topological space if we endow it with the norms

(6.2) pα(σ) :=

∑
π∈Ĝ

dπ |λπ|2α ‖σ(π)‖2HS

 1
2

, α ≥ 0.

The construction of the topology on C∞D (G) readily implies that the quantum Fourier

transform FG is a homeomorphism between C∞D and S(Ĝ).

Definition 6.3 (Distributions). Let us denote by S ′(G) the space [C∞D (G)]∗ of all linear
functionals continuous with respect to the topology on C∞D (G), i.e.

S ′(G) := [C∞D (G)]∗.

Let us denote by S ′(Ĝ) the space [S(Ĝ)]∗ of all linear linear continuous functionals on S(Ĝ),
i.e.

S ′(Ĝ) := [S(Ĝ)]∗.

Definition 6.4. For any distribution u ∈ S ′(Ĝ) its Fourier transform û is a distribution
on C∞D (G) given by

û(f̂) := u(f), f̂ ∈ S(Ĝ), f ∈ C∞D (G).

Proposition 6.5. A linear function u on C∞D is a distribution, if and only if, there exists
a constant C and a number α ≥ 0 such that

|u(f)| ≤ C

∑
π∈Ĝ

dπ |λπ|2α ‖f̂(π)‖2HS

 1
2

,

for every f ∈ C∞D (G).

Proposition 6.6. The space S ′(G) is complete, i.e. for every Cauchy sequence {un} ⊂
S ′(G) the limit

u = limun ∈ S ′(G)

exists and belongs to S ′(G). If ϕn converges to ϕ in C∞D , then

lim
n
un(ϕn) = u(ϕ).

Both of these are by standard methods and hold in the general situation[Trè67]. By

transposing the inverse Fourier transform F−1
G : S(Ĝ) → C∞D (G), the Fourier transform

FG extends uniquely to a mapping

FG : S ′(G)→ S ′(Ĝ)

by the formula

FG[u](σ) = u(F−1
G [σ]), u ∈ S ′(G).

In other words, for every distribution u ∈ S ′(G) its Fourier transform FG[u] is a distribution

on S(Ĝ).

Definition 6.7. For any distribution u ∈ S ′(G) its Fourier transform û is a distribution

on S ′(Ĝ) given by

û(σ) := u(F−1
G (σ)), σ ∈ S(Ĝ).

Proposition 6.8. Let (G,∆) be a compact quantum group and let |D|−β be of trace class
for some β > 0. Then the Frechet space C∞D is nuclear.
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Proof of Proposition 6.8. It is sufficient to prove that S(Ĝ) is a nuclear Frechet space since
FG is a homeomorphism. The former fact follows from [Tri78, Section 8.2.1]. �

The theory of topological vector spaces has been significantly developed [Gro55] by
Alexander Grothendieck. It turns out that the property of being nuclear is crucial and
these spaces are ‘closest’ to finite-dimensional spaces. The nuclearity is the necessary and
sufficient condition for the existence of abstract Schwartz kernels.

The topological tensor product preserves nuclearity [Trè67].

Definition 6.9. A linear continuous operator A : C∞D (G) 7→ S ′(G) is called a pseudo-
differential operator.

From the abstract Schwartz kernel theorem [Trè67], we readily obtain

Theorem 6.10. Let D be as in Proposition 6.8. Let A : C∞D → S ′(G) be a pseudo-

differential operator. Then there is a distribution KA ∈ S ′(G)⊗̂S ′(G) such that

(6.3) C∞D 3 ϕ 7→ Aϕ ∈ S ′(G), ϕ→ (Aϕ)(ψ) = KA(ϕ⊗ ψ), ψ ∈ C∞D .

The structure theorem [Trè67, Theorem 45.1] applied to the topological tensor product
S ′(G)⊗̂S ′(G) immediately yields that the Schwartz kernel KA can be written in the form

(6.4) KA =

∞∑
n=1

sAnx
A
n ⊗ tAn ,

where
∞∑
n=1

∣∣sAn ∣∣ < +∞ and {xn}, {tn} ⊂ S ′(G) tend to 0 in S ′(G). This allows us to define

global symbols σA in line with the classical theory.

Definition 6.11. Let A : C∞D (G) → S ′(G) be a pseudo-differential operator. We define a

global symbol σA of A at π ∈ Ĝ as a matrix σA(π) = [σA(πij)]
nπ
ij of distributions σA(πij) ∈

S ′(G) acting by the formula

(6.5) C∞D (G) 3 ϕ 7→ σA(πij)(ϕ) := KA(ϕ⊗ πij) ∈ C.

Alternatively, we have

(6.6) σA(π)ij =
∞∑
n=1

sAnx
A
nh(tAnπ

∗
ji) ∈ S ′(G).

Definition 6.12. We say that a pseudo-differential operator A : C∞D (G)→ S ′(G) is regular

if KA ∈ C∞D ⊗̂C∞D .

It can be easily seen that this class of pseudo-differential operators is closed under com-
position. Explicit composition formula for the global symbols on quatum tori Tnθ has been
recently obtained in [LNJP16]. In Theorem 6.13 we derive the composition formula in terms
of abstract Schwartz kernels.

Theorem 6.13. Let A : C∞D → C∞D and B : C∞D → C∞D be two regular pseudo-differential
operators on G. Let KA and KB be the Schwartz kernels of A and B. Then the composition
A ◦B : C∞D → C∞D is a regular pseudo-differential operator. Moreover, the Schwartz kernel
KAB of the composition AB is given by

(6.7) KAB =
∑
n

sAn

(∑
m

sBmx
A
n

(
xBm
)
tBm

)
⊗ tAn ,

where KA =
∑
n
sAnx

A
n ⊗ tAn and KB =

∑
m
sBmx

B
m ⊗ tBm.



SMOOTH DENSE SUBALGEBRAS AND FOURIER MULTIPLIERS 19

Proof of Theorem 6.13. Our proof relies on the theory of topological vector spaces. We
notice that

Bf =
∑
m

sBmx
B
mt

B
m(f), xBm, f ∈ C∞D .

