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Abstract 

Advances in DNA sequencing technology have revolutionised the field of molecular 

analysis of trophic interactions and it is now possible to recover counts of food DNA 

sequences from a wide range of dietary samples. But what do these counts mean? To obtain 

an accurate estimate of a consumer’s diet should we work strictly with datasets 

summarising frequency of occurrence of different food taxa, or is it possible to use relative 

number of sequences? Both approaches are applied to obtain semi-quantitative diet 

summaries, but occurrence data is often promoted as a more conservative and reliable 

option due to taxa-specific biases in recovery of sequences. We explore representative 

dietary metabarcoding datasets and point out that diet summaries based on occurrence 

data often overestimate the importance of food consumed in small quantities (potentially 

including low-level contaminants) and are sensitive to the count threshold used to define an 

occurrence. Our simulations indicate that using relative read abundance (RRA) information 

often provide a more accurate view of population-level diet even with moderate recovery 

biases incorporated; however, RRA summaries are sensitive to recovery biases impacting 

common diet taxa. Both approaches are more accurate when the mean number of food taxa 

in samples is small. The ideas presented here highlight the need to consider all sources of 

bias and to justify the methods used to interpret count data in dietary metabarcoding 

studies. We encourage researchers to continue addressing methodological challenges, and 
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acknowledge unanswered questions to help spur future investigations in this rapidly 

developing area of research. 

 

1. Introduction 

Many recent studies documenting trophic interactions make use of metabarcoding, 

an approach which combines high-throughput sequencing (HTS) with DNA barcoding to 

identify the food remains present in faecal samples or stomach contents (Nielsen et al. 

2017). When HTS first became available the potential applications in diet studies were clear 

and the methods were quickly embraced by the community (Deagle et al. 2009; Valentini et 

al. 2009). In a comprehensive review of DNA-based diet analysis by King et al. (2008) the 

possibility of using HTS was only briefly mentioned as a ‘Future Direction’, and just four 

years later another review paper focussed entirely on this approach (Pompanon et al. 2012). 

While many underlying technical and biological details vary between dietary metabarcoding 

studies, the general workflow is now well defined. It involves extraction of total DNA from 

the dietary sample, PCR amplification of DNA barcode markers from food taxa of interest, 

and then DNA sequencing for taxonomic classification of the recovered sequences.  The 

workflow has been applied to determine diet in a range of animals, from invertebrates to 

large mammalian herbivores and carnivores (representative studies summarised in Table 1). 

 

The rapid adoption of HTS to characterise complex mixtures of DNA is not unique to 

dietary studies; over the last ten years the technology has produced a wealth of new genetic 

data providing insight into almost all areas of biology (Goodwin et al. 2016). One feature of 

HTS is that it provides counts of DNA sequences in each sample and therefore it has the 

potential not only to provide a qualitative list, but also to quantify what DNA is present. The 
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interpretation of sequence read counts as a numerical representation of sample 

composition is common in many HTS applications. For example, studies sequencing 

transcripts to determine differences in gene expression (Finotello & Di Camillo 2015), 

profiling microbe communities (Vandeputte et al. 2017) or measuring epigenetic variation 

(Schield et al. 2016) all rely on sequence read counts. However, decisions about how to 

interpret read counts is certainly not routine and the validity of interpretations is sometimes 

questioned even in fields where the practice is well established (e.g. Edgar 2017; Olova et al. 

2017). These debates are constructive, and should motivate researchers to test underlying 

assumptions and justify their interpretations, but can give rise to the impression that count 

data are always misleading. 

 

The reality is that all metabarcoding studies use sequence counts to some extent. In 

dietary investigations, count data are used either to record the occurrence of food species 

within samples based on a threshold number of sequences (i.e. presence/absence of taxa), 

or to calculate the percentage of DNA belonging to each food species as a proxy for relative 

biomass consumed (i.e. relative abundance of taxa; Figure 1). The conversion of sequence 

counts to occurrence data is often considered a more conservative approach than using 

proportional data. In their introduction to the Molecular Ecology Special Issue on ‘Molecular 

Detection of Trophic Interactions’, Symondson & Harwood (2014) pointed out that authors 

of many metabarcoding papers “now simply record numbers of predators testing positive for 

a target prey or plant species, providing a pragmatic and useful surrogate for truly 

quantitative information”. This sentiment, that focusing only on occurrence data is a reliable 

and safe option, is now common in the literature and this step in the analysis pipeline is 

often uncritically applied as the default option. Using counts as an indication of biomass in 
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samples is more controversial. Indeed, the difficulties of obtaining an accurate biomass 

signature from sequence counts include both technical and biological biases that affect 

barcode marker recovery rates from different taxa (Amend et al. 2010; Deagle et al. 2009; 

Pompanon et al. 2012). Therefore in the best-case scenario sequence read counts can only 

provide a rough estimate of proportional abundance. Still, to accept the notion that relative 

sequence counts provide no meaningful information would mean that, within one sample, a 

few DNA sequences from one food taxon is equivalent to 10,000 sequences from another. 

Most molecular ecologists would interpret these disparate counts to mean that there are 

differences in template DNA abundance (as long as methods used to collect the data are 

reasonable) and that there is some biological basis for that difference. Ignoring this 

difference may inhibit ecological understanding. 

 

Here, we review the approaches taken to interpret sequence count data in dietary 

metabarcoding studies and consider their implications. Throughout the paper we will refer 

to the two general approaches as ‘occurrence’ (i.e.  presence/absence of taxa) and ‘relative 

read abundance’ (RRA; i.e. proportional summaries of counts). The end product of both 

methods is the same, a semi-quantitative surrogate for the true diet, and our goal is to 

critically evaluate these different interpretations. We point out that converting sequence 

read counts to occurrence information can introduce strong biases and thus we suggest it is 

not always a “conservative” approach. We also assess the scale of biases in recovery of 

sequences from different food taxa in study systems where it has been examined. Using 

simulations, we explore the impact of these biases on data summaries (both based on 

occurrence and read counts). In this light, we evaluate factors that impact dietary 

metabarcoding data summaries and consider when using sequence count data as an 
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indication of relative biomass within samples might be justified to provide a more nuanced 

picture of animal diet. 

