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Abstract 

This thesis investigates reinforcement learning algorithms suitable for learning 

in large state space problems and coevolution. In order to learn in large state 

spaces, the state space must be collapsed to a computationally feasible size and 

then generalised about. This thesis presents two new implementations of the 

classic temporal difference (TD) reinforcement learning algorithm Sarsa that 

utilise fuzzy logic principles for approximation, FQ Sarsa and Fuzzy Sarsa. The 

effectiveness of these two fuzzy reinforcement learning algorithms is 

investigated in the context of an agent marketplace. It presents a practical 

investigation into the design of fuzzy membership functions and tile coding 

schemas. A critical analysis of the fuzzy algorithms to a related technique in 

function approximation, a coarse coding approach called tile coding is given in 

the context of three different simulation environments; the mountain-car 

problem, a predator/prey gridworld and an agent marketplace. A further 

comparison between Fuzzy Sarsa and tile coding in the context of the non-

stationary environments of the agent marketplace and predator/prey gridworld is 

presented. 

This thesis shows that the Fuzzy Sarsa algorithm achieves a significant reduction 

of state space over traditional Sarsa, without loss of the finer detail that the FQ 

Sarsa algorithm experiences. It also shows that Fuzzy Sarsa and gradient descent 

Sarsa(λ) with tile coding learn similar levels of distinction against a stationary 

strategy. Finally, this thesis demonstrates that Fuzzy Sarsa performs better in a 

competitive multiagent domain than the tile coding solution.  
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1 Introduction 

1.1 Research Motivation 

While there are many different ways of dealing with reinforcement learning in 

large state spaces, function approximation promises to be one of the more 

powerful solutions: this is because all function approximation techniques deal 

with generalisation. They attempt to generalise from the information learnt in 

one state to determine a course of action to take in a newly visited state. This 

research looks at two different techniques for function approximation to 

determine their ability to represent and generalise, not just in large state space 

examples, but also in smaller dynamic state spaces.  

One of the motivating factors for examining the generalisation capabilities of 

function approximation stems from recent interest in agent coevolution. 

Coevolution is a technique in which a learner or agent evolves in response to 

both the stationary and non-stationary elements in their environment. A 

stationary element is an element which stays the same over time, whereas a 

non-stationary element is one that changes. An example of a non-stationary 

element is another learning agent interacting with the same environment as the 

first learning agent.  

Some of the work that has been done to address this problem is to use agents 

that model the other agents; between agents that directly compete in a 

marketplace [VIDD97], agents that compete in a game situation [RV00], or 

between agents that collaborate to achieve a specific goal [NG97]. Vidal and 
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Durfee [VIDD97] provide a framework for agents who learn about other 

agents in terms of agents who directly compete for the same product. Most 

modelling has typically been done with relatively simple learning algorithms.  

Another way to address this problem is through the learning algorithm. This 

approach uses more complex learning algorithms that use minimax [LS96], 

Nash equilibriums [HW03], or hill climbing techniques [BV02]. These 

techniques are difficult to scale to large state/action spaces.  

Learning algorithms capable of dealing with large state spaces, while retaining 

enough flexibility to cope with changing environments, are particularly 

relevant for real world applications. One potential application area is flexible 

resource management for telecommunication networks. For example, in third 

generation mobile systems (3G), the use of higher bandwidth services in a 

mobile environment has led to increased complexity in resource control and 

resource management because of the variable bandwidth requirements of the 

applications, the new radio architecture and the varying demands on the fixed 

part of the infrastructure. Management of resources is, therefore, one of the 

many interesting applications of agent technology in 3G mobile networks 

[BTetal00 and TAetal01]. A flexible learning algorithm capable of dealing with 

non-stationary problems would be beneficial in many areas of this domain, such 

as bandwidth brokering, power management, routing and even fraud detection.  

This thesis investigates the potential benefits and capabilities of using function 

approximation in conjunction with reinforcement learning in competitive and 

dynamic environments.  
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1.2 Research Scope 

This research looks at two different techniques of function approximation used 

with reinforcement learning algorithms in order to investigate their abilities of 

state space representation and generalisation capabilities. The first function 

approximation technique investigated uses fuzzy set theory. This technique is 

then compared with the coarse coding approach of tile coding. Finally, these two 

types of function approximation are investigated in terms of their generalisation 

capabilities when the learning problem includes information about other agents 

in the environment, in other words they coevolve. 

To properly investigate these issues three different simulation environments 

were created in order to enable a thorough comparison of the different 

algorithms under different environment dynamics. These three environments 

are:  

• The mountain-car problem. The mountain-car world serves as a 

benchmark environment. The world dynamics and the gradient descent 

Sarsa(λ) with tile coding algorithm implemented is a Java conversion of 

the C++ implementation provided by Richard Sutton [SuttonMC]. 

• Predator/prey gridworld.  The predator/prey gridworld was chosen 

because of its similarity in basic dynamics to many classic 

reinforcement learning examples such as those given by Stone and 

Veloso [SV00] and because it is the base domain for more complicated 

applications such as robotic soccer [ST00 and SSK05].  
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• Agent marketplace. The agent marketplace was chosen in order to 

enable comparison between the coevolutionary modelling using 

function approximation and other techniques such as those presented by 

Vidal [VID98] and Hu [HW98]. 
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1.3 Summary of Contribution 

The primary aim of this research is to investigate methods of coevolution in a 

learning environment. To this end, the following novel contributions have been 

made: 

• Two fuzzy reinforcement learning algorithms:  

 FQ Sarsa – a fuzzy learning accelerator for Sarsa learning; and  

 Fuzzy Sarsa – a “fuzzification” of Sarsa following Bonarini’s 

guidelines [BON98]. 

• A detailed investigation of the above fuzzy techniques and a 

comparison of those methods to a related linear approximation 

method called tile coding in three separate environments were given. 

These investigations covered both stationary and non-stationary 

problems. These investigations showed: 

 In a stationary environment, both Fuzzy Sarsa and the tile 

coding technique perform similarly. 

 In the non-stationary environment Fuzzy Sarsa has better 

performance than tile coding in same goal scenarios. 

Furthermore, these investigations showed that Fuzzy Sarsa 

was robust with regards to variation in parameter settings and, 

also with regards to membership function design error. 
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1.4 Outline of Thesis 

This research first presents the background theory of reinforcement learning and 

reviews some relevant techniques in function approximation identifying fuzzy 

set theory as a promising method (Section 2). It then presents the three 

simulation environments used in this research (Section 3) before further 

investigating fuzzy reinforcement learning. After modifying an existing fuzzy 

algorithm to deal with on-policy learning, it presents the results of using this 

algorithm in the agent marketplace and also presents a study into 

parameterisation in this environment (Section 4). These results are then 

compared with a related technique of tile coding in all three simulation 

environments. It also details the experiences in constructing fuzzy membership 

functions and the overlaying of tiles in tile coding (Section 5). It then presents 

a critical analysis Fuzzy Sarsa and gradient descent Sarsa(λ) with tile coding in 

a coevolutionary scenario is presented (Section 6). Finally the results of this 

research are summarised and several areas for future investigation are 

highlighted (Section 7). 
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2 Reinforcement Learning  

The majority of simple decision-making functions utilised by agents are 

characterised in terms of some sort of method for the maximisation of expected 

utility. For an agent system, Russell and Norvig [RN95] provide methods 

through which the agent can calculate the expected utility given that it performs 

some action A. Any decision an agent makes is based on one or more variables. 

These variables exert different levels of influence on the decision point. For 

example, every day we are faced with simple, seemingly straightforward, 

decisions that when examined contain many variables. For example, the decision 

to eat lunch is intuitively based on whether we are hungry. However, this 

decision may also be based on whether there is any food available, or perhaps on 

whether we have a meeting within the next hour. Making a decision is one of an 

agents most important functions. Without the capability to make a decision, an 

agent is helpless to act in its environment. In addition, there are many other 

aspects about agents that are also important. A discussion of some of these areas 

is provided by [JSW98]. 

[RN95] provide a general definition of a learning agent. Accordingly, a general 

learning agent is composed of the four different elements:  

Learning Element –  This element is responsible for making 

improvements, such as improved strategies, to 

the agent. 

Performance Element –   This element selects external actions in 

accordance to the newly learnt improvements. 
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Critic –    This is some sort of internal mechanism that the 

agent uses to measure how well it is doing. 

Problem Generator –   This is a generator that suggests actions to the 

agent that will lead to new and informative 

situations. 

Due the complex nature of multiagent systems (MAS), it is only natural that 

the architects of such systems utilise machine learning (ML) techniques. 

Typically machine learning is used in MAS to provide agents with adaptively. 

There has been a significant amount of work done in the application of ML 

techniques to MAS. [G96, SV00 and TR96] provide a good review of the types 

of techniques that have been applied in this area. They adopt Parunak’s 

taxonomy for MAS [P96], dividing MAS by the following three 

characteristics: 

• System function 

• Agent architecture (level of heterogeneity, reactive vs. deliberative) 

• System architecture (communication, protocols and human involvement) 

ML techniques are then divided into the type of MAS they have been used in. 

The MAS community is not the only one to find added benefit in ML.  

One area that is particularly relevant to MAS is that of learning moving target 

functions. In any kind of dynamic environment, the assumption that an entity 

will not change its behaviour cannot be made. It is probable that agents, like 

people, will change their strategies if they observe that their current strategy no 
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longer meets their needs. As a result of this, the type of learning an agent 

employs needs to be flexible enough to cope with changes. Just because an 

agent has learnt the behaviour at time t, does not imply that that behaviour will 

be the same at time t+1. 

Reinforcement learning is a term that is attached to a family of unsupervised 

learning algorithms. Unsupervised learning, rather than supervised learning, is a 

type of learning that does not rely on the existence of an external supervisor. In 

supervised learning, the learner uses a pre-existing data set provided from the 

external supervisor for training. This means that supervised learning is not 

adequate for the learning of interactive data because the nature and multitude of 

possibilities is very large. This is significant because this makes it very difficult 

for the training data to be both accurate and representative of all necessary 

situations.  

Unsupervised algorithms force the learner to try to learn from its experiences. 

These algorithms build a mapping of situations onto actions. In other words, a 

reinforcement learning algorithm observes the current state of its world, and 

learns the best possible action from that state. The learner is never told what 

actions to take but rather what results are desired. After that, it is up to the 

learner how they achieve the result. Reinforcement learners have 4 main 

elements: a policy, a reward function, a value function and optionally, a model 

of the environment.  
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In order to understand how reinforcement learning works, imagine a simple 

world where some agent, a stickman learner, walks down various different paths 

(Figure 2.1).  

 

Figure 2.1: Stickman World  

The stickman learner continues walking until it either reaches the goal, say a 

basket of oranges, or, it reaches a terminal penalty state, say getting crushed by a 

giant box.  

Goal State       Penalty State 
 

Figure 2.2: Stickman terminal reward and penalty states  
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With reference to this world, the three required elements of a reinforcement 

learner can be described as: 

Policy: The policy defines how the learner reacts 

to the environment. A learner’s policy aids them 

in making decisions regarding their actions. For 

example if the learner is faced with choosing 

between two paths, the learner’s current policy 

will help it decide which path to take. 
 

Reward Function: This function defines what is 

good and what is bad. The reward function 

provides immediate feedback in the form of a 

numerical value to the learner. In the stickman 

world, if the end result of some action is bad, it is 

indicated to the learner by a reward of -1 

Conversely if the resulting state of the action is 

good, such as reaching the goal, a positive reward 

would be given.  

 

Value Function: The value function defines what is good in the long run. In 

contrast to the reward, which is immediate depending on the learner’s  
 

current state, a value 

function describes all times 

the learner has been in a 

similar type of situation.  

=  
 

Figure 2.3: Stickman learning example 
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2.1 The Basics 

This section discusses some of the basic techniques used in reinforcement 

learning. More detailed reviews are available in [SB98] and [KLM96]. 

2.1.1 Value Functions 

In reinforcement learning, a state consists of a set of discrete values representing 

the current state of the world. As discussed above, reinforcement learners 

ultimately learn based on some sort of reward signal. This reward signal 

r directly influences the value of being in a particular state. Qt(a) indicates the 

value of taking action a at time t. Typically Qt(a) is calculated by averaging the 

observed rewards : 

  
( )

)(
...

)( 21

a

k
t k

rrr
aQ a

++
=  (2.1) 

where ak  is the number of times action a  has been chosen. Most reinforcement 

learning algorithms follow an incremental version of this update which requires 

less memory: 

  [ ])()()()( sVsVsVsV −′+= α  (2.2) 

where )(sV  is the value of being in the original state s  and )(sV ′  is the new 

value being in the next state s′ . α  is a step-sized parameter or the learning rate. 
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2.1.2 Policy Selection 

Since the learner is only told what the desired result of learning is, they must 

attempt to balance two types of actions: exploratory actions and exploitive 

actions. An exploratory action is an action that the learner takes in order to 

discover the value of a potentially new solution, whereas an exploitive action is 

an action which makes use of the learner’s best known available solution. 

 

R = 5 mins 
 

 
Figure 2.4:  A path to the oranges in a stickman world 

For example, in Figure 2.4 the learner knows that there is a route to the oranges 

that takes 5 minutes through the purple path. It knows this information because it 

has gone that way before. However, since the learner has never tried the other 

paths, it does not know the existence or value (time taken) of any other path. If 

the learner always chooses the exploiting action, once a positive reward is 

discovered, the learner will never discover any other path. 

For stickman there are other paths that can be discovered by making exploratory 

moves. As depicted in Figure 2.5, there are actually three separate paths to the 

oranges; the purple path, a shorter green path and a longer blue path.  
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 R = 5 mins 
 

R = ? 
 
 

R = ?  

 
Figure 2.5: Stickman choices: Explore vs. Exploit 

If the stickman chooses to explore, he will discover the value for other paths. If 

the value of the green path is 2 minutes, the next time the stickman exploits, he 

will choose the green path. Conversely, if the learner explores too much, it will 

revisit paths it already knows are bad and thus not benefit from the knowledge of 

which path is shortest.  

Reinforcement learning algorithms address the issue of exploitation vs. 

exploration through implementation of a policy. The learners’ current policy or 

action selection algorithm determines the action the learner takes at any given 

time of the learning process. There are several different types of policy selection 

methods, the more popular being ε greedy and softmax action selection. The ε 

greedy selection policy operates by choosing the most optimal action based on 

the current known rewards or Q-values for all possible actions. This means that 

the learner chooses which action to take based on maximising its reward. For 

every selection there is some probability ε that rather than choosing the 

optimal greedy action, the algorithm will choose randomly to explore other 

actions in the hope that they may lead to a better solution.  

     ε - Randomly explore a different action. 

     (1-ε) – Make the greedy choice. 
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The two main issues behind all action selection policies are firstly, when to 

explore and when to exploit, and secondly, how to select which action is chosen 

when exploring. Unlike ε greedy, action selection policies such as softmax 

concentrate on trying to choose actions in the exploratory phase that are more 

likely to lead to a positive outcome. This type of selection policy is particularly 

important in situations where bad actions are very bad.  

 

 
Figure 2.6: Stickman and the cliff 

For example, as shown in Figure 2.6, imagine that one of the paths the stickman 

could follow leads to a cliff.  In this case, choosing a potentially bad action is 

very bad indeed, as if the learner makes a bad decision, they fall off the cliff and 

die. If the learner was using ε greedy for policy selection, and was faced with 

making an exploratory move, it would fall off the cliff just as often as take any 

other action. If the learner was using softmax policy selection, it would attempt 

to minimize the exploratory choice of really bad actions such as the black path. 

Actions are weighted according to their value estimates. Selection typically 

uses distributions such as Gibbs or Bolzmann distribution and τ (a positive 

temperature parameter) to weight the estimated available action values. A 

summary of action selection is given by [SB98]. 
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Balancing exploitation and exploration is an important area of research. More 

complex action selection methods have been investigated, such as methods that 

track the number of times an action has been selected [BON96a], and other 

algorithmic methods [SAH94]. An overview of the more complex types of 

action selection mechanisms, along with a behaviour based proposal is given 

by [HUM96]. However, many researchers find that ε greedy or softmax 

provide adequate action selection in their domain (such as [OFJ99], [KLM96] 

and [SB98]). Since action selection is not the focus of this research, further 

investigation is not pursued here. 

2.1.3 Off-policy versus On-policy 

There are two main styles of learning within reinforcement algorithms; off-

policy and on-policy. Off-policy describes learners that learn about behaviours 

or policies other than the one currently being executed. An off-policy learner 

updates its value function by choosing an action according to the current policy. 

It judges the value of the current state based on the best possible value of all 

state/action combinations of the next state irrespective of the actual action taken. 

Therefore, the learner learns the best policy regardless of the policy actually 

being followed. In contrast, an on-policy learner learns only from actions that it 

actually takes during the episode.  
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To illustrate the difference, imagine the stickman arriving in the bright blue BB  

square. An off-policy learner will learn the value of being in the bright blue 

square )(BBV , based on the value of the light blue ( LB ) square  

( 5.0)( =LBV ) regardless of what action it next 

takes. So the update for the off-policy learner 

is )]()([)()( BBVLBVBBVBBV −+= α . This 

update is fixed regardless of whether the learner 

makes a greedy move to the BB square or an 

exploratory move to the light green LG  square.  
 

Figure 2.7: A Stickman faced with a decision 

On the other hand, an on-policy learner learns only based on the action it takes. 

If the on-policy learner decides to take an exploratory action (a move to the 

green square), rather than an exploiting action (a move to the light blue square), 

it will learn based on the value of the light green square 2.0)( =LGV  and thus 

its update is )]()([)()( BBVLGVBBVBBV −+= α . However, if it makes a 

greedy move to the LB square its update would be 

)]()([)()( BBVLBVBBVBBV −+= α . 

2.2 Dynamic Programming 

Dynamic programming (DP), as introduced by Bellman [BELL57], is a family 

of algorithms that solve the learning problem in a specific way. The following 

section presents a brief review, primarily focused at DP for solving a markov 

decision process (MDP).  An MDP is a reinforcement learning problem that 
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satisfies the markov property. A state is said to have the markov property if it 

succeeds in retaining all relevant information about the previous states. 

DP techniques are well proven. However, they suffer from several practical 

problems. While dynamic programming algorithms are capable of computing 

the optimal policy for a learner to follow, they also need a perfect model of the 

learners’ environment in order to do so. This model consists of a set of 

transitional probabilities, which describe the probability of transition from one 

state to any other state, and a set of immediate rewards.  

One method of calculating the optimal policy is through iterative policy 

evaluation. In policy evaluation, a policy π is chosen and then the value of every 

state in the environment is approximated using the Bellman equation for πV :  

  [ ])'(),()( '
)( '

'1 sVRPassV k
a
ss

sa s

a
ssk γπ += ∑ ∑

Α∈
+  (2.3) 

where )(sa Α∈  is the actions belonging to the set of available actions for the 

state s , a
ssP ′  is the probability of transitioning from s  to s′  when action a  is 

selected, and a
ssR ′  the reward, for all Ss ∈ . The value of each state, )(1 sVk + , is 

updated with the sum of the values from all possible successor states. Figure 2.8 

depicts a simple 3x3 gridworld with one terminal state. This gridworld is a 

simplified version of the example presented by [SB98].  
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Figure 2.8: Gridworld 3x3 Example 

The value of any state in the gridworld is calculated as the sum of all possible 

successor states based on the rules of the particular environment. In the case of 

the gridworld, movement rules are indicated as pink arrows on the grid [up, 

down, right, left]. If the allowed move is off the grid the agent’s state remains 

unchanged. All states are non-terminal except for the central yellow state. 

Rewards are expressed as -1 on all transitions. In order to apply iterative policy 

evaluation, the probabilities a
ssP '  for all Sss ∈′,  for every action a  are first 

calculated. In this example, these probabilities are simple to determine. All 

possible state transitions probabilities from square 1 can be expressed as:  

11,1 =upP , 02,1 =upP , 03,1 =upP , ... , 08,1 =upP   

01,1 =rightP , 12,1 =rightP , 03,1 =rightP , ... , 08,1 =rightP   

01,1 =downP , 02,1 =downP , ... , 14,1 =downP , 05,1 =downP , ..., 08,1 =downP  

11,1 =leftP , 02,1 =leftP , 03,1 =leftP , . . . , 08,1 =leftP   
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All other non-terminal states have a similar list of probabilities. If the current 

policy of agent is that all actions are equiprobable, then the policy probabilities 

are: 

25.0),( =upsπ     25.0),( =rightsπ  

25.0),( =downsπ   25.0),( =leftsπ  

The calculation for the value of state 1, using a discounting rate γ = 1:  
[ ] [ ] [ ]( ))8()2()1(*),1()1( 8,18,12,12,11,11,1 k

upup
k

upup
k

upup
k VRPVRPVRPupV λλλπ ++++++= K       

    + ... + [ ] [ ] [ ]( ))8()2()1(*),1( 8,18,12,12,11,11,1 k
leftleft

k
leftleft

k
leftleft VRPVRPVRPleft λλλπ ++++++ K  

   = 0.25(1[-1+1(0)] + 0[-1+1(0)] + … + 0[-1+1(0)]) +  

     0.25(0[-1+1(0)] + 1[-1+1(0)] + … + 0[-1+1(0)]) +  

     0.25(0[-1+1(0)] + 0[-1+1(0)] + … + 1[-1+1(0)]  

                     + 0[-1+1(0)] + … + 0[-1+1(0)]) +  

     0.25(1[-1+1(0)] + 0[-1+1(0)] + … + 0[-1+1(0)]) +  

   = 0.25(-1+0+0+0+0+0+0+0) + 0.25(0+-1+0+0+0+0+0+0) +  

     0.25(0+0+0+-1+0+0+0+0) + 0.25(-1+0+0+0+0+0+0+0) 

   = -1 
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Figure 2.9 shows the all calculated )(sV  values for each grid location for k=0 to 

k=2. 

