
Dual Random Utility Maximisation

Paola Manzini∗

University of Sussex and IZA

Marco Mariotti†

Queen Mary University of London

This version: May 2018

Abstract

Many prominent regularities of stochastic choice, such as the attraction, similarity

and compromise effects, are incompatible with Random Utility Maximisation (RUM)

as they violate Monotonicity. We argue that these regularities can be conveniently

represented by a variation of RUM in which utility depends on only two states and

state probabilities are allowed to depend on the menu. We call this model Dual Ran-

dom Utility Maximisation (dRUM). dRUM is a parsimonious model that admits vio-

lations of Monotonicity. We characterise dRUM in terms of three transparent expan-

sion/contraction conditions. We also characterise the important special case in which

state probabilities are constant across menus.
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1 Introduction

In Random Utility Maximisation (RUM) choices are determined by the maximisation of a

utility that depends on stochastic states. RUM satisfies the property of Monotonicity (the

addition of a new alternative cannot increase the probabilities of choice of the existing

alternatives). As a consequence, in spite of its popularity both in theory and applications,

this model suffers from the weakness that it cannot handle a host of prominent regulari-

ties related to violations of Monotonicity.

With a view to expanding the explanatory power of the theory in a tractable way, in

this paper we modify RUM in two ways. First, we allow state probabilities to depend

on the menu. This move immediately makes the model consistent with the regularities.

However, completely unrestricted RUM with menu dependent states is a very permissive

model. Our second assumption, which substantially disciplines the theory while main-

taining the crucial relaxation of Monotonicity, is that the number of states is exactly two.

This particular restriction is motivated -as we detail below- by the ‘binariness’ intrinsic

both in the regularities and in several other cognitive mechanisms or population assump-

tions that have been examined in the literature. We call this model dual RUM (or dRUM

in short).

Our main contribution is a characterisation of the behaviour of a dual random utility

maximiser with a small set of conditions. These conditions are transparent restrictions

on behaviour, and they are structurally similar to standard expansion/contraction ax-

ioms in revealed preference theory - a form of characterisation that at present the RUM

model lacks. As an intermediate step, we also characterise the special case of a menu-

independent dual random utility maximiser. We argue that, while limited as a model of

individual decision making due to the reasons just explained, this special case of RUM

may be of independent interest for certain types of population data.

Several types of behaviour that have been perceived as ‘anomalies’ for the utility max-

imisation model are binary in nature. For example, the ‘similarity’ and ‘attraction’ effects

have received much attention in the psychology and behavioural economics literature.

These effects display a dual form of behaviour, with the switch from one to the other be-
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ing triggered by the presence or absence of a ‘decoy’. We can model such effects naturally

as dual RUM. Analogous considerations apply for the ‘compromise effect’, according to

which the frequency of choice of an alternative jumps upwards when its position switches

from extreme to intermediate in the space of characteristics. We discuss these anomalies

further in section 4.

While it perhaps involves a different cognitive mechanism, a formally similar dual

structure features in the well-rehearsed ‘frog legs’ thought experiment (Luce and Raiffa’s

[27]). Here the logic is that the presence of a specific item a∗ (frog legs in the example)

in a menu triggers the maximisation of a different preference order because a∗ conveys

information on the nature of the available alternatives. Dual RUM generalises this idea to

a probabilistic context, avoiding the extreme assumption that one item is chosen for sure

depending on the availability of a∗.

An attractive aspect of dual RUM is that it captures many other scenarios of interest.

Here are a few examples:

• Dual-self processes. The decision maker may be either in a ‘cool’ state, in which

a long-run utility is maximised, or in a ‘hot’ state, in which a myopic self, sub-

ject to short-run impulses (such as temptation), takes control. Indeed, the menu-

independent version of dRUM appears in the contracting model by Eliaz and Spiegler

[13], and the menu-dependent version describes the implicit second-stage choices of

the dual-self model characterised by Chatterjee and Krishna [5] using preferences

over menus. Correspondingly, our results can be seen as a direct characterisation of

this model in terms of choice from menus.1

• Household decisions. Consider decision units composed of two agents, notably a

household, for which the observer is uncertain about the exact identity of the deci-

sion maker. Household purchases can be observed through standard consumption

data, but typically it is not known which of the two partners made the actual pur-

chase decision on any given occasion. Dual RUM constitutes the basis for a ‘random

1Eliaz and Spiegler [13] do not focus on characterisation but rather explore the rich implications of this

probabilistic notion of naı̈veté in a contract-theoretic framework, where a principal chooses the optimal

menu of contracs to offer to partially naive agents.
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dictatorship’ model of household decisions that could complement the ‘collective’

model (Chiappori [8]; Cherchye, De Rock and Vermeulen [6]).2

• Normativity vs selfishness. Many situations of choice present a conflict between a

‘normative’ mode and a ‘selfish’ mode of decision. This conflict is both introspec-

tively intuitive and consistent with experimental observations, for example in dic-

tator games (Frolich, Oppenheimer and Moore [18]). This dichotomy can refer both

to a typology of individuals and to a single conflicted individual.

In all of these examples, the possible menu dependence of the ranking probabilities is

a compelling feature. In the dual-self interpretation, if the duality of the self is due to

temptation, then the presence of tempting alternatives may increase the probability that

the short-term self is in control - and possibly the more so the more numerous the tempt-

ing alternatives. In the household interpretation, husband and wife may have different

‘spheres of control’, so that menus containing certain items are more likely to be under

the control of a specific partner. Finally, in the individual interpretation of the normative

versus selfish example, the probability of triggering a normative mode may hinge on the

discrepancy between the selfishly optimal choice and the best normative choice that is

available, along the lines of the ‘warm glow’ theory of Cherepanov, Feddersen and San-

droni [7]. On the other hand, if the normative/selfish distinction referred to types in a

population, menu-independent state probabilities would be an appropriate assumption,

as we detail in section 3.

When menu dependence is allowed in RUM, the information contained in stochastic

choice data pertains only to the certainty, possibility or impossibility of an alternative

being chosen. In this sense the properties we consider to characterise dRUM all have a

‘modal’ nature. One new property we introduce is Modal Impact Consistency. It says

that if the addition of an alternative b to a menu A has no modal impact on any other

alternative a (i.e. it neither changes the choice probability of a from one to less than

2de Clippel and Eliaz [9] propose a dual-self model that can be thought of as a model of intra-household

bargaining. Interestingly, this model exhibits the attraction and compromise effects that we study later in

the paper.
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one, nor from greater than zero to zero) then b has zero probability of being chosen from

A ∪ {b}. Observe that the non-modal version of this property is satisfied by standard

RUM: if the addition of an alternative b to a menu A does not affect the choice probability

of any other alternative a, then b has zero probability of being chosen from A ∪ {b}. The

other new property we introduce is Modal Contraction Consistency. It simply says that

if b has a modal impact in a menu A then b has a modal impact in any sub-menu of

A. Again, the non-modal version of this property is satisfied by RUM. Together with

the modal version of Monotonicity, the two properties characterise dual RUM. In sum,

we obtain a characterisation of dual RUM, simply by taking the modal versions of three

properties that are satisfied by any (menu independent) RUM.

