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Abstract

In order to perform many signal processing tasks such as classification,

pattern recognition and coding, it is helpful to specify a signal model in

terms of meaningful signal structures. In general, designing such a model

is complicated and for many signals it is not feasible to specify the ap-

propriate structure. Adaptive models overcome this problem by learning

structures from a set of signals. Such adaptive models need to be general

enough, so that they can represent relevant structures. However, more

general models often require additional constraints to guide the learning

procedure.

In this thesis a sparse coding model is used to model time-series. Rele-

vant features can often occur at arbitrary locations and the model has to be

able to reflect this uncertainty, which is achieved using a shift-invariant

sparse coding formulation. In order to learn model parameters, we use

Bayesian statistical methods, however, analytic solutions to this learning

problem are not available and approximations have to be introduced. In

this thesis we study three approximations, one based on an analytical

integral approximation and two based on Monte Carlo approximations.

But even with these approximations, a solution to the learning problem

is computationally too expensive for the applications under investigation.

Therefore, we introduce further approximations by subset selection.

Music signals are highly structured time-series and offer an ideal testbed

for the studied model. We show the emergence of note- and score-like fea-

tures from a polyphonic piano recording and compare the results to those

obtained with a different model suggested in the literature. Furthermore,

we show that the model finds structures that can be assigned to an indi-

vidual source in a mixture. This is shown with an example of a mixture

containing guitar and vocal parts for which blind source separation can

be performed based on the shift-invariant sparse coding model.
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“[...] we may consider the idea of building an induction machine.

Placed in a simplified ‘world’ (for example, one of sequences of coloured

counters) such a machine may through repetition ‘learn’, or even ‘formu-

late’ laws of succession which hold in its ‘world’. [...]

In constructing an induction machine we, the architects of the ma-

chine, must decide a priori what constitutes its ‘world’; what things are

to be taken as similar or equal; and what kind of ‘laws’ we wish the ma-

chine to be able to ‘discover’ in its ‘world’. In other words we build into

the machine a framework determining what is relevant or interesting in

its ‘world’: the machine will have its ‘inborn’ selection principles. The

problem of similarity will have been solved for it by its makers who thus

have interpreted the ‘world’ for the machine.”

−K. R. Popper, Conjectures and Refutations



Chapter 1

Introduction

In this thesis we study an ‘induction machine’ to use the term offered by

Popper in the quote above. How can such an ‘induction machine’ ‘discover’

and ‘learn’ ‘laws’ of nature, how can it find structure in its ‘world’ and what

‘constraints’ do we, the designer of such a machine, have to impose? First,

the ‘world’ of such a machine needs to be specified. In this thesis we do not

deal with the coloured counters of Popper’s example but instead use music

recordings. These signals have a great amount of structure and are, in fact,

designed to contain such structures. However, this structure also shows

unpredictable variation, for example the waves of sound pressure produced

by a particular performance vary depending on many quantities of the

instrument, the acoustics of the room, the temperature and the performer.

Higher level structures such as timing and the acoustic energy of notes

also vary between different performances. Our ‘induction machine’ must

account for this variability which is done using probabilistic components

and, in particular, Bayesian techniques.

Extracting information and structure from data seems a trivial exercise

at first. Is it not easy for us to hear and understand spoken language even

in noisy environments and is it not an effortless task to distinguish the face

of your grandmother from most other faces? Only once we start to think

about the computational processes required to achieve such tasks does

it become clear how difficult these tasks are and what an extraordinary

undertaking the human brain performs.

In this thesis we look at one small aspect of extracting and in fact dis-

covering structure from data and investigate one possible approach based

19
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on Bayesian statistics and information theory. The data analysed is mu-

sical audio and we would like to address the following problems: how can

we, with only minor prior knowledge of the actual structure of the data,

extract information from musical signals such as individual notes, musical

score, or distinguish and separate different sources in a mixture?

To progress in the direction of a solution to these questions we have to

develop and study novel computational models. Bayesian theory promises

to offer the best possible solution if we are able to model our data well

and to specify the correct distributions. But even then, the computations

required can only seldom be solved analytically and we are at best left

with a sufficient approximation.

