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Abstract 

Fracture mechanics plays an important role in understanding the performance of all 

types of materials including Functionally Graded Materials (FGMs). Recently, FGMs 

have attracted the attention of various scholars and engineers around the world since its 

specific material properties can smoothly vary along the geometries.  

In this thesis, the Finite Block Method (FBM), based on a 1D differential matrix 

derived from the Lagrangian Interpolation Method, has been presented for the 

evaluation of the mechanical properties of FGMs on both static and dynamic analysis. 

Additionally, the coefficient differential matrix can be determined by a normalized local 

domain, such as a square for 2D, a cubic for 3D. By introducing the mapping technique, a 

complex real domain can be divided into several blocks, and each block is possible to 

transform from Cartesian coordinate )(xyz  to normalized coordinate )(  with 8 

seeds for two dimensions and 20 seeds for three dimensions. With the aid of coefficient 

differential matrix, the differential equation is possible to convert to a series of algebraic 

functions. The accuracy and convergence have been approved by comparison with other 

numerical methods or analytical results. 

Besides, the stress intensity factor and T-stresses are introduced to assess the 

fracture characteristics of FGMs. The Crack Opening displacement is applied for the 

calculation of the stress intensity factor with the FBM. In addition, a singular core is 

adopted to combine with the blocks for the simulation of T stresses. Numerical 
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examples are introduced to verify the accuracy of the FBM, by comparing with Finite 

Element Methods or analytical results.   

Finally, the FBM is applied for wave propagation problems in two- and 

three-dimensional porous mediums considering their poroelasticities. To demonstrate 

the accuracy of the present method, a one-dimensional analytical solution has been 

derived for comparison. 
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Chapter 1 

1. Introduction 

1.1 Background and Motivation 

As technology develops in the twenty first century, the urgent need to solve 

complex engineering problems while maintaining a high level of safety and efficiency 

has led to the urgent demand for comprehensive study of material performance. In some 

cases, this has led to the creation of new materials for better design applications and 

adaptability. Therefore, the study of material science is significant for modern 

engineering. 

Recently, material science has seen a rapid improvement because of the increased 

cooperation between the different engineering disciplines. Through research, the 

discovery of new methods and experimental technology has also contributed to the 

development of material science. Advances in the field of material science have led to 

the invention of Functionally Graded Materials (FGMs).  

Functionally Graded Materials (FGMs) has attracted the attention of various scholars 

and engineers around the world. This is due to specific positive properties of FGM. 

Originally, FGMs aimed to satisfy the high-performance requirements for aerospace 

applications. This includes the material capability to withstand high speed and 

temperature which is required for designing a modern supersonic aircraft. To achieve 

this, any proposed material must endure flight speed of approximate 900km/h and a 

surface temperature as high as 2000℃. In solving this problem, a new concept of 
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combining irreconcilable properties in the same composite has been proposed [1]. Apart 

from isotropic materials and composite materials, FGMs can be designed with several 

materials of different properties, by continuously varying the structure and composite of 

these materials, resulting in corresponding changes via the geometry[2]. Hence, FGM 

possesses these material advantages. For example, unlike homogeneous materials, this 

FGM can behave like a ceramic material with high temperature and chemical resistivity 

on one side, while on the other side of the FGM material it may perform as a metal with 

high mechanical strength and toughness [3]. In most cases, cracks can initiate from the 

sharp interface of the traditional composite material. However, FGMs utilize a gradient 

interface along the thickness, thus, a smooth transition of the FGM material property is 

observed from one side of FGM materials to the other side. This is a strong feature 

which can be an option to resolve practical problems in the future. 

Large research investigations have been aimed at mechanical behaviors of FGMs, 

which is critical for a wide variety of problems in engineering applications. 

Experimental technology and theoretical analysis have both been applied to evaluate the 

mechanical properties of FGMs. In the study of mechanical properties of FGMs, it is 

undoubtedly clear that the result by experimental testing is more accurate and 

convincing than by numerical analysis. However, mechanical testing would lead to a 

new challenge for FGMs. This includes the expense of designing and manufacturing 

FGM specimens. In addition, the engineer must consider the difficulty of experimental 

setup and the collation of data. When working with FGMs in a controlled environment, 

the behavior of the complex microstructure can also be difficult to predict. Now, 

considering the challenges outline above, it is therefore reasonable to perform 

assessment of FGMs by numerical means. Numerical analyses have gradually become 
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the best approach to resolve some of the problems outlined as the development of 

computer processing power continues to grow. 

1.2 Numerical Analysis 

Generally, the natural behavior of all physical processes, whether mechanic, electric, 

biologic or geologic, can be described using algebra, differential or integral equations. 

However, the complexity of most engineering problems makes it unfortunately difficult 

for researchers to obtain the exact solutions for these problems. Therefore, an 

approximation technique has been employed to deal with different types of practical 

problems for engineers and scientist alike. These methods are used to transform the 

complex practical issues into simple discrete forms under appropriate mathematical 

descriptions, and then with computer assistance, recreate and solve the problems. Using 

the analytical data, the description of this phenomena can be observed virtually. Under a 

proper approximation, the solution error, compared to the analytical one, can be less 

than 1%, which is evidently acceptable for engineering applications. Furthermore, the 

assistant of a computer makes it possible to work out thousands of algebraic equations 

created by suitable approximation in seconds. In contrast to expensive experimental 

processes, the expense for the numerical analysis is only the computer. That is also one 

of the reasons why more engineers and scientists have been attracted by the 

computational numerical techniques to solve practical problems. If an effective 

numerical method has been applied, there is always a possibility to obtain an 

approximate solution for a practical problem.  
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In solving numerical problems, most analyst follow similar procedures as outlined 

below and this will often lead to acceptable result. The necessary steps are shown 

below: 

1. Under a proper simplification and acceptable assumption, mathematical models 

have been established.  

2. Boundary conditions and initial conditions are used to complete the mathematical 

models, which are generally described by the governing equations. These governing 

equations usually consist of ordinary differential equations (ODE), partial differential 

equations (PDE), or integral equations.  

3. Obviously proper numerical techniques are needed to solve the governing equations 

and then produce computer code to perform the numerical simulation.   

4. Finally, the results can be visualized and observed.   

In this prescribed procedure, a brief idea about the numerical simulation has been 

proposed. In order to obtain a reasonable result, a reliable and efficient numerical 

technique is essential. Up to now, the accuracy and convergence of vast numerical 

methods have been verified by researchers, using existing numerical methods such as 

Finite Differential Method (FDM), Finite Element Method (FEM), Finite volume 

Method (FVM) and Meshless or Meshfree Method. Several of these methods will be 

discussed in detail later in Chapter 2. 
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Figure 1.1 Procedure of conducting a numerical simulation. 

1.3 Fracture Mechanics  

In the study of mechanical behaviors, fracture mechanics plays an important role in 

understanding the performance of the materials. During the process of manufacturing, 

inevitably, the presence of crack, which greatly affected the mechanical property, 

become a critical factor in evaluation of all types of materials. Cracks exist to some 

extent in all structures. This is probably due to fabrication defects or localized damage 

in service and this may grow to critical levels.  
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Crack propagation can result in a weakness of mechanical strength. Therefore, 

when the residual strength of materials fails to withstand the applied stress, crack grows 

and may cause the failure of the structure.  

Fracture is an issue that engineers have been concerned with for centuries since the 

origin of man-made structures. This problem has become worse in recent years due to 

the rapid development in modern technology, such as the invention of airplanes and 

high-rise buildings. If catastrophic failures occur in such facilities, it is not only 

detrimental to the economy, but also may lead to loss of lives. In 1983, a report 

estimated that the annual cost of fracture failures in the U.S. in 1987 amounted to $119 

billion dollars [4]. Also, on the 28th of January 1986, the Challenger Space Shuttle broke 

apart 73 seconds into its flight. This was because an O-ring seal in the right solid rocket 

booster failed to respond well under low temperature. Before the launch of the shuttle, a 

group of engineers at the rocket booster facility suspected a potential problem of the 

O-ring seals. Unfortunately, there were insufficient data to persuade their managers to 

stop the launch. Seven crew members lost their lives in the end. Until now, 

The Challenger disaster is still a case study on the topics of engineering safety and 

workplace ethics. Therefore, numerous researches have been devoted to the 

understanding of how materials fail and the ability to avoid such failures. 

Fortunately, with the assistance of advances in the field of fracture mechanics, it is 

possible for engineers to predict and offset the potential dangers, thus to prevent 

structure failures. As the case of the Challenger disaster discussed above, if engineers 

succeeded in simulating the problem and reported it properly, maybe that tragic event 

could have been prevented. It is imponderable the number of lives that have been saved 

or how many property damages have been avoided by applying the theory of fracture 

mechanics. However, there is no doubt that, in the last few decades, with the knowledge 
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of fracture mechanics, engineers have protected a vast number of structures from 

failure. 

There are three critical variables in the assessment of fractures. These include the 

property of the material and the applied stress, as well as flaw size. Over the last several 

decades, researchers have already developed a great number of ways to characterize the 

initiation and propagation of crack. Theoretically, these approaches can be classified 

into two alternative methods: the energy criterion and the stress intensity factors.    

As the development of computer processing capability continues, the numerical 

analysis approach is an important tool to understand the behavior of fracture mechanics. 

Numerical analysis is extensively applied to the study of fracture mechanics to gain a 

comprehensive understanding of the initiation and propagation of cracks, also to prove 

the theoretical failure prediction with real life failures. Furthermore, by employing a 

proper numerical method, a complicated structure can be simplified. It is uncomplicated 

for engineers to change the analysis parameters, including the geometry of the model, 

material property, and the size of the crack. Unlike experimental studies, repeated 

analysis can be achieved without the process of structure design and manufacture, 

material selection and physically varying the boundary conditions. This is 

comparatively a time-saving and high-proficient approach to performing fracture 

analysis. 

In terms of fracture mechanics for FGMs, that was first proposed by Erdogan in 

1995, to describe the failure of materials [5]. In 2002, Dolbow et al. proposed an 

interaction energy integral method to accurately assess mixed-mode stress intensity 

factors at crack tips of FGMs [6]. Kim and Paulino provided techniques for evaluating 

mixed-mode stress intensity factors (SIFs), J-integrals, interaction integrals, T-stress, 

and crack initiation angles under static and quasi-static conditions for both isotropic and 
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orthotropic materials [7, 8]. Wen and Li [9] proposed a new method and successfully 

applied this to fracture mechanics of functionally graded materials. 

1.4 Research Objectives  

Finite Element Method has been widely accepted as the preferred numerical method 

for various engineering analysis, including fracture mechanics. In term of most solids 

and structures, the accuracy and convergence of FEM have been approved in thousands 

of cases. ABAQUS, a well-developed commercial software based on FEM, has also 

contributed to the prevalent of this method when dealing with engineering issues. 

However, this is a mesh-based method. The results are highly affected by the quality of 

the meshes or elements. Considering a problem with complex structure, the number of 

elements used can be extremely large to satisfy the requirement of the accuracy. And 

FEM is not guaranteed to work when poor meshes or distorted meshes are created. This 

drives the researchers searching for further advance numerical methods. 

In 2013, the Finite Block Method (FBM), based on the Lagrange interpolation 

method has been first proposed by Wen and Li [10] to solve the heat conduction 

problem in the functionally graded media and anisotropic materials. This is a mesh 

reduced method which is based on a first order differential matrix derived from 

Lagrange interpolation method.   

In this thesis, this method will be continually applied to solve the following 

problems: 

1. To evaluate the stress intensity factor and T-stress for FGMs-Statics. The stress 

intensity factor and T-stress can be determined by the Finite Block Method for crack 

problems on both isotropic and anisotropic FGMs. The governing equations for elastic 
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materials can be transferred to a set of algebraic functions by the aid of Finite Block 

Method. Besides, a complex problem domain can be separated into several blocks and 

every block is related to its neighbor block by sharing a line for 2D problems or a face 

for 3D problems. The crack opening displacement is utilized for the calculation of the 

stress intensity factor. In addition, a singular core is applied to obtain the T-stress by the 

assistance of William’s series.      

2. To determine the stress intensity factor and T-stress for FGMs-Dynamics; For 

dynamic analysis, similar as static ones, the Finite Block Method is applied for the 

space related variables in the setup of system functions (a group of differential 

equations). Moreover, the Laplace transform parameters are used for the time dependent 

variables. The solutions are compared with the analytical ones or other methods to 

verify the accuracy and convergence of Finite Block Method. In the end, a wave 

propagation in the solid FGMs can be observed in the figures of the results.    

3. To explain wave propagation in Poroelastic Materials. The governing equations for 

the dynamic analysis of porous materials is established with the Biot’s theory. Compare 

to the dynamic analysis of the solid FGMs, a term influenced by the pressure of porous 

is added into the system equations. Besides, the boundary conditions are also affected 

by the pressure and fluid convection. The Finite Block Method and the Laplace 

transform parameters are still applied for the calculation of space and time dependent 

variables, respectively. The solutions are compared with the analytical solutions for a 

1D case. Two different materials are introduced in the examples. 

The accuracy of the stress intensity factor, the T-stress and the wave propagation as 

determined by the Finite Block Method will be verified by FEM (ABAQUS) and 

published papers. This is a reliable way to confirm the validity of the FBM. 
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1.5 Scope of the Present Thesis 

Remaining chapters of this thesis are outlined as follows: 

Chapter 2 starts with an overview of fracture mechanics. Three types of crack 

models are introduced in this chapter. After that, the analysis methods of fracture 

mechanics are reviewed. Besides, a summary of FEM and Meshless Method has been 

proposed. 

Chapter 3 introduces the FBM, including the basic function of Lagrange 

Interpolation Method. One-dimension differential matrix, two-dimension differential 

matrix and mapping technology are systemically discussed in this chapter. In the end, 

the order of accuracy which relies on the number of nodes is illustrated with a simple 

case. 

Chapter 4 presents the application of FBM for FGMs under static analysis. In this 

chapter, the formulation of FBM for FGMs is introduced in detail. In addition, Williams 

series is utilized to describe the stress field at the crack tip to formulate the system 

equations together with FBM for the evaluation of T-stress. Several numerical examples 

are carried out by both FBM and ABAQUS simulation. Great agreement has been 

shown by the comparisons between results when a proper number of nodes selected. 

Chapter 5 covers the dynamic analysis of FGMs by FBM. In addition, a 

combination of T-stress and FBM is introduced for dynamic analysis. The Laplace 

transform parameter has been applied to assist the analysis of dynamic problems for 

FGMs. Isotropic materials and orthotropic materials are both discussed in examples. A 

singular core has been applied to characterize the stress distribution around the crack tip. 

Finally, numerical examples are reported.  
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Chapter 6 explores the influence of wave propagation in Poroelastic Materials. The 

formulation of Poroelastic Materials relies on Biot’s effective stress coefficient is set up 

with FBM. The process of nondimensionalization is thoroughly presented. The accuracy 

of the numerical solutions can be verified by comparing with analytical result and 

published papers. 

Chapter 7 summarizes this thesis with key findings and contributions. The future 

work to improve this method and the applications is suggested.   
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Chapter 2 

2. Literature Review 

2.1 Fracture Mechanics 

In the study of material science, fracture mechanics is a field for investigating the 

discipline of crack propagation in material and engineering structures. It contains two 

alternative methods to evaluate the resistance behavior of materials under certain 

conditions, one is numerical analysis and the other is experimental testing. By 

considering the physical properties of materials, with the elastic and plastic theories 

proposed in published papers and references, engineers can predict the failure of 

macro-structures based on the micro-crystallographic defects detected by Non- 

Destructive Testing (NDT), including ultrasonic and x-ray.  

The prediction of crack growth is an important discipline in the study of fracture 

mechanics and the three-generic displacement modes to enable a crack to propagate are: 

1) Mode I fracture – Opening mode (a tensile stress normal to the plane of the 

crack), which is the most common fracture mode in engineering problems and 

utilized in the experiment of material toughness tests, 
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2) Mode II fracture – Sliding mode (a shear stress acting parallel to the plane of the 

crack and perpendicular to the crack front), and 

3) Mode III fracture – Tearing mode (a shear stress acting parallel to the plane of 

the crack and parallel to the crack front). 

 

Figure 2.1 Three displacement modes in fracture mechanics [11]. 

Several centuries earlier, experiments carried out by Leonardo da Vinci confirmed 

that the strength of the wire, was inversely proportional to the length of the wire. 