This clean axiomatisation contrasts with the situation for RUM. The behaviour cor-

responding to RUM is not very well-understood: RUM is equivalent to the satisfaction

of a fairly complex set of conditions that illuminate the representation rather than pro-

viding a behavioural interpretation (Block and Marschak [3]; Falmagne [16]; Barberá and

Pattanaik [2]).3 For this reason other scholars have focussed on interesting special cases

where additional structure is added, leading to clear behavioural characterisations. Be-

side the classical Luce [26] model and its modern variations (e.g. Gul, Natenzon and

Pesendorfer [21]; Echenique and Saito [12]), among the recent contributions we recall in

particular Gul and Pesendorfer [20], who assume alternatives to be lotteries and prefer-

ences to be von Neumann Morgenstern; Apesteguia, Ballester and Lu [1], who examine,

in an abstract context, a family of utility functions that satisfies a single-crossing condi-

tion; and Lu and Saito [25], who characterise RUM in a intertemporal choice context.

3To elaborate, the Block-Marschak-Falmagne (BMF) conditions require ∑B:A⊆B⊆X (−1)|B\A| p (a, B) ≥ 0

for all menus A and alternative a ∈ A, where p (a, B) is the probability of choosing a from menu B. These

conditions can be easily interpreted only in terms of the representation itself, i.e. as indicating certain

features of the probabilities of the rankings. As noted by Fiorini [17], they come from a re-statement of the

RUM model as p (a, A) = ∑B:A⊆B⊆X q (a, B), where q is the probability that a is ranked top in B and not in

any of the supersets of B. Solving this equation for q in terms of p via Moebius inversion yields the terms

of the BMF conditions, which then simply assert the non-negativity of the ranking probabilities q.
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2 Preliminaries

Let X be a finite set of n ≥ 2 alternatives. The nonempty subsets of X are called menus.

Let D be the set of all nonempty menus.

A stochastic choice rule is a map p : X ×D → [0, 1] such that: ∑a∈A p (a, A) = 1 for all

A ∈ D; p (a, A) = 0 for all a /∈ A; and p (a, A) ∈ [0, 1] for all a ∈ A, for all A ∈ D.

The value p (a, A) may be interpreted either as the probability with which an individual

agent (on whose behaviour we focus) chooses a from the menu A, or as the fraction of a

population choosing a from A.

In Random Utility Maximisation (RUM) a stochastic choice rule is built by assuming

that there is probabilistic state space and a state dependent utility which is maximised

in the realised state. Provided that the event that two alternatives have the same realised

utility has probability zero, RUM can be conveniently described in terms of random rank-

ings (see e.g. Block and Marschak [3]), which we henceforth do. A (strict) ranking of X

is a bijection r : {1, ..., n} → X. Let R be the set of all rankings. The image of r ∈ R is

interpreted as describing alternatives in decreasing order of preference: r (1) is the most

preferred alternative, r (2) the second most preferred, and so on.

LetR (a, A) denote the set of rankings for which a is the top alternative in A, that is,

R (a, A) =
{

r ∈ R : r−1 (b) < r−1 (a)⇒ b /∈ A
}

.

Let µ be a probability distribution onR. A RUM is a stochastic choice rule p such that

p (a, A) = µ (R (a, A))

A dual RUM (dRUM) is a RUM that uses only two rankings and such that, in addition,

the probabilities of the rankings may depend on the menu to which they are applied. That

is, a dRUM is a stochastic choice rule p for which there exists a triple (r1, r2, α̃), where r1

and r2 are rankings on X and α̃ : 2X\∅→ (0, 1) is a function that for each menu A assigns

probabilities α̃ (A) to r1 and 1− α̃ (A) to r2, such that for all A:

p (a, A) = α̃ (A) 1R(a,A) (r1) + (1− α̃ (A)) 1R(a,A) (r2)

where 1K denotes the indicator function for a set K.
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A Menu-independent dRUM (idRUM) is a dRUM for which there exists an α such that

α̃ (A) = α for all menus A. An idRUM p is thus identified by a triple (r1, r2, α) of two

rankings and a number α ∈ (0, 1).

In the previous definition say that (r1, r2, α̃) and (r1, r2, α) generate p. To ease notation,

from now on given rankings ri, i = 1, 2, we shall write a �i b instead of r−1
i (a) < r−1

i (b).

3 Menu-independent dRUM

It is convenient to study first the menu independent version of the model, as we de-

velop here the key tools for the characterisation of the general case. As we shall see,

the latter is tightly linked to the α = 1
2 case of idRUM. Although it must satisfy Mono-

tonicity, idRUM is nevertheless of some interest since menu independence is likely to

hold in many situations where stochastic choices describe random draws from a popu-

lation rather than individual (or household) level decisions. idRUM in this case repre-

sents the variability of choice due to a binary form of hidden population heterogeneity. The

states correspond to two types of individuals in the population. We have already argued

that menu-independence is an appropriate assumption in the population interpretation

of the normativeness/selfishness example of the Introduction. Several other interesting

examples of this kind of binary heterogeneity have been considered in the literature: the

population may be split, in unknown proportions, into high and low cognitive ability,

strategic and non-strategic, ‘fast and slow’ or ‘instinctive and contemplative’ types (e.g.

Caplin and Martin [4]; Gill and Prowse [19]; Proto, Rustichini and Sofianos [34]; Rubin-

stein [35],[36]).4

Say that b impacts a in A whenever p (a, A) > p (a, A ∪ {b}) (Manzini and Mariotti

[28]). The following four conditions are observable implications of idRUM:

Monotonicity: If a ∈ A ⊂ B then p (a, A) ≥ p (a, B).

Contraction Consistency: If b impacts a in A and B ⊂ A, then b impacts a in B.

4Caplin and Martin [4] are distinctive in that they consider agents who can choose whether to make

automatic (fast) or considered (slow) choices, depending on an attentional cost.
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Impact Consistency: If, for all a ∈ A, b does not impact a in A then p (b, A ∪ {b}) = 0.

Negative Expansion: If a ∈ A and p (a, A) < p (a, B) < 1 then p (a, A ∪ B) = 0.

The first three conditions are satisfied by any RUM. Monotonicity is standard.

Contraction Consistency is a new condition and says that impact is inherited from

menus to sub-menus. It is a stochastic generalisation of a property that holds for deter-

ministic choice functions that maximise a partial ordering. In that case, if b impacts a (i.e.

turns a from chosen to unchosen) in a menu A then (1) b is higher than a in the ordering

and (2) a is a maximal alternative in A (otherwise it would not be chosen from A and it

could not be impacted by b). It thus follows that a continues to be chosen in a subset B of

A, and that b continues to impact a in B.

Impact Consistency holds generally for random utility maximisation because if b does

not impact any other alternative in a menu, it cannot be a predecessor, in any ranking,

of any alternative that is chosen with positive probability (and which therefore is at the

top of some ranking). Thus b must be chosen with zero probability when added to the

menu. Impact Consistency is redundant for the characterisation below (it is implied by

Monotonicity), but we will need to impose explicitly a version of it in the characterisation

of dRUM.

Finally, Negative Expansion does not necessarily hold in any RUM, and is a strong

form of menu-independence condition. Under the model, different frequencies of choice

for a in two menus reveal (given that they are less than unity) that in one menu a was not

supported by one group, and in the other menu a was not supported by the other group.

Therefore, if the reasons for support are menu-independent, no group supports a when

the menus are merged.

The interplay of Monotonicity and Negative Expansion yields the binary structure of

the model. If they are satisfied, in any menu there are at most two alternatives receiving

positive choice probability, and furthermore the possible probability values do not change

across menus.

Lemma 1. Let p be a stochastic choice rule that satisfies Monotonicity and Negative Expansion.

Then for any menu A, if p (a, A) ∈ (0, 1) for some a ∈ A there exists b ∈ A for which p (b, A) =
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1− p (a, A).

