
1

Fuzzy and Tile Coding Approximation
Techniques for Coevolution in

Reinforcement Learning

Laurissa Nadia Tokarchuk

Submitted for the degree of Doctor of Philosophy

Department of Electronic Engineering

Queen Mary, University of London

December 2005

2

To Matthew

3

Abstract

This thesis investigates reinforcement learning algorithms suitable for learning

in large state space problems and coevolution. In order to learn in large state

spaces, the state space must be collapsed to a computationally feasible size and

then generalised about. This thesis presents two new implementations of the

classic temporal difference (TD) reinforcement learning algorithm Sarsa that

utilise fuzzy logic principles for approximation, FQ Sarsa and Fuzzy Sarsa. The

effectiveness of these two fuzzy reinforcement learning algorithms is

investigated in the context of an agent marketplace. It presents a practical

investigation into the design of fuzzy membership functions and tile coding

schemas. A critical analysis of the fuzzy algorithms to a related technique in

function approximation, a coarse coding approach called tile coding is given in

the context of three different simulation environments; the mountain-car

problem, a predator/prey gridworld and an agent marketplace. A further

comparison between Fuzzy Sarsa and tile coding in the context of the non-

stationary environments of the agent marketplace and predator/prey gridworld is

presented.

This thesis shows that the Fuzzy Sarsa algorithm achieves a significant reduction

of state space over traditional Sarsa, without loss of the finer detail that the FQ

Sarsa algorithm experiences. It also shows that Fuzzy Sarsa and gradient descent

Sarsa(λ) with tile coding learn similar levels of distinction against a stationary

strategy. Finally, this thesis demonstrates that Fuzzy Sarsa performs better in a

competitive multiagent domain than the tile coding solution.

4

Acknowledgements

I would like to thank Professor Laurie Cuthbert, Dr John Bigham and Dr Chris

Phillips for the advice and guidance they have given me throughout my PhD at

Queen Mary, University of London.

I would like to thank the staff of the Electronic Engineering department and

especially Ho and Chris for the extra simulation support.

I would also like to thank my furry non-human friends, Nephis and Kila, for

their unconditional love throughout all of my studies.

I would like to thank my friends and family for the love, guidance and

encouragement that they have always provided. Finally, I especially want to

thank my parents - it is your love and support that has made me the person I

am today!

5

Table of Contents

1 Introduction ... 13

1.1 Research Motivation...13

1.2 Research Scope ...15

1.3 Summary of Contribution...17

1.4 Outline of Thesis..18

2 Reinforcement Learning... 19

2.1 The Basics...24

2.1.1 Value Functions...24

2.1.2 Policy Selection ...25

2.1.3 Off-policy versus On-policy ...28

2.2 Dynamic Programming ..29

2.3 Monte Carlo...36

2.4 Temporal Difference Algorithms ..38

2.4.1 Sarsa ...40

2.4.2 Q-Learning...41

2.5 Eligibility Traces ...44

2.6 Linear Function Approximation in Reinforcement Learning.................47

2.6.1 Gradient Descent Learning ...49

2.6.2 Linear Approximation...52

2.6.2.1 Coarse Coding with Tile Coding..52

2.6.2.2 Radial Basis Functions..53

6

2.6.3 Fuzzy Based Function Approximation ..54

2.6.3.1 Fuzzy Sets..54

2.6.3.2 Fuzzy Reinforcement Learning..58

2.7 Multiagent learning algorithms...62

2.7.1 Recursive Modelling Method ...63

2.7.2 Minimax Q...64

2.7.3 Nash Q..64

2.7.4 WoLF ...64

2.8 Summary ..65

3 Simulation System Design .. 67

3.1 Random Numbers ...67

3.2 A Marketplace Simulation ...68

3.2.1 Agent Platforms – FIPA-OS and Zeus...69

3.2.2 The AgentSim Marketplace..70

3.2.3 Seller and Buyer Agent Algorithms. ..75

3.3 The Gridworld Pursuit Problem...77

3.3.1 Predator/Prey Gridworld...78

3.3.2 Predator/Prey Agent Algorithms ..79

3.4 Mountain-car Problem...80

3.4.1 Mountain-car World..81

3.5 Verification and Validation..82

3.6 Summary ..86

4 Fuzzy Learning in a Marketplace Environment....................................... 87

7

4.1 FQ Sarsa...88

4.2 Fuzzy Sarsa ..91

4.3 Marketplace ...99

4.3.1 Fuzzy Label Partitions.. 102

4.3.2 Stationary Strategy Algorithm Performance .. 105

4.3.3 Non-Stationary Algorithm Performance... 108

4.4 Summary ..111

5 Comparison of Function Approximation Techniques............................ 113

5.1 Effects of Generalisation ..115

5.1.1 Fuzzy Labels ... 115

5.1.1.1 Marketplace .. 115

5.1.1.2 Mountain-car World... 122

5.1.2 How to Tile? ... 124

5.1.2.1 Marketplace .. 125

5.1.2.2 Predator/Prey Gridworld.. 131

5.2 Parameterisation ...134

5.2.1 Marketplace Parameterisation ... 135

5.2.2 Predator/Prey Gridworld Parameterisation... 138

5.3 Learning an optimal policy ..140

5.3.1 Mountain-car World... 140

5.3.2 Marketplace World... 143

5.3.3 Predator/Prey Gridworld.. 146

5.4 Summary ..153

8

6 Effects of Multiagent Competitive Coevolution 156

6.1 Marketpl ace World..156

6.2 Predator/prey gridworld ..161

6.3 Summary ..169

7 Conclusions.. 170

7.1 Conclusions..170

7.2 Future Work..171

Appendix I. Complete Tile Tests... 173

8 References ... 175

8.1 Publications by Author...175

8.2 References ..176

8.3 Internet Links ..183

9

List of Figures

Figure 2.1: Stickman World ...22
Figure 2.2: Stickman terminal reward and penalty states ...22
Figure 2.3: Stickman learning example ..23
Figure 2.4: A path to the oranges in a stickman world...25
Figure 2.5: Stickman choices: Explore vs. Exploit...26
Figure 2.6: Stickman and the cliff..27
Figure 2.7: A Stickman faced with a decision...29
Figure 2.8: Gridworld 3x3 Example..31
Figure 2.9: Dynamic programming V(s) calculations for 3x3 gridworld.......................................33
Figure 2.10: Shifting the policy π towards greedy at k = 14 where max ΔV(s) ≥ 0.2....................34
Figure 2.11: Shifting the policy π towards greedy at k = 2 for value iteration..............................35
Figure 2.12: Generalized policy improvement. ..35
Figure 2.13: Two sample episodes in Monte Carlo evaluation...37
Figure 2.14: State Representation ...38
Figure 2.15: State action translation...39
Figure 2.16: State action pairs ..39
Figure 2.17: State action pairs with Q-values ..39
Figure 2.18: Sarsa Algorithm ..41
Figure 2.19: Sarsa and Q-Learning policies in a sink hole gridworld ...42
Figure 2.20: Exploratory vs. optimal action selection in a sink hole gridworld43
Figure 2.21: Sample episodes in a sink hole gridworld ...45
Figure 2.22: Eligibility traces in a sink hole gridworld...46
Figure 2.23: Parameter Vector for Gradient Descent ...49
Figure 2.24: State action pairs and Q values ...49
Figure 2.25: Calculating Q(s,a) using Parameter and Feature Vectors ..50
Figure 2.26: Gradient descent Sarsa(λ) Algorithm..51
Figure 2.27: Calculating Q(s,a) using Parameter and Feature Vectors ..53
Figure 2.28: Membership function of Money_Left and Items_To_Buy ..56
Figure 2.29: Membership vs. Probability ...57
Figure 3.1: GUI Interface for Agent Simulator using Mod 4 graphics..73
Figure 3.2: Game sizes for marketplace simulations ...75
Figure 3.3: FIPA Contract-Net Protocol from [FIPA02]..76

10

Figure 3.4: Seller Agent Algorithm ...76
Figure 3.5: Buyer Agent Algorithm ...77
Figure 3.6: Predator/Prey Grid World ...79
Figure 3.7: Predator/Prey Agent Algorithm...79
Figure 3.8: Mountain-car World ...81
Figure 3.9: Percentage win ratio from a Fuzzy Sarsa Agent..85
Figure 3.10: Price data from a Fuzzy Sarsa Agent ..85
Figure 4.1: Fuzzy State Space Mapping..88
Figure 4.2: Membership function of Money_Left ...89
Figure 4.3: Fuzzification of Crisp State S1 ...90
Figure 4.4: Fuzzy FQ Action Selection ...90
Figure 4.5: FQ Sarsa Algorithm..91
Figure 4.6: Fuzzy state action pairs ..92
Figure 4.7: Fuzzy state action pairs with μ and FQ values ..93

Figure 4.8: Fuzzy Sarsa Action Selection ...95
Figure 4.9: Fuzzy Sarsa Algorithm..97
Figure 4.10: Fuzzy Membership Functions for the Test bed .. 100
Figure 4.11: Experiment Table for Section 4.3.. 102
Figure 4.12: Learners vs. Fixed Linear Strategy in a Very Small Scale Auction Game............. 103
Figure 4.13: Learners vs. Fixed Linear Strategy in Small Scale Auction Game......................... 104
Figure 4.14: 3 and 4 Label Fuzzy Sarsa solutions in Small Scale Auction Game 105
Figure 4.15: Large Game – Fixed Strategy Test ... 106
Figure 4.16: VLarge Game – Fixed Strategy Test... 107
Figure 4.17: Large Game - Direct Competition Test .. 108
Figure 4.18: Large Game Convergence – Sarsa vs. FQ Sarsa .. 109
Figure 4.19: VLarge Game - Direct Competition Test ... 109
Figure 4.20: Sarsa vs. FQ Sarsa vs. Fuzzy Sarsa in Large Auction Game 110
Figure 5.1: Experiment Table for Section 5... 115
Figure 5.2: Possible Fuzzification for Auctions_Left.. 116
Figure 5.3: Triangular and additive membership functions for X Labels. 117
Figure 5.4: Marketplace Label Test I: Fuzzy Sarsa vs. Greedy. .. 118
Figure 5.5: Marketplace Label Test II Fuzzy Sarsa vs. Linear. ... 118
Figure 5.6: Marketplace stationary strategy behaviour ... 119
Figure 5.7: Marketplace Label Test III: Fuzzy Sarsa vs. Sarsa. .. 121

11

Figure 5.8: Membership functions for the Mountain-car world... 122
Figure 5.9: 5 and 7 Label tests in Mountain-car world. ... 123
Figure 5.10: The effect of Narrow vs. Broad feature widths from [SB98] 124
Figure 5.11: Tile Tests in Large (top) and VVVLarge (bottom) Marketplace............................. 126
Figure 5.12: Stickman Generalisation. .. 127
Figure 5.13: Tilings/Width Exploration Example. .. 128
Figure 5.14: First 50 episodes of Tile Tests... 130
Figure 5.15: Tile Tests in Predator/prey gridworld. ... 132
Figure 5.16: Tile Tests in Predator/prey gridworld. ... 133
Figure 5.17: Effect of different γ values in Large Marketplace... 135
Figure 5.18: Effect of different α and ε values in Large Marketplace... 136
Figure 5.19: 95% confidence values of different α and ε values in Large Marketplace 137
Figure 5.20: The effect of changing γ for Fuzzy Sarsa in 5x5 gridworld..................................... 138
Figure 5.21: Weighted Move/Win Ratio of different α and ε for Tile Coding (3 & 9 Tilings) and

Fuzzy Sarsa in 5x5 gridworld.. 139
Figure 5.22: Stability of solution in Mountain-car problem... 141
Figure 5.23: Final Action Policies for Mountain-car world. ... 142
Figure 5.24: Tile Coding Strategy for the Marketplace.. 143
Figure 5.25: Agents against a Linear Strategy in VVVLarge Auction Game.............................. 144
Figure 5.26: Agents against a Greedy Strategy in VVVLarge Auction Game............................. 144
Figure 5.27: Agents against a Greedy and Linear Strategy in VVVLarge Auction Game 146
Figure 5.28: Corner Strategy in a Gridworld.. 147
Figure 5.29: Tile density and width.. 149
Figure 5.30: Fuzzy membership for 5x5 predator/prey gridworld... 150
Figure 5.31: Tile Coding and Fuzzy Sarsa against fixed strategy prey in 5x5 predator/prey

gridworld .. 151
Figure 5.32: Tile Coding and Fuzzy Sarsa against fixed strategy predator in 5x5 predator/prey

gridworld .. 152
Figure 5.33: Tile Coding and Fuzzy Sarsa win ratio against a fixed strategy predator in 5x5

predator/prey gridworld .. 153
Figure 6.1: Experiment Table for Section 6... 156
Figure 6.2: Fuzzy Sarsa vs. Tile Coding in VVVLarge Marketplace test 157
Figure 6.3: Other tiling settings in the VVVLarge Marketplace coevolution test 159
Figure 6.4: Increased α for T8W4 Tile Coding in VVVLarge Marketplace coevolution test.... 160

12

Figure 6.5: Fuzzy Sarsa, Tile Coding and Greedy in VVVLarge Marketplace coevolution test160
Figure 6.6: Fuzzy Sarsa, Tile Coding and Linear in VVVLarge Marketplace coevolution test 161
Figure 6.7: Predator/prey gridworld agent combinations.. 162
Figure 6.8: Win ratio of Fuzzy Predator vs. Fuzzy Prey in a 5x5 gridworld............................... 162
Figure 6.9: Average moves of Fuzzy Predator vs. Fuzzy Prey in a 5x5 gridworld..................... 163
Figure 6.10: Average moves of Tile coding predator vs. Tile Coding Prey in a 5x5 gridworld164
Figure 6.11: Win Ratio of Fuzzy Predator vs. Tile Coding Prey in a 5x5 gridworld 165
Figure 6.12: Win Ratio of Tile Coding Predator vs. Fuzzy Prey in a 5x5 gridworld 165
Figure 6.13: Predator/prey gridworld game outcomes... 166
Figure 6.14: Changing α in test 3 of the predator/prey gridworld .. 167
Figure 6.15: Changing α in test 4 of the predator/prey gridworld .. 167
Figure I.1: Tile Tests in Predator/prey gridworld... 173

13

1 Introduction

1.1 Research Motivation

While there are many different ways of dealing with reinforcement learning in

large state spaces, function approximation promises to be one of the more

powerful solutions: this is because all function approximation techniques deal

with generalisation. They attempt to generalise from the information learnt in

one state to determine a course of action to take in a newly visited state. This

research looks at two different techniques for function approximation to

determine their ability to represent and generalise, not just in large state space

examples, but also in smaller dynamic state spaces.

One of the motivating factors for examining the generalisation capabilities of

function approximation stems from recent interest in agent coevolution.

Coevolution is a technique in which a learner or agent evolves in response to

both the stationary and non-stationary elements in their environment. A

stationary element is an element which stays the same over time, whereas a

non-stationary element is one that changes. An example of a non-stationary

element is another learning agent interacting with the same environment as the

first learning agent.

Some of the work that has been done to address this problem is to use agents

that model the other agents; between agents that directly compete in a

marketplace [VIDD97], agents that compete in a game situation [RV00], or

between agents that collaborate to achieve a specific goal [NG97]. Vidal and

14

Durfee [VIDD97] provide a framework for agents who learn about other

agents in terms of agents who directly compete for the same product. Most

modelling has typically been done with relatively simple learning algorithms.

Another way to address this problem is through the learning algorithm. This

approach uses more complex learning algorithms that use minimax [LS96],

Nash equilibriums [HW03], or hill climbing techniques [BV02]. These

techniques are difficult to scale to large state/action spaces.

Learning algorithms capable of dealing with large state spaces, while retaining

enough flexibility to cope with changing environments, are particularly

relevant for real world applications. One potential application area is flexible

resource management for telecommunication networks. For example, in third

generation mobile systems (3G), the use of higher bandwidth services in a

mobile environment has led to increased complexity in resource control and

resource management because of the variable bandwidth requirements of the

applications, the new radio architecture and the varying demands on the fixed

part of the infrastructure. Management of resources is, therefore, one of the

many interesting applications of agent technology in 3G mobile networks

[BTetal00 and TAetal01]. A flexible learning algorithm capable of dealing with

non-stationary problems would be beneficial in many areas of this domain, such

as bandwidth brokering, power management, routing and even fraud detection.

This thesis investigates the potential benefits and capabilities of using function

approximation in conjunction with reinforcement learning in competitive and

dynamic environments.

15

1.2 Research Scope

This research looks at two different techniques of function approximation used

with reinforcement learning algorithms in order to investigate their abilities of

state space representation and generalisation capabilities. The first function

approximation technique investigated uses fuzzy set theory. This technique is

then compared with the coarse coding approach of tile coding. Finally, these two

types of function approximation are investigated in terms of their generalisation

capabilities when the learning problem includes information about other agents

in the environment, in other words they coevolve.

To properly investigate these issues three different simulation environments

were created in order to enable a thorough comparison of the different

algorithms under different environment dynamics. These three environments

are:

• The mountain-car problem. The mountain-car world serves as a

benchmark environment. The world dynamics and the gradient descent

Sarsa(λ) with tile coding algorithm implemented is a Java conversion of

the C++ implementation provided by Richard Sutton [SuttonMC].

• Predator/prey gridworld. The predator/prey gridworld was chosen

because of its similarity in basic dynamics to many classic

reinforcement learning examples such as those given by Stone and

Veloso [SV00] and because it is the base domain for more complicated

applications such as robotic soccer [ST00 and SSK05].

16

• Agent marketplace. The agent marketplace was chosen in order to

enable comparison between the coevolutionary modelling using

function approximation and other techniques such as those presented by

Vidal [VID98] and Hu [HW98].

17

1.3 Summary of Contribution

The primary aim of this research is to investigate methods of coevolution in a

learning environment. To this end, the following novel contributions have been

made:

• Two fuzzy reinforcement learning algorithms:

 FQ Sarsa – a fuzzy learning accelerator for Sarsa learning; and

 Fuzzy Sarsa – a “fuzzification” of Sarsa following Bonarini’s

guidelines [BON98].

• A detailed investigation of the above fuzzy techniques and a

comparison of those methods to a related linear approximation

method called tile coding in three separate environments were given.

These investigations covered both stationary and non-stationary

problems. These investigations showed:

 In a stationary environment, both Fuzzy Sarsa and the tile

coding technique perform similarly.

 In the non-stationary environment Fuzzy Sarsa has better

performance than tile coding in same goal scenarios.

Furthermore, these investigations showed that Fuzzy Sarsa

was robust with regards to variation in parameter settings and,

also with regards to membership function design error.

18

1.4 Outline of Thesis

This research first presents the background theory of reinforcement learning and

reviews some relevant techniques in function approximation identifying fuzzy

set theory as a promising method (Section 2). It then presents the three

simulation environments used in this research (Section 3) before further

investigating fuzzy reinforcement learning. After modifying an existing fuzzy

algorithm to deal with on-policy learning, it presents the results of using this

algorithm in the agent marketplace and also presents a study into

parameterisation in this environment (Section 4). These results are then

compared with a related technique of tile coding in all three simulation

environments. It also details the experiences in constructing fuzzy membership

functions and the overlaying of tiles in tile coding (Section 5). It then presents

a critical analysis Fuzzy Sarsa and gradient descent Sarsa(λ) with tile coding in

a coevolutionary scenario is presented (Section 6). Finally the results of this

research are summarised and several areas for future investigation are

highlighted (Section 7).

19

2 Reinforcement Learning

The majority of simple decision-making functions utilised by agents are

characterised in terms of some sort of method for the maximisation of expected

utility. For an agent system, Russell and Norvig [RN95] provide methods

through which the agent can calculate the expected utility given that it performs

some action A. Any decision an agent makes is based on one or more variables.

These variables exert different levels of influence on the decision point. For

example, every day we are faced with simple, seemingly straightforward,

decisions that when examined contain many variables. For example, the decision

to eat lunch is intuitively based on whether we are hungry. However, this

decision may also be based on whether there is any food available, or perhaps on

whether we have a meeting within the next hour. Making a decision is one of an

agents most important functions. Without the capability to make a decision, an

agent is helpless to act in its environment. In addition, there are many other

aspects about agents that are also important. A discussion of some of these areas

is provided by [JSW98].

[RN95] provide a general definition of a learning agent. Accordingly, a general

learning agent is composed of the four different elements:

Learning Element – This element is responsible for making

improvements, such as improved strategies, to

the agent.

Performance Element – This element selects external actions in

accordance to the newly learnt improvements.

20

Critic – This is some sort of internal mechanism that the

agent uses to measure how well it is doing.

Problem Generator – This is a generator that suggests actions to the

agent that will lead to new and informative

situations.

Due the complex nature of multiagent systems (MAS), it is only natural that

the architects of such systems utilise machine learning (ML) techniques.

Typically machine learning is used in MAS to provide agents with adaptively.

There has been a significant amount of work done in the application of ML

techniques to MAS. [G96, SV00 and TR96] provide a good review of the types

of techniques that have been applied in this area. They adopt Parunak’s

taxonomy for MAS [P96], dividing MAS by the following three

characteristics:

• System function

• Agent architecture (level of heterogeneity, reactive vs. deliberative)

• System architecture (communication, protocols and human involvement)

ML techniques are then divided into the type of MAS they have been used in.

The MAS community is not the only one to find added benefit in ML.

One area that is particularly relevant to MAS is that of learning moving target

functions. In any kind of dynamic environment, the assumption that an entity

will not change its behaviour cannot be made. It is probable that agents, like

people, will change their strategies if they observe that their current strategy no

21

longer meets their needs. As a result of this, the type of learning an agent

employs needs to be flexible enough to cope with changes. Just because an

agent has learnt the behaviour at time t, does not imply that that behaviour will

be the same at time t+1.

Reinforcement learning is a term that is attached to a family of unsupervised

learning algorithms. Unsupervised learning, rather than supervised learning, is a

type of learning that does not rely on the existence of an external supervisor. In

supervised learning, the learner uses a pre-existing data set provided from the

external supervisor for training. This means that supervised learning is not

adequate for the learning of interactive data because the nature and multitude of

possibilities is very large. This is significant because this makes it very difficult

for the training data to be both accurate and representative of all necessary

situations.

Unsupervised algorithms force the learner to try to learn from its experiences.

These algorithms build a mapping of situations onto actions. In other words, a

reinforcement learning algorithm observes the current state of its world, and

learns the best possible action from that state. The learner is never told what

actions to take but rather what results are desired. After that, it is up to the

learner how they achieve the result. Reinforcement learners have 4 main

elements: a policy, a reward function, a value function and optionally, a model

of the environment.

22

In order to understand how reinforcement learning works, imagine a simple

world where some agent, a stickman learner, walks down various different paths

(Figure 2.1).

Figure 2.1: Stickman World

The stickman learner continues walking until it either reaches the goal, say a

basket of oranges, or, it reaches a terminal penalty state, say getting crushed by a

giant box.

Goal State Penalty State

Figure 2.2: Stickman terminal reward and penalty states

23

With reference to this world, the three required elements of a reinforcement

learner can be described as:

Policy: The policy defines how the learner reacts

to the environment. A learner’s policy aids them

in making decisions regarding their actions. For

example if the learner is faced with choosing

between two paths, the learner’s current policy

will help it decide which path to take.

Reward Function: This function defines what is

good and what is bad. The reward function

provides immediate feedback in the form of a

numerical value to the learner. In the stickman

world, if the end result of some action is bad, it is

indicated to the learner by a reward of -1

Conversely if the resulting state of the action is

good, such as reaching the goal, a positive reward

would be given.

Value Function: The value function defines what is good in the long run. In

contrast to the reward, which is immediate depending on the learner’s

current state, a value

function describes all times

the learner has been in a

similar type of situation.

=

Figure 2.3: Stickman learning example

24

2.1 The Basics

This section discusses some of the basic techniques used in reinforcement

learning. More detailed reviews are available in [SB98] and [KLM96].

2.1.1 Value Functions

In reinforcement learning, a state consists of a set of discrete values representing

the current state of the world. As discussed above, reinforcement learners

ultimately learn based on some sort of reward signal. This reward signal

r directly influences the value of being in a particular state. Qt(a) indicates the

value of taking action a at time t. Typically Qt(a) is calculated by averaging the

observed rewards :

()

)(
...

)(21

a

k
t k

rrr
aQ a

++
= (2.1)

where ak is the number of times action a has been chosen. Most reinforcement

learning algorithms follow an incremental version of this update which requires

less memory:

 [])()()()(sVsVsVsV −′+= α (2.2)

where)(sV is the value of being in the original state s and)(sV ′ is the new

value being in the next state s′ . α is a step-sized parameter or the learning rate.

