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ABSTRACT

The capability of determining the quality of target detections is im-
portant for applications using smart cameras, such as autonomous
robotics and surveillance. We propose to estimate the quality of
target detections by integrating the target location uncertainty over
polygonal domains, which represent the fields of view of the cam-
eras. We define a framework based on numerical integration that
easily accommodates multiple models for uncertainty and fields of
view. We perform quadrature-based integration combined with im-
portance sampling to provide accurate quality estimations while re-
ducing the computational cost. The proposed method outperforms
alternative approaches in terms of estimation accuracy and execution
time. We validate the proposed approach with a recent distributed
multi-camera multi-target tracker and improved it by considering re-
alistic fields of view. Results demonstrate the effectiveness of the
proposed method in decreasing the state estimation error.

Index Terms— Detection quality, quadrature-based integration,
multi-target tracking, camera networks.

1. INTRODUCTION

Detection quality is related to the probability of a target to be de-
tected within the Field Of View (FOV) of a camera [1]. This detec-
tion probability models the miss-detection rate and accounts, over
time, for the number of undetected targets that are within the FOV.
Tracking algorithms rely on accurate estimations of detection qual-
ity. For example, Probabilistic Data Association [2] and Markov
Chain Monte Carlo Data Association [3] employ quality estimations
to compute the weights for associating (new) observations to (exist-
ing) targets. The observation likelihood is generally used as proxy
for detection quality to measure the distance between a target model
and a detection hypothesis [4].

Parametric quality prediction models acquired from training
data can be used to predict performance [5]. Detailed target model-
ing may help applications such as multi-view face detection and [6]
and 3D object recognition [7]. However, these methods have limited
generalization to other tasks of camera networks.

The probability of (correctly) detecting a target within the cam-
era FOV is often set as a constant, whose value reflects prior knowl-
edge on the miss-detection rate [8, 9]. FOV models can general-
ize the sensing capabilities in a heterogeneous camera network com-
posed for example of zenithal aerial views and perspective surveil-
lance cameras [10]. These models describe the geometrical prop-
erties of the FOV whose projection onto a 2D common plane is a
widely accepted FOV abstraction [11]. These projections take the
shape of quadrilaterals or triangles. To calculate the detection prob-
ability, squared FOVs enable fast computation via the cumulative
distribution function of the predicted target location [12]. However,
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triangular FOVs are more common in real applications [11], but do
not lend themselves to the same fast computation strategy.

To address this problem, we propose a generic estimator for
target detection quality. We map the problem to a definite inte-
gral where the integration domain represents the FOV of a camera.
This integral is numerically approximated by combining quadrature-
based integration and importance sampling. Moreover, we empiri-
cally derive a closed-form function to determine the optimal number
of integration points, based on system uncertainty models. As val-
idation, we use the proposed method in the data association stage
of a recent distributed multi-camera multi-target tracker [12]. Re-
sults show the effectiveness of the proposed estimator both in terms
of tracking performance and of accuracy-complexity trade-off of the
integration.

The rest of the paper is structured as follows. Section 2 discusses
the elements contributing to target detection quality. Section 3 de-
scribes the proposed estimator. Section 4 presents the experimental
results and the application to multi-target tracking. Finally, Section 5
concludes the paper.

2. PROBABILITY OF TARGET DETECTION

Let {tj}NT
j=1 be a set of NT moving targets and xj(k) be the state of

each target at time k. The motion model for target j is

xj(k + 1) = Φxj(k) + Γj(k), (1)

where Φ ∈ R4×4 is the state transition matrix and Γj(k) is the
process noise, which is modeled asN (0, Q), whereQ is the process
noise covariance matrix.

Let {Ci}NC
i=1 be a network of NC cameras that observe the tar-

gets. Each camera i generates a set {zni (k)}N
i
O(k)

n=0 of N i
O(k) obser-

vations as follows:

zni (k) = Hj
i xj(k) + vji (k), (2)

where Hj
i ∈ R

2×4 is the measurement matrix that maps the target
states to the observation state space [12] and vji (k) is the measure-
ment noise, which is modeled as N (0, R), where R is the measure-
ment noise covariance matrix.

