Comment on "Behavior of Supercritical Fluids Across the Frenkel Line"

Vadim V. Brazhkin, Clemens Prescher, Yury D. Fomin, Elena N. Tsiok, Alexander G. Lyapin, Valentin N. Ryzhov, Vitali B. Prakapenka, Johannes Stefanski, Kostya Trachenko, and Andrei V. Sapelkin

J. Phys. Chem. B, Just Accepted Manuscript • DOI: 10.1021/acs.jpcb.7b11359 • Publication Date (Web): 04 May 2018

Downloaded from http://pubs.acs.org on May 15, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Comment on “Behavior of Supercritical Fluids across the Frenkel Line”

V.V. Brazhkin1,*, C. Prescher2, Yu. D. Fomin1, E. N. Tsiok1, A. G. Lyapin1, V.N. Ryzhov1, V. B. Prakapenka1, J. Stefanski3, K. Trachenko1, and A. Sapelkin1

1Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 108840, Moscow, Russia
2Institut für Geologie und Mineralogie, Universität zu Köln, 50939, Germany
3Consortium for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

The Frenkel line (FL) is the line of change of particle dynamics and qualitative change of the excitation spectrum of the fluid [1–4]. The FL was used to explain important supercritical properties. This included an alternative interpretation [4] of experimental findings in Ref. [5] by Simeoni. Bryk et al originally attributed to the Widom line. As we showed [1, 3, 6–10], the Widom line exists only in the vicinity of the critical point and can not be extrapolated into the range of experimental interest. Bryk et al have subsequently realized their mistake when they found the dynamical crossover in the soft-sphere system [11] and hard-sphere system [12] where the critical point and thermodynamic anomalies do not exist.

A recent paper by Bryk et al entirely focuses on making critical remarks about the FL [13]. On five counts, their remarks involve choosing the data and results selectively rather than discussing the data in their entirety. On three further counts, their remarks are clear misrepresentations of our discussion of the FL. In remaining instances, unphysical proposals are made such as using the infinite-frequency shear modulus to ascertain collective modes in liquids or incorrect statements are included (sometimes of secondary importance, such as advocating incorrect equations for the k-gap having wrong dimensionality). As a result, incorrect conclusions are drawn and a grossly skewed picture emerges and misleads readers. Below we address and correct the points one by one.

1. Bryk et al choose to show the pair distribution function $g(r)$ calculated in our previous paper [14] as a Fourier transform of the structure factor $S(q)$ measured in supercritical Ne, compare it with their results of molecular dynamics (MD) simulations and observe the disagreement. However, the alleged disagreement disappears once the error bars in their Fig. 2 are taken into account. Bryk et al add that the difference between the experimental and simulated $g(r)$ can be due to errors involved in the Fourier transform. Bryk et al choose not to discuss primary experimental data of the structure factor that involves no Fourier transform. For the benefit of the readers, we show the experimental $S(q)$ of supercritical Ne in Fig. 1. This clearly shows the crossover of the structural features at pressure corresponding to the FL [14].

In addition to Ne, we show the primary Raman scattering data of supercritical CH\textsubscript{4} [15] in Fig. 2. The data clearly show the crossover of the dynamical features at the conditions corresponding to the FL.

Bryk et al choose not to show the earlier MD data showing the crossover of $g(r)$ at the FL [16]. This data was obtained using very fine temperature grid and better statistics due to larger system sizes and contradicts the MD data of Bryk et al in that the crossover of $g(r)$ at the FL is clearly seen.

Bryk et al state in Ref. [14] we reported the “disappearance of medium-range order” and subsequently add that contrary to our earlier results, they do not find the crossover of the third peak of $g(r)$. This clearly misrepresent our discussion. We have explicitly stated in that reference [14]: “the error bars of the experimental results are large and the data might not be accurate enough to observe a further decrease in third peak height or slight deviations from the pressure dependence of the first two peaks in $g(r)$. Therefore, a clear answer to whether a loss of medium range order or only a change in the pressure dependence of the peak heights occur at the FL cannot be given based on our current data.”