25

2.1.2 Policy Selection

Since the learner is only told what the desired result of learning is, they must

attempt to balance two types of actions: exploratory actions and exploitive

actions. An exploratory action is an action that the learner takes in order to

discover the value of a potentially new solution, whereas an exploitive action is

an action which makes use of the learner’s best known available solution.

R = 5 mins

Figure 2.4: A path to the oranges in a stickman world

For example, in Figure 2.4 the learner knows that there is a route to the oranges

that takes 5 minutes through the purple path. It knows this information because it

has gone that way before. However, since the learner has never tried the other

paths, it does not know the existence or value (time taken) of any other path. If

the learner always chooses the exploiting action, once a positive reward is

discovered, the learner will never discover any other path.

For stickman there are other paths that can be discovered by making exploratory

moves. As depicted in Figure 2.5, there are actually three separate paths to the

oranges; the purple path, a shorter green path and a longer blue path.

26

 R = 5 mins

R = ?

R = ?

Figure 2.5: Stickman choices: Explore vs. Exploit

If the stickman chooses to explore, he will discover the value for other paths. If

the value of the green path is 2 minutes, the next time the stickman exploits, he

will choose the green path. Conversely, if the learner explores too much, it will

revisit paths it already knows are bad and thus not benefit from the knowledge of

which path is shortest.

Reinforcement learning algorithms address the issue of exploitation vs.

exploration through implementation of a policy. The learners’ current policy or

action selection algorithm determines the action the learner takes at any given

time of the learning process. There are several different types of policy selection

methods, the more popular being ε greedy and softmax action selection. The ε

greedy selection policy operates by choosing the most optimal action based on

the current known rewards or Q-values for all possible actions. This means that

the learner chooses which action to take based on maximising its reward. For

every selection there is some probability ε that rather than choosing the

optimal greedy action, the algorithm will choose randomly to explore other

actions in the hope that they may lead to a better solution.

 ε - Randomly explore a different action.

 (1-ε) – Make the greedy choice.

27

The two main issues behind all action selection policies are firstly, when to

explore and when to exploit, and secondly, how to select which action is chosen

when exploring. Unlike ε greedy, action selection policies such as softmax

concentrate on trying to choose actions in the exploratory phase that are more

likely to lead to a positive outcome. This type of selection policy is particularly

important in situations where bad actions are very bad.

Figure 2.6: Stickman and the cliff

For example, as shown in Figure 2.6, imagine that one of the paths the stickman

could follow leads to a cliff. In this case, choosing a potentially bad action is

very bad indeed, as if the learner makes a bad decision, they fall off the cliff and

die. If the learner was using ε greedy for policy selection, and was faced with

making an exploratory move, it would fall off the cliff just as often as take any

other action. If the learner was using softmax policy selection, it would attempt

to minimize the exploratory choice of really bad actions such as the black path.

Actions are weighted according to their value estimates. Selection typically

uses distributions such as Gibbs or Bolzmann distribution and τ (a positive

temperature parameter) to weight the estimated available action values. A

summary of action selection is given by [SB98].

28

Balancing exploitation and exploration is an important area of research. More

complex action selection methods have been investigated, such as methods that

track the number of times an action has been selected [BON96a], and other

algorithmic methods [SAH94]. An overview of the more complex types of

action selection mechanisms, along with a behaviour based proposal is given

by [HUM96]. However, many researchers find that ε greedy or softmax

provide adequate action selection in their domain (such as [OFJ99], [KLM96]

and [SB98]). Since action selection is not the focus of this research, further

investigation is not pursued here.

2.1.3 Off-policy versus On-policy

There are two main styles of learning within reinforcement algorithms; off-

policy and on-policy. Off-policy describes learners that learn about behaviours

or policies other than the one currently being executed. An off-policy learner

updates its value function by choosing an action according to the current policy.

It judges the value of the current state based on the best possible value of all

state/action combinations of the next state irrespective of the actual action taken.

Therefore, the learner learns the best policy regardless of the policy actually

being followed. In contrast, an on-policy learner learns only from actions that it

actually takes during the episode.

29

To illustrate the difference, imagine the stickman arriving in the bright blue BB

square. An off-policy learner will learn the value of being in the bright blue

square)(BBV , based on the value of the light blue (LB) square

(5.0)(=LBV) regardless of what action it next

takes. So the update for the off-policy learner

is)]()([)()(BBVLBVBBVBBV −+= α . This

update is fixed regardless of whether the learner

makes a greedy move to the BB square or an

exploratory move to the light green LG square.

Figure 2.7: A Stickman faced with a decision

On the other hand, an on-policy learner learns only based on the action it takes.

If the on-policy learner decides to take an exploratory action (a move to the

green square), rather than an exploiting action (a move to the light blue square),

it will learn based on the value of the light green square 2.0)(=LGV and thus

its update is)]()([)()(BBVLGVBBVBBV −+= α . However, if it makes a

greedy move to the LB square its update would be

)]()([)()(BBVLBVBBVBBV −+= α .

2.2 Dynamic Programming

Dynamic programming (DP), as introduced by Bellman [BELL57], is a family

of algorithms that solve the learning problem in a specific way. The following

section presents a brief review, primarily focused at DP for solving a markov

decision process (MDP). An MDP is a reinforcement learning problem that

30

satisfies the markov property. A state is said to have the markov property if it

succeeds in retaining all relevant information about the previous states.

DP techniques are well proven. However, they suffer from several practical

problems. While dynamic programming algorithms are capable of computing

the optimal policy for a learner to follow, they also need a perfect model of the

learners’ environment in order to do so. This model consists of a set of

transitional probabilities, which describe the probability of transition from one

state to any other state, and a set of immediate rewards.

One method of calculating the optimal policy is through iterative policy

evaluation. In policy evaluation, a policy π is chosen and then the value of every

state in the environment is approximated using the Bellman equation for πV :

 [])'(),()('
)('

'1 sVRPassV k
a
ss

sa s

a
ssk γπ += ∑ ∑

Α∈
+ (2.3)

where)(sa Α∈ is the actions belonging to the set of available actions for the

state s , a
ssP ′ is the probability of transitioning from s to s′ when action a is

selected, and a
ssR ′ the reward, for all Ss ∈ . The value of each state,)(1 sVk + , is

updated with the sum of the values from all possible successor states. Figure 2.8

depicts a simple 3x3 gridworld with one terminal state. This gridworld is a

simplified version of the example presented by [SB98].

31

Figure 2.8: Gridworld 3x3 Example

The value of any state in the gridworld is calculated as the sum of all possible

successor states based on the rules of the particular environment. In the case of

the gridworld, movement rules are indicated as pink arrows on the grid [up,

down, right, left]. If the allowed move is off the grid the agent’s state remains

unchanged. All states are non-terminal except for the central yellow state.

Rewards are expressed as -1 on all transitions. In order to apply iterative policy

evaluation, the probabilities a
ssP ' for all Sss ∈′, for every action a are first

calculated. In this example, these probabilities are simple to determine. All

possible state transitions probabilities from square 1 can be expressed as:

11,1 =upP , 02,1 =upP , 03,1 =upP , ... , 08,1 =upP

01,1 =rightP , 12,1 =rightP , 03,1 =rightP , ... , 08,1 =rightP

01,1 =downP , 02,1 =downP , ... , 14,1 =downP , 05,1 =downP , ..., 08,1 =downP

11,1 =leftP , 02,1 =leftP , 03,1 =leftP , . . . , 08,1 =leftP

32

All other non-terminal states have a similar list of probabilities. If the current

policy of agent is that all actions are equiprobable, then the policy probabilities

are:

25.0),(=upsπ 25.0),(=rightsπ

25.0),(=downsπ 25.0),(=leftsπ

The calculation for the value of state 1, using a discounting rate γ = 1:
[] [] []())8()2()1(*),1()1(8,18,12,12,11,11,1 k

upup
k

upup
k

upup
k VRPVRPVRPupV λλλπ ++++++= K

 + ... + [] [] []())8()2()1(*),1(8,18,12,12,11,11,1 k
leftleft

k
leftleft

k
leftleft VRPVRPVRPleft λλλπ ++++++ K

 = 0.25(1[-1+1(0)] + 0[-1+1(0)] + … + 0[-1+1(0)]) +

 0.25(0[-1+1(0)] + 1[-1+1(0)] + … + 0[-1+1(0)]) +

 0.25(0[-1+1(0)] + 0[-1+1(0)] + … + 1[-1+1(0)]

 + 0[-1+1(0)] + … + 0[-1+1(0)]) +

 0.25(1[-1+1(0)] + 0[-1+1(0)] + … + 0[-1+1(0)]) +

 = 0.25(-1+0+0+0+0+0+0+0) + 0.25(0+-1+0+0+0+0+0+0) +

 0.25(0+0+0+-1+0+0+0+0) + 0.25(-1+0+0+0+0+0+0+0)

 = -1

33

Figure 2.9 shows the all calculated)(sV values for each grid location for k=0 to

k=2.

Start State

k = 1

k = 2

Figure 2.9: Dynamic programming V(s) calculations for 3x3 gridworld.

The previous example is of policy evaluation. The value of each state is

calculated based on the current policy. In the example, the policy being followed

is equiprobable action selection, in other words, each possible movement from

any state has an equiprobable chance of selection. The results displayed are a

result of continually evaluating this policy. When examining the 3x3 gridworld,

the move up from 1 is clearly not a desirable move, while the move right from 1

is desirable.

34

The primary reason for calculating)(sV is to be able to shift the current policy

towards the optimal policy. This procedure, called policy improvement, is

typically performed by altering the policy to be greedy with respect to)(sV π .

The policy is shifted toward the greedy policy when the current policy is deemed

to be stable, typically when)(max sVΔ < some small number for Ss ∈∀ . For

example, at 14=k where 2.0)(max ≥Δ sV , changing the policy to be greedy

with respect to)(sV π results in:

V(s) Policy (Optimal)

Figure 2.10: Shifting the policy π towards greedy at k = 14 where max ΔV(s) ≥ 0.2

In a problem of this size, policy iteration finds the optimal policy on the first

sweep. However on larger problems with more complex transitional

probabilities, several sweeps may be required before the optimal policy is found.

In these more complex problems, this process continues until the policy is

optimal (while Vπ′(s) ≥ Vπ(s)). Policy evaluation can lead to drawn out iterative

computations while waiting for)(max sVΔ to decrease significantly.

Furthermore in simple problems, the optimal policy is often found far earlier. In

the 3x3 gridworld, the optimal policy is already found at 2=k , and thus waiting

on)(max sVΔ to be less than some small number is not very beneficial and

could result in many unneeded iterations.

35

One method to decrease this calculation is that of value iteration. In value

iteration, the policy is shifted towards the greedy policy at the end of each policy

evaluation step. Rather than waiting until)(max sVΔ is suitably small, the

policy is changed immediately towards the greedy policy. At 1=k , the new

policy in the gridworld becomes:

V(s) at k=1 New policy

Figure 2.11: Shifting the policy π towards greedy at k = 2 for value iteration

This combination of policy evaluation and policy improvement is called

generalized policy iteration (GPI). This process describes the repetitive

movement of the current policy towards the greedy policy. The majority of

reinforcement learning methods, including DP, can be described in this manner.

.

.

.

Vπ
 IMPROVEMENT
π →greedy(Vπ)

π*

 V→Vπ

EVALUATION

π

Vπ*

Figure 2.12: Generalized policy improvement.

36

The review presented here was based on a more detailed examination of DP for

MDPs in [LCK95] and [SB98]. DP techniques require a full model of the

environment, but since this is not feasible in most domains, DP is of primary

interest as the theoretical basis of reinforcement learning.

2.3 Monte Carlo

Another approach to the reinforcement learning problem is a family of methods

called Monte Carlo [RUB81]. Monte Carlo methods learn from sample

sequences of their environment by averaging the complete returns of an episode.

Unlike dynamic programming methods of the previous section, Monte Carlo

methods do not require a complete model of their environment. In order for the

DP methods to work, a complete list of transitional probabilities would be

required. Monte Carlo methods do not require these probabilities to be explicitly

stated. Unlike DP, Monte Carlo methods do not bootstrap. This means that the

value of an individual state does not rely on the values of any other states. To

calculate the value of a state, sample episodes are generated. An episode is a set

of state transitions from the start state to the terminal state. The value of each

state along a single sample episode is the averaged return of all rewards received

along that path.

This type of exploration based evaluation of the state space works extremely

well in environments where the range of states required to solve the problem is

actually a relatively small subset of the overall state space. Monte Carlo methods

can be focussed to concentrate in these areas. One assumption that must be made

in Monte Carlo applications is episode termination. This is because the averaged

37

returns are not awarded to the state/action pairs until the end of the episode. For

example, in the gridworld from Section 2.2 sample episodes would be generated

starting from random locations within the gridworld. Each state/action pair

appearing in the episode would be updated with the averaged return of the

episode.

Figure 2.13: Two sample episodes in Monte Carlo evaluation.

This type of Monte Carlo evaluation is based on the assumption of exploring

starts; the episode start is a randomly selected state-action pair, and every pair

has a positive probability of being selected. This is necessary to ensure adequate

exploration of the state space. In reality, this assumption is very restrictive.

Many problems that have a specific start state. In order to get rid of this

assumption, the principles of on-policy and off-policy as discussed in

Section 2.1.3 can be applied. These principles and the implementation of some

sort of ε-soft policy ensure adequate exploration of the state space without the

exploring starts assumption. ε-soft policies are any type of policy that ensures

that all actions have some positive probability of being selected. ε-greedy from

Section 2.1.2 is an example of an ε-soft policy. Therefore, using Monte Carlo

control and following generalised policy iteration, after each sample episode the

38

policy is shifted towards the greedy policy and then the next episode is

generated based on the new behavioural policy. A more detailed overview is

provided in [SB98].

2.4 Temporal Difference Algorithms

Temporal difference (TD) algorithms combine the approaches of dynamic

programming and Monte Carlo. They are similar to Monte Carlo approaches

because they learn from sample sequences of their environment. Yet, unlike

Monte Carlo methods, TD algorithms do not wait for the final outcome for

learning to occur. Instead they learn from the partially learnt values of the next

states they visit. The TD algorithms presented in this section are referred to as

tabular learning, since they store their representation of the world discretely in a

lookup table.

To elucidate this, consider a marketplace environment where a number of agents

are participating in an auction, and where the goal for each agent is to purchase a

number of items. Figure 2.14 illustrates the potential states for a marketplace

agent. The agent has a look up table that contains combinations of discrete

values which define its current state. These are the amount of money left, and

the number of items still left to buy.

 State Money_Left Items_to_Buy
S1 12 3
S2 5 1

Figure 2.14: State Representation

39

S1

S9

S7

bid 4

bid 6

S*

action *

Figure 2.15: State action translation.

The current state of the agent’s environment is represented by a particular state.

The agent recognizes which state it is in (say state S1), and executes some

action. This action causes a translation to another state. Figure 2.15 illustrates

potential state translations. Tabular reinforcement learning algorithms such as

Sarsa and Q-Learning attempt to learn the Q-value of a state-action pair-

),(asQ . For the example state 1S in Figure 2.14, there would be several entries

in the table corresponding to all the possible actions. If the available actions are

bid 8, bid 6, and bid 4, the entries for 1S would become:

State Action

Money_Left Items_to_Buy Bid
12 3 8
12 3 6
12 3 4

Figure 2.16: State action pairs

Finally as shown in Figure 2.16, the agent uses this table to store information

about the value (Q-value) of each of these state/action combinations.

State(s) Action

Money_Left Items_to_Buy Bid
Q(s,a)

12 3 8 0.1
12 3 6 0.5
12 3 4 0.3

Figure 2.17: State action pairs with Q-values

40

The full lookup tables contain all possible state/action combinations.

2.4.1 Sarsa

Sarsa [SUTT96] is an on-policy TD learning algorithm originally called

modified Q-Learning [RN94]. The general principle of Sarsa is summarized by

its name: State, Action, Reward, State, Action. In Sarsa, an agent starts in a

given state, from which it does some action. After the action, the agent receives

a reward and has transitioned into a new state from which it can take another

action.

Sarsa is an on-policy algorithm. This means that the learning occurs only from

actual experience. An on-policy learner selects an action, receives a reward and

observes the new state and again selects an action. As with all reinforcement

style algorithms, there must be a trade off between exploration and exploitation.

An exploratory action or exploiting action is chosen as a result of the current

policy typically an action selection policy such as ε greedy. Recall that ε greedy

policy selection operates on the simple guideline of choosing the most optimal

action based on the current known rewards or Q-values for all possible state

action pairs. At every time t, there is some probability ε that rather than choosing

the optimal greedy action, the selection policy will choose randomly to explore

from the set of possible state action pairs in the hope that they may lead to a

better solution.

As discussed at the beginning of this section, after an agent has made an action

from a state, the agent receives a reward. The learner typically receives a

41

positive reward at the end of the episode if it has achieved its goal (i.e. it bought

the number of required items) and a negative reward if it has not. At all other

non-terminating state-actions, the agent receives the default reward.

The algorithm then proceeds as follows:

All Q(s,a) values are initialised.
Repeat for each episode (or auction game){

 Initialize ts (start state for the auction game).

 Choose ta from ts using ε greedy selection policy.

 Repeat for each step(auction) in the episode(auction game){

 Take action ta , observe r and 1+ts

 Choose 1+ta from 1+ts using ε greedy selection policy

 []),(),(),(),(111 ttttttttt asQasQrasQasQ −++= +++ γα

 ts = 1+ts , ta = 1+ta

 }
}

Figure 2.18: Sarsa Algorithm

2.4.2 Q-Learning

Watkins Q-Learning [WAT89] is a very similar algorithm to Sarsa. The primary

difference between the two is that Q-Learning is an off-policy learning

algorithm. In reference to the stickman world described previously, a Q-Learner

learns based on the best state/action value at its new state. This action is not

necessarily the action it takes.

Thus the update formula for the Q-Learner is:

 []),(),(max),(),(11 tttattttt asQasQrasQasQ −++= ++ γα (2.4)

42

In a similar example to the cliff world in [SB98], imagine a gridworld where the

agent starts at one end of the world and is required to find a path to a terminal

point on the other side of the world. All non-terminal steps receive a -1 reward.

There is a sink hole in the middle of this world, and if the learner falls in this

hole, it receives a -100 reward and must start again. In this example the

parameters γ and α are set as follows: γ=0.9 and α=0.1. To illustrate the

differences between Sarsa and Q-Learning ε is initially set to 0. In this example,

there is no difference between the two algorithms in the policies learnt. Setting ε

to zero means that there is no exploration, both algorithms will always pick the

greedy move. This results in both Sarsa and Q-Learning learning the policy

illustrated by the black arrows of the Q-Learner of Figure 2.19.

Figure 2.19: Sarsa and Q-Learning policies in a sink hole gridworld

If the ε is increased to 0.05, the policy learnt by Sarsa moves slightly away from

the optimal policy. This is because Sarsa learns directly from the moves it

43

actually makes. To illustrate how this affects the Sarsa learner, consider the

episode highlighted by the blue arrows of Figure 2.20.

Figure 2.20: Exploratory vs. optimal action selection in a sink hole gridworld

At grid location [1,2], the current policy (ε-greedy) suggests an exploratory

move which takes the learner into the sink hole rather than the optimal action

indicated by the dashed arrow.

When the learner falls into the sink hole, each learner updates the Q(s,a) value of

falling into the sink hole in the same manner:

Q(G[1,2], AEAST) = Q(G[1,2], AEAST) + 0.1(-100)

44

The difference comes from the update for the pairs before that final move. Sarsa

updates its Q(G[1,1], ASOUTH) as:

Q(G[1,1], ASOUTH) = Q(G[1,1], ASOUTH)
 + 0.1(-1 + 0.9(Q(G[1,2],AEAST) - Q(G[1,1], ASOUTH)

Where as Q-Learning updates its Q(G[1,1], ASOUTH) as:

Q(G[1,1], ASOUTH) = Q(G[1,1],ASOUTH)
 + 0.1(-1 + 0.9(Q(G[1,2],ASOUTH) - Q(G[1,1],ASOUTH)

The Q-learner is learning the optimal policy even when it follows a different

one, whereas the Sarsa learner learns from the policy it actually follows.

Therefore the next time Sarsa will be less likely to even approach a state where

one of the possible actions from that state is very bad. The end result of this

difference in learning, is demonstrated by the difference in the policy learnt in

Figure 2.19. The Sarsa learner learns the safe path around a really bad state.

2.5 Eligibility Traces

In the previous section, the algorithms discussed can be seen as one step

algorithms. It is only the next step which influences the value of the current step.

Furthermore the amount the next step influences the current step is dictated by γ.

A γ of 1 indicates that the learning that takes place at the current state is heavily

influenced by the next state, whereas lower settings of γ indicate that the learner

is less influenced by events that happen in the future. Referring back to the sink

hole example, if one of the example episodes follows the path indicated in the

left hand grid of Figure 2.21, the one step algorithms of the previous section

only update the blue arrowed state on the final transition. This means that

45

several passes over a path are needed for the final rewards to affect the other

states on the rest of the path.

Path taken Values affected by one-step

algorithms

 Figure 2.21: Sample episodes in a sink hole gridworld

Eligibility traces extend this idea of allowing things that happen in the future to

more directly influence the original decision that the learner made [WAT89,

SS96]. The learner keeps track of all the states that it visits during an episode.

When it visits a state and chooses an action to take it saves the fact that it has

been there by increasing the eligibility of the state/action pair (),(ase). The

increase to),(ase uses either accumulating traces or replacing traces. In the

case of accumulating traces, 1 is added to),(ase on each visit. Replacing traces

simply resets),(ase to 1 when it is visited again. In Figure 2.22, at t=1, the

learner has visited two states and thus the blue arrows indicate the eligibility of

those states. As the episode progresses, newly visited states are added to the

eligibility trace. As indicated in the Figure 2.22, the eligibility of a state is also

subject to decay over time. As shown at t=7, the most recently visited states are

the most affected by the end reward of an episode. For eligibility tracing, a new

parameter λ is introduced to control the decay of eligibility.

46

T=1 t=3 t=7

 Figure 2.22: Eligibility traces in a sink hole gridworld

The eligibility traces decay at each time step),(),(asease γλ= and the update

formula (for Sarsa) becomes:

),(),(),(aseasQasQ αδ+= (2.5)

Where ()),()','(asQasQr −+= γδ . δ is updated for the current step in the

episode, whereas the Q update is carried out for all states where e(s,a) > 0 at

every step,. For example with λ = 0.9, γ=0.9 and α=0.1, at the t=1:

e(G[2,0], AEAST)= 0.9*0.9*1.0 = 0.81

e(G[3,0], AEAST)= 1

At the end of t=1, the Q update is performed on these two states (as all other

e(s,a) = 0):

δ = -1 + 0.9 * Q(G[3,0], AEAST) - Q(G[2,0], AEAST)

Q(G[2,0], AEAST)= Q(G[2,0], AEAST) + 0.1* δ * 0.81

Q(G[3,0], AEAST)= Q(G[3,0], AEAST) + 0.1* δ * 0.81

47

Conversely by the time the learner has reached the terminal state (in yellow), the

eligibility of the first two states visited has decayed to:

e(G[2,0], AEAST)= 0.2288

e(G[3,0], AEAST)= 0.2824

At this final point there are 6 other active traces, and thus all 8 states will be

updated as above.

It should be noted that the examples given above are applicable for on-policy

algorithms. Eligibility traces can be applied to off-policy algorithms, however

their application is not as straightforward due to the off-policy learning.

Watkin’s Q(λ) [WAT89] simply cuts the eligibility tracing whenever an

exploratory action is taken, Peng’s Q(λ) [PW96] mixes on-policy and off-policy

learning to use eligibility traces. This work is primarily focused on on-policy

learning, and thus further discussion of these methods is outside the scope of this

research.

2.6 Linear Function Approximation in Reinforcement Learning

This section has reviewed the basic principles of reinforcement learning. The

techniques presented are broadly applicable to many types of problems.

However, due to their tabular nature they are not appropriate in most real

domains. Real domains are often characterised by many continuous, rather than

discrete, state variables. Tabular forms of reinforcement learning are therefore

computationally unable to learn the problem without utilising some sort of

function approximation.

48

One of the many challenges facing reinforcement learning in specifically large

domain sizes is both the ability to deal with large state space sizes and also the

ability to generalise about a new state based on the learner’s experience of other

visited states. The methods described in Section 2.1 are tabular. They rely on the

ability to represent the state space as a giant lookup table. However, most

interesting problems are often made up of state spaces that cannot be represented

in pure tabular form. Consider a state space made up of two continuous

variables. The number of possible combinations is infinite unless the designer

knows what level of quantisation is required. For example, does the problem

require precision in the range of 1 decimal place or is it 10 decimal places? If the

state space can be designed in such manner, then it may be possible to use

tabular forms of learning. Even if the state space can be reduced in this manner,

it may still be too large.

The easiest technique used in function approximation is state aggregation.