Start State 

 

k = 1 

 

k = 2 

 

Figure 2.9: Dynamic programming V(s) calculations for 3x3 gridworld. 

The previous example is of policy evaluation. The value of each state is 

calculated based on the current policy. In the example, the policy being followed 

is equiprobable action selection, in other words, each possible movement from 

any state has an equiprobable chance of selection. The results displayed are a 

result of continually evaluating this policy. When examining the 3x3 gridworld, 

the move up from 1 is clearly not a desirable move, while the move right from 1 

is desirable.  
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The primary reason for calculating )(sV is to be able to shift the current policy 

towards the optimal policy.  This procedure, called policy improvement, is 

typically performed by altering the policy to be greedy with respect to )(sV π . 

The policy is shifted toward the greedy policy when the current policy is deemed 

to be stable, typically when )(max sVΔ < some small number for Ss ∈∀ . For 

example, at 14=k  where 2.0)(max ≥Δ sV , changing the policy to be greedy 

with respect to )(sV π  results in:  

V(s) Policy (Optimal) 

  

Figure 2.10: Shifting the policy π towards greedy at k = 14 where max ΔV(s) ≥ 0.2  

In a problem of this size, policy iteration finds the optimal policy on the first 

sweep. However on larger problems with more complex transitional 

probabilities, several sweeps may be required before the optimal policy is found. 

In these more complex problems, this process continues until the policy is 

optimal (while Vπ′(s) ≥ Vπ(s)). Policy evaluation can lead to drawn out iterative 

computations while waiting for )(max sVΔ  to decrease significantly. 

Furthermore in simple problems, the optimal policy is often found far earlier. In 

the 3x3 gridworld, the optimal policy is already found at 2=k , and thus waiting 

on )(max sVΔ to be less than some small number is not very beneficial and 

could result in many unneeded iterations.  
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One method to decrease this calculation is that of value iteration.  In value 

iteration, the policy is shifted towards the greedy policy at the end of each policy 

evaluation step. Rather than waiting until )(max sVΔ is suitably small, the 

policy is changed immediately towards the greedy policy. At 1=k , the new 

policy in the gridworld becomes: 

V(s) at k=1 New policy  

  

Figure 2.11: Shifting the policy π towards greedy at k = 2 for value iteration  

This combination of policy evaluation and policy improvement is called 

generalized policy iteration (GPI). This process describes the repetitive 

movement of the current policy towards the greedy policy. The majority of 

reinforcement learning methods, including DP, can be described in this manner. 
 
 

.

.

.

Vπ 
  IMPROVEMENT 
π →greedy(Vπ) 

π* 

   V→Vπ

EVALUATION 

π 

Vπ*

 
Figure 2.12: Generalized policy improvement. 
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The review presented here was based on a more detailed examination of DP for 

MDPs in [LCK95] and [SB98]. DP techniques require a full model of the 

environment, but since this is not feasible in most domains, DP is of primary 

interest as the theoretical basis of reinforcement learning.  

2.3 Monte Carlo 

Another approach to the reinforcement learning problem is a family of methods 

called Monte Carlo [RUB81]. Monte Carlo methods learn from sample 

sequences of their environment by averaging the complete returns of an episode.  

Unlike dynamic programming methods of the previous section, Monte Carlo 

methods do not require a complete model of their environment. In order for the 

DP methods to work, a complete list of transitional probabilities would be 

required. Monte Carlo methods do not require these probabilities to be explicitly 

stated. Unlike DP, Monte Carlo methods do not bootstrap. This means that the 

value of an individual state does not rely on the values of any other states. To 

calculate the value of a state, sample episodes are generated. An episode is a set 

of state transitions from the start state to the terminal state. The value of each 

state along a single sample episode is the averaged return of all rewards received 

along that path.  

This type of exploration based evaluation of the state space works extremely 

well in environments where the range of states required to solve the problem is 

actually a relatively small subset of the overall state space. Monte Carlo methods 

can be focussed to concentrate in these areas. One assumption that must be made 

in Monte Carlo applications is episode termination. This is because the averaged 
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returns are not awarded to the state/action pairs until the end of the episode.  For 

example, in the gridworld from Section 2.2 sample episodes would be generated 

starting from random locations within the gridworld. Each state/action pair 

appearing in the episode would be updated with the averaged return of the 

episode. 

 
Figure 2.13: Two sample episodes in Monte Carlo evaluation. 

This type of Monte Carlo evaluation is based on the assumption of exploring 

starts; the episode start is a randomly selected state-action pair, and every pair 

has a positive probability of being selected. This is necessary to ensure adequate 

exploration of the state space. In reality, this assumption is very restrictive. 

Many problems that have a specific start state. In order to get rid of this 

assumption, the principles of on-policy and off-policy as discussed in 

Section 2.1.3 can be applied. These principles and the implementation of some 

sort of ε-soft policy ensure adequate exploration of the state space without the 

exploring starts assumption. ε-soft policies are any type of policy that ensures 

that all actions have some positive probability of being selected. ε-greedy from 

Section 2.1.2 is an example of an ε-soft policy.  Therefore, using Monte Carlo 

control and following generalised policy iteration, after each sample episode the 
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policy is shifted towards the greedy policy and then the next episode is 

generated based on the new behavioural policy. A more detailed overview is 

provided in [SB98]. 

2.4 Temporal Difference Algorithms 

Temporal difference (TD) algorithms combine the approaches of dynamic 

programming and Monte Carlo. They are similar to Monte Carlo approaches 

because they learn from sample sequences of their environment. Yet, unlike 

Monte Carlo methods, TD algorithms do not wait for the final outcome for 

learning to occur. Instead they learn from the partially learnt values of the next 

states they visit. The TD algorithms presented in this section are referred to as 

tabular learning, since they store their representation of the world discretely in a 

lookup table. 

To elucidate this, consider a marketplace environment where a number of agents 

are participating in an auction, and where the goal for each agent is to purchase a 

number of items. Figure 2.14 illustrates the potential states for a marketplace 

agent. The agent has a look up table that contains combinations of discrete 

values which define its current state. These are the amount of money left, and 

the number of items still left to buy.  

 State Money_Left Items_to_Buy 
S1 12 3 
S2 5 1 

 

Figure 2.14: State Representation 



  

39 

 

S1

S9

S7

bid 4 

bid 6 

S*

action * 

 
Figure 2.15: State action translation. 

The current state of the agent’s environment is represented by a particular state. 

The agent recognizes which state it is in (say state S1), and executes some 

action. This action causes a translation to another state. Figure 2.15 illustrates 

potential state translations. Tabular reinforcement learning algorithms such as 

Sarsa and Q-Learning attempt to learn the Q-value of a state-action pair- 

),( asQ . For the example state 1S  in Figure 2.14, there would be several entries 

in the table corresponding to all the possible actions. If the available actions are 

bid 8, bid 6, and bid 4, the entries for 1S  would become:  

 
State Action

Money_Left Items_to_Buy Bid 
12 3 8 
12 3 6 
12 3 4 

 
Figure 2.16: State action pairs 

Finally as shown in Figure 2.16, the agent uses this table to store information 

about the value (Q-value) of each of these state/action combinations.  

 
State(s)  Action  

Money_Left Items_to_Buy Bid  
Q(s,a) 

12 3 8  0.1 
12 3 6  0.5 
12 3 4  0.3 

 
Figure 2.17: State action pairs with Q-values 
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The full lookup tables contain all possible state/action combinations. 

2.4.1 Sarsa 

Sarsa [SUTT96] is an on-policy TD learning algorithm originally called 

modified Q-Learning [RN94]. The general principle of Sarsa is summarized by 

its name: State, Action, Reward, State, Action. In Sarsa, an agent starts in a 

given state, from which it does some action. After the action, the agent receives 

a reward and has transitioned into a new state from which it can take another 

action.  

Sarsa is an on-policy algorithm. This means that the learning occurs only from 

actual experience. An on-policy learner selects an action, receives a reward and 

observes the new state and again selects an action. As with all reinforcement 

style algorithms, there must be a trade off between exploration and exploitation. 

An exploratory action or exploiting action is chosen as a result of the current 

policy typically an action selection policy such as ε greedy. Recall that ε greedy 

policy selection operates on the simple guideline of choosing the most optimal 

action based on the current known rewards or Q-values for all possible state 

action pairs. At every time t, there is some probability ε that rather than choosing 

the optimal greedy action, the selection policy will choose randomly to explore 

from the set of possible state action pairs in the hope that they may lead to a 

better solution.  

As discussed at the beginning of this section, after an agent has made an action 

from a state, the agent receives a reward. The learner typically receives a 
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positive reward at the end of the episode if it has achieved its goal (i.e. it bought 

the number of required items) and a negative reward if it has not. At all other 

non-terminating state-actions, the agent receives the default reward.  

The algorithm then proceeds as follows: 

All Q(s,a) values are initialised. 
Repeat for each episode (or auction game){ 

 Initialize ts (start state for the auction game). 

 Choose ta  from ts  using ε  greedy selection policy. 

 Repeat for each step(auction) in the episode(auction game){ 

  Take action ta , observe r and 1+ts  

  Choose 1+ta  from 1+ts  using ε greedy selection policy  

  [ ]),(),(),(),( 111 ttttttttt asQasQrasQasQ −++= +++ γα  

  ts = 1+ts , ta = 1+ta  

 } 
} 
 

Figure 2.18: Sarsa Algorithm 

2.4.2 Q-Learning 

Watkins Q-Learning [WAT89] is a very similar algorithm to Sarsa. The primary 

difference between the two is that Q-Learning is an off-policy learning 

algorithm. In reference to the stickman world described previously, a Q-Learner 

learns based on the best state/action value at its new state. This action is not 

necessarily the action it takes.  

Thus the update formula for the Q-Learner is: 

 [ ]),(),(max),(),( 11 tttattttt asQasQrasQasQ −++= ++ γα  (2.4) 



  

42 

In a similar example to the cliff world in [SB98], imagine a gridworld where the 

agent starts at one end of the world and is required to find a path to a terminal 

point on the other side of the world. All non-terminal steps receive a -1 reward. 

There is a sink hole in the middle of this world, and if the learner falls in this 

hole, it receives a -100 reward and must start again. In this example the 

parameters γ and α are set as follows: γ=0.9 and α=0.1. To illustrate the 

differences between Sarsa and Q-Learning ε is initially set to 0. In this example, 

there is no difference between the two algorithms in the policies learnt. Setting ε 

to zero means that there is no exploration, both algorithms will always pick the 

greedy move. This results in both Sarsa and Q-Learning learning the policy 

illustrated by the black arrows of the Q-Learner of Figure 2.19. 

 
Figure 2.19: Sarsa and Q-Learning policies in a sink hole gridworld 

If the ε is increased to 0.05, the policy learnt by Sarsa moves slightly away from 

the optimal policy. This is because Sarsa learns directly from the moves it 
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actually makes. To illustrate how this affects the Sarsa learner, consider the 

episode highlighted by the blue arrows of Figure 2.20.  

 
Figure 2.20: Exploratory vs. optimal action selection in a sink hole gridworld 

At grid location [1,2], the current policy (ε-greedy) suggests an exploratory 

move which takes the learner into the sink hole rather than the optimal action 

indicated by the dashed arrow.  

When the learner falls into the sink hole, each learner updates the Q(s,a) value of 

falling into the sink hole in the same manner:  

Q(G[1,2], AEAST) =  Q(G[1,2], AEAST) + 0.1(-100) 
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The difference comes from the update for the pairs before that final move. Sarsa 

updates its Q(G[1,1], ASOUTH) as: 

Q(G[1,1], ASOUTH) = Q(G[1,1], ASOUTH)  
     + 0.1(-1 + 0.9(Q(G[1,2],AEAST) - Q(G[1,1], ASOUTH) 

Where as Q-Learning updates its Q(G[1,1], ASOUTH) as: 

Q(G[1,1], ASOUTH) = Q(G[1,1],ASOUTH)  
     + 0.1(-1 + 0.9(Q(G[1,2],ASOUTH) - Q(G[1,1],ASOUTH) 

The Q-learner is learning the optimal policy even when it follows a different 

one, whereas the Sarsa learner learns from the policy it actually follows. 

Therefore the next time Sarsa will be less likely to even approach a state where 

one of the possible actions from that state is very bad. The end result of this 

difference in learning, is demonstrated by the difference in the policy learnt in 

Figure 2.19. The Sarsa learner learns the safe path around a really bad state. 

2.5 Eligibility Traces 

In the previous section, the algorithms discussed can be seen as one step 

algorithms. It is only the next step which influences the value of the current step. 

Furthermore the amount the next step influences the current step is dictated by γ. 

A γ of 1 indicates that the learning that takes place at the current state is heavily 

influenced by the next state, whereas lower settings of γ indicate that the learner 

is less influenced by events that happen in the future. Referring back to the sink 

hole example, if one of the example episodes follows the path indicated in the 

left hand grid of Figure 2.21, the one step algorithms of the previous section 

only update the blue arrowed state on the final transition. This means that 



  

45 

several passes over a path are needed for the final rewards to affect the other 

states on the rest of the path. 

  
Path taken Values affected by one-step 

algorithms 

 Figure 2.21: Sample episodes in a sink hole gridworld 

Eligibility traces extend this idea of allowing things that happen in the future to 

more directly influence the original decision that the learner made [WAT89, 

SS96]. The learner keeps track of all the states that it visits during an episode. 

When it visits a state and chooses an action to take it saves the fact that it has 

been there by increasing the eligibility of the state/action pair ( ),( ase ). The 

increase to ),( ase  uses either accumulating traces or replacing traces.  In the 

case of accumulating traces, 1 is added to ),( ase on each visit. Replacing traces 

simply resets ),( ase  to 1 when it is visited again. In Figure 2.22, at t=1, the 

learner has visited two states and thus the blue arrows indicate the eligibility of 

those states. As the episode progresses, newly visited states are added to the 

eligibility trace. As indicated in the Figure 2.22, the eligibility of a state is also 

subject to decay over time. As shown at t=7, the most recently visited states are 

the most affected by the end reward of an episode. For eligibility tracing, a new 

parameter λ is introduced to control the decay of eligibility.   
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T=1 t=3 t=7 

      Figure 2.22: Eligibility traces in a sink hole gridworld 

The eligibility traces decay at each time step ),(),( asease γλ= and the update 

formula (for Sarsa) becomes:  

  ),(),(),( aseasQasQ αδ+=  (2.5) 

Where ( )),()','( asQasQr −+= γδ . δ is updated for the current step in the 

episode, whereas the Q update is carried out for all states where e(s,a) > 0 at 

every step,. For example with λ = 0.9, γ=0.9 and α=0.1, at the t=1: 

e(G[2,0], AEAST)= 0.9*0.9*1.0 = 0.81 

e(G[3,0], AEAST)= 1 

At the end of t=1, the Q update is performed on these two states (as all other 

e(s,a) = 0):     

δ = -1 + 0.9 * Q(G[3,0], AEAST) - Q(G[2,0], AEAST) 

Q(G[2,0], AEAST)= Q(G[2,0], AEAST) + 0.1* δ * 0.81 

Q(G[3,0], AEAST)= Q(G[3,0], AEAST) + 0.1* δ * 0.81 
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Conversely by the time the learner has reached the terminal state (in yellow), the 

eligibility of the first two states visited has decayed to: 

e(G[2,0], AEAST)= 0.2288 

e(G[3,0], AEAST)= 0.2824 

At this final point there are 6 other active traces, and thus all 8 states will be 

updated as above. 

It should be noted that the examples given above are applicable for on-policy 

algorithms. Eligibility traces can be applied to off-policy algorithms, however 

their application is not as straightforward due to the off-policy learning. 

Watkin’s Q(λ) [WAT89] simply cuts the eligibility tracing whenever an 

exploratory action is taken, Peng’s Q(λ) [PW96] mixes on-policy and off-policy 

learning to use eligibility traces. This work is primarily focused on on-policy 

learning, and thus further discussion of these methods is outside the scope of this 

research. 

2.6 Linear Function Approximation in Reinforcement Learning 

This section has reviewed the basic principles of reinforcement learning. The 

techniques presented are broadly applicable to many types of problems. 

However, due to their tabular nature they are not appropriate in most real 

domains. Real domains are often characterised by many continuous, rather than 

discrete, state variables. Tabular forms of reinforcement learning are therefore 

computationally unable to learn the problem without utilising some sort of 

function approximation. 
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One of the many challenges facing reinforcement learning in specifically large 

domain sizes is both the ability to deal with large state space sizes and also the 

ability to generalise about a new state based on the learner’s experience of other 

visited states. The methods described in Section 2.1 are tabular. They rely on the 

ability to represent the state space as a giant lookup table. However, most 

interesting problems are often made up of state spaces that cannot be represented 

in pure tabular form. Consider a state space made up of two continuous 

variables. The number of possible combinations is infinite unless the designer 

knows what level of quantisation is required. For example, does the problem 

require precision in the range of 1 decimal place or is it 10 decimal places? If the 

state space can be designed in such manner, then it may be possible to use 

tabular forms of learning. Even if the state space can be reduced in this manner, 

it may still be too large.  

The easiest technique used in function approximation is state aggregation. 

Possibly the earliest example is [CM68], but has been further developed in 

[SSR98]. This technique divides each state space variable into regions and 

considers each region as discrete variable. Recent research in function 

approximation techniques have concentrated on using non-tabular forms of Q-

Learning [WAT89] and Sarsa [RN94] in a variety of different scenarios such as 

[PSD01, SASM99, SSK05]. This section investigates function approximation 

and associated learning algorithms. 
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2.6.1 Gradient Descent Learning 

Gradient descent methods [SB98] rely on a parameter vector of features, n

→

θ as 

depicted Figure 2.23. This vector is a large vector that contains all the features of 

the state space. Any state can be described by one or more of these features.  

 

State 
Space 

1

→

θ  
 
 
 
 
 
 
 
 
 
 
 
 

n

→

θ  
 

s

→

θ  

 
Figure 2.23: Parameter Vector for Gradient Descent 

In the tabular case, a greedy action could be selected simply by choosing the 

best ),( asQ  for all ta . In Figure 2.24, the current state of the learner is 

described as [Money_Left = 12, Item_To_Buy = 3], and the greedy move is 

Bid 6.  

 
State(s)  Action  

Money_Left Items_to_Buy Bid  
Q(s,a) 

12 3 8  0.1 
12 3 6  0.5 
12 3 4  0.3 

 
Figure 2.24: State action pairs and Q values 

In gradient descent methods, the state action pair [Money_Left = 12, 

Item_To_Buy = 3], a = [6] has its own vector of features n

→

φ .Each entry in 
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n

→

φ corresponds to the a basis functions { ),( asnφ } is the same size as the vector 

of parameters n

→

φ . The ),( asQ  value is calculated as follows: 

  ),(),(
0

asasQ
n

j
jj∑

=

= φθ  (2.6) 

In the following example, each feature is assumed to be binary. Thus n

→

φ  

becomes a big binary vector, with each entry 1 to n indicating whether the 

corresponding feature in n

→

θ is present in the state (1 for present, 0 for absent).  

In the example, ),( asQ  is the sum of all θ  where 
→

φ = 1.  

 

(s, a) 
 
s = [Money_Left = 12, 
       Item_To_Buy = 3] 
a = 6 
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n
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θ  
 

n

→

θ  

Q(s, a) = 0.2 + 0.1 + 0.3* 

 

* assuming no other 1s in n

→

φ  

 
Figure 2.25: Calculating Q(s,a) using Parameter and Feature Vectors 

Assuming this representation of the state space and assuming that the examples 

in the parameter vector appear with same distribution as the examples [SB98] 

suggests that a good approach is to try to minimise the mean squared error. This 
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is done by adjusting the entry for the present feature(s) by a small amount. 