By explicit calculations, we have

(ABf, g)L2(G) = (A(Bf), g)L2(G) =
∑
n

sAnx
A
n (Bf)tAn (g)

=
∑
n

sAnx
A
n

(∑
m

sBmx
B
mt

B
m(f)

)
tAn (g)

=
∑
n

∑
m

sAn s
B
mx

A
n

(
xBm
)
tBm(f)tAn (g),

(6.8)

where in the second equality we used that
N∑
m
sBmx

B
mt

B
m(f) ∈ C∞D converges to

∞∑
m
sBmx

B
mt

B
m(f) ∈

C∞D with respect to the topology in C∞D . This shows (6.7).

Now, we show that KAB ∈ C∞D ⊗̂C∞D . Denoting

xABn =
∑
m

sBmx
A
n (xBm)tBm,

tABn = tAn ,

sABn = sAn ,

we can write the Schwartz kernel KAB as follows

KAB =
∑
n

sABn xABn ⊗ tABn .

Since A is a regular pseudo-differential operator, we have∑
n

∣∣sABn ∣∣ <∞
and tABn ∈ C∞D and tABn → 0. Hence, it only remains to check that xABn ∈ C∞D and xABn → 0,
i.e. for every α > 0

(6.9) pα(xABn )→ 0, n→∞.

Since the sequence {sBmxAn (xBm)tBm}∞m=1 ⊂ C∞D is summable, we get

(6.10) pα

( ∞∑
m=1

sBmx
A
n (xBm)tBm

)
≤
∞∑
m=1

∣∣sBmxAn (xBm)
∣∣ pα(tBm) ≤ C

∞∑
m=1

∣∣sBm∣∣ ∣∣xAn (xBm).
∣∣

The injective topology on S ′(G) yields that xAn tends to 0 uniformly over bounded subsets
of C∞D , i.e.

lim
n
xAn (xBm) = 0.

Thus, using this and passing to the limit in (6.10), we obtain (6.9). We refer to [Trè67,
Part III] for further details and definitions. �

We introduce the right-convolution Schwartz kernel RA by the formula

RA :=
∞∑
n=0

sAnx
A
n ⊗ uAn ,
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where uAn is a convolution type vector-valued distribution acting by the formula

C∞D 3 ϕ→ uAn (ϕ) = (1⊗ h)((1⊗ uAn )(1⊗ S)∆ϕ) ∈ C∞D ,

and sAn are as in (6.4).

Theorem 6.14. Let (G,∆) be a compact quantum group and let A : C∞D → C∞D be a regular
pseudo-differential operator acting via right-convolution kernel, i.e.

(6.11) C∞D (G) 3 f 7→ Af =
∞∑
n=0

sAnx
A
nu

A
n (f) ∈ C∞D (G).

Then we have

(6.12) Af =
∑
π∈Ĝ

dπ Tr
(
σA(π)f̂(π)π

)
,

where σA(π) is the global symbol of A defined by (6.5).

Proof of Theorem 6.14. Let f ∈ C[G]. Then we have

f =
∑
π∈If

dπ

nπ∑
i,j=1

f̂(π)ijπji.

We shall start by showing that (6.12) holds true for f ∈ C[G]. We have

Af =
∞∑
n=0

sAnx
A
n ⊗ uAn (f) =

∞∑
n=0

sAnx
A
n ⊗ (1⊗ h)(uAn∆f)

=
∞∑
n=0

sAnx
A
n ⊗ (1⊗ h)((1⊗ uAn ) ·

∑
π∈If

dπ

nπ∑
i,j=1

f̂(π)ij(1⊗ S)∆πji)

=
∑
π∈If

nπ∑
i,j=1

nπ∑
k=1

∞∑
n=0

sAnx
A
n ⊗ (1⊗ h)

[
dπf̂(π)ijπjk ⊗ uAnπ∗ki

]

=
∑
π∈If

dπ

nπ∑
i,j=1

nπ∑
k=1

f̂(π)ijπjk ·
∞∑
n=0

sAnx
A
nh(uAnπ

∗
ki)

=
∑
π∈If

dπ

nπ∑
i,j=1

nπ∑
k=1

uAn f̂(π)ijπjk ·
∞∑
n=0

sAnx
A
nh(uAnπ

∗
ki)

=
∑
π∈If

dπ Tr
[
f̂(π)πσA(π)

]
.

Therefore, we get (6.12) where we can replace If by Ĝ. �

7. Differential calculi on compact quantum groups

In this section we are going to ask how the above ‘Fourier approach’ to the analysis on
compact quantum groups interplays with the theory of differential structures on Hopf alge-
bras of compact quantum groups and how this extends to C∞D (G). Recall that differential
structures in the literature have been defined at the polynomial level i.e. on C[G] as a Hopf
∗-algebra. For every choice of {λπ}π∈Ĝ we have an operator defined by Dπ = λππ and

C[G] ⊆ C∞D (G) ⊆ G.
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Thus for G = SU q
2 we have C[G] = Cq[SU2] as the usual dense Hopf ∗-subalgebra of SU q

2
with a 2× 2 matrix of generators while C∞D (SU q

2 ) lies in between as something more akin
to C∞(SU2). Our goal in the present section is to show that elements of C∞D (G) are indeed
smooth with respect to a suitable differential structure at least for SU q

2 and in outline for
the general q-deformation case.

We start by recalling the purely algebraic definition of first-order differential calculus
over associative algebras and refer to [Maj16] for a thorough exposition. Let A be a unital
algebra over a field k.

Definition 7.1. A first order differential calculus (Ω1,d) over A means

(1) Ω1 is an A-bimodule.
(2) d: A→ Ω1 is a linear map satisfying

d(ab) = (da)b+ adb, ∀a, b ∈ A.
(3) The vector space Ω1 is spanned by elements of the form adb,

Ω1 = span{adb}a,b∈A.

In the ∗-algebra case, ∗ extends uniquely to Ω1 in such a way that it commutes with d.

Example 7.2. Let A = C∞(R) and Ω1 = C∞(R).dx with left and right action given
by multiplication in C∞(R) (so functions and dx commute). The exterior derivative is

df = ∂f
∂xdx as this is the classical calculus.

There are many other interesting calculi even on the commutative algebra of functions
in one variable, see [Maj16].