Bryk et al conclude by saying that there are “no sudden” changes of structural features at the FL, implying that this contradicts our earlier results. Bryk et al miss the point, namely that we stated the same in our earlier theoretical [16] and experimental [14] work. Indeed, we stated that there is gradual crossover of the height and location of the first peak of the structure factor as well as coordination numbers. Therefore, Bryk et al do not criticise the FL concept but their own perception of what it is.

2. Bryk et al make two points regarding the positive sound dispersion (PSD) in the supercritical system. Below the FL where transverse modes operate, the longitudinal sound velocity acquires a well-known value $v = \sqrt{\frac{B + G}{\rho}}$, where B and G correspond to their high-frequency values [18]. We used this equation to calculate PSD of supercritical systems in Ref. [2, 20]. Bryk et al choose to criticise this procedure by stating that B should correspond to high-frequency value rather than the static value. However, Bryk et al choose not to mention that we have in fact calculated the high-frequency B and found it not too different from the static value of B at high density [2]. At low density or smeared phase
Figure 1: Height (a) and position (b) of the first maximum of the experimentally derived structure factor $S(k)$ against pressure. The dashed magenta lines show the difference in slopes below and above the crossover. The background shadings indicate the region for gaslike (G) and liquid-like (L) supercritical fluid. From Ref. [14].

Figure 2: Plot of reduced frequency of CH4 Raman-active vibration as a function of pressure at (a) 298 K (b) 345 K (c) 374 K and (d) 397 K. Solid lines following the data are fits performed using equation (6) and arrows signify the minimum of this fit. Dotted lines are linear fits to data collected above 0.6 GPa (equation (5)). Vertical solid lines are expected positions of the Joule-Thomson line and Frenkel line. From Ref. [15].
transformations high-frequency and static \(B \) are known
to differ, affecting PSD (see, e.g., [17]).

Second, Bryk et al discuss \(B_\infty \) and \(G_\infty \) in their Fig.
4 but they fail to state an important difference between
high-frequency moduli and their truly infinite limits. In-
deed, the infinite-frequency shear modulus of a fluid is
non-zero at any low density due to the presence of the
kinetic term. At the same time, the excitation spectrum
of a fluid at high temperature or low pressure does not
include transverse frequencies. This is witnessed by the
data in Fig.3 in Bryk et al paper [13], implying that that
the high-frequency shear modulus is zero as expected.
The point here is that the discussion of the infinite-
frequency moduli is irrelevant as far as the FL is con-
cerned.

Once the discussion correctly addresses high-frequency,
rather than infinite, shear moduli, the results of Bryk
et al confirm the FL picture. Indeed, transverse modes
are predicted to be present and absent below and above
the FL, respectively. Bryk et al confirm this: their
Fig. 3a,b show that transverse modes, non-zero high-
frequency shear modulus and PSD all exist below the
FL, whereas Fig. 3c,d show that the above properties
disappear above the FL. This is exactly the effect of the
FL that we discussed.

In passing, we note that the longitudinal sound velocity
\(v = \sqrt{\frac{B+4G}{\rho}} \) is not “empirical” as characterized by Bryk
et al. Instead, this is a rigorous result from the elasticity
theory which has been used to rationalize sound velocities
in liquids both experimentally [19] and theoretically [18]).
The same idea was used to interpret experimental results
for viscous liquids [21] for many decades.

3. Bryk et al state that (a) \(\omega = \frac{1}{\tau} \) can not be used to
make a difference between the system with and without
transverse modes because the gap is in \(k \)-space rather
than in frequency and, consequently, (b) the equality \(\omega = \omega_D \) (ascribed to our criterion in Ref. [1, 3]) does not
describe the disappearance of transverse modes.