 

The issues we consider on how best to summarise dietary data have implications for 

all metabarcoding studies (Taberlet et al. 2018) and similar issues have been considered 

extensively in traditional diet studies (e.g. Barrett et al. 2007; Laake et al. 2002). In HTS-

based diet studies the ideas are most relevant when the underlying objective is to estimate 

the true diet of a particular consumer (i.e. the relative biomass contributions of alternative 

diet species). This may not be a clearly stated goal, but is often implicit in outcomes of 

dietary metabarcoding studies. Approaches for summarising sequence counts may be of less 

concern in studies aiming to provide a list of taxa consumed by a particular species (niche 

breadth), a qualitative description of trophic interactions in a food web, or an indicator of 

dietary differences between sites. We focus mainly on dietary studies using DNA extracted 

from faecal material. The use of HTS to identify food in stomach contents is common in 

invertebrates, and also fish, but the material recovered is in various states of digestion and 

the sequence counts are less likely to contain a meaningful quantitative signal based on RRA 

compared to the more consistent signal seen in faecal material (Deagle et al. 2013; 

Nakahara et al. 2015).  

 

2. Current Practice 

Non-dietary metabarcoding studies use a range of approaches to interpret sequence 

count data, and these vary depending on the targeted organisms. Recent papers published 

in Molecular Ecology on bacterial/archaeal communities all make use of RRA, although half 

of these studies also presented summaries based on taxon occurrences (Table S1). There is 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

widespread acknowledgement of taxon-specific biases in recovery of the bacterial/archaeal 

barcode markers, but RRA is accepted as a flawed, but useful, measure of these diverse 

communities that cannot be easily characterized by other means (Forney et al. 2004; 

Ibarbalz et al. 2014). There is no clear consensus in metabarcoding of eukaryotic 

communities: RRA is sometimes used exclusively (often the case in studies of fungi), 

whereas metazoan studies use either occurrence data only or both metrics in tandem 

(recent examples listed in Table S2). 

 

In dietary metabarcoding studies, it is common to only interpret sequence data after 

conversion to taxon occurrences (representative studies summarised in Table 1). This 

conversion is done in various ways. During initial processing of sequence reads, most 

researchers discard rare sequences to avoid incorporation of background sequencing errors 

(e.g. Quéméré et al. 2013). After this a summary table of remaining sequence reads in each 

sample is produced (often with similar sequences being clustered) and sequences are 

assigned taxonomy. Then, when converting these read counts to occurrence data, a 

threshold number of reads is often required for each taxon to be tallied as an occurrence. 

Sequencing depth can vary considerably between samples, so in practice a threshold 

percentage of reads is often used (e.g. 1% of food sequences McInnes et al. 2017b), or 

sequencing depth can be rarefied to a common level (O'Rorke et al. 2016). These 

approaches normalize detection across samples, so that more sequences are required for an 

occurrence to be recorded in samples with higher read depths. 
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Once occurrences are recorded in individual samples, several metrics can be used to 

summarise the diet across samples. Those considered here are percent frequency of 

occurrence (%FOO), percent of occurrence (POO) and weighted percent of occurrence 

(wPOO) (Figure 1; see Box 1 for details).  

 

Box 1: Some metrics used to summarise sequence data in dietary metabarcoding studies 

 

Occurrence Data 

Frequency of occurrence (FOO) is the number of samples that contain a given food item, most 

often expressed as a percent (%FOO). Percent of occurrence (POO) is simply %FOO rescaled so 

that the sum across all food items is 100%.  Weighted percent of occurrence (wPOO) is similar to 

POO, but rather than giving equal weight to all occurrences, this metric weights each occurrence 

according to the number of food items in the sample (e.g., if a sample contains 5 food items, each 

will be given weight 1/5).  Intuitive graphical representations are shown in Figure 1, 

mathematical expressions are as follows:  

 

      
 

 
     

 

   

      

 

     
     
 
   

      
 
   

 
   

 

 

      
 

 
 
    
     
 
   

 

   

 

 

where T is the number of food items (taxa), S is the number of samples, and I is an indicator 

function such that Ii,k = 1 if food item i is present in sample k, and 0 if not.  

 

Many metabarcoding diet studies make use of both %FOO and POO (e.g. Xiong et al. 2017). POO 

provides a convenient view since each food taxon contributes a percentage of total diet (unlike 

%FOO which does not sum to 100%). In POO summaries samples with a high number of food 

taxa have a stronger influence, whereas in wPOO each sample is weighted equally (i.e. lower 

weighting to food taxa in a mixed meal) and this may be more biologically realistic (wPOO is the 

same as split-sample frequency of occurence; see Tollit et al. 2017 and references within). 
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Read Abundance Data 

Using the sequence counts, relative read abundance (RRAi) for food item i is calculated as: 

     
 

 
 
    
     
 
   

 

   

      

 

where ni,k is the number of sequences of food item i in sample k.  

 

 

 

 Some dietary metabarcoding studies present RRA data along with occurrence 

summaries, although relatively few have relied solely on information obtained from RRA 

(Table 1). In almost all of these studies, the number of sequences obtained per sample are 

converted to percentages (Figure 1a), because the absolute counts (i.e. sample sequencing 

depth) are dependent on several factors unrelated to the overall importance of the sample 

(amount of starting material used, DNA extraction efficiency, standardization of samples 

before HTS, etc.). To provide an overall diet summary, sample-specific RRA values can be 

averaged across samples; when doing so, each sample is given equal weight (Box 1; Figure 

1). The RRA of taxa in each sample will vary depending on genetic marker, laboratory 

protocol, and bioinformatic filtering strategy (Alberdi et al. 2017; Deagle et al. 2013). 

Ensuring laboratory methods are robust (i.e. focussing on samples with sufficient target 

DNA and checking replicates) and using a standardised bioinformatics pipeline without 

excessive filtering can help ensure RRA data are reproducible and precise (Alberdi et al. 