Proof: Suppose by contradiction that for some menu A there exist b1, ..., bn ∈ A such

that n > 2 and p (bi, A) > 0 for all i. Then, for all i < n, p (bi, {b1, ..., bn−1}) ≥ p (bi, A)

by Monotonicity, with strict inequality for some i since p (bn, A) > 0. Fixing such an i

and noting that p (bi, {b1, ..., bn−1}) < 1 and p (bi, A) < 1, Negative Expansion yields the

contradiction p (bi, A) = 0 . �

Lemma 2. Let p be a stochastic choice rule that satisfies Monotonicity and Negative Expansion.

Then there exists α ∈ (0, 1) such that, for any menu A and all a ∈ A, p (a, A) ∈ {0, α, 1− α, 1}.

Proof: The case p (a, A) = 1 for all A for some a is trivial. Then take A for which p (a, A) =

α ∈ (0, 1) for some a. By Lemma 1 there exists exactly one alternative b ∈ A for which

p (b, A) = 1 − α. Note that by Monotonicity p (a, {a, c}) ≥ α for all c ∈ A\ {a} and

p (b, {b, c}) ≥ 1− α for all c ∈ A\ {b}.

Now suppose by contradiction that there exists a menu B and a c ∈ B for which

p (c, B) = β /∈ {0, α, 1− α, 1}. By Lemma 1 there exists exactly one alternative d ∈ B for

which p (d, B) = 1− β.

Consider the menu A∪B. By Monotonicity p (e, A ∪ B) = 0 for all e ∈ (A ∪ B) \ {a, b, c, d}.

Moreover, by Lemma 1 p (e, A ∪ B) = 0 for some e ∈ {a, b, c, d}, and w.l.o.g., let p (a, A ∪ B) =

0.

If p (b, A ∪ B) > 0 then by Monotonicity and Negative Expansion p (b, A ∪ B) = 1− α

(if it were p (b, A ∪ B) < 1− α, then p (b, A ∪ B) 6= p (b, A) with p (b, A ∪ B) , p (b, A) < 1,

so that Negative Expansion would imply the contradiction p (b, A ∪ B) = 0). It follows

from Lemma 1 that either p (c, A ∪ B) = α or p (d, A ∪ B) = α. In the former case,

since α > 0 a reasoning analogous to the one followed so far implies that p (c, A ∪ B) =

p (c, B) = β, contradicting α 6= β; and in the latter case we obtain p (d, A ∪ B) = p (d, B) =

1− β, contradicting α 6= 1− β.

The proof is concluded by reaching analogous contradictions starting from p (c, A ∪ B) >

0 and p (d, A ∪ B) > 0. �

The main result in this section says that three of the necessary properties we have

considered are also sufficient for the representation.
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Theorem 1. A stochastic choice rule is an idRUM if and only if it satisfies Monotonicity, Negative

Expansion and Contraction Consistency.

We have derived from more fundamental properties the fact that in a menu-independent

dRUM alternatives can be chosen from any menu with only two fixed non-degenerate

choice probabilities α and 1− α. One may wonder whether a characterisation can be ob-

tained by simply postulating directly that there exists α ∈ (0, 1), such that for all A ⊆ X

and a ∈ A, p (a, A) ∈ {0, α, 1− α, 1}. This “range” property would certainly not be very

satisfactory as an axiom at the theoretical level, since it would be very close to the rep-

resentation, with the same binary flavour, without providing any insights in the choice

procedure. Nevertheless, it could serve as a step for a practical test of the theory, since

its validity should be easily detectable from the data. As it turns out, the range property

and Monotonicity are anyway not sufficient to ensure that the data are generated by an

idRUM: they must still be disciplined by further across-menu consistency properties. Ta-

ble 1 presents a stochastic choice rule p that satisfies the range property and Monotonicity

(and even Constant Expansion) but is not an idRUM.

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

a 0 2
3

1
3 0 − 2

3
2
3

1
3 − − −

b 0 0 0 − 0 1
3 − − 2

3
1
3 −

c 1
3

1
3 − 1

3
1
3 − 1

3 − 1
3 − 1

3

d 2
3 − 2

3
2
3

2
3 − − 2

3 − 2
3

2
3

Table 1 A Stochastic Choice Rule that fails Negative Expansion

That p is not an idRUM follows from Theorem 1 and the fact that p fails Negative

Expansion (e.g. p (a, {a, b}) = 2
3 6=

1
3 = p (a, {a, d}) while p (a, {a, b, d}) > 0).

There is a subtle relation between the case α = 1
2 of the menu-independent version of

our theory and the deterministic “top-and-the-top” (TAT) model studied in Eliaz, Richter

and Rubinstein [14]. A TAT is a choice procedure in which the agent uses two ordering

and deterministically picks all the alternatives in a menu that are top in at least one of

the two orderings. While we are dealing with a stochastic procedure, when the order-
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ings have the same probabilities (α = 1
2 ) the resulting probabilities of choice are unin-

formative in distinguishing the orderings: the only information they give concerns their

support (whereas when α 6= 1
2 the orderings can be told apart as an α-ordering and an

(1− α)-ordering). So, in this special case the stochastic choice function contains in fact

the same information on the rankings as a TAT. Note, however, the important point that

of course our axioms do not only characterise the special case. The generic situation they

characterise is for α 6= 1
2 . This case has no equivalent in the deterministic procedure, as it

contains strictly more information.5

4 General dRUM

Compared to a menu independent dRUM, in a general dRUM the specific magnitudes

of choice probabilities, which depend on the menu in an unrestricted way, do not carry

any information beyond the possibility, the impossibility and the certainty of the event in

which an alternative is chosen. In this sense they are ‘modal’.6 In particular dRUM fails

Monotonicity. But it is precisely this feature that gives the model its additional descriptive

power.

Say that b modally impacts a in A if

p (a, A) > 0 and p (a, A ∪ {b}) = 0

or p (a, A) = 1 and p (a, A ∪ {b}) ∈ (0, 1)

That is, b modally impacts a if adding b transforms the choice of a from possible (including

certain) to impossible or from certain to merely possible.

The following properties are the modal versions of the properties seen before, and are

clearly necessary for dRUM:

5The key property used by Eliaz, Richter and Rubinstein [14] to characterise TAT says that if an a is

chosen from two menus A and B and also from A ∩ B, and if the choice from A ∩ B consists of exactly two

elements, then a is chosen from A ∪ B. In addition their axiomatisation also includes a direct assumption

on the number of chosen alternatives.
6‘Mode’ and ‘modal’ are meant here and elsewhere in the logical and not statistical meaning.
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Modal Monotonicity: Let a ∈ B ⊂ A. (i) If p (a, B) = 0 then p (a, A) = 0. (ii) If p (a, A) =

1 then p (a, B) = 1.

Modal Contraction Consistency: If b modally impacts a in A and B ⊂ A, then b modally

impacts a in B.

Modal Impact Consistency: If b does not modally impact a in A for all a ∈ A then

p (b, A ∪ {b}) = 0.

Modal Negative Expansion: If a ∈ A, p (a, A) = 0 and p (a, B) ∈ (0, 1) then p (a, A ∪ B) =

0.

Modal Monotonicity says that, after alternatives are removed from a menu, any al-

ternative that was possibly chosen and is still feasible remains possibly chosen (includ-

ing certainly chosen), and any alternative that was certainly chosen and is still feasible

remains certainly chosen. Thus, Modal Monotonicity only excludes certain types of ‘ex-

treme’ menu dependence, whereby the composition of the menu does not only affect the

numerical values of the probabilities of choice, but the very possibility of choice.