While there are both on-policy and off-policy gradient descent methods, the 

primary difference between on-policy and off-policy has been discussed in 

Section 1.4. Furthermore, Watkins Q Learning [WAT89, WATD92] may fail to 

converge when used with function approximation [TS93]. For the sake brevity 

only the linear, gradient-descent Sarsa(λ) is given here. (Figure 2.26) 

Initialise 
→

θ  arbitrarily and 
→→

= 0e  
Repeat for each episode { 

s ← initial state of episode 
For all a ∈ A(s): 
Fa ← set of features present in s,a 

Qa ← ∑ ∈ aF
(i)

i
θ  

Choose at using ε greedy policy. 
Repeat for each step of the episode{ 

→→

← ee γλ  

For all aa ≠ :               (Replacing Traces) 

For all aFi ∈ : 

e(i) ← 0 

For all aFi ∈ : 

e(i) ← e(i) + 1     or         1   
       (Accumulating or Replacing Traces) 

Take action a, observe r and s′s' 

aQr −←δ  

For all a ∈ A(s′): 
Fa ← set of features present in s′,a 
Qa ← ∑ ∈ aF

(i)
i

θ  

Choose a′ using ε greedy policy. 

aQ ′+← γδδ  
→→→

+← eαδθθ  
a ← a′ 

until s′ is terminal 
 

Figure 2.26: Gradient descent Sarsa(λ) Algorithm 
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2.6.2 Linear Approximation  

Feature selection is one of the most vital areas for gradient descent learning. The 

following sub-sections describe two different linear methods for selecting 

features.  

2.6.2.1 Coarse Coding with Tile Coding  

Cerebellar model articulation controller (CMAC), was first introduced by 

Albus [ALB81]. Over the last few years it has been adapted for use in 

reinforcement learning and renamed tile coding [SB98]. The basic principle 

behind tile coding is to overlay the state spaces with exhaustive partitions. Each 

partition is called a tiling, and every element in the partition a tile. Each tile 

makes up one feature and the total set of tiles in all tilings →

θ .   

The resolution is divided into generalisation and granularity parameters. The 

generalisation parameter describes the shape of the tiles. The granularity 

parameter is described by the number of tilings overlaying the state space. These 

overlays are important in tile coding’s ability to make fine distinctions. The 

combination of generalisation and granularity is called the overall resolution.  

For example, extending one of Sutton’s examples [SuttonTC], if a state space is 

described by two state variables x and y, one possible way to tile it is to create 

4x4 regions across the state space. This creates broad generalisation between 

state values that are within 0.25 of each other (in both x and y). This level of 

generalisation is relatively coarse. To refine the detail of what is learnt, another 

tiling offset from the original can be placed over the state space. Figure 2.27 
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shows the original 2-dimensional state space with 2 offset 4x4 tilings. The 

example state lies in exactly one tile in each tiling. Generalisation of that state 

occurs with any other state that lies within that tile. Since the offset is different 

for each tiling, the cluster of states surrounding the original state differs. 

 
Figure 2.27: Calculating Q(s,a) using Parameter and Feature Vectors 

The overall resolution of this example is 0.25/2 or 0.125. Finer resolution can be 

achieved by increasing the number of tilings. In summary, the shape and size of 

the tiles determines the type of generalisation that occurs between states, 

whereas the number of tiling overlays controls the distinctions made about them. 

2.6.2.2 Radial Basis Functions 

Radial basis functions [POW87] extend the idea of tile coding in that instead of 

a feature being present or not present, it can have a degree of belonging 

anywhere in the interval of [0,1]. Typically the feature has a Gaussian response 

function based on the distance between the current triggering state and the 

feature’s “centre” (relative to the width).  
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2.6.3 Fuzzy Based Function Approximation 

Knowledge representation is often represented in terms of binary opposites. 

“The light is on, the light is off”. However, many things cannot be represented 

with this kind of binary logic. Knowledge works more along the lines of “Give 

the plant a small amount of water every couple of weeks” rather than “Give the 

plant 15 ml of water every 14 days”. We are still able to deduce the right course 

of action even with the first statement, and in fact, more exact knowledge would 

not be any more helpful – as the example in [BEZ93] concludes, knowing that 

you should brake exactly 74 feet before you need to stop a motor vehicle is not 

actually useful in practice.  

Representing and working with this type of knowledge is termed fuzzy logic. 

Fuzzy logic is capable of dealing with fuzzy data, vague rules and imprecise 

information. Systems that deal with “real” systems need to be able to cope with 

this kind of data.  

The following two sub-sections investigate fuzzy set theory and its application 

in machine learning problems. 

2.6.3.1 Fuzzy Sets 

The idea of fuzzy sets is that, unlike binary logic where membership is described 

as 0 or 1, a fuzzy set contains several labels that describe different states of a 

variable. For example, suppose an agent wants to purchase a basket of oranges. 

When looking for oranges the agent may have different requirements; price, 

quality, and quantity. Some of these attributes are not things that are normally 
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given binary values. For example, how does the agent judge what oranges of 

good quality are? Normally, we do not think of these types of requirements in 

binary terms.  

A fuzzy variable consists of a set of symbolic labels called fuzzy labels. In the 

agent marketplace example, the variable price might be represented as 

[PRICE_LOW, PRICE_MEDIUM, PRICE_HIGH] and any specified attribute 

value (say price = £4) has a certain degree of membership to one or more labels 

in the price set. A set (or variable) is said to be crisp if the values it refers to are 

traditional discrete values. To determine how much a specified crisp value 

belongs to any given label, for example PRICE_LOW, a pre-defined 

membership function is applied. [BEZ93] defines fuzzy sets and membership 

functions as follows:  

If X is a collection of objects denoted generically by X, then a fuzzy 

set A in X is defined as a set of ordered pairs  
  A = {(x,μA(x))| x ∈ X} , where   μA(x) is called the 

membership function (or MF for short) for the fuzzy set A. The MF 

maps each element of X to a membership grade (or membership 

value) between 0 and 1 (included).  

A fuzzy set is a mapping from a set of real numbers to a set of symbolic labels. 

For example, consider the world descriptor Money_Left from the states 

described Figure 2.14. The value of Money_Left in a crisp state consists of a 

discrete number, say ML(x), x ∈ZZ  =[0..15]. However, in a fuzzy state, the same 

value x maps to one or more of the fuzzy labels associated with Money_Left = 
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[Lots_Money, Little_Money]. X’s degree of belonging to any particular fuzzy 

label is defined by the membership function (μ) associated with the fuzzy set 

Money_Left. For example, the μMoney_Left and μItems_to_Buy  might be described as: 
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Figure 2.28: Membership function of Money_Left and Items_To_Buy 

Crisp values are fuzzified using these types of membership function. Each crisp 

value will belong, to some degree, to one or more fuzzy set labels. In Figure 

2.14, Money LeftS1 = 12, fuzzification of this value results in:  

μLots_Money (12) = 0.87 and μLittle_Money (12) = 0.13 

Therefore, fuzzy sets have soft or fuzzy boundaries, whereas the old form of 

state representation has crisp boundaries. Defining membership functions of 

fuzzy sets requires some level of knowledge engineering, i.e. the designer must 

have some intuition about the domain in order to make a reasonable mapping of 

crisp values onto the fuzzy labels. However, the design of fuzzy sets allows for 

flexibility in membership definitions. This flexibility allows for the existence of 

a soft boundary between labels.  

The soft boundary can be used to illustrate the differences and highlight the 

relationship between fuzzy theory and probability theory. To further the 
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examples from literature, this distinction will be illustrated with a marketplace 

example. The marketplace is again selling oranges and an agent wishes to 

purchase a basket of oranges. This agent can either purchase lot A or lot B: 

  

μGOOD_ORANGES(A) = 0.9     Pr(B ∈ GOOD_ORANGES) = 0.9 
 

Figure 2.29: Membership vs. Probability 

The primary difference between the two types of information, is that A’s 0.9 

membership to the set of GOOD_ORANGES indicates that while the basket 

may contain some degree of rotten oranges, all in all it will still contain a fair 

amount of good ones. On the other hand, the probability statement that describes 

lot B, indicates that most of the time, B will contain good oranges. This 

statement says nothing about the quality of the oranges the remaining 0.1 of the 

time; the oranges could be all rotten during this period. Both probability and 

fuzzy membership express the level to which the basket belongs to the set of 

GOOD_ORANGES, however fuzzy membership also expresses the degree of 

belonging. 

Further information about fuzzy set theory can be found in [BEZ93, BO82 and 

MUK01]. 

It is important to note that the membership functions can be described by any 

type of function that maps a variable X to a value between 0 and 11. However, 

                                                 

1 Including both straight line functions such as triangular or trapezoidal functions and curved line functions 
such as a generalised bell curves or sigmoidal (open left or right) functions. 



  

58 

membership functions that total 1 for any given crisp value ( ∑
=

=
ni

i x
..1

1)(μ ). It 

has been shown that systems that follow this rule are more robust to errors such 

as noise and design faults. [BBM99].  

2.6.3.2 Fuzzy Reinforcement Learning 

The history of reinforcement learning and fuzzy reinforcement learning can be 

traced through techniques developed for learning classifier systems (LCS). In a 

LCS an agent has a rule-based model of the world. It uses interactions with its 

environment to modify that rule base via some evolutionary process. LCS 

systems typically combine some type of trial and error learning2 with a 

Darwinian evolutionary survival of the fittest mechanism. An introduction to 

LCS can be found in [HetAl00], and more recently [BK05]. [LR00] presents a 

review of some of the successful LCS systems.  

In terms of LCS systems, the research presented in this thesis focuses on the 

techniques developed for the learning fuzzy classifier system (LFCS), especially 

on the fuzzy reinforcement learning aspects. An introduction to LFCS is 

provided by Bonarini in [BON00]. The reinforcement distribution concepts of 

these types of systems are particularly relevant. A variety of different 

researchers, including Bonarini, have proposed fuzzy extensions to the 

Q  Learning algorithm. The following discussion will focus on three such 

proposals. 

                                                 

2 I.e. Reinforcement Learning. 
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Glorennec proposed a version of Q-learning that uses fuzzy rules [GL94, 

GLJ97]. In this approach, the entire set of fuzzy rules is considered an agent that 

produces some action a . Each agent always triggers the same action. This  
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architecture is described by a Q function ),( tt asQ  and a rule quality ),( taiq . A 

Q-value is: 

  ∑
∈

=
)(

),(
2
1),(

tsHi
tntt aiqasQ    (2.7) 

where )( tsH  is the set of all fuzzy rules that are triggered for the crisp state ts  

and n  is the number of input variables. Therefore, action selection is the 

),( tt asQ  with the largest summed rule quality. The update given to the rule 

quality is described as: 

  Qiactaiq n
t Δ=Δ )(2),(  (2.8) 

where )(iact is the mean relative activity of the rule i for ts , or the amount of 

contribution of rule i to ta .  

In this proposal, to select an action, the set of fuzzy rules activated in ts  needs to 

be evaluated for that action. In order to finalise action selection, all possible 

),( tt asQ  must be calculated. This can be computationally expensive, especially 

for large systems.  

Berenji’s Q-Learning [BER94, BER96, BERV01] deals with fuzzy constraints 

on the actions. An example of a fuzzy constraint is “the price of item A must not 

be substantially more than item B”. This algorithm maintains an estimate for 
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taking an action given the fuzzy constraint on the action. Therefore, the Q  value 

update3 becomes: 

( )[ ]),(),(,(max),(),( 1 ttttctbtttt asFQasasFQrasFQasFQ −∧++= + μγα  

   (2.9) 

In this system, the action selected at t is the action with the maximum ),( asFQ . 

Actions are selected rather than combined. This fuzzy extension only applies to 

the constraints ),( ttc asμ . This system is quite different from most other fuzzy 

systems because it does not combine actions.  

Bonarini [BON96, BON96a, BON97, BON98] presented a more truly fuzzy 

version of Q-Learning. In Bonarini’s fuzzy LCS, the reinforcement fuzzy Q-

learning section applies principles similar to Glorannec, extending the 

fuzzification to fuzzy goal states.  In this algorithm, the states are fuzzified and 

the actions fuzzified. This creates a set of fuzzy rules, of which one or more fire 

for a specific crisp (non-fuzzy) state. From the rules that fire, the most 

appropriate fuzzy action is chosen. The set of fuzzy actions are recombined to 

produce a crisp action. In Bonarini’s Q-Learning proposal [BON98] the update 

is given as follows: 

),(ˆ)),(ˆmax(),(ˆ),(ˆ
1 ttjrtrjrttrttr asQasQrewardasQasQ

jijiii
−++= + ξγαξ  

  (2.10) 

                                                 

3 Where Q values become fuzzy Q-values or FQ values. 
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for all i , where ti Rr ∈  and tR  is the set of all fuzzy rules with 0>μ  for the 

crisp state ts ; 
ir

ξ is the relative contribution of the rule i  ( ir ) that matches a 

crisp state s , with respect to the total contribution of all rules that match s . This 

is given as: 

  
∑
=

=

Kk

s
r s

s

ks

i

i

,1

~

)(
)(

~μ
μ

ξ  (2.11) 

While this section has presented a review of Bonarini’s Fuzzy Q-Learning, the 

paper [BON98] and others [BON96, BON96a, BON97] present other extensions 

such as Fuzzy-Q(λ), ELF4 and a variety of successful experiment results mostly 

in robotic tasks such as navigation and pursuit. Bonarini proposes a 

methodology for applying RL algorithms to LFCS however, no on-policy 

algorithms are proposed.  

2.7 Multiagent learning algorithms  

One problem with most reinforcement learning algorithms is that the learning 

problem is non-stationary. In a non-stationary problem estimates, or Q values, 

never completely converge due to the changing nature of the environment. 

Tracking non-stationary behaviour has been dealt with in a variety of different 

ways. Some reviews in the area are provided by [TR96 and SV00].  

                                                 

4 A LFCS using the fuzzy reinforcement learning algorithms presented. 
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2.7.1 Recursive Modelling Method 

The Recursive Modelling Method Algorithm introduced by Gmytrasiewicz 

[GDW91, GLJ97 and NG97] is a formalism to represent and process models 

that one agent keeps of another agent. This method, based on game theory, is 

based on payoff matrices. It assumes that the agent doing the modelling will 

know the utility functions of all the other agents. The modelling agent 

calculates its payoff matrices based on the total expected payoff that all the 

agents will receive given that they follow a particular action. The modelling 

agent chooses an action based on what will maximise not only its own utility, 

but the utility of all the other agents. This algorithm is further extended in 

order to cope with recursive levels of modelling – how to model an agent when 

you know the agent is modelling you. The level these models descent is the 

agent’s knowledge depth. 

RMM can be solved using dynamic programming techniques. As commented 

on by Vidal in [VID98], RMM has several limitations. The first is the 

exponential growth of the matrices and modelling levels as the number of 

agents and knowledge depth is increased. This exponential growth leads to a 

high overhead in computational time to obtain a good solution. The second is 

that the nesting models assume that the agent doing the modelling has 

knowledge of other agents’ payoff functions. [VID98] presents a knowledge 

dampening version of RMM called Limited Rationality Recursive Modelling 

Method, a framework for incorporating knowledge about other agents was 

presented in [VIDD97]. 
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2.7.2 Minimax Q 

Minimax-Q, proposed by Littman [L94] uses zero-sum games where the learner 

tries to maximise the payoff in the worst scenario. Essentially the algorithm 

switches between minimisation and maximisation depending on the state. This 

algorithm achieves good results with or without opponents. This algorithm 

utilises linear programming in each state and episode, causing it to be very slow 

in learning. Further details can be found in [L94 and LS96] 

2.7.3 Nash Q 

Nash-Q, proposed by Hu and Wellman [HW98, HW03], extends Q-learning to 

perform updates based on the existence of a Nash equilibrium over the Q values 

for all learners. A Nash equilibrium is defined as a set of strategies for each 

learner such that each learner’s current strategy is optimal given the other 

learners’ current strategies. This algorithm tries to learn the Nash-Q value; a 

value defined as the optimal Q-values in a Nash equilibrium. The major issue 

with this algorithm is the need to pre-calculate the Nash equilibrium values. 

Given these values, the algorithm will converge to Nash equilibrium policies 

under certain strict conditions to related to the Nash equilibriums.  

2.7.4 WoLF 

The research presented in [BV02] and [BV02a], combines tile coding, policy 

gradient ascent or policy hill climbing and a technique they call Win or Learn 

Fast (WoLF). The WoLF principle is a method for altering the learning rate (α ) 
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depending on the current performance of the agent. If the learner is doing worse 

than expected, α  is increased to encourage it to learn faster. If it is doing better 

than expect α is decreased because it is likely that the other learning agents will 

soon change their policy in response to their poor performance. Policy hill 

climbing and policy gradient ascent algorithms work similarly to the learning 

algorithms discussed, however they combine the learning principles with the 

ability to learn multiple policies. The principles of tile coding were reviewed in 

2.6. The novelty is its combination of the three techniques and application to the 

multiagent learning problem. The results reported in stochastic games are 

promising. Intuitively this solution seems logical as it is more flexible than those 

that require calculations of equilibriums.  

2.8 Summary 

This section has provided a review of the theoretical background of 

reinforcement learning. It has introduced a variety of techniques that attempt to 

learn in non-stationary environments. The modelling techniques and multiagent 

learning algorithms are difficult to scale up to large games and are sometimes 

not applicable in adversarial environments. 

To that effect the research presented in this thesis will investigate the use of 

function approximation techniques in adversarial environments. Specifically, the 

fuzzy techniques presented in Section 2.6.3 appear promising due to the 

diversity of rules that can be triggered for any particular state. However, 

although Q-learning has been popular choice with most algorithms including the 

fuzzy techniques, it has been shown that Watkins [WAT89] Q-learning may not 
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converge correctly when used in function approximation. In particular, [TS93], 

have shown that because function approximation introduces noise into the 

calculation of Q-values, some values may be too large, and other too small. Q-

learning uses the max operator, always picking the largest values, causing 

overestimation if the error intervals of several related Q-values overlap. 

Therefore, the research presented in this thesis will focus on on-policy methods 

of function approximation because they do not use the max operator.  

To that effect, a further investigation into on-policy fuzzy methods and two 

separate proposals by the author of this thesis for on-policy fuzzy learning are 

provided in Section 4. Before that, Section 3 presents the three simulation 

environments used to evaluate and test the proposals made in Section 4.  
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3 Simulation System Design 

The learning algorithms investigated and developed for the research presented 

in this thesis were tested in a variety of different learning problems. While 

Section 4 introduces the novel algorithms, this section presents some principles 

of simulation before presenting the three simulation systems used in this 

research and, finally, the techniques used for verification and validation of the 

systems presented, including the statistical methods used in data presentation 

and validation of results. 

3.1 Random Numbers 

In any type of simulation the use of random number generators (RNGs) is 

required. The sequence of numbers produced should be reproducible. This 

means that given the same seed, the RNG should produce the same sequence. 

This is important in order to aid debugging of the simulation and increase the 

reliability of the results [PJL02].  

RNGs are pseudorandom, meaning that they rely on a deterministic 

mathematical process rather than some activity which is a fundamentally 

random natural process such as radioactive decay. [BZ03] provides a concise 

summary of the important properties of good random number generators (RNG). 

Some of these characteristics include reproducibility of the sequence, uniform 

distribution, a long period of numbers, independence (low levels of statistical 

correlation) and efficiency. Furthermore, for stochastic simulations, linear RNGs 

are the most widely used and much quicker than non-linear RNGs. There are 
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several RNG algorithms that fulfil these requirements including Taus88, TT800, 

and Mersenne Twister [RNGTest].  

The simulation systems developed for this thesis used version 7 of the Java 

version of the Mersenne Twister algorithm [MN98] available from Sean Luke 

[MTJava] for random number generation. This algorithm is available in both 

synchronised5 and non-synchronised form. The Mersenne Twister algorithm has 

the following advantages: It has been designed with consideration of the flaws of 

various existing generators, it is freely available in a wide variety of languages. 

It has a long period and high order of equidistribution (period: 219937-1 and 623-

dimensional equidistribution property is assured.) and finally, fast generation. . 

3.2 A Marketplace Simulation 

The agent marketplace was chosen for three reasons: 

1. It is a scaleable domain; 

2. It offers the potential for multiagent scenarios where both agents are 

competing for the same goal, and; 

3. It has a close relationship to real world problems, such as bandwidth 

brokering and other auction scenarios. 

                                                 

5 In a multi-threaded environment, if one or more threads share the same object, it must be synchronizable to 
provide safe access.  
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The following section details the design and setup of the marketplace simulator 

used in the research presented in this thesis. Section 3.2.1 investigates 

multi-agent platforms currently available before concluding that a simpler 

multi-agent platform was required. This platform is presented in Section 3.2.2 

and the behavioural algorithms used for agent construction in Section 3.2.3. 