2017; Deagle et al. 2013; Emmanuel et al. 2017; McInnes et al. 2017a; Murray et al. 2015). 
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3. Does converting read counts to occurrence data solve our problems? 

 It is often assumed that because conversion to occurrence data moderates the 

impact of taxa-specific bias in marker signal, it provides a trustworthy, or at least 

conservative, view of diet. While it is true that occurrence-based summaries of diet are less 

affected by recovery bias, it is not necessarily the case that they provide a more accurate 

representation of overall diet. Our simulations suggest POO summaries are highly consistent 

but generally less accurate representation of overall diet compared to RRA summaries even 

when moderate taxa-specific recovery biases are present (see Box 2 for details).  

 

Box 2: Simulations evaluating approaches for summarising population-level diet 

composition 

 To compare how effectively occurrence and RRA methods reconstruct population-level 

diet we simulated HTS read counts for samples derived from a population with a fixed diet and 

investigated the impact of taxa-specific sequence recovery biases (Figure 2). Basically, we show 

how population-level diet estimates vary given a range of biases that can impact any food taxa 

in the diet. Our simulation results are for a population with 40 food taxa in its diet, occurring in 

exponentially declining abundance. Sequencing was simulated for 100 scat samples assuming a 

mean of either 3 or 20 food taxa per sample, and assuming different sequence recovery bias 

scenarios: no bias, low bias or high bias. The biases introduce positive or negative biases of up 

to 4x and 20x (low and high biases respectively) relative to a standard. Diet summaries were 

made using: (1) RRA; (2) POO with a 1% minimum sequence threshold. For further details see 

Supporting Information and R scripts in the Dryad Digital Repository 

(doi:10.5061/dryad.jt07145). 

 Overall results show that with these parameters RRA summaries were on average more 

accurate but had higher variance than POO summaries. POO produced more consistent 

estimates less impacted by recovery biases, but only outperformed RRA when the largest 

recovery biases corresponded to the most common food items. Both methods were more 

accurate when the number of food taxa per sample was small: with a small number of food taxa  

per sample POO estimates provide more realistic enumeration of rare items and RRA estimates 

are less impacted by sequence recovery biases (since biases are only expressed in the context of 

other taxa in a sample).  
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 The primary drawback of occurrence datasets is that the importance of rare food 

taxa are often artificially inflated at the expense of food taxa eaten in large amounts, 

effectively flattening the rank-abundance species curves typically seen in dietary datasets 

(Figure 1; Box 2). This effect can be illustrated in metabarcoding data from a population-

level diet study of killer whales (Figure 3). This study concluded that the whale population’s 

diet consisted primarily of Chinook salmon (~80%) based on high RRA of this species in most 

samples (Ford et al. 2016). If we consider the killer whales’ diet as occurrence (POO; each 

food species occurrence given equal value), the view changes considerably because other 

salmon species and halibut frequently detected at low levels become important prey. The 

threshold level used to count an occurrence also impacts the relative importance of these 

fish prey; a lower threshold increases the importance of rare diet items (Figure 3). A similar 

pattern is seen in seal population-level diet estimates calculate with RRA and POO (Figure 

4a). These different outcomes have substantial implications when diet percentages are 

combined with bioenergetics estimates and consumer population size to derive estimates of 

prey consumption (Chasco et al. 2017). Another implication of rare-item inflation occurs in 

studies of niche partitioning. Here, the conclusion that species feed on separate resources 

may be inaccurate because separation may be driven primarily by partitioning of rare diet 

items, which are given similar weight as shared important food.  In contrast, the conclusion 

that species overlap in their dietary niche is potentially less likely (i.e. requiring overlap in 
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both primary and rare food items), but may therefore be more biologically meaningful when 

found (Clare 2014). 

 

 How much influence rare diet taxa have in overall diet estimates depends to some 

extent on the foraging strategy of the focal species and food distribution. In cases where 

small amounts of rare diet items are consumed in most feeding bouts, the importance of 

these items could be strongly over-estimated in occurrence-based summaries (as seen in 

the simulations with a high number of taxa per scat sample; Box 2). This may be the 

situation for some large grazing herbivores that forage continuously across a grassland, 

often eating relatively rare plant taxa in proportion to their availability (i.e., non-selective 

feeding).  In contrast, when rare diet items are eaten sporadically, their DNA would be 

detected only occasionally and diet estimates would be more realistic. For instance, some 

carnivores feed sporadically, individualistically, and in discrete foraging events such that 

prey occurrences may provide a more meaningful indication of how often each taxon is 

predated (Codron et al. 2016). The feeding ecology of a species is reflected to some extent 

in the number of food taxa in individual faecal samples and this varies widely between 

studies (Table 1). This value provides insight into the potential impact of rare-item inflation 

bias. For example, in Figure 1, the zebra faecal samples have many food taxa per sample and 

when summarised as occurrences, these have a predictably flat rank-abundance curve; this 

curve would be generated regardless of the true amount of each plant consumed in each 

meal (Box 2). 
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Summaries based on occurrences become less accurate when samples are pooled 

(i.e. when sequence reads from individual scats are not identifiable; Clare et al. 2014; Deagle 

et al. 2009; Ford et al. 2016) because rare diet taxa present in any one of the pooled 

samples are weighted equally to taxa found in all of the pooled samples. The time period 

over which food consumption is integrated in a faecal DNA sample (influenced by gut 

passage time) can affect these data in a similar way, since longer integration will mean rare 

taxa have a greater likelihood of being present in each sample. 

 

The inflated importance of rare sequences in occurrence summaries could also 

magnify some problems encountered in diet metabarcoding. There are occasions when 

exogenous DNA can contaminate a sample of interest. This includes field-based 

contamination from non-food eDNA (McInnes et al. 2017a), laboratory contamination (De 

Barba et al. 2014), and misassignment of sequence-to-sample during HTS (i.e. tag-jumping; 

Schnell et al. 2015). These problems will generally have less influence in RRA summaries 

since the real food items should dominate unless samples are very poor quality. A similar 

issue is the detection of secondary predation (i.e. DNA from gut contents of ingested prey). 