Possibly the earliest example is [CM68], but has been further developed in

[SSR98]. This technique divides each state space variable into regions and

considers each region as discrete variable. Recent research in function

approximation techniques have concentrated on using non-tabular forms of Q-

Learning [WAT89] and Sarsa [RN94] in a variety of different scenarios such as

[PSD01, SASM99, SSK05]. This section investigates function approximation

and associated learning algorithms.

49

2.6.1 Gradient Descent Learning

Gradient descent methods [SB98] rely on a parameter vector of features, n

→

θ as

depicted Figure 2.23. This vector is a large vector that contains all the features of

the state space. Any state can be described by one or more of these features.

State
Space

1

→

θ

n

→

θ

s

→

θ

Figure 2.23: Parameter Vector for Gradient Descent

In the tabular case, a greedy action could be selected simply by choosing the

best),(asQ for all ta . In Figure 2.24, the current state of the learner is

described as [Money_Left = 12, Item_To_Buy = 3], and the greedy move is

Bid 6.

State(s) Action

Money_Left Items_to_Buy Bid
Q(s,a)

12 3 8 0.1
12 3 6 0.5
12 3 4 0.3

Figure 2.24: State action pairs and Q values

In gradient descent methods, the state action pair [Money_Left = 12,

Item_To_Buy = 3], a = [6] has its own vector of features n

→

φ .Each entry in

50

n

→

φ corresponds to the a basis functions {),(asnφ } is the same size as the vector

of parameters n

→

φ . The),(asQ value is calculated as follows:

),(),(
0

asasQ
n

j
jj∑

=

= φθ (2.6)

In the following example, each feature is assumed to be binary. Thus n

→

φ

becomes a big binary vector, with each entry 1 to n indicating whether the

corresponding feature in n

→

θ is present in the state (1 for present, 0 for absent).

In the example,),(asQ is the sum of all θ where
→

φ = 1.

(s, a)

s = [Money_Left = 12,
 Item_To_Buy = 3]
a = 6

0
0
0
0
0
1
1
0
0
1
0
0
.
.
.
.
.
.

n

n

→

φ

0.3
0.1
0.7
0.1
0

0.2
0.1
0.1
0.2
0.3
0.7
0.3
.
.
.
.
.
.

n

→

θ

n

→

θ

Q(s, a) = 0.2 + 0.1 + 0.3*

* assuming no other 1s in n

→

φ

Figure 2.25: Calculating Q(s,a) using Parameter and Feature Vectors

Assuming this representation of the state space and assuming that the examples

in the parameter vector appear with same distribution as the examples [SB98]

suggests that a good approach is to try to minimise the mean squared error. This

51

is done by adjusting the entry for the present feature(s) by a small amount.

While there are both on-policy and off-policy gradient descent methods, the

primary difference between on-policy and off-policy has been discussed in

Section 1.4. Furthermore, Watkins Q Learning [WAT89, WATD92] may fail to

converge when used with function approximation [TS93]. For the sake brevity

only the linear, gradient-descent Sarsa(λ) is given here. (Figure 2.26)

Initialise
→

θ arbitrarily and
→→

= 0e
Repeat for each episode {

s ← initial state of episode
For all a ∈ A(s):
Fa ← set of features present in s,a

Qa ← ∑ ∈ aF
(i)

i
θ

Choose at using ε greedy policy.
Repeat for each step of the episode{

→→

← ee γλ

For all aa ≠ : (Replacing Traces)

For all aFi ∈ :

e(i) ← 0

For all aFi ∈ :

e(i) ← e(i) + 1 or 1
 (Accumulating or Replacing Traces)

Take action a, observe r and s′s'

aQr −←δ

For all a ∈ A(s′):
Fa ← set of features present in s′,a
Qa ← ∑ ∈ aF

(i)
i

θ

Choose a′ using ε greedy policy.

aQ ′+← γδδ
→→→

+← eαδθθ
a ← a′

until s′ is terminal

Figure 2.26: Gradient descent Sarsa(λ) Algorithm

52

2.6.2 Linear Approximation

Feature selection is one of the most vital areas for gradient descent learning. The

following sub-sections describe two different linear methods for selecting

features.

2.6.2.1 Coarse Coding with Tile Coding

Cerebellar model articulation controller (CMAC), was first introduced by

Albus [ALB81]. Over the last few years it has been adapted for use in

reinforcement learning and renamed tile coding [SB98]. The basic principle

behind tile coding is to overlay the state spaces with exhaustive partitions. Each

partition is called a tiling, and every element in the partition a tile. Each tile

makes up one feature and the total set of tiles in all tilings →

θ .

The resolution is divided into generalisation and granularity parameters. The

generalisation parameter describes the shape of the tiles. The granularity

parameter is described by the number of tilings overlaying the state space. These

overlays are important in tile coding’s ability to make fine distinctions. The

combination of generalisation and granularity is called the overall resolution.

For example, extending one of Sutton’s examples [SuttonTC], if a state space is

described by two state variables x and y, one possible way to tile it is to create

4x4 regions across the state space. This creates broad generalisation between

state values that are within 0.25 of each other (in both x and y). This level of

generalisation is relatively coarse. To refine the detail of what is learnt, another

tiling offset from the original can be placed over the state space. Figure 2.27

53

shows the original 2-dimensional state space with 2 offset 4x4 tilings. The

example state lies in exactly one tile in each tiling. Generalisation of that state

occurs with any other state that lies within that tile. Since the offset is different

for each tiling, the cluster of states surrounding the original state differs.

Figure 2.27: Calculating Q(s,a) using Parameter and Feature Vectors

The overall resolution of this example is 0.25/2 or 0.125. Finer resolution can be

achieved by increasing the number of tilings. In summary, the shape and size of

the tiles determines the type of generalisation that occurs between states,

whereas the number of tiling overlays controls the distinctions made about them.

2.6.2.2 Radial Basis Functions

Radial basis functions [POW87] extend the idea of tile coding in that instead of

a feature being present or not present, it can have a degree of belonging

anywhere in the interval of [0,1]. Typically the feature has a Gaussian response

function based on the distance between the current triggering state and the

feature’s “centre” (relative to the width).

54

2.6.3 Fuzzy Based Function Approximation

Knowledge representation is often represented in terms of binary opposites.

“The light is on, the light is off”. However, many things cannot be represented

with this kind of binary logic. Knowledge works more along the lines of “Give

the plant a small amount of water every couple of weeks” rather than “Give the

plant 15 ml of water every 14 days”. We are still able to deduce the right course

of action even with the first statement, and in fact, more exact knowledge would

not be any more helpful – as the example in [BEZ93] concludes, knowing that

you should brake exactly 74 feet before you need to stop a motor vehicle is not

actually useful in practice.

Representing and working with this type of knowledge is termed fuzzy logic.

Fuzzy logic is capable of dealing with fuzzy data, vague rules and imprecise

information. Systems that deal with “real” systems need to be able to cope with

this kind of data.

The following two sub-sections investigate fuzzy set theory and its application

in machine learning problems.

2.6.3.1 Fuzzy Sets

The idea of fuzzy sets is that, unlike binary logic where membership is described

as 0 or 1, a fuzzy set contains several labels that describe different states of a

variable. For example, suppose an agent wants to purchase a basket of oranges.

When looking for oranges the agent may have different requirements; price,

quality, and quantity. Some of these attributes are not things that are normally

55

given binary values. For example, how does the agent judge what oranges of

good quality are? Normally, we do not think of these types of requirements in

binary terms.

A fuzzy variable consists of a set of symbolic labels called fuzzy labels. In the

agent marketplace example, the variable price might be represented as

[PRICE_LOW, PRICE_MEDIUM, PRICE_HIGH] and any specified attribute

value (say price = £4) has a certain degree of membership to one or more labels

in the price set. A set (or variable) is said to be crisp if the values it refers to are

traditional discrete values. To determine how much a specified crisp value

belongs to any given label, for example PRICE_LOW, a pre-defined

membership function is applied. [BEZ93] defines fuzzy sets and membership

functions as follows:

If X is a collection of objects denoted generically by X, then a fuzzy

set A in X is defined as a set of ordered pairs
 A = {(x,μA(x))| x ∈ X} , where μA(x) is called the

membership function (or MF for short) for the fuzzy set A. The MF

maps each element of X to a membership grade (or membership

value) between 0 and 1 (included).

A fuzzy set is a mapping from a set of real numbers to a set of symbolic labels.

For example, consider the world descriptor Money_Left from the states

described Figure 2.14. The value of Money_Left in a crisp state consists of a

discrete number, say ML(x), x ∈ZZ =[0..15]. However, in a fuzzy state, the same

value x maps to one or more of the fuzzy labels associated with Money_Left =

56

[Lots_Money, Little_Money]. X’s degree of belonging to any particular fuzzy

label is defined by the membership function (μ) associated with the fuzzy set

Money_Left. For example, the μMoney_Left and μItems_to_Buy might be described as:

0

0.2

0.4

0.6

0.8

1

0 5 10 15

Money Left

M
em

be
rs

hi
p

Little_Money Lots_Money

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Item to Buy

M
em

be
rs

hi
p

Few_Items Many_Items

Figure 2.28: Membership function of Money_Left and Items_To_Buy

Crisp values are fuzzified using these types of membership function. Each crisp

value will belong, to some degree, to one or more fuzzy set labels. In Figure

2.14, Money LeftS1 = 12, fuzzification of this value results in:

μLots_Money (12) = 0.87 and μLittle_Money (12) = 0.13

Therefore, fuzzy sets have soft or fuzzy boundaries, whereas the old form of

state representation has crisp boundaries. Defining membership functions of

fuzzy sets requires some level of knowledge engineering, i.e. the designer must

have some intuition about the domain in order to make a reasonable mapping of

crisp values onto the fuzzy labels. However, the design of fuzzy sets allows for

flexibility in membership definitions. This flexibility allows for the existence of

a soft boundary between labels.

The soft boundary can be used to illustrate the differences and highlight the

relationship between fuzzy theory and probability theory. To further the

57

examples from literature, this distinction will be illustrated with a marketplace

example. The marketplace is again selling oranges and an agent wishes to

purchase a basket of oranges. This agent can either purchase lot A or lot B:

μGOOD_ORANGES(A) = 0.9 Pr(B ∈ GOOD_ORANGES) = 0.9

Figure 2.29: Membership vs. Probability

The primary difference between the two types of information, is that A’s 0.9

membership to the set of GOOD_ORANGES indicates that while the basket

may contain some degree of rotten oranges, all in all it will still contain a fair

amount of good ones. On the other hand, the probability statement that describes

lot B, indicates that most of the time, B will contain good oranges. This

statement says nothing about the quality of the oranges the remaining 0.1 of the

time; the oranges could be all rotten during this period. Both probability and

fuzzy membership express the level to which the basket belongs to the set of

GOOD_ORANGES, however fuzzy membership also expresses the degree of

belonging.

Further information about fuzzy set theory can be found in [BEZ93, BO82 and

MUK01].

It is important to note that the membership functions can be described by any

type of function that maps a variable X to a value between 0 and 11. However,

1 Including both straight line functions such as triangular or trapezoidal functions and curved line functions
such as a generalised bell curves or sigmoidal (open left or right) functions.

58

membership functions that total 1 for any given crisp value (∑
=

=
ni

i x
..1

1)(μ). It

has been shown that systems that follow this rule are more robust to errors such

as noise and design faults. [BBM99].

2.6.3.2 Fuzzy Reinforcement Learning

The history of reinforcement learning and fuzzy reinforcement learning can be

traced through techniques developed for learning classifier systems (LCS). In a

LCS an agent has a rule-based model of the world. It uses interactions with its

environment to modify that rule base via some evolutionary process. LCS

systems typically combine some type of trial and error learning2 with a

Darwinian evolutionary survival of the fittest mechanism. An introduction to

LCS can be found in [HetAl00], and more recently [BK05]. [LR00] presents a

review of some of the successful LCS systems.

In terms of LCS systems, the research presented in this thesis focuses on the

techniques developed for the learning fuzzy classifier system (LFCS), especially

on the fuzzy reinforcement learning aspects. An introduction to LFCS is

provided by Bonarini in [BON00]. The reinforcement distribution concepts of

these types of systems are particularly relevant. A variety of different

researchers, including Bonarini, have proposed fuzzy extensions to the

Q Learning algorithm. The following discussion will focus on three such

proposals.

2 I.e. Reinforcement Learning.

59

Glorennec proposed a version of Q-learning that uses fuzzy rules [GL94,

GLJ97]. In this approach, the entire set of fuzzy rules is considered an agent that

produces some action a . Each agent always triggers the same action. This

60

architecture is described by a Q function),(tt asQ and a rule quality),(taiq . A

Q-value is:

 ∑
∈

=
)(

),(
2
1),(

tsHi
tntt aiqasQ (2.7)

where)(tsH is the set of all fuzzy rules that are triggered for the crisp state ts

and n is the number of input variables. Therefore, action selection is the

),(tt asQ with the largest summed rule quality. The update given to the rule

quality is described as:

 Qiactaiq n
t Δ=Δ)(2),((2.8)

where)(iact is the mean relative activity of the rule i for ts , or the amount of

contribution of rule i to ta .

In this proposal, to select an action, the set of fuzzy rules activated in ts needs to

be evaluated for that action. In order to finalise action selection, all possible

),(tt asQ must be calculated. This can be computationally expensive, especially

for large systems.

Berenji’s Q-Learning [BER94, BER96, BERV01] deals with fuzzy constraints

on the actions. An example of a fuzzy constraint is “the price of item A must not

be substantially more than item B”. This algorithm maintains an estimate for

61

taking an action given the fuzzy constraint on the action. Therefore, the Q value

update3 becomes:

()[]),(),(,(max),(),(1 ttttctbtttt asFQasasFQrasFQasFQ −∧++= + μγα

 (2.9)

In this system, the action selected at t is the action with the maximum),(asFQ .

Actions are selected rather than combined. This fuzzy extension only applies to

the constraints),(ttc asμ . This system is quite different from most other fuzzy

systems because it does not combine actions.

Bonarini [BON96, BON96a, BON97, BON98] presented a more truly fuzzy

version of Q-Learning. In Bonarini’s fuzzy LCS, the reinforcement fuzzy Q-

learning section applies principles similar to Glorannec, extending the

fuzzification to fuzzy goal states. In this algorithm, the states are fuzzified and

the actions fuzzified. This creates a set of fuzzy rules, of which one or more fire

for a specific crisp (non-fuzzy) state. From the rules that fire, the most

appropriate fuzzy action is chosen. The set of fuzzy actions are recombined to

produce a crisp action. In Bonarini’s Q-Learning proposal [BON98] the update

is given as follows:

),(ˆ)),(ˆmax(),(ˆ),(ˆ
1 ttjrtrjrttrttr asQasQrewardasQasQ

jijiii
−++= + ξγαξ

 (2.10)

3 Where Q values become fuzzy Q-values or FQ values.

62

for all i , where ti Rr ∈ and tR is the set of all fuzzy rules with 0>μ for the

crisp state ts ;
ir

ξ is the relative contribution of the rule i (ir) that matches a

crisp state s , with respect to the total contribution of all rules that match s . This

is given as:

∑
=

=

Kk

s
r s

s

ks

i

i

,1

~

)(
)(

~μ
μ

ξ (2.11)

While this section has presented a review of Bonarini’s Fuzzy Q-Learning, the

paper [BON98] and others [BON96, BON96a, BON97] present other extensions

such as Fuzzy-Q(λ), ELF4 and a variety of successful experiment results mostly

in robotic tasks such as navigation and pursuit. Bonarini proposes a

methodology for applying RL algorithms to LFCS however, no on-policy

algorithms are proposed.

2.7 Multiagent learning algorithms

One problem with most reinforcement learning algorithms is that the learning

problem is non-stationary. In a non-stationary problem estimates, or Q values,

never completely converge due to the changing nature of the environment.

Tracking non-stationary behaviour has been dealt with in a variety of different

ways. Some reviews in the area are provided by [TR96 and SV00].

4 A LFCS using the fuzzy reinforcement learning algorithms presented.

63

2.7.1 Recursive Modelling Method

The Recursive Modelling Method Algorithm introduced by Gmytrasiewicz

[GDW91, GLJ97 and NG97] is a formalism to represent and process models

that one agent keeps of another agent. This method, based on game theory, is

based on payoff matrices. It assumes that the agent doing the modelling will

know the utility functions of all the other agents. The modelling agent

calculates its payoff matrices based on the total expected payoff that all the

agents will receive given that they follow a particular action. The modelling

agent chooses an action based on what will maximise not only its own utility,

but the utility of all the other agents. This algorithm is further extended in

order to cope with recursive levels of modelling – how to model an agent when

you know the agent is modelling you. The level these models descent is the

agent’s knowledge depth.

RMM can be solved using dynamic programming techniques. As commented

on by Vidal in [VID98], RMM has several limitations. The first is the

exponential growth of the matrices and modelling levels as the number of

agents and knowledge depth is increased. This exponential growth leads to a

high overhead in computational time to obtain a good solution. The second is

that the nesting models assume that the agent doing the modelling has

knowledge of other agents’ payoff functions. [VID98] presents a knowledge

dampening version of RMM called Limited Rationality Recursive Modelling

Method, a framework for incorporating knowledge about other agents was

presented in [VIDD97].

64

2.7.2 Minimax Q

Minimax-Q, proposed by Littman [L94] uses zero-sum games where the learner

tries to maximise the payoff in the worst scenario. Essentially the algorithm

switches between minimisation and maximisation depending on the state. This

algorithm achieves good results with or without opponents. This algorithm

utilises linear programming in each state and episode, causing it to be very slow

in learning. Further details can be found in [L94 and LS96]

2.7.3 Nash Q

Nash-Q, proposed by Hu and Wellman [HW98, HW03], extends Q-learning to

perform updates based on the existence of a Nash equilibrium over the Q values

for all learners. A Nash equilibrium is defined as a set of strategies for each

learner such that each learner’s current strategy is optimal given the other

learners’ current strategies. This algorithm tries to learn the Nash-Q value; a

value defined as the optimal Q-values in a Nash equilibrium. The major issue

with this algorithm is the need to pre-calculate the Nash equilibrium values.

Given these values, the algorithm will converge to Nash equilibrium policies

under certain strict conditions to related to the Nash equilibriums.

2.7.4 WoLF

The research presented in [BV02] and [BV02a], combines tile coding, policy

gradient ascent or policy hill climbing and a technique they call Win or Learn

Fast (WoLF). The WoLF principle is a method for altering the learning rate (α)

65

depending on the current performance of the agent. If the learner is doing worse

than expected, α is increased to encourage it to learn faster. If it is doing better

than expect α is decreased because it is likely that the other learning agents will

soon change their policy in response to their poor performance. Policy hill

climbing and policy gradient ascent algorithms work similarly to the learning

algorithms discussed, however they combine the learning principles with the

ability to learn multiple policies. The principles of tile coding were reviewed in

2.6. The novelty is its combination of the three techniques and application to the

multiagent learning problem. The results reported in stochastic games are

promising. Intuitively this solution seems logical as it is more flexible than those

that require calculations of equilibriums.

2.8 Summary

This section has provided a review of the theoretical background of

reinforcement learning. It has introduced a variety of techniques that attempt to

learn in non-stationary environments. The modelling techniques and multiagent

learning algorithms are difficult to scale up to large games and are sometimes

not applicable in adversarial environments.

To that effect the research presented in this thesis will investigate the use of

function approximation techniques in adversarial environments. Specifically, the

fuzzy techniques presented in Section 2.6.3 appear promising due to the

diversity of rules that can be triggered for any particular state. However,

although Q-learning has been popular choice with most algorithms including the

fuzzy techniques, it has been shown that Watkins [WAT89] Q-learning may not

66

converge correctly when used in function approximation. In particular, [TS93],

have shown that because function approximation introduces noise into the

calculation of Q-values, some values may be too large, and other too small. Q-

learning uses the max operator, always picking the largest values, causing

overestimation if the error intervals of several related Q-values overlap.

Therefore, the research presented in this thesis will focus on on-policy methods

of function approximation because they do not use the max operator.

To that effect, a further investigation into on-policy fuzzy methods and two

separate proposals by the author of this thesis for on-policy fuzzy learning are

provided in Section 4. Before that, Section 3 presents the three simulation

environments used to evaluate and test the proposals made in Section 4.

67

3 Simulation System Design

The learning algorithms investigated and developed for the research presented

in this thesis were tested in a variety of different learning problems. While

Section 4 introduces the novel algorithms, this section presents some principles

of simulation before presenting the three simulation systems used in this

research and, finally, the techniques used for verification and validation of the

systems presented, including the statistical methods used in data presentation

and validation of results.

3.1 Random Numbers

In any type of simulation the use of random number generators (RNGs) is

required. The sequence of numbers produced should be reproducible. This

means that given the same seed, the RNG should produce the same sequence.

This is important in order to aid debugging of the simulation and increase the

reliability of the results [PJL02].

RNGs are pseudorandom, meaning that they rely on a deterministic

mathematical process rather than some activity which is a fundamentally

random natural process such as radioactive decay. [BZ03] provides a concise

summary of the important properties of good random number generators (RNG).

Some of these characteristics include reproducibility of the sequence, uniform

distribution, a long period of numbers, independence (low levels of statistical

correlation) and efficiency. Furthermore, for stochastic simulations, linear RNGs

are the most widely used and much quicker than non-linear RNGs. There are

68

several RNG algorithms that fulfil these requirements including Taus88, TT800,

and Mersenne Twister [RNGTest].

The simulation systems developed for this thesis used version 7 of the Java

version of the Mersenne Twister algorithm [MN98] available from Sean Luke

[MTJava] for random number generation. This algorithm is available in both

synchronised5 and non-synchronised form. The Mersenne Twister algorithm has

the following advantages: It has been designed with consideration of the flaws of

various existing generators, it is freely available in a wide variety of languages.

It has a long period and high order of equidistribution (period: 219937-1 and 623-

dimensional equidistribution property is assured.) and finally, fast generation. .

3.2 A Marketplace Simulation

The agent marketplace was chosen for three reasons:

1. It is a scaleable domain;

2. It offers the potential for multiagent scenarios where both agents are

competing for the same goal, and;

3. It has a close relationship to real world problems, such as bandwidth

brokering and other auction scenarios.

5 In a multi-threaded environment, if one or more threads share the same object, it must be synchronizable to
provide safe access.

69

The following section details the design and setup of the marketplace simulator

used in the research presented in this thesis. Section 3.2.1 investigates

multi-agent platforms currently available before concluding that a simpler

multi-agent platform was required. This platform is presented in Section 3.2.2

and the behavioural algorithms used for agent construction in Section 3.2.3.

3.2.1 Agent Platforms – FIPA-OS and Zeus.

Several multi-agent technologies, such as FIPA-OS and Zeus were investigated

thoroughly at the beginning of this project. FIPA-OS is an open source agent

platform. This platform contains the mandatory elements required for agent

interoperability that are specified in the FIPA6 specifications. The FIPA-OS

platform originated from Nortel Networks. The Zeus multi-agent platform was

developed by BT Labs and is also FIPA compliant. Both systems are Java

based, and include many useful interoperability features for building

commercial agent systems. However, the learning-curve for both systems is

quite steep and at the time, neither system offered pared down functionality for

the purpose of simulation. It was decided that a better approach for this project

was to write an auction simulator with only the functionality required.

6 Foundation for Intelligent Physical Agents

70

3.2.2 The AgentSim Marketplace

The marketplace is modelled in order to cope with scarce items. Two possible

marketplace auction mechanisms include: (1) An ascending price English

Outcry, and (2) Sealed bid. The auctions themselves are modelled as a

continuous episodically levelled task. By this it is meant that an amount of

items being auctioned in a time period t and the number of auctions the agent

knows will occur in each time period are fixed. Essentially time is broken up

into equal periods, during each time period t , a certain quantity q of the item

is available. During the first episode occurring at time t for q items must be

completed before 1+t .

 q items q items q items

 Marketplace structure:

t t+1 t+2 t+3

An episodically levelled task complicates the learning issue because there are

two levels of learning possible. The first level is simply to learn what do in any

one auction of an item. However, if the auctions are episodically levelled, a

better solution would be to learn a strategy over the game of auctions. Thus in

the following discussion the terms auction and auction game have particular

meaning. An auction refers to one event of auctioning an item within an

episode or an auction game.

71

In order to learn patterns of bidding in different auctions the game is modelled

as a general sum stochastic game rather than a zero sum game. This means that

the rewards the agents receive do not total to zero (i.e. one agent gets +1 and

the other agent -1 in any given auction game). Instead the agents receive a

reward based on the number of items received within a game (some set of

auctions).