1.1 Thesis Outline

This thesis is divided into three main parts, part I, which introduces the

sparse coding formulation and its extension to the shift-invariant model,

part II, in which three computational strategies are discussed to solve the

shift-invariant sparse coding problem and part III, in which experimental

studies are presented.

The first part starts with a literature survey that introduces the sparse

coding formulation and its relation to other signal processing methods.

This is done in chapter 2, which starts with a more general discussion on

the linear over-complete model before looking at sparse signal approxima-

tions and representations. This is followed by the introduction of adaptive

sparse representations and the sparse coding model. This chapter finishes

with a short overview of previous applications of the sparse coding method

in areas such as image and audio analysis, blind source separation and

biomedical signal processing. The second main chapter in part I is chap-

ter 3, in which the shift-invariant sparse coding model is introduced and

the learning rules for this model derived. This chapter concludes with an

analysis of the advantages offered by the shift-invariant model and a dis-

cussion of the effects on the learned features sampling has if the original

features can occur at arbitrary and continuous shifts.

Part II contains three chapters in which we introduce and study three
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different approximations to the sparse-coding learning rule. In chapter 4

we study analytic approximations and discuss in some detail an algorithm

to find the MAP estimation required in these approximations. Further-

more, we discuss the use of a Gauss Seidel implementation of this algo-

rithm. A subset selection step is introduced that allows the use of the

method for the problems in music analysis studied in this thesis. Finally,

the chapter concludes with a discussion of issues relating to the implemen-

tation of the method. In chapter 5 we introduce an importance sampling

method for sparse coding. This method is based on a mixture prior, which

is a mixture of a Gaussian and a delta function at zero. This method is

faster than other approaches, however, bias is introduced in the learning

rule. The third approach to sparse coding is developed in chapter 6 and

is based on Gibbs sampling Monte Carlo approximations. In this chapter

we introduce a novel mixture prior formulation. Here, a delta function is

used together with a modified version of the Rayleigh distribution. This

prior forces coefficients to be non-negative and is shown to be a conju-

gate prior for the Gaussian mean. A random subset selection procedure

is introduced that guarantees the asymptotic convergence of the method.

The last part of this thesis, part III, presents experimental studies

and applications of the shift-invariant sparse coding method. Chapter 7

presents a detailed analysis and comparison of the three algorithms pro-

posed in part II. Chapter 8 presents an account of different applications of

shift-invariant sparse coding for music analysis. This chapter begins with

an analysis of piano music and investigates, whether or not piano music

can be represented as a linear combination of atomic, note-like features.

This analysis is followed by the application of shift-invariant sparse coding

to such a piano signal and we show the emergence of note- and score-like

structures.

In chapter 9 a comparison between the shift-invariant sparse coding

method and a phase blind spectral method is presented. This chapter

looks in detail at the features and representations found with these dif-

ferent methods when analysing piano music. The shift-invariant sparse

coding formulation is computationally more demanding, however, the rep-

resentation found offers a sample accurate timing of the features, which
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is not found with the phase blind method. Furthermore, the phase blind

method was found to find a number of atoms that could not be assigned

to a single note, but which instead represented chord like structures. The

shift-invariant sparse coding model was found to be less prone to this.

Chapter 10 studies the application of shift-invariant sparse coding to

single channel blind source separation. In order to assign the different

features to each of the sources an unsupervised clustering algorithm is

proposed. The blind source separation performance based on this unsu-

pervised clustering is compared to the performance based on clustering

that utilised prior information. It is found that for the example stud-

ied, the unsupervised clustering method performs nearly as good as the

method that uses prior source information.

1.2 Original Contributions

The main contributions presented in this thesis are discussed in parts II

and III. The following list gives a short overview of the main four points.

• Subset selection

Sparse coding and its extension to shift-invariant sparse coding stud-

ied in this thesis involves computationally extensive procedures. For

the application of these methods to most real world data such as

music, efficient approximations have to be employed. The main con-

tribution in this respect is the introduction of a subset selection step

in the sparse coding formulation. In this thesis we show that such

a method is not only feasible, but also does not degrade the results

significantly, so that the method can be used for the applications

studied in part III.