Therefore, it was implicated that the strength of the material was affected by the flaws 

in the material, the longer the wire, the higher the possibility the material contains a 

flaw. His experiments suggested the first clue to the main cause of fracture. In 1920, 

Griffith [12] successfully predicted that the strength of the materials was related to the 

flaw size. He applied a stress to an elliptical hole up to the unstable propagation limits 

of the crack. And the results showed that the maximum tensile stress around the crack 

tip is more than ten times as great as the tensile strength of the material. In this concept, 

when crack length increases, the strain-energy produced is just sufficient to overcome 

resistance to crack growth from the surface energy of the material. At this point, crack 
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propagation will occur. However, Griffith’s work has been validated only for ideal 

brittle materials. In 1939, Westergaard [13] presented a numerical method to analyze the 

stress and displacement distribution around the crack tip. In 1956, George Irwin [14], 

the leader of a group research on fracture mechanics at Naval Research Laboratory 

(NRL) in the U.S.A proposed the principle of energy release rate, which was an 

extension of Griffith theory, but more powerful to solve engineering problems. One year 

later, Irwin [15] utilized  Westergaard’s method to illustrate that the stress and 

displacement around the crack tip can be characterized by a single constant, and also he 

determined a relation between this constant and the energy release rate. Later, this 

constant parameter became part of the description for the stress and displacement near 

the crack tip, and this was termed the stress intensity factor. 

Around 1960, when the fundamentals of linear elastic fracture mechanics (LEFM) 

was well established, the analysis of yielding at the crack tip did attract the attention of 

many researchers. In 1960-1961, several researchers correctly applied numerical 

methods to study the displacement at the crack tip, for example, Irwin [16], Dugdale 

[17], Barenblatt [18]. The plastic zone correction was proposed by Irwin in [16], while 

Dugdale [17] and Barenblatt [18] defined the plastic zone size. In 1963, Wells [19] 

sought the distribution of displacement along the crack as an alternative fracture 

criterion. He noticed that, the crack propagated with a plastic deformation, which led to 

the development of crack tip opening displacement (CTOD). In 1968, Rice [20] 

proposed a line integral which was independent of the path surround the crack tip, and 

this line integral was known as the J-integral method. Later on, several researchers 

successfully applied the J-integral to fracture mechanics for nonlinear materials, such as 



2.2 Analysis Methods of Fracture Mechanics 

35 

 

Hutchinson [21], Rice and Rosengren [22], Begley and Landes [23] et al. The J-integral 

is considered as a fracture criterion as well as the stress intensity factor and the energy 

release rate. 

In the next section, the energy release rate and stress intensity factor will be noted 

in two ways: the energy approach and the stress intensity approach. The relationship 

between these two factors for the evaluation of cracks is introduced as well. 

2.2 Analysis Methods of Fracture Mechanics 

In this section, the emphasis remains on the development of linear elastic fracture 

mechanics (LEFM), specifically, the characterizing parameters at the crack tip: 

stress-intensity factor and energy release rate. At the assistance of these two parameters, 

the major damage tolerance of the materials can be quantified, thus it is possible for 

engineers to design tools with less material failures under specific circumstance since 

the 1960s.  

2.2.1 Energy Release Rate 

The first law of thermodynamics is the law of energy conservation. This law states 

that the total energy of an isolated system is constant. which can be transformed from 

one form to another, but neither created nor destroyed. In 1920, Griffith [12] applied 

this idea to form the Griffith energy balance to describe the process of crack 

propagation. In order to increase the crack, the potential energy inside the crack area 

must be greater or at least equal to the surface energy of the materials.  

Consider a uniformly stressed infinite plate containing a central crack of length a2 , 

as shown in Figure 2.2. The Griffith energy balance can be explicated as follows: 
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Π
= + = 0

sdWdE d

dA dA dA
                                                (2.1a) 

or 

Π
- =

sdWd

dA dA
,                                                     (2.1b) 

where E is the total energy, Π is the potential energy, sW represents the work required 

to create a new surface, A  is the surface area. 

For a plate with central crack shown in Fig 2.2, with the aid of the work by Inglis [24] , 

the potential energy as a function of stress can be expressed as 

2 2

0

0Π = Π -
πσ a B

E
                                                   (2.2) 

            

Figure 2.2 A through-thickness crack in an infinitely wide plate subjected to a remote 

tensile load. ahaw  , . 

where B  indicates the plate thickness. There are two new surfaces created when a 

crack propagates, thus sW
 
is given by 

ss aBW 4 ,                                                        (2.3) 
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in which s  is the surface energy of the material. Therefore 

2

0Π
- =

πσ ad

dA E
                                                       (2.4a) 

 

 

and 

s
s

dA

dW
2 .                                                        (2.4b) 

Substituting Eq. (2.4a) and Eq. (2.4b) into Eq. (2.1b), one obtains 

1/2
2

= ( )
s

f

Eγ
σ

πa
,                                                      (2.5) 

here f
 
denotes the critical stress used to create the crack, also known as the fracture 

stress. In 1956, Irwin [14] proposed a new parameter called the energy release rate G  

to evaluate the energy required for crack propagation: 

Π
= -

d
G

dA
,                                                         (2.6) 

The term G  is the negative derivative of potential energy with respect to crack area 

only. From Eq. (2.4a), the parameter G  for an infinite plate with a central crack as 

shown in Figure 2.2 is given by  

2

0
=
πσ a

G
E

.                                                         (2.7) 

When the energy release rate cGG  , the crack extension occurs. Hence, cG
 
is the 

critical energy release rate, a parameter used for measuring the fracture toughness of a 

material. The critical energy release rate cG
 
is defined as a constant parameter only 
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related to the property of the materials, and it is independent of the applied force and the 

geometry of the model. 

2.2.2 Stress Intensity Factor 

In 1960s, Irwin [16] showed that the stress and displacement states in the close 

neighborhood of a smooth internal boundary of a plane crack in a linearly elastic solid 

under general loading conditions may be expressed in terms of three stress intensity 

factors  KK , and K associated with the symmetric opening, in-plane or forward 

shear, and anti-plane shear modes of deformation, respectively (Figure 2.1).  

Assume a polar coordinate system with the origin at the crack tip shown in Figure 

2.3, the stress distribution in any linear cracked body can be described by  

)()()( )(2/

0

 m

ij

m

m

mijij grAf
r

k





 ,                                     (2.8) 

where ij
 
represents the stress tensor, andr are defined in Figure 2.3, k  is 

constant parameter, ijf
 
denotes the dimensionless function of   in the first term at 

the right side of Eq. (2.8), 
)(m

ijg is the dimensionless function of   for the 
thm  term, 

mA  is a series of unknown coefficients. 

It is apparent that when 0r , as the first term on the right-hand side of Eq. (2.8) 

approaches infinity, the other terms can be eliminated.  
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Figure 2.3 Definition of the coordinate axis in front of the crack tip. 

There are three types of modes that a crack can extend, as shown in Figure 2.1. For 

this thesis, only mode Ⅰ and mode Ⅱ are considered. The expressions describing the 

stress and displacement distribution for mode Ⅰ and mode Ⅱ are shown in Table 2.1 and 

Table 2.2, respectively.
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Table 2.1 Stress distribution near the crack tip for Mode Ⅰ and Mode Ⅱ in linear elastic, isotropic materials. 
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Table 2.2 Crack-tip displacement distribution for Mode Ⅰ and Mode Ⅱ in linear elastic, isotropic materials. 
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Consider pure Mode Ⅰ stress applied on the cracked plate, where 0 . According 

to Table 2.1 and Table 2.2, the stress near the crack tip can be expressed as: 

r

K
yx




2

                                                     (2.9a) 

and the displacement on the crack surface 

Ι
= ( -1), = 0

2 2y x

K r
u κ u

μ π
,                                           (2.9b) 

where  43 (plane strain) and )1/()3(   (plane stress),  is Poisson’s ratio, 

 is shear modulus. 

Note that Eq. (2.9a) and Eq. (2.9b) are only valid when 1/ ar . Also, it states 

that each displacement and stress component is proportional to a constant 

parameter K for mode Ⅰ, and K for Mode Ⅱ. If the constant  KK and are known, the 

entire displacement and stress distribution around the crack tip can be solved. 

Conversely, if the displacement or the stress distribution is already known, the stress 

intensity factor K can be obtained as well. Eq. (2.9b) can be rewrite as  

Ι

Δ 2
=

-1

yu μ π
K

κ r
,                                                   (2.10) 

where yu  is also known as the Crack Opening Displacement (COD), and Eq. (2.10) 

can be used to solve stress intensity factor in Linear Elastic materials by COD method. 

Due to the importance of the stress intensity factors on the evaluation of fracture 

characteristics of a material, some accurate values of stress intensity factors for standard 

specimens have been recorded in handbooks or on computer database. In practice, 

engineers are faced with much complicated configurations and loads. So that, the results 
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given in handbooks and computer databases are not sufficient and therefore a full scale 

computational analysis is often necessary.  

In this thesis, Crack Opening Displacement method is applied to calculate the stress 

intensity factors for the evaluation of crack problems on both isotropic and orthotropic 

materials. The Equations of stress intensity factors for orthotropic materials will be 

discussed later in chapter 4.  

2.3 Finite Element Method 

Finite element method, with the revolution of computers, has attracted the attention 

of most engineers and scientists in solving the problems in engineering fields 

numerically. In the early fifties, FEM was first used in the field of linear structural 

analysis, such as aircraft static structure and dynamic characteristics analysis in order to 

obtain the deformation of the structure, stresses, natural frequencies and vibration 

modes. Because of the validity of this method, the application of FEM has been 

extended from the linear problems to nonlinear problems, and from elastic material to 

plastic, visco-elastic, visco-plastic and composite materials. 

At the beginning, the idea of FEM is to separate a large structure into finite small 

areas called elements. The individual elements are connected by a topological map 

called a mesh. To be specific, the elements are linked-up to each other by means of the 

nodes. The deformation and stress can be described by a simple interpolation function. 

In the solution process, only the stress and deformation in the junction need to be 

calculated. The stress and deformation in the non-junction area can be obtained by 

interpolation functions, in other words, the finite element method does not solve 

deformation or stress of any point within the area. 
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In fact, if the divided area is sufficiently small, the results for the deformation and 

stress in each area can be very close to the real situation. It can be proved in theory that 

when a sufficient number of elements exist, the solution of the finite element will 

converge to an exact solution. However, as the number of elements increases, the steps 

for computation increase as well. For this reason, the actual work is always to find the 

balance between computation and accuracy.  

While it is difficult to quote an exact date for the invention of FEM, its 

development can be traced back to Ritz [25] in 1909 who developed an effective 

method for the approximate solution of problems in the mechanics of deformable solids. 

In 1943, Courant [26] considerably introduced a particular linear function over 

triangular regions to increase the feasibility of Ritz’s method, and applied the method to 

solve torsion problems. The term “finite element” was first introduced in [27] by 

Clough in 1960, who successfully applied this method to plane stress analysis. Since 

then, the FEM achieved its real pick time in the 1960s and 1970s by the contributions 

of J. H. Argyris [28], Turner [29], Hrennikov [30] and et al. The first book for the FEM 

was written by Zienkiewicz and Chung [31] in 1967, to introduce the basic method of 

finite element method and solve several engineering problems. Due to the ability to 

handle very complex geometry, the FEM method has been used in a wide range of 

engineering problems, such as solid mechanics, dynamics, heat problems, fluids and 

electrostatic problems et al. Several commercial software (ABAQUS, ANSYS et al) are 

based on FEM originated in the 1970s. In this thesis, the result by ABAQUS is 

considered as benchmark, to compare with the result by numerical approach for a 

confirmation of accuracy. 

http://en.wikipedia.org/wiki/John_Argyris
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After plenty of applications in engineering practices and more than half a century of 

development, FEM has been proved to be an effective method for the simulation of 

engineering problems. Thus, FEM has played a significant role in the progress of 

industrial technology. On the other hand, FEM has the inherent shortcomings of 

numerical methods which rely on meshes or elements that are connected by nodes in a 

predefined manner. When analyzing challenging problems where the materials can 

move around (computational fluid dynamics) or solid structures with areas of large 

deformation, it is difficult to generate the meshes without introducing some level of 

error. Thus, there is an urgent demand for a new concept of approximation methods.  

In other words, to ensure equality between finite element boundaries and the 

moving discontinuities, fine mesh is required in the FEM. In the meantime, finer 

meshes indicate an extra cost of computing time and program effort. Therefore, the 

concept of mesh free methods has been proposed, in which elements are eliminated or 

reduced. 

2.4 Meshless Method 

The Meshfree or Meshless method, abbreviated MFree method, is used to transfer a 

series of differential equations or integral equations to a series of algebraic equations for 

the entire model without the creation of meshes and elements. Consequently, the 

equilibrium conditions and the boundary conditions are no longer applied to meshes but 

rather to the exact nodes. Without the formation of meshes, these nodes are related to 

each other by the interpolation methods. MFree method has a great advantage in solving 

difficult problems without the elements, such as crack propagation, large deformation et 
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al. In this section, several applications and development of Meshless Methods are 

introduced briefly.  

The advent of MFree method can be traced to 1977, with Monaghan and Gingold 

[32] and Lucy [33] developing a Lagrangian method based on the Kernel Estimates 

method to model astrophysics problems, which is well-known as Smooth Partial 

Hydrodynamics (SPH). However, due to the powerful computational mechanics 

analysis of FEM and FDM, not until 1990s, with the rapid development of the computer,  

the MFree method continually appeared in literature. In 1988, Monaghan [34] presented 

the derivation of the equations for SPH (smoothed particle hydrodynamics) and 

describes their application to a wide variety of problems in compressible gas flow. In 

1992, Monaghan [35] proposed the SPH method to calculate free surface 

incompressible flows. The results of the simulation can prove that it is an optimized 

method for the generation of boundary conditions. Besides, In 2009, a Lagrangian 

corrected SPH method was introduced by Chen [36] for the simulation of connected 

conditions on the interface of the particulate composites. Furthermore, Shao [37] 

improved this SPH method for the simulation of liquid sloshing dynamics. The 

Reynolds Averaged turbulence model was presented with the SPH method to perform 

the turbulence effects. A development of the accuracy was made by the adoption of a 

coupled dynamic solid boundary treatment (SBT) algorithm to deal with the boundary 

areas on the solid part.  

In 1992, Nayroles etc. proposed the Diffuse Element Method [38] which based on 

the shape function of moving least square (MLS). Compared with FEM, the advantages 

of this method, is the generation of shape functions can be simply applied to the given 

nodes, so that their derivatives can be successfully estimated. Many authors stated that it 
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was that after the Diffuse Element Method (DEM) the MFree Method attracted the 

interest of the engineers and scientists. In 2004, Breitkopf [39] improved this method 

with a quadrature scheme, so called as Hermite MLS shape functions, for the 

calculation of the drilling problems.  

In 1994, Belytschko [40] and his colleagues stated the Element-Free Galerkin 

Method (EFG), which was as an extended version of Nayroles’ method based on the 

moving least square (MLS). Compared by DEM, EFG is advanced in accuracy although 

its computational steps increase.  

The invention of Reproducing Kernel Particle Method (RKPM) was very close to 

the EFG method by Liu [41], in order to systematically correct the lack of consistency 

in the SPH method. The RKPM has been successfully used in multi-scale techniques 

[42], acoustics analysis [43], fluid dynamics [44] and many other applications.  

During this period, Finite Point Method has been proposed by Onate and colleagues 

in 1996 [45]. It was only used for the problems of dynamic fluid at the beginning, and 

later applied to simulate other mechanics problems, such as elasticity and plate bending. 

Combination of Collocation Point Technique and any of the following approximation 

techniques, such as Least Square Approximation, Weighted Least Square 

Approximation or Moving Least Squares, is the basic idea of this method.  

In 1998, Atluri and Zhu [46] presented a new path to achieve MFree method, 

named the Meshless Local Petro-Galerkin method (MLPG), which might be a big step 

in understanding the MFree Method. This method implements the numerical integration 

in MFree sense, and its basic idea is the Local weak form without the existence of the 

background cell. In order to simplify the integrand of the weak form, the 

Petrov-Galerkin method is used in the MLPG. Originally, this method was used the 
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MLS technique and later Atluri extended the MLPG method to other MFree 

approximation techniques. The freedom of choice for the test function in the 

Petrov-Galerkin method gives rise to different MLPG schemes [47].  