The AgentSim Marketplace system developed for this project is written in Java

using Java 1.4.2 [JAVA] and SimJava [SJAVA]. SimJava is a freely available

process based discrete event simulation package for Java. The package has

animation capabilities which allow a visual display of the inner workings of

the simulated entity. SimJava allows for the creation of multiple animation

entities. These entities can then be joined up in order to send and receive

events as required. The simulation is handled by a central controller, which

manages all the simulation threads, collects and delivers simulation events to

the appropriate entity, and finally advances the simulation time when

appropriate.

Utilising both this package and other Java packages, the AgentSim

Marketplace was constructed in order to simulate an agent marketplace. The

first task was to extend the SimJava animation capacity to allow detailed

entity-entity messaging. This function is useful for debugging the auction

simulator, as it allows information (such as agent bids and the type of message

sent), to be immediately recognised by the user. It is also valuable for

explaining the simulator to a third party.

72

The SimJava package was extended by the author of this thesis in the

following ways:

 To allow the user to specify both text, and colour coding to the visual

message that are passed between the entities. (Mod 1)

 The creation of a bar graph package and side labels to track data while

the simulation is running. (Mod 2)

 Addition of application option for simulation (original package is only

intended for applets). (Mod 3)

 Conversion of AWT graphics to Swing graphics7. (Mod 4)

Modifications 1-3 to the SimJava package can be seen in the agent marketplace

simulation GUI:

7 Swing package is a graphics API released after the original AWT package that provides lightweight
widgets, that have pluggable look and feel are extensible and scaleable.

73

Figure 3.1: GUI Interface for Agent Simulator using Mod 4 graphics

Figure 3.1 illustrates the AgentSim Marketplace GUI. The GUI sets up and

runs simulations between a seller agent and 2 to 5 buyer agents. The number of

auctions and the agents are all configurable through the title bar menu.

The AgentSim interface also has a non-GUI option, allowing the simulation to

run without the overhead of graphics processing. Regardless of which option is

chosen (GUI or non-GUI) the simulations are configurable as follows:

The auctions are configurable with the following parameters:

• Number of auctions occurring in an episode.

• Standard deviation of number of auctions.

The Seller Agent Setup menu allows the following alterations to the Seller

Agent:

Mod 1

Mod 3

Mod 2

74

• Start money.

• Minimum price accepted for an item.

• Market valuation of an item.

The Buyer Agent Setup menu allows the following alterations to the Buyer

Agents:

• Number of Buyer Agents participating in the auctions. (2-5)

• Strategy type (bidding) of each agent – Linear, Greedy, Sarsa, Fuzzy

Sarsa, FQ Sarsa and gradient descent Sarsa(λ) with tile coding.

• Number of items required to purchase during the episode.

• Start money.

• Maximum price to bid.

• Market valuation of an item.

The Learning menu allows the user to configure:

• Toggle learning (Learn vs. graphical debug run).

• Number of iterations for learning.(100 – 500,000)

75

GAME SIZE ITEMS TO BUY
PER AGENT

TOTAL
AUCTIONS

MIN
PRICE

MAX
PRICE

Very Small 2 4 5 6

Small 4 8 5 8

Medium 6 12 5 12

Large 10 20 5 14

Very Large 15 30 5 18

VVVLarge 20 40 5 24

Huge 35 70 5 30

Figure 3.2: Game sizes for marketplace simulations

Figure 3.2 depicts the game sizes used for all tests. For example, in a Game Size

of Medium, an agent must buy 6 items from 12 auctions with an allowable price

range of 5 to 12 units.

3.2.3 Seller and Buyer Agent Algorithms.

The agents in the marketplace simulation system compete in a first price sealed

bid auction. The first price sealed bid auction follows the contract-net protocol

set by FIPA [FIPA02]:

76

Figure 3.3: FIPA Contract-Net Protocol from [FIPA02]

Following that example, the seller agent follows the following algorithm:

Initialise agent.
Repeat for each episode (or auction game){

 Initialise game (reset items to sell, etc).
 Issue CFP.
 Wait for bids
 If bids received
 Choose highest bid or randomly choose among

highest bid.
 Else end auction.

 If auction not over {
 Issue accept-proposal and reject-proposal

statements to appropriate agents.
 Receive payment.
 }
}

Figure 3.4: Seller Agent Algorithm

77

All buyer agents, regardless of their bidding strategy, follow this general

algorithm:

Initialise agent.
Repeat for each episode (or auction game){

 Wait for CFP.
 Receive CFP.
 Propose action (according to bidding strategy –

propose or refuse)
 If receive accept-proposal
 Send inform.
 Update state.

}

Figure 3.5: Buyer Agent Algorithm

The rewards used in this simulation were based on overall achievement of the

agents’ goal. They can be summarized as follows:

)(
0=t

t

M
MI if all items purchased

NeededI− if all items NOT purchased

 0 all other non-terminating steps

Where I is the number of items, M is the amount of money at time t .

3.3 The Gridworld Pursuit Problem

The predator/prey gridworld was chosen for similar reasons to the agent

marketplace:

1. It is an easily scaleable domain;

2. It offers the potential for multiagent scenarios where both agents are

competing for different goals, and;

78

3. Its similarity in basic dynamics to many classic reinforcement learning

examples such as those presented by Stone and Veloso [SV00] and

because it is the base domain for more complicated applications such as

robotic soccer [ST00 and SSK05].

This section details the design and setup of the predator/prey gridworld

simulator used in the research presented in this thesis. This platform is presented

in Section 3.3.1 and the behavioural algorithms used for agent construction in

Section 3.3.2.

3.3.1 Predator/Prey Gridworld

As illustrated in Figure 3.6, in this domain there are n predators (cats) and m

prey (chicks). The goal of the problem from the predator’s standpoint is to catch

the prey as quickly as possible. The goal of the prey depends on the type of grid

chosen. If the checkbox Pac World is selected the goal of the chick is to eat all

the chicken feed (grey dots) and avoid the predator. The episode is over if the

chick eats all the chicken feed before being eaten by a cat, a cat eats the chick or

MAX_STEPS is exceeded. If Pac World is not selected, the goal is simply to

avoid the predator8 and the episode ends when either the cat eats the chick or

MAX_STEPS is exceeded.

8 This setting is used as validation, since the learning problem facing the agent is much easier. It will not be
discussed any further.

79

Figure 3.6: Predator/Prey Grid World

The simulation system is configurable in the following ways: it allows for

variable grid size (3x3 to 20x20), variable number of predators and prey (1 to 4),

animation on or off (off to learn quickly), game type selection and agent

algorithm selection (Fixed, Sarsa, Fuzzy Sarsa, or tile coding).

3.3.2 Predator/Prey Agent Algorithms

Initialise agent tables.
Repeat for each episode {

 Make move according to policy.
 If receive reward/penalty
 Update state.

}

Figure 3.7: Predator/Prey Agent Algorithm

80

Figure 3.7 gives the simple behavioural algorithm for both the predator and prey.

In the case of a stationary agent, the agent simply ignores any reward signal. The

rewards are summarised as follows:

For the prey:
g− if eaten by Predator

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ts
s

g min if all dots have been eaten

 1+ if dot eaten
 0 if empty square

For the predator:

 0 if eats prey
 1− all other states

3.4 Mountain-car Problem

The mountain-car world was chosen as a benchmark environment for the final

algorithm investigated in the research presented in this thesis, gradient descent

Sarsa(λ) with tile coding. This is because this problem is described in detail by

[SS96, SUTT96 and SB98]. Furthermore, the implementation used in the

previous papers is publicly available.

The following section details the design and setup of the mountain-car simulator

used in the research presented in this thesis. The dynamics and porting of this

platform is described in Section 3.4.1. The mountain-car world is not a multi-

agent platform and is primarily used for validation purposes.

81

3.4.1 Mountain-car World

In the problem the learner controls an underpowered car that is situated in a deep

valley. The goal problem is to get the car to the top of the mountain. The

difficulty is that the car is underpowered and thus cannot gain enough

momentum by simply going forward to get it to the top of the mountain. In order

to find a solution, the learner must first move away from the goal.

Goal

Actions:
 full throttle forward
 full throttle reverse
 zero throttle

Figure 3.8: Mountain-car World

The car moves according to:

][11 ++ += ttt ppboundp

)]3cos(0025.0001.0[1 tttt vavboundv −++=+

Where tp and tv is the car’s position and velocity at time t and ta the action

taken. The bound operation enforces 6.02.1 1 ≤≤− +tp and

07.007.0 1 ≤≤− +tv . The rewards in this domain summarised as follows:

 1− for all non-terminating states

82

This environment serves as a control world, the implementation is a Java

conversion of the original C++ Mountain-car world including the gradient

descent Sarsa(λ) with tile coding learner provided by Sutton [SuttonMC]. The

correctness of the ported Java code was compared by the author of this thesis

with the original code by conducting identical simulations in both languages and

comparing the results. In all cases the ported code had the same output as the

original C++ code.

3.5 Verification and Validation

In order to determine accurate function of the simulation systems built, all three

simulators needed to be verified and validated. [SAR98] defines validation as

the substantiation that a computerised model exhibits a satisfactory range of

accuracy with the intended application and verification as assurance that the

program of the model and its implementation are correct.

[SAR98] summarises a variety of different validation techniques. The ones used

to valid the simulation systems presented in this thesis were: Animation, Traces,

Degenerate Tests, Event Validity, Fixed values and Internal Validity. Each

simulator’s operational behaviour was validated in function by using animation

in the developed GUI9, combined with breakpoint flow tracing checks. This

allowed for verification of the behaviour flow and event validity of each

simulation system.

9 In the case of the agent marketplace and the predator/prey gridworld.

83

In the next step of validation, fixed value and degenerate testing was done with

each learning algorithm to ensure the computerised version behaved as stated in

the algorithm definition. Some examples of the kind of testing performed in this

section are:

• Observation of the current state and rewards received on one simulation

cycle and manual checking the expected new Q-values.

• Observation of the actual state of the system versus the learning agent’s

perception of the system.

Finally, extensive application of Java’s runtime exception handling was

implemented to ensure the system remained in a consistent state during runtime

operation. Any unexpected values or illegal states trigger program alerts and

termination.

The following discussion serves two purposes. The first is to demonstrate how

interval validity testing was done, and the second, to describe the procedure

undertaken in the mean calculations present in all future sections. As is often the

case in experiments that require large amounts of computing power, it is

impractical to have large number of sample experiments. Therefore, it is

important that the appropriate statistical methods are employed for analysis of

small sample sizes.

The results presented in the subsequent sections of this thesis fall into the small

sample size category. The small sample size techniques are described in further

detail in [JB92]. Although the tables presented in Figure 3.9 and Figure 3.10

only illustrate 5 experiment examples, unless otherwise stated, the results

84

presented in subsequent sections of this thesis are over 10 experiments. The

confidence intervals used are the 95% confidence intervals calculated using the

Student’s t distribution. There are several different types of data collection files,

including win ratio statistics10, and solution quality statistics11.

Figure 3.9 gives the convergence or percentage win ratio of 5 trials of a Fuzzy

Sarsa Agent in the marketplace world. In all 5 trials, the experiment setup is

identical except for the seed given to the random number generator. The seed

used is reflected in the column headings 2 to 6. The seventh column is the

calculated mean of the trials and the final column the 95% confidence interval

using the student’s t distribution. The entries in each column represent the

averaged win ratio of the agent over the previous 100 trials. Unless otherwise

indicated, all graphs presented in further sections have been smoothed at an

increment of 10012. Each simulation runs for 10000 trials unless otherwise

stated. (Figure 3.9 and Figure 3.10 only give the first 1000 trials for the sake of

brevity).

10 How often the learner achieves the stated goal.

11 The average price achieved by the learner or average number of moves taken to get to the goal.

12 In other words 100 data points have been averaged to obtain the entry for each table entry.

85

Trial
Num

Buyer1
SEED-1

Buyer1
SEED-10

Buyer1
SEED-13

Buyer1
SEED-21

Buyer1
SEED-222

Buyer1
MEAN

Buyer1
95%-CI

0 0 0 0 0 0 0 0
100 66.7702 62.9640 70.7302 67.3891 76.3037 68.8315 4.7720
200 72.3474 69.2209 73.1138 68.7822 73.4912 71.3911 2.1218
300 69.5010 69.0809 72.0394 71.1836 71.0312 70.5672 1.1782
400 70.7310 69.6275 72.5001 70.9231 70.2395 70.8042 1.0224
500 72.2346 70.1037 71.9283 70.9165 69.5233 70.9413 1.1037
600 73.3731 71.1936 71.4863 71.3805 69.6241 71.4115 1.2700
700 74.5867 72.7285 71.6324 72.3249 72.6120 72.7769 1.0466
800 75.6051 74.1008 73.4469 74.2146 74.8125 74.4360 0.7758
900 75.8267 75.7584 75.5080 74.8936 76.5001 75.6973 0.5533

1000 76.2164 77.2700 77.0455 76.1493 78.0193 76.9401 0.7437

Figure 3.9: Percentage win ratio from a Fuzzy Sarsa Agent

Figure 3.10 illustrates the data collected in 5 trials of a Fuzzy Sarsa Agent in the

marketplace world. In all 5 trials, the experiment setup is identical except for the

seed given to the random number generator. In simulations where more than one

learner is present, different start seeds are given to each learner. The entries in

each column represent the averaged price achieved for i items in n auctions. In

the case where the agent did not win the required number of auctions, the

calculation uses the maximum possible price for the missing items.

Trial
Num

Buyer0
SEED-1

Buyer0
SEED-10

Buyer0
SEED-13

Buyer0
SEED-21

Buyer0
SEED-222

Buyer0
MEAN

Buyer0
95% CI

100 18.6917 18.4740 18.4800 18.7826 18.5780 18.6013 0.1284
200 18.5289 18.6860 18.5263 18.7629 18.5449 18.6098 0.1033
300 18.2560 18.7731 18.3389 18.2771 18.2349 18.3760 0.2149
400 18.3194 18.0469 18.1700 18.2791 17.9049 18.1441 0.1626
500 17.9969 17.7714 17.8291 17.8720 17.7797 17.8498 0.0874
600 17.1849 17.4340 17.5331 17.5689 17.8314 17.5105 0.2230
700 16.7514 17.2980 17.7609 18.7589 17.9143 17.6967 0.7123
800 16.4406 18.2437 17.1186 17.2089 17.8954 17.3814 0.6728
900 16.7491 17.0960 17.2806 16.3654 17.2429 16.9468 0.3688

1000 16.6897 16.2706 14.8837 16.6346 18.0580 16.5073 0.9815

Figure 3.10: Price data from a Fuzzy Sarsa Agent

86

The confidence intervals are calculated using the equation for small samples

with a normal population using the student’s t distribution. This interval is given

by:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

n
stX

n
stX 2/2/ , αα (3.1)

where 2/αt is the upper 2/1 α− percentile of the t distribution with degrees of

freedom 1−= n .

In terms of interval validity, the 95% confidence interval given in Figure 3.9 and

Figure 3.10 seem to be within a tolerable limit for a learning agent. However to

increase the certainty of the intervals, typically a minimum of 10 averaged

experiments was used.

3.6 Summary

This section introduced some of the principles of simulation before presenting

three simulation systems used in the research presented in this thesis. The first

two simulation systems presented in Section 3.2 and 3.3, the agent marketplace

and the predator/prey gridworld, enabled the learning algorithms introduced in

Section 4 and the other algorithms for comparison purposes, to participate in a

multiagent environment. The final simulation system presented in Section 3.4,

the mountain-car world, served primarily as a validation domain. Finally,

Section 3.5 gave the validation and verification techniques used at both the

domain level and experiment level.

87

4 Fuzzy Learning in a Marketplace Environment

As introduced in Section 2.6, function approximation is a popular methodology

to deal with large state spaces. Since one of the aims of the research presented in

this thesis is to analyse algorithms that are capable of taking actions in

completely new states based on generalising from the existing visited state

space, function approximation seems like a promising way of achieving directed

coevolution. The biological basis of coevolution in nature advocates that a group

evolves according to their experiences with the other, evolving, actors in their

environment. It therefore seems to follow that on-policy learning may provide

the best solution for coevolution. This decision is reinforced by the fact that off-

policy methods like Q-learning have been shown to be unstable with several

types of function approximation [Watkins89]. Sutton however has shown that

the approximation technique of tile coding combined with Sarsa [SUTT96], as

initially done by [RN95], is capable of finding a robust solution to problems that

had previously been shown to exhibit unstable behaviour [BM95] with function

approximation.

As previously discussed, fuzzy sets also present an interesting way of creating a

complex mapping of the state space. Bonarini has shown that the fuzzy Q -

learning algorithm has been able to successfully use fuzzy rules in order to

implement a variety of large state space problems in the controller domain

[BON98], [BON97], [BON96]. The following two sub-sections describe two

novel on-policy fuzzy methods. The first one is based on a basic fuzzy collapse

of the state space and Berenji’s [BER94] approach, and the second uses

88

Bonarini’s methodology for extending crisp algorithms described in [BON98].

Section 4.3 presents the results of some experiments using these two new

algorithms.

4.1 FQ Sarsa

The FQ Sarsa algorithm is based on the Sarsa algorithm. Essentially, it reduces

the state space by storing the state representation in fuzzy sets. In all other

respects, it behaves exactly like Sarsa. The algorithm does not consider fuzzy

actions or goal states, leaving these in their original crisp representation and thus

can be considered a hybrid algorithm. In this approach, a crisp state s matches a

set of fuzzy states and these fuzzy states are paired with crisp action values. To

determine the fuzzy state, a mapping from the set of real numbers representing

the current state to a set of symbolic state labels is created.

State
Space

1

~
s

ns
~

Very large

Figure 4.1: Fuzzy State Space Mapping

Consider the world descriptor Money_Left from the states described in Figure

2.14. The value of Money_Left in crisp state s consists of a discrete number,

say]15..0[),(=∈ ZxxML . However, in a fuzzy state, the same value x maps

to one or more of the fuzzy labels associated with

89

]_,_[_ MoneyLittleMoneyLotsLeftMoney = . The degree to which x belongs

to any particular fuzzy label is defined by the membership function (μ)

associated with the fuzzy set Money_Left. So for example, LeftMoney _μ might be

described as:

0

0.2

0.4

0.6

0.8

1

0 5 10 15
Money Left

M
em

be
rs

hi
p

Little_Money Lots_Money

Figure 4.2: Membership function of Money_Left

The crisp values are then fuzzified using these membership functions. Each crisp

value will belong to different degrees to one or more fuzzy label sets. Recall that

in Figure 2.14 one potential state for a marketplace agent was

]3__,12_[1 === BuyToItemsLeftMoneyS . The fuzzification of

12_ 1 =SLeftMoney results in 87.0)12(_ =MoneyLotsμ and 13.0)12(_ =MoneyLotsμ .

To fuzzify a crisp state, the membership of each state item is fuzzified, and

typically, the and 13 is calculated to obtain the state’s membership or degree of

matching. In the case of state 1S of Figure 2.14, crisp state 1S belongs to fuzzy

states bS1ˆ and dS1ˆ with membership 0.87 and 0.13 respectively. All fuzzy states

nS1ˆ (where n is the number of possible matches for 1S) and there respective

membership calculations are depicted in Figure 4.3.

13 The minimum of the two values.

90

 Fuzzy
 State

Money Left μMoney

Left
Auctions Left μAuctions

Left
μS1

Ŝ1a Lots_Money 0.87 Few_Auctions 0 0
Ŝ1b Lots_Money 0.87 Many_Auctions 1 0.87
Ŝ1c Little_Money 0.13 Few_Auctions 0 0
Ŝ1d Little_Money 0.13 Many_Auctions 1 0.13

Figure 4.3: Fuzzification of Crisp State S1

As explained earlier, in FQ Sarsa the actions are not fuzzified. As a result, the

selection mechanism operates greedily rather than utilising any sort of fuzzy

calculation mechanism, such as the centre of mass approach presented in the

next algorithm. At any given time t , the action that is selected is the best action

(the one with the highest FQ value) for the most fit fuzzy state ()ˆ(max tsμ ,

where μ is the degree of matching of crisp state s to fuzzy state ŝ).

s = {Money_Left = 12,
 Item_To_Buy = 3}

{LOTS_MONEY,
MANY_ITEMS}

{LOTS_MONEY, SOME
ITEMS}

{LOTS_MONEY,
FEW_ITEMS}

.

.

.

.

.

{NO_MONEY,
NO_ITEMS}

sS~

0.3
0.1
0.7
0.1
0

0.2
0.1
0.1

.
.
.
.
.
.

nμ

sμ

a = 6

.

.

.

.

M
em

be
rs

hi
p

of
 s

.132

0.78

0.56
.

.

),~(nasFQ

),~(asFQ

8

6

0 Most fit
fuzzy state

for s

Best FQ

.

.

.

an

Figure 4.4: Fuzzy FQ Action Selection

The FQ value update formula is modified from Sarsa as follows.

),ˆ(),ˆ(1111 −−−− = tttt asFQasFQ (4.1)
)),ˆ()ˆ()^,ˆ((11 −−−++ ttttt asFQsasFQr μλα

91

Rather than take the max of future rewards, it is replaced with the FQ value of

the new state action pair reached by applying the current policy -),ˆ(tt asFQ . In

other words,),ˆ(tt asFQ is the state with the highest degree of matching (max

μ(ŝt)) and the ta is action chosen following the current policy (i.e. ε-greedy).

For this algorithm, Berenji’s [BER94] fuzzy action constraints are considered to

be the μ(ŝt). Therefore the algorithm also uses the fuzzy and operation of
),ˆ(tt asFQ and μ(ŝt).

FQ Sarsa was presented by the author of this thesis in [TBC04]:

All),ˆ(asFQ values initialised.
Repeat for each episode (or auction game){

Initialize tŝ (start state for the auction game).

 Choose ta from tŝ using ε greedy policy.
 Repeat for each step(auction) in the
 episode(auction game){

 Take action ta , observe r and 1ˆ +ts

 Choose 1+ta from 1ˆ +ts using ε greedy policy

 += −−−−),ˆ(),ˆ(1111 tttt asFQasFQ

)),ˆ()ˆ()^,ˆ((11 −−−+ ttttt asFQsasFQr μλα

tŝ = 1ˆ +ts , ta = 1+ta

 }
}

Figure 4.5: FQ Sarsa Algorithm

4.2 Fuzzy Sarsa

The FQ Sarsa algorithm presented above does not utilise fuzzy principles to

combine actions, it only selects them. Essentially it only concentrates on

reducing the state space and is not capable of fuzzy rule interaction. To that

effect, the Fuzzy Q -Learning algorithm presented by Bonarini [BON96] is

92

described in further detail and extended by the author of this thesis to on-policy

learning.

Fuzzy Q -Learning and Fuzzy Sarsa use fuzzy representation of both states and

actions. Their state/action entries do not include crisp actions like FQ Sarsa or

Berenji’s Fuzzy Q -Learning [BER94]. Figure 4.6 illustrates the fully fuzzy

state/action pair used by the Fuzzy Q -Learning and Fuzzy Sarsa. In FQ Sarsa,

the degree of matching is still based on the fuzzy state. However, membership

functions for the fuzzification and defuzzification of fuzzy actions are also

required.

 Fuzzy State Fuzzy Action
Money Left Auctions Left Bid
Lots_Money Many_Auctions Bid_High
Lots_Money Many_Auctions Bid_Low

Figure 4.6: Fuzzy state action pairs

An example of defuzzification is Bid_High translating to the crisp action Bid 8.

This type of fuzzy state action pair is referred to as a fuzzy rule where the fuzzy

state corresponds to the antecedent of the rule and the fuzzy action proposed is

the consequent. All fuzzy rules have a strength associated with them. It is this

strength (FQ value) that the algorithms attempt to learn. A crisp state s

matches a selection, or sub-population, of fuzzy states. A fuzzy rule is defined as

the combination of fuzzy state ŝ and the fuzzy action â that it proposes.

In the action selection portion, the rule chosen from a sub-population of rules is

the one with the highest FQ value. Recall that since a crisp state s might match a

93

number of fuzzy states (set)(sFS) as seen in Figure 4.314, a method is needed

in order to determine what action to take when all rules could be proposing

different actions. For all)(ˆ sFSs ∈ , there will be at least one matching fuzzy

state action pair, or fuzzy rule r . The action proposed for each ŝ , will be the

greedy action (highest FQ -value) proposed by the fuzzy rule. The final action

proposed is a weighted average of the actions proposed by each rule that is

triggered. These actions are weighted by the degree of matching of the crisp

state s with the antecedent of the rule. The weighted average is computed using

the centre of mass approach:

 ∑
∑

=

==

ni
i

ni
si i

a
a

..1

..1
ˆ

μ

μ
 (4.2)

where n is the number of fuzzy states matching crisp state s, and
isa ˆ is the best

action (having been defuzzified) proposed by any rule matching iŝ . Any fuzzy

state with membership > 0 is considered in the action calculation.