Definition 7.3. A differential calculus (Ω1,d) over a Hopf algebra A is called left-covariant
if

(1) There is a left coaction ∆L : Ω1 → A⊗ Ω1.
(2) Ω1 with its given left action becomes a left Hopf module in the sense ∆L(aω) =

(∆a).(∆Lω) for all a ∈ A, ω ∈ Ω1.
(3) The exterior derivative d: A → Ω1 is a comodule map, where A coacts on itself by

the coproduct ∆

This case was first analysed in [Wor89] but here we continue with a modern algebraic
exposition. Note that the last two requirements imply that ∆L(adb) = a(1)b(1) ⊗ a(2)db(2)

using the Sweedler notation ∆a = a(1) ⊗ a(2), and conversely if this formula gives a well-
defined map then one can show that it makes the calculus left covariant. Hence this is
a property of (Ω1,d) not additional data. We have a similar notion of right covariance
and the calculus is called bicovariant if it is both left and right covariant. Let Λ1 = {ω ∈
Ω1 | ∆Lω = 1⊗ ω} be the space of left-invariant 1-forms on a left-covariant calculus.

In this case we define the Maurer-Cartan form $ : A+ → Λ1 by

$(a) = Sa(1)da(2).

This map is surjective by the spanning assumption above and is a right A-module map,
since

$(ab) = (Sb(1))(Sa(1))(da(2))b(2) + (Sb(1))ε(a)db(2) = $(a)/b,

where Λ1 is a right module by ω/b = (Sb(1))ωb(2). Hence Λ1∼=A+/I for some right ideal I ⊂
A+. Conversely, given a right A-module Λ1 and a surjective right-module map $ : A+ → Λ1

we can define a left covariant calculus by exterior derivative and bimodule relations

da = a(1)$πεa(2), ωa = a(1)(ω/a(2)), ∀a ∈ A, ω ∈ Λ1.
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Here πε(a) = a − ε(a) projects A → A+ and Ω1 = A.Λ1 is free as a left module. If the
calculus is bicovariant then Λ1 also has a right coaction making Λ1 an object in the braided
category MA

A of crossed A-modules (also called Radford-Drinfeld-Yetter modules). Here
A+ for any Hopf algebra is also a right crossed module by

a/b = ab, AdR(a) = a⊗ (Sa(1))a(3)

(the right adjoint coaction) and $ : A+ → Λ1 becomes a surjective morphism of right
crossed-modules in the bicovariant case.

Now let the calculus be bicovariant and Λ1 of finite dimension n as a vector space (Ω1

finite-dimensional over A) and {ei}ni=1 a basis of Λ1 with {f i} a dual basis. Then the
associated ‘left-invariant vector fields’ (which are not necessarily derivations) are given by

∂i : A→ A, ∂ia = a(1)f
i($πεa(2)), ∀a ∈ A

and obey ∆∂i = (id⊗∂i)∆ as in Definition 4.1 but on A and da =
∑

i(∂
ia)ei. The global

symbols σi : A → k defined by σi = 〈f i, $πε( )〉 can be recovered from ∂i as σi(a) = ε∂ia
and can typically be realised as evaluation against some element xi of a dually paired
‘enveloping algebra’ Hopf algebra and in this context we will write σi = σxi = 〈xi, 〉.
Similarly for each i, j let Ci

j(a) = a(1)〈f j , ei/a(2)〉, for a ∈ A, be left-invariant operators
encoding the bimodule commutation relations. They have no classical analogue (they would
be the identity). Their symbols σi

m : A → k defined by σi
j(a) = 〈f j , ei/a〉 = εCi

j(a) can
typically be given by evaluation against elements yi

j of a dually paired Hopf algebra and
this in this context we will write σi

j = σyij = 〈yij , 〉. It is these global symbols which we
extract from the algebraic structure of the calculus and need in what follows.

Now let (G,∆) be a compact quantum group with dense ∗-Hopf subalgebra A = C[G].
We suppose that we have a left covariant calculus on C[G] and remember from it the
key information Λ1 and the operators ∂i, Ci

j defining the exterior derivative and bimodule
relations respectively.

Proposition 7.4. Let (G,∆) be a compact quantum group and let (Ω1, d) be a n-dimensional
left-covariant differential calculus over the dense Hopf ∗-algebra C[G] of G. Then ∂i, Ci

j

extend to left-coinvariant operators C∞D (G)→ C∞D (G) and define a differential calculus on
the algebra C∞D (G) if and only if there exists γ > 0 such that

(7.1) max
i,j=1,...,n

{‖σ∂i(π)‖2HS, ‖σCji (π)‖2HS} ≤ |λπ|
γ .

The extension is given by Ω1(C∞D (G)) = C∞D (G) ⊗ Λ1 = C∞D (G) ⊗C[G] Ω1 with da =∑
i(∂

ia)ei and ei.a =
∑

j Ci
j(a)ej.

Proof of Proposition 7.4. From the linearity of the exterior derivative d in the Fourier ex-
pansion, we have

(7.2) da =
∑
π∈Ĝ

dπ Tr
(
(Qπ)−1(dπ)â(π)

)
,

where from the results above including Theorem 4.3 in the algebraic form on C[G],

d(πij) =
n∑
k=1

∂k(πij)ek,

∂kπij =
∑
m

πimσ∂k(π)mj ,

σ∂k(π)mj = σk(πmj) = πmj(x
k),
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and where the last step is the matrix of the representation of a dually paired Hopf algebra
defined by π when such xk exist.

Therefore, it is sufficient to check that ∂k : C∞D → C∞D are continuous linear maps with
respect to the topology defined by seminorms (6.2). By [Trè67, Proposition 7.7, p.64], the
linear maps ∂k act continuously in C∞D (G) if and only if for every α > 0 there is β > 0 such
that

(7.3)
∑
π∈Ĝ

dπ|λπ|2α‖∂̂k(a)‖2HS ≤
∑
π∈Ĝ

dπ|λπ|2β‖â‖2HS

for every a ∈ C∞D (G).
It is clear that condition (7.1) implies (7.3). Hence, we concentrate on necessity. Taking

a = πij ∈ Ĝ in (7.3), we get

(7.4) λ2α
π ‖∂̂k(πij)(π)‖2HS ≤ λ2β

π ‖π̂ij(π)‖2HS = λ2β
π .

From (7.4) dividing by |λπ|2α, we get

(7.5) ‖∂̂k(πij)(π)‖2HS ≤ |λπ|2(β−α).

From the algebraic version of Theorem 4.3 we have

∂̂k(πij)(π)mn =

nπ∑
s=1

σ∂k(π)msπ̂ij(π)sn = σ∂k(π)mj
qπi
dπ
δni,

where we used

π̂ij(π)sn =
qπi
dπ
δsjδni.