Another significant invention of MFree method was Radial Basis Functions (RBF) 

which was first introduced by Kansa [48] in 1991, when a technique built on the direct 

Collocation method and the Multiquadric RBF was applied to simulate fluid dynamics. 

Comparatively, it is simple to perform with the direct Collocation procedure by Kansa, 

although because of the mix of governing equations and boundary conditions it results 

in an asymmetric system of equations. Additionally, the existence of Multiquadric RBF 

results in global approximation, which leads to a system of equations that is 

characterized by a dense stiffness matrix. Lee and his colleagues [49] stated a local 

multiquadric approximation for solving boundary value problems in 2003, which avoid 

the global approximation and result in a sparse stiffness matrix. In the last decade, the 

RBF approximation technique has gone through a rapid development. However, the 

majority of papers on this topic only concern its mathematical proof and foundations. 

Until 2003, an introduction of the mathematical background of RBFs is presented in 

[50]. RBFs has been successfully applied in dealing with some physical problems, such 

as transport phenomena [51], heat conduction [52], Kirchoff Plates and Euler-Bernoulli 

beam problems. 

Liu and Gu [53] greatly contributed to the approximation of Point Interpolation 

Method (PIM) based on the Polynomial Interpolation, which is seen as an alternative of 

the Moving Least Square (MLS). One year later, the definition of MFree Method has 

been proposed by GR Liu in [54]. At first, the singularity of the interpolation matrix and 

the uncertain continuity of the approximation function by the PIM, based on the 



2.5 Summery 

49 

 

Galerkin method, has been an obstruction. Several approaches have been investigated 

by Liu in order to solve these questions [55]. Improvements have been obtained using 

the Local Petrov-Galerkin method and Multiquadric radial basis functions. This 

procedure resulted in Local Radial Point Interpolation methods (LRPIM). The LRPIM 

has been applied to solid mechanics, fluid flow problems and others. These applications 

are referred to and examined in detail in [56]. 

2.5 Summery  

In this section, the importance of the fracture mechanics has been discussed. 

Besides, the basic strategy to evaluate the fractures including the energy release rate and 

stress intensity factors is discussed. Several applications for the determine of the stress 

intensity factors for the fracture problems have been presented with numerical analysis.  

In addition, the FEM and its applications is presented above. This method has been 

approved to be an optimized method for most physical problems with suitable mesh 

generation. Several commercial softwares (FEM, ANSYS, et al), based on the FEM, are 

admitted by plenty of the engineers and scholars.  

Furthermore, the historical improvement and relatively applications of MFree 

methods have been discussed previously, including SPH, MLPG, RBF and many others. 

A new MeshFree method, which is known as Finite Block Method (FBM), first 

proposed by Wen will be discussed comprehensively in chapter 3. 
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Chapter 3 

3. Finite Block Method 

3.1 Introduction 

Finite Block Method (FBM), based on the one-dimensional differential matrix 

derived from the Lagrange interpolation, was first proposed by Li and Wen [10] to solve 

transient heat conduction problems of both isotropic and orthotropic materials. In 

addition, the FBM was applied on static elasticity problems for functionally graded 

materials in 2014 by Wen [9]. In 2015, the FBM was developed to solve the problems on 

frictional contact analysis with strong form by Li and Wen [57]. Besides, combined with 

Local Petrov-Galerkin method (LPGM), the Finite Block Petrov-Galerkin method 

(FBPG) was presented to transfer the partial differential equations in a weak form to a 

series of algebraic equations with two-dimensional Lagrange series by Li and Wen [58]. 

In 2016, combined with William’s series of stress function in a singular core, the FBM 

was employed to study interface crack in bi-materials by Wen [59]. In 2017, Li and Wen 

[60] proposed the use of FBPGM subjected to Reissner plate for the analysis of nonlinear 

and post buckling problems.  

In this chapter, the basic strategy of FBM which is the Lagrangian interpolation 

method will be discussed. Additionally, the coefficient differential matrix can be 

determined by a normalized local domain, such as a square for 2D problems and a cubic 

for 3D problems. By introducing the mapping technique, a complex real domain can be 
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divided into several blocks, and each block is allowed to transform from Cartesian 

coordinate )(xyz  to normalized coordinate )(  with 8 seeds for two dimensions and 

20 seeds for three dimensions. With the aid of coefficient differential matrix, the 

differential equation is possible to convert to a series of algebraic functions. In the end, 

compared with analytical solutions, several examples will be illustrated to confirm the 

convergence and accuracy of the FBM. 

3.2 Lagrange Interpolation Method 

3.2.1 Introduction 

In the discipline of mathematical analysis, interpolation is the method of 

approximating an unknown function at a point in a domain by using a range of discrete 

set of known data points neighboring it or around it. In engineer projects, people always 

utilize a list of data points, attained by experimental test, which perform as a solution of 

an equation for a limited number of values. In this case, it is often necessary for 

engineers to explicit that function for an intermediate value by interpolation method. 

There are several interpolation methods, including Piecewise Constant Interpolation 

Method, Linear Interpolation Method and Polynomial Interpolation Method. As 

expressed in the paragraph above, for FBM, Lagrange interpolation method, which is a 

type of Polynomial Interpolation Method is introduced.   

In this chapter, the basic function of Lagrange Interpolation Method will be 

discussed in details and one-dimensional differential matrix, as well as two-dimensional 

differential matrix will be introduced. 



3.2 Lagrange Interpolation Method 

52 

 

3.2.2 Lagrange Interpolation Method  

In numerical analysis, Lagrange polynomials are used for polynomial interpolation. 

Consider a number of discrete points, the Lagrange polynomial is the polynomial of 

lowest degree that assumes at each point the corresponding value (i.e. the functions 

coincide at each point).  

Although named after Joseph Louis Lagrange, who published the Lagrange 

Interpolation Method in 1795, the method was first proposed in 1779 by Edward Waring. 

Consequently, it is also a formulation rediscovered by Leonhard Euler. In 1988, Jeffreys 

H. and Jeffreys B.S. introduced this method comprehensively in [61]. 

Consider a set of nodes: 1 1 2 2( , ), ( , ),...( , )k kξ u ξ u ξ u , where no two ( = 1,2,..., )jξ j k  

are the same, the interpolation polynomial in the Lagrange form is a linear combination 

of Lagrange basis polynomials as: 

),()(
1

 j

N

j

juu 


                                                     (3.1) 

where 

,
)(

)(
=)(

1



 

N

jk
k kj

k
j




                                                  (3.2) 

Note that, ,1)(  j  when j  , and for all other nodes, .0)(  j  Therefore, it 

exactly satisfies jj uu )(  at each collocation point. The function in Eq. (3.2) is also 

defined as a shape function in the Lagrangian interpolation method.  
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3.2.3 One-Dimensional Differential Matrix 

As the section mentioned above, consider a set of nodes for one dimensional 

problems. The first order differential matrix 0D
 
can be evaluated by the use of Lagrange 

series of interpolation. The function )(u  is approximated as Eq. (3.1), then the first 

order derivative is determined by 

  
  

 
N

j

N

i

N

ikjkk

k

N

jkk

kjju
d

du

1 1 ,,1,1

1 )()( 


.                                        (3.3) 

Then the nodal value of derivative of function )(u can be written in matrix form as  

0 ,ξ U D u                                                                        (3.4) 

where  dduuuuu T

N /',],...,,[ ''

2

'

1 U is a vector of nodal value of first order derivative 

with respect to coordinate , 1 2= [ , ,..., ] .T

Nu u uu For the second order derivatives at each 

node, we have approximately 

,2

00

)2(
uDUDU                                                                  (3.5)

 

in which 
22''''

2

''

1

)2( /",],...,,[  duduuuu T

N U is a vector of nodal value of the second 

order derivative. Simply, by pre-multiplying the first order differential matrix 0D to Eq 

(3.5) the higher order differential matrix can be obtained straightaway. 

As for a regular node distribution, )1/()1(21  Nii , ,,...,2,1 Ni   as 

shown in Figure 3.1, the coefficient of first order differential matrix 0D  can be 

determined as follows ( 6N ):  
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Figure 3.1 One dimensional regular node distribution. 

 

The uniform nodes distribution has been introduced above. However, in most of 

physical problems, there is a requirement for a concentration of an area such as the 

boundaries. In this case, the irregular node distribution can be proposed. For example, 

the Chebyshev nodes distribution, ))1/()1cos((-  Nii   , Ni ...,2,1  as shown 
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in Figure 3.2, and consequently, the first order differential matrix of irregular node 

distribution are as follows ( 6N ):  

 

 

Figure 3.2 One dimensional Chebyshev nodes distribution.
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It is noticeable that for the matrix )(0 ijdD above, it satisfies that 

),...,2,1,(1,1 Njidd jNiNij    and ),...,2,1=(0=∑
1=

Nid

N

j

ij
for both regular node 

distribution and irregular node distribution. In addition, the irregular node distribution 

can be applied to an area near the boundary or at the boundary where high nodal 

concentration is required. Besides a problem of damping for the solutions was proposed 

by Runge in 1901 for all Polynomial Interpolation Methods when the number of nodes 

increased, including the Lagrange Interpolation Method, and this limitation of 

polynomial interpolation method also known as the Runge’s Phenomenon. This shows 

that in some cases the accuracy of the solution is not improved by using higher order 

polynomials. However, by applying Chebyshev nodes, this problem is guaranteed to 

diminish as increasing the order of the polynomials. 

3.2.4 Two-Dimensional Differential Matrix 

For two dimensional problems, assume a normalized square domain, similar to one 

dimensional problems, the first order differential matrix at point p  can be defined as 

( , ) ( , )p p p p p

u
U





    


                                                          (3.6) 

The total number of point p  is ijN  )1(  in global numbering system as Figure 

3.3, where i  is the number of column, j  is the number of row. In addition, the first 

order partial differentials can be expressed in a matrix form 

,uDU                                                             (3.7) 
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Figure 3.3 Transformation of numbering system: (a) global numbering system, (b) local 

numbering system.  

where the vector of first order differentials 
T

MUUU ],...,,[ 21  U
 
and M  is the 

total number of collocation points ( NNM  from network shown in Figure 3.3). For 

a square domain in normalized coordinate and numbering system, the first order 

differential matrix in global numbering system for all nodes is 

0

0

0

0 ... 0

0 0 0

... ... ... ...

0 0 0

M M





 
 
 
 
 
 

D

D
D

D

,

 

in which 0D
 

is differential matrix obtained for one-dimension problems with the size 

of NN  . Similarly, the nodal value of the partial differential with respect to axis   is 

),,(),( ppppp

u
U 







                                                (3.8) 
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which can be written in the matrix form as in local number system ))1(( jiNp   

as shown in Figure 3.3(b) 

uDU   ,                                                                        (3.9) 

in the local system for the collocation points. By using transform matrix, the first order 

derivative with respect to   in global numbering system can be written as 

uTuUTU     , .                                                             (3.10) 

Consider the collocation point ijNp  )1(  in the global number system is 

the collocation point jiNp  )1(  in local numbering system, therefore in the 

transform matrix T , all elements are zero except 1)1(,)1(  jiNijNT , ),...,2,1,( Nji  . 

 Simply rearrange the number of nodes, Equation (3.8) can be rewritten in the global 

system as 

T
TTuDuTTDU   11 , .                                        (3.11)

 

Besides, it is not difficult to extend this idea to higher order differentials in 2D 

dimension with respect to both coordinates   and  : 

),(),()(

ppnm

nm

pp

mn u
U 











,                                                 (3.12) 

and the nodal values of the above partial differentials are obtained in the matrix form as  

.)(
uDDU

nmmn

                                                                    (3.13) 

The partial differentials for 2D and 3D domains at each node can be obtained by 1D 

differential matrix of first order 0D , which is different from that by using either the 

moving least square or radial bases function interpolation with support domain 

technique [56]. Undoubtedly, the program effort should be reduced as only one 

differential matrix 0D )( NN   is utilized [62]. 
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3.3 Mapping Technique of FBM  

3.3.1 Two Dimensions 

Mapping technique is employed to transfer from a normalized domain ( o ) to a 

real domain ( xoy ), 8 seeds are selected in the real domain corresponding to the 

normalized domain. For 2D problem, a block with 8 seeds is shown in Figure 3.4. The 

shape functions are given as 
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and their partial differential with respect to normalized axes   and   are 
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The coordinate of the real domain transferred from mapping domain is defined 
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For partial differentials of function ),( yxu  in Cartesian coordinate system, one has  
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Therefore, the first partial differential matrices can be written as 

  uDuTTDΔDΔUΔUΔU xx  1
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and 
)()( / pp

ij J is obtained by Equation (3.18) at collocation point ),( pp  . So that 

matrix xD  and yD  can be solved by D  and D . It means that the first partial 

derivatives in the real domain ( xoy ) can be determined in terms of the first order 

differential matrix in the normalized domain )1;1(   o  with nodal value 

vector.   
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Figure 3.4 Quadratic element and its node distribution for two-dimension. 

3.3.2 Three Dimensions 

For three-dimensional problems, consider a cubic with uniform length as shown in 

Figure 3.5 in coordinate system   and define 

),,(),,( ppppppp

u
U 







                                         (3.22) 

and the number of point ijNkNp  )1()1(2 , where ,i j  and k  denote 

the number of rows and the number of columns respectively. Similar as 2D cases, this 

numbering system is defined as global numbering system in the numerical simulations. 

The value of the partial differentials for each node can be expressed, in a matrix form, 

as 

uDU   ,                                                         (3.23) 

where the vector of derivative nodal value 
T

MUUUU ],...,,[ 21    
and M is the 

number of total collocation points ( NNNM  shown in Figure 3.5). For a cubic 
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domain in the normalized coordinate and numbering system, the first order differential 

matrix in global numbering system for all nodes is 

0
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M M M
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,                                            (3.24) 

in which 0D
 
is differential matrix for one-dimension given in Eq. (3.24) with 

dimension NNN  . For a three-dimensional case, the global numbering system is 

shown in Figure 3.5. Following the same way for two-dimension and using transform 

matrix, one has 

uDuTDTU   1
                                             (3.25) 

and 

uDuTDTU   1
.                                              (3.26) 

The definition of the collocation point p  can be illustrated in three numbering systems, 

including one global numbering and two local numbering systems. For example, in 

global system )( , ijNkNp  )1()1(2 , while in the local system )( , 

,)1()1(2 jiNkNp   and in the local system )( ,  jNiNp ()1(2  

.)1 k  Hence, in coordinate transformed matrices T  and T , all elements are zero 

except 1
)1()1(,)1()1( 22 




jiNkNijNkN
T  and 1
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



kjNiNijNkN
T  

),...,2,1,,( Nkji   respectively. Besides, the different orders of derivatives with respect 

to all coordinates  ,   and   can be simply obtained as follow: 
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and Eq. (3.27) can be rewrite, in matrix form, as  

.)(
uDDDU

lnmmnl

                                                    (3.28) 

Eq. (3.28) indicates that, for any order of derivatives based on the coefficient of 

differential matrix which can be derived from the one-dimensional differential matrix 

0D . 

For three-dimensional problems, quadratic shape function with 20 seeds is used. 

Shape functions can be written as follows 
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Figure 3.5 Numbering system for three-dimensional problem. 
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Their partial differentials of shape function are listed as below 
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Same as two-dimensional problems, the coordinate transform (mapping) can be 

written as 



3.3 Mapping Technique of FBM 

65 

 





20

1

20

1

20

1

),,(  ),,(  ,),,(
k

kk

k

kk

k

kk zNzyNyxNx  .               (3.31) 

Then the partial differentials of shape functions are  
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and coefficients 
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Therefore, substituting Eq. (3.33) and Eq. (3.34) to Eq. (3.32) , in matrix form, as 
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where ijΔ  
is defined in Eq. (3.21), matrix D

 
and D

 
are defined in previous 

sections, which can be written in terms of D
 
by a transformation matrix derived by 

the numbering system. Again, the first partial differentials can be determined in terms of 

the first order differential matrix in the normalized domain ;1(   

)1;1   with nodal values in the equation above. In addition, the different order of 

differentials with respect to the Cartesian coordinates )(xyz can be written as 
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and the nodal values of the above partial differential are obtained in the matrix form by 
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3.4 Examples of the Finite Block Method 

The quality of Meshfree Method firstly relies on the error of the interpolation 

method, and for the FBM, it is the Lagrangian Interpolation Method. In this section, the 

FBM with the Lagrangian Interpolation Method is investigated for the analysis of a 

two-dimensional plane. The field function ( , )u x y  for every interpolation point ( , )x y  

can be interpolated by the nodes defined in the normalized domain and transferred via 

the mapping technique. The average errors of function values over the entire domain are 

defined as follows 
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u u
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where M is the total number of the entire domain, e  is the average error, iu  is the 

approximated values of function. For the accuracy and convergence study of the FBM, 

the continuous equation for a non-polynomial surface is observed as  

* cos( ), 1 1, 1 1xyu e xy x y                                         (3.39) 

The governing equation is considered as  
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where b  is the term of the body force. Substituting Eq. (3.39) into Eq. (3.40) gives 
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And the boundary conditions are as 
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Appling the FBM, Eq. (3.40) can be transferred into a series of algebraic functions, in a 

matrix form, as follows: 

( , )x x y y x y  D D u D D u b                                            (3.43) 

in which ,x yD D  are the first order differential matrix in 2D problems, 

1 2 3[ , , ,... ]T

Mu u u u    u  is the approximated value of each interpolation node.  
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Figure 3.6 Block of a square plate and their mapping seeds with 5 nodes selected. 