 Fuzzy State Fuzzy Action
μ Money Left Auctions Left Bid FQ(ŝ,â)

 Lots_Money Many_Auctions Bid_High 0.4 0.7
 Lots_Money Many_Auctions Bid_Low 0.1
 Little_Money Few_Auctions Bid_High 0.2 0.4
 Little_Money Few_Auctions Bid_Low 0.6

Figure 4.7: Fuzzy state action pairs with μ and FQ values

To clarify greedy action selection, consider the example from Figure 4.7. A crisp

state matches two fuzzy states]_,_[AuctionsManyMoneyLots with degree 0.7

14 Both Ŝ1b and Ŝ1d match the fuzzy state S1.

94

and]_,_[AuctionsFewMoneyLittle with degree 0.4. Each of these two fuzzy

states has 2 rules associated with them. For the state

]_,_[AuctionsManyMoneyLots , the greedy action will be to Bid_High, since

that rule has the highest)ˆ,ˆ(asFQ value. Similarly, for the state

]_,_[AuctionsFewMoneyLittle , Bid_Low will be selected. The fuzzy actions

are now defuzzified to obtain a crisp output. Bid_High is translated via some

defuzzification function as bid 8 units and Bid_Low as bid 4 units. Thus the

actual action taken is calculated as follows:

() ()() 5.6
)4.07.0(

44.087.0
=

+
+

=
xxa

In summary, where FQ Sarsa chooses an action based on selecting the most fit

fuzzy state (μmax) for the current s , and then choosing the action with the

highest FQ value; Fuzzy Q-Learning and Fuzzy Sarsa use all fuzzy states with

a 0>μ to suggest an action. Each fuzzy state suggests an action based on the

highest FQ value and then all suggested actions are combined using Centre of

Mass. A further example is given in Figure 4.8.

95

each b selected by

.

.

.

.

s = {Money_Left = 12,
 Item_To_Buy = 3}

{LOTS_MONEY,
MANY_ITEMS}
{LOTS_MONEY,
SOME_ITEMS}

{LOTS_MONEY,
NO_ITEMS}

.

.

.

.

.

{NO_MONEY,
NO_ITEMS}

sS~

0.3
0.1
0.7
0.1
0

0.2
0.1
0.1

.

.

.

.

.

.

nμ

sμ

a = 0.3(6) + 0.1(4) + 0.7(0)
+ 0.1(6) …+ μnbn /
(0.3+0.1+0.7+0.1+ …+μn)

.

.

.

. Su

gg
es

t a
ct

io
n

M
em

be
rs

hi
p

of
 s

6
4
0
6
0
0
0
8

.
.
.
.
.
.

nb

C
om

bi
ne

 su
gg

es
te

d
ac

tio
ns

sb

a = 6

.132

0.78

0.56
.

.

),~(nasFQ

),~(asFQ

8

6

0

Best FQ

.

.

.

an

 Figure 4.8: Fuzzy Sarsa Action Selection

Previously in this section, the description of fuzzification and action selection

was applicable to both Q-Learning and Fuzzy Sarsa. For Fuzzy Sarsa, the update

formula of Bonarini’s Fuzzy Q-Learning given in Section 2.6.3.2 is updated by

the author of this thesis as follows:

)ˆ,ˆ()ˆ,ˆ(1111
i
t

i
t

i
t

i
t asFQasFQ −−−− = (4.3)

 ∑
∀

−−−−++
−−

j

i
t

i
tt

j
t

j
ttas asFQasFQr

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ((111)ˆ,ˆ()ˆ,ˆ(11
ξγαξ

for all i , where 11
ˆˆ −− ∈ t

i
t Ss and 1

ˆ
−tS is the set of all fuzzy states with 0>μ for the

crisp state 1−ts .)ˆ,ˆ(11
i
t

i
t asFQ −− is the value of being in the fuzzy state i

ts 1ˆ − and

suggesting a fuzzy action i
ta 1ˆ − . i

tc 1−
ξ is the fuzzification factor, or the degree of

belonging (μ) of the crisp state 1−ts to the fuzzy state i
ts 1ˆ − . This is calculated as:

96

 ∑
=

−

−−
=

ni
i

s
as

i
t

i
t

i
t

..1

)ˆ(
)ˆ,ˆ(

1

11 μ

μ
ξ . (4.4)

To avoid confusion in notation, the algorithm proposed by the author of this

thesis uses i
t

i
t as 11 ˆ,ˆ −− as the fuzzy rule, rather than Bonarini’s r because in this

notation a fuzzy state and suggested action is the definition of a fuzzy rule and

r is already used in reference to the reward. In Q -learning, Q is updated using

the largest possible reward (or reinforcement) from the next state, whereas in

Sarsa, Q is updated with the value of the actual next state action pair as defined

by the current policy.

Therefore the primary change from the Fuzzy Q-Learning algorithm is in the

future contribution section. Fuzzy Q-Learning’s future contribution section is

defined as:

 ∑
∈∀ t

j
t Ss

j
j

t asFQ
ˆˆ

)ˆ,ˆ(max ξγ (4.5)

for all FQ values where t
j

t Ss ˆˆ ∈∀ , where tŜ is the set of fuzzy state where

0>μ for the next crisp state ts , and â is the action that the highest FQ values

proposes.

In order to change this algorithm from off-policy to on-policy, rather than take

the max of future rewards, the algorithm proposed by the research in this thesis

uses the next set of)ˆ,ˆ(jj asFQ values. Fuzzy Sarsa’s future contribution

section is described as:

 ∑
∈∀ t

j
t Ss

j
j

t
j

t asFQ
ˆˆ

)ˆ,ˆ(ξγ (4.6)

97

This is done for all FQ values where t
j

t Ss ˆˆ ∈∀ , where tŜ is the set of fuzzy

state where 0>μ for the next crisp state ts and the suggested action j
tâ is the

action that would be applied using the current policy.

The Fuzzy Sarsa algorithm was originally presented by the author of this thesis

in [TBC04]:

All)ˆ,ˆ(asFQ values initialised.
Repeat for each episode (or auction game){
Initialize tŝ (start state for the auction game).
Choose tâ from tŝ by calculating the centre of mass using
all tŝ that match crisp s and tâ following ε greedy
selection policy.

Repeat for each step(auction) in the episode(auction
game){
Take action ta , observe r and ŝt+1
Choose ât+1 from 1ˆ +ts using ε greedy selection policy for all

1ˆ +ts match 1+ts .

For all 11
ˆˆ −− ∈ t

i
t Ss

 += −−−−)ˆ,ˆ()ˆ,ˆ(1111
i
t

i
t

i
t

i
t asFQasFQ

 ∑
∀

−−−−+
−−

j

i
t

i
tt

j
t

j
ttas asFQasFQr

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ((111)ˆ,ˆ()ˆ,ˆ(11
ξγαξ

 tŝ = 1ˆ +ts , ât = ât+1

}
}

Figure 4.9: Fuzzy Sarsa Algorithm

The experiments presented in the research conducted for this thesis used an

ε-greedy action selection policy. Regardless of what action selection mechanism

is employed, it is not immediately clear how the algorithm should proceed in the

exploratory case. In the crisp version of Sarsa, the exploratory action is chosen,

say bid 8 units, and then the state/action pair corresponding to the current state

and bid 8 is used directly in learning. As discussed earlier, in fuzzy learning the

98

crisp state matches n fuzzy states. Therefore, there are two possible ways of

making an exploratory move.

The first way is that for each match made, a random move is generated and then

the centre of mass of all the random moves is calculated to determine the actual

action. The second way is to make a random move instead and consider the set

of state/action pairs to be updated the set of all matching fuzzy state/action pairs

)ˆ,ˆ(tt as , where tâ is the fuzzified crisp action, bid 8.

Since the agent is trying to learn the specific action required with regards to the

total set of matching fuzzy states, the second method of exploratory action

selection is used. Although only empirically tested, early experiments using both

of these two methods indicated that the first method tends to cause instabilities

in convergence. The remainder of fuzzy action selection is relatively

straightforward: if a greedy action is taken, the algorithm observes the results

and updates all fuzzy state/action pairs that contributed to the selection of tâ .

For example, in the random case []ba ss 1̂,1̂ matching the current state and the

random action 3â being taken, the algorithm updates [])ˆ,1̂(),ˆ,1̂(33 asas ba . If

however, a greedy action is taken, then the action taken is calculated as the

centre of mass of the actions proposed by []ba ss 1̂,1̂ . Suppose as1̂ proposed 1â ,

and bs1̂ proposed 3â and that the centre of mass calculation returned â2. The

pairs that are updated in the greedy case are the contributing pairs, i.e.

[])ˆ,1̂(),ˆ,1̂(31 asas ba . After the update is completed, the world is in a new state,

and the algorithm repeats the above process.

99

4.3 Marketplace

The following section presents the results of the initial investigation into the

different fuzzified Sarsa algorithms. Sarsa, FQ-Sarsa and Fuzzy Sarsa were

implemented in an agent marketplace designed as discussed in Section 1.1. In

the case of the Sarsa algorithm, the state of the world was considered to consist

of 3 major categories: Money_Left, Auctions_Left and Items_Left. Actions

included bids ranging from the offer price to the agent’s maximum price and

abstaining. Fuzzy states consisted of the same state categories as Sarsa.

However, rather than storing the crisp representation of the state, states are

stored as fuzzy labels rather than discrete values. The research presented in this

thesis initially used four labels for each fuzzy category. Since membership
functions are more robust when additive, ∑

=

=
ni

x
,1

1)(μ , the functions used were

triangular15. Triangular membership functions are popular and easy to use to

design additive functions.

Confirmation of the robustness of additive membership functions came from the

results of an earlier experiment using non-triangular and non-additive

membership functions. During this test, the fuzzy algorithms were not able to

find a solution, let alone an optimal one. All state variables are fuzzified

according to the general membership functions given in Figure 4.10. FQ Sarsa

does not use the action membership function since it utilises crisp bids.

15 Other types of membership functions include trapezoidal, Gaussian and generalised bell.

100

State Action

Figure 4.10: Fuzzy Membership Functions for the Test bed

For the following sections, unless otherwise stated the following settings apply

to all learners:

1. The exploration (ε) and learning (α) rates are both annealing parameters.

Both annealing parameters anneal at the rate of:

ρ
pp − (4.7)

where p = {ε or α}, and ρ = 5. The annealing parameter continues to

decay until it reaches 0.01.

2. γ = 0.1.

In the experiment, all games were played with two agents; a fixed strategy agent,

and a learning agent. A Zero Level Seller is defined as following a fixed strategy

for the entire game (see [HW98]). The seller allocates items to auctions with a

fixed policy. The quantity q auctioned by the seller agent at each time interval is

0

0.2

0.4

0.6

0.8

1

0 n
3 Labels

M
em

be
rs

hi
p

0

0.2

0.4

0.6

0.8

1

0 n
3 Labels

M
em

be
rs

hi
p

Few Some Many Low-price Mid-price High-price

101

fixed and constant. Thus the seller agent holds q auctions in each interval to sell

q items.

In the marketplace world initial testing is conducted by fixing the policy of any

competitor agents. A policy π is fixed or a stationary strategy if ππ =e for all

e (episodes) and π is the original policy. Stationary strategies are useful in

domains where there is more than one agent interacting with the environment.

A Zero Level Buyer Agent also follows a fixed strategy for the entire game. For

the agent marketplace there are two stationary strategies used to test the

learning agents. These basic strategies are:

• Greedy Bidding Strategy: This agent bids its’ maximum price

immediately and continues to bid at its’ maximum price in every

auction thereafter until it has bought the number of items required.
If (INEEDED > I) BIDt = PMAX
else BID = 0
where P equals the price to bid.

• Linear Bidding Strategy: As time passes the maximum price this agent is

willing to bid to, increases in a linear fashion.

If (INEEDED > I) BIDt = PMIN + INCt
else BID = 0
where INCt = (PMAX - PMIN)At/A. I.

ε and α are both annealing parameters and γ is set to 0.1.

102

 Section Purpose Experiment Setup

4.3.1 This set of experiments compares Fuzzy Sarsa,
FQ Sarsa and Sarsa in small agent marketplace
auction games.

 Learning parameters fixed.
 Fuzzy and tile schemas fixed.

4.3.2 This set of experiments compares Fuzzy Sarsa,
FQ Sarsa and Sarsa. These experiments detail the
relative performance of each algorithm against a
stationary strategy in an agent marketplace.

 Learning parameters fixed.
 Fuzzy and tile schemas fixed.
 Algorithms learn against a

stationary strategy
4.3.3 This set of experiments compares Fuzzy Sarsa,

FQ Sarsa and Sarsa. These experiments detail the
relative performance of each algorithm against a
non-stationary strategy in an agent marketplace.

 Learning parameters fixed.
 Fuzzy and tile schemas fixed.
 Algorithms learn against each other

(non-stationary strategy)

Figure 4.11: Experiment Table for Section 4.3

The setup described in this section is applicable to all experiments done in

Section 4.3. A summary of the experiments performed for the remainder of this

section is given in Figure 4.11.

4.3.1 Fuzzy Label Partitions

In test 1 of the algorithms, each agent must obtain 2 items over the 4 auctions in

the episode. In this test, the price of each item ranges from 5 to 6. The results

presented in Figure 4.12 are the average over 20 auction games.

103

5

5.25

5.5

5.75

6

0 5000 10000
Episodes

A
ve

ra
ge

 P
ric

e

Sarsa Fuzzy Sarsa FQ Sarsa

Figure 4.12: Learners vs. Fixed Linear Strategy in a Very Small Scale Auction Game

As seen from Figure 4.12, all three algorithms converge upon a solution at

similar rates. The difference in the algorithms can be seen from the quality of

solution found. Both FQ Sarsa and Fuzzy Sarsa find solutions that are somewhat

worse than that of Sarsa. However, since fuzzy algorithms maximise learning

around boundaries [BON98] and if the boundaries themselves do not represent a

significant enough portion of the items, then the value of the solution may be

affected. In test 1, the range of items to buy and the range of prices is less than or

equal to the range of fuzzy labels used, and therefore do not represent

appropriate partitions in the fuzzy label boundaries.

To determine if this was the case a second test was performed leaving all

parameters constant except price, which now ranges from 5 to 8, and number of

items to buy, which was increased to 4. Both changes if parameters are

necessary in order to offer a range of values which are greater than the number

of labels used.

104

5

6

7

8

0 5000 10000
Episodes

A
ve

ra
ge

 P
ric

e

Sarsa Fuzzy Sarsa FQ Sarsa

Figure 4.13: Learners vs. Fixed Linear Strategy in Small Scale Auction Game

As seen in Figure 4.13, the convergence rates remain similar to test 1. However,

as suspected the value of the solution found for Fuzzy Sarsa and FQ Sarsa is

closer to that of Sarsa. The original tests involving the fuzzy boundary problem

were presented by the author of this thesis in [TBC04]. However, the original

work with the fuzzy algorithms utilised 4 labels rather than 3. Therefore, in that

work the small game size was adequate for highlighting this issue. For 3 labels,

it is only in the very small game that this issue is apparent.

The reason for representing this work with 3 labels is that results presented in

Section 5.1.1, indicated that the optimal number of labels for the marketplace

situation is 3. To validate that nothing else about the fuzzy algorithms has been

altered due to the change in number of labels, and to offer further validation of

the fuzzy boundary problem solution, the Small test is rerun using 4 Labels.

105

5

6

7

8

0 5000 10000

Episodes

A
ve

ra
ge

 P
ric

e

Sarsa Fuzzy Sarsa Fuzzy Sarsa - 4 Labels

Figure 4.14: 3 and 4 Label Fuzzy Sarsa solutions in Small Scale Auction Game

Figure 4.14 shows that the 4 label Fuzzy Sarsa learner performs similarly to the

Sarsa learner, while the 3 label learner finds a significantly better solution than

either. Fuzzy Sarsa produces unpredictable and less optimal results when the

number of fuzzy labels used to encode information is greater than the number of

actual labels. For example, unpredictable behaviour is observed if there are three

fuzzy labels, LOW, MEDIUM, and HIGH, and only two possible crisp values.

In these small game size tests, all three algorithms perform similarly.

4.3.2 Stationary Strategy Algorithm Performance

The tests presented so far deal with small state spaces. To fully compare the

capabilities of the algorithms further tests are required in larger games. All tests

presented in this section are against a linear fixed strategy agent. The first test

106

conducted is in a large game size simulation. For this test, the number of items

each agent must obtain is increased to 10 items and the number of auctions to 20

(price remains the same at 7 to 12).

9

10

11

12

0 5000 10000
Episodes

Av
er

ag
e

Pr
ic

e

Sarsa Fuzzy Sarsa FQ Sarsa

Figure 4.15: Large Game – Fixed Strategy Test

As observed from Figure 4.15, both FQ Sarsa and Fuzzy Sarsa now converge to

a solution quicker than Sarsa. As a result of the increased state space during this

test, Sarsa has a tendency to get caught in a local minimum if it does not come

across a good solution during the exploratory stage of this algorithm.

Furthermore, it is seen that the value of the solution found by Fuzzy Sarsa and

FQ Sarsa is superior to the one found by Sarsa. In comparison with the results

presented by the author of this thesis in [TBC04], the change in the number of

fuzzification labels has indeed improved the performance of both FQ Sarsa and

Fuzzy Sarsa. In fact, FQ Sarsa now seems to perform as well as Fuzzy Sarsa. To

107

determine if there is any added benefit to the fully fuzzy approach of Fuzzy

Sarsa, a further test was run in a VLarge16 game.

9

11

13

15

0 5000 10000

Episodes

A
ve

ra
ge

 P
ric

e

Sarsa FQ Sarsa Fuzzy Sarsa

Figure 4.16: VLarge Game – Fixed Strategy Test

As expected, Fuzzy Sarsa finds a better solution than either FQ Sarsa or the

Sarsa. The reason for this is apparent: while FQ Sarsa converges quicker, and in

small games performs similarity to Fuzzy Sarsa (because it has a much reduced

state space without the fuzzy action combination of Fuzzy Sarsa) its

representational powers fail and it mimics the solution found by Sarsa. This

confirms that the purer fuzzy solution presented by Fuzzy Sarsa, does seem to

maximise transitions along fuzzy borders, allowing it to converge quicker and

find a better solution than either Sarsa or FQ Sarsa.

16 The complete details for all game size settings can be found in Figure 3.2.

108

4.3.3 Non-Stationary Algorithm Performance

In order to determine the flexibility of the learning agents, they were next put

into direct competition with each other. For this test, all parameters (auction size,

start money, rewards, etc) are kept the same as in the first test. Each learning

algorithm was tested against the other competitive algorithms in turn. The results

presented in Figure 4.17 are the averaged price achieved in the final 2000 of 10

trials.

0 2 4 6 8 10 12 14

Fuzzy Sarsa vs Sarsa

Fuzzy Sarsa vs FQ
Sarsa

Sarsa vs FQ Sarsa

End Price

Sarsa FQ Sarsa Fuzzy Sarsa

Figure 4.17: Large Game - Direct Competition Test

As shown in Figure 4.17, given the same learning parameters, Fuzzy Sarsa

achieves a superior price than its competitors when in direct competition with

either the Sarsa algorithm or the FQ Sarsa algorithm. The reason the Fuzzy Sarsa

agent in the Fuzzy Sarsa vs. Sarsa game achieves a better price than that of the

agent in the Fuzzy Sarsa vs. FQ Sarsa game is explained by Sarsa’s inability to

explore large state spaces sufficiently under these conditions. FQ Sarsa, because

of its reduced state space, is more able to react to the Fuzzy Sarsa algorithm. In

the Sarsa vs. FQ Sarsa test, it is interesting to note that Sarsa and its reduced

109

state version, FQ Sarsa achieve an almost identical end price. However, the FQ

Sarsa algorithm is more prone to oscillation due to the reduction of its state

space. As shown in Figure 4.18, this oscillation causes the algorithm to start to

fail. The average success rate for even FQ Sarsa’s ability to find a solution,

irrespective of the solution quality, has fallen to a final success rate of 78%.

0

25

50

75

100

0 5000 10000
Episodes

W
in

s

Sarsa FQ Sarsa

Figure 4.18: Large Game Convergence – Sarsa vs. FQ Sarsa

To further validate these results, the test was rerun in the VLarge game.

0 2 4 6 8 10 12 14 16

Fuzzy vs Sarsa

Fuzzy Sarsa vs. FQ
Sarsa

FQ Fuzzy vs. Sarsa

End Price

Sarsa FQ Sarsa Fuzzy Sarsa

Figure 4.19: VLarge Game - Direct Competition Test

110

Figure 4.19 presents the results of direct competition in a VLarge game. The

results confirm those presented for the Large game in Figure 4.17.

In the final test, all 3 learning algorithms were evaluated in the same game. Each

agent must still win the required number of items; however, in order to provide

the same framework as the previous test, the number of auctions must be

increased. For example, in the Large game, each agent must win 10 items, when

3 agents are participating in the auction 30 items are available.

5
6
7
8
9

10
11
12
13
14

0 5000 10000
Episodes

Av
er

ag
e

Pr
ic

e

Sarsa Fuzzy Sarsa FQ Sarsa

Figure 4.20: Sarsa vs. FQ Sarsa vs. Fuzzy Sarsa in Large Auction Game

In this final test, it is clear that Fuzzy Sarsa once again is the most optimal and

flexible of the three algorithms. When competing directly with either of the

other two algorithms it is able to consistently achieve a better price with minimal

variability in end price. These results are significant because they demonstrate

Fuzzy Sarsa’s ability to learn effectively against a moving target, the other two

learning agents. Under these settings the generalisation powers of Fuzzy Sarsa

enable it to quickly take advantage of the current market conditions. Although

111

not presented here for the sake of brevity, Fuzzy Sarsa experiences none of the

convergence difficulties that FQ Sarsa encounters, as demonstrated in Figure

4.18.

4.4 Summary

Section 4.1 and 4.2 presented two novel on-policy fuzzy reinforcement learning

algorithms. Section 4.3 has presented the results of initial testing in the

marketplace domain:

The tests presented in Section 4.3.1 indicated a relationship between the number

of fuzzy labels used and the size of the data set. The result show that the number

of fuzzy labels used should be greater or equal to the actual data. However, it

opens the question of how many fuzzy labels are appropriate. Is there a

relationship between the number of labels used and generalisation abilities?

Section 4.3.2 and 4.3.3 presented experiments regarding the general capabilities

of the fuzzy algorithms with respect to the tabular on-policy algorithm Sarsa.

Specifically these tests indicated that as the state space increases, the purer fuzzy

logic approach to reinforcement learning presented in Fuzzy Sarsa allows for a

more robust and correct solution than the reduced state space algorithm

presented by FQ Sarsa and than the traditional on-policy learning of Sarsa. This

improvement is seen in both games against stationary learners (Section 4.3.2)

and games that put the learning agents into direct competition with each other

(Section 4.3.3).

112

This is an important result since Fuzzy Sarsa works with a significantly smaller

state space than Sarsa. However, the results presented in this section only deal

with one domain, does Fuzzy Sarsa perform similarly in other domains?

Furthermore, as presented in Section 2.6, there are other types of function

approximation algorithms that are also capable of dealing with reduced state

spaces and also with generalisation. How significant is Fuzzy Sarsa’s

performance in comparison?

113

5 Comparison of Function Approximation Techniques

After the experimentation in the marketplace with the fuzzy algorithms, two

major issues became apparent:

1. While the fuzzy algorithms outperformed tabular Sarsa, this

comparison was not deemed fair since the fuzzy algorithms deal with

function approximation and Sarsa does not.

2. The fuzzy algorithms perform reasonably well in the Marketplace

domain, but could it be extended to work in other domains, including

domains with continuous state variables?

To address the first issue, another type of function approximation technique was

required. After examining the function approximation techniques discussed in

Section 2.6, tile coding was identified as a good candidate for comparison with

fuzzy. There are two motivating factors behind this decision. First, the technique

of overlaying the state space with tilings seemed intuitively similar to fuzzy

membership functions and second, researchers using tile coding combined with

Sarsa have recently reported a fair amount in implementations ranging from the

mountain-car problem [SS96, SUTT96], the complex task of robotic soccer

[SSK05] and stochastic games [BV02, BV02a]. Consequently, gradient descent

Sarsa(λ) with tile coding appears to be a reasonable algorithm to investigate both

its performance in large state space problems, but also its ability to generalise.

Therefore, the gradient descent Sarsa(λ) with tile coding presented by Sutton

[SUTT96] was chosen as the third test algorithm.

114

To address the second issue, the mountain-car domain and predator/prey

gridworld domain simulators were introduced. The mountain-car domain was

identified as the first test for the fuzzy algorithms, since the gradient descent

Sarsa(λ) with tile coding had already been implemented [SuttonMC] and the

results, [SUTT96] published. This domain served as a control domain for the

gradient descent Sarsa(λ) with tile coding. The predator/prey world was chosen

because of its differing game dynamics, in that both the predator and the prey

while in competition, have fundamentally different goals. In the marketplace the

goal of each competing agent is get the best price for a certain number of items,

while in the predator/prey environment it is to either eat the prey, or avoid the

predator while eating all the dots.