Depending on the study system and research question, secondary predation may or may not 

be a serious problem. However, occurrence-based datasets are expected to over-emphasise 

these detections and ruling out secondary predation in occurrence summaries may require 

information of RRA, examination of prey co-occurrence, or expert knowledge (Bowser et al. 

2013; Hardy et al. 2017; McInnes et al. 2017b).   
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4. Does RRA actually reflect food biomass? 

The relationship between proportions of biological material in a sample and 

sequence reads recovered by HTS has been studied in many experiments by sequencing 

artificial mixtures with known composition. These ‘mock communities’ are most relevant to 

dietary metabarcoding studies when made from food tissues similar to what is being 

consumed. Both mitochondrial and chloroplast DNA markers are present in multiple copies 

in each cell and copy number varies between tissue types (e.g. leaves versus roots; Ma & Li 

2015) and physiological state (e.g. juvenile vs. gravid adult; Veltri et al. 1990). Getting a 

thoroughly homogeneous mix of tissues in a small volume suitable for DNA extractions is 

challenging; therefore, mixtures made from DNA extracted separately for each taxa are 

sometimes used (e.g. Ford et al. 2016; Krehenwinkel et al. 2017b; Piñol et al. 2015). 

However, results from purified genomic DNA mixture may have little biological meaning 

because differences in cell density and genome size will confound results (i.e. low recovery 

from a species could be a bias, or the species may have a large genome and therefore fewer 

markers are in the fixed amount of DNA added to the mixture) (Piñol et al. 2015). Mixtures 

of PCR products can identify technical biases (i.e. good for assessing PCR primers), but miss 

underlying biological differences. 

 

Conclusions from analyses of mock communities vary from no relationship to good 

correlations between the composition of the mixture and sequence reads (Edgar 2017; 

Kimmerling et al. 2018; Pornon et al. 2016). One reason for these different conclusions is 

that the range of concentrations analysed varies considerably across studies, from nearly 

equal mixtures of a few taxa, to mixtures containing many taxa in very different 

abundances. For example, consider two mixtures: (A) three species in the ratio 20:30:50 and 
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(B) eight species in the ratio 1:1:4:4:10:10:20:50. In the first mixture even modest relative 

deviations in recovery would result in a poor correlation, whereas the second would be less 

impacted by the same relative level of bias. High variability between studies is also due to 

biotic differences in target organisms and technical differences (e.g. different barcode 

markers, PCR primers, sequencing platforms, etc.). This variation makes it difficult to 

generalise, and considerable work is required to understand the reliability of RRA in any 

system. Two taxonomic prey groups that have been the focus of several dietary 

metabarcoding studies, and for which mock communities have been examined, are fish and 

insects. These groups provide some insight into the expected scale of biases.  

 

 In metabarcoding of fish mixtures, conserved PCR primers are generally employed 

and documented recovery biases are moderate. In their killer whale study, Ford et al. (2016) 

analysed known percentages of DNA extracted from four fish species and the RRA of each 

fish corresponded well to input (generally within 5% of expected values) providing 

confidence in their conclusions. Using prey species of harbour seals Thomas et al. (2016) 

carried out a detailed study on sequence recovery from blended tissue mixtures. Various 

taxa (primarily fish; n=18) were sequenced in 50:50 tissue mixes with a control fish, and the 

extent of deviations from the control fish measured. The recovered sequences varied from 

20% to 60%, a 3-fold variation in marker recovery relative to the control. A recent study 

looking at recovery of barcode markers from bulk samples of larval fish avoided marker 

amplification by directly sequencing all DNA, then bioinformatically recovering relevant 

marker sequences (Kimmerling et al. 2018). They found strong correspondence between 

biomass in known mixtures and sequence counts, suggesting that without PCR amplification 

biases, biological differences in mtDNA density between these fish are small. Even studies 
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looking at fish environmental DNA samples have found a relationship between fish density 

and recovered sequence counts (Lacoursière‐Roussel et al. 2016; Port et al. 2015; Thomsen 

et al. 2016). 

 

 Many studies have sequenced DNA from insect mock communities; however, rather 

than considering if read counts are proxies for input biomass, the focus of these studies has 

generally been to test if taxa can be detected (Alberdi et al. 2017; Clarke et al. 2014; 

Elbrecht & Leese 2015; Yu et al. 2012). The reason for this focus is that insect communities 

tend to be complex, with many rare taxa, and the recovery biases large. In studies by Yu et 

al. (2012) and Clarke et al. (2014), a paltry 43-76% of species known to be present in mock 

communities were recovered. A study that included a mixture containing equal amounts of 

purified DNA from 12 arthropod species (10 insects, 2 spiders), reported RRA values for half 

of the species that were more than 100 times lower than expected (i.e. expected 8% and 

recovered at <0.08% (Piñol et al. 2015)). Another arthropod study found consistent 

relationships between percentages of DNA and RRA; however, the slope of the correlation 

deviated from the expected value of 1 in different insect orders and with different DNA 

markers, which was attributed to copy number variation (Krehenwinkel et al. 2017b). Even a 

change in PCR primers used to amplify a marker from the same gene can produce very 

different results (Alberdi et al. 2017). Most diet studies looking at insectivorous predators 

focus on occurrence data because of the generally poor correlation between biomass and 

read counts (Table 1), but methodological improvements may change this (Jusino et al. 

2017).  
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 Diet studies incorporate more complexity than analysis of mock communities due to 

potential differential digestion of food taxa. Relatively few captive feeding experiments have 

examined how well dietary DNA counts reflect known diet, but studies have been carried 

out on sheep (Willerslev et al. 2014), deer (Nakahara et al. 2015), penguins (Deagle et al. 