The latter follows from the Peter-Weyl orthogonality relations (2.3). Hence, we get

(7.6) ‖∂̂k(πij)‖2HS =

nπ∑
m,n=1

1

qπm

∣∣∣∣σ∂k(π)mj
qπi
dπ
δni

∣∣∣∣2 .
Thus, estimate (7.4) reduces to

‖σ∂k(π)‖HS ≤ λβ−γπ , π ∈ Ĝ,
with γ = β − α.

We similarly need to extend the bimodule relations from C[G] to C∞D (G) and we do this
in just the same way by

ei.a =
∑
π∈Ĝ

dπ Tr
(
(Qπ)−1(ei.π)â(π)

)
,

where from the above and the algebraic form of Theorem 4.3 we have

ei.πkl =
∑
j

Ci
j(πkl)ej ,

Ci
j(πkl) =

∑
m

πkmσCij (πml),

σCij (πml) = σi
j(πml) = πml(yi

j),

and where the last step is the matrix of the representation of a dually paired Hopf algebra
defined by π when such yi

j exist. As before we need these linear maps Ci
j : C[G] → C[G]

to extend to C∞D which is another Hilbert-Schmidt condition on the symbols of the same
type as for the ∂i. �
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Conversely, given a differential calculus (Ω1, d) over the Hopf-subalgebra C[G] of G, we
shall view (7.1) as a restriction on the {λπ} i.e. on a ‘Dirac operator’ D : L2(G) → L2(G)
for it to agree with the differential calculus (Ω1, d) over C[G].

Definition 7.5. Let D : L2(G) → L2(G) be unbounded operator given by Dπmn = λππmn
for some collection {λπ}π∈Ĝ. We shall say that D is admissible with respect to a differential

calculus (Ω1, d) on C[G] if and only if the condition (7.1) on {λπ}π∈Ĝ holds for some γ > 0.

Whether or not an admissible D exists depends on the quantum group and the calculus.
We look at SU q

2 with its two main calculi of interest, the 3D and the 4D (both of these calculi
are from [Wor89] but the 4D one generalises to other q-deformation quantum groups). As
a first step, we will recall the computation of the global symbols for the vector fields on the
classical SU2. We first briefly recall representation theory of SU q

2 [MMN+91]. The unitary

dual ŜU q
2 is parametrised by the half-integers 1

2N0, i.e.

ŜU q
2 = {tl}l∈ 1

2
N0
.

The Peter-Weyl theorem obtained in [MMN+91, Theorem 3.7] allows us to describe the
Fourier transform explicitly. For each a ∈ C[SU q

2 ], we define its matrix-valued Fourier
coefficient at tl by

(7.7) â(l) = h(aStl), i.e. â(l)mn = h(aStlmn),

where tl = (tlmn)m,n∈Il and Il = {−l,−l + 1, · · · ,+l − 1,+l}, l ∈ 1
2N0. It is convenient for

the inverse Fourier transform to introduce q-traces

(7.8) τl(σ(l)) :=
∑
i∈Il

q2iσ(l)ii.

Moreover, the q-trace τl naturally leads to the q-hermitian inner form

(σ1(l), σ2(l)) := τl (σ1(l)σ2(l)∗) .

The Fourier inversion formula takes [MMN+91, Theorem 3.10] the form

(7.9) h(ab∗) =
∑
l∈ 1

2
N0

[2l + 1]q
∑
i,k∈Il

q2iâ(l)ik b̂(l)ik

Let us denote by C∞(SU2) the space of infinitely differentiable functions on SU2. Let
X+ = ( 0 0

1 0 ), X− = ( 0 1
0 0 ), H = 1

2

(−1 0
0 +1

)
be a basis in the Lie algebra su2 of SU(2) with

[X+, X−] = H and associated first-order partial differential operators

∂+, ∂−, ∂+ : C∞(SU(2))→ C∞(SU(2))

(called creation, annihilation and neutral operators, respectively, in [RT13]). Then classi-
cally, in our current conventions, one has the following.

Proposition 7.6 ([RT13, Theorem 5.7, p.2461]).

∂+t
l
mn =

√
(l − n)(l + n+ 1)tlmn+1,

∂−t
l
mn =

√
(l + n)(l − n+ 1)tlmn−1,

∂0t
l
mn = ntlmn.

From this the classical global symbols σ∂± , σ∂0 can be read off as the matrix entries of

X±, H in the representation tl. The corepresentation theory of SU q
2 is strikingly similar to

its classical counterpart giving similar results. We compute the symbols for the action of

X−, X+, q
H
2 as elements of the quantum enveloping algebra Uq(su2) acting by the regular

representation on Cq[SU2] and in the conventions of [Maj95].
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Lemma 7.7. We have

σX+(tl)mn =
√

[l − n]q[l + n+ 1]qδmn+1,

σX−(tl)mn =
√

[l + n]q[l − n+ 1]qδmn−1,

σ
q
H
2

(tl)mn = qnδmn

where [n]q = qn−q−n
q−q−1 .

Proof of Lemma 7.7. Let q be real and for each l ∈ 1
2N0, the quantum group Uq(su2)

has 2l + 1-dimensional unitary representation space Vl = {|l m〉}+lm=−l detailed in the rel-
evant conventions in [Maj95, Proposition 3.2.6, p.92] so that, for example, X+ |l,m〉 =√

[l − n]q[l + n+ 1]q |l,m+ 1〉. By definition, the tlmn are the matrix elements of this rep-

resentation, immediately giving σX(tl)mn = 〈X, tlmn〉 = tl(X)mn for the symbol of any left-

invariant operator X̃(a) = a(1)〈X, a(2)〉. Thus we can read off the σX± , σq
H
2

as stated. �

For the convenience of the reader we recall that the Q-matrix for G = SU q
2 is given

[MMN+91] by

(7.10) Ql = diag(q−2i)li=−l, l ∈ 1

2
N0.

As a warm-up we look at the admissibility condition (7.1) of Proposition 7.4.

Lemma 7.8. Let bq = max(q, 1
q ). Then

[n]q ∼= bnq .

We write x ∼= y if there are constants c1, c2 6= 0 such that

c1x ≤ y ≤ c2x.

Lemma 7.9. Let G = SU q
2 . Then we have

‖σX+(tl)‖HS . [2l + 1]q,

‖σX−(tl)‖HS . [2l + 1]q,

‖σ
q
H
2

(tl)‖HS . [2l + 1]q.