3.2.1 Agent Platforms – FIPA-OS and Zeus. 

Several multi-agent technologies, such as FIPA-OS and Zeus were investigated 

thoroughly at the beginning of this project. FIPA-OS is an open source agent 

platform. This platform contains the mandatory elements required for agent 

interoperability that are specified in the FIPA6 specifications. The FIPA-OS 

platform originated from Nortel Networks. The Zeus multi-agent platform was 

developed by BT Labs and is also FIPA compliant. Both systems are Java 

based, and include many useful interoperability features for building 

commercial agent systems. However, the learning-curve for both systems is 

quite steep and at the time, neither system offered pared down functionality for 

the purpose of simulation. It was decided that a better approach for this project 

was to write an auction simulator with only the functionality required.  

                                                 

6  Foundation for Intelligent Physical Agents 
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3.2.2 The AgentSim Marketplace 

The marketplace is modelled in order to cope with scarce items. Two possible 

marketplace auction mechanisms include: (1) An ascending price English 

Outcry, and (2) Sealed bid. The auctions themselves are modelled as a 

continuous episodically levelled task. By this it is meant that an amount of 

items being auctioned in a time period t  and the number of auctions the agent 

knows will occur in each time period are fixed. Essentially time is broken up 

into equal periods, during each time period t , a certain quantity q  of the item 

is available. During the first episode occurring at time t  for q  items must be 

completed before 1+t .  

 q items  q items  q items 

 Marketplace structure: 

t t+1 t+2 t+3 
 

An episodically levelled task complicates the learning issue because there are 

two levels of learning possible. The first level is simply to learn what do in any 

one auction of an item. However, if the auctions are episodically levelled, a 

better solution would be to learn a strategy over the game of auctions.  Thus in 

the following discussion the terms auction and auction game have particular 

meaning. An auction refers to one event of auctioning an item within an 

episode or an auction game. 
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In order to learn patterns of bidding in different auctions the game is modelled 

as a general sum stochastic game rather than a zero sum game. This means that 

the rewards the agents receive do not total to zero (i.e. one agent gets +1 and 

the other agent -1 in any given auction game). Instead the agents receive a 

reward based on the number of items received within a game (some set of 

auctions).  

The AgentSim Marketplace system developed for this project is written in Java 

using Java 1.4.2 [JAVA] and SimJava [SJAVA]. SimJava is a freely available 

process based discrete event simulation package for Java. The package has 

animation capabilities which allow a visual display of the inner workings of 

the simulated entity. SimJava allows for the creation of multiple animation 

entities. These entities can then be joined up in order to send and receive 

events as required. The simulation is handled by a central controller, which 

manages all the simulation threads, collects and delivers simulation events to 

the appropriate entity, and finally advances the simulation time when 

appropriate.  

Utilising both this package and other Java packages, the AgentSim 

Marketplace was constructed in order to simulate an agent marketplace. The 

first task was to extend the SimJava animation capacity to allow detailed 

entity-entity messaging. This function is useful for debugging the auction 

simulator, as it allows information (such as agent bids and the type of message 

sent), to be immediately recognised by the user. It is also valuable for 

explaining the simulator to a third party.  
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The SimJava package was extended by the author of this thesis in the 

following ways: 

 To allow the user to specify both text, and colour coding to the visual 

message that are passed between the entities. (Mod 1) 

 The creation of a bar graph package and side labels to track data while 

the simulation is running. (Mod 2) 

 Addition of application option for simulation (original package is only 

intended for applets). (Mod 3) 

 Conversion of AWT graphics to Swing graphics7. (Mod 4) 

Modifications 1-3 to the SimJava package can be seen in the agent marketplace 

simulation GUI:  

                                                 

7  Swing package is a graphics API released after the original AWT package that provides lightweight 
widgets, that have pluggable look and feel are extensible and scaleable. 
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Figure 3.1:  GUI Interface for Agent Simulator using Mod 4 graphics 

Figure 3.1 illustrates the AgentSim Marketplace GUI. The GUI sets up and 

runs simulations between a seller agent and 2 to 5 buyer agents. The number of 

auctions and the agents are all configurable through the title bar menu.  

The AgentSim interface also has a non-GUI option, allowing the simulation to 

run without the overhead of graphics processing. Regardless of which option is 

chosen (GUI or non-GUI) the simulations are configurable as follows: 

The auctions are configurable with the following parameters: 

• Number of auctions occurring in an episode. 

• Standard deviation of number of auctions. 

The Seller Agent Setup menu allows the following alterations to the Seller 

Agent: 

Mod 1 

Mod 3

Mod 2
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• Start money. 

• Minimum price accepted for an item. 

• Market valuation of an item. 

The Buyer Agent Setup menu allows the following alterations to the Buyer 

Agents: 

• Number of Buyer Agents participating in the auctions. (2-5) 

• Strategy type (bidding) of each agent – Linear, Greedy, Sarsa, Fuzzy 

Sarsa, FQ Sarsa and gradient descent Sarsa(λ) with tile coding. 

• Number of items required to purchase during the episode. 

• Start money. 

• Maximum price to bid. 

• Market valuation of an item. 

The Learning menu allows the user to configure: 

• Toggle learning (Learn vs. graphical debug run). 

• Number of iterations for learning.(100 – 500,000) 
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GAME SIZE ITEMS TO BUY
PER AGENT 

TOTAL  
AUCTIONS

MIN  
PRICE

MAX  
PRICE 

Very Small 2 4 5 6 

Small 4 8 5 8 

Medium 6 12 5 12 

Large 10 20 5 14 

Very Large 15 30 5 18 

VVVLarge 20 40 5 24 

Huge 35 70 5 30 

Figure 3.2: Game sizes for marketplace simulations 

Figure 3.2 depicts the game sizes used for all tests. For example, in a Game Size 

of Medium, an agent must buy 6 items from 12 auctions with an allowable price 

range of 5 to 12 units. 

3.2.3 Seller and Buyer Agent Algorithms. 

The agents in the marketplace simulation system compete in a first price sealed 

bid auction. The first price sealed bid auction follows the contract-net protocol 

set by FIPA [FIPA02]: 
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Figure 3.3: FIPA Contract-Net Protocol from [FIPA02] 

Following that example, the seller agent follows the following algorithm: 

Initialise agent.  
Repeat for each episode (or auction game){ 

 Initialise game (reset items to sell, etc). 
 Issue CFP. 
 Wait for bids 
 If bids received 
  Choose highest bid or randomly choose among 

highest bid. 
 Else end auction. 

 If auction not over { 
 Issue accept-proposal and reject-proposal 

statements to appropriate agents. 
 Receive payment. 
 } 
} 

Figure 3.4: Seller Agent Algorithm 
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All buyer agents, regardless of their bidding strategy, follow this general 

algorithm: 

Initialise agent. 
Repeat for each episode (or auction game){ 

 Wait for CFP. 
 Receive CFP. 
 Propose action (according to bidding strategy – 

propose or refuse) 
 If receive accept-proposal 
  Send inform. 
 Update state. 

} 

Figure 3.5: Buyer Agent Algorithm 

The rewards used in this simulation were based on overall achievement of the 

agents’ goal. They can be summarized as follows: 

)(
0=t

t

M
MI   if all items purchased  

NeededI−   if all items NOT purchased 

   0   all other non-terminating steps 

Where I  is the number of items, M is the amount of money at time t .  

3.3 The Gridworld Pursuit Problem  

The predator/prey gridworld was chosen for similar reasons to the agent 

marketplace: 

1. It is an easily scaleable domain; 

2. It offers the potential for multiagent scenarios where both agents are 

competing for different goals, and; 
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3. Its similarity in basic dynamics to many classic reinforcement learning 

examples such as those presented by Stone and Veloso [SV00] and 

because it is the base domain for more complicated applications such as 

robotic soccer [ST00 and SSK05].  

This section details the design and setup of the predator/prey gridworld 

simulator used in the research presented in this thesis. This platform is presented 

in Section 3.3.1 and the behavioural algorithms used for agent construction in 

Section 3.3.2. 

3.3.1 Predator/Prey Gridworld 

As illustrated in Figure 3.6, in this domain there are n  predators (cats) and m  

prey (chicks). The goal of the problem from the predator’s standpoint is to catch 

the prey as quickly as possible. The goal of the prey depends on the type of grid 

chosen. If the checkbox Pac World is selected the goal of the chick is to eat all 

the chicken feed (grey dots) and avoid the predator. The episode is over if the 

chick eats all the chicken feed before being eaten by a cat, a cat eats the chick or 

MAX_STEPS is exceeded. If Pac World is not selected, the goal is simply to 

avoid the predator8 and the episode ends when either the cat eats the chick or 

MAX_STEPS is exceeded.  

                                                 

8  This setting is used as validation, since the learning problem facing the agent is much easier. It will not be 
discussed any further. 
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Figure 3.6: Predator/Prey Grid World 

The simulation system is configurable in the following ways: it allows for 

variable grid size (3x3 to 20x20), variable number of predators and prey (1 to 4), 

animation on or off (off to learn quickly), game type selection and agent 

algorithm selection (Fixed, Sarsa, Fuzzy Sarsa, or tile coding). 

3.3.2 Predator/Prey Agent Algorithms 

Initialise agent tables. 
Repeat for each episode { 

 Make move according to policy. 
 If receive reward/penalty 
 Update state. 

} 

Figure 3.7: Predator/Prey Agent Algorithm 
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Figure 3.7 gives the simple behavioural algorithm for both the predator and prey. 

In the case of a stationary agent, the agent simply ignores any reward signal. The 

rewards are summarised as follows: 

For the prey: 
g−    if eaten by Predator 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ts
s

g min  if all dots have been eaten 

  1+  if dot eaten 
   0   if empty square 

For the predator: 

   0   if eats prey 
  1−   all other states 

3.4 Mountain-car Problem 

The mountain-car world was chosen as a benchmark environment for the final 

algorithm investigated in the research presented in this thesis, gradient descent 

Sarsa(λ) with tile coding. This is because this problem is described in detail by 

[SS96, SUTT96 and SB98]. Furthermore, the implementation used in the 

previous papers is publicly available. 

The following section details the design and setup of the mountain-car simulator 

used in the research presented in this thesis. The dynamics and porting of this 

platform is described in Section 3.4.1. The mountain-car world is not a multi-

agent platform and is primarily used for validation purposes. 
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3.4.1 Mountain-car World 

In the problem the learner controls an underpowered car that is situated in a deep 

valley. The goal problem is to get the car to the top of the mountain. The 

difficulty is that the car is underpowered and thus cannot gain enough 

momentum by simply going forward to get it to the top of the mountain. In order 

to find a solution, the learner must first move away from the goal. 

 

Goal 

Actions:  
   full throttle forward 
   full throttle reverse 
   zero throttle 

 
Figure 3.8: Mountain-car World 

The car moves according to: 

][ 11 ++ += ttt ppboundp  

)]3cos(0025.0001.0[1 tttt vavboundv −++=+  

Where tp  and tv  is the car’s position and velocity at time t and ta  the action 

taken. The bound operation enforces 6.02.1 1 ≤≤− +tp  and 

07.007.0 1 ≤≤− +tv . The rewards in this domain summarised as follows:  

  1−   for all non-terminating states 
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This environment serves as a control world, the implementation is a Java 

conversion of the original C++ Mountain-car world including the gradient 

descent Sarsa(λ) with tile coding learner provided by Sutton [SuttonMC]. The 

correctness of the ported Java code was compared by the author of this thesis 

with the original code by conducting identical simulations in both languages and 

comparing the results. In all cases the ported code had the same output as the 

original C++ code. 

3.5 Verification and Validation  

In order to determine accurate function of the simulation systems built, all three 

simulators needed to be verified and validated. [SAR98] defines validation as 

the substantiation that a computerised model exhibits a satisfactory range of 

accuracy with the intended application and verification as assurance that the 

program of the model and its implementation are correct.  

[SAR98] summarises a variety of different validation techniques. The ones used 

to valid the simulation systems presented in this thesis were: Animation, Traces, 

Degenerate Tests, Event Validity, Fixed values and Internal Validity. Each 

simulator’s operational behaviour was validated in function by using animation 

in the developed GUI9, combined with breakpoint flow tracing checks. This 

allowed for verification of the behaviour flow and event validity of each 

simulation system. 

                                                 

9  In the case of the agent marketplace and the predator/prey gridworld. 
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In the next step of validation, fixed value and degenerate testing was done with 

each learning algorithm to ensure the computerised version behaved as stated in 

the algorithm definition. Some examples of the kind of testing performed in this 

section are:  

• Observation of the current state and rewards received on one simulation 

cycle and manual checking the expected new Q-values. 

• Observation of the actual state of the system versus the learning agent’s 

perception of the system. 

Finally, extensive application of Java’s runtime exception handling was 

implemented to ensure the system remained in a consistent state during runtime 

operation. Any unexpected values or illegal states trigger program alerts and 

termination. 

The following discussion serves two purposes. The first is to demonstrate how 

interval validity testing was done, and the second, to describe the procedure 

undertaken in the mean calculations present in all future sections. As is often the 

case in experiments that require large amounts of computing power, it is 

impractical to have large number of sample experiments. Therefore, it is 

important that the appropriate statistical methods are employed for analysis of 

small sample sizes.  

The results presented in the subsequent sections of this thesis fall into the small 

sample size category. The small sample size techniques are described in further 

detail in [JB92]. Although the tables presented in Figure 3.9 and Figure 3.10 

only illustrate 5 experiment examples, unless otherwise stated, the results 
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presented in subsequent sections of this thesis are over 10 experiments. The 

confidence intervals used are the 95% confidence intervals calculated using the 

Student’s t distribution.  There are several different types of data collection files, 

including win ratio statistics10, and solution quality statistics11. 

Figure 3.9 gives the convergence or percentage win ratio of 5 trials of a Fuzzy 

Sarsa Agent in the marketplace world. In all 5 trials, the experiment setup is 

identical except for the seed given to the random number generator. The seed 

used is reflected in the column headings 2 to 6. The seventh column is the 

calculated mean of the trials and the final column the 95% confidence interval 

using the student’s t distribution. The entries in each column represent the 

averaged win ratio of the agent over the previous 100 trials. Unless otherwise 

indicated, all graphs presented in further sections have been smoothed at an 

increment of 10012. Each simulation runs for 10000 trials unless otherwise 

stated. (Figure 3.9 and Figure 3.10 only give the first 1000 trials for the sake of 

brevity). 

                                                 

10  How often the learner achieves the stated goal. 

11  The average price achieved by the learner or average number of moves taken to get to the goal. 

12 In other words 100 data points have been averaged to obtain the entry for each table entry. 
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Trial 
Num 

Buyer1 
SEED-1 

Buyer1 
SEED-10 

Buyer1 
SEED-13 

Buyer1 
SEED-21 

Buyer1 
SEED-222

Buyer1 
MEAN 

Buyer1 
95%-CI 

0 0 0 0 0 0 0 0
100 66.7702 62.9640 70.7302 67.3891 76.3037 68.8315 4.7720
200 72.3474 69.2209 73.1138 68.7822 73.4912 71.3911 2.1218
300 69.5010 69.0809 72.0394 71.1836 71.0312 70.5672 1.1782
400 70.7310 69.6275 72.5001 70.9231 70.2395 70.8042 1.0224
500 72.2346 70.1037 71.9283 70.9165 69.5233 70.9413 1.1037
600 73.3731 71.1936 71.4863 71.3805 69.6241 71.4115 1.2700
700 74.5867 72.7285 71.6324 72.3249 72.6120 72.7769 1.0466
800 75.6051 74.1008 73.4469 74.2146 74.8125 74.4360 0.7758
900 75.8267 75.7584 75.5080 74.8936 76.5001 75.6973 0.5533

1000 76.2164 77.2700 77.0455 76.1493 78.0193 76.9401 0.7437

Figure 3.9:  Percentage win ratio from a Fuzzy Sarsa Agent 

Figure 3.10 illustrates the data collected in 5 trials of a Fuzzy Sarsa Agent in the 

marketplace world. In all 5 trials, the experiment setup is identical except for the 

seed given to the random number generator. In simulations where more than one 

learner is present, different start seeds are given to each learner. The entries in 

each column represent the averaged price achieved for i items in n  auctions. In 

the case where the agent did not win the required number of auctions, the 

calculation uses the maximum possible price for the missing items.  

Trial 
Num 

Buyer0 
SEED-1 

Buyer0 
SEED-10 

Buyer0 
SEED-13 

Buyer0 
SEED-21 

Buyer0 
SEED-222 

Buyer0 
MEAN 

Buyer0 
95% CI 

100 18.6917 18.4740 18.4800 18.7826 18.5780 18.6013 0.1284
200 18.5289 18.6860 18.5263 18.7629 18.5449 18.6098 0.1033
300 18.2560 18.7731 18.3389 18.2771 18.2349 18.3760 0.2149
400 18.3194 18.0469 18.1700 18.2791 17.9049 18.1441 0.1626
500 17.9969 17.7714 17.8291 17.8720 17.7797 17.8498 0.0874
600 17.1849 17.4340 17.5331 17.5689 17.8314 17.5105 0.2230
700 16.7514 17.2980 17.7609 18.7589 17.9143 17.6967 0.7123
800 16.4406 18.2437 17.1186 17.2089 17.8954 17.3814 0.6728
900 16.7491 17.0960 17.2806 16.3654 17.2429 16.9468 0.3688

1000 16.6897 16.2706 14.8837 16.6346 18.0580 16.5073 0.9815

Figure 3.10: Price data from a Fuzzy Sarsa Agent 
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The confidence intervals are calculated using the equation for small samples 

with a normal population using the student’s t distribution. This interval is given 

by: 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

n
stX

n
stX 2/2/ , αα  (3.1) 

where 2/αt  is the upper 2/1 α−  percentile of the t  distribution with degrees of 

freedom 1−= n .  

In terms of interval validity, the 95% confidence interval given in Figure 3.9 and 

Figure 3.10 seem to be within a tolerable limit for a learning agent. However to 

increase the certainty of the intervals, typically a minimum of 10 averaged 

experiments was used. 

3.6 Summary 

This section introduced some of the principles of simulation before presenting 

three simulation systems used in the research presented in this thesis. The first 

two simulation systems presented in Section 3.2 and 3.3, the agent marketplace 

and the predator/prey gridworld, enabled the learning algorithms introduced in 

Section 4 and the other algorithms for comparison purposes, to participate in a 

multiagent environment. The final simulation system presented in Section 3.4, 

the mountain-car world, served primarily as a validation domain. Finally, 

Section 3.5 gave the validation and verification techniques used at both the 

domain level and experiment level. 
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4 Fuzzy Learning in a Marketplace Environment 

As introduced in Section 2.6, function approximation is a popular methodology 

to deal with large state spaces. Since one of the aims of the research presented in 

this thesis is to analyse algorithms that are capable of taking actions in 

completely new states based on generalising from the existing visited state 

space, function approximation seems like a promising way of achieving directed 

coevolution. The biological basis of coevolution in nature advocates that a group 

evolves according to their experiences with the other, evolving, actors in their 

environment. It therefore seems to follow that on-policy learning may provide 

the best solution for coevolution. This decision is reinforced by the fact that off-

policy methods like Q-learning have been shown to be unstable with several 

types of function approximation [Watkins89]. Sutton however has shown that 

the approximation technique of tile coding combined with Sarsa [SUTT96], as 

initially done by [RN95], is capable of finding a robust solution to problems that 

had previously been shown to exhibit unstable behaviour [BM95] with function 

approximation.  

As previously discussed, fuzzy sets also present an interesting way of creating a 

complex mapping of the state space. Bonarini has shown that the fuzzy Q -

learning algorithm has been able to successfully use fuzzy rules in order to 

implement a variety of large state space problems in the controller domain 

[BON98], [BON97], [BON96]. The following two sub-sections describe two 

novel on-policy fuzzy methods. The first one is based on a basic fuzzy collapse 

of the state space and Berenji’s [BER94] approach, and the second uses 
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Bonarini’s methodology for extending crisp algorithms described in [BON98]. 

Section 4.3 presents the results of some experiments using these two new 

algorithms. 

4.1 FQ Sarsa 

The FQ Sarsa algorithm is based on the Sarsa algorithm. Essentially, it reduces 

the state space by storing the state representation in fuzzy sets. In all other 

respects, it behaves exactly like Sarsa. The algorithm does not consider fuzzy 

actions or goal states, leaving these in their original crisp representation and thus 

can be considered a hybrid algorithm. In this approach, a crisp state s  matches a 

set of fuzzy states and these fuzzy states are paired with crisp action values. To 

determine the fuzzy state, a mapping from the set of real numbers representing 

the current state to a set of symbolic state labels is created.  