Modal Contraction Consistency and Modal Negative Expansion are straightforward

modal analogs of the corresponding axioms seen previously. The latter property has very

little bite in this context and is implied by the other axioms.

As previously observed, the analog of Modal Impact Consistency holds in the menu-

independent model, and indeed in any RUM. Observe that (unlike for the other axioms)

the modal version is stronger, as it states its conclusion from a weaker premise.

We will show that the first, third and fourth properties are sufficient as well as neces-

sary. To do in a simple way, we exploit a relationship that exists between dRUMs and the

α = 1
2 case of menu independent dRUMs. One can associate with each p another stochas-

tic choice rule p̂ that is an idRUM if and only if p is a dRUM. This trick allows us to rely

on the previous results, by ‘translating’ the properties for that case to the modal context.

As in the previous theorem, we avoid any assumption explicitly relating to the cardi-

nality of the support of p. So we first prove a lemma analogous to Lemma 1. Say that a

stochastic choice rule p is binary whenever it assigns positive probability to at most two
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elements in any menu (i.e. for any menu A, if p (a, A) ∈ (0, 1) for some a ∈ A then there

exists b ∈ A for which p (b, A) = 1− p (a, A)). The interplay of Modal Monotonicity and

Modal Impact Consistency yields binariness.

Lemma 3. Let p be a stochastic choice rule that satisfies Modal Monotonicity and Modal Impact

Consistency. Then p is binary.

Proof: Suppose by contradiction that for some menu A there exist b1, ..., bn ∈ A such that

n > 2, p (bi, A) > 0 for all i = 1, ...n and ∑n
i=1 p (bi) = 1. By Modal Monotonicity we

have both p (bi, {b1, ..., bn−1}) > 0 for all i = 1, ..., n− 1 and p (bi, {b1, ..., bn}) > 0 for all

i = 1, ..., n. Then bn does not modally impact any bi ∈ {b1, ..., bn−1}, contradicting Modal

Impact Consistency. �

Theorem 2. A stochastic choice rule is a dRUM if and only if it satisfies Modal Monotonicity,

Modal Contraction Consistency and Modal Impact Consistency.

Proof. Necessity is obvious. For sufficiency, associate with any stochastic choice rule p

another stochastic choice rule p̂ defined as follows. For all menus A and a ∈ A:

p̂ (a, A) = 1⇔ p (a, A) = 1

p̂ (a, A) =
1
2
⇔ 1 > p (a, A) > 0

p̂ (a, A) = 0⇔ p (a, A) = 0

If p satisfies Modal Monotonicity and Modal Impact Consistency, by Lemma 3 it is binary

and so p̂ always exists and is defined uniquely, but it is not necessarily an idRUM. When-

ever p̂ is an idRUM, say generated by some
(

r1, r2, 1
2

)
, then p is a dRUM generated by

(r1, r2, α̃), where α̃ is defined so that for any A such that p (a, A) > 0 and p (b, A) > 0 for

distinct a and b, α̃ (A) = p (a, A) and 1− α̃ (A) = p (b, B) (up to relabeling). Therefore, in

view of Theorem 1, for p to be a dRUM it is sufficient that it is binary and that p̂ satisfies

Monotonicity, Negative Expansion and Contraction Consistency. We now verify that p̂

satisfies these axioms whenever p satisfies the axioms in the statement. Since Lemma 3

has shown that the axioms imply binariness, this will prove the theorem.

Step 1. p̂ satisfies Monotonicity.
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Let A ⊂ B. If p̂ (a, B) = 0 then Monotonicity cannot be violated. If 0 < p̂ (a, B) < 1

then p̂ (a, B) = 1
2 , so that p (a, B) > 0 and hence by (i) of Modal Monotonicity p (a, A) > 0.

Then p̂ (a, A) ∈
{

1
2 , 1
}

, satisfying Monotonicity. Finally if p̂ (a, B) = 1 then p (a, B) = 1,

so that by (ii) of Modal Monotonicity p (a, A) = 1, and then p̂ (a, A) = 1 as desired.

Step 2. p̂ satisfies Negative Expansion.

If p̂ (a, A) < p̂ (a, B) < 1 it must be p̂ (a, A) = 0 and p̂ (a, B) = 1
2 , and therefore

p (a, A) = 0. If p (a, A ∪ B) > 0 then (i) of Modal Monotonicity is violated. Therefore

p (a, A ∪ B) = 0 and thus p̂ (a, A ∪ B) = 0 as desired.

Step 3. p̂ satisfies Contraction Consistency.

Suppose that b impacts a in A, that is p̂ (a, A) > p̂ (a, A ∪ {b}). This means that either

p̂ (a, A) ∈
{

1
2 , 1
}

and p̂ (a, A ∪ {b}) = 0, or p̂ (a, A) = 1 and p̂ (a, A ∪ {b}) = 1
2 . There-

fore either p (a, A) ∈ (0, 1] and p (a, A ∪ {b}) = 0, or p (a, A) = 1 and p (a, A ∪ {b}) ∈

(0, 1). Let B ⊂ A. Then by Modal Contraction Consistency either p (a, B) > 0 and

p (a, B ∪ {b}) = 0, or p (a, B) = 1 and p (a, B ∪ {b}) ∈ (0, 1). This means that either

p̂ (a, B) ∈
{

1
2 , 1
}

and p̂ (a, B ∪ {b}) = 0, or p̂ (a, B) = 1 and p̂ (a, B ∪ {b}) = 1
2 , so that in

either case b impacts a in B.

Aside from testing purposes, our characterisation, like all revealed preference style

characterisations helps understand the theory by giving a succinct but exhaustive pic-

ture of it in terms of constraints on behaviour (as opposed to on the cognitive process,

encapsulated in the representation, that is assumed to underlie behaviour). These con-

straints are about the ‘comparative statics’ of merging or contraction of menus and are

not immediately related to the representation.7

As discussed in the Introduction, being able to accommodate violations of Monotonic-

ity is a desirable feature of a stochastic theory of choice. In particular, marketers use a

number of strategies to manipulate the attractiveness or otherwise of alternatives. The

7An empirical test using our axioms would of course need to treat statistically the assertions that prob-

abilities of choice are equal or different to certain values. Exactly the same need arises in any other charac-

terisation of stochastic choice models: for example, in the case of the classical Luce/logit model [26], which

is characterised by a single axiom asserting the equality between two probability ratios. See McCausland

and Marley [30] and McCausland, Davis-Stober, Marley, Park and Brown [31] for a thorough approach to

the Bayesian testing of stochastic choice conditions.
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attraction effect (also known as the ‘asymmetric dominance’ effect, see Huber, Payne and

Puto [22], Huber and Puto [23]) refers to the fact that the choice frequency of a target al-

ternative t increases when a new decoy alternative d is introduced in a menu, with the

property that the d is markedly worse than the target t, while incomparable to a third

(‘other’) alternative, o. This ranking is generally induced by presenting alternatives as

described in two desirable attributes/dimensions: while the ranking between t and o in

one dimension is reversed in the other, d is Pareto dominated by t but Pareto incompa-

rable to o. The compromise effect instead refers to the introduction of a different type of

decoy, which has the highest degree of one attribute and the lowest of another in such a

way that t is now ‘middle ranking’.

However, subsequent research has identified various other strategies to increase t’s

choice probability: the decoy may be Pareto dominated by both t and o, or may Pareto

dominate the target but be unavailable for choice (i.e. ‘phantom’ decoy), and so on. The

compromise and attraction effects are just members of a larger family.