Proof of Lemma 7.9. By (2.8)

‖σX+(tl)‖2HS :=

+l∑
m=−l

q2m
+l∑

n=−l

∣∣∣σX+(tl)mn

∣∣∣2 =

+l∑
m=−l

q2m[l −m+ 1]q[l +m]q

∼=
+l∑

m=−l
q2mbl−m+1

q bl+mq = b2l+1
q

+l∑
m=−l

q2m = b4lq ,

(7.11)

where we used the fact that

(7.12)
+l∑

m=−l
qm ∼= blq.
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Similarly, we get

‖σX−(tl)‖2HS =
+m∑
m=−l

q2m[l +m+ 1]q[l −m]q ∼=
+m∑
m=−l

q2mbl+m+1
q bl−mq = b2l+1

q b2lq

∼= b4lq
∼= [2l + 1]2q .

(7.13)

Finally, we compute

(7.14) ‖σ
q
H
2

(tl)‖2HS =
+l∑

m=−l
q2mq2m ∼= b4lq

∼= [2l + 1]2q .

This completes the proof. �

By the arguments as in the proof of Proposition 7.4 it follows that the associated left

covariant operators to X± and q
H
2 − 1 extend to C∞D (SU q

2 ) where

(7.15) Dtlij = ±[2l + 1]qt
l
ij

since the || ||2HS condition similar to (7.1) holds, but for the symbols of these operators
rather than for a choice of calculus.

7.1. 3D calculus on SU q
2 . We are now ready for the left-covariant 3D calculus on Cq[SU2]

which we take with the defining 2-dimensional representation with tαβ = {a, b, c, d} to give
the standard matrix of generators with usual conventions where ba = qab etc. We let | |
denote the known Z-grading on the algebra defined as the number of a, c minus the number
of b, d in any monomial. The 3D calculus has generators e0, e± with commutation relations

e0f = q2|f |fe0, e±f = q|f |fe±

(which implies the action in the vector space Λ1 with basis e0, e±). The exterior derivative
is

da = ae0 + qbe+, db = ae− − q−2be0, dc = ce0 + qde+, dd = ce− − q−2de0

Next the combinations σk = fk ◦$πε = ε∂k are linear functionals on A = Cq[SU2] and

can in fact be identified as evaluation against elements xk ∈ Uq(su2) in our case.

Proposition 7.10. The 3D calculus (Ω1
3D,Cq[SU2],d) over Cq[SU2] is generated by the

action of

x+ = q
1
2X−q

H
2 , x− = q−

1
2X+q

H
2 , x0 =

q2H − 1

q2 − 1

and extends to C∞D (SU q
2 ) where D defined in (7.15) is admissible with γ = 2. The symbols

are given by

σx+(tl)mn = qn+ 1
2

√
[l +m+ 1]q[l −m]qδmn+1(1− δm 2l+1),

σx−(tl)mn = qn−
1
2

√
[l −m+ 1]q[l +m]qδmn(1− δm 1)mn,

σx0(tl)mn =
h(tlmn)− q4nδmn

1− q2
.

Proof of Proposition 7.10. The 3D calculus is constructed ‘by hand’ so we use the form
σk = ε∂k and the known form of the partial derivatives (obtained by computing d on
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monomials via the Leibniz rule) and find elements xk ∈ Uq(su2) as stated that give these.
One then finds the symbols σxk(π)ij = π(xi)ij as

σx+(tl)mn = q
1
2 [σX−(tl)σ

q
H
2

(tl)]mn = q
1
2

2l+1∑
k=1

σX−(tl)mkσ
q
H
2

(tl)kn

=
2l+1∑
k=1

√
[l + k]q[l − k + 1]qδmk−1q

nδk n

= qn+ 1
2

√
[l +m+ 1]q[l −m]qδmn+1(1− δm 2l+1),

where we used the fact that σX(π)σY (π) = σXY (π) since these are matrices for X,Y,XY
in the representation π, and Lemma 7.7. Similarly, we establish

σx−(tl)mn = qn−
1
2

√
[l −m+ 1]q[l +m]qδmn(1− δm 1)mn,

σx0(tl)mn =
h(tlmn)− q4nδmn

1− q2
.

where for the haar function h we estimate

(7.16)
∣∣∣h(tlmn)

∣∣∣ ≤ ‖tlmn‖oph(1) ≤ h(1).

It is then straightforward to check that the condition (7.1) is satisfied for the symbols
σx±(tl), σx0(tl). Hence, the application of Proposition 7.4 shows that the vector fields
x±, x0 are continuous.

Now, we check condition (7.1) allowing us to extend x+, x−, x0 continuously. We have

‖σx+(tl)‖2HS =
+l∑

m,n=−l
q2n+1[l +m+ 1]q[l −m]q ∼=

+l∑
m,n=−l

q2n+1bl+m+1
q bl−mq

= b2l+1
q

+l∑
m,n=−l

q2n+1 ∼= b2l+1
q b2l ∼= b4lq .

(7.17)

Similarly

‖σx−(tl)‖2HS =
+l∑

m,n=−l
q2n−1[l −m+ 1]q[l +m]q ∼= b4lq .

We similarly have commutation relations given for i, j = ± by

σi
j(tl)mn = δijt

l(yi)mn = δijδmn

{
q−2m i = ±
q−4m i = 0

; y± = q−H , y0 = q−2H

if we number the indices by −l, · · · , l for the 2l + 1 dimensional representation tl. This
gives commutation relations eit

l
jk = tljmσi

p(tl)mkep = tljmeiδmkq
−2k = tljkq

−2kei for i = ±
(and q2 in place of q if i = 0) which corresponds to a Z-grading of Cq[SU2] where tljk has

grade −2k. For the spin 1/2 representation it means a, c in the standard matrix generators
tmn of the quantum group have grade 1 and b, d have grade -1 as expected. We compute
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‖σij(tl)‖2HS similarly as in the proof of Lemma 7.9. By (7.21)

‖σij(tl)‖2HS :=
+l∑

n=−l
q2n

+l∑
m=−l

∣∣q−2nδmnδij
∣∣2

= δij

+l∑
n=−l

= (2l + 1) ≤ b2l+1
q
∼= [2l + 1]q.