 

1) Accuracy studies 

The interpolation errors of the FBM is shown in Figure 3.7 and Figure 3.8. The 

total number of nodes selected for the calculation is M=25, only 5 nodes are 

picked for the error test. From the figures one can obtain that the accuracy in the 

fitted function itself is higher than that in the derivatives. And the higher the 

derivatives, the lower the accuracy. However, it can be observed that the error 

for both results are under 0.1%, which is acceptable for numerical analysis. 

2) Convergence studies 

In the convergence study, regularly and evenly distributed 25, 49, 81, and 121,       

nodes are used. In addition, the Chebyshev node distributions are also applied 

for the comparison. The relative errors defined in Eq. (3.38) are shown in Table 

3.1 (regular node distribution) and Table 3.2 (irregular node distribution), where 

* and ii uu  indicate the numerical and analytical solutions on each node 

respectively for different order of derivatives. Good agreement has been made 

by comparison of the analytical result, thus the convergence and degree of the 

accuracy can be confirmed. As shown in Table 3.1 and Table 3.2, in the case of 
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7N , the error for the first order derivative is less than 0.1%. Furthermore, 

there is slightly difference between the solution of regular node distribution and 

irregular node distribution when N=5. Therefore, in most of the cases, any node 

distribution would be acceptable for the simulation. 

 

 

 

 

Figure 3.7 The interpolation errors for the value of the function. The nodes selected are 

(0, 1), (0, 0.5), (0,0), (0,0.5), (0,1).     
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Figure 3.8 The interpolation errors of the 1st derivatives of the function. The nodes 

selected are (0, 1), (0, 0.5), (0,0), (0,0.5), (0,1).   

 

Table 3.1 Average errors e  for regular node distribution. 

N u  xu  /  22 / xu   yxu  /2  

5  6.6031×10-6  2.900×10-3 2.020×10-2 2.240×10-2 

7 1.7357×10-7 2.3235×10-5 2.8994×10-4 2.3998×10-4 

9 1.4245×10-9 1.2195×10-7 2.2726×10-6 1.4786×10-6 

11 7.6481×10-12 4.5768×10-10 1.1428×10-8 6.3037×10-9 
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Table 3.2 Average errors e  for Chebyshev node distribution. 

N u  xu  /  22 / xu   yxu  /2  

5 0.8924×10-6 0.2596×10-3 0.5326×10-2 0.8856×10-2 

7 0.1896×10-7 0.1453×10-4 0.4587×10-4 0.1546×10-4 

9 0.2567×10-9 0.4689×10-7 0.5698×10-6 0.3654×10-6 

11 0.1537×10-12 0.2365×10-10 0.5486×10-8 0.2654×10-9 

 

3.5 Conclusion  

The Finite Block Method is a type of Meshless method, based on a first order 

derivative matrix derived from the Lagrange Interpolation Method. This coefficient 

matrix can be obtained from a normalized system with 8 seeds for 2D and 20 seeds for 

3D problems. Mapping Technology is applied in FBM to transfer the normalized 

domain to real domain by seeds selected. The basic functions and strategy of Finite 

Block Method was presented in this chapter with both 2D and 3D cases. However, only 

a test function in 2D is applied, in the end, to verify the convergence and accuracy of 

the FBM when compare with the analytical solutions. The essential features of the FBM 

in this chapter can be summarized as: 

1) A complex physical domain can be divided into several sub-domains. Each domain 

can be interpolated by a normalized block with the coefficient differential matrix; 
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2) The different orders of derivatives for the collocation points can be attained by a 

first order differential matrix derived from the Lagrange Interpolation Method in 

normalized domain straightforward; 

3) By the comparison with analytical solutions, the convergence and accuracy of the 

FBM can be approved.  
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Chapter 4 

4. Finite Block Method for 

Functionally Graded Materials: 

Statics 

4.1 Introduction 

In recent years, many research has been focused on the development of 

Functionally Graded Materials, which shows promising applications for cases requiring 

specific material properties such as ceramic/metal materials. The application of such an 

FGM to a system means this system can benefit from both ceramic and metals 

properties, e.g., high heat and corrosion protection by the ceramics, and high stiffness 

and toughness of metals. Due to its controllable property, this type of materials are very 

attractive for demanding applications like electronic devices, corrosion-resistance, 

thermal barrier coatings and biomaterials [63, 64]. This urgent demand has resulted in 

the development of different types of FGMs, including  chemical composition gradient 

FGMs [65, 66], the porosity gradient FGMs [67, 68] and the microstructural gradient 

FGMs. In order to take full advantage of this new material, fundamental studies on 

fracture mechanics are required in conjunction with the design and manufacturing of the 

materials.  

Fracture mechanics of FGMs was first presented by Erdogan in 1995 [5]. In his 

remarkable work, FGMs are as an interface of generally incompatible materials and 
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would significantly enhance the bonding strength compared with the traditional 

composite materials. Besides the stress singularity at the interface boundary, the bonded 

material can be eliminated by the application of FGMs. In 1996, Jin and Batra [69] 

described the crack-tip field by the use of Airy stress function and presented the stress 

intensity factor of an edge-crack strip of FGM. Also, both the domain-related method 

such as FEM and the boundary-related method like BEM can be applied to the analysis 

of FGMs.  

In 1987, Eischen [70] considered the analysis of non-homogeneous materials based 

on its Young’s modulus vary generally and continuously along the geometry by FEM. 

The stress and displacement distribution around the crack tip was attained by the 

expansion of Williams series. In 2000, Anlas and Santare [71] proposed their work on 

uncracked and cracked plate under uniform load and uniform displacement by FEM. 

The stress intensity factor was obtained for an edge-crack plate with the energy release 

rate and the J-integral method. Compare to the analytical result, the different sizes of the 

mesh were evaluated. Additionally, Li [72] tested experimentally the relationship 

between the stress and crack length of a propagating crack in an FGM created by 

controllable ultraviolet (UV) irradiation of a polymer. This relationship was then 

utilized as the boundary conditions at each increment of crack propagation by FEM. The 

fracture toughness of FGMs was assessed numerically in the end. In [73], Marur 

analyzed the stress singularity at the crack tip parametrically by FEM. The crack 

opening displacement (COD) of FGMs was compared with the isotropic materials and 

bimaterials as well. In 2002, Kim and Paulino [8] evaluated the mix-mode stress 

intensity factor of FGMs for static analysis by FEM. Three different approaches for 

stress intensity factor have been investigated and compared in this paper, including the 
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J-integral, Modified Crack Closure (MCC) integral method and the Displacement 

Correlation Technique (DCT). In addition, there are many more advanced finite element 

methods including the graded FEM [74], the extended FEM [6]  and the enriched FEM 

[75, 76]. 

In 1993, Sollero and Aliabadi [77] presented the Boundary Element Method (BEM) 

on anisotropic materials. The bulk of this work focuses on the mixed-mode stress 

intensity factor on a composite laminate.  In 2003, the Boundary Element Method 

(BEM) combined with the Generalized Kelvin Solution (GKS) was applied to 

investigate the crack on FGMs whose top and bottom boundaries were conjoint with 

different isotropic materials by Yue and Xiao [78]. An eight-node traction-singular 

boundary element was used for the stress singularity around the crack tip together with 

the multi-region method to assess the performance of the crack. Moreover, the 

evaluation of an elliptical crack was also presented in this paper. The effect of the 

elastic modulus and thickness of the FGMs are discussed. In 2003, Zhang and Savaidis 

[79] proposed the Boundary Integral Equation Method (BIEM) for transient dynamic 

analysis of a crack on an infinite plate of FGMs. The numerical results in their work 

showed that the material gradients have a substantial effect on the Dynamic SIFs. 

Similarly in 2005, Zhang and Sladek [80] investigated a crack in an FGM subjected to 

anti-plane load by the BIEM method. The influence of the material gradients to the SIFs 

was also confirmed. Furthermore, in 2008, Gao and Zhang [81] introduced the fracture 

analysis of a FGM rectangular plate with an edge-crack and subjected to tensile load. 

The BEM was applied to nonhomogeneous, isotropic and linear elastic FGMs for the 

fundamental solutions of crack problems. The elastic modulus was assumed to 

exponentially vary along the geometry in this case. 
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The application of FEM and the BEM on Functionally Graded Materials for both 

static and dynamic analysis has been discussed in the paragraphs above, and the 

effectiveness and convenience of these numerical methods can be confirmed. However, 

the development of new and advance methods is still a key topic in fracture mechanics 

of FGMs because of the difficulty in handling complex domain and the extra 

programming effort caused by fine mesh. 

Recently, many Meshless Methods are very attractive due to their higher flexibility 

and lower program codding for numerical technology. In 2005, Sladek [82] developed a 

new numerical method to calculate the dynamic SIFs of an FGMs plate with an 

edge-crack. In this paper, the Moving Least Square (MLS) approach and Laplace 

Transform were applied to deal with the spatial dependent variables and time dependent 

variables respectively. The comparison of spatial variable mass density and uniform 

mass density was investigated. In addition, the method named Meshless LBIEM was 

applied to crack problems subjected to transient dynamic anti-plane loading in FGMs by 

Sladek in [83]. The advantage of this method would be the physical domain can be 

divided into several small sub-domains, which can be represented by a series of LBIEs. 

In contrast to the traditional FEM or BEM for dynamic analysis, the mesh regenerated 

caused by the time increment is not necessary in this method. Moreover, in 2006, Sladek 

[84] proposed a Meshless method based on the local Petrov-Galerkin approach for crack 

analysis under both thermal and impact loads in orthotropic FGMs. A path independent 

integral was adopted to assess the stress intensity factors and T-stresses around the crack 

tip for a central crack of a finite plate. In 2017, Dai [85] presented a complex variable 

Meshless Local Petrov-Galerkin (CVMLPG) method for dynamic analysis on FGMs. 

Rather than the traditional MLS, this method has the advantage of less number of 
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unknown coefficients when constructing the shape function, which means higher 

efficiency and accuracy. In 2014, the Finite Block Method was applied to solve the 

static elastic problems on FGMs in a strong form by Wen [9]. The next year, Wen [58] 

developed the Finite Block Method in conjunction with Local Petrov-Galerkin method, 

namely Finite Block Petrov-Galerkin (FBPG) method to solve the problems of transient 

heat conduction. 

In this chapter, the strategy of the FBM for static analysis in FGMs is presented. 

The stress intensity factors can be calculated by the Crack Opening Displacement 

method. Several numerical examples are presented and obtained results are compared 

with published papers to confirm the accuracy and convergence of this method.  

4.2 Formulation of FBM for Anisotropic Functional 

Graded Materials 

Assumed that the material properties are dependent on the spatial coordinates in a 

non-homogeneous material. The relationship between stress and strain in anisotropic 

materials is given by  
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where ij are the elastic compliance of the FGMs. The compliance coefficients can be 

written in terms of the engineering constants as 
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where 21 and EE are the Young’s modulus along x and y axis respectively, 2112   are 

the Poisson's ratios, 12G is the shear modulus, jklljk ,, , are the mutual coefficients of 

first and second kind. 

The inverse form of the relationship in Eq. (4.1) yields   
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For plane stress orthotropic elasticity, the material mechanical constants give 
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Consider 2D elasticity of domain  with boundary  in Functionally Graded 

Materials. The equilibrium equations for a 2D static elastic analysis in terms of plane 

stress are as follows: 
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and the relationship between stress and strain in orthotropic and continuously 

no-homogeneous media are 
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where ,u are the displacement along yx, coordinates, yx  , are the stresses 

along yx, coordinates, xy is the shear stress, yx bb , are the body force in the 

yx, coordinates, and the boundary conditions are given as 

uyxyxvyxvyxuyxu  ),(                   ),(),(    ),,(),(                     (4.7a) 

for displacement on u , and 

tyyyxxyxyxyxx yxtnntnn  ),(               ,                      (4.7b) 

for the traction on t , ),( yx nnn  are the unit vector normal outward to the boundaries.  

Applying the mapping technique and differential matrices obtained in Eq. (3.19) and 

Eq. (3.20) and substituting Eq. (4.6) into Eq. (4.5) will result in a matrix form as 

    ,66126611 xxyyxyyxx bvDQDDQDuDQDDQD                        (4.8) 

    ,22666612 yyyxxyxxy bvDQDDQDuDQDDQD                        (4.9) 
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in which )( p

ijQ
 
indicates the coefficient at the collocation point. Boundary conditions 

become 
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  It is no doubt that there are M2 linear algebraic equations, and therefore, all nodal 

values of displacement should be determined for the two-dimensional variable material 

coefficients. In the case of two and more blocks, the connection conditions should be 

introduced as 
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  For example, in the case of two blocks, the number of total nodes are M4 and there are 

same number of algebraic equations from equilibrium equation, boundary condition and 

connection condition.  

4.3 Stress Intensity Factors with Anisotropic FGM 

In 1987, Eischen [70] studied that the singular stress at the crack-tip and the 

displacement distributions have some form of both non-homogeneous and 

homogeneous linear elastic materials. Although the structure of the asymptotic crack-tip 

fields is not influenced by the material gradient parameters in anisotropic FGMs, the 

stress intensity factors are dependent on the material gradation. Therefore, the simplest 

and most direct formulations to determine the stress intensity factors are, from Crack 

Opening Displacement, 
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where   iii uuu , r is the distance of the evaluation point to the crack tip. The four 

coefficients 4321 ,,,  in Eq. (4.13) are defined as 
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11  , 262212 /   kkkq                        (4.15) 

in which k  
are the roots of the following characteristic equation 
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where all material parameters ij are specified at the crack tip.  

For orthotropic FGMs, the coefficients 1 and 4 are equal to zero, and stress 

intensity factors can be simplified as  
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and for isotropic FGM, they become 

2 1
I II

tip tip

and .
4 2 4 2

u u
K K

E r E r

  
                                   (4.18) 

4.4 Numerical Examples  

A. Example 4.4.1 a square plate under uniform tension  

  Consider a square plate of FGM shown in Figure 4.1. The parameters of this model 

are shown as ,25.0,0,3.0,1),exp(,1 2112021   yxEEhw  the 

boundary conditions are illustrated in Figure 4.1. Uniform tensile load is applied at the 

top of the square plate and the bottom of the plate is fixed.  
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Figure 4.1 A square plate under uniform tensile load on the top. 

 

 

Figure 4.2 The displacement for a square in ABAQUS with 100 elements. 
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Figure 4.3 The normalized displacement under uniform tensile load. 

The displacement for the plate under static tensile force is illuminated in Figure 4.2 

by ABAQUS with 100 elements. A comparison of the result for the displacement along 

the central line of the model (AB in Figure 4.1) by the Finite Block Method and FEM 

(ABAQUS) is plotted in Figure 4.3, when the number of nodes 9,7,5N  respectively 

for FBM. Good agreement has been made as shown in Figure 4.3 when N=5.  

 

B. Example 4.4.2 A square plate with a hole in the center under uniform tensile load 

  Consider a quarter of a square plate with a circular hole as shown in Figure 4.4(a). In 

order to evaluate the degree of accuracy, the parameters of the material are shown as 

22  Ra , )exp(21 yxEE   , 10  , 3.02112  , 25.0,0   . In this 

case, two blocks are employed for the analysis of static elasticity for FGMs. The 

collocation points and 13 mapping seeds for two blocks are shown in Figure 4.4(b). The 

result of the normalized displacement along the interface of 2 the blocks is plotted 

against the x  axis in Figure 4.6.  
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Figure 4.4 Blocks of a quarter square plate and their mapping seeds (a) geometry; (b) 

distribution of node and two blocks. 