• Importance sampling for shift-invariant sparse coding

Driven by the need for efficient sparse coding formulations, we in-

troduce and study an importance sampling approximation to the

sparse coding learning rule. This method offers a fast computational

method, however, for the problems of music signal analysis, the bias

introduced with this method becomes significant.
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• Gibbs sampling with a novel positive prior for shift-invariant sparse

coding

An unbiased estimate of the sparse coding learning rule can be devel-

oped using Gibbs sampling methods. Our main contribution here is

the introduction of a novel conjugate prior formulation that enforces

positivity. We propose the use of a random subset selection proce-

dure that conserves the convergence properties of the Gibbs sampler

and which offers good results in practice.

• Application to music

Shift-invariant sparse coding methods have previously only been ap-

plied to video and image data. In this thesis different applications to

audio are studied. In particular it can be shown that shift-invariant

sparse coding leads to representations of a piano recording in terms

of note- and score-like structures. To our knowledge, the work pre-

sented here is the first application of shift-invariant sparse coding to

discover meaningful features that have a correspondence to real world

objects from real world time-series. Furthermore, the applicability of

the method to blind source separation is studied. In order to apply

shift-invariant sparse coding to the blind source separation problem,

we have developed a novel unsupervised clustering algorithm that

assigns the features found to each of the sources.

The work on shift-invariant sparse coding presented in chapter 3 and

the derivation of the learning rule in chapter 4 were developed during the

early research which led to this thesis. However, it was found at a later

stage that this model and the learning rule had previously been published

independently. As some of these publications predate the publications of

the author listed in the next section, these developments are not included

in this section as novel contributions. The literature mentioned is referred

to in the chapters in which the theory is developed.
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1.3 Publications

Work presented in this thesis has previously been published in the follow-

ing journal and conference papers.

• Journal Papers

1. Thomas Blumensath and Mike Davies, “Sparse and shift-invar-

iant representations of music,” IEEE Transactions on Audio,

Speech and Language Processing, vol. 14, no. 1, pp. 50-57,

2006.

Parts of this paper have found their way into this thesis and

contribute to the background in chapters 2 and 3. Some of the

results in chapter 8 and the whole of chapter 10 have also been

taken from this publication.

2. Mark Plumbley, Samer Abdallah, Thomas Blumensath and Mike

Davies, “Sparse representations of polyphonic music,” to appear

in ELSEVIR Signal Processing

Material from this paper is here presented in chapter 9. This

paper was a joint paper and the results presented for the phase

blind methods have been supplied by the second author of the

paper.

• Conference Papers

1. Thomas Blumensath and Mike Davies, “Enforcing sparsity, shift-

invariance and positivity in a Bayesian model of polyphonic mu-

sic,” in Proc. IEEE Workshop in Statistical Signal Processing,

July, 2005

This paper presents the work that can be found in chapter 6 of

this thesis.

2. Thomas Blumensath and Mike Davies, “A fast importance samp-

ling algorithm for unsupervised learning of over-complete dic-

tionaries,” in Proc. Int. Conf. on Acoustics, Speech and Signal

Processing, March, 2005
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The work presented in chapter 5 has mainly been taken from

this paper.

3. Thomas Blumensath and Mike Davies, “On shift-invariant sparse

coding,” in Proc. Int. Conf. on Independent Component Anal-

ysis and Blind Source Separation, September, 2004

This paper discusses the issues which can be found at the end

of chapter 3 in this thesis.

4. Thomas Blumensath and Mike Davies, “Unsupervised learning

of sparse and shift-invariant decompositions of polyphonic mu-

sic,” in Proc. Int. Conf. on Acoustics, Speech and Signal Pro-

cessing, May, 2004

This early paper presents much of the work in chapter 4.

The work presented in chapter 7 and appendix B is currently unpub-

lished.
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Shift-Invariant Sparse Coding
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Chapter 2

Sparse Coding

One of the fundamental tasks in signal processing is to find a representa-

tion of a signal in which the structures, patterns and dependencies of that

signal are made more explicit. One approach is to find a representation

that models a signal in terms of meaningful features or real-world objects.