(7.18)

�

7.2. 4D calculus on SU q
2 . As before we denote the standard 2×2 matrix of generators of

Cq[SU2] by a, b, c, d. This time (from the general construction given later or from [Wor89])
there is a basis ea, eb, ec, ed corresponding to the generators, with relations and exterior
derivative

ea

(
a b
c d

)
=

(
qa q−1b
qc q−1d

)
ea

[eb,

(
a b
c d

)
] = qλ

(
0 a
0 c

)
ea, [ec,

(
a b
c d

)
] = qλ

(
b 0
d 0

)
ea

[ed,

(
a
c

)
]q−1 = λ

(
b
d

)
eb, [ed,

(
b
d

)
]q = λ

(
a
c

)
ec + qλ2

(
b
d

)
ea,

d

(
a
c

)
=

(
a
c

)
((q − 1)ea + (q−1 − 1)ed) + λ

(
b
d

)
eb

d

(
b
d

)
=

(
b
d

)
((q−1 − 1 + qλ2)ea + (q − 1)ed) + λ

(
a
c

)
ec.

Here [x, y]q ≡ xy − qyx and λ = 1− q−2.

Then the generators of the calculus are elements xk ∈ Uq(su2) where k = a, b, c, d which

we organise as a 2× 2 matrix of elements (xαβ) where

(7.19) (xαβ) =

(
qH + qλ2X−X+ − 1 q

1
2λX−q

−H
2

q
1
2λq−

H
2 X+ q−H − 1

)
These combinations xαβ are known to span the right handed braided-Lie algebra L ⊂
Uq(su2) and generate the quantum group[Maj15].

Proposition 7.11. The 4D calculus (Ω1
4D,Cq[SU2],d) extends to C∞D (SU q

2 ) for the same
D in (7.15), which is again admissible with γ = 2.

Proof of Proposition 7.11. We compute the symbol σxαβ (π) of xαβ composing the results
in Lemma 7.7 to find
(7.20)

σ(xαβ)(t
l
mn) =

(
(q2l + q−2l−2 − q−2n−2 − 1)δmn q−n+ 1

2λ
√

[l + n]q[l − n+ 1]qδmn−1

q−n−
1
2λ
√

[l − n]q[l + n+ 1]qδmn+1 (q−2n − 1)δmn

)
It is sufficient to check that xαβ acts continuously in each L2(G). Let us denote

σ(xαβ)(t
l) =

(
σa(tl) σb(tl)
σc(tl) σd(tl)

)
.

By (2.8)

(7.21) ‖σ(tl)‖2HS =
+l∑

m=−l
q2m

+l∑
n=−l

∣∣∣σ(tl)mn

∣∣∣2 .
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Composing (7.21) and (7.20), we get

‖σa(tl)‖2HS =
+l∑

m=−l
q2m

+l∑
n=−l

∣∣∣σa(tl)mn∣∣∣2 =
+l∑

m=−l
q2m

(
q2l + q−2l−2 − q−2m−2 − 1

)2

=

+l∑
m=−l

(q2l + q−2l−2)2 −
+l∑

m=−l
2(q2l + q−2l−2)(q2m−2 − 1) + (q−2m−2 − 1)2

=
+l∑

m=−l
q4l + 2q2l−2l−2 + q−4l−4 −

+l∑
m=−l

2(q2l−2m−2 − q2l + q−2l−2m−4 − q−2l−2)

+

+l∑
m=−l

q−4m−4 − 2q−2m−2 + 1

= (q4l + 2q−2 + q4l−4 + 2q2l + 2q−2l−2 + 1)(2l + 1)

+ (−2q2l−2 − 2q−2l−4 − 2q−2)

+l∑
m=−l

q−2m + q−4
+l∑

m=−l
q−4m.

The expression −2q2l−2 − 2q−2l−4 − 2q−2 is always negative. Therefore,
we get

‖σa(tl)‖2HS ≤
(
q4l + 2q−2 + q−4l−4 + 2q2l + 2q−2l−2 + 1

)
(2l + 1)

+q−4
+l∑

m=−l
q−4m.

(7.22)

It is straightforward to check that

(7.23) q4l + 2q−2 + q−4l−4 + 2q2l + 2q−2l−2 + 1 ∼= b4lq

and

(7.24)
+l∑

m=−l
q−4m =

+l∑
m=−l

q4m ∼= b4lq .

Using (7.23) and (7.24), we get from (7.22)

(7.25) ‖σa(tl)‖2HS . b4lq (2l + 1) . b5lq ∼=
(
b2l+1
q

) 5
2 ∼= [2l + 1]

5
2
q ,

where in the first inequality we used the fact

(2l + 1) . blq.

In the second inequality we used Lemma 7.8 with n = 2l + 1. Now, we compute ‖σb(tl)‖2HS

‖σb(tl)‖2HS =
+l∑

m=−l
q2m

+l∑
n=−l

∣∣∣∣q−n+ 1
2λ
√

[l + n]q[l − n+ 1]qδm,n−1

∣∣∣∣2

=

+l∑
m=−l

q2mq−2mq−1λ2[l +m+ 1]q[l −m]q ∼=
+l∑

m=−l
[l +m+ 1]q[l −m]q

∼=
+l∑

m=−l
bl+m+1
q bl−mq =

+l∑
m=−l

b2lq = (2l + 1)b2lq . b
4l
q
∼= [2l + 1]2q .

(7.26)
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We can argue analogously for ‖σc(tl)‖HS to get

(7.27) ‖σb(tl)‖2HS . [2l + 1]2q .

Finally, one checks by direct calculation that

‖σd(tl)‖2HS =

+l∑
m=−l

q2m
∣∣(q−2n − 1)δmn

∣∣2 =

+l∑
m=−l

q2m
(
q−4m − 2q−2m + 1

)
=

+l∑
m=−l

q−2m − 2(2l + 1) +
+l∑

m=−l
q2m ≤ 2

+l∑
m=−l

q2m ∼= b2lq
∼= [2l + 1]q.