Statement (b) is a clear misrepresentation of our dis-
cussion: we have not used the criterion \(\omega = \omega_D \) as a
condition for disappearance of transverse modes. We
have clearly stated (see Eq. (1) in Ref. [3]) that the
condition is \(\tau \approx \tau_D \). Recalling this condition prop-
perly, statement (a) by Bryk et al becomes incorrect. In-
deed, let us consider the dispersion relationship giving
the gap in \(k \)-space: \(\omega = \sqrt{c^2k^2 - \frac{1}{\tau}} \) [18, 22]. When \(\omega \)
starts approaching its limiting value \(\omega_D \), this dispersion
law predicts that transverse modes start from zero when
\(k = \frac{1}{\sqrt{\tau_D}} \approx \frac{1}{\tau} \), where \(a \) is interatomic separation, cor-
responding to the shortest wavelength available in the
system. Therefore, all transverse modes disappear when
\(\tau \approx \tau_D \), which is exactly the condition for separating the
system with and without transverse modes.

In other words, the condition \(\tau = \tau_D \) can be used to
demarcate the presence/absence of transverse modes in
both the Frenkel picture with the frequency gap and us-
ing the dispersion law with \(k \)-gap. In both cases, the
range where transverse modes operate shrinks to zero.
This is an obvious property which Bryk et al have unfor-
nately missed.

4. Bryk et al choose to employ the FL criterion based on \(\tau \approx \tau_D \) to discuss the FL and cite our earlier Ref. [3]
to back this up. Bryk et al choose not to mention (a) our
statement that this criterion was stated as an approxi-
mate relationship rather as the exact equality (see Eq.
(1) in Ref. [3]) and (b) our discussion (first page of Ref.
[4]) that this criterion, although qualitatively convenient
to discuss the underlying physics, it not suited for quan-
titative estimations because there is a degree of flexibility
involved in the definition of \(\tau \) and \(\tau_D \). We have shown
that two quantitative criteria of the FL are based on the
velocity autocorrelation function and \(c_v = 2 \ (k_B = 1) \).
The two criteria give coinciding FL [4]. An appropriate
choice of \(\tau \) and \(\tau_D \) results in the corresponding line being
close to the FL calculated using the two criteria above.

We note that the criterion \(c_v = 2 \) applies to harmonic
or quasi-harmonic systems, where each mode contributes
\(T \) (or close to it) to the energy. Bryk et al incorrectly ap-
ply this result to the hard-spheres system [12], the system
known to be absolutely anharmonic. In the hard-spheres
system, particles move outside the range of interaction
between collisions, with associated zero potential energy.
Consequently, formally calculated collective excitations
in the hard-sphere systems are known to be unrelated to
harmonic modes. As a result, the calculated energies are
\(\frac{1}{2} \) per mode, giving the textbook result that the specific
heat of the hard-spheres system is \(\frac{3}{2} \) as in the ideal gas
[24].

5. Bryk et al state that the thermodynamic definition
of the FL \(c_v = 2 \ (k_B = 1) \) corresponding to the dis-
appearance of transverse modes is inconsistent with the
way of calculating the energy of transverse modes \(E_t \) as

\[
E_t = \int_{\omega=\frac{\omega_D}{2}}^{\omega_D} E(\omega, T) \frac{6N}{\omega_D^2} \omega^2 d\omega \tag{1}
\]

where \(g(\omega) = \frac{6N}{\omega_D^2} \omega^2 \) is the density of states of transverse
modes. The stated reason is that the lower integral limit in
(1) is in \(k \)-space rather in frequency.

Bryk et al are aware that we discussed the gap in
\(k \)-space [22, 23] and previous related developments but
choose not to mention our discussion. Indeed, in our
recent paper [23] we have cited the theoretical derivation
of the gap by Boon and Yip [18] which precedes the gap
references in Bryk et al paper.