2010) and seals (Thomas et al. 2014). These have focussed on simple diets (~2-6 diet items) 

and results generally show that comparisons between major and minor diet components 

are reflected in RRA. For example, the diet of sheep fed two plants in ratios of 0:100, 25:75, 

50:50, 75:25, 100:0 had a good correlation with the percentages of DNA marker sequences 

amplified from rumen content (Willerslev et al. 2014). In a study on captive deer, >90% of 

the diet was made up of three plant species with two other species fed in low amounts. In 

this case >90% of sequences came from the three dominant taxa, but considering just these 

taxa, the correlation between what went in and what came out was poor (Nakahara et al. 

2015). Similarly, in faecal samples from captive penguins fed pilchards as the majority of 

their diet, sequence reads from pilchards were most common in the data; however, the 

three other fish species fed in mass ratios 45:35:20 produced sequences counts of 60:6:34 

(Deagle et al. 2010).  

 

 Detailed captive feeding studies examining quantitative prey DNA recovery have 

been carried out on captive seals and sea lions (Bowles et al. 2011; Deagle & Tollit 2007; 

Thomas et al. 2014). Early studies used quantitative PCR rather than HTS and found the 

amount of marker DNA recovered provided a reasonable indication of biomass ingested 

(Bowles et al. 2011; Deagle & Tollit 2007). A trial with harbour seals by Thomas et al. (2014) 

compared HTS data from food tissue (affected by biological and technical biases) with faecal 

DNA (affected by digestion as well). The scale of bias introduced by digestion was generally 
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smaller than biases observed in undigested fish tissue mix. Since digestion bias may be in 

the same or opposite direction to tissue biases, the overall effect is expected to increase 

variance in prey-specific recovery biases compared to tissue mixes. These seal studies all 

excluded prey hard parts from DNA extractions, but in other systems where this may not be 

feasible, digestion biases could be larger. For example, faeces from insectivorous animals 

often contain relatively undigested hard body parts (i.e. exoskeleton). The impact on DNA 

recovery is difficult to assess: hard fragments will contain undigested DNA, but the DNA may 

not be extracted as efficiently as DNA present from soft bodied prey (Clare 2014).  

 

 Another approach to understanding how much of a signal is present in counts from 

DNA sequences is to compare results with other methods of diet analysis. In a study of large 

mammalian herbivores, Kartzinel et al. (2015) found a nearly one-to-one correlation 

between estimates of C4 grass (family Poaceae) consumption based on stable isotopes 

analyses and RRA based on metabarcoding of the chloroplast marker (trnL-P6). The use of 

alternative proxies for diet composition can also reveal complexities. Craine et al. (2015) 

used similar protocols to Kartzinel et al. (2015) but found C4 grass RRA to be under-

represented compared to measures based on stable isotopes. They suggested that 

chloroplast density scales with foliar nitrogen concentrations so that RRA values could 

reflect dietary sources of protein, and thus may deviate from dietary sources of biomass as 

represented by carbon stable isotopes. If RRA values based on this marker occasionally 

reflect an animal’s source of protein more closely than its source of carbon (i.e., biomass), 

this knowledge can enable count data to still be interpreted appropriately. 
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 Several studies have used traditional morphological analysis of food remains to help 

cross-validate RRA data (Soininen et al. 2009; Thomas et al. 2017). Thomas et al. (2017) 

analysed DNA and prey hard parts in a large studies of seal populations diet over several 

seasons, while there were minor differences between methods in prey recovery and 

taxonomic resolution, RRA and hard part occurrences provided a very similar picture (Figure 

4b). Cross-validation has the problem that all methods of diet determination are biased, so 

if there is disagreement the correct answer may be unclear (Soininen et al. 2009). However, 

congruence between datasets is reassuring and known biases can be taken into account 

when making conclusions (e.g. jellyfish are digested quickly, so occurrence in faecal DNA but 

not stomach contents is credible;  Jarman et al. 2013; McInnes et al. 2017b).  Large 

differences in results between methods warrant further investigation; multiple lines of 

independent evidence provide the strongest support for any conclusion. 

 

 Overall, assessing recovery bias between food taxa is complex, specific to a study 

system, and can require significant effort. In some cases, broad correlations are likely, but 

this cannot be taken for granted and very large biases may occur (e.g. Pawluczyk et al. 

2015).  

 

5. A view of the way forward in interpreting sequence counts  

 What should be considered best practice given the potential biases we have outlined 

in diet metabarcoding studies? First of all, we should take a step back and remember that 

getting estimates of the true diet of any species using any method is a challenging 

proposition – all methods of diet analysis have biases. A well-designed metabarcoding diet 

study may provide as accurate an estimate as any other approach, and has the benefits of 
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providing high taxonomic resolution, detecting rare foods and can potentially solve 

otherwise intractable problems (e.g. liquid feeding). We should also remember that other 

classic experimental design issues, such as collecting appropriate sample sizes and getting 

representative samples, will potentially have a bigger impact on study outcomes than the 

diet estimation method. Furthermore, dietary metabarcoding has a huge variety of 

applications, many of which do not require highly accurate dietary proportions. 

 

Still, we will inevitably come to a point in dietary metabarcoding studies where we 

need to decide how to interpret sequence counts. It is often the case that the overarching 

views of population-level diet are consistent regardless of how sequence counts are 

summarised (i.e. when commonly occurring food items are also represented by the highest 

number of sequences). This is most likely to be the case when faecal samples contain a 

limited number of food taxa (in the extreme case where there is only one taxon per sample, 

occurrence and RRA estimates are identical and recovery biases have no impact). However, 

some outcomes will depend on how we consider counts. Occurrence summaries are less 

affected by differential recovery of markers from food taxa, but tend to put much more 

weight on food consumed in small quantities and potential contaminants. RRA can 

potentially provide a weighting of food present in a sample based on biomass, but 

differential recovery of markers (especially from dominant food taxa) can impact data 

summaries.  Our strongest recommendation is that if one approach is relied on heavily, 

some justification should be given for its use, and potential biases inherent in the method 

should be acknowledged and taken into account when drawing conclusions. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

5.1 Using occurrence data 

Many future diet studies will have almost no information on the scale of biases in 

the recovery of sequences from specific food taxa. The use of occurrence data may be a 

sensible approach, but careful consideration of the impact of this choice is still required and 

the bioinformatics steps taken to produce this dataset should be documented. We 

recommend converting counts to percentages (excluding non-food sequences from total 

count) and then defining a minimum sequence percentage threshold to determine 

occurrences. This will limit the impact of variation in read depth. The threshold is a trade-off 

between maximizing inclusion of real diet sequences and excluding low-level background 

noise (secondary predation, contamination, sequencing errors). A 1% threshold may be 

suitable for many situations, but when diets are extremely diverse with potentially large 

recovery biases (e.g. some bats species), then a much lower threshold may be justified (e.g. 