This section presents the results of implementing the three different types of

function approximation algorithms in the three separate control domains

described in Section 3. Section 5.1 investigates how to set up the generalisation

parameters of fuzzy labels and the tile coding settings, Section 5.2 will present

how the parameter settings were determined and Section 5.3 presents the results

of stationary strategy tests in all three simulated domains. Of particular interest

in the following experiments is: (1) Ease of implementation (2) Quality of

control obtained, and (3) Scalability. Figure 5.1 summarises the experiments

performed in this section. Further details are given in the relevant sections.

115

 Section Purpose Experiment Setup

5.1 To determine the good generalisation parameters
for fuzzy memberships and tile schemas.

 Learning parameters fixed.
 Fuzzy and tile schemas change.

5.2 To determine good learning parameters for each

algorithm in each simulation domain.
 Learning parameters change.
 Fuzzy and tile schemas fixed.

5.3 This set of experiments compares Fuzzy Sarsa,
gradient descent Sarsa(λ) with tile coding, and
optionally FQ Sarsa. These experiments detail the
relative performance of the algorithms in the three
simulation domains.

 Learning parameters fixed.
 Fuzzy and tile schemas fixed.
 Algorithms learn against a

stationary strategy.

Figure 5.1: Experiment Table for Section 5

5.1 Effects of Generalisation

One of the pertinent issues in both fuzzy and tile coding, is how to set up the

type of generalisation that occurs. With fuzzy, generalisation is based on the

design of the fuzzy membership functions. In tile coding, generalisation is

primarily based on the shape and width of the tile. The following sub-sections

demonstrate some of the initial work that went into designing the fuzzy

memberships and tile coding schemas in each of the target domains.

5.1.1 Fuzzy Labels

5.1.1.1 Marketplace

In all three problems one of the initial issues in implementation of the fuzzy

algorithms is the number of fuzzy labels that should be used in order to represent

the data. The number of labels used must adequately represent the state space.

For example, as depicted in Figure 5.2, in the case of the state space parameter

Auction_Left, is 3, 4 or n labels sufficient granularity for describing how many

116

auctions there are left in the game? Furthermore, is the required granularity

affected by the state space of the problem?

described by Auctions_Left

Many_Left

Some_Left

Few_Left

described byAuctions_Left

Many_Left

Some_Left

Few_Left

None_Left

Figure 5.2: Possible Fuzzification for Auctions_Left

Researchers in control system theory advocate 3 [JAN91]. However, there

seems to be no definitive recommendation for fuzzy learning systems. In order

to investigate the appropriate number of labels to use in fuzzification of a

learning system a variety of different label combinations are investigated in the

marketplace and the mountain-car domain. In the marketplace domain the

variables used are discrete whereas in the mountain-car domain they are

continuous. This difference is important as it makes the state space of the

mountain-car domain much larger than the marketplace.

For the marketplace domain, label combinations of 2, 3, 4 and 5 labels were

investigated. In all cases, the membership functions are both triangular and

additive. As a result of the greatly increased cost in the complexity of design, all

items in the state space and action space for each test, all variables used in the

system are fuzzified with the same number of labels as indicated in Figure 5.3.

117

Figure 5.3: Triangular and additive membership functions for X Labels.

Three separate tests at four and five different game sizes were performed by

each Fuzzy Sarsa learner (i.e. 2 label fuzzy learner, 3 label fuzzy learner, etc).

The first two tests consist of the Fuzzy Sarsa learner playing an auction game

against a fixed strategy agent. In the first test, Fuzzy Sarsa plays against a greedy

agent, in the second against a linear agent, and in the third test, Fuzzy Sarsa

plays against a Sarsa agent. The reason for conducting three separate tests is that

the behaviour of each different agent competing against Fuzzy Sarsa is

significantly different, and thus the game space that Fuzzy Sarsa must learn is

different in each case. In all tests, each agent has enough money to buy the

required number of items at the fixed maximum bid price and the allowable bids

range from 5 to 25 and abstain. All other parameters, such as α, ε, and γ, remain

as described in Section 3.2. The results presented are averaged over a minimum

0

0.2

0.4

0.6

0.8

1

0 n

4 Labels

M
em

be
rs

hi
p

0

0.2

0.4

0.6

0.8

1

0 n

3 Labels

M
em

be
rs

hi
p

0

0.2

0.4

0.6

0.8

1

0 n

5 Labels
M

em
be

rs
hi

p

0

0.2

0.4

0.6

0.8

1

0 n

2 Labels

M
em

be
rs

hi
p

`

118

of 5 experiments and the error bars the 95% confidence intervals calculated as

described in Section 3.5.

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80

Game Size

A
ve

ra
ge

 P
ric

e

2 Labels 3 Labels 4 Labels 5 Labels

Figure 5.4: Marketplace Label Test I: Fuzzy Sarsa vs. Greedy.

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80

Game Size

Av
er

ag
e

Pr
ic

e

2 Labels 3 Labels 4 Labels 5 Labels

Figure 5.5: Marketplace Label Test II Fuzzy Sarsa vs. Linear.

119

In both test I and test II shown in Figure 5.4 and Figure 5.5, the 3 label

combination appears to be the ideal choice for the marketplace game. However

in test II the 2 label combination performs comparably to the 3 label

combination. However, in the greedy test, the 2 label combination performed

significantly worse than the 3 label combination. To determine the cause of the

differing performance of the 2 label combination, consider the behaviour of each

of the stationary strategies the agent plays against. Figure 5.6 illustrates the

increasing bidding pattern of the linear strategy and the flat bidding pattern of

the greedy agent.

 EPISODE TIME EPISODE TIME

 Linear Greedy

 Bidding Behaviour until all items won

 A
M

O
U

N
T

BI
D

Figure 5.6: Marketplace stationary strategy behaviour

In each case, the shading indicates that the bidding behaviour continues until the

stationary strategy agent has won the required items. By comparing the policy

learned over the set of auctions for the 2 and 5 label combinations, it appears

that although additive membership functions offer a more robust solution, the

shape of the membership functions plays an important role in the optimality of

the solution. In the case of the 2 label combination, the agent it is better able to

play against the linear agent because the optimal competitor policy is to bid

early and bid late. This bid pattern falls along the boundaries for the 2 label

120

combinations, and thus the 2 label agent performs well against the linear

strategy. Against the greedy agent, the optimal policy is to bid late and abstain

early. This policy is further away from the boundaries of the 2 label combination

and thus is not easy for the 2 label agent to learn. Similarly the 5 label

combination is able to perform significantly better against the greedy

combination because the midpoint boundary for the label representation falls at

the actual midpoint of state space. As a result, the 5 label representation

experiences a boost in performance when playing against the greedy strategy.

Based on the stationary strategy tests, the ideal choice so far is the 3 label

combination. Not only does the 3 label combination perform significantly better

than the 4 and 5 label combinations, but in both cases where there is a similar

competitor, the error bounds on the solution found by the 3 label combination is

considerably smaller. As a final check, a third test against a non-stationary

strategy was run. Due to the size of state space in the Huge game size scenario,

this test was only run to the VVVLarge game size.

121

10

12

14

16

18

20

22

0 10 20 30 40 50

Game Size

A
ve

ra
ge

 P
ric

e

2 Labels 3 Labels 4 Labels 5 Labels

Figure 5.7: Marketplace Label Test III: Fuzzy Sarsa vs. Sarsa.

As shown in Figure 5.7, the 2 label combination actually outperforms the 3 label

combination in 50% of the tests. While this result is promising, the

representational abilities of the 2 label combination are limited. As seen in both

stationary strategies tests (Figure 5.4 and Figure 5.5) at the Huge level (70

auctions) the 2 label significantly shifts towards a less optimal policy. In

examination of the data files for the policy learnt over the set of 70 auctions

rather than the average price achieved it is apparent that using 2 labels is no

longer capable of a suitable representation of the state space.

Since in the majority of cases the 3 label combination is clearly better than any

other combination, and because the error on the 3 label combination is much

smaller than its closest competitor, the 2 label combination, further experiments

in the marketplace domain presented in this thesis use 3 label membership

functions.

122

5.1.1.2 Mountain-car World

In order to further investigate the effectiveness of the three different forms of

function approximation in reinforcement learning, the three algorithms were

implemented in the mountain-car world described in Section 3.4.

0

0.25

0.5

0.75

1

-0.07 -0.035 0 0.035 0.07
Velocity

M
em

be
rs

hi
p

0

0.25

0.5

0.75

1

-1.2 -0.6 0 0.6
Position

M
em

be
rs

hi
p

0

0.25

0.5

0.75

1

Reverse Drift Forward

Actions

M
em

be
rs

hi
p

Figure 5.8: Membership functions for the Mountain-car world.

An initial study conducted by the author of this thesis indicated that 3 labels

were insufficient to model this domain, with the initial attempts unable to find a

solution. Furthermore, as demonstrated by the central label clustering of velocity

in Figure 5.9, expert knowledge of the most frequently observed values was

required. Since the majority of values in the mountain-car problem are clustered

in the centre, membership function designs that did not take this into account

123

were also unsuccessful at finding a solution. Figure 5.8 depicts the 5 label

membership combination tested, with a 2 label action function. The 7 label

combination has similar variable coverage, simply with more labels clustered

centrally. It also uses a 2 label action function.

As illustrated in Figure 5.9, for FQ Sarsa there appeared to be little difference

between the solutions found by 5 or 7 labels. In the case of Fuzzy Sarsa, the 5

label solution appears to be marginally better than the 7 label solution.

0

1000

2000

0 25 50 75 100

Episodes

S
te

ps

Fuzzy Sarsa(5) Fuzzy Sarsa(7)
FQ Sarsa(5) FQ Sarsa(7)

Figure 5.9: 5 and 7 Label tests in Mountain-car world.

One of the first issues in implementing the fuzzy algorithms is careful

consideration of the design of the membership functions. A number of different

label combinations were experimented with; the most effective for both position

and velocity was found to be 5 labels.

124

5.1.2 How to Tile?

This section describes in detail some of the issues faced when applying tile

coding techniques to the marketplace and the predator/prey gridworld. It is

included to provide illustrative detail of some of problems and drawbacks of tile

coding. The literature on tile coding provides some basic guidance on how to

address the issues of tile shapes, tiling density and tiling width [SuttonTC and

SB98]. In regards to tile shape, it appears that, like fuzzy memberships, tile

shape is primarily based on expert knowledge of the system. Different tile

shapes promote different types of generalisation. Since the aim is to compare the

tile coding algorithm with the fuzzy algorithm, the basic tiling shape of a square

was deemed appropriate for the marketplace world. This tiling shape provides a

similar overlay to the additive trapezoidal membership functions used by Fuzzy

Sarsa.

Figure 5.10: The effect of Narrow vs. Broad feature widths from [SB98]

With regard to tiling density and tiling width, [SB98] provides some insights

with the example in Figure 5.10. In this example, narrow vs. broad feature width

125

appears to have little effect on the overall function learnt (10240 examples).

However, broad features have a much stronger effect on initial generalisation

(10 examples). For both the marketplace and the predator/prey gridworld the

way the tiles are overlaid is fixed and the resolution and generalisation

parameters are altered.

5.1.2.1 Marketplace

For the marketplace domain, a tiling type of a simple grid was deemed to be

most similar to the additive triangular membership functions already used by the

fuzzy algorithms. Therefore each tile in the marketplace is described as

)(MAI •• where I is the number of items the agent currently has, A is the

current auction number, and M is the amount of money the agent has. In order

to determine the actual tiling width (generalisation) and resolution (number of

tilings) settings in the marketplace, a scanning program was written to identify

potentially suitable settings. This program scanned through different tiling

numbers with different tiling widths. At each setting it ran one simulation of

each game to 2000 episodes and compared it with the other results. The top 10

settings of two sizes of auction games were isolated and the top 6 in common

were chosen to complete the full 10 game tests. In this experiment, each tiling

combination competes only against the fixed strategy agent.

126

8

9

10

11

12

13

500 20000

T2-W2 T2-W4 T4-W2 T8-W4 T16-W3 T32-W5

12

13

14

15

16

17

18

19

20

500 20000

Figure 5.11: Tile Tests in Large (top) and VVVLarge (bottom) Marketplace.

Figure 5.11 presents the results of these tests in a Large and VVVLarge

marketplace in a linear strategy game. Tx-Wy indicates the number of tilings

used and their width. For example the first series labelled T2-W2 is of the tile

127

coding agent with tile widths of 2 and the number of tilings made over the state

space set to 2.

The first point to address in analysing these two experiments is the different

entry points of the 6 different tile/width settings (at 500 episodes). All 6 settings

are competing in the same marketplace setup, including the use of the same

initial start seed. One of the advantages of function approximation methods is

the ability to abstract newly learnt data to other states and this abstraction

quickly affects the states visited.

T5S1 = T52 T97 T2

T47 T32 T987 T2 S2 =

All values for these tile
get updated!

The set of tiles that matches the state S1

First Sample Episode:

New Episode (previously never visited):

Already know
something about
this state, even

though it has never
been visited!

Figure 5.12: Stickman Generalisation.

As depicted in Figure 5.12, when an agent receives a reward in a particular state,

each tile that represents it receives a proportion of the reward. When the agent

visits a completely new state, some of the information learnt in the original state

may already be influencing it. In the case where the new state has one or more

128

tiles in common with the previously visited state, that information will

immediately affect action selection. The agent in the new state already has

enough information to narrow down the possibilities in its greedy state selection.

The section of state space initially affected by this generalisation is directly

related to the width of the tiles overlaying the state space.

Both action
Q values =

random

random

green = affected tiles

select random
action A

2 x 2 Tiling 2 x 4 Tiling
Action A Action B Action A Action B

0 20
0 20

0 20
0 20

Start:

Ep 1

Ep 2

Ep 3

0 20
0 20

0 20
0 20

0 20

0 20

0 20

0 20

0 20

0 20

0 20

0 20

Figure 5.13: Tilings/Width Exploration Example.

Since 3-dimensional state/action selection is difficult to visualise, Figure 5.13

uses a very simplified state space example to illustrate the rapid effects on states

visited as a result of differing state space overlays. The example uses only one

state variable and two action variables. At the start, all tiles are initialised to their

default value. In Ep 1, the current state is mapped to tiles as illustrated by the

cylindrical intersections through the tiling space. There is an intersection through

the tiling space for each possible action. In the 2x2 case, the state space is

represented by the right most tile in both tilings. In the 2x4 case, the same state

falls into the 3rd (out of 4) tile in both tilings. At this point, the greedy action

129

would likely be chosen; however since all values are the same, a random action

is chosen instead. This action is indicated by the single cylindrical intersection in

the state/action space at Ep 2 corresponding to selecting Action A. The

reinforced or affected tiles are highlighted in green. At Ep 3, although the start

state is identical in both tiling combinations, the greedy actions chosen by each

combination are already different. In the 2x2 case, the reinforced tiles already

affect the greedy decision, whereas in the 2x4 case there are no affected tiles and

thus a random decision is taken. In both cases, at an exploration factor of 0.03,

the majority of future action selections will be greedy and thus occur around

positively influenced tiles. This causes the agents to favour known solutions

until exploration pushes them in another direction. This analysis agrees with the

observation made by [SB98], that “With broad features, the generalization

tended to be broad; with narrow features, only the close neighbors of each

trained point were changed, causing the function learned to be more bumpy.” In

the marketplace environment, the training of close neighbours at the stages

analysed has a greater effect on the speed of overall movement towards an

improved solution. Thus, the different starting points of the six combinations

are explained by the different way each setting intersects the state space and then

by the clustered exploration around the first solution found. In all cases

exploration does eventually push them out of the local minima.

The final point to consider with regard to this issue is the fact that in an auction

game the start state of the game is always the same. As stated, there is only a 3%

chance of exploration once an initial solution is found. In the case of a coarse

tiling over the state space, an exploratory move further into the game has a much

greater chance of affecting the initial move, than the late exploratory move of a

130

finer tiling. Figure 5.14 depicts the first 50 games of 4 of the combinations. The

combinations have been chosen by their Width settings. The quicker move

towards a smaller price indicates that the coarse width of 2 (T2W2) is greater

affected by exploratory intermediary moves than the finer width of 5 (T32W5).

As indicated by the confidence intervals in the figure, T2W2 also suffers from

greater oscillation in its bids, and T32W5 less, as a result

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

1 50

Episodes

Pr
ic

e

T2W2 T16W3 T2W4 T32W5

Figure 5.14: First 50 episodes of Tile Tests.

Finally in this section, based on the experiments of Figure 5.11, a tile/width

combination must be chosen for further experimentation. In the VVVLarge test,

the T2W2, corresponding to 2 Tilings with an overlay of 2x2x2 (or 0.5

granularity) performs better about 50% of the time, than any other tilings/width

combination. In the Large test, this improvement was less marked, however it is

the only tiling that appears to have any comparative improvement. A further

reason for choosing such a coarse tiling is that it is expected that the ability to

131

generalise quickly (i.e. have broad features) will be important in a

coevolutionary scenario.

5.1.2.2 Predator/Prey Gridworld

Figure 5.15 shows the results of a study into tiling resolution in a gridworld. In

this study, the general shape of the tiles has been fixed and the tile width and

number of tilings has been altered. This experiment is run in a 5x5 tile world,

with the state variables x: width of the current grid, y: height of the current grid

and t: time. The tiles used in this world

are)()()(TimeYXTimeYTimeX ••+•+• . In the case of the first two

combinations, because X and Y are finite (for this experiment 5, and others with

the range 3 – 15), X and Y are used as is, one tile per value. This means that

there is no generalisation between positions in the grid. In the final combination

)(TimeYX •• , generalisation between tiles is used. The x axis of the surface

maps indicates the width of the time tilings (tg). For example, 25=tg results

in fairly wide tilings of 25 time units each whereas 5=tg results in narrower

tilings of 5 time units each. The y axis of each surface map in Figure 5.15 is the
granularity of the XY tilings xyg . For example, if 5.2=xyg the x and y state

planes are divided into tiles that are 2.5 units wide. If the 0.1=xyg , no

generalization between x and y coordinates is used. For all three combinations,

time is tiled.

The results presented in the surface map are the final average moves of 5 trials

of each XY/time setting for 8 different tiling settings. The lighter shades indicate

the better solutions and lower error.

132

 Average weighted Moves Average weighted Error

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

11. 2 51. 6 72 . 50-15 15-30 30-45
45-60 60-75 75-90
90-105

11 .2 51 .6 72 .5

0-5 5-10 10-15
15-20 20-25

Figure 5.15: Tile Tests in Predator/prey gridworld.

12
 T

ili
ng

s
9

Ti
lin

gs

6
Ti

lin
gs

3

Ti
lin

gs

133

The results presented Figure 5.15 are those that are useful in the current

discussion. Further tests were performed at higher tiling levels, but these tests

indicated that at the current settings learning was too slow to achieve a good

solution. Since only 9 tilings were used in the mountain-car world, it is

reasonable to expect that 12 tilings should be more than adequate for

representing this domain. The full results for all tiling tests performed can be

obtained in Appendix I. For all numbers of tilings it is evident that the width of

the time tiles most affects performance, with the narrowest tiles (5=tg or

6=tg) being the worst performing.

0 5 10 15 20 25

T3-Tr25-X1.0

T3-Tr-25-X1.25

T3-Tr25-X1.67

T3-Tr25-X2.5

T6-Tr8-X1.67

T6-Tr25-X2.5

T9-Tr25-X1.0

Ti
le

 S
et

tin
gs

Weighted Average Moves

Figure 5.16: Tile Tests in Predator/prey gridworld.

From the results present in Figure 5.15, the 7 best settings were chosen for

further tests. Figure 5.16 shows the weighted average moves of 10 experiments
at each listed number of tilings (3, 6 or 9), tg and xyg settings. The results are

weighted according to the stability of the solution – a setting that has a 95%

success rate will get a lower weighted move rating than one with 65%. The tile

134

setting of T3-Tr25-X2.5 corresponding to 3 tilings with 25=tg and 5.2=xyg

clearly performs the best from the 7 tilings. However, one other tile setting was

marked for extra test in parameterisation because 3 tilings only corresponds to

one tile per input combination; 1 for each)(),(TimeYTimeX •• and

)(TimeYX •• . Therefore the best setting where 3>T was also chosen: T9-

Tr25-X1.0.

5.2 Parameterisation

One of the main concerns regarding the previous work is in the issue of

parameterisation. Although initial spot tests indicated that the original choice of

α, ε, and γ was quite reasonable, further investigation was warranted. Following

guidance from much of Suttons work, such as [SSK05], a “good enough”

approach to parameterisation was adopted. This approach aims to find

reasonable parameter settings, rather than necessarily the best ones. The

parameters presented in Section 3.2 were originally chosen based on Vidal’s

work with agent marketplace learning [VIDD97 and VID98] to be “good

enough” for all 3 learners, however because of the different behavioural nature

of some algorithms the best “good enough” parameter for one algorithm may not

be the best for another.

The following two sub-sections present the parameterisation tests for the

marketplace and the predator/prey gridworld. Parameters for the mountain-car

world were ported with the original code and fixed as such for benchmarking.

135

5.2.1 Marketplace Parameterisation

0 4 8 12

Sarsa

FQ

Fuzzy
A

lg
or

ith
m

Average Price

 = 0.1 = 0.5 = 1.0γ γ γ

Figure 5.17: Effect of different γ values in Large Marketplace

In the first parameterisation test the following parameters were fixed: α = 0.15

and ε = 0.02. Figure 5.17 illustrates the average price achieved by each

algorithm over ten tests of 10,000 runs using three different γ settings. All three

algorithms exhibit very little difference in average price due to changing γ .

Fuzzy Sarsa is the only algorithm where any one setting might offer any

improvement. However, since Fuzzy Sarsa appears to have a very minor

improvement with γ = 1.0, and γ = 1.0 is the simplest case for debugging (a

full one step backup), further marketplace experiments use this value.

For the parameter settings of α and ε, a scanning program was written to

determine the appropriate targets settings. For all three algorithms, an ε range of

0.02 to 0.05 offered an adequate amount of exploration in this domain. For α,

the range between 0.05 and 0.25 were identified as target values. In order to

determine the relationship between these parameter settings, each algorithm was

136

run against a linear fixed strategy, at each different parameter combinations in

the target ranges, for 5 tests.

0.05 0.1 0.15 0.2 0.25
0.02

0.03

0.05

Alpha

E
psilon

29-29.75 29.75-30.5
30.5-31.25 31.25-32

Average Price

Figure 5.18: Effect of different α and ε values in Large Marketplace

The results in Figure 5.18 are the summed totals of the average price of each

algorithm at each parameter combination. In the figure, lighter shades indicate a

lower overall price, whereas darker shades indicate a higher overall price. As

depicted, the learning algorithms perform best when ε is set to 0.03. For all three

algorithms, the standard deviation of the prices achieved across the surface of

the map is between 0.34 and 0.41. This indicates that there are no spots on the

surface map where one algorithm performed significantly better than another.

137

0.05 0.1 0.15 0.2 0.25
0.02

0.03

0.05

Alpha

E
psilon

1.75-2 2-2.25
2.25-2.5

Average Error

Figure 5.19: 95% confidence values of different α and ε values in Large Marketplace

The final setting that was chosen for further experiments in the marketplace was

the α setting (at ε=0.03) of the best combination between overall price achieved

while minimizing the overall deviation. Figure 5.19 gives the 95% confidence

intervals around the overall price achieved from Figure 5.17: lighter shades

indicate smaller error. For settings of α = 0.1 and 0.15, the overall price

achieved is better than other settings, but the intervals are larger. For α = 0.25

the situation is reversed, the overall price is the worst of the good settings, but

the error is minimal. The setting α = 0.2 is a good midpoint between the two.

The final settings chosen are α = 0.02, ε = 0.03 and γ=1.0. While there may be

settings not investigated that are superior, this setting is deemed as “good

enough”.

138

5.2.2 Predator/Prey Gridworld Parameterisation

The following section illustrates how the parameter settings for the predator/prey

gridworld were determined. Unlike the marketplace world, the predator/prey

gridworld is more volatile. Bad choices at specific times can have a large

negative impact on the learning of the agent. Thus bad parameter choices

exacerbate this problem. To that effect the following tests were performed.

As stated in Section 5.1.2.2, the final two tiling settings identified for
parameterisation testing were as 3 tilings with 25=tg and 5.2=xyg and 9

tilings with 25=tg and 0.1=xyg . These settings were chosen as the best

performing out of 7 “good” settings, in turn identified from a larger tile test

experiment that tested 16 different tile width combinations with 7 different

numbers of tilings. As shown in Figure 5.20, the tile coding algorithm in the

predator/prey world is especially sensitive to γ. However, Fuzzy Sarsa is less

volatile with different setting of γ; with all results overlapping in their 95%

confidence intervals.