 

Figure 4.5 The displacement for a plate with central hole in ABAQUS with 200 

elements. 
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Figure 4.6 The displacement of the connected line for a quarter of the square plate in 

FGMs. 

The displacement for the plate with a central hole under static tensile force (only a 

quarter of plate is calculated due to the symmetric domain) is illuminated in Figure 4.5 

by ABAQUS with 200 elements. A comparison between the result of the Finite Block 

Method and FEM (ABAQUS) is plotted in Figure 4.6, the number of nodes is chosen as 

9,7,5N  respectively for the Finite Block Method. Good agreement has been made as 

shown in Figure 4.6 when 5N . However, there is a small error when it is close to the 

boundaries for N=5.  
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C. Example 4.4.3 A rectangular plate with crack in the center under uniform tensile 

load 

Consider a rectangular plate with a crack located in the centre, the property of the 

material is defined as )exp(21 yxEE   , 3.02112  , 1and22  haw . 

The boundary conditions are shown in Figure 4.7. In order to reduce the programming 

effort, only a quarter of plate is analysed due to the symmetry. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 A quarter of the plate with a crack in the middle. 
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Figure 4.8 The displacement for the central crack in ABAQUS with fine mesh around 

the crack tip. 

 

 

Figure 4.9 Stress distribution near the crack tip with fine mesh. 
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Table 4.1 Normalized stress intensity factors for different   and  . 

  

 
0 0.2 0.5 1 2 

FBM FEM FBM FEM FBM FEM FBM FEM FBM FEM 

0 1.97 1.98 1.89 1.89 1.79 1.78 1.62 1.60 1.36 1.31 

0.2 1.61 1.62 1.55 1.55 1.44 1.45 1.36 1.31 1.03 1.07 

0.5 1.18 1.89 1.16 1.14 1.06 1.07 0.95 0.97 0.78 0.79 

1 0.72 0.70 0.69 0.68 0.62 0.64 0.56 0.57 0.46 0.47 

2 0.26 0.24 0.26 0.23 0.22 0.21 0.19 0.19 0.15 0.16 

 

The normalized stress intensity factor for FGMs is obtained by Eq. (4.18). The 

number of nodes is 1121  NN and the total number of nodes for two blocks is  

12121  NNM . The result of the displacement for the central crack problems under 

tensile load by ABAQUS is illuminated in Figure 4.8, and a fine mesh near the crack tip 

can be observed in Figure 4.9. Instead of the quadratic elements, the triangle elements 

are adopted for the stress distribution around the crack tip in Figure 4.9. Table 4.1 shows 

the results of the normalized stress intensity factors aK  01 / for different parameters 

 , , where the distance 09549.0/ ar . It is noticeable that as α and β increase, the 

values of the normalized stress intensity factors decrease. The reason is the normalized 

stress intensity factor is inverse proportional to the Young’s modulus at the crack tip 

which can be identified in Eq. (4.18). The results by FEM (ABAQUS) are also given in 

this table for comparison. The average error related is less than 1% as shown in the 

table.  

 

  

 

  
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D. Example 4.4.4 A plate with an edge crack 

An orthotropic FGM plate with an edge crack of length a  is considered under tensile 

uniform load on the top of it. The dimensions and parameters are selected as 

，wha 2,1  )(),(),( 1

0

12121

0

221

0

11 xfGGxfEExfEE  , where )/exp()( 11 wxxf   

and is dimensionless constant and  , 0

2

0

1 EE and 
0

12G  are elastic modulus at the origin, 

),(ln= pα in which 
0

1E  and 
wE1 are the Young's modulus of the left-hand and 

right-hand boundaries respectively. Obviously, we assume that the ratios satisfy 

0

1212

0

22

0

11 /// GGEEEE www  . The properties of orthotropic material, E-glass-epoxy, are 

selected as: 44.450

1 E GPa, 42.120

2 E GPa, 227.012  and 5.50

12 G GPa were 

adopted by Wen et al [86]. The results by FEM (ABAQUS) are shown in Figure 

4.10-4.11. Besides, the normalized displacements along the crack length with varies 

material properties are plotted in Figure 4.12-4.16 for different geometries. The 

normalized stress intensity factors between the FBM (the first row) and FEM (the 

second row) are illustrated in Table 4.2. Good agreements by FBM and FEM are 

observed in this example. 
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Figure 4.10 The displacement for an edge crack in ABAQUS with fine mesh around the 

crack tip. 

 

Figure 4.11 Stress distribution near the crack tip with fine mesh. 
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Figure 4.12 A plate with edge crack under tensile loads. 

 

Figure 4.13 Normal crack displacement along the crack length 6.0/ wa . 
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Figure 4.14 Normal crack displacement along the crack length 4.0/ wa . 

 

Figure 4.15 Normal crack displacement along the crack length 3.0/ wa . 



4.4 Numerical Examples 

93 

 

 

Figure 4.16 Normal crack displacement along the crack length 2.0/ wa . 

 

 

Table 4.2 Stress intensity factors for E-glass-epoxy aπσK I 0/ . 

wa /  1.0p  2.0p  1p  5p  10p  

0.2 

1.2788 1.3924 1.3840 1.1540 1.0241 

1.2460 1.3524 1.3386 1.1111 0.9838 

0.3 

1.8165 1.8245 1.6804 1.3997 1.2592 

1.7965 1.7919 1.6344 1.3532 1.2142 

0.4 

2.5156 2.4305 2.1473 1.7973 1.6392 

2.4790 2.3862 2.0989 1.7535 1.5966 

0.6 

4.9710 4.7786 4.2333 3.6685 3.4319 

5.1136 4.8199 4.1796 3.5942 3.3566 
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In this case, the normalized stress intensity factor for various material constants on 

an orthotropic FGM with edge crack is determined. The results by FEM (ABAQUS) is 

illuminated in Figure 4.10 for displacement and in Figure 4.11 for stress (near the crack 

tip). In addition, the fine mesh near the crack tip is observed in Figure 4.11.  

The normalized displacement along the crack length for the orthotropic FGMs with 

various Young’s modulus is plotted in Figure 4.12-4.16 with different geometries by 

both FBM and FEM. Obviously, as the distance to the crack tip increases, the value of 

the normalized displacement in y coordinate is getting larger. However, the derivative of 

the displacement is decrease, that is because of the stress in y direction decrease as the 

distance to the crack tip is raised. When it comes to the boundary of the physical 

domain in this case, the stress yσ become zero. Moreover, as the parameter p arises, the 

Young’s modulus increases, result in the normalized stress intensity factor decreasing, 

which is similar to the example above. In Table 4.2, compare to different geometries we 

can notice that the ratio of crack length and the width has an effect to the normalized 

stress intensity factors.  

 

E. Example 4.4.5 A plate with slant edge crack 

  An isotropic FGM plate of width w and height h with slant edge crack of length a is 

shown in Figure 4.17 subjected to tensile load on the top with the fixed bottom. The 

applied force is given as 
)2/(

00y

wx
eE





 and the Young's modulus is defined as 

)2/(

0

wxeEE   , where   is specified strain, 0E  is the Young's modulus at the middle 

of plate and constant a/24.0 , which is the same as that adopted by Eischen [70]. 

The Poisson's ratio is chosen as 0.3. The geometry of slant cracked plate is given by 
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,24.0/ wa  .2/ wh The normalized SIFs aEK I  0/  and /K  aE 0  are 

obtained by both COD and J-integral techniques. The radius of integration contour 

2.0/ aR  in normalized domain and standard integral method for both contour 

integral and domain integral is applied. Four blocks are used in this modelling shown in 

Figure 4.17. Table 4.3 shows the comparison of the normalized SIFs with those obtained 

by Eischen [70] and Kim and Paulino [8]. These results illustrate that the reasonably 

good agreement with other methods is achieved.   

4.5 Evaluation of T-Stress by FBM  

4.5.1 Introduction  

  Fracture performance for both homogeneous and nonhomogeneous materials 

involving cracks mainly rely on the stress distribution around the crack tip. Numerous 

researchers [87, 88] have studied the influence of Stress Intensity Factors previously 

which present the singular stress field at the crack tip. Nevertheless, there is 

experimental evidence that a stress component parallel to the crack plane may affect 

fracture mechanics properties, including the direction of crack propagation. Therefore, 

in the assessment of fracture mechanics, it is necessary to systematically investigate the 

influence of this constant stress called the T-stress. 

  In 1957, Williams [89] presented a series of formulations to describe the stress 

distribution around the crack tip. Several researchers [90, 91] discovered that a constant 

stress component (first higher-order in the expansion of Williams series), which acting 

parallel to the crack plane, would affect the crack path direction. In 1997, Fett [92] 

introduced a green’s function to determine the two coefficients in the Williams stress  
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Figure 4.17 Geometry of a slanted edge crack in a plate. 

 

Table 4.3 Normalized SIFs for FGM slant cracked plate. 

a  
aEK I  0/  aEK II  0/  

COD J-int Kim Eishen COD J-int Kim Eishen 

0.00 1.5014 1.4476 1.451 1.438 0.6201 0.5978 0.604 0.605 

0.10 1.4434 1.3923 1.396 NA 0.5949 0.5737 0.579 NA 

0.25 1.3613 1.3139 1.316 NA 0.5594 0.5398 0.544 NA 

0.50 1.2364 1.1945 1.196 NA 0.5056 0.4882 0.491 NA 

0.75 1.1250 1.0877 1.089 NA 0.4579 0.4424 0.443 NA 

1.00 1.0254 0.9921 0.993 0.984 0.4155 0.4017 0.402 0.395 
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function for the basis of tensile and bending loading cases with the Boundary 

Collocation Method. The next year, Fett [93] applied this method to rectangular plates 

and circular disks for the evaluation of T-stresses subjected to any traction distribution 

at the boundaries. In addition, various length-to-width ratios for rectangular plates with 

an edge crack were discussed. Besides, the SIFs and T-stress for a double-edge-cracked 

circular disks were presented by Fett[94] with mixed boundary conditions in 2002.  

By the application of the path independent M-integral, Sladek [95] computed the 

T-stress for interface cracks between two dissimilar elastic materials by the sub-region 

Boundary Element Method. Also, in 1997, Sladek [96] improved the M-integral for a 

dynamic T-stress in a two dimension region with a stationary crack. The results for a 

single crack in a finite plate and two cracks in an infinite sheet were obtained by the 

boundary element method. Moreover, in 2016, Sladek [97] proposed a quarter-point 

crack tip element to calculate the T-stress for the fracture analysis of orthotropic FGMs 

subjected to thermal and impact mechanical load by the FEM method. By the 

simplification of a formula derived from the variation of the displacement in this 

particular element ahead of the crack, this approach was of the advantage in determining 

the T-stress without an additional contour-domain. 

In this section, the Finite Block Method is applied with the combination of the 

Williams’ series which describe the stress and displacement fields at a circular core 

around the crack tip to evaluate the SIFs and T-stress. A circular disk with one edge 

crack is presented with the proper boundary conditions and connection conditions at the 

interface between the blocks and the singular core around the crack tip. For the accuracy 

of the FBM method, the results given by Fett [98] are considered as benchmark.  
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4.5.2 Williams Series of Stress Function 

  In order to obtain dimensionless coefficients, it is of advantage to normalize the 

crack-tip distance on the characteristic length w . For a cracked body, the general 

solutions in a series representation for Airy stress function given by Williams [89] for 

symmetric type 
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where 0
 
is the characteristic stress such as a uniformly distributed load on the 

boundary, 0r is radius of the circular core centered at crack tip ( 1/0 wr ) and nn BA ,
 

are dimensionless coefficients. The components of stress in the circular core are given 

by 
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and the displacement field are given below 
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(4.21) 

where 0U is the horizontal displacement at crack tip )0( r . In terms of the 

coefficients nA and nB , the stress intensity factor and T-stress are obtained by 

10I 18 AaK     and   104 BT  .                                  (4.22) 

  For a simple case, one block is sufficient in the numerical procedure shown in Figure 

4.19(a). In the Williams series of stress and displacement in Eq. (4.20) and Eq. (4.21), a 

finite term with truncation number n  is considered. On the interface between the 

block and circular core )0 ,( 0   rr , suppose that there are N collocation points 

and four connection equations  
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Figure 4.18 Finite blocks and circular core centered at crack tip of radius 0r  in polar 

coordinate. 

 

  If the number of truncation terms is chosen as Nn  , we have nT 22   linear 

algebraic equations in total to determine displacements ),,( iri uu  ,,...,2,1 Ti  and 

coefficients ),( nn BA , n n,...,2,1 . However, in the Williams series, the last term of 

truncation nB  should be removed if the horizontal motion at the crack tip 0U  is 

considered. Therefore, the unknowns in the Williams series are ),( nn BA , 

n 1,...,2,1 n , nA  and 0U . In the case with more than one block as shown in Figure 

4.18(b), there are interface with connection conditions. Therefore, the number of 

connection equations at the collocation points on the interface between the blocks and 

circular core is 2  NNN . Then the number of truncation is chosen as 
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2 IIIIII NNNn
 
in order to determine the same number of coefficients in the 

Williams series.  

4.5.3 Numerical Examples 

A. An edge-cracked circular disk under uniform traction for one material 

  Firstly, consider an edge-cracked circular disk loaded by constant normal traction 0
 

along the circumference shown in Figure 4.19. Due to symmetry about horizontal axis, 

only half of disk is calculated with the boundary conditions  
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  Suppose that the crack tip is located at the centre of the disk and crack length Ra  . 

The number of collocation point along the interface is N and then the number of 

truncation terms should be Nn  with characteristic length )2( RDw  . Again, the 

last term nB
 

should be removed in order to consider the motion 0U
 
at crack tip in Eq. 

(4.21). The disk is centerred at the crack tip and one block with 8 seeds is enough to for 

the mapping of the geometry precisely as shown in Figure 4.19 and the number of seed 

is selected as NM   for convenience. Table 4.4 and Table 4.5 show the numerical 

results of the stress intensity factor and T-stress against the number of seed N when 

2.0/0 Rr
 
and the radius of Williams core zone Rr /0  

when 15N . The results given 

by Fett [98] are considered as benchmark, which are aK I  0

0 1716.3 and 
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0T 0896.1 
 

respectively. It is evident that high accurate solutions can be obtained in 

the region of 9N  and 3.0/1.0 0  Rr . 

  

 

Table 4.4 Normalized stress intensity factor and T-stress versus the number of seed. 

N aK I  0/  (%)/ 00

III KKK   
0/T  (%)/ 00 TTT   

9 3.1800 0.266 1.9259 1.578 

11 3.1751 0.110 1.9042 0.433 

13 3.1738 0.071 1.8993 0.171 

15 3.1735 0.059 1.8981 0.109 

 

 

Table 4.5 Normalized stress intensity factor and T-stress versus the ratio ar /0 . 

ar /0  aK I  0/  (%)/ 00

III KKK   
0/T  (%)/ 00 TTT   

0.10 3.1794 0.247 1.9171 1.112 

0.15 3.1741 0.079 1.9000 0.213 

0.20 3.1735 0.059 1.8981 0.109 

0.25 3.1732 0.051 1.8982 0.116 

0.30 3.1681 0.078 1.9004 0.233 
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Figure 4.19 Half disk with crack and distribution of collocation points: (a) cracked disk 

under tensile load; (b) mapping of geometry with 8 seeds and collocation points. 

 

B. An edge-cracked circular disk under uniform traction for two materials 

  Secondly, consider a cracked circular disk bounded with an outer ring with different 

material loaded by constant normal traction 0
 
along the circumference shown in 

Figure 4.20. Comparing with the first example above, one more block is added with one 

more interface between block I and block II. The number of collocation points in total is  

IIIIII NMNMQ +=  and the number of truncation terms in Williams series is chosen as 

INn  and width of component in Williams series 02Rw  . Continuous of 

displacements and stresses along the interface of blocks I and II have to be satisfied.     

Same as the first case, the quadratic block with 8 seeds is employed. In the computation, 

I 

0r  

  

r 

θ 

R  R  

0r  

crack 

0  

(a) (b)  
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the parameters are selected as ,2.0/ 00 Rr  ,17  MM  N 9N  and 

3.0   . The numerical results of the stress intensity factor and T-stress against the 

ratio of Young’s module III EE /  and ratio 01 / RR are shown in Figure 4.21 (a) and (b). 

 

 

 

Figure 4.20 Half cracked disk (I) bounded with a ring (II) under tensile load. 