(7.28)

Now, we check that the matrices σαβ
γδ encoding the bimodule commutation relations in

the 4D calculus satisfy condition (7.1) with some exponent γ. The bimodule relations are
best handled as part of a general construction discussed later and from (7.30) and (7.31)
there, we see the seven values

σj1
i2(tl)mn = σ(Sl−ij)l+1

2
(tl)mn = 0, σ1i

2j(tl)mn = σ(Sl−2
1)l+ij (t

l)mn = 0

since l+1
2 = l−2

1 = 0. The non-zero matrices σαβ
γδ are obtained by reading (7.31) and

plugging it into (7.30), noting that SX− = −q−1X− Sq
H
2 = q−

H
2 for the action of the

antipode. We then compute the symbols by composing the symbols for the composition of
invariant operators, to obtain

σ11
11(tl)mn = σ(Sl−1

1)l+1
1
(tl)mn = σ

q
H
2 q

H
2

(tl)mn = q2nδmn,

σ12
11(tl)mn = σ(Sl−1

1)l+2
1
(tl)mn = σ

q
H
2 q−

1
2 (q−q−1)X+

(tl)mn

= q−
1
2 (q − q−1)qm

√
[l −m]q[l +m+ 1]qδm,n+1,

σ12
12(tl)mn = σ(Sl−1

1)l+2
2
(tl)mn = σ

q
H
2 ·q−

H
2

(tl)mn = δmn,

σ21
11(tl)mn = σ(Sl−1

2)l+1
1
(tl)mn = σ

q−
1
2 (q−q−1)X−·q

H
2

(tl)mn

= q−
1
2 (q − q−1)

√
[l + n]q[l − n+ 1]qq

nδm,n−1,

σ22
11(tl)mn = σ(Sl−1

2)l+2
1
(tl)mn = σ

q−
1
2 (q−q−1)X−·q−

1
2 (q−q−1)X+

(tl)mn

= q−1(q − q−1)2
√

[l +m]q[l −m+ 1]q

√
[l − n]q[l + n+ 1]qδmn,

σ22
12(tl)mn = σ(Sl−1

2)l+2
2
(tl)mn = σ

q−
1
2 (q−q−1)X−·q−

H
2

(tl)mn

= q−
1
2 (q − q−1)

√
[l + n]q[l − n+ 1]qq

−nδm,n−1

σ21
21(tl)mn = σ(Sl−2

2)l+1
1
(tl)mn = σ

q−
H
2 ·q

H
2

(tl)mn = δmn,

σ22
21(tl)mn = σ(Sl−2

2)l+2
1
(tl)mn = σ

q−
H
2 ·q−

1
2 (q−q−1)X+

(tl)mn

= q−
1
2 (q − q−1)q−m

√
[l − n]q[l + n+ 1]qδm,n+1,

σ22
22(tl)mn = σ(Sl−2

2)l+2
2
(tl)mn = σ

q−
H
2 q−

H
2

(tl)mn = q−2nδmn.

Now we can compute the corresponding q-deformed Hilbert-Schmidt norms,
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‖σ11
11(tl)‖2HS =

+l∑
−l

q6m ∼= b6lq
∼= [2l + 1]3q ,

‖σ12
11(tl)‖2HS ∼=

+l∑
m=−l

q2mq2m[l −m]q[l +m+ 1]q ∼=
+l∑

m=−l
q4mbl−mq bl+m+1

q

∼= b4lq b
2l+1
q
∼= [2l + 1]3q ,

‖σ12
12(tl)‖2HS = ‖σ21

21(tl)‖2HS ∼=
+l∑

m=−l
q2m ∼= b2lq

∼= [2l + 1]q,

‖σ21
11(tl)‖2HS ∼=

+l∑
m=−l

q2mq2m[l +m+ 1]q[l −m]q ∼= b2l+1
q

+l∑
m=−l

q4m

∼= b2l+1
q b4lq

∼= [2l + 1]3q ,

‖σ22
11(tl)‖2HS ∼=

+l∑
m=−l

q2m[l +m]q[l −m+ 1]q[l −m]q[l +m+ 1]q

∼=
+l∑

m=−l
q2mbl+mq bl−m+1

q bl−mq bl+m+1
q = b2(2l+1)

q b2lq . b
3(2l+1)
q

∼= [2l + 1]3q ,

‖σ22
12(tl)‖2HS ∼=

+l∑
m=−l

q2mq−2m[l +m+ 1]q[l −m]q ∼=
+l∑

m=−l
bl+m+1
q bl−mq

= (2l + 1)b2l+1
q . [2l + 1]2q ,

‖σ22
21(tl)‖2HS ∼=

+l∑
m=−l

q2mq−2m[l −m+ 1]q[l +m]q ∼=
+l∑

m=−l
bl−m+1
q bl+mq

= (2l + 1)b2l+1 . [2l + 1]2q ,

‖σ22
22(tl)‖2HS =

+l∑
m=−l

q2mq−4m =

+l∑
m=−l

q−2m =
+l∑

m=−l
q2m ∼= b2lq

∼= [2l + 1]q.

The application of Proposition 7.4 completes the proof that d extends. �

7.3. Generalising to other coquasitriangular Hopf algebras. The bicovariant 4D
calculus on A = Cq[SU2] is an example of a canonical construction whenever A is coqua-
sitriangular in the dual of the sense of V.G. Drinfeld, i.e. a map R : A ⊗ A → C obeying
certain axioms. This gives a bicovariant calculus for any L ⊂ A a subcoalgebra [Maj15].
We define

Q : A+ ⊗ L→ C, Q(a⊗ b) = R(b(1) ⊗ a(1))R(a(2) ⊗ b(2))

which we view as $ = Q : A+ → Λ1 = L∗. If this is not surjective we take Λ1 to be the
image, but in examples it tends to be surjective so we suppose this as a property of the
data (A,R, L). In addition L is canonically a left crossed A-module [Maj15] which makes
Λ1 a right crossed A-module with $ a morphism. Here the left action on L is

a.b = b(2)R(b(1) ⊗ a(1))R(a(2) ⊗ b(3)), ∀a ∈ A, b ∈ L.
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The simplest case of interest is when L is the span of the matrix elements of a corepresen-

tation t ∈ Â, L = span{tαβ}. We let {eαβ} be the dual basis of Λ1, so fαβ = tαβ is the dual

basis element to eαβ. We let eα be a basis of the corepresentation V so ∆Reα = eβ⊗tβα. The
associated left representation of any Hopf algebra U dually paired to A is t(x)αβ = 〈tαβ, x〉
for all x ∈ U or x.eα = eβ〈tβα, x〉. In this case if πij are the matrix elements of a represen-

tation π ∈ Â then

(7.29) σαβ(π)ij = fαβ($(πij − δij)) = Q(πij ⊗ tαβ)− δijδαβ
which we can usually write as

σαβ(π)ij = π(xαβ)ij , Q(a⊗ tαβ) = ε(a)δαβ + 〈a, xαβ〉, ∀a ∈ A,

for some elements xαβ ∈ U for suitable U . Here xαβ = ((Sl−)l+)αβ − δαβ in the quantum
groups literature [Maj95] for certain elements l±αβ ∈ U . These elements are evaluated
in the associated matrix representation π of U and ε(xαβ) = 0 is implied by the above.
Similarly, the adjoint of the action on L gives the right action

eαβ/a = eγδR(tγα ⊗ a(1))R(a(2) ⊗ tβδ) = eγδ〈a, Sl−γαl+βδ〉.