This can be done by assigning a small number of elementary objects from

a large set of known components or objects to a certain observation. The

number of components or objects assigned to each observation can be ex-

pected to be much smaller than the dimension of the observation itself,

while the set of all known components or objects might be much larger.

The problem is that neither do we know the set of components or objects

a priori, nor do we have a simple ‘linear’ way to find the smallest number

of these components or objects to explain an observation.

This problem is formalised in this chapter under the term of sparse

coding. The concept of sparse coding is the main theoretic formalism

used in this thesis and is therefore discussed in detail here. We start this

chapter by introducing the linear generative model that is the basis for

many signal processing applications and that forms the basis for sparse

coding. Depending on the conditions on the model and the unknown

parameters, different solutions have been presented in the literature, some

of which are reviewed here.

The main concept required for this thesis is sparsity, which is defined

in section 2.2. As the definition of sparsity introduced here leads to an

NP hard optimisation problem, we also review several approximations to

the sparsity measure and survey computational strategies that minimise

these approximations.

27
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Instead or in addition to sparsity, additional constraints can be used to

solve over-complete linear models and we discuss the positivity constraint,

which forms the basis of our work in chapter 6.

Section 2.3 presents a review of strategies used to find sparse repre-

sentations and approximations in the case in which the other model pa-

rameters are known, while the fourth section in this chapter deals with

the problem of adapting the linear model in order to find “optimal” (for

a particular measure) sparse representations for a given class of signals.

In this section we introduce a maximum likelihood formulation, which is

the basis for all algorithms studied in this thesis. Analytic solutions to

this maximum likelihood method are, however, not available and different

approximations suggested in the literature are reviewed.

The current chapter concludes with a survey of different applications

of adaptive sparse representations that had an influence on the research

presented in this thesis. We discuss previous work on image and audio

analysis and also give an interesting application to biomedical data anal-

ysis. In these examples we encounter one of the main problems addressed

in this thesis: The problem of analysing time-series or images by blocking.

2.1 The Sparse Coding Model

This thesis studies methods that can discover features from music record-

ings unsupervised. This means that the salient structure in music is dis-

covered from musical observations alone, without using training examples

in which the structures are labelled a priori. However, such an approach

needs the specification of a model that allows the emergence of structure

and features. The approach taken here is based on a linear generative

model that describes the observation as a linear combination of features.

The model can be written algebraically as:

x = As + ǫ =
∑

k

aksk + ǫ. (2.1)

The vector x ∈ R
M is a block of data taken from the signal under study,

which we want to explain or analyse. This observation block x is modelled

as a linear combination of feature vectors ak, which we also call atoms,
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and which are the columns of the matrix A ∈ R
M×N . The mixing matrix

A is also called dictionary. The vector s ∈ R
N defines the multiplicative

weights of these features. Therefore, each element sk of s is associated

with a single feature ak. The vector ǫ represents observation noise or,

more generally, the error due to the inability of the model to describe the

signal exactly.

The above linear model is used in a variety of signal processing ap-

plications with different constraints and dimensions. If we had training

examples for which the vectors x as well as the vectors s are observed,

this model would become the standard regression problem [93], while for

a known square orthogonal matrix A and no observation noise, the prob-

lem of finding the coefficients s for any observation x is the one dealt with

in standard orthogonal transforms [86]. In the case where A and s are

unknown and M ≥ N , both A and s can be chosen such that the elements

in the vector s become uncorrelated. This is the well known method of

Principal Component Analysis (PCA) [93]. Solving the same problem un-

der the assumption of independence of the elements in the vector s leads

to the standard problem of Independent Component Analysis (ICA) [58].

If N > M we are faced with two problems. Apart from finding the

matrix A as is the central problem in PCA and ICA, we also need to

find a method to compute s for any estimate of A. As there is no unique

solution to this problem in general, additional conditions on the solution

in form of regularisation terms or inequality constraints have to be used.

The main condition used throughout this thesis are measures of sparsity

to be defined later. In this thesis we use the term sparse coding to refer

to the linear generative model in equation (2.1) in which both A and s

are unknown and in which a regularisation term is used to measure and

enforce sparseness in order to find optimal representations.