An observation zni (k) can be obtained with pedestrian detec-
tors [8, 4] and can be represented as a point [12, 13] or a bounding
box.1 Adapting the formulation from [14], the probability P i,n

D to
detect target n in camera i is

P i,n
D =

∫
Ωi

P
(
vis/zni ,x

−
j

)
f(zni )dz, (3)

where f(zni ) determines the detection uncertainty, which is usually
modeled as a Gaussian distribution [14]; Ωi is a polygon that defines

1To improve readability we drop the time index k in the rest of the paper.
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Fig. 1. Block diagram of the proposed approach to estimate target detection quality. The blocks with dashed lines provide the input to the
estimation, namely a detection zni , the camera FOV Ωi and the associated uncertainty model f(zni ).
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Fig. 2. Illustration of the main steps of the proposed approach.

the FOV of camera i; and P
(
vis/zni ,x

−
j

)
is a binary indicator for

the observability (1) or non-observability (0) of the target based on
the predicted target state x−j . Such observability should consider
that the target of interest may be occluded (by static scene elements
and other targets) or may be outside the camera FOV.

Our goal is to accurately and quickly compute P i,n
D for the cam-

era FOV Ωi.

3. DETECTION QUALITY ESTIMATION

We cast the problem of detection quality estimation as the definite
integral of f(zni ) over the FOV domain Ωi. We estimate the integral
in four steps (see Fig. 1 and Fig. 2), which are described below.

We numerically approximate the value of the integral for f(zni )
using quadrature-based rules [15]∫

Ωi

f(zni ) dz =

N∑
r=1

wrf(ẑr), (4)

where N is the number of selected samples, ẑr are the selected
points in the 2D domain defined by Ωi and wr are weights. To com-
pute each wr we use the Gauss-Legendre quadrature:

wr =
2

(1− (ẑr)2) [P ′N ((ẑr))]2
, (5)

where P ′N (·) are the Legendre polynomials [15].
Assuming Gaussian probability distribution functions (pdf) for

f(zni ), increasing the number of samples leads to a decrease of the

integration error, up to a limit [16]. However, to evaluate these ad-
ditional samples the associated cost increases. Finding an optimal
accuracy-cost compromise is key for an efficient estimation.

Adjusting the FOV may be needed to maximize video analyt-
ics performance. For example, some FOVs may be narrowed to ac-
quire high-resolution views of targets whereas other FOVs may be
widened to get an overall perspective [17]. We are therefore inter-
ested in the relationship between the area covered by the FOV of
camera i and the spatial uncertainty associated to each zni .

FOV adaptations change the FOV area on the ground plane,
thus requiring additional samples to maintain the integration accu-
racy when larger 2D areas need to be covered. Moreover, decreasing
the uncertainty about the location of an observation requires an in-
crease of the number of integration points to efficiently sample the
integrand f(zni ).

We obtain the number of samples N∗ as:

N∗ = argmin
N

h (N,FOV a
i ,Σ) , (6)

where h(·) defines the relation between the FOV area FOV a
i , the

covariance matrix Σ determining the location uncertainty of zni , and
the number of points employed N . Empirically, we found the fol-
lowing relationship:

h (N,FOV a
i ,Σ) =

∣∣∣∣N − FOV a
i

Σ

∣∣∣∣ , (7)

where |·| is the L1-norm.
We use a higher density of points around the location where the

integrand f(zni ) exhibits high values. Such location corresponds to
the expectation of the pdf describing f(zni ) which is often assumed
Gaussian [14] so the location corresponds to zni (see Eq. 3 and Eq.2).

We re-express the integral in Eq. 4 to consider that this integrand
is non-zero only in specific regions of the domain Ωi:

I =

∫
Ωi

f(zni )

g(zni )
g(zni ) dx, (8)

where g(·) is an auxiliary function to indicate which regions are sig-
nificant (i.e. f(zni ) is large) in the camera FOV Ωi.

Standard importance sampling draws a set {z̃1, ..., z̃N} of N
samples from g(·) and approximates the integral as

Ī =
1

N

N∑
r=1

f(z̃i)

g(z̃i)
. (9)

We define g(·) as a gating region determined by the uncertainty
of the observation location and then extract the selected N samples
using the previously described quadrature decomposition2.