0.01% in Alberdi et al. 2017). In these cases, ensuring contaminant sequences do not 

influence results requires additional vigilance (De Barba et al. 2014; Nguyen et al. 2015). 

Given that many of the issues we have raised regarding the use of occurrence data stem 

from the disproportionate influence of rarer sequences, it may seem advantageous to use a 

higher minimum sequence threshold (e.g. >5% constitutes occurrence). While this type of 

summary can provide insight, rare taxa that make up a small percentage of sequences in 

many samples would be missed completely (Alberdi et al. 2017) and taxa-specific biases in 

recovery also have a larger impact on these high threshold occurrence summaries (see 

simulations in Figure S1 comparing different threshold levels). Since the purported benefit 

of occurrence-based approaches is to record food taxa even when there is strong bias 

against them, thresholds higher than 1% cannot be generally recommended. 
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The sequencing depth required per sample is directly related to the minimum 

threshold; in diverse and/or potentially highly biased situations warranting a very low 

threshold (e.g. 0.05%), high numbers of reads per sample would be needed (e.g. >10000). 

Lower read depth is sufficient with a 1% threshold and increasing replication (biological or 

technical) would be preferable to having redundant sequences within samples. Even when 

sequence counts are not used directly, it is important that these data are available (and 

ideally the sequence reads archived too) with appropriate explanatory files outlining 

potential biases. This allows others to revisit the data and will allow insight in future 

comparative meta-analyses.  

 

 Summaries of data based only on occurrence information will remain appropriate in 

many situations, simply because these are more predictably inaccurate and less impacted by 

recovery bias. This includes dietary metabarcoding studies that use DNA from food remains 

in gut contents since differences in time since ingestion will have a major impact on the 

relative number of reads recovered per taxon (Egeter et al. 2015; Greenstone et al. 2014). In 

studies using faecal samples, occurrence summaries will often be appropriate when food is 

clearly differentially digested, the sequence recovery bias is known to be high (e.g. many 

animals with an insectivorous diet), or this bias is unknown and results cannot be cross-

validated. Note, that this appropriateness may differ between dietary analyses of relatively 

similar consumers. For example, most bat diet studies only analyse occurrence data, but the 

bat population shown in Figure 1 has relatively low diet richness compared to other bats 

and RRA may be suitable (Vesterinen et al. 2016). 
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 5.2 Using RRA 

Incorporation of RRA into analyses will have the most benefit when individual faecal 

samples contain several food taxa and the same food taxa occur across many samples. In 

these cases, occurrence summaries may provide very inaccurate summaries (Box 2). 

Unfortunately RRA-based summaries from these types of samples can be most affected by 

recovery biases (Box 2) and careful decisions about how to interpret data are required. 

When there is uncertainty surrounding which method will be more accurate, presentation 

of results summarised with both methods is recommended. Conclusions relying heavily on 

RRA should include justification as to why the counts are expected to contain a roughly 

accurate signature. One way to justify interpretations based on RRA is through cross-

validation of the diet data with alternative methods, and this is recommended whenever 

possible (see Figure 4). Alternatively, mock community experiments and/or feeding trials 

can be carried out, but this is feasible in a limited number of situations. In study systems 

where diet is relatively well known, examining biases in a small number of dominant food 

taxa can ensure they are not drastically over or underestimated and will lend support to 

using RRA information. The dominant diet items have by far the strongest impact on RRA 

diet summaries as significant shifts in percentages of these species will adjust percentages 

of all food taxa (i.e. unit sum constrained data must sum to 100%). One question that 

inevitably arises is, at what point does “semi-quantitative” RRA information stop being 

useful? Our simulations indicate that even in scenarios with 20x overestimation of some 

food and 20x underestimation of others (i.e. in 50:50 mixtures this could lead to 400 fold 

recovery bias) the population-level RRA summaries often still provides a more accurate view 

of diet compared to POO (Figure 2). But the limits of usefulness will depend on the 

application. It is probable that comparisons between closely related food taxa will provide 
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more reliable RRA data, because biological differences should be smaller and technical 

biases less pronounced (e.g. animal COI primer binding sites will be more conserved, or 

length differences in the plant trnL-P6 marker will be low). However, it is risky to make 

generalizations and to transfer specific methodological findings between study systems.  

 

Further refinements to increase confidence in RRA dietary metabarcoding data are 

possible. Because conversion to occurrence datasets has been seen as a necessary remedy 

for biases in sequence recovery, there has been less incentive for researchers to test new 

protocols and evaluate markers on their ability to obtain accurate RRA data. While it is 

sensible to use standard DNA barcode markers, by ignoring information in RRA during 

marker development we might have inadvertently imposed limitations on the field. 