All these effects are easy to accommodate in our setup, by supposing that there are two

rankings�i such that t �1 o �1 d and o �2 t �2 d, and that the introduction of d increases

the probability of ranking �1. The advantage of this way of modelling the phenomenon

is that the mechanism holds regardless of the type of decoy that is introduced, whether

it is a phantom alternative, or one that induces compromise, or an asymmetrically domi-

nated alternative, and so on. The structure of our model is consistent with the fact that the

target alternative is made more appealing not by improvements to it, but simply by fram-

ing, without taking a stance on the exact causal mechanism at play. For example, in the

compromise effect it is hard to tell whether what is behaviourally a compromise-seeking

attitude really reflects a compromise seeking psychology. Indeed, Mochon and Frederick

[32] find experimentally that an order effect could be a more plausible explanation for the

‘compromise effect’: the alternative presented as second seems more salient in the choice

between three items, regardless of its attributes. Menu-dependent probabilities of two

orderings is a catch-all concept that gathers whatever factors, psychological or of other

nature, affect choice. The model nevertheless allows the researcher to derive general the

comparative statics conclusions (described by the axioms).
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We conclude the section by noting that dRUM is also consistent with violations of

Weak Stochastic Transitivity (which says that if p (a, {a, b}) ≥ 1
2 and p (b, {b, c}) ≥ 1

2 , then

p (a, {a, c}) = 1
3 ≥

1
2 ). For example take p (a, {a, b}) = p (a, {a, b, c}) = p (b, {b, c}) = 2

3 ,

p (a, {a, c}) = 1
3 = p (b, {a, b, c}). Then p violates Weak Stochastic Transitivity but it is

a dRUM generated by a �1 c �1 b, b �2 c �2 a, α̃ ({a, b}) = α̃ ({a, b, c}) = 2
3 and

α̃ ({b, c}) = α̃ ({a, c}) = 1
3 . Recent evidence of violations of Weak Stochastic Transitivity

can be found in Li and Loomes [24], who examine preferences over date-outcome pairs. In

this domain, a dual type of behaviour may be viewed as natural, since the two dimensions

in the objects of choice -time and reward- can attract attention with different probabilities

according to the binary comparison that is being made.

5 Identification

To understand the identification issues in the models we have studied, start from the

generic case of idRUM in which α 6= 1
2 (or equivalently, in which p (A) 6= 1

2 for all A). In

this case identification is straightforward. Suppose that p is generated by some (r1, r2, α)

with α 6= 1− α. Then it is easily checked that r1 and r2 must satisfy:

a �1 b⇔ p (a, {a, b}) ∈ {α, 1}

a �2 b⇔ p (a, {a, b}) ∈ {1− α, 1}

Thus, up to a relabelling, the rankings can be uniquely inferred from any dRUM when

α 6= 1
2 .

This uniqueness feature is lost for idRUM when α = 1
2 , and therefore it is also lost

for dRUM, which as we have seen is equivalent -as far as the information provided by

choices about rankings is concerned- to the α = 1
2 idRUM case. For example consider the

idRUM p generated by
(

r1, r2, 1
2

)
with

a �1 b �1 c �1 d

b �2 a �2 d �2 c
(1)
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The same p could be alternatively generated by
(

r′1, r′2, 1
2

)
with

a �′1 b �′1 d �′1 c

b �′2 a �′2 c �′2 d
(2)

On the other hand, if these rankings had fixed probabilities α and 1− α with α 6= 1
2 , one

could tell the two possibilities apart by observing whether p (d, {c, d}) = p (a, {a, b}) or

p (d, {c, d}) = p (b, {a, b}).

However, we are going to argue that the informational disadvantage of general dRUM

compared to idRUM with α 6= 1
2 is less than it may appear at first sight.

Non-uniqueness of the rankings in dRUM stems from the following mechanism. Given

the rankings r1 and r2, the set of alternatives can always be partitioned as X = A1 ∪ ... ∪

An such that if a ∈ Ak, b ∈ Al and k < l, then a �i b for i = 1, 2 (if no finer partition exists,

take n = 1 and A1 = X). Now, if the partition is not trivial, construct two new rankings

r′1 and r′2 in the following manner. Fixing an Ak, for all a, b ∈ Ak set a �i b if and only if

a �j b, i 6= j, while for all other cases r′1 and r′2 coincide with r1 and r2 (i.e. r′1 and r′2 swap

the sub-rankings within Ak). Then it is clear that the probabilities generated by
(

r′1, r′2, 1
2

)
are the same as those generated by

(
r1, r2, 1

2

)
. Applying the process to any subset of cells

generates other equivalent representations.

It may seem that if the partition of X in A1 ∪ ... ∪ An contains many cells, this con-

struction generates a large variety of representations consistent with the same p, yielding

a serious identification problem. But in fact any two representations must be rather tightly

related, as we now show.

Given a ranking of X and A ⊂ X, the restriction of r to A, denoted rA, is the map

rA : {1, ..., |A|} → A such that
(
rA)−1

(a) <
(
rA)−1

(b) ⇔ r−1 (a) < r−1 (b) for all

a, b ∈ A.

Definition 1. Two pairs of rankings (r1, r2) and (s1, s2) are equivalent if{(
rA

1

)−1
(a) ,

(
rA

2

)−1
(a)
}

=

{(
sA

1

)−1
(a) ,

(
sA

2

)−1
(a)
}

for all A ⊆ X and a ∈ A.
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The type of information that is relevant in this definition of equivalence is in state-

ments of the type “In a given menu, for both pairs of rankings, a is placed second by one

ranking and fifth by the other ranking”, without specifying which of the two rankings, in

each pair, places a first and which one places a fifth. All that matters is the set of positions,

second and fifth.

Observe that the specification “for all A” restricts substantially the extent to which

pairs of rankings can be equivalent. However two pairs of rankings might satisfy the

condition on some A but not in some subset of A. The two pairs of rankings in (1) and (2)

are equivalent. On the other hand take

a �1 c �1 b �1 d

b �2 d �2 a �2 c

and
a �′1 d �′1 b �′1 c

b �′2 c �′2 a �′2 d

In A = {a, b, c, d} the primed and the unprimed rankings place each alternative in the

same set of positions: a is first and third in both the primed and the unprimed ranking, b

is first and third, and so on. However, the restrictions of the unprimed rankings to the set

B = {a, c, d} place d first and third in B, whereas the restrictions of the primed rankings

place instead d second and third in B. Therefore the pairs of rankings are not equivalent.

Note that the idRUMs generated by these rankings with α = 1
2 are different: e.g. (in

obvious notation) p (a, {a, d}) = 1
2 and p′ (a, {a, d}) = 1.

Definition 2. Suppose that
(

r1, r2, 1
2

)
generates p. Then

(
s1, s2, 1

2

)
also generates p if and

only if (r1, r2) and (s1, s2) are equivalent.

Proof. Suppose that (r1, r2) and (s1, s2) are equivalent. Denote p and q the idRUMs gener-

ated by
(

r1, r2, 1
2

)
and

(
s1, s2, 1

2

)
, respectively. If an alternative a is ranked top in a menu

A by ri, then given the equivalence condition a must be ranked top in A by s1 or by s2. So

if p (a, A) > 0, we have p (a, A) = q (a, A), and the adding-up constraint on probabilities

implies that also q (a, A) = 0 for all a for which p (a, A) = 0. This shows that p = q.