 

 

(a) 
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Figure 4.21 (a). Normalized Stress intensity factors, and (b). Normalized T-stress for a 

circular disk with different materials. 

 

  The normalized stress intensity factors and T-stress are plotted in Figure 4.21 with 

different ratio 01 / RR . It is noticeable that as the ratio of III EE /  goes higher, the 

normalized stress intensity factors decreases. Additionally, when 1/  EE , the case of 

4/ 01 RR  has the largest value while when 1/ III EE , the result of ratio 

5.1/ 01 RR  is the top of the others. However, as for the result of normalized T-stress, it 

is much more complex as the ratio 01 / RR  increases.  

4.6 Conclusion 

  In the first part of this chapter, the Finite Block Method is presented for numerical 

analysis of general linear elastic crack problems for both isotropic and anisotropic 

(b) 
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Functionally Graded Materials. The formulation in strong form for static elastic analysis 

of Functionally Graded Materials is solved by the Finite Block Method. The Stress 

Intensity Factors are calculated by Crack Opening Displacement for orthotropic FGMs. 

Several numerical examples are computed for static analysis of crack problems in two 

dimensions. In order to confirm the accuracy of the Finite Block Method, the results in 

FEM (ABAQUS) are adopted for comparison. The essential features of the Finite Block 

Method when applied to crack problems on FGMs can be summarized as: 

1) The physical domain is divided into two or more blocks which can be defined by 

eight seeds for two dimensional problems. The coefficient differential matrix can be 

derived directly from the Lagrange Interpolation Method by each block.  

2) This method considered the governing equations in strong form and is of all 

advantages of meshless methods. As the order of the partial differentials is 

evaluated by Lagrange series in the mapping domain, the computational effort is 

reduced significantly. 

3) This method can be extended to any types of partial differential equations, 

including dynamic problems etc. Besides, this method can be combined with other 

Meshless Method or Boundary Element Method for practical problems. 

  Secondly, the FBM was applied to evaluate T-stress in conjunction with Williams’ 

stress function for fracture problems. A circular core was presented for the stress and 

displacement field around the crack tip. For the reason of convenience, the number of 

node along the boundary of the circular core is chosen to be the same as the number of 

the truncation in Williams’ stress function. By the examples computed above, it is 

noticeable that the SIFs and T-stress can be attained with high accuracy. In addition, this 
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method can be extended to dynamic analysis of the SIFs and T-stress without any 

difficulties. 
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Chapter 5 

5. Finite Block Method for 

Functionally Graded Materials: 

Dynamics 

5.1 Dynamic Analysis of FGM 

5.1.1 Introduction 

The static analysis of crack problems for Functionally Graded Materials was 

introduced theoretically in Chapter 4. As for static problems, the displacement, strain 

and stress are variables related to the spatial coordinate. However, in dynamic problems, 

an inertial force is considered for the equilibrium equations so that all these variables 

are time dependent. Therefore, it is of the essence for the accurate analysis on the 

behaviors of Functionally Graded Materials subjected to dynamic loading due to its 

advantage of continuously change in material properties through a direction.  

In 2002, Wu [99] proposed an extended dynamic J integral for the assessment of 

both stationary and dynamic crack problems on FGMs. In his work, the FEM is adopted 

in combination with element-free Galerkin method to construct the shape functions and 

test functions for an edge-cracked panel. The numerical results indicated the efficiency 

and accuracy of this characteristic factor. In 2006, Song [100] developed the M integral 

based on the non-equilibrium equations. This was for the analysis of both static and 

dynamic crack problems in FGMs by taking into account the non-homogeneous 
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property. In conjunction with FEM, the mode I and mixed mode DSIFs can be obtained 

directly using the M integral. This can be verified using benchmark problems. 

In 2000, an Extended Finite Element Method (XFEM) was introduced for three 

dimensional crack simulations by Sukuma [101]. A discontinuous formulation was 

utilized to describe the interior of the crack surface in order to reduce the difficulty in 

mesh generation around the crack region. By the study of the numerical results, this 

method was considered to be superior to classic FEM in complex structural components 

subjected to crack problems. In 2010, Motamedi and Mohammadi [102] extended this 

XFEM to dynamic analysis of crack problems in orthotropic media. The characteristic 

parameters to evaluate the fracture mechanics of orthotropic FGMs, namely 

mixed-mode SIFs can be attained by dynamic J integral.  

In 1995, Fedelinski and Aliabadi [103] developed a time domain BEM to compute 

dynamic fracture problems for isotropic materials. A series of boundary integral 

equations were constructed by applying the displacement equations and the stress 

equations to two crack surfaces respectively. Numerical examples, including central 

crack, slant crack and multi-cracks in a plate were presented to check the accuracy and 

time consuming of this method. In 2002, the BEM was introduced by Albuquerque and 

Aliabadi [104] to solve the dynamic crack problems related to orthotropic FGMs. A 

multi-domain boundary element formulation was applied with the assistance of traction 

singular quarter point elements which were used for a correct description of 

displacement and stress distribution around the crack tip for the calculation of the 

dynamic SIFs. The results indicated that the dynamic SIFs were strongly dependent on 

the material gradients. Moreover, in 2003 Zhang improved a hyper-singular 

time-domain traction boundary integral equation method for dynamic crack analysis on 
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linear elastic FGMs. A convolution quadrature formula is adopted to solve the 

time-domain traction BIE, while a Galerkin method is used for the spatial related 

variables.  

In 1995, Element-free Galerkin (EFG) Methods were developed for the analysis of 

both static and dynamic problems based on MLS interpolations by Belytschko [105]. 

Compare with the FEM, no mesh is generated in this method. For static problems, 

Element-free Galerkin Method is demonstrated to be a very promising approach with 

complex structural components. However, there are shortcomings for this method in 

dynamic analysis including the errors which occur as a result of changes in the 

dependent variables due to the movement of nodes. In addition, Sladek [106] introduced 

a contour integral method for transient dynamic analysis in non-homogeneous materials. 

The local Petrov-Galerkin method was presented for the calculation of physical fields, 

while the MLS interpolation was adopted for the physical variables in the LBIEs.  

In this chapter, the basic concepts for dynamic analysis in FGMs are presented, and 

also the formula of FGMs by the FBM is proposed. Furthermore, the Laplace transform 

is utilized to deal with the variables dependent on time. Additionally, the dynamic stress 

intensity factors are evaluated by crack opening displacement (COD) technique for both 

isotropic and orthotropic FGMs. Finally, several examples about elastic materials and 

functional graded materials in 2D problems are given to demonstrate the convergence 

and accuracy of finite block method in dealing with dynamic problems.  

5.1.2 Formula of Dynamic Problems on FGMs by FBM 

Assume 2D elasticity of domain  with boundary  in functionally graded 

materials. It is assumed that the properties of materials are dependent on the spatial 

coordinate and all material coefficients vary along the geometry in FGMs. The 
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equilibrium equations are shown as Eq. (5.1), where the stress and strain relationship 

are the same as Eq. (4.3). 
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where xyyx  ,, are stresses in different direction, yx uu , are the displacements 

in x and y axis respectively. Here xb and yb are the body forces,  indicates the mass 

density of the media, 
2222 /,/ tutu yx  are accelerations along x and y axis 

respectively. Eq. (5.1) can be transformed to the Laplace domain with initial conditions 

as follows 
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in which, initial conditions are given as 
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and the Laplace transformation is defined as 
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where s is Laplace transform parameter. By applying the boundary conditions, one 

obtains  
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where  
~
 and  ~ 00

 tu indicate the transformed boundary displacements and traction on u  

and  .  By applying the FBM, the equilibrium equation in Eq. (5.2) results in a 

matrix form as 
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where yx DD , are the differential matrix by FBM, yx uu ~,~ are the vectors of nodal 

displacement in Laplace domain, yx bb
~

,
~

are the vectors of nodal body force in Laplace 

domain. Again, there are )2(2 21 NNM  linear algebraic equations in total from Eq. 

(5.6) and Eq. (5.5) for the boundary conditions of each block. By solving a set of linear 

algebraic equations, all nodal values of displacements can be determined. In the case of 

two and more blocks, the connection conditions of displacements and traction on the 

interface 
),(

int

III between blocks I and II yield 
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In the case of two blocks, the number of node in total is )22(2 III MMM  , which 

is the same equation number from the equilibrium equations in the domain Ω, boundary 

conditions and connection conditions. 
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Select )1( L samples in the transformation space Llsl ,...,1,0 ,  for transformed 

values. Then the displacements in the time domain can be obtained by the inversion 

technique. A simple and accurate inverse method proposed by Durbin [107] is adopted 

as follows 
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where )(
~

lsf denotes the transformed variable in the Laplace domain. The transformation 

parameter is chosen as   )1(/2 0  iTiksl  . Therefore, there are two free 

parameters in ls , i.e.  and 0T which depend on the observing period in the time 

domain. In the following examples, all variables are normalized with unit dimensions 

for the convenience of the analysis, i.e. 5 ,20/ 00  tT , where 0t is time for a 

specified elastic wave. 

5.1.3 Dynamic Stress Intensity Factor of FGMs 

The static problems for stress intensity factor of FGMs have been introduced 

systematically in chapter 4. For dynamic problems, the mixed mode stress intensity 

factors are determined in the Laplace transformed domain, as 
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5.1.4 Numerical Examples 

A. A square plate for dynamic analysis in elastic materials 

Consider a square plate of elastic materials shown in Figure 5.1. The length and the 

height of the plate are equal to 1, young’s modulus 1E is chosen for normalization and 
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Poisson’s ratio 3.0 . The Heaviside uniform tensile load is applied to the top of the 

model, the bottom is fixed for the boundary conditions. The two free parameters in 

inverse Laplace domain are picked as ,100 T and 5 , the number of sample in the 

Laplace domain is 25L . In this case, the displacement of the middle point (0.5, 0.5) is 

selected to compare with FEM.   

 

Figure 5.1 A square plate with number of node 921  NN
 

and their distribution. 

 

 



5.1 Dynamic Analysis of FGM 

115 

 

 

(a) 

 

 

 

(b) 
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(c) 

Figure 5.2 The displacement in ABAQUS with different time (a) 5.0t , (b) 0.1t , (c) 

5.1t . 

 

 

Figure 5.3 The normalized stress of point ( c ) for elastic materials. 
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Figure 5.4 The normalized displacement of point ( c ) for elastic materials. 

From the Figure 5.2, it can be observed that the change of displacement of solid 

materials when the elastic wave propagates. The normalized stress and displacement for 

the center of the model is plotted in Figure 5.3 and Figure 5.4 by both FBM and FEM. 

The velocity of the elastic wave 1/  Ec , so that the time for the elastic wave 

arrive at the target point is 0.5. A comparison of different number of nodes in FBM is 

presented for the convergence test in dynamic analysis. Moreover, compare with FEM 

(ABAQUS), the accuracy can be verified with small error occurs.  

 

B. A square plate with a central hole for dynamic analysis in elastic materials 

Consider a plate with central hole described in Figure 5.5, the Young’s modulus 1E is 

chosen for normalization and Poisson’s ratio .3.0  The two parameters in inverse 

Laplace functions are selected as ,600 T 5 and the number of sample in the 
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Laplace domain is 25L . The numerical results of normalized stress 0/),(  tx versus 

the normalized time 0/ tt are plotted in Figure 5.7-5.10. The results are compared with 

FEM and good agreement can be shown in this case when the number of node 

92211   NNNN .  

 

Figure 5.5 Blocks of a quarter square plate and their mapping seeds (a)geometry; (b) 

distribution of node and two blocks. 

 

(a) 
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(b) 

 

 

 

(c) 

Figure 5.6 The displacement in ABAQUS with different time (a) 5.0t , (b) 4.1t , (c) 

8.2t . 
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Figure 5.7 The normalized stress of point A for elastic materials. 

 

Figure 5.8 The normalized stress of point B for elastic materials. 
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Figure 5.9 The normalized stress of point C for elastic materials. 

 

Figure 5.10 The normalized stress of point D for elastic materials. 

 

Figure 5.6 illustrates that the movement of the elastic wave and its effect to the 

displacement. In addition, the normalized stress of different position in a square with a 
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central hole is plotted in Figure 5.7-5.10 for both FBM and FEM. Similarly, the velocity 

of the elastic wave is 1/  Ec . It can be notified that as the number of nodes N=7, 

the result is damping, while as the number of nodes increase, the result is more stable. 

Besides, compare to the result of FEM (ABAQUS), good agreement has been made for 

the accuracy test of the FBM on dynamic analysis.  

 

C. A beam under Heaviside load for dynamic analysis in orthotropic FGMs 

  Firstly, consider a beam of length l and height h with anisotropic FGMs in horizontal 

direction subjected to Heaviside load as shown in Figure 5.11. One dimensional 

problem with isotropic FGM, i.e. lxeEEE /

021

 , )/ln( 0EEl , is analyzed for 

comparison of the analytical solutions. In addition, by reason of convenience of 

calculation, the mass density is considered as lxe /

0

  . In this case, the equilibrium 

equation becomes 

2

2

0
0

2

2

0
t

u
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u

l

E

x

u
E




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










,                                           (5.10) 

where u is displacement along axial direction and t is time. With zero initial boundary 

condition, the general solution of displacement in the Laplace transform domain is 

given by 

lxlx
eAeAsxu

/

2

/

1
21),(


 ,                                             (5.11) 

where iA are constants to be determined by boundary conditions and 
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in which 00 / Ec   (velocity of longitudinal elastic wave) and s  is Laplace 

transform parameter. For Heaviside load acting on the right-hand end, the solution of 

displacement gives 

 lxlx
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le
sxu

//

210

0 21

21 )(
),(
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
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.                                 (5.13) 

Therefore, the solution of stress yields 
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.                               (5.14) 

By using FBM, the geometry parameter is 2.0/ lh (the solution is independent of 

the ratio in the case of zero Poisson ratio), the ratio 5/ 0 EEl and one block is applied. 

In the Durbin's Laplace inversion method, parameters are selected as 5 , 20/ 00 tT
 

( clt /0  ) and number of samples in the Laplace domain 25L . The analytical and 

numerical results of normalized displacement ltxu /),(
 
and stress 0/),(  tx

 
versus 

the normalized time 0/ tt
 
are plotted in Figure 5.12 and Figure 5.13. The agreement is 

shown to be excellent, so that it is hard to see the difference between these two results. 

 

 

 

 

 

 

Figure 5.11 A beam under Heaviside load on FGMs. 
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Figure 5.12 Stresses in a FGM bar under dynamic load when the ratio 5/ 0 EEl . 

 

Figure 5.13 Displacements in a FGM bar under dynamic load when the ratio 

5/ 0 EEl . 
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D. A plate under Heaviside load for dynamic analysis in isotropic FGMs 

  Second, consider an isotropic FGM square plate )( lh   as shown in Figure 5.14. The 

isotropic material is considered and the elastic modulus have an exponential variation in 

the 1x directions as )( 1021 xfEEE 
 
and the Poisson ratio 3.0

 
with assumption of 

plane stress, where )/exp()( 11 lxxf  and )/ln( 0EEl . The ratio 0/ EEl  
is 

selected to be 2. The results of normalized displacement lthluE 00 /),2/,(  and stress 

011 /),2/,0(  th
 
versus the normalized time ltcs /  are plotted in Figure 5.15 and 

Figure 5.16, where 0

0

12 / Gcs  , )1(2/0

0

12  EG is shear modulus and sc
 
the 

velocity of elastic shear wave of the isotropic material on the left-hand end. Two free 

parameters in Durbin's Laplace inversion method are selected as the same as that for 

one dimensional case. 

 

Figure 5.14 A plate under Heaviside load on FGMs. 
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Figure 5.15 Displacements of FGM plate under dynamic load along the middle of plate 

2/= hy  when the ratio 2/ 0 EEl . 

 

Figure 5.16 Stresses of FGM plate under dynamic load along the middle of plate 

2/hy   when the ratio 2/ 0 EEl . 
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E. An edge crack of a plate for dynamic analysis in orthotropic FGMs 

  An orthotropic FGM plate of hw 2×  containing an edge crack of length a shown in 

Figure 5.17 is analyzed. Heaviside uniform tensile load )(0 tH
 
is applied on the top 

of the plate and the bottom is fixed. The dimensions is selected aw 2 , wh   and the 

shear modulus is an exponential function of x , i.e. isotropic material is considered and 

the elastic modulus have an exponential variation in the x direction as i.e. 