The Gaussian quadrature for triangular domains may employ ac-
curate methods specifically for triangles, such as the Dunavant rules
[18]. However, such rules are not defined for any given number of

2Alternatively, the set of samples can be generated with Monte Carlo sam-
pling methods [16].



-200 -100 0 100 200 300 400 500 600 700
-200

-100

0

100

200

300

400

500

600

700

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

(a)

0 50 100 150 200 250 300 350 400 450 500

meters

0

50

100

150

200

250

300

350

400

450

500

m
et

er
s

Nc=8 Nt=8

GroundTruth
MTIC
Clutter

(b)

Fig. 3. Multi-camera multi-target setup: (a) the camera network and
(b) clutter observations affecting the tracking process and sample
trajectories.

samples (e.g. Dunavant rules are up to 20 samples), which limits
their use for different FOV sizes where variable number of samples
may be needed. Another option is to generate an initial sample set
within a square domain (which is easier to get than triangles) and
then compute the desired samples by collapsing the square to a unit
triangle [19]. Although suboptimal, this square-to-triangle mapping
allows one to generate any number of samples to consider variable-
size FOVs.

We tabulate ẑr and wr for various values of N in a unitary tri-
angle. Then we select the optimal value of N for each Ωi and Σ and
we obtain the tabulated samples from the unitary triangle, which are
filtered according to importance sampling. Finally, we convert the
coordinates of the selected samples to the desired FOV to integrate
f(zni ).

From this unitary triangle we use an affine transformation T to
any triangular shape that represents the camera FOV. The transfor-
mation T , defined as T = X ·A−1, has 6 Degrees of Freedom (DoF)
and can be fully developed as t1 t2 t3

t4 t5 t6
0 0 1

 =

 x1 y1 z1
x2 y2 z2

1 1 1

 ·
 a1 b1 c1
a2 b2 c2
1 1 1

−1

(10)
The samples in the desired triangular shape are obtained asX =

T · A. Finally, we obtain P i,n
D for each observation zni in camera i

as the weighted average of the transformed samples with T (Eq. 4)
multiplied by the total area of the FOV Ωi.

4. APPLICATION TO DISTRIBUTED MULTI-CAMERA
MULTI-TARGET TRACKING

The MTIC multi-target tracker [12] uses square FOVs and computes
PD by integrating the pdf of the predicted innovations (i.e. the dif-
ference between zni and the prediction x−j ). PD is used for target-
observation association by Probabilistic Data Association filtering
(PDA). Then, the cameras exchange their estimations to achieve a
consensus on each target state.

We improve the model of the MTIC multi-target tracker [12]
and apply the proposed approach. Our improvement to MTIC is
twofold. First, we consider triangular FOVs, which are more widely
used with 5 DoF: 2D position, orientation, depth and viewing angle.
Second, we use the proposed approach for fast computation of PD

in triangular FOVs.
For validation we consider a network of NC = 8 cameras [13]

(see Fig. 3a) with partially overlapping FOVs Ωi modeled as tri-
angles with 400m range and 45◦ angle. The communication capa-
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Fig. 4. Comparison of detection quality estimation for the proposed
approach (PRO) and the quadrature-based integration with varying
number of samples (Eq. 4).

bilities of each cameras is within a range of 700m, i.e. cameras at
opposite corners are not directly connected, and the data transmis-
sion is error free. Targets move in a 500m×500m area and the state
of each target j considers its 2D position and velocity: xj(k) =
[xj(k), yj(k), ẋj(k), ẏj(k)]. The state transition matrix Φ ∈ R4×4

is a first order motion model [12] with a process noise covariance
matrix Q = diag([10 10 1 1]). For observations representing 2D
locations, we use a standard measurement matrix Hj

i ∈ R
2×4 [14];

and noise covariance matrix R = diag([5 5]).