Conversely, suppose that
(

r1, r2, 1
2

)
and

(
s1, s2, 1

2

)
generate the same p. Suppose that

there exist A and a ∈ A for which
{(

rA
1
)−1

(a) ,
(
rA

2
)−1

(a)
}
6=
{(

sA
1
)−1

(a) ,
(
sA

2
)−1

(a)
}

.
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Then there must exist b ∈ A for which
(
rA

i
)−1

(b) <
(
rA

i
)−1

(a) for some i and
(

sA
j

)−1
(b) >(

sA
i
)−1

(b) for j = 1, 2. Therefore
(

r1, r2, 1
2

)
and

(
s1, s2, 1

2

)
cannot generate the same prob-

abilities on {a, b}, a contradiction, and we conclude that (r1, r2) and (s1, s2) are equivalent.

In conclusion, the type of information on rankings contained in a dRUM (or in an

idRUM with α = 1
2 ) is not so different from that contained in the apparently more precise

idRUMs with α 6= 1
2 . In contexts where it matters knowing in which specific ranking an

alternative appears in a given position (e.g., in the “normative” or in the “temptation”

ranking), the identification of the meaning of the two rankings must in any case come

from extra-choice information. In the case α 6= 1
2 , even if for example we could identify

exactly that the two second-ranked alternatives overall are a and b in the rankings labeled

r1 and r2, respectively, we still would not be able to tell from choices alone whether a is

second in the normative rather than the temptation ranking, just as for general dRUMs.

On the other hand, when the two rankings in a dRUM can be treated “anonymously” and

they are of equal importance, all that matters is the aggregate ranking obtained from the

two rankings by means of some ordinal aggregation method - such as the Borda rule - and

once again the information contained in a general mdRUM is equivalent to that contained

in an idRUM with α 6= 1
2 .

6 Concluding remarks

The model we have studied, in which only two alternatives receive positive probability in

each menu, are of course a theoretical idealisation. In practice, an empirical distribution

roughly conforming to the theory will appear to be strongly bimodal, expressing polarised

preferences in society or within an individual. Evidence of bimodal distributions in indi-

vidual and collective choice is found in a variety of contexts.8

8E.g. Frolich, Oppenheimer and Moore [18] and Dufwenberg and Muren [11] (choices in a dictator

games concentrated on giving nothing or 50/50), Sura, Shmuelib, Bosec and Dubeyc [37] (bimodal distri-

butions in ratings, such as Amazon), Plerou, Gopikrishnan, and Stanley [33] (phase transition to bimodal

demand “bulls and bears”- in financial markets), Engelmann and Normann [15] (bimodality on maximum
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The following two issues, one theoretical and the other empirical, seem interesting to

us for future research:

• Can we obtain appealing behavioural characterisations of random utility maximi-

sation with at most k states, with 2 < k ≤ n!?

• As noted in the introduction, bimodal choice distributions (of which the theory in

this paper is a theoretical idealisation) are relatively common empirically. What

type of econometric specification is best suited to treat this type of distributions

when generated by the model?9
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g (x) = p f1 (x) + (1− p) f2 (x) of two unimodal distributions f1 and f2 (e.g. Gumbel or log-normal) is

bimodal.

20



[5] Chatterjee, Kalyan, and R. Vijay Krishna (2009) “A “Dual Self" Representation for

Stochastic Temptation" , American Economic Journal: Microeconomics, 1(2):148-67.

[6] Cherchye, Laurens, Bram De Rock and Frederic Vermeulen (2007) “The collective

model of household consumption: a nonparametric characterization”, Econometrica,

75: 553-574.

[7] Cherepanov, Vadim, Tim Feddersen and Alvaro Sandroni (2013), “Revealed prefer-

ences and aspirations in warm glow theory”, Economic Theory 54(3): 501-535.

[8] Chiappori, Pierre-Andre. (1988) “Rational household labor supply”, Econometrica,

56: 63-89.

[9] de Clippel, Geoffroy and Kfir Eliaz (2012) “Reason-based choice: a bargaining ratio-

nale for the attraction and compromise effects”, Theoretical Economics 7: 125–162.
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Appendices

A Independence of the axioms - Theorem 1

The stochastic choice rules in cases B.2 and B.3 are not dRUM since they take on more

than two interior values.

B.1: Monotonicity and Negative Expansion, but not Contraction Consistency

See example in Table 7 below.

B.2: Monotonicity and Contraction Consistency, but not Negative Expansion

{a, b, c} {a, b} {a, c} {b, c}

a 1
3

2
3

1
2 −

b 1
3

1
3 − 2

3

c 1
3 − 1

2
1
3

Table 2

B.3: Negative Expansion and Contraction Consistency, but not Monotonicity

{a, b, c} {a, b} {a, c} {b, c}

a 1 0 1
2 −

b 0 1
3 − 2

3

c 0 − 1
2

1
3

Table 3

B Independence of the axioms - Theorem 2

C.1: Modal Monotonicity (i) and (ii), Modal Contraction Consistency but not Modal

Impact Consistency
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The stochastic choice rule in Table 4 cannot be dRUM since in {a, b, c} three alterna-

tives are chosen with positive probability, which cannot be all at the top of two rankings.

{a, b, c} {a, b} {a, c} {b, c}

a 1
3

1
2

1
2 −

b 1
3

1
2 − 1

2

c 1
3 − 1

2
1
2

Table 4

C.2: Modal Monotonicity (i), Modal Impact Consistency, Modal Contraction Consis-

tency but not Modal Monotonicity (ii)

The stochastic choice rule in Table 5 cannot be dRUM since on the one hand p (a, {a, b, c}) =

1 implies that a is the top alternative in both rankings, while p (b, {a, b}) > 0 would re-

quire b to be above a in at least one ranking.

{a, b, c} {a, b} {a, c} {b, c}

a 1 1
2 1 −

b 0 1
2 − 1

2

c 0 − 0 1
2

Table 5

C.3: Modal Monotonicity (ii), Modal Impact Consistency, Modal Contraction Consis-

tency but not Modal Monotonicity (i)

The stochastic choice rule in Table 6 cannot be a mdRUM since p (b, {a, b}) = 1 re-

quires b to be above a in both rankings, while p (a, {a, b, c}) > 0 would require a to be

above b in at least one ranking.

C.4: Modal Monotonicity (i) and (ii), Modal Impact Consistency, but not Modal Con-

traction Consistency
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{a, b, c} {a, b} {a, c} {b, c}

a 1
2 0 1 −

b 1
2 1 − 1

2

c 0 − 0 1
2

Table 6

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

a 0 1
2

1
2 0 − 1

2
1
2

1
2 − − −

b 0 0 0 − 0 1
2 − − 1

2
1
2 −

c 1
2

1
2 − 1

2
1
2 − 1

2 − 1
2 − 1

2

d 1
2 − 1

2
1
2

1
2 − − 1

2 − 1
2

1
2

Table 7

Suppose that the example in Table 7 is dRUM. Then p (a, {a, b, c, d}) = 0 and p (a, {a, b, c}) =
1
2 imply that d is an immediate predecessor of a in one of the two rankings on {a, b, c, d}.

This must remain the case when the rankings are restricted to {a, b, d}, yet p (a, {a, b, d}) =
1
2 = p (a, {a, b}) imply that d is not an immediate predecessor of a in {a, b, d} in either

ranking.

C Proof of Theorem 1

Necessity is straightforward, so we only show sufficiency.10

Preliminaries and outline Let p satisfy Monotonicity, Negative Expansion and Contrac-

tion Consistency. The proof consists of several blocks. We define an algorithm to con-

struct two rankings r1 and r2 explicitly (block 1). Next, we show that the algorithm is

well defined (block 2), and finally we show that r1 and r2 so constructed retrieve p (block

3).