)(= 0

11 xfEE , )(= 0

22 xfEE , )(= 0

1212 xfGG and 0  (constant), where 

)/exp(=)( wxαxf  and   is dimensionless constant and  , 0

2

0

1 EE , 0

12G
 
and 0  

are 

elastic modulus and mass density at origin, )/(ln 0

11 EE w , in which 0

1E
 
and wE1  

are 

the Young's modulus of the left-hand side and right-hand edge respectively. To simplify 

the numerical investigation, assume that 0

22

0

11 // EEEE ww   0

1212 / GGw . An 

orthotropic material, E-glass-epoxy (A), is considered with 0

12

0

1 26.8 GE  , 

0

12

0

2 26.2 GE  , 227.012  , 062.021   and 5.50

12 G GPa. Again, four blocks are used 

in the discretization numerical procedure.  

The stress intensity factors are computed from the normal crack displacements near 

the crack-tip ( 955.0/0 ar ). Because the structure of the asymptotic crack-tip fields for 

non-homogeneous solids under dynamic load is the same as that for homogeneous 

material, the dynamic stress intensity factors can be evaluated by Eq. (5.9). 
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Figure 5.17 The edge crack of a plate for dynamic analysis. 
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Figure 5.18 The edge crack of a plate in orthotropic materials with different time (a) 

6.0t , (b) 2.1t , (c) 3.2t . 

 

 

Figure 5.19 The stress distribution near the crack tip with fine mesh. 
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Figure 5.20 The normalized stress intensity factor atK I  0/)(  of edge crack in an 

orthotropic FGM plate (compared with FEM). 

 

Figure 5.21 The normalized stress intensity factor atK I  0/)(  of edge crack in an 

orthotropic FGM plate (different ratios). 
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  To compare with results by FEM, we take 5 and the present the time variations of 

the normalized dynamic stress intensity factors atK I  0/)( versus the normalized 

time atcs / in Figure 5.20, where 0

0

12 / Gcs  . Excellent agreement compared with 

the results obtained by FEM has been achieved. In addition, Figure 5.21 shows the 

dynamic SIFs for different ratios of  . In the case of 5 , the arrival time for the 

longitudinal waves starting from the top to the crack tip is shorter than that in the case 

of 2.0 . The results for homogeneous composite 1 are also presented in the same 

figure. With decreasing of the gradient parameter  , the maximum value of the stress 

intensity factors for the first peak increases. However, for large value of the gradient 

parameter  , the wave velocity is increasing with uniform mass density as expected. It 

means that the corresponding peak values of the dynamic stress intensity factors are 

attained at smaller time instants for higher  -values. In addition, the effect by four 

edges are huge. In the region 24/ atcs , there are two peaks for large ratio of  =5. 

But there is only one peak for small value of  =0.2. 
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5.2 Dynamic of T-stress 

5.2.1 Transient Elastodynamic Plane Strain Fields Around the 

Crack Tip  

In the Laplace transform domain, the asymptotic structure of the transient 

elastodynamic near-tip fields around a stationary crack is investigated for all three 

fracture modes by Deng [108]. The transient fields have been derived as the sum of their 

quasi-static counterparts and the corresponding transient correction terms, in terms of 

variable-separable expansions. All components of stress in the Cartesian coordinate are 

obtained, for the symmetric problem, by 
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and displacements 
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where G  is the shear modulus, 0

~
U  indicates the horizontal displacement Laplace 

transformation at crack-tip )0( r , nnnn fqph ,,,  and ng
 
are due to the transient 

effects. For zero initial condition and 3,2,1n and 4, they are zero, and for 

7,6,5n and 8, they are given by 
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in which the elasticity waves  2

1

/ Gcs   and   scc 2

1

1 )21/()1(2    in plane strain 

(replace  with )1/(   in plane stress). Under the transient dynamic condition, the 

relationships between the coefficients are 

n
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for 3,2,1n and 4. When 5n , they are 
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where 121 ,, nnn dcc  and 2nd  are constants and are given by 

.
)21)(2(

1
1

4

1

4

1
  ,1

4

1

,
)21)(2(2

42
1

2

43
  ,43

2

1

2

1

2

22

1

2

2

2

1

2

12

1

2

1

c

c

n
d

c

c
c

c

c

n

n

n
d

c

c

n
c

s
n

s
n

s
n

s
n




























































              (5.20) 

In the polar coordinate, we have 
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In particular, we note that when 1n , the usual stress intensity factors )(
~

I sK  and 

2n  the T-stress can be expressed in terms of coefficients as 

2
~

)(
~

1I AsK  , 2

~
4)(

~
AsT  .                                            (5.23) 
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5.2.2 Numerical Examples 

Circular and square sheets with central crack under dynamic load 

Firstly, consider a circular disk with a central crack of length a2  subjected to 

uniformly distributed normal traction )(0 tH  along the circumference, where )(tH  is 

a Heaviside function. Due to the symmetric, only a quarter of disk is modelled with 

plane stress assumption and the Poison’s ratio 3.0 . Let 5.0/ Ra  and all other 

parameters 1.0/0 Rr  and the number of seeds for both the blocks and the collocation 

point are selected as the same as that in the example for static load in chapter 4. In the 

Laplace transform and the inverse procedure, L is selected as 25, 5  and 20/ 00 tT , 

where 00 / cRt   and / 0 Ec  . The results of the SIF when 25K  are very close. 

 Finally, consider a square sheet with central crack of length a2  under uniformly 

distributed normal tractions )(0 tH  on the top and the bottom of the plate. The 

Poison’s ratio 3.0 , and 1/ WH , in the transformed domain, the Williams’ series of 

stress and displacement are employed. In the Laplace transform and the Durbin's inverse 

procedure, 25L , 5  and 20/ 00 tT , in which 00 / cHt  .  
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Figure 5.22 Time dependent normalized SIF and the T-stress when a/R=0.5 with 

comparison of the Deng's series, the Williams series and ABAQUS. 
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Figure 5.23 Time dependent normalized SIF and the T-stress when a/W=0.5 with 

comparison between different sizes of core and ABAQUS. 
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Figure 5.22 shows the variations of the normalised SIFs and the T-stresses versus the 

normalised time Rtc / 0
 respectively. The results given by the FEM (ABAQUS) are 

presented in the same figures for comparison. Apparently, before the arrival time of 

dilatation wave travelling from the circumference to the crack-tip, the SIF and the 

T-stress should remain zero. The agreement between these solutions is reasonable. In 

addition, the results of the stress intensity and the T-stress with the Williams’ series of 

stress function used in the Laplace space are presented in the figure for comparison. It is 

clear that the results with a different series of stress function are quite close and the 

Deng's series is a little better than the Williams’ series. Therefore, the Williams’ series 

for the static case can replace the Deng's series for the transient case in the dynamic 

analysis directly. 

Figure 5.23 shows the variations of the normalised SIFs and the T-stresses versus 

the normalised time Htc /0  for different ratios of Wr /0 . In addition, the results given 

by the Finite Element Method (ABAQUS) are presented in the same figures for 

comparison. It is observed that the difference is little, for different ratios of Wr /0 . 

However, in the case of 1.0/0 Wr , it gives better results. 
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5.3 Conclusion  

Firstly, the FBM was presented for both elastic materials and FGMs for dynamic 

analysis. This method which possesses all the advantages of Meshless Method is based 

on a first order differential matrix, and used for the governing equations in a strong form. 

The equilibrium equations of partial derivatives can be transferred to a series of 

algebraic functions by assistance of boundary conditions and connecting conditions for 

the interface between different blocks. Besides, the Laplace transformation was applied 

for the time dependent variables. In order to verify the accuracy of this method on 

dynamic analysis, numerical examples are given for the comparison with analytical 

results and previous researches. Furthermore, as the order of the partial differentials is 

evaluated by Lagrange series in the mapping domain, the computational effort is 

reduced significantly compared with RBM and MLS interpolations.  

Secondly, the FBM was proposed to evaluate the T-stress of FGMs for dynamic 

analysis. The strategy of stress field and displacement field was presented in plane strain 

for the dynamic analysis. The singular core, which connected with the boundaries of the 

blocks, was applied to describe the stress field near the crack tip. A circular disk of 

central crack subjected to uniformly distributed stress was calculated by the FBM with 

Deng’s series and William’s series as well. High accuracy can be achieved when 

compare to the results by FEM (ABAQUS). 
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Chapter 6 

6. Dynamic Analysis of Poroelasticity 

by Finite Block Method 

6.1 Introduction  

Recent investigation of poroelasticity material deformation has awakened many 

researchers’ attention due to its significant application in civil and engineering problems. 

The theory of porous materials was presented by Biot [109] (low-frequency range) and 

[110] (high-frequency range) for the dynamic study of interaction between fluid flow 

and solid deformation based on elastic wave. Compared to elastic solid materials, the 

essential features of poroelasticity materials can be listed as follows: 

1) Mechanical behavior. The application of porous materials can maintain the strength 

and stiffness of the structure, meanwhile reducing the density of the material. This 

results in a lightweight material. 

2) Reflection performance. It is well known that when waves propagate to the 

interface of two materials, reflection and refraction occurs. Because of the existence of 

the pores, the possibility of reflection and refraction is increased. This means that the 

porous materials will have the superior ability in blocking waves involving sound 

transmission.  

3) Permeability and Adsorption. It is controllable for engineers to design desire size 

pores and organized structure for porous materials with respect to different diameters of 
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gas or liquid molecule. Therefore, molecular sieves can be produced in term of this 

performance, such as high efficiency gas separation membrane and reusable special 

filter devices. 

According to the properties above, the poroelasticity has been widely applied in 

geomechanics [111], hydrology [111], biomechanics [112], tissue mechanics [113] and 

micromechanics [114]. There applications appear in the literature which generally 

motivate many researchers for the investigation of porous materials in numerical 

analysis. 

In 1991, Barry [115] found the analytical solutions for a shear flow over a thin 

deformable porous layer fixed to the wall of a two-dimensional channel with the aid of 

binary mixture theory, Darcy’s law and the assumption of linear elasticity. In 2000, 

Schanz [116] solved the problems of transient wave propagation in porous materials for 

one dimensional case. By the theory of Biot, Schanz correctly presented the analytical 

solution in the Laplace transform domain with the simplification of the model for the 

two compressional waves. In 2009, Xue and Nie [117] proposed the analytical solutions 

of the Rayleigh-Stokes problem based on a fractional calculus method. A porous 

half-space containing the second-grade fluid under thermal compact is calculated. Also, 

the analytical solutions for a viscous fluid flow inside a deformable porous surface layer 

which was in a rigid cylinder tube was presented by Wen and Wang [118]. However, it 

is impossible to successfully obtain the exact solutions for the analysis of porous 

materials with any geometrical structure and/or under any conditions. Hence, the 

approximation methods such as FEM, BEM and Meshless Method are required. 

It can be trace back to 1972 when Ghaboussi and Wilson [119] first presented the 

FEM dynamic analysis on poroelastic materials. The theory of Biot was applied for the 
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development of a Gurtin type variational principle. In 1999, Manfredini [120] proposed 

a finite element model to simulate the poroelastic solid of rectangular cross-section 

subjected to cyclic axial and bending load for the evaluation of bone behaviors. The 

accuracy of the FEM for poroelastic materials can be verified by the comparison with 

previous publications related to the pressure distribution of the pores along the z axis. 

Besides, in 2007, Zyserman [121] introduced the numerical dispersion properties of 

FEM for the analysis of the equations for the motion of the fluid at low frequency in the 

porous materials which were based on the theory of Biot. A nonconforming rectangular 

element was applied for the discretization of the displacement field in solid phase, and 

the Raviart-Thomas-Nedelec mixed finite element space of zero order was employed for 

the fluid phase. Also, in 2016, Lee [122] proposed a hybrid modelling technique for the 

dynamic process of poroelastic materials by the combination of FEM and Wave Based 

Method (WBM). The porous domain containing the viscous fluid was based on the 

theory of Biot which separated into two groups depended on the geometry and the 

boundary conditions. The FEM was utilized for the analysis of complex domain and/or 

boundary conditions with a large number of small elements, while the WBM was 

employed for the calculation of regular domains with several wave-based subdomains.  

As for the BEM, it was Brady [123] in 1978 who applied this method to determine 

the stresses and displacements distribution along the long opening with arbitrary 

orientation in a triaxial stress field. Furthermore, in 1994, Abousleiman [124] 

represented the BEM for steady and unsteady Stokes flow in two and three dimensions. 

For the steady flow, the inertial force was eliminated while for unsteady flow, a local 

acceleration term was adopted in the equilibrium equations. This method was extended 

to the problems of poroelasticity in three dimensions by Schanz [125] in 2001. The 
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Convolution Quadrature Method (CQM) was used for the simulation of dynamic 

behavior of porous materials in term of Laplace transformed fundamental solution and a 

linear multistep method. Also, Pryl and Schanz [126] applied the BEM to the simulation 

of wave propagation phenomena in porous materials with the assistance of CQM. The 

bulk of their work was the improvement of mixed elements, i.e. the shape functions for 

the porous pressure were dissimilar as for the displacement. The accuracy and 

convergence of this method for dynamic analysis was introduced by numerical results. 

As for large-scale analysis, it was Park [127] in 2002, who proposed the particular 

integral formulations for two- and three-dimensional soil consolidation in conjunction 

with the theory of Biot and the global shape functions.  

Although the FEM and BEM have evolved to be the numerical methods with high 

accuracy and efficiency for the analysis of poroelasticity, there is still a growing demand 

in the development of new advance methods for high adaptivity and low programming 

effort, such as Meshless Method. In 2001, the improved Point Interpolation Method 

(PIM) was applied for the evaluation of displacement field and pore water pressure in 

porous materials based on the theory of Biot by Wang [128]. The physical domain was 

discretized by a cluster of scattered points by PIM technique, while the time domain 

was computed by Crank-Nicholson’s integration method. The next year, Wang [129] 

presented a radial point interpolation method instead of a polynomial basis function to 

avoid the singularity generated by the construction of shape functions subjected to 

unstructured domains. Both Multiquadric basis (MQ) and Gaussian basis were 

investigated by the numerical results with the comparison of the finite element solutions. 

Moreover, in 2007, Ferronato [130] introduced the Meshless local Petrov-Galerkin 

(MLPG) method for the calculation of poroelasticity on the physical domain symmetric 
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along the axis. The influence of several numerical parameters was investigated, 

including the optimal size of the local sub-domain for the weak form and the 

appropriate integration rule, as well as the linear system solver. In 2010, Wen [131] 

proposed this MLPG method derived from the radial basis function (RBF) on the 

problems of wave propagation in 3D poroelastic solids. The time dependent variables 

for the transient dynamic analysis were transferred by the Laplace parameter, while the 

displacement for the solid skeleton and the pore pressure were discretized by the local 

boundary integral equations.    

In this Chapter, the FBM is applied for wave propagation in two- and 

three-dimensional problems in poroelasticity. To demonstrate the accuracy of the 

present method, a one-dimensional analytical solution has been derived for comparison. 

Several numerical examples are presented for various poroelastic materials subjected to 

dynamic loads and satisfactory agreements have been achieved. 

6.2 Formula of Poroelasticity by FBM  

By the theory of Biot, the water pressure of the pores works as the resistance to the 

mechanical load. The constitutive equations are as follows 
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where G  represents shear modulus, K  is compression modulus,   denotes one of 

Biot’s effective stress coefficient, p  is the pore pressure, 
s

ij is the stress in the 

skeleton of the solid, yxkji ,,,  for two dimensions; zyx ,, for three dimensions. The 

variation of fluid volume per unit reference volume  is given as 
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where f

f
V

V

V
, the volume of the interconnected pores contained in a sample of bulk 

volume V , R  is one of the Biot’s coefficient parameter. 

By the balance of mass, one can obtain that 
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here iq  denotes the specific flux, iv  is the relative displacement to solid, a  

represents a source term. 

The equilibrium equations for the dynamic analysis of the solid frame in porous 

materials are given as 
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where if  
is the body force per unit volume, fs   )1( , in which s  

is 

density of solid, f  
is density of fluid. 

Moreover, by the application of a generalized Darcy’s law, the specific flux is 
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where   is the permeability, 66.0,  CC fa  . 

By applying the Laplace transform and vanishing initial conditions for iu and iv
 
on Eq. 