Fortunately, we are starting to move towards a point where markers used in different 

applications are better understood and alternative less-biased approaches are being 

explored. This includes the use of multiple target markers (Stat et al. 2017) and PCR-free 

approaches (Srivathsan et al. 2016) that can be combined with prey DNA enrichment 

(Krehenwinkel et al. 2017a). Inclusion of control materials in sequencing runs can also 

ensure consistency between experiments (Hardwick et al. 2017). For the most accurate diet 

estimates, correction factors can be developed to take into account known biological 

differences between taxa in mixtures (e.g. gene copy number differences; Angly et al. 2014; 

Vasselon et al. 2018). Such species-specific correction factors have been developed for fish, 

with the intent of applying them in field-collected seal diet samples (Thomas et al. 2016).  
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While the effort needed to justify the RRA approach may be challenging, the 

possibility of obtaining more accurate diet estimates will make it worthwhile in many 

situations. We have seen such effort undertaken in papers addressing broad ecological 

questions (Kartzinel et al. 2015; Willerslev et al. 2014), and in diet studies of marine 

predators, where population consumption has significant fisheries management 

implications (Ford et al. 2016; Thomas et al. 2017). This approach should also be possible in 

monitoring programs, such as those carried out on seabird diet (Jarman et al. 2013; 

Sydeman et al. 2017), where the long-term investment warrants the development of robust 

DNA-based methods that provide the best possible data. 

 

5.3 Outstanding issues 

 There are a number of issues in the diet metabarcoding literature that have an 

impact on both occurrence and RRA summaries that have yet to be clearly addressed. 

Appropriate statistical analysis of metabarcoding data is one area that needs more 

development, in particular how to deal with unit sum constrained data that is biased (i.e. 

POO and RRA summaries add to 100% therefore any biases will impact the magnitudes of 

the other diet components). This becomes particularly confusing when comparisons are 

made between populations eating some different food taxa since relative comparisons are 

difficult, and biases may only impact one population (Aizpurua et al. 2018). 

 

 Another issue is the impact of collecting data with markers that have low taxonomic 

resolution (McInnes et al. 2017b) or collating data at higher taxonomic levels to increase 

certainty in taxonomic assignment (Biffi et al. 2017). Depending on how broad the grouping 

are, occurrence summaries may not be very informative as many occurrences are 
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potentially pooled. For RRA it is unclear whether pooling counts from multiple taxa will 

nullify fine-scale stochasticity in recovery biases, or magnify lineage-specific biases. A 

related issue is how to summarise data from diet metabarcoding studies using multiple 

markers. When markers are targeting the same food taxa, either additive (i.e. include 

detections by any marker) or restrictive strategies (only include food detected by all 

markers) could be logically applied in occurrence and RRA summaries (Alberdi et al. 2017). 

The situation is even more complex when a “universal” primer set is used to define the 

broad diet and group-specific primers subsequently improve taxonomic resolution for 

particular groups (e.g. a marker targeting all plants together with several that offer greater 

resolution for specific plant families). Errors based on the universal marker will be 

propagated when attempting to incorporate data from the other primer sets (i.e. if the grass 

family is estimated to be 20% of a diet instead of the true 40%, then the perceived 

importance of each grass species is reduced).This problem can be avoided to some extent 

by reporting each component separately, but this provides an unsatisfactory synthesis for 

omnivorous and other species with a very diverse diet that can only be characterised with 

several markers (De Barba et al. 2014). Studies that use a marker capturing only one 

component of the diet need to be very clear that the results comprise an unknown amount 

of the total diet. 

 

 Simulations such as the ones outlined in this paper can help establish which 

scenarios are most sensitive to biases from alternate summaries (either occurrence or RRA). 

When informed by experimental work to assign an error range to each parameter, and 

combined with sensitivity analysis, this can identify which sources of bias have the largest 

impact on conclusions. There are many downstream application and we have not 
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considered impacts in specific situations. For example, it would be very interesting to see 

how switching between occurrence and RRA datasets affects outputs in the context of 

quantitative food web studies (Banašek-Richter et al. 2009; Roslin & Majaneva 2016). 

 

 The ultimate test for how to deal with sequence counts in HTS diet analyses will 

remain in empirical studies. We hope this opinion piece will be a starting point to highlight 

the need to consider all sources of bias and to justify the methods used when confronting 

count data in metabarcoding studies. We also hope that this critique is not discouraging to 

researchers approaching this new and rapidly developing area of research, as no single 

study should be rightly expected to address all issues arising from DNA-based diet analyses. 

Instead, our aim is to encourage researchers to continue addressing methodological 

challenges, and acknowledge unanswered questions to help spur future investigations. As 

the field matures, we envisage publication standards will emerge to provide the most robust 

diet data and provide an accurate indication of the uncertainty associated with dietary 

assessments. 
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Figure Captions 

Figure 1: Information in faecal samples from dietary metabarcoding datasets of an albatross 

(McInnes et al. 2017c), an insectivorous bat (Vesterinen et al. 2016) and Grevy’s zebra 

(Kartzinel et al. 2015). (a) Individual-level data in 10 faecal samples viewed using different 

metrics. Colours represent different food taxa. (b) Population-level summaries of these 

datasets showing the top 15 food taxa (%FOO ranking); 1% threshold used for occurrence in 

POO and wPOO calculations. In the lower plots, sum contribution of remaining food taxa are 

plotted at end. In each example population data include only collections from one site and 

samples with >50 food taxa reads; the albatross data only considers the fish component of 

the diet (i.e. fish specific PCR primers). 

 

Figure 2: Simulation results: (a) difference between estimated population diet and true diet 

proportions (compared using Bray-Curtis dissimilarity metric) for RRA and POO summary 

methods under different bias scenarios. The first plot shows an example bias vector (for 

both low and high bias) used in one simulation with differential recovery values for each 

food taxa. The boxplots summarise results from 1000 simulations for each bias scenario 

where the average number of taxa per sample was 3 or 20, with 100 samples per 

simulation. (b) In these simulations the most common taxa (T1) was forced to have the 

greatest positive bias or the greatest negative bias (low bias scenario = Low T1+ or Low T1-; 

high bias scenario = High T1+ and High T1-). Plots show the bias vectors and the 

corresponding population diet summaries are illustrated as bar plots. Numbers on top of 

bars are Bray-Curtis dissimilarity compared to true diet. Again, the average number of taxa 

per sample was 3 or 20. See Box 2 text for details. 
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Figure 3: Killer whale diet in the Salish Sea illustrated with bipartite graphs constructed from 
data in Ford et al. (2016) using either (a) RRA (b) POO with a 0.1% threshold or (c) POO with 
a 1% threshold. Samples (DNA from faecal material) are shown on left of each plot and were 
pooled according to collection dates (Early, Middle, Late) in different years. The overall diet 
calculated by the different methods is shown on the right of each plot (includes the seven 
prey taxa with >1% of sequences in at least one sample). Line thickness shows contribution 
of taxa in each sample to the overall diet. 
 