10An alternative indirect proof to the constructive one presented here shows that our conditions imply

the Block Marschak Falmagne conditions for a RUM, which in conjuction with the Lemmas implies the

result. Such a proof is available from the authors upon request.
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1. Algorithm to construct the two rankings.

Let a, b ∈ X be such that p (a, X) , p (b, X) > 0 (where possibly a = b). Enumerate the

elements of the rankings r1 and r2 to be constructed by r1 (i) = xi and r2 (i) = yi for

i = 1, ...n. Set x1 = a and y1 = b .

The rest of the rankings r1 and r2 for i ≥ 2 are defined recursively. Let

L1
i = X \

i−1⋃
j=1

xj

Next, define the set Si of alternatives that are impacted by xi−1 in L1
i :

Si =
{

s ∈ L1
i : p

(
s, L1

i

)
> p

(
s, L1

i ∪ {xi−1}
)}

where observe that by lemmas 1 and 2 we have 0 < |Si| ≤ 2.

If Si = {c} for some c ∈ X, then let xi = c.

If |Si| = 2, then let Si = {c, d} with c 6= d and consider two cases:

(1.i) p
(
c, L1

i
)
> p

(
c, L1

i ∪
{

xj
})

(resp., p
(
d, L1

i
)
> p

(
d, L1

i ∪
{

xj
})

) for all j = 1, ...i− 1 and

p
(
d, L1

i
)
= p

(
d, L1

i ∪
{

xj
})

(resp., p
(
c, L1

i
)
= p

(
c, L1

i ∪
{

xj
})

) for some j ∈ {1, ..., i− 2}

(that is, one alternative is impacted by all predecessors xj in L1
i while the other alternative

is not).

In this case let xi = c (resp., xi = d).

(1.ii) p
(
c, L1

i
)
> p

(
c, L1

i ∪
{

xj
})

and p
(
d, L1

i
)
> p

(
d, L1

i ∪
{

xj
})

for all j = 1, ...i− 1 (both

alternatives are impacted by all predecessors xj in L1
i ).

In this case, if there is s ∈ Si such that p
(
s, L1

i
)
= p

(
xj, L1

j

)
6= 1 for some j < i, let

xi = s. Otherwise, let xi = c (where note that by construction p
(

xj, L1
j

)
> 0).

Finally, set µ (r1) = α where α = min
{

p
(

xj, L1
j

)
, j = 1, ..., n

}
if min

{
p
(

xj, L1
j

)
, j = 1, ..., n

}
<

1. Otherwise, if min
{

p
(

xj, L1
j

)
, j = 1, ..., n

}
= 1, the two rankings are the same and the

assignment problem is trivial..

Proceed in an analogous way for the construction of r2, starting from y2, that is for all

i = 2, ...n define recursively

L2
i = X \

i−1⋃
j=1

yj
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Ti =
{

t ∈ L2
i : p

(
t, L2

i

)
> p

(
t, L2

i ∪ {yi−1}
)}

and as before 0 < |Ti| ≤ 2.

If |Ti| = {e} for some e ∈ X, then let yi = e, while if |Ti| = 2 , then letting Ti = {e, f }:

(2.i) p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

(resp. p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

) for all j = 1, ...i −

1, and p
(

f , L2
i
)
= p

(
f , L2

i ∪
{

yj
})

(resp. p
(
e, L2

i
)
= p

(
e, L2

i ∪
{

yi−g
})

) for some j ∈

{1, ..., i− 2}.

In this case let yi = e (resp., f ).

(2.ii) p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

and p
(

f , L2
i
)
> p

(
f , L2

i ∪
{

yj
})

for all j = 1, ...i− 1.

In this case let yi = f (resp., yi = e) whenever e �1 f (resp., f �1 e) (i.e. we require

consistency with the construction of the first order). Finally let µ (r2) = 1− µ (r1).

2. Showing that the algorithm is well-defined

We show that cases (1.i) and (1.ii) are exhaustive, which means showing that if |Si| = 2

at least one alternative in Si is impacted by all its predecessors in r1. We proceed by

induction on the index i. If i = 2 there is nothing to prove. Now consider the step i =

k + 1. If |Sk+1| = 1 again there is nothing to prove, so let |Sk+1| = 2, with Sk+1 = {c, d}.

By construction p
(
c, L1

k+1

)
> p

(
c, L1

k+1 ∪ {xk}
)

and p
(
d, L1

k+1

)
> p

(
d, L1

k+1 ∪ {xk}
)
, so

that by Lemma 1 and Lemma 2 it must be

p
(

c, L1
k+1

)
= 1− p

(
d, L1

k+1

)
> 0 (3)

By contradiction, suppose that there exist u, v ∈ {x1, ...xk−1} for which u does not impact

c in L1
k+1 and v does not impact d in L1

k+1, i.e.

p
(

c, L1
k+1 ∪ {u}

)
= p

(
c, L1

k+1

)
(4)

and

p
(

d, L1
k+1 ∪ {v}

)
= p

(
d, L1

k+1

)
(5)

(note that by construction we have u, v 6= xk). We can rule out the case u = v. For suppose

u = v = xj for some j < k. Then, recalling (3),

p
(

d, L1
k+1 ∪

{
xj
})

= p
(

d, L1
k+1

)
= 1− p

(
c, L1

k+1

)
= p

(
c, L1

k+1 ∪
{

xj
})
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and thus p
(
xj, L1

k+1 ∪
{

xj
})

= 0, which contradicts Monotonicity and p
(

xj, L1
j

)
> 0 with

L1
k+1 ∪

{
xj
}
⊂ L1

j .

Since by construction and Monotonicity p
(
v, L1

k+1 ∪ {v}
)
> 0, Lemma 1, Lemma 2

and (5) imply

p
(

c, L1
k+1 ∪ {v}

)
= 0 (6)

Similarly, p
(
v, L1

k+1 ∪ {v}
)
> 0 (by construction and Monotonicity), Lemma 1, Lemma 2

and (4) imply

p
(

d, L1
k+1 ∪ {u}

)
= 0 (7)

(i.e. u impacts d in L1
k+1 ∪ {u} and v impacts c in L1

k+1). Now consider the menu L1
k+1 ∪

{u, v}. By (6), (7) and Monotonicity it must be:

p
(

c, L1
k+1 ∪ {u, v}

)
= 0 = p

(
d, L1

k+1 ∪ {u, v}
)

(8)

It cannot be that p
(
u, L1

k+1 ∪ {u, v}
)
= 1, for otherwise Monotonicity would imply p

(
u, L1

k+1 ∪ {u}
)
=

1, contradicting p
(
c, L1

k+1 ∪ {u}
)
= p

(
c, L1

k+1

)
> 0. Similarly, it cannot be that p

(
v, {u, v} ∪ L1

k+1

)
=

1. Finally, if either p
(
v, L1

k+1 ∪ {u, v}
)
= 0 or p

(
u, L1

k+1 ∪ {u, v}
)
= 0, then in view of (8)

it would have to be p
(
w, L1

k+1 ∪ {u, v}
)
> 0 for some w ∈ L1

k+1. But this is impossible

since c 6= w 6= d by (8), and then by Monotonicity the contradiction p
(
w, L1

k+1

)
> 0

would follow. Therefore it must be

p
(

u, L1
k+1 ∪ {u, v}

)
= 1− p

(
v, L1

k+1 ∪ {u, v}
)

It follows that both

p
(

u, L1
k+1 ∪ {u}

)
= p

(
u, L1

k+1 ∪ {u, v}
)

(9)

and

p
(

v, L1
k+1 ∪ {v}

)
= p

(
v, L1

k+1 ∪ {u, v}
)

(10)

i.e. neither does u impact v in L1
k+1 ∪ {v}, nor does v impact u in L1

k+1 ∪ {u}. Suppose

w.l.o.g. that v is a predecessor of u in r1, and let u = xj. By the inductive hypothesis v

impacts u in L1
j , so that by Contraction Consistency it also impacts u in L1

k+1 ∪ {u} ⊂ L1
j ,

i.e.

p
(

u, L1
k+1 ∪ {u}

)
> p

(
u, L1

k+1 ∪ {u, v}
)
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a contradiction with (9). A symmetric argument applies if u is a predecessor of v using

(10).