(6.3), one obtains 
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where 
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Consequently, the general equations for the displacement iu~  and the pore pressure p~  

can be attained as 
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The boundary conditions are as follows 
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for the solid skeleton, and 
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for pore fluid with the initial condition defined as  

.0|,0|,0| 000   ttiti pvu                                           (6.11) 

By substituting Eq. (6.1) to Eq. (6.8), and rewrite as 
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The problems of poroelasticity can be scaled with the reference parameters shown in Eq. 

(6.12), all geometrical and physical quantities can be non-dimensionalised as follows 
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in which L indicates the unit length, E  is the Young’s Modulus, 0  is applied stress. 

Then the equilibrium equations with non-dimensional parameters are obtained as 
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By applying the FBM, the equilibrium Eq. (6.12) can be given as 
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in which zyx D,D,D are the coefficient differential matrix derived from the Lagrange 

Interpolation Method and the Mapping Technology in the FBM for three dimensional 

problems. 

6.3 Analytical Solutions in One Dimensional Problems 

To demonstrate the accuracy of the FBM on the problems for porous materials, the 

analytical solutions for one dimension is obtained in this section for comparison. The 

material properties 3/,2/ EKEG  , where E is Young’s modulus, in this case, 

1E for simplification. The rest of the material properties are listed as example 1 or 2 

for comparison with the results by the FBM. The governing equations for one 

dimensional problems on poroelasticity are given as 
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Therefore, one has  
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where k are four roots of the following equation: 
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The displacement u~ can be attained by 
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The pressure and displacement distribution for one dimensional porous materials can be 

obtained as 
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Then the flux and stress can be obtained as 
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To determine the four unknown coefficients kA , the boundary conditions are given as 

follows 
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By applying the boundary conditions in Eq. (6.24), kA can be obtained from 

./~)(

,0

,0

,0)(

0
4

1

22

2

22

1

4

1

4

1

4

1

2

22

1

EesAs

Ae

A

sAs

k

sx

kkk

k

k

sl

k

kk

k

kkk

k

k



































                                    (6.25) 

in which
0~ is the Heaviside function applied at the top of the physical domain.  

6.4 Numerical Examples 

A. A square plate for dynamic analysis in poroelastic materials (rock) 

Consider a square plate of porous materials with zero initial displacement and strain 

subjected to impact load shown in Figure 6.1. The properties of the materials in this 

example are identical to the ones in Wen [131] for comparisons shown as 

,19.0),/(1000),/(2458),/(106),/(108 332929   mkgmkgmNGmNK f  
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)./(109.1,867.0),/(107.4 41028 NsmmNR   The dimensions are selected as 

1,3  wh . The boundaries of the plate are assumed to be rigid, frictionless and 

impermeable. The boundary conditions are given as 
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wxqtu
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xy

yx
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                                (6.26) 

in which .10   

 

 

Figure 6.1 A square plate of porous materials under impact loads 

  In this case, the constants of the material are those of rock (Berea sandstone) as 

shown above exclusive of the Possion’s ratio to be zero in this example for the 

comparison with the analytical results. The velocities of the fast wave are 02968.1 c
 

and 03975.0 c , respectively, in which 2420/0  Ec . For the analysis of the FBM, 

the number of node 11,9,7and9  yx NN respectively to confirm the convergence of 
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this method on poroelasticity. Two free parameters for the inverse of Laplace 

transformation domain are used as 0/5 Tw   and 600 T . The number of sample 

point in the Laplace domain is given as 25L . The displacement at points )3,5.0(topP
 

and )5.1,5.0(midP are plotted in Figure 6.2 and Figure 6.3 against normalized time. The 

time dependent pressure is shown in Figure 6.4 at the bottom of the plate 

)0,5.0(bottomP varying with normalized time.  

 

 

 

Figure 6.2 The normalized displacement at point )3,5.0(topp . 



6.4 Numerical Examples 

155 

 

 

Figure 6.3 The normalized displacement at point )5.1,5.0(midp . 

 

Figure 6.4 The normalized pressure at point )0,5.0(bottomp . 
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Figure 6.5 The normalized displacement at point )3,5.0(topp . 

 

  It is noticeable that the arrival of the first wave (fast) at the bottom causes the step 

jump at 3135.22968.1/ h . The second jump is caused by the arrival of the first fast 

wave starting from the top, reflecting from the bottom, and then reflecting back from the 

top again, i.e., the arrival time should be 94.63135.23  . This wave is of negative 

amplitude and cancels exactly the first wave both for the pressure and stress as shown in 

Figure 6.2-6.4. In addition, the influence of the permeability is illustrated in Figure 6.5. 

The displacement is slightly decrease as the increasing of the permeability. However, it 

is hard to tell the law of the wave propagation in this case. 
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Figure 6.6 3D poroelastic rod under pressure. 

A rod for dynamic analysis in poroelastic materials (soil) in 3D 

  Assume a poroelastic rod with the same initial conditions in the previous example for 

dynamic analysis shown in Figure 6.6. The geometry of the physical domain are 

.3,1  hwl  The constants of the material (soil) are selected as K  

),/(101.2 28 mN  ),/(108.9 27 mNG   ),/(1884 3mkg  ),/(1000 3mkgf   

,48.0 )./(1055.3,981.0),/(102.1 4929 NsmmNR   The boundary 

conditions are given as 
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Some computational procedures have been carried out for soil in this case. However, 

for the comparison with the analytical results, the Poisson’s ratio is considered as zero, 

thus, the shear modulus 3/EG  and bulk modulus 2/EK  . Then the velocities of fast 

wave and slow wave are 08128.4 c  and 07476.0 c , respectively. Two free parameters 

for the inverse of Laplace transformation domain are used as 0/5 T and 40/ 00 tT . 

The number of sample point in the Laplace domain is given as .25L  The total 

number is zyx NNNM  , in which ,5 yx NN and 15,13,11zN respectively. The 

displacement at points )3,5.0(topP is plotted in Figure 6.7 against normalized time. The 

time dependent pressure is shown in Figure 6.8 at the bottom of the 

plate )0,5.0(bottomP varying with normalized time.  

 

Figure 6.7 The normalized displacement at point )3,5.0(topp . 
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Figure 6.8 The normalized pressure at point )0,5.0(bottomp . 

 

Figure 6.9 The normalized displacement at point )3,5.0(topp . 
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  The arrival time for the first wave at the bottom is 623.08128.4/3   and then the 

arrival time for the second jump is at 869.13623.0  . For the purpose of comparison, 

in Figure 6.2, it is obviously that the displacement at the top of the column under impact 

load fluctuate around a constant value, while in Figure 6.7, the amplitude of 

displacement, lose its power to go back to the origin position due to fluid viscous 

dissipation. As the soil column is being drained, the time for the wave to transverse the 

column will gradually increase. Furthermore, the influence of the permeability is also 

calculated in Figure 6.9. It illustrates that as the permeability raises, the normalized 

displacement at the top of the column increase. For this type of materials, when 

permeability is large enough, there is a wave can be observed clearly in Figure 6.9. 

6.5 Conclusion 

In this Chapter, the FBM has been applied to both 2D and 3D problems in porous 

materials for dynamic analysis. The physical domain can be divided into several 

sub-domains in the FBM for complex structure, and these sub-domains can be 

computed by the corresponding normalized domain which can be defined by 8 seeds in 

2D problems or 20 seeds in 3D problems. A series of algebraic functions can be 

constructed from equilibrium equations based on Biot’s theory by the FBM with the 

applied boundary conditions and initial conditions. The Laplace transformation domain 

is utilized for the time dependent variables. The analytical solutions for one dimensional 

problem is obtained for the reason of comparison. The displacement and pressure for 

two different porous materials (rock and soil) are introduced in the numerical examples. 

The influence of the permeability has been evaluated. Compare to the analytical 

solution of 1D case, the results obtained by the FBM are acceptable when the number of 
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nodes N=11. The influence of permeability was discussed, as for the soil case, a peak of 

the displacement can be observed clearly when the permeability increases.  
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Chapter 7 

7. Conclusions and Perspective  

7.1 Summery of the Thesis  

The bulk of this work is mainly focus on the investigation of FBM method for the 

mechanical properties of functionally graded materials for both static and dynamic 

problems. Cracks, inevitably exist in all type of structures, may propagation in some 

specified conditions and cause the failure of the structures. Therefore, the evaluation of 

cracks in functionally graded materials is also introduced in this thesis. Several factors 

that would affect the performance of the crack are discussed in the chapters above, 

including the length of the crack, the geometry of the physical domain and the applied 

stress et al. Moreover, the mechanical properties of the porous materials are also 

proposed in one of the chapters due to the high attentions by the researchers. The 

following conclusions in details can be obtained for each chapter: 

In Chapter 3, the basic functions of the Finite Block Method were presented which 

based on a first order derivative matrix derived from the Lagrange interpolation method. 

By the application of a uniform node distribution or Chebyshev node distribution, the 

first order differential matrix can be determined by the Lagrange interpolation method. 

Consequently, the coefficient matrix for different orders can be obtained in a normalized 

system which based on the first order differential matrix. The physical domain is 

possible to be mapping into the normalized domain with 8 seeds for 2D and 20 seeds for 



 

163 

 

3D. The basic functions and strategy of Finite Block Method was presented in this 

chapter. In the end, to demonstrate the convergence and accuracy of the FBM, a simple 

function is chosen to compare with the analytical solutions. By the solutions obtained in 

this chapter, the essential features of the FBM can be summarized as follows:  

The physical domain can be divided into several sub-blocks, and each block can be 

mapping into a normalized domain. In addition, the different orders of derivatives can 

be attained by a first order differential matrix derived from the Lagrange Interpolation 

Method in normalized domain. Moreover, the convergence and accuracy of the FBM is 

approved. 

In Chapter 4, the Finite Block Method was proposed to analysis the stress intensity 

factors and T-stress for crack problems on both isotropic and anisotropic FGMs. The 

finite block method was introduced to formulate equations for static analysis of FGMs. 

The Stress Intensity Factors are calculated by Crack Opening Displacement for both 

isotropic and orthotropic FGMs. Several numerical examples are computed for static 

analysis of crack problems in two dimensions. To verify the accuracy of the FBM on the 

static analysis of FGMs, the results by FEM (ABAQUS) is adopted for comparison.  

The normalized stress intensity factors were calculated for various material 

properties. From the results, as the increasing of Young’s modulus, the normalized stress 

intensity factors were decrease. As for the T-stress, a singular core was applied to 

combine with the Finite Block Method for the calculation. Besides, the William’s series 

was used for the description of stress field around the crack tip. For the reason of 

convenience, the number of node along the boundary of the blocks is chosen to be the 

same as the number of the truncation in Williams’ stress function. It can be observed 
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that the normalized SIFs and T-stress can be attained with high accuracy by the 

comparison of FEM (ABAQUS). 

In Chapter 5, the normalized stress intensity factors and T-stress were calculated for 

both elastic materials and FGMs by the FBM. This method, which possesses all the 

advantages of Meshless Method, is based on a first order differential matrix, and used 

for the governing equations in a strong form in this case. The setup of system functions 

for the FGMs is similar as the materials in elasticity with the aid of boundary conditions 

and initial conditions for dynamic problems. By the use of the FBM, the governing 

equations can be transferred to a series of algebraic functions. Moreover, the time 

dependent variables can be calculated in the Laplace domain with two free parameters. 

Several numerical examples are given for the accuracy and convergence of the FBM for 

dynamic analysis of crack problems.  

It can be observed that the change of displacement of solid materials when the 

elastic wave propagates by the contour plot in ABAQUS. The velocity of the elastic 

wave can be calculated as ρEc /= , so that it is reasonable, before the arriving of 

the elastic wave, the stress and displacement keep zero. From the figures obtained, we 

can see that there is also reflection and superposition of the wave when it reaches the 

boundaries. Furthermore, as the order of the partial differentials is evaluated by 

Lagrange series in the mapping domain, the computational effort is reduced 

significantly compared with RBM and MLS interpolations. The dynamic T-stress was 

evaluated in the second part of this chapter with the assistance of Deng’s series or 

William’s series. Similar as the stress intensity factors, the T-stress are also calculated in 

the Laplace domain, and Durbin’s inverse Laplace method was applied to transform the 

variables in Laplace domain to real time domain. It can be noticeable that the results by 



 

165 

 

these two series were quite close to each other. In addition, the influence of the radius of 

the singular core was also discussed. And the results showed that the best solution can 

be attained when 1.0/0 Wr . 

In Chapter 6, the mechanical properties of porous materials have been introduced 

by the FBM in both 2D and 3D problems. The system equations were set up depended 

on the theory of Biot with the applied boundary conditions and initial conditions. By the 

application of FBM, the complex structure can be divided into several sub-domains, and  

the derivatives respect to the spatial coordinate can be transferred to a series of algebraic 

functions. The Laplace transformation domain is utilized for the time dependent 

variables. The analytical solutions for one dimensional problem is obtained to verify the 

accuracy and convergence of the FBM on poroelasticity. The displacement and pressure 

for two different porous materials (rock and soil) are introduced in the numerical 

examples. The influence of the permeability has been evaluated. 

7.2 Contributions of this work 

  By the application of the Finite Block Method on FGMs and Porous materials, it can 

be concluded that: 

1. To verify the possibility of the Finite Block Method on the analysis of these 

types of materials. By the comparison with FEM or analytical result, the 

accuracy and convergence of the FBM applied on FGMs and Porous materials 

can be verified. The FBM is proposed for the continuous partial differential 

equations. Although only limited types of materials have been calculated in this 

thesis with FBM, the accuracy and convergence of the FBM can be guaranteed 

on most of the continuous problems.   
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2. To prove the advantages of the Finite Block Method by the comparison of 

Finite Element Method (ABAQUS). If the problem domain has been defined, 

xD  and yD  can be identified by a first order differential matrix which is 

directly derived from the Lagrangian interpolation method. Compare with the 

FEM (ABAQUS), the results of FBM have the same level of accuracy as the 

FEM and the CPU cost is reduced.   

7.3 Future Work 

The investigation in this thesis for the application of the Finite Block Method can be 

extended to following aspects: 

• In the study of Finite Element Method, the triangle elements also play a 

significant role in the simulation of engineering problems. Therefore, one 

perspective for the future work would be the investigation of the Finite Block 

Method based on the normalized triangle domain. 

• The Finite Block Method is flexible to combine with other Meshless Method or 

Boundary Element Method to deal with complex domain. For example, Li and 

Wen [58] proposed the Finite Block Method with the assistance of 

Petrov-Galerkin Method for the calculation of problems in heat conduction. In 

the study of the Finite Block Method in this thesis, only strong form formula is 

used for the simulations. It has been pointed out that the boundary conditions 

applied directly to the node may cause singularity, and result in large error 

especially when dynamic analysis is carried out. 
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• The bulk of this research is mainly on the analysis of two dimensional problems. 

The Finite Block Method can calculate problems in three dimensions without 

any difficulty.  

• The Finite Block Method can be applied on all type of materials including 

poroelasticity. Hence, the utilization of this approach can be extended to other 

fields such as fluid problems, heat conduction and electromagnetic problems et 

al.  
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Appendix  

Appendix 1. A Brief Introduction 

Abaqus is a very powerful package with different algorithms that are tailored to 

solve different types of problems ranging from simple linear or static analysis to the 

most challenging nonlinear analysis. Therefore, it is extensively used in both routine 

and sophisticated engineering problems covering a vast spectrum of industrial 

applications. When a model is created and analyzed, a set of files is generated in 

Abaqus/CAE which contain the definition of the model, the analysis input, and the 

results of the analysis. Three types of models can be created in Abaqus/CAE, including 

Standard & Explicit, CFD, and Electromegnetic. In this report, a standard model with 

crack is proposed, incorporating with a subroutine UMAT.  

UMAT, with Abaqus/Standard, is used to define the mechanical constitutive behavior of 

a material, and will be called at all material calculation points of elements for which the 

material definition includes a user-defined material behavior. For any procedure that 

includes mechanical behavior, UMAT can be utilized. The stresses and 

solution-dependent state variables to their values at the end of the increment for which it 

is called have to be updated. The material Jacobian matrix,   / , for the 

mechanical constitutive model has to be provided. 
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Appendix 2 The Study of Input File 

In this section, the working scheme of input file for a comprehensive understanding 

ABAQUS is introduced as follows: 

1) Heading Information  

 

2) Node Definition  

 

3) Element Definition 

 

4) Defining Sets 

 

5) Materials Definition 

 

6) Defining Steps 
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7) Boundary Conditions  

 

8) Loads 

 

9) Output Requests  

 

 

 

10) End Step 
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Appendix 3 Subroutine UMAT 

 

 

 

 

 