Hence the action of matrix elements πij of a corepresentation is

eαβ/πij = eγδπ((Sl−γα)l+βδ)ij ,

or in terms of the matrix that governs the commutation relations, this is

(7.30) σαβ
γδ(π)ij = π((Sl−γα)l+βδ)ij .

For the example of Uq(su2) one has [Maj95]

(7.31) l+ =

(
q
H
2 0

q−
1
2 (q − q−1)X+ q−

H
2

)
, l− =

(
q−

H
2 q

1
2 (q−1 − q)X−

0 q
H
2

)
,

giving the formulae for xαβ previously used. It seems clear that this calculus will similarly
extend to C∞D (G) for the general q-deformation of a compact simple group with A = C[G]
coquaistriangular. Details will be considered elsewhere.

7.4. Concluding remarks. Having a suitable summable D to define a smooth subspace
C∞D to which the differential calculus extends, as above, is an important step towards
an actual geometric Dirac operator. In the coquasitriangular case with the bicovariant
calculus defined by a matrix corepresentation, we have Λ1 = End(V ) for some comodule V
and following [Maj03] we can define ‘spinor sections’ S∞D = C∞D ⊗ V and a canonical map

D : S∞D → S∞D , D(sβ ⊗ eβ) = ∂αβsβ ⊗ eα
where {eα} is a basis of V and sα ∈ C∞D . At the algebraic level this was

D = (id⊗ev)(d⊗ id) : A⊗ V → A⊗ End(V )⊗ V → A⊗ V

in [Maj03], but since the partial derivatives extend to ‘smooth functions’ we see that so does
D to our ‘smooth sections’. This was studied at the algebraic level in detail for A = Cq[SU2]
and justified as a natural Dirac-like operator that bypasses the Clifford algebra in the usual
construction of the geometric Dirac operator, and fits with that after we add an additional
constant curvature term (a multiple of the identity). Using our results for this quantum
group we have

D

(
αtlmn
βtl
′
pr

)
=

(
αtlmsσ

11(tlsn) + βtl
′
psσ

12(tl
′
sr)

αtlmsσ
21(tlsn) + βtl

′
psσ

22(tl
′
sr)

)
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for coefficients α, β and for the symbols (7.20) given previously (we sum over s in the
appropriate range). The eigenvalues of the geometrically normalised D/λ when restricted
to both spinor components in the Peter-Weyl subspace spanned by {tlmn} are

(i) ql+1[l]q; (ii)(l > 0) − q−l[l + 1]q

and fully diagonalise this subspace of dimension 2(2l + 1)2, and hence together fully diag-
onalise D. The type (i) eigenvalues were already noted for the reduced Hopf algebras at
odd roots unity in [Maj03, Prop. 5.2] in the equivalent form q2[2l; q]/[2; q] = q2[l; q2], where
[m; q] = (qm − 1)/(q − 1) = 1 + q + · · · + qm−1. We see using our Fourier methods that
we also have a second set (ii) both at roots of unity (beyond the 3rd root) and for real or
generic q. Note that our above geometric D is not directly comparable to our operators
D because our spinor space is two-dimensional so that D does not act on one copy of the
coordinate algebra, and nor should it geometrically, but is in the same ball park as the
q-deformation (7.15) of the classical D with eigenvalues 2l + 1 discussed in Example 5.6.

Also note that the bicovariant matrix block calculi are typically inner in the sense of a
nonclassical direction θ such that [θ, f ] = λdf , and that is the case for the 4D calculus on
Cq[SU2] with θ = ea + ed. One can choose a more geometric basis ez, eb, ec, θ where the

first three have a classical limit as usual and ez = q−2ea − ed. The partial derivative ∂θ for
the θ-direction in this basis turns out to be the q-deformed Laplacian ∆q as explained in
[Maj15]. There is a quantum metric

g = ec ⊗ eb + q2eb ⊗ ec +
q2

q + q−1
(ez ⊗ ez − θ ⊗ θ)

and denoting its coefficients as gij one has a natural q-Laplace operator[Maj15]

∆q =
q

2
gij∂

i∂j , ∂θ =
q∂a + q−1∂d

q + q−1
=

q2λ2

q + q−1
∆q

(where we have changed to our more geometric normalisation of ∂i and d). Once again,
since we have seen that the partial derivatives extend to C∞D (SU q

2 ), this ∆q also extends
and, using our result (7.20), we are in a position to compute it in our Peter-Weyl basis as

∆qt
l
mn =

[2]q
q2λ2

∂θtlmn = q−2λ−2(qtlmsσ
11(tlsn) + q−1tlmsσ

22(tlsn))

=
q(q2l − 1) + q−1(q−2l − 1)

(q − q−1)2
tlmn

= [l]q[l + 1]qt
l
mn

form,n = −l, · · · , l. One could then take a square root involving ∆q much as in Example 5.5
for the operator D to provide the smoothness.

Further q-harmonic analysis using our Fourier methods will be considered elsewhere to
include smooth functions and harmonic analysis on the q-sphere obtained from the 3D
differential calculus on C∞D (SU q

2 ), extending the algebraic line for the geometric Dirac
operator on the q-sphere in [BM15]. Note that our q-geometric Dirac operators are not
exactly parts of spectral triples in the strict Connes sense, although the one on the q-sphere
comes close at the algebraic level. The bounded commutator issue was already noted at
the end of Section 5 for the q-deformed D in (7.15). In [KS12] it is shown for SU q

2 that an
operator with similar eigenvalues to the above D has bounded ‘commutator’ provided the
latter is twisted by the left modular automorphism. Investigation of the precise relationship
between algebro-geometric triples such as in [Maj03, BM15] and twisted spectral triples
[Con08] should be an interesting topic for further work.
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