 

State 
Space 

1

~
s  

 
 
 
 
 
 
 
 
 
 

ns
~

 
 

Very large 

 
Figure 4.1: Fuzzy State Space Mapping 

Consider the world descriptor Money_Left from the states described in Figure 

2.14. The value of Money_Left in crisp state s  consists of a discrete number, 

say ]15..0[),( =∈ ZxxML . However, in a fuzzy state, the same value x  maps 

to one or more of the fuzzy labels associated with 
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]_,_[_ MoneyLittleMoneyLotsLeftMoney = . The degree to which x  belongs 

to any particular fuzzy label is defined by the membership function ( μ ) 

associated with the fuzzy set Money_Left. So for example, LeftMoney _μ  might be 

described as: 

0
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1
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Little_Money Lots_Money

 
Figure 4.2: Membership function of Money_Left  

The crisp values are then fuzzified using these membership functions. Each crisp 

value will belong to different degrees to one or more fuzzy label sets. Recall that 

in Figure 2.14 one potential state for a marketplace agent was 

]3__,12_[1 === BuyToItemsLeftMoneyS . The fuzzification of 

12_ 1 =SLeftMoney  results in 87.0)12(_ =MoneyLotsμ  and 13.0)12(_ =MoneyLotsμ . 

To fuzzify a crisp state, the membership of each state item is fuzzified, and 

typically, the and 13 is calculated to obtain the state’s membership or degree of 

matching. In the case of state 1S of Figure 2.14, crisp state 1S  belongs to fuzzy 

states bS1ˆ  and dS1ˆ with membership 0.87 and 0.13 respectively. All fuzzy states 

nS1ˆ  (where n  is the number of possible matches for 1S ) and there respective 

membership calculations are depicted in Figure 4.3. 

                                                 

13  The minimum of the two values. 
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 Fuzzy 
 State 

Money Left μMoney 

Left 
Auctions Left μAuctions 

Left 
μS1 

Ŝ1a Lots_Money 0.87 Few_Auctions 0 0 
Ŝ1b Lots_Money 0.87 Many_Auctions 1 0.87 
Ŝ1c Little_Money 0.13 Few_Auctions 0 0 
Ŝ1d Little_Money 0.13 Many_Auctions 1 0.13 

 

Figure 4.3: Fuzzification of Crisp State S1 

As explained earlier, in FQ Sarsa the actions are not fuzzified. As a result, the 

selection mechanism operates greedily rather than utilising any sort of fuzzy 

calculation mechanism, such as the centre of mass approach presented in the 

next algorithm. At any given time t , the action that is selected is the best action 

(the one with the highest FQ value) for the most fit fuzzy state ( )ˆ(max tsμ , 

where μ is the degree of matching of crisp state s  to fuzzy state ŝ ).  

 

s = {Money_Left = 12, 
       Item_To_Buy = 3} 
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Figure 4.4: Fuzzy FQ Action Selection 

The FQ value update formula is modified from Sarsa as follows.  

),ˆ(),ˆ( 1111 −−−− = tttt asFQasFQ   (4.1) 
             )),ˆ()ˆ()^,ˆ(( 11 −−−++ ttttt asFQsasFQr μλα  
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Rather than take the max of future rewards, it is replaced with the FQ value of 

the new state action pair reached by applying the current policy - ),ˆ( tt asFQ . In 

other words, ),ˆ( tt asFQ is the state with the highest degree of matching (max 

μ(ŝt)) and the ta  is action chosen following the current policy (i.e. ε-greedy). 

For this algorithm, Berenji’s [BER94] fuzzy action constraints are considered to 

be the μ(ŝt). Therefore the algorithm also uses the fuzzy and  operation of 
),ˆ( tt asFQ  and μ(ŝt). 

FQ Sarsa was presented by the author of this thesis in [TBC04]:  

All ),ˆ( asFQ  values initialised. 
Repeat for each episode (or auction game){ 

Initialize tŝ  (start state for the auction game). 

 Choose ta  from tŝ  using ε  greedy policy. 
 Repeat for each step(auction) in the  
                  episode(auction game){ 

  Take action ta , observe r  and 1ˆ +ts    

  Choose 1+ta from 1ˆ +ts  using ε  greedy policy  

   += −−−− ),ˆ(),ˆ( 1111 tttt asFQasFQ  

         )),ˆ()ˆ()^,ˆ(( 11 −−−+ ttttt asFQsasFQr μλα  

tŝ  = 1ˆ +ts , ta  = 1+ta  

 } 
} 

Figure 4.5: FQ Sarsa Algorithm 

4.2 Fuzzy Sarsa  

The FQ Sarsa algorithm presented above does not utilise fuzzy principles to 

combine actions, it only selects them. Essentially it only concentrates on 

reducing the state space and is not capable of fuzzy rule interaction. To that 

effect, the Fuzzy Q -Learning algorithm presented by Bonarini [BON96] is 
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described in further detail and extended by the author of this thesis to on-policy 

learning.  

Fuzzy Q -Learning and Fuzzy Sarsa use fuzzy representation of both states and 

actions. Their state/action entries do not include crisp actions like FQ Sarsa or 

Berenji’s Fuzzy Q -Learning [BER94]. Figure 4.6 illustrates the fully fuzzy 

state/action pair used by the Fuzzy Q -Learning and Fuzzy Sarsa. In FQ Sarsa, 

the degree of matching is still based on the fuzzy state. However, membership 

functions for the fuzzification and defuzzification of fuzzy actions are also 

required.  

 Fuzzy State Fuzzy Action 
Money Left Auctions Left Bid 
Lots_Money Many_Auctions Bid_High 
Lots_Money Many_Auctions Bid_Low  

Figure 4.6: Fuzzy state action pairs 

An example of defuzzification is Bid_High translating to the crisp action Bid 8. 

This type of fuzzy state action pair is referred to as a fuzzy rule where the fuzzy 

state corresponds to the antecedent of the rule and the fuzzy action proposed is 

the consequent. All fuzzy rules have a strength associated with them. It is this 

strength ( FQ  value) that the algorithms attempt to learn. A crisp state s  

matches a selection, or sub-population, of fuzzy states. A fuzzy rule is defined as 

the combination of fuzzy state ŝ  and the fuzzy action â  that it proposes.  

In the action selection portion, the rule chosen from a sub-population of rules is 

the one with the highest FQ value. Recall that since a crisp state s might match a 
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number of fuzzy states (set )(sFS ) as seen in Figure 4.314, a method is needed 

in order to determine what action to take when all rules could be proposing 

different actions. For all )(ˆ sFSs ∈ , there will be at least one matching fuzzy 

state action pair, or fuzzy rule r . The action proposed for each ŝ , will be the 

greedy action (highest FQ -value) proposed by the fuzzy rule. The final action 

proposed is a weighted average of the actions proposed by each rule that is 

triggered. These actions are weighted by the degree of matching of the crisp 

state s  with the antecedent of the rule. The weighted average is computed using 

the centre of mass approach:  

  ∑
∑

=

==

ni
i

ni
si i

a
a

..1

..1
ˆ

μ

μ
  (4.2) 

where n is the number of fuzzy states matching crisp state s, and 
isa ˆ  is the best 

action (having been defuzzified) proposed by any rule matching iŝ . Any fuzzy 

state with membership > 0 is considered in the action calculation. 
 

  Fuzzy State Fuzzy Action   
μ  Money Left Auctions Left Bid  FQ(ŝ,â) 

 Lots_Money Many_Auctions Bid_High  0.4 0.7 
 Lots_Money Many_Auctions Bid_Low  0.1 
 Little_Money Few_Auctions Bid_High  0.2 0.4 
 Little_Money Few_Auctions Bid_Low  0.6 

 

Figure 4.7: Fuzzy state action pairs with μ and FQ  values 

To clarify greedy action selection, consider the example from Figure 4.7. A crisp 

state matches two fuzzy states ]_,_[ AuctionsManyMoneyLots  with degree 0.7 

                                                 

14  Both Ŝ1b and Ŝ1d match the fuzzy state S1. 
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and ]_,_[ AuctionsFewMoneyLittle  with degree 0.4. Each of these two fuzzy 

states has 2 rules associated with them. For the state 

]_,_[ AuctionsManyMoneyLots , the greedy action will be to Bid_High, since 

that rule has the highest )ˆ,ˆ( asFQ  value. Similarly, for the state 

]_,_[ AuctionsFewMoneyLittle , Bid_Low will be selected. The fuzzy actions 

are now defuzzified to obtain a crisp output. Bid_High is translated via some 

defuzzification function as bid 8 units and Bid_Low as bid 4 units. Thus the 

actual action taken is calculated as follows: 

( ) ( )( ) 5.6
)4.07.0(

44.087.0
=

+
+

=
xxa  

In summary, where FQ Sarsa chooses an action based on selecting the most fit 

fuzzy state ( μmax ) for the current s , and then choosing the action with the 

highest FQ  value; Fuzzy Q-Learning and Fuzzy Sarsa use all fuzzy states with 

a 0>μ  to suggest an action. Each fuzzy state suggests an action based on the 

highest FQ  value and then all suggested actions are combined using Centre of 

Mass. A further example is given in Figure 4.8. 
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 Figure 4.8: Fuzzy Sarsa Action Selection 

Previously in this section, the description of fuzzification and action selection 

was applicable to both Q-Learning and Fuzzy Sarsa. For Fuzzy Sarsa, the update 

formula of Bonarini’s Fuzzy Q-Learning given in Section 2.6.3.2 is updated by 

the author of this thesis as follows: 

)ˆ,ˆ()ˆ,ˆ( 1111
i
t

i
t

i
t

i
t asFQasFQ −−−− =  (4.3)  

            ∑
∀

−−−−++
−−

j

i
t

i
tt

j
t

j
ttas asFQasFQr

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ(( 111)ˆ,ˆ( )ˆ,ˆ(11
ξγαξ  

for all i , where 11
ˆˆ −− ∈ t

i
t Ss  and 1

ˆ
−tS is the set of all fuzzy states with 0>μ  for the 

crisp state 1−ts . )ˆ,ˆ( 11
i
t

i
t asFQ −−  is the value of being in the fuzzy state i

ts 1ˆ −  and 

suggesting a fuzzy action i
ta 1ˆ − . i

tc 1−
ξ  is the fuzzification factor, or the degree of 

belonging ( μ ) of the crisp state 1−ts  to the fuzzy state i
ts 1ˆ − . This is calculated as: 
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  ∑
=

−

−−
=

ni
i

s
as

i
t

i
t

i
t

..1

)ˆ(
)ˆ,ˆ(

1

11 μ

μ
ξ . (4.4) 

To avoid confusion in notation, the algorithm proposed by the author of this 

thesis uses i
t

i
t as 11 ˆ,ˆ −−  as the fuzzy rule, rather than Bonarini’s r  because in this 

notation a fuzzy state and suggested action is the definition of a fuzzy rule and 

r is already used in reference to the reward. In Q -learning, Q  is updated using 

the largest possible reward (or reinforcement) from the next state, whereas in 

Sarsa, Q  is updated with the value of the actual next state action pair as defined 

by the current policy.  

Therefore the primary change from the Fuzzy Q-Learning algorithm is in the 

future contribution section. Fuzzy Q-Learning’s future contribution section is 

defined as: 

  ∑
∈∀ t

j
t Ss

j
j

t asFQ
ˆˆ

)ˆ,ˆ(max ξγ   (4.5) 

for all FQ  values where t
j

t Ss ˆˆ ∈∀ , where tŜ is the set of fuzzy state where 

0>μ  for the next crisp state ts , and â  is the action that the highest FQ  values 

proposes.  

In order to change this algorithm from off-policy to on-policy, rather than take 

the max of future rewards, the algorithm proposed by the research in this thesis 

uses the next set of )ˆ,ˆ( jj asFQ  values. Fuzzy Sarsa’s future contribution 

section is described as: 

  ∑
∈∀ t

j
t Ss

j
j

t
j

t asFQ
ˆˆ

)ˆ,ˆ( ξγ   (4.6) 
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This is done for all FQ  values where t
j

t Ss ˆˆ ∈∀ , where tŜ  is the set of fuzzy 

state where 0>μ  for the next crisp state ts  and the suggested action j
tâ  is the 

action that would be applied using the current policy.  

The Fuzzy Sarsa algorithm was originally presented by the author of this thesis 

in [TBC04]:  

 

All )ˆ,ˆ( asFQ  values initialised.  
Repeat for each episode (or auction game){  
Initialize tŝ  (start state for the auction game). 
Choose tâ  from tŝ  by calculating the centre of mass using 
all tŝ  that match crisp s  and tâ  following ε  greedy 
selection policy. 

Repeat for each step(auction) in the episode(auction 
game){ 
Take action ta , observe r  and ŝt+1  
Choose ât+1 from 1ˆ +ts  using ε  greedy selection policy for all 

1ˆ +ts match 1+ts . 

For all 11
ˆˆ −− ∈ t

i
t Ss  

   += −−−− )ˆ,ˆ()ˆ,ˆ( 1111
i
t

i
t

i
t

i
t asFQasFQ  

              ∑
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−−
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j
ttas asFQasFQr

j
taj
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t

i
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))ˆ,ˆ()ˆ,ˆ(( 111)ˆ,ˆ( )ˆ,ˆ(11
ξγαξ  

  tŝ  = 1ˆ +ts , ât = ât+1 

} 
} 

Figure 4.9: Fuzzy Sarsa Algorithm 

The experiments presented in the research conducted for this thesis used an 

ε-greedy action selection policy. Regardless of what action selection mechanism 

is employed, it is not immediately clear how the algorithm should proceed in the 

exploratory case. In the crisp version of Sarsa, the exploratory action is chosen, 

say bid 8 units, and then the state/action pair corresponding to the current state 

and bid 8 is used directly in learning. As discussed earlier, in fuzzy learning the 
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crisp state matches n fuzzy states. Therefore, there are two possible ways of 

making an exploratory move.  

The first way is that for each match made, a random move is generated and then 

the centre of mass of all the random moves is calculated to determine the actual 

action. The second way is to make a random move instead and consider the set 

of state/action pairs to be updated the set of all matching fuzzy state/action pairs 

)ˆ,ˆ( tt as , where tâ  is the fuzzified crisp action, bid 8.  

Since the agent is trying to learn the specific action required with regards to the 

total set of matching fuzzy states, the second method of exploratory action 

selection is used. Although only empirically tested, early experiments using both 

of these two methods indicated that the first method tends to cause instabilities 

in convergence. The remainder of fuzzy action selection is relatively 

straightforward: if a greedy action is taken, the algorithm observes the results 

and updates all fuzzy state/action pairs that contributed to the selection of tâ .  

For example, in the random case [ ]ba ss 1̂,1̂  matching the current state and the 

random action 3â  being taken, the algorithm updates [ ])ˆ,1̂(),ˆ,1̂( 33 asas ba . If 

however, a greedy action is taken, then the action taken is calculated as the 

centre of mass of the actions proposed by [ ]ba ss 1̂,1̂ . Suppose as1̂  proposed 1â , 

and bs1̂ proposed 3â  and that the centre of mass calculation returned â2. The 

pairs that are updated in the greedy case are the contributing pairs, i.e. 

[ ])ˆ,1̂(),ˆ,1̂( 31 asas ba . After the update is completed, the world is in a new state, 

and the algorithm repeats the above process. 
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4.3 Marketplace  

The following section presents the results of the initial investigation into the 

different fuzzified Sarsa algorithms. Sarsa, FQ-Sarsa and Fuzzy Sarsa were 

implemented in an agent marketplace designed as discussed in Section 1.1. In 

the case of the Sarsa algorithm, the state of the world was considered to consist 

of 3 major categories: Money_Left, Auctions_Left and Items_Left. Actions 

included bids ranging from the offer price to the agent’s maximum price and 

abstaining. Fuzzy states consisted of the same state categories as Sarsa. 

However, rather than storing the crisp representation of the state, states are 

stored as fuzzy labels rather than discrete values. The research presented in this 

thesis initially used four labels for each fuzzy category. Since membership 
functions are more robust when additive, ∑

=

=
ni

x
,1

1)(μ , the functions used were 

triangular15. Triangular membership functions are popular and easy to use to 

design additive functions.  

Confirmation of the robustness of additive membership functions came from the 

results of an earlier experiment using non-triangular and non-additive 

membership functions. During this test, the fuzzy algorithms were not able to 

find a solution, let alone an optimal one. All state variables are fuzzified 

according to the general membership functions given in Figure 4.10. FQ Sarsa 

does not use the action membership function since it utilises crisp bids. 

                                                 

15  Other types of membership functions include trapezoidal, Gaussian and generalised bell. 
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State     Action 

Figure 4.10: Fuzzy Membership Functions for the Test bed 

For the following sections, unless otherwise stated the following settings apply 

to all learners: 

1. The exploration (ε) and learning (α) rates are both annealing parameters. 

Both annealing parameters anneal at the rate of: 

   
ρ
pp −  (4.7) 

where p = {ε or α}, and ρ = 5. The annealing parameter continues to 

decay until it reaches 0.01.  

2. γ = 0.1. 

In the experiment, all games were played with two agents; a fixed strategy agent, 

and a learning agent. A Zero Level Seller is defined as following a fixed strategy 

for the entire game (see [HW98]). The seller allocates items to auctions with a 

fixed policy. The quantity q auctioned by the seller agent at each time interval is 
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fixed and constant. Thus the seller agent holds q auctions in each interval to sell 

q items. 

In the marketplace world initial testing is conducted by fixing the policy of any 

competitor agents. A policy π is fixed or a stationary strategy if ππ =e  for all 

e (episodes) and π  is the original policy. Stationary strategies are useful in 

domains where there is more than one agent interacting with the environment. 

A Zero Level Buyer Agent also follows a fixed strategy for the entire game. For 

the agent marketplace there are two stationary strategies used to test the 

learning agents. These basic strategies are: 

• Greedy Bidding Strategy: This agent bids its’ maximum price 

immediately and continues to bid at its’ maximum price in every 

auction thereafter until it has bought the number of items required. 
If (INEEDED > I) BIDt = PMAX 
else BID = 0 
where P equals the price to bid. 

• Linear Bidding Strategy: As time passes the maximum price this agent is 

willing to bid to, increases in a linear fashion. 

If (INEEDED > I) BIDt = PMIN + INCt 
else BID = 0 
where INCt = (PMAX - PMIN)At/A. I.  

ε  and α  are both annealing parameters and γ  is set to 0.1.  
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 Section Purpose Experiment Setup 

4.3.1 This set of experiments compares Fuzzy Sarsa, 
FQ Sarsa and Sarsa in small agent marketplace 
auction games. 

 Learning parameters fixed. 
 Fuzzy and tile schemas fixed. 

4.3.2 This set of experiments compares Fuzzy Sarsa, 
FQ Sarsa and Sarsa. These experiments detail the 
relative performance of each algorithm against a 
stationary strategy in an agent marketplace.  

 Learning parameters fixed.  
 Fuzzy and tile schemas fixed.  
 Algorithms learn against a 

stationary strategy 
4.3.3 This set of experiments compares Fuzzy Sarsa, 

FQ Sarsa and Sarsa. These experiments detail the 
relative performance of each algorithm against a 
non-stationary strategy in an agent marketplace. 

 Learning parameters fixed. 
 Fuzzy and tile schemas fixed. 
 Algorithms learn against each other 

(non-stationary strategy) 
 

Figure 4.11: Experiment Table for Section 4.3 

The setup described in this section is applicable to all experiments done in 

Section 4.3. A summary of the experiments performed for the remainder of this 

section is given in Figure 4.11. 

4.3.1 Fuzzy Label Partitions 

In test 1 of the algorithms, each agent must obtain 2 items over the 4 auctions in 

the episode. In this test, the price of each item ranges from 5 to 6. The results 

presented in Figure 4.12 are the average over 20 auction games. 
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Figure 4.12: Learners vs. Fixed Linear Strategy in a Very Small Scale Auction Game 

As seen from Figure 4.12, all three algorithms converge upon a solution at 

similar rates. The difference in the algorithms can be seen from the quality of 

solution found. Both FQ Sarsa and Fuzzy Sarsa find solutions that are somewhat 

worse than that of Sarsa. However, since fuzzy algorithms maximise learning 

around boundaries [BON98] and if the boundaries themselves do not represent a 

significant enough portion of the items, then the value of the solution may be 

affected. In test 1, the range of items to buy and the range of prices is less than or 

equal to the range of fuzzy labels used, and therefore do not represent 

appropriate partitions in the fuzzy label boundaries.  