 
Figure 4: Comparison between population-level diet percentages for harbour seals 

calculated with DNA metabarcoding and also parallel analysis of prey hard part remains 

(data from Thomas et al. 2017). Each point is a prey taxa, colours show different collection 

sites and symbols differentiate sampling times (e.g. black triangles represent all prey at the 

Fraser site in autumn 2012). Data are from over 1000 faecal samples and 14 comparisons 

are plotted (stratified by site, year and season) (a) Relationship between POO and RRA 

summaries based on a DNA metabarcoding dataset; POO puts more weight on food 

consumed in small quantities. (b) Relationship between wPOO and RRA; wPOO reduces the 

importance of samples with many prey (c) Relationship between RRA and prey remain (split 

sample frequency of occurrence model) summaries, a strong agreement despite biases in 

both approaches. To allow comparison of hard parts and DNA data higher taxonomic 

groupings of prey were used in many cases (e.g. salmon bones were rarely distinguished to 

species so DNA detections of salmon species were merged).   
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Table 1 Use of sequence counts in 20 metabarcoding diet studies carried out using faecal DNA 

collected from a range of different species. Representative studies across a range of focal taxa 

carried out by different research groups are shown rather than trying to summarise all dietary 

metabarcoding studies.  

Focal 
Taxa 

 Referenc
e 

F
O
O
† 

RR
A‡ 

Sam
ple 
num
ber 

Num
ber 
food 
taxa
§ 

Taxa 
per 
sam
ple¶ 

Marker Target group Sequences 
per 
sampleᶲ 

Seque
ncer 

 Count 
data 
Available 

Snail O'Rorke 
et al. 
(2016) 

N Y 35 >50  NR ITS fungus 3500 
(rarefied) 

MiSeq Yes 

Snail Waterho
use et al. 
(2014) 

Y N 60 26  4.7 16S earthworms 1047 454 No 

Pigeon Ando et 
al. 
(2013) 

Y Y  48 44  6.7 trnL plants 743 454 No 

Albatro
ss 

McInnes 
et al. 
(2017b) 

Y Y 447 ~20  NR 18S metazoan >100 
prey 

MiSeq Yes 

Puffin Bowser 
et al. 
(2013) 

Y Y 129 ~40  NA CO1, 16S metazoan >50 prey 454 No 

Sandpi
per 

Gerwing 
et al. 
(2016) 

Y N 164 132 NA CO1, 16S metazoan, 
fish/cephalopod/
crustacea 

721^ 454 No 

Desma
n 
(Roden
t) 

Biffi et 
al. 
(2017) 

Y N 383 156  5.8 CO1 arthropods 6910^ Ion 
Torre
nt 

No 

Bat Clare et 
al. 
(2014) 

Y N 25 
(poo
led) 

>15
8 

NA CO1 arthropods >10000* Ion 
Torre
nt 

No 

Bats Burgar 
et al. 
(2014) 

Y N 64 >12
0 

15 CO1 arthropods 230 454 No 

Bat Vesterin
en et al. 
(2016) 

Y Y 82 59 NR CO1 arthropods 995 Ion 
Torre
nt 

Yes 

Bat Aizpurua 
et al.  
(2018) 

Y Y 79 >27
6 

8.4 CO1, 16S arthropods >10000* MiSeq Yes (raw 
sequence
s) 

Seal Thomas 
et al.  
(2017) 

N Y 116
6 

71 3.2 CO1, 16S salmon, fish and 
cephalopods 

1227 MiSeq No 
(Available 
on 
request) 

Seal Hardy et 
al. 
(2017) 

Y N 112 115 3 to 
6 

16S, 12S vertebrates, 
invertebrates 

>10000* MiSeq Yes 

Killer 
Whale 

Ford et 
al. 
(2016) 

N Y 13 
(poo
led) 

16  NA 16S fish >10000* MiSeq Yes (raw 
sequence
s) 

Bear De Barba 
et al.  
(2014) 

Y N 91 >84  NA trnL, 12S, 
16S, ITS 

plants, 
vertebrates, 
invertebrates 

>500 HiSeq Yes 

Cats Xiong et 
al. 
(2017) 

Y N 103 40  3.6-
4.1 

16S vertebrates >10000* HiSeq No 

Monke Quémér Y N 96 >13 13.9 trnL plants >10000* Illumi No 
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y é et al. 
(2013) 

0  na GA 
IIx 

Deer Erickson 
et al.  
(2017) 

N Y 12 >91 71 rbcL plants >10000* MiSeq No 

Large 
herbivo
res 

Kartzinel 
et al. 
(2015) 

Y Y 292 >11
0  

NA trnL, ITS plants >10000* HiSeq Yes 

Ibex 
and 
Goat 

Gebrem
edhin et 
al. 
(2016) 

Y Y 39 >50  NR trnL plants >8000 454 Yes 

 

† For this table Frequency Of Occurrence (FOO) refers to any use of presence/absence data 

‡ For this table Relative Read Abundance (RRA) refers to the use of sequence counts to weight taxa present in 

samples. This includes distance methods such as Bray-Curtis dissimilarity applied to sequence counts. 

§ Taxonomic level of assignments varies between studies, therefore the number of taxa is not directly 

comparable. 

¶ In some cases multiple markers were used, or multiple samples were pooled, making this value Not 

Applicable (NA). NR indicate the number of food taxa per sample was Not Reported. 

ᶲ Most studies report mean number of food taxa sequences recovered per sample, but variance is not usually 

provided. The minimum number was reported in some cases. 

^ Unclear if these sequence counts include non-target DNA such as consumer DNA. 

* The maximum value reported here was 10000 reads per sample.  
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