A straightforward adaptation of the argument above shows that cases (2.i) and (2.ii)

are exhaustive.

3. Showing that the algorithm retrieves the observed choice.

Let pα be the dRUM generated by (r1, r2, α) as constructed above. For any alternative

x denote Li
x its (weak) lower contour set in ranking ri, that is

Li
x = {x} ∪ {s ∈ X : x �i s}

and note that by construction p
(
x, Li

x
)
> 0. We examine the possible cases of failures of

the algorithm in succession.

(3.i): p (a, A) = 0 and pα (a, A) > 0.

Then a �i a′ for some i, for all a′ ∈ A \ {a}, hence A ⊆ Li
a, and thus by Monotonicity and

p
(
a, Li

a
)
> 0 we have p (a, A) > 0, a contradiction.

(3.ii): p (a, A) = 1 and pα (a, A) < 1.

Then there exists b ∈ A such that b �i a′ for some i, for all a′ ∈ A \ {b}, hence A ⊆ Li
b,

and thus by Monotonicity and p
(
b, Li

a
)
> 0 we have p (b, A) > 0, a contradiction.

(3.iii): p (a, A) = α and pα (a, A) = 1.

Let I (pα) be the set of all pairs (a, A) satisfying the conditions of this case. Fix an (a, A) ∈

I (pα) that is maximal in I (pα) in the sense that (b, B) ∈ I (pα)⇒ a �i b for some i.

Because pα (a, A) = 1 we have A ⊆ L1
a ∩ L2

a. If p
(
a, L1

a ∩ L2
a
)
= 1 we have an imme-

diate contradiction, since by Monotonicity p (a, A) = 1. So it must be p
(
a, L1

a ∩ L2
a
)
∈

{α, min {α, 1− α}}. We show that this also leads to a contradiction.

Suppose first that L1
a \ L2

a 6= ∅, and take z ∈ L1
a \ L2

a such that a �1 z and z �2 a. By

construction this implies p
(
a, L2

a
)
> p

(
a, L2

a ∪ {z}
)
, so that by Contraction Consistency

p
(
a, L1

a ∩ L2
a
)
> p

(
a,
(

L1
a ∩ L2

a
)
∪ {z}

)
.

By Monotonicity p
(
a,
(

L1
a ∩ L2

a
)
∪ {z}

)
≥ p

(
a, L2

a
)
> 0 (where recall z ∈ L1

a, so that

L1
a ∪ {z} = L1

a). Since p
(
a, L1

a ∩ L2
a
)
= 1 would lead to a contradiction, the only possibility

is that p
(
a, L1

a ∩ L2
a
)
= 1− α and p

(
a,
(

L1
a ∩ L2

a
)
∪ {z}

)
= α with 1− α > α (if 1− α =
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α = 1
2 , then it would have to be p

(
a, L1

a ∩ L2
a
)
= 1, a contradiction). Since however

p (a, A) = α, coupled with A ⊆ L1
a ∩ L2

a this would contradict Monotonicity. A symmetric

argument applies if L2
a \ L1

a 6= ∅.

Finally, consider the case L1
a = L2

a = La for some La ⊂ X. Then X \ L1
a = X \ L2

a. Define

Ua = X \ La (where observe that u ∈ Ua ⇒ u �i a, i = 1, 2). Observe that Ua 6= ∅, for

otherwise given the construction it could not be p (a, A) < 1 and pα (a, A) = 1. Since

Monotonicity and A ⊆ L1
a ∩ L2

a require p
(
a, L1

a ∩ L2
a
)
< 1 to avoid a contradiction with

p (a, A) = α, there exists a w ∈
(

L1
a ∩ L2

a
)

for which p
(
w, L1

a ∩ L2
a
)
> 0.

Let x1, ..., xm be the predecessors of a in the ranking r1 and let y1, ..., ym be the pre-

decessors of a in the ranking r2 (where obviously {x1, ..., xm} = Ua = {y1, ..., ym}). So

a = xm+1 = ym+1 (note that since L1
a = L2

a, a must have the same position in both rank-

ings).

By construction xm and ym impact a in La, that is p (a, La) > p (a, La ∪ {xm}) and

p (a, La) > p (a, La ∪ {ym}).

We claim that there exists a z ∈ Ua that does not impact w in La, that is p (w, La) =

p (w, La ∪ {z}). To see this, if p (w, La) = p (w, La ∪ {xm}) (resp. p (w, La) = p (w, La ∪ {ym}))

simply set z = xm (resp. z = ym). If instead p (w, La) > p (w, La ∪ {xm}) and p (w, La) >

p (w, La ∪ {ym}) then, since a = xm+1 = ym+1, it must be p (w, La) = p (w, La ∪ {z}) for

some z ∈ Ua by the construction of the algorithm (otherwise, given that xm and ym impact

w in La, it should be w = xm+1 or w = ym+1, contradicting a = xm+1 = ym+1). Fix such a

z.

Monotonicity and the construction imply that p (z, La ∪ {z}) = 1− p (w, La ∪ {z}) =

1 − p (w, La). But since z ∈ Ua we have z �i a′, i = 1, 2, for all a′ ∈ La, so that

pα (z, La ∪ {z}) = 1 and therefore z ∈ I (pα). And since in particular z �i a, i = 1, 2,

the initial hypothesis that (a, A) is maximal in I (pα) is contradicted. Since we have

made no assumptions on α, this same reasoning applies to the case p (a, A) = 1− α and

pα (a, A) = 1.

(3.iv): p (a, A) = α and pα (a, A) = 0.

By construction there exist alternatives b and c (where possibly b = c) such that b �1 a′

for all a′ ∈ A \ {b} and c �2 a′ for all a′ ∈ A \ {c}, so that A ⊆ L1
b and A ⊆ L2

c . If
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b 6= c, then by Monotonicity p (b, A) > 0 and p (c, A) > 0, contradicting Lemma 1.

Thus let b = c, so that b �i a′ for all a′ ∈ A \ {b} for i = 1, 2, and by construction

p
(
b, L1

b ∩ L2
b
)
> 0. If p

(
b, L1

b ∩ L2
b
)
= 1 then by Monotonicity we have a contradiction,

since A ⊆ L1
b ∩ L2

b, so that p
(
b, L1

b ∩ L2
b
)
= p (b, A) = 1. So the only possibility is that

p
(
b, L1

b ∩ L2
b
)
= 1 − α, which is not possible as it would require p (b, A) = 1 − α and

pα (b, A) = 1, a configuration ruled out by case 3.3. Since we have made no assumptions

on α, this same reasoning applies to the case p (a, A) = 1− α and pα (a, A) = 0.

(3.v): p (a, A) = α and pα (a, A) = 1− α.

Observe that this can only be the case when α 6= 1
2 . By construction A ⊆ L2

a. By Negative

Expansion applied to L2
a and A ⊆ L2

a it must be p
(
a, L2

a
)
= α, so that by construction it

cannot be pα (a, A) = 1− α.
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