To determine if this was the case a second test was performed leaving all 

parameters constant except price, which now ranges from 5 to 8, and number of 

items to buy, which was increased to 4. Both changes if parameters are 

necessary in order to offer a range of values which are greater than the number 

of labels used.  
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Figure 4.13: Learners vs. Fixed Linear Strategy in Small Scale Auction Game  

As seen in Figure 4.13, the convergence rates remain similar to test 1. However, 

as suspected the value of the solution found for Fuzzy Sarsa and FQ Sarsa is 

closer to that of Sarsa. The original tests involving the fuzzy boundary problem 

were presented by the author of this thesis in [TBC04]. However, the original 

work with the fuzzy algorithms utilised 4 labels rather than 3. Therefore, in that 

work the small game size was adequate for highlighting this issue. For 3 labels, 

it is only in the very small game that this issue is apparent.  

The reason for representing this work with 3 labels is that results presented in 

Section 5.1.1, indicated that the optimal number of labels for the marketplace 

situation is 3. To validate that nothing else about the fuzzy algorithms has been 

altered due to the change in number of labels, and to offer further validation of 

the fuzzy boundary problem solution, the Small test is rerun using 4 Labels.  
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Figure 4.14: 3 and 4 Label Fuzzy Sarsa solutions in Small Scale Auction Game  

Figure 4.14 shows that the 4 label Fuzzy Sarsa learner performs similarly to the 

Sarsa learner, while the 3 label learner finds a significantly better solution than 

either. Fuzzy Sarsa produces unpredictable and less optimal results when the 

number of fuzzy labels used to encode information is greater than the number of 

actual labels. For example, unpredictable behaviour is observed if there are three 

fuzzy labels, LOW, MEDIUM, and HIGH, and only two possible crisp values.  

In these small game size tests, all three algorithms perform similarly. 

4.3.2 Stationary Strategy Algorithm Performance 

The tests presented so far deal with small state spaces. To fully compare the 

capabilities of the algorithms further tests are required in larger games. All tests 

presented in this section are against a linear fixed strategy agent. The first test 
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conducted is in a large game size simulation. For this test, the number of items 

each agent must obtain is increased to 10 items and the number of auctions to 20 

(price remains the same at 7 to 12).  
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Figure 4.15: Large Game – Fixed Strategy Test 

 

As observed from Figure 4.15, both FQ Sarsa and Fuzzy Sarsa now converge to 

a solution quicker than Sarsa. As a result of the increased state space during this 

test, Sarsa has a tendency to get caught in a local minimum if it does not come 

across a good solution during the exploratory stage of this algorithm. 

Furthermore, it is seen that the value of the solution found by Fuzzy Sarsa and 

FQ Sarsa is superior to the one found by Sarsa. In comparison with the results 

presented by the author of this thesis in [TBC04], the change in the number of 

fuzzification labels has indeed improved the performance of both FQ Sarsa and 

Fuzzy Sarsa. In fact, FQ Sarsa now seems to perform as well as Fuzzy Sarsa. To 
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determine if there is any added benefit to the fully fuzzy approach of Fuzzy 

Sarsa, a further test was run in a VLarge16 game. 
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Figure 4.16: VLarge Game – Fixed Strategy Test 

As expected, Fuzzy Sarsa finds a better solution than either FQ Sarsa or the 

Sarsa. The reason for this is apparent: while FQ Sarsa converges quicker, and in 

small games performs similarity to Fuzzy Sarsa (because it has a much reduced 

state space without the fuzzy action combination of Fuzzy Sarsa) its 

representational powers fail and it mimics the solution found by Sarsa. This 

confirms that the purer fuzzy solution presented by Fuzzy Sarsa, does seem to 

maximise transitions along fuzzy borders, allowing it to converge quicker and 

find a better solution than either Sarsa or FQ Sarsa.  

                                                 

16 The complete details for all game size settings can be found in Figure 3.2. 
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4.3.3 Non-Stationary Algorithm Performance 

In order to determine the flexibility of the learning agents, they were next put 

into direct competition with each other. For this test, all parameters (auction size, 

start money, rewards, etc) are kept the same as in the first test. Each learning 

algorithm was tested against the other competitive algorithms in turn. The results 

presented in Figure 4.17 are the averaged price achieved in the final 2000 of 10 

trials. 

0 2 4 6 8 10 12 14

Fuzzy Sarsa vs Sarsa

Fuzzy Sarsa vs FQ
Sarsa

Sarsa vs FQ Sarsa 

End Price

Sarsa FQ Sarsa Fuzzy Sarsa
 

Figure 4.17: Large Game - Direct Competition Test 

As shown in Figure 4.17, given the same learning parameters, Fuzzy Sarsa 

achieves a superior price than its competitors when in direct competition with 

either the Sarsa algorithm or the FQ Sarsa algorithm. The reason the Fuzzy Sarsa 

agent in the Fuzzy Sarsa vs. Sarsa game achieves a better price than that of the 

agent in the Fuzzy Sarsa vs. FQ Sarsa game is explained by Sarsa’s inability to 

explore large state spaces sufficiently under these conditions. FQ Sarsa, because 

of its reduced state space, is more able to react to the Fuzzy Sarsa algorithm. In 

the Sarsa vs. FQ Sarsa test, it is interesting to note that Sarsa and its reduced 
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state version, FQ Sarsa achieve an almost identical end price. However, the FQ 

Sarsa algorithm is more prone to oscillation due to the reduction of its state 

space. As shown in Figure 4.18, this oscillation causes the algorithm to start to 

fail. The average success rate for even FQ Sarsa’s ability to find a solution, 

irrespective of the solution quality, has fallen to a final success rate of 78%. 
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Figure 4.18: Large Game Convergence – Sarsa vs. FQ Sarsa 

To further validate these results, the test was rerun in the VLarge game.  
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Figure 4.19: VLarge Game - Direct Competition Test 
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Figure 4.19 presents the results of direct competition in a VLarge game. The 

results confirm those presented for the Large game in Figure 4.17. 

In the final test, all 3 learning algorithms were evaluated in the same game. Each 

agent must still win the required number of items; however, in order to provide 

the same framework as the previous test, the number of auctions must be 

increased. For example, in the Large game, each agent must win 10 items, when 

3 agents are participating in the auction 30 items are available.  
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Figure 4.20: Sarsa vs. FQ Sarsa vs. Fuzzy Sarsa in Large Auction Game 

In this final test, it is clear that Fuzzy Sarsa once again is the most optimal and 

flexible of the three algorithms. When competing directly with either of the 

other two algorithms it is able to consistently achieve a better price with minimal 

variability in end price. These results are significant because they demonstrate 

Fuzzy Sarsa’s ability to learn effectively against a moving target, the other two 

learning agents. Under these settings the generalisation powers of Fuzzy Sarsa 

enable it to quickly take advantage of the current market conditions. Although 
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not presented here for the sake of brevity, Fuzzy Sarsa experiences none of the 

convergence difficulties that FQ Sarsa encounters, as demonstrated in Figure 

4.18. 

4.4 Summary 

Section 4.1 and 4.2 presented two novel on-policy fuzzy reinforcement learning 

algorithms. Section 4.3 has presented the results of initial testing in the 

marketplace domain:  

The tests presented in Section 4.3.1 indicated a relationship between the number 

of fuzzy labels used and the size of the data set. The result show that the number 

of fuzzy labels used should be greater or equal to the actual data. However, it 

opens the question of how many fuzzy labels are appropriate. Is there a 

relationship between the number of labels used and generalisation abilities?  

Section 4.3.2 and 4.3.3 presented experiments regarding the general capabilities 

of the fuzzy algorithms with respect to the tabular on-policy algorithm Sarsa. 

Specifically these tests indicated that as the state space increases, the purer fuzzy 

logic approach to reinforcement learning presented in Fuzzy Sarsa allows for a 

more robust and correct solution than the reduced state space algorithm 

presented by FQ Sarsa and than the traditional on-policy learning of Sarsa. This 

improvement is seen in both games against stationary learners (Section 4.3.2) 

and games that put the learning agents into direct competition with each other 

(Section 4.3.3).  
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This is an important result since Fuzzy Sarsa works with a significantly smaller 

state space than Sarsa. However, the results presented in this section only deal 

with one domain, does Fuzzy Sarsa perform similarly in other domains?  

Furthermore, as presented in Section 2.6, there are other types of function 

approximation algorithms that are also capable of dealing with reduced state 

spaces and also with generalisation. How significant is Fuzzy Sarsa’s 

performance in comparison? 
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5 Comparison of Function Approximation Techniques 

After the experimentation in the marketplace with the fuzzy algorithms, two 

major issues became apparent:  

1. While the fuzzy algorithms outperformed tabular Sarsa, this 

comparison was not deemed fair since the fuzzy algorithms deal with 

function approximation and Sarsa does not.  

2. The fuzzy algorithms perform reasonably well in the Marketplace 

domain, but could it be extended to work in other domains, including 

domains with continuous state variables? 

To address the first issue, another type of function approximation technique was 

required. After examining the function approximation techniques discussed in 

Section 2.6, tile coding was identified as a good candidate for comparison with 

fuzzy. There are two motivating factors behind this decision. First, the technique 

of overlaying the state space with tilings seemed intuitively similar to fuzzy 

membership functions and second, researchers using tile coding combined with 

Sarsa have recently reported a fair amount in implementations ranging from the 

mountain-car problem [SS96, SUTT96], the complex task of robotic soccer 

[SSK05] and stochastic games [BV02, BV02a]. Consequently, gradient descent 

Sarsa(λ) with tile coding appears to be a reasonable algorithm to investigate both 

its performance in large state space problems, but also its ability to generalise. 

Therefore, the gradient descent Sarsa(λ) with tile coding presented by Sutton 

[SUTT96] was chosen as the third test algorithm. 
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To address the second issue, the mountain-car domain and predator/prey 

gridworld domain simulators were introduced. The mountain-car domain was 

identified as the first test for the fuzzy algorithms, since the gradient descent 

Sarsa(λ) with tile coding had already been implemented [SuttonMC] and the 

results, [SUTT96] published. This domain served as a control domain for the 

gradient descent Sarsa(λ) with tile coding. The predator/prey world was chosen 

because of its differing game dynamics, in that both the predator and the prey 

while in competition, have fundamentally different goals. In the marketplace the 

goal of each competing agent is get the best price for a certain number of items, 

while in the predator/prey environment it is to either eat the prey, or avoid the 

predator while eating all the dots. 

This section presents the results of implementing the three different types of 

function approximation algorithms in the three separate control domains 

described in Section 3. Section 5.1 investigates how to set up the generalisation 

parameters of fuzzy labels and the tile coding settings, Section 5.2 will present 

how the parameter settings were determined and Section 5.3 presents the results 

of stationary strategy tests in all three simulated domains. Of particular interest 

in the following experiments is: (1) Ease of implementation (2) Quality of 

control obtained, and (3) Scalability. Figure 5.1 summarises the experiments 

performed in this section. Further details are given in the relevant sections.  
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 Section Purpose Experiment Setup 

5.1 To determine the good generalisation parameters 
for fuzzy memberships and tile schemas. 

 Learning parameters fixed. 
 Fuzzy and tile schemas change. 

 
5.2 To determine good learning parameters for each 

algorithm in each simulation domain.  
 Learning parameters change. 
 Fuzzy and tile schemas fixed.  

5.3 This set of experiments compares Fuzzy Sarsa, 
gradient descent Sarsa(λ) with tile coding, and 
optionally FQ Sarsa. These experiments detail the 
relative performance of the algorithms in the three 
simulation domains. 

 Learning parameters fixed. 
 Fuzzy and tile schemas fixed. 
 Algorithms learn against a 

stationary strategy. 

 

Figure 5.1: Experiment Table for Section 5 

5.1 Effects of Generalisation 

One of the pertinent issues in both fuzzy and tile coding, is how to set up the 

type of generalisation that occurs. With fuzzy, generalisation is based on the 

design of the fuzzy membership functions. In tile coding, generalisation is 

primarily based on the shape and width of the tile. The following sub-sections 

demonstrate some of the initial work that went into designing the fuzzy 

memberships and tile coding schemas in each of the target domains. 

5.1.1 Fuzzy Labels 

5.1.1.1 Marketplace  

In all three problems one of the initial issues in implementation of the fuzzy 

algorithms is the number of fuzzy labels that should be used in order to represent 

the data. The number of labels used must adequately represent the state space. 

For example, as depicted in Figure 5.2, in the case of the state space parameter 

Auction_Left, is 3, 4 or n labels sufficient granularity for describing how many 
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auctions there are left in the game? Furthermore, is the required granularity 

affected by the state space of the problem? 

described by Auctions_Left 

Many_Left 

Some_Left 

Few_Left 

described byAuctions_Left 

Many_Left 

Some_Left 

Few_Left 

None_Left 
 

Figure 5.2: Possible Fuzzification for Auctions_Left 

Researchers in control system theory advocate 3 [JAN91]. However, there 

seems to be no definitive recommendation for fuzzy learning systems. In order 

to investigate the appropriate number of labels to use in fuzzification of a 

learning system a variety of different label combinations are investigated in the 

marketplace and the mountain-car domain. In the marketplace domain the 

variables used are discrete whereas in the mountain-car domain they are 

continuous. This difference is important as it makes the state space of the 

mountain-car domain much larger than the marketplace.  

For the marketplace domain, label combinations of 2, 3, 4 and 5 labels were 

investigated. In all cases, the membership functions are both triangular and 

additive. As a result of the greatly increased cost in the complexity of design, all 

items in the state space and action space for each test, all variables used in the 

system are fuzzified with the same number of labels as indicated in Figure 5.3. 
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Figure 5.3: Triangular and additive membership functions for X Labels. 

Three separate tests at four and five different game sizes were performed by 

each Fuzzy Sarsa learner (i.e. 2 label fuzzy learner, 3 label fuzzy learner, etc). 

The first two tests consist of the Fuzzy Sarsa learner playing an auction game 

against a fixed strategy agent. In the first test, Fuzzy Sarsa plays against a greedy 

agent, in the second against a linear agent, and in the third test, Fuzzy Sarsa 

plays against a Sarsa agent. The reason for conducting three separate tests is that 

the behaviour of each different agent competing against Fuzzy Sarsa is 

significantly different, and thus the game space that Fuzzy Sarsa must learn is 

different in each case. In all tests, each agent has enough money to buy the 

required number of items at the fixed maximum bid price and the allowable bids 

range from 5 to 25 and abstain. All other parameters, such as α, ε, and γ, remain 

as described in Section 3.2. The results presented are averaged over a minimum 
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of 5 experiments and the error bars the 95% confidence intervals calculated as 

described in Section 3.5.  
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Figure 5.4: Marketplace Label Test I: Fuzzy Sarsa vs. Greedy. 

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80

Game Size

Av
er

ag
e 

Pr
ic

e

2 Labels 3 Labels 4 Labels 5 Labels
 

Figure 5.5: Marketplace Label Test II Fuzzy Sarsa vs. Linear. 
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In both test I and test II shown in Figure 5.4 and Figure 5.5, the 3 label 

combination appears to be the ideal choice for the marketplace game. However 

in test II the 2 label combination performs comparably to the 3 label 

combination. However, in the greedy test, the 2 label combination performed 

significantly worse than the 3 label combination. To determine the cause of the 

differing performance of the 2 label combination, consider the behaviour of each 

of the stationary strategies the agent plays against. Figure 5.6 illustrates the 

increasing bidding pattern of the linear strategy and the flat bidding pattern of 

the greedy agent.  
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           Bidding Behaviour until all items won 

   
   

  A
M

O
U

N
T 

BI
D

 

 
Figure 5.6: Marketplace stationary strategy behaviour 

In each case, the shading indicates that the bidding behaviour continues until the 

stationary strategy agent has won the required items. By comparing the policy 

learned over the set of auctions for the 2 and 5 label combinations, it appears 

that although additive membership functions offer a more robust solution, the 

shape of the membership functions plays an important role in the optimality of 

the solution. In the case of the 2 label combination, the agent it is better able to 

play against the linear agent because the optimal competitor policy is to bid 

early and bid late. This bid pattern falls along the boundaries for the 2 label 
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combinations, and thus the 2 label agent performs well against the linear 

strategy. Against the greedy agent, the optimal policy is to bid late and abstain 

early. This policy is further away from the boundaries of the 2 label combination 

and thus is not easy for the 2 label agent to learn. Similarly the 5 label 

combination is able to perform significantly better against the greedy 

combination because the midpoint boundary for the label representation falls at 

the actual midpoint of state space. As a result, the 5 label representation 

experiences a boost in performance when playing against the greedy strategy. 

Based on the stationary strategy tests, the ideal choice so far is the 3 label 

combination. Not only does the 3 label combination perform significantly better 

than the 4 and 5 label combinations, but in both cases where there is a similar 

competitor, the error bounds on the solution found by the 3 label combination is 

considerably smaller. As a final check, a third test against a non-stationary 

strategy was run. Due to the size of state space in the Huge game size scenario, 

this test was only run to the VVVLarge game size. 
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Figure 5.7: Marketplace Label Test III: Fuzzy Sarsa vs. Sarsa. 

As shown in Figure 5.7, the 2 label combination actually outperforms the 3 label 

combination in 50% of the tests. While this result is promising, the 

representational abilities of the 2 label combination are limited. As seen in both 

stationary strategies tests (Figure 5.4 and Figure 5.5) at the Huge level (70 

auctions) the 2 label significantly shifts towards a less optimal policy. In 

examination of the data files for the policy learnt over the set of 70 auctions 

rather than the average price achieved it is apparent that using 2 labels is no 

longer capable of a suitable representation of the state space.  

Since in the majority of cases the 3 label combination is clearly better than any 

other combination, and because the error on the 3 label combination is much 

smaller than its closest competitor, the 2 label combination, further experiments 

in the marketplace domain presented in this thesis use 3 label membership 

functions. 
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5.1.1.2 Mountain-car World 

In order to further investigate the effectiveness of the three different forms of 

function approximation in reinforcement learning, the three algorithms were 

implemented in the mountain-car world described in Section 3.4. 
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Figure 5.8: Membership functions for the Mountain-car world. 

An initial study conducted by the author of this thesis indicated that 3 labels 

were insufficient to model this domain, with the initial attempts unable to find a 

solution. Furthermore, as demonstrated by the central label clustering of velocity 

in Figure 5.9, expert knowledge of the most frequently observed values was 

required. Since the majority of values in the mountain-car problem are clustered 

in the centre, membership function designs that did not take this into account 
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were also unsuccessful at finding a solution. Figure 5.8 depicts the 5 label 

membership combination tested, with a 2 label action function. The 7 label 

combination has similar variable coverage, simply with more labels clustered 

centrally. It also uses a 2 label action function. 

As illustrated in Figure 5.9, for FQ Sarsa there appeared to be little difference 

between the solutions found by 5 or 7 labels. In the case of Fuzzy Sarsa, the 5 

label solution appears to be marginally better than the 7 label solution. 
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Figure 5.9: 5 and 7 Label tests in Mountain-car world. 

One of the first issues in implementing the fuzzy algorithms is careful 

consideration of the design of the membership functions. A number of different 

label combinations were experimented with; the most effective for both position 

and velocity was found to be 5 labels. 
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5.1.2 How to Tile? 

This section describes in detail some of the issues faced when applying tile 

coding techniques to the marketplace and the predator/prey gridworld. It is 

included to provide illustrative detail of some of problems and drawbacks of tile 

coding. The literature on tile coding provides some basic guidance on how to 

address the issues of tile shapes, tiling density and tiling width [SuttonTC and 

SB98]. In regards to tile shape, it appears that, like fuzzy memberships, tile 

shape is primarily based on expert knowledge of the system. Different tile 

shapes promote different types of generalisation. Since the aim is to compare the 

tile coding algorithm with the fuzzy algorithm, the basic tiling shape of a square 

was deemed appropriate for the marketplace world. This tiling shape provides a 

similar overlay to the additive trapezoidal membership functions used by Fuzzy 

Sarsa.  

 
Figure 5.10: The effect of Narrow vs. Broad feature widths from [SB98] 

With regard to tiling density and tiling width, [SB98] provides some insights 

with the example in Figure 5.10. In this example, narrow vs. broad feature width 
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appears to have little effect on the overall function learnt (10240 examples). 

However, broad features have a much stronger effect on initial generalisation 

(10 examples). For both the marketplace and the predator/prey gridworld the 

way the tiles are overlaid is fixed and the resolution and generalisation 

parameters are altered.   

5.1.2.1 Marketplace 

For the marketplace domain, a tiling type of a simple grid was deemed to be 

most similar to the additive triangular membership functions already used by the 

fuzzy algorithms. Therefore each tile in the marketplace is described as 

)( MAI ••  where I  is the number of items the agent currently has, A  is the 

current auction number, and M  is the amount of money the agent has. In order 

to determine the actual tiling width (generalisation) and resolution (number of 

tilings) settings in the marketplace, a scanning program was written to identify 

potentially suitable settings. This program scanned through different tiling 

numbers with different tiling widths. At each setting it ran one simulation of 

each game to 2000 episodes and compared it with the other results. The top 10 

settings of two sizes of auction games were isolated and the top 6 in common 

were chosen to complete the full 10 game tests. In this experiment, each tiling 

combination competes only against the fixed strategy agent.  
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Figure 5.11: Tile Tests in Large (top) and VVVLarge (bottom) Marketplace. 