0 15 30 45 60 75 90 105

Fuzzy Sarsa

Tile Coding T9 / XY
1.0

Tile Coding T3 / XY
2.5

Al
go

rit
hm

Average Moves

 0.1 0.5 1.0 γ = γ = γ =

Figure 5.20: The effect of changing γ for Fuzzy Sarsa in 5x5 gridworld

139

The γ setting of 1.0 was chosen since this greatly boosts the tile coding setting

for 9 tilings. However, due to rather rapid improvement of this setting both 3 and

9 tilings were used in further parameterisation tests. Figure 5.21 gives the

averaged weighted results over 5 experiments of the last 5000 episodes at each

setting for α and ε .

0.
00

5

0.
050.
1

0.
2

0.
3

0.
4

0.0001

0.001

0.01

Alpha

0.
00

5

0.
050.
1

0.
2

0.
3

0.
4

0.0001

0.001

0.01

Alpha

Epsilon

0.
00

5

0.
050.
1

0.
2

0.
3

0.
4

0.0001

0.001

0.01

Alpha

0.

00
5

0.
050.
1

0.
2

0.
3

0.
4

0.0001

0.001

0.01

Alpha

Epsilon

0.
00

5

0.
050.
1

0.
2

0.
3

0.
4

0.0001

0.001

0.01

Alpha

0-0.6 0.6-1.2
1.2-1.8 1.8-2.4

Weighted Move/Win

0.
00

5

0.
050.
1

0.
2

0.
3

0.
4

0.0001

0.001

0.01

Alpha

Epsilon

0-0.5 0.5-1
1-1.5 1.5-2

Weighted Variability

Figure 5.21: Weighted Move/Win Ratio of different α and ε

for Tile Coding (3 & 9 Tilings) and Fuzzy Sarsa in 5x5 gridworld

As a result of the α and ε test results depicted in Figure 5.21, further

experiments will use the tile coding setting of 9 tilings with 25=tg and

Fu
zz

y
Sa

rs
a

9
Ti

lin
gs

3

Ti
lin

gs

140

0.1=xyg , 05.0=α and 0001.0=ε and Fuzzy Sarsa settings of 1.0=α and

0001.0=ε . These setting were chosen since they offered the best overall

solution with the least variability.

5.3 Learning an optimal policy

This section is designed to validate the effectiveness of each type of function

approximation by implementing the algorithms in all three simulation worlds.

In the mountain-car world, the implementation is straightforward as the learner

must simply learn a policy which allows them to get up the hillside. As seen

earlier in the marketplace, but also in the predator/prey world, the problem is

more complex when the learning agent is interacting with other agents in the

world. To explore each algorithm’s abilities to find a feasible policy in these

worlds, the other agent(s) must follow a stationary strategy. The linear and

greedy stationary strategies for the marketplace have already been introduced

in Section 4.3, and the stationary strategies for the predator/prey gridworld will

be introduced when presenting the relevant results.

5.3.1 Mountain-car World

In order to further investigate the effectiveness of the three different forms of

function approximation in reinforcement learning, the three algorithms were

implemented in the mountain-car world described in Section 3.4. Since the

mountain-car domain is made up of continuous variables, implementing the

tabular version of Sarsa is not practical.

141

The gradient-descent Sarsa(λ) with tile coding used 9x9 grid tilings across both

velocity and position. The settings are further described in [SB98] and

[SuttonMC]. Using the parameters 0.1=γ , 6.0=α and 025.0=ε (with

annealing for ε to allow the algorithms to settle on a greedy policy), all three

algorithms find a solution. Figure 5.22 illustrates the stability of the solution

found over 101 episodes. As expected, since FQ Sarsa is only a reduced state

space solution, the coarse generalisation makes the action policy quite volatile

and the furthest from the optimal solution. Fuzzy Sarsa does significantly better

and is able to achieve a much more stable solution. However, gradient descent

Sarsa(λ) with tile coding clearly achieves the most optimal and stable solution.

The error on the solution is so small that it can not even be seen on the graph.

0

1000

2000

0 25 50 75 100

Episodes

St
ep

s

Fuzzy Sarsa FQ Sarsa GD Sarsa with Tile Coding

Figure 5.22: Stability of solution in Mountain-car problem

The final area investigated in the mountain-car world is the final action policy

for each algorithm as illustrated by Figure 5.23. Although it is clear from the

previous figure that gradient descent Sarsa(λ) with tile coding is clearly the more

142

powerful algorithm it is also useful to investigate the final policy in order to

illustrate its powerful generalisation capabilities in comparison with the fuzzy

algorithms. As demonstrated by the three action selection policy surface maps,

the policies learnt have broad areas of similarity. However, the policies learnt by

the fuzzy algorithms lack the finer distinctions of the tile coding solution.

-0.07 .07
-1.2

.6

Velocity

P
osition

FQ Sarsa Action Policy

-0.07 0.07
-1.2

.6

Velocity

P
osition

Fuzzy Sarsa Action Policy

-0.07 .07
-1.2

.6

Velocity

P
osition

GD Sarsa TC Action Policy

Figure 5.23: Final Action Policies for Mountain-car world.

143

5.3.2 Marketplace World

After the experiments described in Section 5.2, the parameters for the following

section were fixed at α = 0.2, ε = 0.03, and γ= 1.0. The membership functions

for the fuzzy algorithm remain as described in Section 4.3 and the tile coding

setting used has a granularity of 0.5 (as shown in Figure 5.24) with 2 overlaid

tilings. This setting was determined as discussed in Section 5.1.2.

Auctions Left

M
on

ey
 L

ef
t

 Items
 To
Buy

Figure 5.24: Tile Coding Strategy for the Marketplace

For the experiments in this section the VVVLarge setting in the marketplace is

used. This setting gave a state action space of 8,787,366 combinations. Each

function approximation learner is tested against each of the stationary strategies,

Linear and Greedy. The total time of these trials was increased from 10000 to

20000 and thus the following graphs have been smoothed at an increment of

500.

144

12

13

14

15

16

17

18

19

20

500 20000
Episodes

A
ve

ra
ge

 P
ric

e

Fuzzy Sarsa FQ Sarsa Tile Coding

Figure 5.25: Agents against a Linear Strategy in VVVLarge Auction Game

10
11
12
13
14
15
16
17
18
19
20

500 20000
Episodes

A
ve

ra
ge

 P
ric

e

Fuzzy Sarsa FQ Sarsa Tile Coding

Figure 5.26: Agents against a Greedy Strategy in VVVLarge Auction Game

Both the Linear and Greedy Test show that the FQ Sarsa algorithm is not stable

enough to warrant further investigation. The average price achieved oscillates

145

and does not improve significantly from the start of the auction game. This is not

a surprising, given the coarse nature of the state space for this algorithm.

In the case of Fuzzy Sarsa and the gradient descent Sarsa(λ) with tile coding,

Figure 5.25 indicates that both algorithms perform similarly when competing

with a fixed linear strategy17, whereas Figure 5.26 indicates that the solution

found by tile coding offers a small, but significant improvement over that of

Fuzzy Sarsa when competing against a fixed greedy strategy. Figure 5.27 shows

the results of increasing the complexity of the problem. In this test, both Fuzzy

Sarsa and tile coding are required to find a solution with two stationary agents

rather than just one. To add even more complexity to the game space, two

different stationary strategies are selected. As indicated in Figure 5.27, when the

game becomes more complex, Fuzzy Sarsa seems to gain some advantage over

tile coding.

17 The linear and greedy stationary strategies were defined in Section 4.3.

146

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

500 20000
Episodes

Av
er

ag
e

Pr
ic

e

Tile Coding Fuzzy Sarsa

Figure 5.27: Agents against a Greedy and Linear Strategy in VVVLarge Auction Game

Before investigating these two algorithms in the context of coevolution in the

marketplace domain, an investigation into their effectiveness in the

predator/prey gridworld is given.

5.3.3 Predator/Prey Gridworld

From the previous sections, the reduced state space algorithm FQ Sarsa was

deemed to be unstable, but both the Fuzzy Sarsa and the gradient descent

Sarsa(λ) with tile coding seemed to offer similar benefits in the marketplace

world. It was suspected by tile coding’s slightly better performance in both the

mountain-car world and the greedy stationary strategy test, that tile coding is the

more powerful modeller, however further investigation into these two

algorithms was warranted. The predator/prey gridworld environment has been

described in Section 3.3. In order to investigate the two algorithms in the

gridworld, a stationary strategy was defined.

147

The stationary strategies for both the predator and prey are defined as:

• Corner Strategy: This agent follows the boundaries of the maze and

continually circles the grid.

Figure 5.28: Corner Strategy in a Gridworld

As discussed in Section 5.1.2.2, the pursuit world is broken into three OR groups

of tiles. All previous parameterisation for the predator/prey gridworld was done

assuming the learning agent is the prey. The reason it was done this way is that

being a predator is a much easier problem to learn than learning the more

complex problem of avoiding the predator while still eating all the dots.

Similarly setting appropriate rewards in this domain can cause difficulty. In

early tests, excessively punishing the prey agent for running out of time caused

the agent to maximise its reward firstly by staying alive as long as possible and

secondly by committing suicide if it thinks the allowable time is about to elapse.

The prey agent becomes so concerned about the very negative rewards of being

148

eaten and running out time, that it neglects the actions that would result in a

more positive outcome18.

The tiling scheme was designed as follows: The tilings are divided into 3 equal

sized groups described as)()()(TimeYXTimeYTimeX ••+•+• . The number

of tilings indicates how many tiles are dedicated to each or generalisation. For

example, if there are 3 tilings then 1 tile is dedicated to)(TimeX • , 1 tile to

)(TimeY • and 1 to)(TimeYX •• . The final tiling scheme is illustrated in

Figure 5.29.

18 Such as eating all the dots!

149

Time X 1 2 3 4 5

0

25

50

100

…

t

)(TimeX •

Time Y 1 2 3 4 5

0

25

50

100

…

t

)(TimeY •

)(TimeYX ••

Figure 5.29: Tile density and width

This tiling structure allows the agent to make decisions base on its current X

location and time, Y location and time and finally the XY location and time.

From experiments presented in the previous 2 sections, the chosen settings are 9
tilings (3 of each tiling depicted in Figure 5.29) with 25=tg and 0.1=xyg ,

05.0=α , 0001.0=ε and 0.1=γ .

150

The fuzzy membership functions were chosen for their similarity to the tiling

structure. To allow the fuzzy agent to have similar kinds of generalisation

powers the following 4 label membership functions were needed:

• X location: The agent’s location along the X axis.

• Y location: The agent’s location along the Y axis.

• Time with respect to the gridsize: Time divided by the gridsize. This

allows the agent to make the same inferences as the tile coding tile set

for)(TimeYX •• .

• Total time: The current time with respect to the total time allowed.

The general membership for these four state variables and the action set is

described by:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 n
4 Labels

M
em

be
rs

hi
p

Figure 5.30: Fuzzy membership for 5x5 predator/prey gridworld

151

3

5

7

9

500 10000
Episodes

A
ve

ra
ge

 M
ov

es

Tile Coding Fuzzy Sarsa

Figure 5.31: Tile Coding and Fuzzy Sarsa against fixed strategy prey

in 5x5 predator/prey gridworld

Figure 5.31 gives the results over 10 experiments run to 10000 episodes of both

agents learning to catch a stationary strategy prey. As shown, the 95%

confidence intervals for both agents are insignificant – both agents reliably find

the optimal solution quickly, with almost no deviation.

As mentioned learning to be the predator against a fixed stationary strategy in

this domain is a simple task. A more complex one is for the agent to learn to be

the prey. Figure 5.32 shows the results of each learning agent as the prey against

a fixed strategy predator. Since this is a more complex task, the results presented

are over 10 experiments run to 15000 episodes.

152

25

50

75

100

500 15000
Episodes

A
ve

ra
ge

 M
ov

es

Tile Coding Fuzzy Sarsa

Figure 5.32: Tile Coding and Fuzzy Sarsa against fixed strategy predator

in 5x5 predator/prey gridworld

As shown in Figure 5.32, both the tile coding agent and the Fuzzy Sarsa agent

find a reasonable solution. The solution quality for both agents is very similar.

The results for being the prey in the predator/prey gridworld again confirm the

results seen in the mountain-car domain and in the marketplace domain.

Figure 5.33 illustrates further the effectiveness of the tile coding agent and the

Fuzzy Sarsa agent. The results presented are the average win ratio of each agent.

The average win ratio is defined by how often the agent completes the task at

hand (eats all dots before time up). Fuzzy Sarsa is quicker to converge to a

winning solution.

153

0

0.25

0.5

0.75

1

500 15000

Episodes

%
 W

in

Tile Coding Fuzzy Sarsa

Figure 5.33: Tile Coding and Fuzzy Sarsa win ratio against

a fixed strategy predator in 5x5 predator/prey gridworld

5.4 Summary

This section has presented the results of stationary strategy tests of Fuzzy Sarsa,

FQ Sarsa, and gradient descent Sarsa(λ) with tile coding. It has shown that FQ

Sarsa is unstable for most large problem domains. Fuzzy Sarsa and gradient

descent Sarsa(λ) with tile coding both offer good methods of function

approximation in all three test domains. In a stationary environment, the

approximation found by the tile coding technique appears to offer marginal

improvement and better stability over the fuzzy technique.

154

The results presented in section also extend the recent (2005) finding of Booker

in [BOOK05]. In that work, tile coding was compared with a learning classifier

system called XCS [BW01]. There are three important differences between the

research presented by Booker and the research presented in this section. Firstly,

XCS is a learning classifier system, in that it learns and evolves, the research of

this thesis has focused on the reinforcement learning aspect of LCS, and more

specifically the fuzzy reinforcement learning of a LFCS. Secondly, this section

has used control problems rather than prediction problems19. The final difference

is an algorithmic one; as pointed out by [CCB04], an important difference

between the LCS XCS and Bonarini’s LFCS ELF [BON96a], is that in XCS

there is consideration of competitive actions whereas in Bonarini’s proposal the

focus is on the interaction between the state portion of the rule20.

Therefore, the results presented in the previous section have extended those

presented by Booker in two ways. First, it shows similar amounts of function

precision and smoothness for the tile coding technique in the control problems

used in this research with the prediction problems used by Booker. Secondly,

although the research presented in this thesis only uses the fuzzy reinforcement

learning of a LFCS, the results indicate similar findings for the control function

learnt by Fuzzy Sarsa, to that of the prediction problem learnt by XCS. In both

19 This research has presented the background in terms of control problems, reinforcement learning for
prediction problems is generally classed as an easier problem than that of control. [SB98] also include the
relevant prediction algorithms for all the types (DP, Monte Carlo, etc.) presented in Section 2.

20 A fuzzy rule is made up of the antecedent or state, and the consequent or action.

155

cases, the learnt function is more bumpy than the tile coding solution and does

not exhibit the same fine details as the tile coding technique.

The research presented in this thesis has used control problems for algorithm

testbeds. Therefore the next natural extension to the results presented in this

section, is to analyse how the two algorithms, Fuzzy Sarsa and gradient descent

Sarsa(λ) with tile coding, perform when placed in a multi-agent scenario. This is

the topic of the next section.

156

6 Effects of Multiagent Competitive Coevolution

The next logical step after verifying that both function approximation algorithms

could satisfactorily learn against a stationary strategy is to investigate the

algorithms capabilities in the context of competitive coevolution. For these

experiments, the adversarial simulation environments of the marketplace and the

predator/prey gridworld were considered. In the case of the marketplace

environment, the two agents competed directly for the same set of resource. In

the predator/prey gridworld, the competing strategies each took their turn in both

roles. In other words, in the first experimental set up, Fuzzy Sarsa adopted the

role of the predator, while gradient descent Sarsa(λ) with tile coding played the

role of the prey.

 Section Purpose Experiment Setup

6.1
&
6.2

To determine the capabilities of Fuzzy Sarsa and
gradient descent Sarsa(λ) with tile coding in non-
stationary scenarios.

 Agent marketplace: competing agents
have same goal.

 Predator/prey: competing agents have
different goals.

 Learning parameters fixed.
 Fuzzy and tile schemas fixed.
 Algorithms learn against each other

(non-stationary strategy).

Figure 6.1: Experiment Table for Section 6

Figure 6.1 summarises the experiments presented in this section.

6.1 Marketplace World

The initial setup for the coevolution tests in the Marketplace World consists of

VVVLarge marketplace tests. The reason for choosing the VVVLarge

marketplace was to give each algorithm two separate challenges. The first

157

challenge was for the algorithm to be able to learn in the large state space and

the second to be able to adjust to the other learner. The length of the test trial

was increased to 20000 episodes to ensure that the algorithms have enough time

to learn the gradation of both the combined learning problem.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

500 20000
Episodes

Av
er

ag
e

Pr
ic

e

Fuzzy Sarsa Tile Coding

Figure 6.2: Fuzzy Sarsa vs. Tile Coding in VVVLarge Marketplace test

Figure 6.2 presents the results of a head to head test of Fuzzy Sarsa vs. tile

coding in the VVVLarge Marketplace. In this experiment, the two algorithms

were the only two agents competing in the market. There are enough items for

both agents, and thus the goal of the two algorithms was to learn how to divide

the items between them. Fuzzy Sarsa clearly achieved a significantly better price

than tile coding throughout the experiment. Given the tile coding agent’s better

performance in fixed strategy experiments of Section 5.1.2.1, this poor

performance was somewhat unexpected. Before concluding that Fuzzy Sarsa has

more powerful modelling capabilities, the poorer performance of the tile coding

agent must be investigated.

158

In the previous experiment in the marketplace, tile coding vs. a stationary

strategy, since there was only one learner, the interactions of the game remained

constant and therefore the tile coding agent was able to refine its coarse state

space representation to learn a fairly good strategy to use against a stationary

strategy. In the coevolution experiment, because more than one agent was

learning at the same time, the interactions of the game fluctuated. This

fluctuation makes it more difficult for each agent to learn an optimal solution.

The confidence intervals of the tile coding agent in Figure 6.2 are much larger

than that of the Fuzzy Sarsa agent. This indicates that prices achieved by the tile

coding agent fluctuated more than those achieved by the Fuzzy Sarsa agent.

Therefore one possible reason for the poorer performance of the tile coding

agent is that the generalisation and resolution settings chosen by the stationary

strategy experiment conducted in Section 5.1.2 are not sufficient for the

coevolution experiment. To determine if the tile coding settings were adversely

effecting the tile coding agent’s results, the experiment was rerun with three of

the other candidate settings from Section 5.1.2, and one random setting (T3W3).

159

0 5 10 15 20

T2W2

T4W2

T3W3

T8W4

T16W3

Ti
lin

gs
/W

id
th

 S
et

tin
gs

 fo
r

Ti
le

 C
od

in
g

Average Price

Tile Coding Fuzzy Sarsa

Figure 6.3: Other tiling settings in the VVVLarge Marketplace coevolution test

Figure 6.3 presents the averaged price achieved in the last 5000 episodes (out of

20000) by the tile coding agent and the Fuzzy Sarsa agent when in direct

competition with each other. For both agents, the optimal price achieved is when

the tile coding agent is at T2W2. In this environment, stiff competition increases

the performance of Fuzzy Sarsa. It pushes the algorithm to carefully refine its

distinctions between both cooperative state/action pairs (pairs that work together

to generate a solution) and competitive ones (pairs that contain the same state

portion).

Since the speed of learning in each individual tile in the tile coding method is

dependant on the number of tilings, in one further attempt to boost the

algorithm’s performance the T8W4 test was rerun with increased α setting.

Figure 6.4 illustrates the results of increasing the α for only the tile coding agent;

the Fuzzy Sarsa agent remains fixed at 0.2. The figure shows the average price

achieved by each agent over 10 tests of 20,000 runs each.

160

0 5 10 15 20

A0.8

A0.2

A
lp

ha

Average Price

Tile Coding Fuzzy Sarsa

Figure 6.4: Increased α for T8W4 Tile Coding in

VVVLarge Marketplace coevolution test

These results indicate that the increased α caused the tile coding agent to

become even more prone to getting stuck in a local minimum. The increased α

is of no help to the tile coding agent.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

500 20000
Episodes

A
ve

ra
ge

 P
ric

e

Greedy Fuzzy Tile Coding

Figure 6.5: Fuzzy Sarsa, Tile Coding and Greedy in

VVVLarge Marketplace coevolution test

161

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

500 20000
Episodes

A
ve

ra
ge

 P
ric

e

Linear Fuzzy Tile Coding

Figure 6.6: Fuzzy Sarsa, Tile Coding and Linear in

VVVLarge Marketplace coevolution test

Returning to the original settings for the tile coding agent, Figure 6.5 and Figure

6.6 show the results of two 3-agent coevolution tests: the first with both function

approximation methods and a greedy stationary strategy; the second, with both

function approximation methods and a linear stationary strategy. In both cases,

Fuzzy Sarsa clearly achieves a better overall price than any other agent.

The poor performance of the tile coding strategy is unexpected after its good

performance against stationary strategies in all three domains. Before

investigating this further, the algorithms were subjected to coevolution tests in

the predator/prey domain.

6.2 Predator/prey gridworld

The multiagent tests in this environment consist of all combinations of agent

algorithms in both the predator and prey roles. This results in four different

combinations:

162

Test Predator Prey
1 Fuzzy Sarsa Fuzzy Sarsa
2 Tile Coding Tile Coding
3 Tile Coding Fuzzy Sarsa
4 Fuzzy Sarsa Tile Coding

Figure 6.7: Predator/prey gridworld agent combinations

In the initial tests, the total episodes per run is increased to 50000 to ensure that

the results capture any latent emergent behaviours. All results presented in this

section are averaged over a minimum of 5 experiments. In test 1, as shown in

Figure 6.4, the Fuzzy Sarsa agents move towards an equilibrium win ratio for

the first 20000 episodes, but after that, the predator agent is the clear winner.

However, this graph does not show the full story.

0

0.25

0.5

0.75

1

500 50000
Episodes

W
in

 R
at

io

Predator: Fuzzy Sarsa Prey: Fuzzy Sarsa

Predator

Prey

Figure 6.8: Win ratio of Fuzzy Predator vs. Fuzzy Prey in a 5x5 gridworld

As shown Figure 6.9, although the predator is the winner by win ratio, the game

has settled onto an equilibrium. The maximum number of moves that the game

has is 125. Therefore, what has occurred is that the prey agent has collected all

163

of the dots it can – the last dot is guarded by the predator agent. This agent

learns to always move into the wall over a dot adjacent to a wall. In this manner,

the predator agent manages to stay stationary and guard the dot. It therefore has

maximised its expected reward, as while its rewards are negative at every time

step, the penalty for allowing the prey agent to complete the grid is even worse.

The prey agent has also maximised its rewards, as it has generally collected 20

to 23 of the dots that the predator is not guarding. Therefore since the reward

received in an empty square is 0, the longer it stays alive the better. This

equilibrium point is the game’s Nash Equilibrium. At Nash equilibrium, no

player can do better by changing strategies unilaterally given that the other

players don’t change their Nash strategies. At least one Nash equilibrium exists

in any game. [BO82]. At this point there is no move that will improve either the

predator or prey’s solution.

0

25

50

75

100

125

500 50000
Episodes

A
ve

ra
ge

 M
ov

es

Average Moves

Figure 6.9: Average moves of Fuzzy Predator vs. Fuzzy Prey in a 5x5 gridworld

164

In test 2, the equilibrium reached is different from test 1. As shown in Figure

6.10 between the two tile coding agents, the prey is the clear winner. This seems

to indicate that in this domain the tile coding agent is better at being prey than a

predator.

0

0.25

0.5

0.75

1

500 50000
Episodes

W
in

 R
at

io

Predator: Tile Coding Prey: Tile Coding

Predator

Prey

Figure 6.10: Average moves of Tile coding predator vs. Tile Coding Prey

in a 5x5 gridworld

As shown in Figure 6.11, in test 3, the tile coding prey is the clear winner against

the Fuzzy Sarsa predator. The results for this test are odd as, unlike when the

Fuzzy Sarsa predator played against a Fuzzy Sarsa prey, it does not learn to

effectively stay stationary and guard a dot. Instead the Fuzzy Sarsa predator

guards a collection of 2 or 3 dots. Therefore due to the fine distinctions that the

tile coding can make, the prey agent manages to navigate around the guarding

predator and complete the grid.

165

0

0.25

0.5

0.75

1

500 50000
Episodes

W
in

 R
at

io

Prey: Tile Coding Predator: Fuzzy Sarsa

Prey

Predator

Figure 6.11: Win Ratio of Fuzzy Predator vs. Tile Coding Prey in a 5x5 gridworld

After the results of Section 6.1 the final multiagent results of test 4 shown in

Figure 6.12 are somewhat unexpected. As indicated, the tile coding agent as

predator clearly out performs the Fuzzy Sarsa prey.