Notably, Eq. 24 in the cited paper by Bryk (T. Bryk
2011, Ref. [25]) gives the \(k \)-gap as \(k_g = (\frac{\omega_D}{\tau})^{\frac{1}{2}} \). This
is contradicted by earlier work [18] and our own analysis
[22] giving \(k_g \) as \(k_g = \frac{1}{c^2} \), which can not be reduced to \(k_g \) derived by Bryk using the Maxwell relationship and \(G = \rho c^2 \). In fact, \(k_g \) derived by Bryk does not have the correct dimensionality of inverse meter and therefore can not be used in any practical evaluations of the gap.

In stating their argument, Bryk et al choose not to mention our previous result [23] known to them, namely that \(E_t \) calculated as (1) gives the result identical to \(E_t \) calculated as an integral in \(k \)-space accounting for the \(k \)-gap as

\[
E_t = \int_{k_g}^{k_D} E(\omega, T) \frac{6N}{k_D^2} k^2 dk
\]

Both (1) and (2) give the identical result in the classical case \(E = T \):

\[
E_t = 2NT \left(1 - \left(\frac{\omega_F}{\omega_D} \right)^2 \right)
\]

which is easy to understand because the lower limit in (2) \(k_g = \frac{1}{c} \) [23] corresponds in the Debye model \(\omega = ck \) (the Debye model is as applicable to liquids as it is to solids [26]) to Frenkel frequency \(\omega_F = \frac{1}{\tau} \), the lower limit in (1).

Bryk et al subsequently propose to evaluate \(E_t \) as an integral over frequency with zero lower limit. This is not necessary because \(E_t \) in (2) involves \(k \)-space of phonons and is therefore a primary calculation. However, if one wishes so the integral over frequency can be evaluated as

\[
E_t = \int_0^{\sqrt{\frac{c^2k_D^2}{\tau^2} - \frac{1}{\tau}}} E(\omega, T) \frac{6N}{\omega_D} \omega \sqrt{\omega^2 + \frac{1}{\tau^2}} d\omega
\]

where \(g(\omega) \propto \omega \sqrt{\omega^2 + \frac{1}{\tau^2}} \) is the density of states corresponding to the \(k \)-gap dispersion relationship \(\omega = \sqrt{c^2k^2 - \frac{1}{\tau^2}} \) [22, 23]. This gives the result identical to (3) as expected, where \(\omega_D = c k_D \).

The above results were communicated to T. Bryk and G. Ruocco prior to submission of Bryk et al paper [13].

Importantly, notwithstanding the selective showing of results of \(E_t \) by Bryk et al, the discussion of how \(E_t \) decreases with temperature is unimportant for the thermodynamic criterion of the FL \(c_v = 2 \): the crossover of PSD is seen when \(c_v \) is close to 2 (\(c_v = 1.92 \)).

We now make two remarks regarding erroneous points of secondary importance made by Bryk et al:

(a) Contrary to what is stated, the book by Widom (Ref. 5 in Bryk et al) does not discuss the Widom line.

(b) Bryk et al state that the fact that the FL crosses the boiling line below the critical point results in a contradiction. Bryk et al fail to note a well-known fact (see, e.g., [28]) that close to the critical point, the liquid phase does not exist as a condensed matter state. Instead, the state at temperatures around \((0.8-1)T_c\) corresponds to the gas state from the point of view of both dynamics and thermodynamics. On a similar point, Bryk et al state “Obviously, any separation line of liquid-like and gas-like types of dynamics of supercritical fluids must emanate from the critical point.” Bryk et al are well aware that this is not obvious: one of the authors in Bryk et al paper was a co-author on the earlier paper [29] where the change of dynamics was observed near \((0.7-0.8)T_c\).

We are grateful to O. Prezhdo for his helpful and supportive comments. The computational part of the work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC Kurchatov Institute, http://ckp.nrcki.ru/. This work was supported by the Russian Science Foundation [Grant No 14-22-00093].

Corresponding author: V. V. Brazhkin, brazhkin@hppi.troitsk.ru.

[8] Fomin, Yu. D.; Ryzhov, V. N.; Tsioek E. N.; Brazhkin, V. V. Thermodynamic properties of supercritical carbon