Figure 5.11 presents the results of these tests in a Large and VVVLarge 

marketplace in a linear strategy game. Tx-Wy  indicates the number of tilings 

used and their width. For example the first series labelled T2-W2 is of the tile 
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coding agent with tile widths of 2 and the number of tilings made over the state 

space set to 2. 

The first point to address in analysing these two experiments is the different 

entry points of the 6 different tile/width settings (at 500 episodes). All 6 settings 

are competing in the same marketplace setup, including the use of the same 

initial start seed. One of the advantages of function approximation methods is 

the ability to abstract newly learnt data to other states and this abstraction 

quickly affects the states visited.  

 

T5S1 = T52 T97 T2 

T47 T32 T987 T2 S2 =  

All values for these tile 
get updated! 

The set of tiles that matches the state S1 

First Sample Episode: 

New Episode (previously never visited): 

Already know 
something about 
this state, even 

though it has never 
been visited! 

 
Figure 5.12: Stickman Generalisation. 

As depicted in Figure 5.12, when an agent receives a reward in a particular state, 

each tile that represents it receives a proportion of the reward. When the agent 

visits a completely new state, some of the information learnt in the original state 

may already be influencing it. In the case where the new state has one or more 
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tiles in common with the previously visited state, that information will 

immediately affect action selection. The agent in the new state already has 

enough information to narrow down the possibilities in its greedy state selection.  

The section of state space initially affected by this generalisation is directly 

related to the width of the tiles overlaying the state space. 
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Figure 5.13: Tilings/Width Exploration Example. 

Since 3-dimensional state/action selection is difficult to visualise, Figure 5.13 

uses a very simplified state space example to illustrate the rapid effects on states 

visited as a result of differing state space overlays. The example uses only one 

state variable and two action variables. At the start, all tiles are initialised to their 

default value. In Ep 1, the current state is mapped to tiles as illustrated by the 

cylindrical intersections through the tiling space. There is an intersection through 

the tiling space for each possible action. In the 2x2 case, the state space is 

represented by the right most tile in both tilings. In the 2x4 case, the same state 

falls into the 3rd (out of 4) tile in both tilings.  At this point, the greedy action 
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would likely be chosen; however since all values are the same, a random action 

is chosen instead. This action is indicated by the single cylindrical intersection in 

the state/action space at Ep 2 corresponding to selecting Action A. The 

reinforced or affected tiles are highlighted in green. At Ep 3, although the start 

state is identical in both tiling combinations, the greedy actions chosen by each 

combination are already different. In the 2x2 case, the reinforced tiles already 

affect the greedy decision, whereas in the 2x4 case there are no affected tiles and 

thus a random decision is taken. In both cases, at an exploration factor of 0.03, 

the majority of future action selections will be greedy and thus occur around 

positively influenced tiles. This causes the agents to favour known solutions 

until exploration pushes them in another direction. This analysis agrees with the 

observation made by [SB98], that “With broad features, the generalization 

tended to be broad; with narrow features, only the close neighbors of each 

trained point were changed, causing the function learned to be more bumpy.” In 

the marketplace environment, the training of close neighbours at the stages 

analysed has a greater effect on the speed of overall movement towards an 

improved solution.  Thus, the different starting points of the six combinations 

are explained by the different way each setting intersects the state space and then 

by the clustered exploration around the first solution found. In all cases 

exploration does eventually push them out of the local minima.  

The final point to consider with regard to this issue is the fact that in an auction 

game the start state of the game is always the same. As stated, there is only a 3% 

chance of exploration once an initial solution is found. In the case of a coarse 

tiling over the state space, an exploratory move further into the game has a much 

greater chance of affecting the initial move, than the late exploratory move of a 
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finer tiling. Figure 5.14 depicts the first 50 games of 4 of the combinations. The 

combinations have been chosen by their Width settings. The quicker move 

towards a smaller price indicates that the coarse width of 2 (T2W2) is greater 

affected by exploratory intermediary moves than the finer width of 5 (T32W5). 

As indicated by the confidence intervals in the figure, T2W2 also suffers from 

greater oscillation in its bids, and T32W5 less, as a result  
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Figure 5.14: First 50 episodes of Tile Tests. 

Finally in this section, based on the experiments of Figure 5.11, a tile/width 

combination must be chosen for further experimentation. In the VVVLarge test, 

the T2W2, corresponding to 2 Tilings with an overlay of 2x2x2 (or 0.5 

granularity) performs better about 50% of the time, than any other tilings/width 

combination. In the Large test, this improvement was less marked, however it is 

the only tiling that appears to have any comparative improvement. A further 

reason for choosing such a coarse tiling is that it is expected that the ability to 
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generalise quickly (i.e. have broad features) will be important in a 

coevolutionary scenario. 

5.1.2.2 Predator/Prey Gridworld 

Figure 5.15 shows the results of a study into tiling resolution in a gridworld. In 

this study, the general shape of the tiles has been fixed and the tile width and 

number of tilings has been altered. This experiment is run in a 5x5 tile world, 

with the state variables x: width of the current grid, y: height of the current grid 

and t:  time. The tiles used in this world 

are )()()( TimeYXTimeYTimeX ••+•+• . In the case of the first two 

combinations, because X and Y are finite (for this experiment 5, and others with 

the range 3 – 15), X and Y are used as is, one tile per value. This means that 

there is no generalisation between positions in the grid. In the final combination 

)( TimeYX •• , generalisation between tiles is used. The x axis of the surface 

maps indicates the width of the time tilings ( tg ). For example, 25=tg  results 

in fairly wide tilings of 25 time units each whereas 5=tg  results in narrower 

tilings of 5 time units each. The y axis of each surface map in Figure 5.15 is the 
granularity of the XY tilings xyg . For example, if 5.2=xyg  the x and y state 

planes are divided into tiles that are 2.5 units wide. If the 0.1=xyg , no 

generalization between  x and y  coordinates is used. For all three combinations, 

time is tiled.    

The results presented in the surface map are the final average moves of 5 trials 

of each XY/time setting for 8 different tiling settings. The lighter shades indicate 

the better solutions and lower error. 
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Figure 5.15: Tile Tests in Predator/prey gridworld. 
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The results presented Figure 5.15 are those that are useful in the current 

discussion. Further tests were performed at higher tiling levels, but these tests 

indicated that at the current settings learning was too slow to achieve a good 

solution. Since only 9 tilings were used in the mountain-car world, it is 

reasonable to expect that 12 tilings should be more than adequate for 

representing this domain. The full results for all tiling tests performed can be 

obtained in Appendix I. For all numbers of tilings it is evident that the width of 

the time tiles most affects performance, with the narrowest tiles ( 5=tg  or 

6=tg ) being the worst performing.  
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Figure 5.16: Tile Tests in Predator/prey gridworld. 

From the results present in Figure 5.15, the 7 best settings were chosen for 

further tests. Figure 5.16 shows the weighted average moves of 10 experiments 
at each listed number of tilings (3, 6 or 9), tg  and xyg  settings. The results are 

weighted according to the stability of the solution – a setting that has a 95% 

success rate will get a lower weighted move rating than one with 65%. The tile 
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setting of T3-Tr25-X2.5 corresponding to 3 tilings with 25=tg  and 5.2=xyg  

clearly performs the best from the 7 tilings. However, one other tile setting was 

marked for extra test in parameterisation because 3 tilings only corresponds to 

one tile per input combination; 1 for each )(),( TimeYTimeX ••  and 

)( TimeYX •• . Therefore the best setting where 3>T  was also chosen: T9-

Tr25-X1.0. 

5.2 Parameterisation  

One of the main concerns regarding the previous work is in the issue of 

parameterisation. Although initial spot tests indicated that the original choice of 

α, ε, and γ was quite reasonable, further investigation was warranted. Following 

guidance from much of Suttons work, such as [SSK05], a “good enough” 

approach to parameterisation was adopted. This approach aims to find 

reasonable parameter settings, rather than necessarily the best ones. The 

parameters presented in Section 3.2 were originally chosen based on Vidal’s 

work with agent marketplace learning [VIDD97 and  VID98] to be “good 

enough” for all 3 learners, however because of the different behavioural nature 

of some algorithms the best “good enough” parameter for one algorithm may not 

be the best for another. 

The following two sub-sections present the parameterisation tests for the 

marketplace and the predator/prey gridworld. Parameters for the mountain-car 

world were ported with the original code and fixed as such for benchmarking.  
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5.2.1 Marketplace Parameterisation 
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Figure 5.17: Effect of different γ  values in Large Marketplace  

In the first parameterisation test the following parameters were fixed: α = 0.15 

and ε = 0.02. Figure 5.17 illustrates the average price achieved by each 

algorithm over ten tests of 10,000 runs using three different γ  settings. All three 

algorithms exhibit very little difference in average price due to changing γ . 

Fuzzy Sarsa is the only algorithm where any one setting might offer any 

improvement. However, since Fuzzy Sarsa appears to have a very minor 

improvement with γ  = 1.0, and γ  = 1.0 is the simplest case for debugging (a 

full one step backup), further marketplace experiments use this value. 

For the parameter settings of α and ε, a scanning program was written to 

determine the appropriate targets settings. For all three algorithms, an ε range of 

0.02 to 0.05 offered an adequate amount of exploration in this domain. For α, 

the range between 0.05 and 0.25 were identified as target values. In order to 

determine the relationship between these parameter settings, each algorithm was 
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run against a linear fixed strategy, at each different parameter combinations in 

the target ranges, for 5 tests. 
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Figure 5.18: Effect of different α and ε values in Large Marketplace  

The results in Figure 5.18 are the summed totals of the average price of each 

algorithm at each parameter combination. In the figure, lighter shades indicate a 

lower overall price, whereas darker shades indicate a higher overall price. As 

depicted, the learning algorithms perform best when ε is set to 0.03. For all three 

algorithms, the standard deviation of the prices achieved across the surface of 

the map is between 0.34 and 0.41. This indicates that there are no spots on the 

surface map where one algorithm performed significantly better than another.  
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Figure 5.19: 95% confidence values of different α and ε values in Large Marketplace  

The final setting that was chosen for further experiments in the marketplace was 

the α setting (at ε=0.03) of the best combination between overall price achieved 

while minimizing the overall deviation. Figure 5.19 gives the 95% confidence 

intervals around the overall price achieved from Figure 5.17: lighter shades 

indicate smaller error. For settings of α = 0.1 and 0.15, the overall price 

achieved is better than other settings, but the intervals are larger. For α = 0.25 

the situation is reversed, the overall price is the worst of the good settings, but 

the error is minimal. The setting α = 0.2 is a good midpoint between the two. 

The final settings chosen are α = 0.02, ε = 0.03 and γ=1.0. While there may be 

settings not investigated that are superior, this setting is deemed as “good 

enough”. 
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5.2.2 Predator/Prey Gridworld Parameterisation 

The following section illustrates how the parameter settings for the predator/prey 

gridworld were determined. Unlike the marketplace world, the predator/prey 

gridworld is more volatile. Bad choices at specific times can have a large 

negative impact on the learning of the agent. Thus bad parameter choices 

exacerbate this problem. To that effect the following tests were performed.  

As stated in Section 5.1.2.2, the final two tiling settings identified for 
parameterisation testing were as 3 tilings with 25=tg  and 5.2=xyg  and 9 

tilings with 25=tg  and 0.1=xyg . These settings were chosen as the best 

performing out of 7 “good” settings, in turn identified from a larger tile test 

experiment that tested 16 different tile width combinations with 7 different 

numbers of tilings. As shown in Figure 5.20, the tile coding algorithm in the 

predator/prey world is especially sensitive to γ. However, Fuzzy Sarsa is less 

volatile with different setting of γ; with all results overlapping in their 95% 

confidence intervals.  
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Figure 5.20: The effect of changing γ for Fuzzy Sarsa in 5x5 gridworld  
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The γ setting of 1.0 was chosen since this greatly boosts the tile coding setting 

for 9 tilings. However, due to rather rapid improvement of this setting both 3 and 

9 tilings were used in further parameterisation tests. Figure 5.21 gives the 

averaged weighted results over 5 experiments of the last 5000 episodes at each 

setting for α  and ε . 
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Figure 5.21: Weighted Move/Win Ratio of different α and ε  

for Tile Coding (3 & 9 Tilings) and Fuzzy Sarsa in 5x5 gridworld  

As a result of the α and ε test results depicted in Figure 5.21, further 

experiments will use the tile coding setting of 9 tilings with 25=tg  and 
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0.1=xyg , 05.0=α  and 0001.0=ε  and Fuzzy Sarsa settings of 1.0=α  and 

0001.0=ε . These setting were chosen since they offered the best overall 

solution with the least variability. 

5.3 Learning an optimal policy 

This section is designed to validate the effectiveness of each type of function 

approximation by implementing the algorithms in all three simulation worlds. 

In the mountain-car world, the implementation is straightforward as the learner 

must simply learn a policy which allows them to get up the hillside. As seen 

earlier in the marketplace, but also in the predator/prey world, the problem is 

more complex when the learning agent is interacting with other agents in the 

world. To explore each algorithm’s abilities to find a feasible policy in these 

worlds, the other agent(s) must follow a stationary strategy. The linear and 

greedy stationary strategies for the marketplace have already been introduced 

in Section 4.3, and the stationary strategies for the predator/prey gridworld will 

be introduced when presenting the relevant results. 

5.3.1 Mountain-car World 

In order to further investigate the effectiveness of the three different forms of 

function approximation in reinforcement learning, the three algorithms were 

implemented in the mountain-car world described in Section 3.4. Since the 

mountain-car domain is made up of continuous variables, implementing the 

tabular version of Sarsa is not practical. 
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The gradient-descent Sarsa(λ) with tile coding used 9x9 grid tilings across both 

velocity and position. The settings are further described in [SB98] and 

[SuttonMC]. Using the parameters 0.1=γ , 6.0=α  and 025.0=ε  (with 

annealing for ε to allow the algorithms to settle on a greedy policy), all three 

algorithms find a solution. Figure 5.22 illustrates the stability of the solution 

found over 101 episodes. As expected, since FQ Sarsa is only a reduced state 

space solution, the coarse generalisation makes the action policy quite volatile 

and the furthest from the optimal solution. Fuzzy Sarsa does significantly better 

and is able to achieve a much more stable solution. However, gradient descent 

Sarsa(λ) with tile coding clearly achieves the most optimal and stable solution. 

The error on the solution is so small that it can not even be seen on the graph. 
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Figure 5.22: Stability of solution in Mountain-car problem 

The final area investigated in the mountain-car world is the final action policy 

for each algorithm as illustrated by Figure 5.23. Although it is clear from the 

previous figure that gradient descent Sarsa(λ) with tile coding is clearly the more 
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powerful algorithm it is also useful to investigate the final policy in order to 

illustrate its powerful generalisation capabilities in comparison with the fuzzy 

algorithms. As demonstrated by the three action selection policy surface maps, 

the policies learnt have broad areas of similarity. However, the policies learnt by 

the fuzzy algorithms lack the finer distinctions of the tile coding solution. 

-0.07 .07
-1.2

.6

Velocity

P
osition

FQ Sarsa Action Policy

-0.07 0.07
-1.2

.6

Velocity

P
osition

Fuzzy Sarsa Action Policy

 

-0.07 .07
-1.2

.6

Velocity

P
osition

GD Sarsa TC Action Policy

 
Figure 5.23: Final Action Policies for Mountain-car world. 
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5.3.2 Marketplace World 

After the experiments described in Section 5.2, the parameters for the following 

section were fixed at α = 0.2, ε = 0.03, and γ= 1.0. The membership functions 

for the fuzzy algorithm remain as described in Section 4.3 and the tile coding 

setting used has a granularity of 0.5 (as shown in Figure 5.24) with 2 overlaid 

tilings. This setting was determined as discussed in Section 5.1.2.  
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Figure 5.24: Tile Coding Strategy for the Marketplace 

For the experiments in this section the VVVLarge setting in the marketplace is 

used. This setting gave a state action space of 8,787,366 combinations. Each 

function approximation learner is tested against each of the stationary strategies, 

Linear and Greedy. The total time of these trials was increased from 10000 to 

20000 and thus the following graphs have been smoothed at an increment of 

500. 
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Figure 5.25: Agents against a Linear Strategy in VVVLarge Auction Game 

10
11
12
13
14
15
16
17
18
19
20

500 20000
Episodes

A
ve

ra
ge

 P
ric

e

Fuzzy Sarsa FQ Sarsa Tile Coding
 

Figure 5.26: Agents against a Greedy Strategy in VVVLarge Auction Game 

Both the Linear and Greedy Test show that the FQ Sarsa algorithm is not stable 

enough to warrant further investigation. The average price achieved oscillates 
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and does not improve significantly from the start of the auction game. This is not 

a surprising, given the coarse nature of the state space for this algorithm.  

In the case of Fuzzy Sarsa and the gradient descent Sarsa(λ) with tile coding, 

Figure 5.25 indicates that both algorithms perform similarly when competing 

with a fixed linear strategy17, whereas Figure 5.26 indicates that the solution 

found by tile coding offers a small, but significant improvement over that of 

Fuzzy Sarsa when competing against a fixed greedy strategy. Figure 5.27 shows 

the results of increasing the complexity of the problem. In this test, both Fuzzy 

Sarsa and tile coding are required to find a solution with two stationary agents 

rather than just one. To add even more complexity to the game space, two 

different stationary strategies are selected. As indicated in Figure 5.27, when the 

game becomes more complex, Fuzzy Sarsa seems to gain some advantage over 

tile coding. 

                                                 

17 The linear and greedy stationary strategies were defined in Section 4.3. 
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Figure 5.27: Agents against a Greedy and Linear Strategy in VVVLarge Auction Game 

Before investigating these two algorithms in the context of coevolution in the 

marketplace domain, an investigation into their effectiveness in the 

predator/prey gridworld is given. 

5.3.3 Predator/Prey Gridworld 

From the previous sections, the reduced state space algorithm FQ Sarsa was 

deemed to be unstable, but both the Fuzzy Sarsa and the gradient descent 

Sarsa(λ) with tile coding seemed to offer similar benefits in the marketplace 

world. It was suspected by tile coding’s slightly better performance in both the 

mountain-car world and the greedy stationary strategy test, that tile coding is the 

more powerful modeller, however further investigation into these two 

algorithms was warranted. The predator/prey gridworld environment has been 

described in Section 3.3. In order to investigate the two algorithms in the 

gridworld, a stationary strategy was defined.  
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The stationary strategies for both the predator and prey are defined as: 

• Corner Strategy: This agent follows the boundaries of the maze and 

continually circles the grid. 

 
Figure 5.28: Corner Strategy in a Gridworld 

As discussed in Section 5.1.2.2, the pursuit world is broken into three OR groups 

of tiles. All previous parameterisation for the predator/prey gridworld was done 

assuming the learning agent is the prey. The reason it was done this way is that 

being a predator is a much easier problem to learn than learning the more 

complex problem of avoiding the predator while still eating all the dots.  

Similarly setting appropriate rewards in this domain can cause difficulty. In 

early tests, excessively punishing the prey agent for running out of time caused 

the agent to maximise its reward firstly by staying alive as long as possible and 

secondly by committing suicide if it thinks the allowable time is about to elapse. 

The prey agent becomes so concerned about the very negative rewards of being 
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eaten and running out time, that it neglects the actions that would result in a 

more positive outcome18.  

The tiling scheme was designed as follows: The tilings are divided into 3 equal 

sized groups described as )()()( TimeYXTimeYTimeX ••+•+• . The number 

of tilings indicates how many tiles are dedicated to each or generalisation. For 

example, if there are 3 tilings then 1 tile is dedicated to )( TimeX • , 1 tile to 

)( TimeY •  and 1 to )( TimeYX •• . The final tiling scheme is illustrated in 

Figure 5.29. 

                                                 

18 Such as eating all the dots! 
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Figure 5.29: Tile density and width  

This tiling structure allows the agent to make decisions base on its current X 

location and time, Y location and time and finally the XY location and time. 

From experiments presented in the previous 2 sections, the chosen settings are 9 
tilings (3 of each tiling depicted in Figure 5.29) with 25=tg  and 0.1=xyg , 

05.0=α , 0001.0=ε and 0.1=γ . 
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The fuzzy membership functions were chosen for their similarity to the tiling 

structure. To allow the fuzzy agent to have similar kinds of generalisation 

powers the following 4 label membership functions were needed:  

• X location: The agent’s location along the X axis. 

• Y location: The agent’s location along the Y axis. 