0

0.25

0.5

0.75

1

500 50000
Episodes

W
in

 R
at

io

Prey: Fuzzy Sarsa Predator: Tile Coding

Predator

Prey

Figure 6.12: Win Ratio of Tile Coding Predator vs. Fuzzy Prey in a 5x5 gridworld

166

The results presented in test 3 and 4 (Figure 6.11 and Figure 6.12) are

unexpected after Fuzzy Sarsa’s better performance in the marketplace.

Test Predator Prey Outcome
1 Fuzzy Sarsa Fuzzy Sarsa Nash Equilibrium
2 Tile Coding Tile Coding Prey
3 Tile Coding Fuzzy Sarsa Predator
4 Fuzzy Sarsa Tile Coding Prey

Figure 6.13: Predator/prey gridworld game outcomes

Figure 6.13 summarises the results of the four tests. In test 1, indicated by the

Nash equilibrium observed, it was noted that the fuzzy algorithm was equally

suited to playing either predator or prey. In test 2 where tile coding fulfils both

predator and prey roles in the gridworld, it consistently solves the game as the

prey. This indicates that the algorithm and/or settings used for the tile coding

make it biased towards the prey.

Test 3 and 4 are still unexplained. In both tests tile coding is the clear winner. It

is possible that this domain is simply better suited to the tile coding algorithm.

However, the first observation made regarding this difference is that, in the

predator/prey domain, the two algorithms use different α values: The Fuzzy

Sarsa uses 0.1 whereas tile coding agent uses 0.05. The ideal α values were

arrived at in a stationary strategy test with only the prey agent. Therefore, it is

possible that the values are not actually “good enough” in this setting. Figure

6.14 shows spot check of the effects of altering α in test 3:

167

0 25 50 75 100 125

Same 0.05

0.1, 0.05

0.05, 0.1

Pr
ed

at
or

/P
re

y

Va

lu
es

Average Moves

Fuzzy Predator Tile Coding Prey

Original Setting

Figure 6.14: Changing α in test 3 of the predator/prey gridworld

Interestingly, changes to α in test 3 encouraged the game to move towards the

Nash Equilibrium. Figure 6.15 presents the results of the same alterations in test

4. In this case, one change sways the balance towards Fuzzy Sarsa. The other

setting does encourage better performance from Fuzzy Sarsa – it does actually

win a small proportion of the time with the setting 0.05, 0.1.

0 25 50 75 100 125

Same 0.05

0.1, 0.05

0.05, 0.1

Pr
ed

at
or

/P
re

y

Va

lu
es

Average Moves

Tile Coding Predator Fuzzy Prey

Original Setting

Figure 6.15: Changing α in test 4 of the predator/prey gridworld

During the tests in Figure 6.14 and Figure 6.15, one further point for

consideration was identified. On empirical observation of the agents, the tile

coding agent was able to learn very fine moves around the Fuzzy Sarsa agent.

Fuzzy Sarsa’s inability to learn the correct manoeuvre was interesting. In

168

investigating possible reasons for this behaviour, the original setup of both

algorithms was reviewed.

The predator/prey gridworld is extremely sensitive to different kinds of

generalisation. When designing the tilings, standard tile patterns21 were

ineffective in this domain. However, although effort to retain similarity between

the membership functions and the tilings led to the introduction of xy divided

time and overall time, the resulting design significantly disadvantaged the

algorithm in this domain. The tile coding agent uses

)()()(TimeYXTimeYTimeX ••+•+• to generalise, whereas the fuzzy

membership can be described as)_(TimeTimeDividedYX ••• . This

description of the state space for Fuzzy Sarsa lacks the distinction of the tile

coding scheme. The tile coding scheme has three layers of distinctions, whereas

the fuzzy scheme only has one.

While this resulted in a reasonable outcome in the stationary strategy

environment, when used in a coevolutionary scenario, it is no surprise that the

tile coding agent was able to outperform the Fuzzy Sarsa agent. Therefore

further experimentation with α values would not be advantageous without

redesigning the base membership function.

While the tests in this section indicate that tile coding clearly wins with the

given inequalities between the two agents, important information

about Fuzzy Sarsa’s abilities in a multiagent scenario were still discovered. The

21 Grid shaped tiles.

169

fact that Fuzzy Sarsa consistently finds the Nash Equilibrium in test 1, shows

that is more flexible in design than tile coding; given the same settings it

performing equally well as both predator and prey, whereas tile coding performs

better as prey.

6.3 Summary

The previous sections have presented the results of Fuzzy Sarsa and gradient

descent Sarsa(λ) with tile coding in two separate competitive domains. In the

first domain, both agents are competing with each other to achieve the same

goal. In the second domain, each agent is embroiled in a “to be or not to be”

battle; each agent is trying to achieve different goals.

To that effect, Fuzzy Sarsa is a more robust algorithm when it comes to

competing for the same goal. Although Fuzzy Sarsa loses against a tile coding

agent with appropriate α values and good tilings, it is more robust to errors in

generalisation design and has a wide range of modelling capabilities given a

particular design.

170

7 Conclusions

7.1 Conclusions

The aim of this research was to identify new function approximation algorithms

in a multiagent setting or coevolution and to analyse their performance. To that

effect, the outcomes of this research are:

• The novel fuzzy on-policy reinforcement learning algorithm called Fuzzy

Sarsa.

• A detailed evaluation of Fuzzy Sarsa in comparison with the popular

technique of gradient descent Sarsa(λ) with tile coding in three separate

simulation environments. This evaluation demonstrated that the

performance that both fuzzy and tile coding techniques perform similarly

in stationary environments.

• A critical analysis of the performance of both Fuzzy Sarsa and gradient

descent Sarsa(λ) with tile coding in a coevolutionary setting was given.

This analysis showed that Fuzzy Sarsa is more robust with regards to a

competitive coevolution than the tile coding solution.

This results presented in this thesis has shown that Fuzzy Sarsa is able to

produce a better and more robust solution in the context of a multiagent system

where agents are competing for the same goal. It has also indicated that this

robustness may extend to competition for different goals. Fuzzy Sarsa has also

recently been successfully applied in resource management for IP networks

171

[SBP05]. Since Fuzzy Sarsa has performed well in this context, this research has

identified the areas presented in the next section for further investigation.

7.2 Future Work

In Section 2.7 a variety of multiagent techniques were presented, some of

which were developed in parallel to this research. Specifically the approach

presented in [BV02 and BV02a], may improve the tile coding solution in the

domains. While the tile coding approach used is similar, the use of a variable

learning rate would be beneficial. Furthermore, the Fuzzy Sarsa algorithm

could be adjusted to learn multiple policies and thus these principles could also

be extended to the Fuzzy Sarsa algorithm.

Fuzzy Sarsa does not use state eligibility traces like gradient descent Sarsa(λ).

Therefore an potential improvement to Fuzzy Sarsa is extending it to Fuzzy

Sarsa(λ) and comparing it with both Fuzzy Sarsa and gradient descent Sarsa(λ)

with tile coding. [BON98] provides a suggested methodology for this

extension.

Further investigation into the different goal competitive coevoultion would be

beneficial. However, another interesting avenue of further research includes

investigating the algorithms in a cooperative framework.

Another recent investigation by [SST05], advocated online adjusting of the tile

coding parameters. This technique could also potentially be used to improve

the performance of the gradient descent Sarsa(λ) with tile coding algorithm.

172

A variety of issues in Fuzzy Sarsa provide interesting avenues for further

research. One issue is to investigate other forms of T-norm for action

combination. Another possibility is investigating the shape and form of

membership function. The idea of online parameter adjusting over a set of pre-

defined reasonable functions is also a possibility.

173

Appendix I. Complete Tile Tests

 Average weighted Moves Average weighted Error

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

1

1.25

1.67

2.5

5681225

Figure I.1: Tile Tests in Predator/prey gridworld.

Figure I.1 illustrates the higher tiling sizes from the tiling experiments from

Section 5.1.2. They are not included in that section because they do not add any

benefit to the results there. As the tiling size went up, the % win ratio

21
 T

ili
ng

s
18

 T
ili

ng
s

15
 T

ili
ng

s

174

 went down, and the average moves achieved went up. An increase in α may

improve the results for the higher number of tilings. However, since good

settings were found at lower settings, these tilings are not investigated any

further.

175

8 References

8.1 Publications by Author

[BTetal00] J. Bigham, L. Tokarchuk, D.J. Ryan, L.G. Cuthbert, J. Lisalina, M.
Dinis. (2000). Agent-Based Resource Management for 3G
Networks. In the Proceedings of the Second International
Conference for 3G Mobile Technologies.

[TAetal01] T. Tjelta, M. Annoni, L. Tokarchuk, A. Nordbotten, E. Scarrone, J.
Bigham, C. Adamsand, K. Craig and M. Dinis. (2001). Future
Broadband Radio Access Systems for Integrated Services with
Flexible Resource Management. IEEE Communications Magazine
2-9.

[TBC04] L Tokarchuk, J Bigham, and L Cuthbert. (2004). Fuzzy Sarsa: An
approach to fuzzifying Sarsa Learning. Proceedings of the
International Conference on Computational Intelligence for
Modeling, Control and Automation.

[TBC05] L Tokarchuk, J Bigham, and L Cuthbert. (2005). Fuzzy Sarsa: An
approach to linear function approximation in reinforcement learning.
To be published in Proceedings of the International Conference on
Artificial Intelligence and Machine Learning.

[TBC06] L Tokarchuk, J Bigham, and L Cuthbert. (2006). Fuzzy and tile
coding function approximation in agent coevolution. To be
published in Proceedings of the IASTED Conference on Artificial
Intelligence and Applications.

176

8.2 References

[ALB81] J. S. Albus. (1981). Brains, Behavior, and Robotics. Peterborough:
Byte Books.

[BO82] T. Basar and G. J. Olsder. (1982). Dynamic Noncooperative Game
Theory. London: Academic Press.

[BELL57] R.E. Bellman. (1957). Dynamic Programming. Princeton: Princeton
University Press.

[BERV01] H. R. Berenji, D. Vengerov. (2001) On Convergence of Fuzzy
Reinforcement Learning. FUZZ-IEEE 2001, (pp. 618-621).

[BER94] H. R. Berenji. (1994). Fuzzy Q-Learning: A new approach for fuzzy
dynamic programming, Proceedings of the Third IEEE Conference
on IEEE World Congress on Computational Intelligence, (pp. 26-
29).

[BER96] H. R. Berenji.. (1996). Fuzzy Q-Learning for generalization of
reinforcement learning. Proc. of FUZZIEEE'96. New Orleans.

[BEZ93] J.C. Bezdek; Fuzzy Models – What are they, and why?; IEEE
Transactions on Fuzzy Systems; Vol. 1, No. 1; February 1993.

[BON96] A. Bonarini. (1996). Delayed Reinforcement, Fuzzy Q-Learning and
Fuzzy Logic Controller. In Herrera, F., Verdegay, J. L. (Eds.),
Genetic Algorithms and Soft Computing, (Studies in Fuzziness, 8),
D, (pp. 447-466). Berlin: Physica-Verlag.

[BON96a] A. Bonarini. (1996). Evolutionary learning of fuzzy rules:
competition and cooperation. In: W. Pedrycz, Ed., Fuzzy Modelling:
Paradigms and Practice, (pp. 265-283). Kluwer Academic Press.

[BON97] A. Bonarini. (1997). Anytime learning and adaption of structured
fuzzy behaviors. In M. Mataric (Ed.), Adaptive Behavior Journal;
Special issue on “Complete agent learning in complex
environments”, 5 (3-4), (pp. 281-315).

[BON98] A. Bonarini. (1998). Reinforcement distribution for fuzzy classifiers:
a methodology to extend crisp algorithms. Proceedings of the IEEE
World congress on Computational Intelligence (WCCI) -
Evolutionary Computation, (pp. 51-56). Piscataway, NJ: IEEE
Computer Press.

177

[BBM99] A. Bonarini, C. Bonacina and M Matteucci. (1999). Fuzzy and Crisp
representation of real-valued input for learning classifier systems. In
Proceedings of IWLCS99, Cambridge MA: AAAI Press.

[BON00] A. Bonarini. (2000). An Introduction to Learning Fuzzy Classifier
Systems. Lecture Notes in Computer Science, Volume 1813, (pp.
83-106).

[BOOK05] L. B. Booker. (2005). Approximating Value Functions in Classifier
Systems, Technical paper, The MITRE Corporation.

[BK05] L. Bull and T. Kovacs. (eds)(2005). Foundations of Learning
Classifier Systems: An Introduction. Foundations of Learning
Classifier Systems. Springer.

[BW01] M. Butz and S. W. Wilson. (2001). An Algorithmic Description of
XCS. In Revised Papers From the Third international Workshop on
Advances in Learning Classifier Systems (September 15 - 16, 2000).
P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Lecture Notes In
Computer Science, vol. 1996. Springer-Verlag, London, 253-272.

[BV02a] M. Bowling and M. Veloso. (2002). Scalable Learning in Stochastic
Games. In Proceedings of the AAAI-2002 Workshop on Game
Theoretic and Decision Theoretic Agents, Edmonton, Canada.

[BV02] M. Bowling and M. Veloso.(2002). Multiagent learning using a
variable learning rate. Artificial Intelligence.

[BZ03] R. P. Brent and P. Zimmermann. (2003). Random number
generators with period divisible by a Mersenne prime.
Computational Science and its Applications - ICCSA 2003, Lecture
Notes in Computer Science, Vol. 2667, (pp. 1-10). Berlin: Springer-
Verlag.

[BM95] J. A. Boyan and A. W. Moore. (1995). Generalisation in
reinforcement learning: Safely approximating the value function. In
G. Tesauro, S. Touretzky, and T. Leen, editors, Advances in Neural
InformationProcessing Systems 7. MIT Press.

[CCB04] J. Casillas, B. Carse and L. Bull. (2004) Fuzzy XCS: an Accuracy-
based Fuzzy Classifier System. In Proceedings of the XII Congreso
Espanol sobre Tecnologia y Logica Fuzzy.

[CM68] R. Chambers and D. Michie. Boxes: An experiment on adaptive
control. In E. Dale and D. Michie, editors, Machine Intelligence2,
(pp. 125-133. 1968).

178

[GL94] P.Y. Glorennec. (1994). Fuzzy Q-Learning and Dynamical Fuzzy Q-
Learning. Proc. of FUZZ-IEEE'9., Orlando.

[GLJ97] P. Y. Glorennec and L. Jouffe. (1997) Fuzzy Q-learning. Proc. of
FUZZ-IEEE'9,. (pp.659-662).

[GDW91] P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe. (1991). A
decision-theoretic approach to coordinating multi-agent interations.
In Proc. Int. Joint Conf. on Artif. Intell., (pp 62-68).

[G96] P.J. Gmytrasiewicz. (1996). On reasoning about other agents; In M.
Wooldridge, J. Müller, M. Tambe, editors, Intelligent Agents II:
Lecture Notes in Artificial Intelligence, 1037. Springer-Verlag.

[GNK97] P.J. Gmytrasiewicz, S. Noh and T. Kellog. (1997). Bayesian Update
of Recursive Agent Models. In AAAI-97 Workshop on Multiagent
Learning.

[HetAl00] J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E.
Goldberg, S. Forrest, R. L. Riolo, R. E. Smith, P. Luca Lanzi, W.
Stolzmann, S. W. Wilson. (2000) What is a Learning Classifier
System?, Lecture Notes in Computer Science, Volume 1813, (pp. 3-
32).

[HW98] J. Hu and M. P. Wellman. (1998). Multiagent Reinforcement
Learning: Theoretical Framework and an Algorithm. Proceedings
of the 15th International Conference on Machine Learning, (pp. 242-
250).

[HW03] J. Hu and M. P. Wellman. (2003). Nash Q-Learning for General-
Sum Stochastic Games. Journal of Machine Learning Research 4
(pp. 1039-1069).

[HUM96] M. Humphrys. (1996). Action selection methods using
reinforcement learning. In Maes, P., Mataric, M., Meyer, J.-A.,
Pollack, J., and Wilson, S. W., editors, From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation
of Adaptive Behavior (pp. 135-144). Cambridge, MA: MIT Press,
Bradford Books.

[JAN91] J. Jantzen. (1991). Fuzzy Control. Lecture notes in On-Line Proces
Control (5343) Publ no 9109. Technical University of Denmark.

[JSW98] N. Jennings, K Sycara and M. Wooldridge. (1998). A Roadmap of
Agent Research and Development. Autonomous Agents and
Multiagent Systems, (275-306). Kluwer Academic Publishers.

179

[JB92] R. A. Johnson and G. K. Bhattacharyya. (1992). Statistics:
principles and methods, 2nd Ed. John Wiley & Sons, Inc.

[KLM96] L.P. Kaelbling, L.M. Littman and A.W. Moore. (1996).
Reinforcement learning: a survey. Journal of Artificial Intelligence
Research, vol. 4, (pp. 237—285).

 [LR00] P. L. Lanzi, R. L. Riolo. (2000). A Roadmap to the Last Decade of
Learning Classifier System Research. Lecture Notes in Computer
Science, Volume 1813, (pp. 33-62).

[L94] M. L. Littman. (1994). Markov games as a framework for multi-
agent reinforcement learning. In W. W. Cohen & H. Hirsh, eds,
Proceedings of the Eleventh International Conference on Machine
Learning (ML-94), (pp. 157-163). New Brunswick, NJ: Morgan
Kauffman Publishers, Inc.

[LCK95] M. Littman, A. Cassandra, and L. Kaelbling. (1995). Learning
policies for partially observable environments: Scaling up. In
Prieditis, A. and Russell, S., editors, Machine Learning:
Proceedings of the Twelfth International Conference, (pp. 362—
370). San Francisco, CA: Morgan Kaufmann Publishers.

[LS96] M. L. Littman and C. Szepesv'ari. (1996). A generalized
reinforcement-learning model: Convergence and applications. In
Saitta, L., ed., Proceedings of the Thirteenth International
Conference on Machine Learning, (pp. 310-318).

[MUK01] M. Mukaidono. (2001). Fuzzy Logic for Beginners. Singapore:
World Scientific Publishing.

[MN98] M. Matsumoto and T. Nishimura. (1998). Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator. ACM Transactions on Modeling and Computer
Simulation, Vol. 8, No. 1 (pp 3-30).

[NG97] S. Noh and P. J. Gmytrasiewicz. (1997). Agent Modeling in Antiair
Defense. Proceedings of the Sixth International Conference on User
Modeling.

[OFJ99] E. Oliveira, J. M. Fonseca, N. R. Jennings. (1999). Learning to be
Competitive in the Market. Proc. AAAI Workshop on Negotiation:
Settling Conflicts and Identifying Opportunities (pp. 30-37).
Orlando, FL.

180

[P96] H.V.D. Parunak. (1996). Applications of distributed artificial
intelligence in industry. In G. M. P. O’Hare and N. R. Jennings, eds,
Foundations of Distributed Intelligence (pp. 139-164). Wiley
Interscience.

[PJL02] K. Pawlikowski; H.-D.J. Jeong and J. -S.R. Lee. (2002). On
credibility of simulation studies of telecommunication networks.
Communications Magazine, IEEE, Vol.40, Iss.1., (pp.132-139)

[PW96] J. Peng and R. J. Williams. (1996). Incremental multi-step Q-
learning. Machine Learning, 22, (pp. 283-290).

[PSD01] D. Precup, R. S. Sutton,. S. Dasgupta. (2001). Off-policy temporal-
difference learning with function approximation. In Proceedings of
the Eighteenth Conference on Machine Learning (ICML 2001),
(pp.417-424). Morgan Kaufmann.

[POW87] M. Powell. (1987). Radial basis functions for multivariable
interpolation : A review. J.C. Mason and M.G. Cox, eds, Algorithms
for Approximation, (pp.143-167).

[RV00] P. Riley and M. Veloso. (2000). On Behavior Classification in
Adversarial Environment. Proceedings of the Fifth International
Symposium on Distributed Autonomous Robotic Systems (DARS-
2000).

[RUB81] R. Rubinstein. (1981). Simulation and the Monte Carlo Method.
New Your, NY: Wiley.

[RN95] S. Russel and P. Norvig. (1995). Artificial Intelligence: A Modern
Approach. Prentice Hall.

[RN94] G. A. Rummery and M. Niranjan. (1994). On-line Q-learning using
connectionist systems. Technical Report; CUED/F-INFENG/TR166.
Cambridge University Engineering Department.

[SAH94] M. K. Sahota. (1994). Action selection for robots in dynamic
environments through inter-behaviour bidding. In Cliff, D.,
Husbands, P., Meyer, J.-A., and S, W., editors, From Animals to
Animats: The Third International Conference on Simulation of
Adaptive Behavior (pp. 138-142). Cambridge, MA: The MIT Press.

[SAR98] R. G. Sargent. (1998). Verification and Validation of Simulation
Models, Ed. F. E. Cellier, Chapter IX in Progress in Modelling and
Simulation, (pp. 159-169). London: Academic Press.

181

[SBP05] K. Shoop, J. Bigham, and C. Phillips. (2005). Resource management
employing learned pseudo-delay for multi-service IP networks. In
Proceedings of the 10th European Conference on Networks and
Optical Communications.

[SSR98] J. C. Santamaria, R. C. Sutton, and A. Ram. (1998). Experiments
with reinforcement learning in problems with continuous state and
action spaces. Adaptive Behavior, 6(2).

[SS96] S. P. Singh and R. S. Sutton. (1996). Reinforcement learning with
replacing eligibility traces. Machine Learning, 22:123-158.

[SST05] A. A. Sherstov and P. Stone. (2005). Function Approximation via
Tile Coding: Automating Parameter Choice. In SARA 2005, pp.
194–205, Berlin: Springer Verlag.

[ST00] P. Stone. (2000). Layered Learning in Multiagent Systems: A
Winning Approach to Robotic Soccer. The MIT Press.

[SSK05] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement Learning
for RoboCup-Soccer Keepaway. Adaptive Behavior, 13(3):165–188,
2005..

[SV00] P. Stone and M. Veloso. (2000). Multiagent Systems: A Survey
from a Machine Learning Perspective. Autonomous Robots; Vol 8,
Issue 3..

[SUTT96] R. S. Sutton. (1996). Generalization in reinforcement learning:
Successful examples using sparse coarse coding. In Advances in
Neural Information Processing Systems, volume 8. The MIT Press.

[SB98] R. S. Sutton, A. Barto. (1998). Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press.

[SASM99] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. (1999).
Policy Gradient Methods for Reinforcement Learning with Function
Approximation. Technical report, AT&T Labs—Research.

[TR96] M. Tambe and P. Rosenbloom. (1996). Architectures for agents that
track other agents in multiagent worlds. In M. Wooldridge, J.
Müller, M. Tambe, editors, Intelligent Agents II: Lecture Notes in
Artificial Intelligence. Springer-Verlag.

[TS93] S.B. Thrun and A. Schwartz. (1993). Issues in using function
approximation for reinforcement learning. In M. Mozer, P.
Smolensky, D. Touretzky, J. Elman, and A. Weigend, editors,

182

Proceedings of the 1993 Connectionist Models Summer School,
Hillsdale, NJ: Lawrence Erlbaum

[VIDD97] J.M. Vidal and E.H. Durfee. (1997). Agents learning about agents: A
framework and analysis. In AAAI-97 Workshop on Multiagent
Learning.

[VID98] J.M. Vidal. (1998). Computational Agents that Learn about Agents:
Algorithms for the design and a predictive theory of their behaviour.
PhD Thesis. University of Michigan.

[WAT89] C. J. Watkins. (1989). Learning from Delayed Rewards. PhD thesis.
King’s College, Cambridge, UK.

[WATD92] C. Watkins, & P. Dayan. (1992). Q-learning. Machine Learning, 8,
(pp. 279-292)

183

8.3 Internet Links

[MTJava]: Mersenne Twister Java Libraries
http://www.cs.umd.edu/users/seanl/gp/

[FIPA02] Fipa Specifications
http://www.fipa.org/specs/fipa00029/SC00029H.html

[JAVA] Java
http://java.sun.com/

[SJAVA] SimJava; http://www.dcs.ed.ac.uk/home/hase/simJava/index.html

[RNGTest] Random Number Generator Tests
http://www1.physik.tu-
muenchen.de/~gammel/matpack/html/LibDoc/Numbers/Random.h
tml

[SuttonMC] Mountain-car C++ and Lisp Implementation
http://www.cs.ualberta.ca/~sutton/MountainCar/
MountainCar.html

[SuttonTC] Tile Coding Software
http://www.cs.ualberta.ca/~sutton/tiles.html