4.1. Detection quality

We estimate the detection quality P i,n
D for M = 6 · 105 runs,

i.e. for 105 random locations zni and six uncertainty hypotheses
Σ = {Σu = diag(100, 100)/2u}u=6

u=1 where Σu ∈ R2×2 is the
measurement covariance employed by f(zni ) to model the associ-
ated uncertainty of zni as N (zni ,Σu). Note that Σu expands R to
consider multiple observation accuracies of the detector.

We measure the average estimation error e = 1
M
|P̄ i,n

D − P̃ i,n
D |,

where P̃ i,n
D is the estimation and P̄ i,n

D is the reference value found by
evaluating all locations in Ωi. We also compare the relative compu-
tational cost c = 100 cost

costR
, where cost and costR are, respectively,

the total execution time (in MATLAB) of an estimation approach
and the exhaustive integration, i.e. the reference estimation.

Fig. 4 shows the performance of the proposed approach and
Quadrature-based Numerical Integration (QNI) [15], with a num-
ber of integration samples ranging from 25 to 3600. While the es-
timation error of QNI decreases when the number of samples in-
creases (see Fig. 4a), its computational cost increases considerably
(see Fig. 4b). Note that with N = 3600 the cost is higher than
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that of computing the reference value. Instead, the proposed method
uses, on average, only 16 samples to estimate PD and outperforms
all QNIs. The accuracy of the proposed method is similar to that of
QNI with 3600 samples and a cost between the cases with 625 and
1225 samples (reducing such cost ≈ 2.5× to that of 3600 samples).
Next, Fig. 5 shows the estimation accuracy when varying the uncer-
tainty of the locations Σu of the detections. N has to increase to
achieve accurate estimations for decreasing values in Σu.

Fig. 6 compares the proposed approach against two common im-
portance sampling methods employing the uncertainty area (i.e. an
ellipse) to get samples based on uniform grids (UG) [20] and Monte
Carlo (MC) sample generation [21]. UG has low errors when con-
sidering a significant number of samples (> 69) but the associated
cost is higher than that of the proposed approach. The generation of
samples by MC is computationally efficient whilst slightly decreas-
ing the estimation error. The generation of samples by the proposed
approach is highly efficient due to the refinement of importance sam-
pling with quadrature-based rules. Overall, the proposed approach
outperforms both UG and MC in terms of accuracy-cost trade-off.

4.2. Tracking performance

We use the proposed approach to compute PD for triangular FOVs
for the MTIC distributed multi-target tracker [12] and compare it
with the original version, which uses squared FOVs and a fixed PD
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Fig. 7. Tracking error for the MTIC filter employing the proposed
method and fixed values PD ∈ {.80, .90, .99}.

value. Each camera is affected by false measurements (clutter) that
we model with a Poisson distribution [14] defined by λ = r · 10−5,
where the values of r are 2.5, 5.0, 7.5, and 10 (see as example Fig-
ure 3b). We also account for the common premise of prior detec-
tor knowledge [8, 9] by using three detection quality values PD ∈
{0.80, 0.90, 0.99}. All the other MTIC parameters are set with the
values defined by the authors [12].

As performance, we measure the tracking error between the final
estimation and the ground-truth value of the target state. We set
K = 40 steps. We report the average error over 5600 runs (100
simulations for each clutter density, PD value and number of targets
Nt=2-8). Fig. 7 compares the tracking performance of the proposed
PD computation and the fixed three PD values. As the clutter level
increases, false alarms reduce the successful association in PDA and
increase the tracking error. The proposed approach considers real-
valued PD and observations zni with uncertain locations (i.e. close
to the FOV limits) are better handled within the PDA used in MTIC.

5. CONCLUSIONS

We proposed to estimate target detection quality using quadrature-
based integration and importance sampling. We determine the op-
timal number of samples for the integration by exploring the rela-
tionship between uncertainty models and the shapes of the FOVs
of the camera. The proposed method uses importance sampling to
guide the selection of samples and to increase the robustness to un-
certain hypotheses. The proposed approach outperforms competitive
methods in terms of accuracy and computational cost. Moreover, we
demonstrated the use of the proposed approach to improve a state-
of-the-art multi-target and multi-camera tracker under clutter using
FOVs with triangular shapes.

As future work, we will explore the inclusion of appearance fea-
tures within the proposal for PD computation.
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