• Time with respect to the gridsize: Time divided by the gridsize. This 

allows the agent to make the same inferences as the tile coding tile set 

for )( TimeYX •• . 

• Total time: The current time with respect to the total time allowed.  

The general membership for these four state variables and the action set is 

described by:  
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Figure 5.30: Fuzzy membership for 5x5 predator/prey gridworld 
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Figure 5.31: Tile Coding and Fuzzy Sarsa against fixed strategy prey  

in 5x5 predator/prey gridworld 

Figure 5.31 gives the results over 10 experiments run to 10000 episodes of both 

agents learning to catch a stationary strategy prey. As shown, the 95% 

confidence intervals for both agents are insignificant – both agents reliably find 

the optimal solution quickly, with almost no deviation.  

As mentioned learning to be the predator against a fixed stationary strategy in 

this domain is a simple task. A more complex one is for the agent to learn to be 

the prey. Figure 5.32 shows the results of each learning agent as the prey against 

a fixed strategy predator. Since this is a more complex task, the results presented 

are over 10 experiments run to 15000 episodes. 
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Figure 5.32: Tile Coding and Fuzzy Sarsa against fixed strategy predator  

in 5x5 predator/prey gridworld 

As shown in Figure 5.32, both the tile coding agent and the Fuzzy Sarsa agent 

find a reasonable solution. The solution quality for both agents is very similar. 

The results for being the prey in the predator/prey gridworld again confirm the 

results seen in the mountain-car domain and in the marketplace domain.  

Figure 5.33 illustrates further the effectiveness of the tile coding agent and the 

Fuzzy Sarsa agent. The results presented are the average win ratio of each agent. 

The average win ratio is defined by how often the agent completes the task at 

hand (eats all dots before time up). Fuzzy Sarsa is quicker to converge to a 

winning solution.  
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Figure 5.33: Tile Coding and Fuzzy Sarsa win ratio against  

a fixed strategy predator in 5x5 predator/prey gridworld 

5.4 Summary 

This section has presented the results of stationary strategy tests of Fuzzy Sarsa, 

FQ Sarsa, and gradient descent Sarsa(λ) with tile coding. It has shown that FQ 

Sarsa is unstable for most large problem domains. Fuzzy Sarsa and gradient 

descent Sarsa(λ) with tile coding both offer good methods of function 

approximation in all three test domains. In a stationary environment, the 

approximation found by the tile coding technique appears to offer marginal 

improvement and better stability over the fuzzy technique.  



  

154 

The results presented in section also extend the recent (2005) finding of Booker 

in [BOOK05]. In that work, tile coding was compared with a learning classifier 

system called XCS [BW01]. There are three important differences between the 

research presented by Booker and the research presented in this section. Firstly, 

XCS is a learning classifier system, in that it learns and evolves, the research of 

this thesis has focused on the reinforcement learning aspect of LCS, and more 

specifically the fuzzy reinforcement learning of a LFCS. Secondly, this section 

has used control problems rather than prediction problems19. The final difference 

is an algorithmic one; as pointed out by [CCB04], an important difference 

between the LCS XCS and Bonarini’s LFCS ELF [BON96a], is that in XCS 

there is consideration of competitive actions whereas in Bonarini’s proposal the 

focus is on the interaction between the state portion of the rule20.  

Therefore, the results presented in the previous section have extended those 

presented by Booker in two ways. First, it shows similar amounts of function 

precision and smoothness for the tile coding technique in the control problems 

used in this research with the prediction problems used by Booker. Secondly, 

although the research presented in this thesis only uses the fuzzy reinforcement 

learning of a LFCS, the results indicate similar findings for the control function 

learnt by Fuzzy Sarsa, to that of the prediction problem learnt by XCS. In both 

                                                 

19 This research has presented the background in terms of control problems, reinforcement learning for 
prediction problems is generally classed as an easier problem than that of control. [SB98] also include the 
relevant prediction algorithms for all the types (DP, Monte Carlo, etc.) presented in Section 2.  

20 A fuzzy rule is made up of the antecedent or state, and the consequent or action. 
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cases, the learnt function is more bumpy than the tile coding solution and does 

not exhibit the same fine details as the tile coding technique.  

The research presented in this thesis has used control problems for algorithm 

testbeds. Therefore the next natural extension to the results presented in this 

section, is to analyse how the two algorithms, Fuzzy Sarsa and gradient descent 

Sarsa(λ) with tile coding, perform when placed in a multi-agent scenario. This is 

the topic of the next section. 
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6 Effects of Multiagent Competitive Coevolution 

The next logical step after verifying that both function approximation algorithms 

could satisfactorily learn against a stationary strategy is to investigate the 

algorithms capabilities in the context of competitive coevolution. For these 

experiments, the adversarial simulation environments of the marketplace and the 

predator/prey gridworld were considered. In the case of the marketplace 

environment, the two agents competed directly for the same set of resource. In 

the predator/prey gridworld, the competing strategies each took their turn in both 

roles. In other words, in the first experimental set up, Fuzzy Sarsa adopted the 

role of the predator, while gradient descent Sarsa(λ) with tile coding played the 

role of the prey.  

 Section Purpose Experiment Setup 

6.1  
& 
6.2 

To determine the capabilities of Fuzzy Sarsa and 
gradient descent Sarsa(λ) with tile coding in non-
stationary scenarios. 

 Agent marketplace: competing agents 
have same goal. 

 Predator/prey: competing agents have 
different goals. 

 Learning parameters fixed. 
 Fuzzy and tile schemas fixed. 
 Algorithms learn against each other 

(non-stationary strategy). 

 

Figure 6.1: Experiment Table for Section 6 

Figure 6.1 summarises the experiments presented in this section. 

6.1 Marketplace World 

The initial setup for the coevolution tests in the Marketplace World consists of 

VVVLarge marketplace tests. The reason for choosing the VVVLarge 

marketplace was to give each algorithm two separate challenges. The first 
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challenge was for the algorithm to be able to learn in the large state space and 

the second to be able to adjust to the other learner. The length of the test trial 

was increased to 20000 episodes to ensure that the algorithms have enough time 

to learn the gradation of both the combined learning problem.  
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Figure 6.2: Fuzzy Sarsa vs. Tile Coding in VVVLarge Marketplace test 

Figure 6.2 presents the results of a head to head test of Fuzzy Sarsa vs. tile 

coding in the VVVLarge Marketplace. In this experiment, the two algorithms 

were the only two agents competing in the market. There are enough items for 

both agents, and thus the goal of the two algorithms was to learn how to divide 

the items between them. Fuzzy Sarsa clearly achieved a significantly better price 

than tile coding throughout the experiment. Given the tile coding agent’s better 

performance in fixed strategy experiments of Section 5.1.2.1, this poor 

performance was somewhat unexpected. Before concluding that Fuzzy Sarsa has 

more powerful modelling capabilities, the poorer performance of the tile coding 

agent must be investigated. 
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In the previous experiment in the marketplace, tile coding vs. a stationary 

strategy, since there was only one learner, the interactions of the game remained 

constant and therefore the tile coding agent was able to refine its coarse state 

space representation to learn a fairly good strategy to use against a stationary 

strategy. In the coevolution experiment, because more than one agent was 

learning at the same time, the interactions of the game fluctuated. This 

fluctuation makes it more difficult for each agent to learn an optimal solution. 

The confidence intervals of the tile coding agent in Figure 6.2 are much larger 

than that of the Fuzzy Sarsa agent. This indicates that prices achieved by the tile 

coding agent fluctuated more than those achieved by the Fuzzy Sarsa agent. 

Therefore one possible reason for the poorer performance of the tile coding 

agent is that the generalisation and resolution settings chosen by the stationary 

strategy experiment conducted in Section 5.1.2 are not sufficient for the 

coevolution experiment. To determine if the tile coding settings were adversely 

effecting the tile coding agent’s results, the experiment was rerun with three of 

the other candidate settings from Section 5.1.2, and one random setting (T3W3).  
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Figure 6.3: Other tiling settings in the VVVLarge Marketplace coevolution test 

Figure 6.3 presents the averaged price achieved in the last 5000 episodes (out of 

20000) by the tile coding agent and the Fuzzy Sarsa agent when in direct 

competition with each other. For both agents, the optimal price achieved is when 

the tile coding agent is at T2W2.  In this environment, stiff competition increases 

the performance of Fuzzy Sarsa. It pushes the algorithm to carefully refine its 

distinctions between both cooperative state/action pairs (pairs that work together 

to generate a solution) and competitive ones (pairs that contain the same state 

portion).  

Since the speed of learning in each individual tile in the tile coding method is 

dependant on the number of tilings, in one further attempt to boost the 

algorithm’s performance the T8W4 test was rerun with increased α setting. 

Figure 6.4 illustrates the results of increasing the α for only the tile coding agent; 

the Fuzzy Sarsa agent remains fixed at 0.2.  The figure shows the average price 

achieved by each agent over 10 tests of 20,000 runs each.  
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Figure 6.4: Increased α for T8W4 Tile Coding in  

VVVLarge Marketplace coevolution test 

These results indicate that the increased α caused the tile coding agent to 

become even more prone to getting stuck in a local minimum. The increased α 

is of no help to the tile coding agent.  
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Figure 6.5: Fuzzy Sarsa, Tile Coding and Greedy in  

VVVLarge Marketplace coevolution test 
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Figure 6.6: Fuzzy Sarsa, Tile Coding and Linear in  

VVVLarge Marketplace coevolution test 

Returning to the original settings for the tile coding agent, Figure 6.5 and Figure 

6.6 show the results of two 3-agent coevolution tests: the first with both function 

approximation methods and a greedy stationary strategy; the second, with both 

function approximation methods and a linear stationary strategy. In both cases, 

Fuzzy Sarsa clearly achieves a better overall price than any other agent.  

The poor performance of the tile coding strategy is unexpected after its good 

performance against stationary strategies in all three domains. Before 

investigating this further, the algorithms were subjected to coevolution tests in 

the predator/prey domain. 

6.2 Predator/prey gridworld 

The multiagent tests in this environment consist of all combinations of agent 

algorithms in both the predator and prey roles. This results in four different 

combinations: 
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Test Predator Prey 
1 Fuzzy Sarsa Fuzzy Sarsa 
2 Tile Coding Tile Coding 
3 Tile Coding Fuzzy Sarsa 
4 Fuzzy Sarsa Tile Coding 

Figure 6.7: Predator/prey gridworld agent combinations 

In the initial tests, the total episodes per run is increased to 50000 to ensure that 

the results capture any latent emergent behaviours. All results presented in this 

section are averaged over a minimum of 5 experiments. In test 1, as shown in 

Figure 6.4, the Fuzzy Sarsa agents move towards an equilibrium win ratio for 

the first 20000 episodes, but after that, the predator agent is the clear winner. 

However, this graph does not show the full story.  
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Figure 6.8: Win ratio of Fuzzy Predator vs. Fuzzy Prey in a 5x5 gridworld 

As shown Figure 6.9, although the predator is the winner by win ratio, the game 

has settled onto an equilibrium. The maximum number of moves that the game 

has is 125. Therefore, what has occurred is that the prey agent has collected all 
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of the dots it can – the last dot is guarded by the predator agent. This agent 

learns to always move into the wall over a dot adjacent to a wall. In this manner, 

the predator agent manages to stay stationary and guard the dot. It therefore has 

maximised its expected reward, as while its rewards are negative at every time 

step, the penalty for allowing the prey agent to complete the grid is even worse. 

The prey agent has also maximised its rewards, as it has generally collected 20 

to 23 of the dots that the predator is not guarding. Therefore since the reward 

received in an empty square is 0, the longer it stays alive the better. This 

equilibrium point is the game’s Nash Equilibrium. At Nash equilibrium, no 

player can do better by changing strategies unilaterally given that the other 

players don’t change their Nash strategies. At least one Nash equilibrium exists 

in any game. [BO82]. At this point there is no move that will improve either the 

predator or prey’s solution. 
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Figure 6.9: Average moves of Fuzzy Predator vs. Fuzzy Prey in a 5x5 gridworld 
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In test 2, the equilibrium reached is different from test 1. As shown in Figure 

6.10 between the two tile coding agents, the prey is the clear winner. This seems 

to indicate that in this domain the tile coding agent is better at being prey than a 

predator. 
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Figure 6.10: Average moves of Tile coding predator vs. Tile Coding Prey  

in a 5x5 gridworld  

As shown in Figure 6.11, in test 3, the tile coding prey is the clear winner against 

the Fuzzy Sarsa predator. The results for this test are odd as, unlike when the 

Fuzzy Sarsa predator played against a Fuzzy Sarsa prey, it does not learn to 

effectively stay stationary and guard a dot. Instead the Fuzzy Sarsa predator 

guards a collection of 2 or 3 dots. Therefore due to the fine distinctions that the 

tile coding can make, the prey agent manages to navigate around the guarding 

predator and complete the grid.  
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Figure 6.11: Win Ratio of Fuzzy Predator vs. Tile Coding Prey in a 5x5 gridworld 

After the results of Section 6.1 the final multiagent results of test 4 shown in 

Figure 6.12 are somewhat unexpected. As indicated, the tile coding agent as 

predator clearly out performs the Fuzzy Sarsa prey.  
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Figure 6.12: Win Ratio of Tile Coding Predator vs. Fuzzy Prey in a 5x5 gridworld 
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The results presented in test 3 and 4 (Figure 6.11 and Figure 6.12) are 

unexpected after Fuzzy Sarsa’s better performance in the marketplace.  

Test Predator Prey Outcome 
1 Fuzzy Sarsa Fuzzy Sarsa Nash Equilibrium  
2 Tile Coding Tile Coding Prey 
3 Tile Coding Fuzzy Sarsa Predator 
4 Fuzzy Sarsa Tile Coding Prey 

Figure 6.13: Predator/prey gridworld game outcomes 

Figure 6.13 summarises the results of the four tests. In test 1, indicated by the 

Nash equilibrium observed, it was noted that the fuzzy algorithm was equally 

suited to playing either predator or prey. In test 2 where tile coding fulfils both 

predator and prey roles in the gridworld, it consistently solves the game as the 

prey. This indicates that the algorithm and/or settings used for the tile coding 

make it biased towards the prey.  

Test 3 and 4 are still unexplained. In both tests tile coding is the clear winner. It 

is possible that this domain is simply better suited to the tile coding algorithm. 

However, the first observation made regarding this difference is that, in the 

predator/prey domain, the two algorithms use different α  values: The Fuzzy 

Sarsa uses 0.1 whereas tile coding agent uses 0.05. The ideal α  values were 

arrived at in a stationary strategy test with only the prey agent. Therefore, it is 

possible that the values are not actually “good enough” in this setting. Figure 

6.14 shows spot check of the effects of altering α  in test 3: 
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Figure 6.14: Changing α in test 3 of the predator/prey gridworld  

Interestingly, changes to α  in test 3 encouraged the game to move towards the 

Nash Equilibrium. Figure 6.15 presents the results of the same alterations in test 

4. In this case, one change sways the balance towards Fuzzy Sarsa. The other 

setting does encourage better performance from Fuzzy Sarsa – it does actually 

win a small proportion of the time with the setting 0.05, 0.1. 
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Figure 6.15: Changing α in test 4 of the predator/prey gridworld 

During the tests in Figure 6.14 and Figure 6.15, one further point for 

consideration was identified. On empirical observation of the agents, the tile 

coding agent was able to learn very fine moves around the Fuzzy Sarsa agent. 

Fuzzy Sarsa’s inability to learn the correct manoeuvre was interesting. In 
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investigating possible reasons for this behaviour, the original setup of both 

algorithms was reviewed.  

The predator/prey gridworld is extremely sensitive to different kinds of 

generalisation. When designing the tilings, standard tile patterns21 were 

ineffective in this domain. However, although effort to retain similarity between 

the membership functions and the tilings led to the introduction of xy divided 

time and overall time, the resulting design significantly disadvantaged the 

algorithm in this domain. The tile coding agent uses 

)()()( TimeYXTimeYTimeX ••+•+•  to generalise, whereas the fuzzy 

membership can be described as )_( TimeTimeDividedYX ••• . This 

description of the state space for Fuzzy Sarsa lacks the distinction of the tile 

coding scheme. The tile coding scheme has three layers of distinctions, whereas 

the fuzzy scheme only has one.  

While this resulted in a reasonable outcome in the stationary strategy 

environment, when used in a coevolutionary scenario, it is no surprise that the 

tile coding agent was able to outperform the Fuzzy Sarsa agent. Therefore 

further experimentation with α  values would not be advantageous without 

redesigning the base membership function. 

While the tests in this section indicate that tile coding clearly wins with the 

given inequalities between the two agents, important information 

about Fuzzy Sarsa’s abilities in a multiagent scenario were still discovered. The 

                                                 

21 Grid shaped tiles. 
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fact that Fuzzy Sarsa consistently finds the Nash Equilibrium in test 1, shows 

that is more flexible in design than tile coding; given the same settings it 

performing equally well as both predator and prey, whereas tile coding performs 

better as prey.  

6.3 Summary 

The previous sections have presented the results of Fuzzy Sarsa and gradient 

descent Sarsa(λ) with tile coding in two separate competitive domains. In the 

first domain, both agents are competing with each other to achieve the same 

goal. In the second domain, each agent is embroiled in a “to be or not to be” 

battle; each agent is trying to achieve different goals.  

To that effect, Fuzzy Sarsa is a more robust algorithm when it comes to 

competing for the same goal. Although Fuzzy Sarsa loses against a tile coding 

agent with appropriate α  values and good tilings, it is more robust to errors in 

generalisation design and has a wide range of modelling capabilities given a 

particular design. 
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7 Conclusions 

7.1 Conclusions 

The aim of this research was to identify new function approximation algorithms 

in a multiagent setting or coevolution and to analyse their performance. To that 

effect, the outcomes of this research are: 

• The novel fuzzy on-policy reinforcement learning algorithm called Fuzzy 

Sarsa. 

•  A detailed evaluation of Fuzzy Sarsa in comparison with the popular 

technique of gradient descent Sarsa(λ) with tile coding in three separate 

simulation environments. This evaluation demonstrated that the 

performance that both fuzzy and tile coding techniques perform similarly 

in stationary environments. 

• A critical analysis of the performance of both Fuzzy Sarsa and gradient 

descent Sarsa(λ) with tile coding in a coevolutionary setting was given. 

This analysis showed that Fuzzy Sarsa is more robust with regards to a 

competitive coevolution than the tile coding solution.  

This results presented in this thesis has shown that Fuzzy Sarsa is able to 

produce a better and more robust solution in the context of a multiagent system 

where agents are competing for the same goal. It has also indicated that this 

robustness may extend to competition for different goals. Fuzzy Sarsa has also 

recently been successfully applied in resource management for IP networks 
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[SBP05]. Since Fuzzy Sarsa has performed well in this context, this research has 

identified the areas presented in the next section for further investigation. 

7.2 Future Work 

In Section 2.7 a variety of multiagent techniques were presented, some of 

which were developed in parallel to this research. Specifically the approach 

presented in [BV02 and BV02a], may improve the tile coding solution in the 

domains. While the tile coding approach used is similar, the use of a variable 

learning rate would be beneficial. Furthermore, the Fuzzy Sarsa algorithm 

could be adjusted to learn multiple policies and thus these principles could also 

be extended to the Fuzzy Sarsa algorithm.  

Fuzzy Sarsa does not use state eligibility traces like gradient descent Sarsa(λ). 

Therefore an potential improvement to Fuzzy Sarsa is extending it to Fuzzy 

Sarsa(λ) and comparing it with both Fuzzy Sarsa and gradient descent Sarsa(λ) 

with tile coding. [BON98] provides a suggested methodology for this 

extension. 

Further investigation into the different goal competitive coevoultion would be 

beneficial. However, another interesting avenue of further research includes 

investigating the algorithms in a cooperative framework. 

Another recent investigation by [SST05], advocated online adjusting of the tile 

coding parameters. This technique could also potentially be used to improve 

the performance of the gradient descent Sarsa(λ) with tile coding algorithm.  
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A variety of issues in Fuzzy Sarsa provide interesting avenues for further 

research. One issue is to investigate other forms of T-norm for action 

combination. Another possibility is investigating the shape and form of 

membership function. The idea of online parameter adjusting over a set of pre-

defined reasonable functions is also a possibility. 
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Appendix I. Complete Tile Tests 
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Figure I.1: Tile Tests in Predator/prey gridworld. 

Figure I.1 illustrates the higher tiling sizes from the tiling experiments from 

Section 5.1.2. They are not included in that section because they do not add any 

benefit to the results there. As the tiling size went up, the % win ratio 
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 went down, and the average moves achieved went up. An increase in α may 

improve the results for the higher number of tilings. However, since good 

settings were found at lower settings, these tilings are not investigated any 

further.  
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