The problem of estimating A (i.e. of finding the ML estimate of

p(x|A)) requires as a sub-problem the estimation of p(s|x,A). Based

on this estimate, an improved estimate of A can be found so that the de-

veloped approach alternates between estimation of p(s|x,A) and A. Once

A has converged, an estimate of s can be found by finding the MAP or

mean estimate of p(s|x,A).
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If the features ak as well as their associated coefficients sk are unknown,

then the above model has an ambiguity in the norm of the features and the

coefficients s. A rescaling of the features together with an inverse scaling of

the coefficients keeps the reconstruction unaltered. This ambiguity can be

avoided by either restricting the features to unit length or by specifying

the variance of the priors for either s or A. In this thesis we keep the

variance of the coefficients s adaptable and instead restrict the norm of

the features to unit length.

2.2 Sparsity

Informally, the sparsity measure incorporates our belief, that an observa-

tion should be explained with as small a number of features as possible.

A formal definition of sparsity as it is used in this thesis is given at the

start of this section. This definition is followed by a discussion motivating

the use of sparsity. As the definition of sparsity given here leads to an

NP hard optimisation problem, we discuss a range of alternative sparsity

measures, which can be used to approximate the measure of interest.

The algorithms developed in this thesis are based on Bayesian theory.

In order to deal with sparsity in a Bayesian framework, we introduce dif-

ferent prior distributions for s that are equivalent to the sparsity measure.

The Bayesian formulation further allows for an introduction of additional

conditions on the solution. Positivity is such a constraint and its use for

feature extraction is discussed.

2.2.1 Definition, Motivation and Measures for Sparsity

Definition of Sparse Approximation/Representation

Definition 2.1. In the context of this thesis we use the term sparse ap-

proximation/representation to refer to an approximation/representation s

with fewer non-zero coefficients than the dimension M of x.

Formally, we distinguish between sparse approximations and sparse
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representations. A representation exactly describes a signal while an ap-

proximation has some non-zero error term. Sparse representations as de-

fined here, i.e. representations with fewer non-zero coefficients than the

signal dimension are only possible for a small number of signals for any

dictionary A. In this thesis we only deal with sparse approximations and

the term representation is used on occasions to refer to the approximation

coefficients s.

Another often used definition of sparsity is one in which the coefficients

are small with high probability. This idea is related to the different mea-

sures of sparsity discussed below. In Bayesian methods, this definition is

common as these measures often correspond to probability densities that

have most of their probability mass concentrated around zero, but not con-

centrated at zero. However, this definition of sparsity is less well defined

and is not used here, instead the measures associated with these defini-

tions of sparsity should be thought of as approximations to the sparsity

measure as defined above.

Motivations for Sparsity

The main problem studied in this thesis is the extraction of features and

structures from musical signals without the explicit modelling of expected

musical relationships. The number of features and objects in these signals,

such as notes, melodies, rhythms and chords, is small compared to the

samples in the signals. For example, there are only a small number of

notes played during any short time interval of a musical performance. This

is also true for other signals such as images in which objects such as faces

are much fewer than the samples in the signal, as it would be otherwise

impossible for us to distinguish the objects. For example, a short excerpt of

a musical recording of say one second, has, at a sampling rate of 8 000 Hz,

8 000 samples, however, if in this excerpt more than 8 000 different notes

would be played, we would certainly not be able to distinguish between

them. Therefore, it seems natural to look for approximations of a signal

that only use a small number of objects to model the observation. If we

assume the atoms ak to represent objects in the signal, we would like
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to find a representation of x with as small a number of these atoms as

possible.

Another motivation for sparse signal descriptions, which has led to the

original work in this area, is the relationship between sparse representa-

tions and redundancy reduction. The idea of redundancy reduction has

been advocated by Barlow in [3] as a fundamental principle underlying

the primary processing in mammalian neural circuits for perception and

has since been used in the neural coding literature by Fóldiak [37, 39]

who linked the concept of redundancy reduction to sparse coding and by

Harpur [53]. In these references sparse coding methods are used to find

efficient codes. However, a sparse representation does not necessarily lead

to an efficient coding strategy, as for very over-complete representations

much of the coding capacity has to be spent on specifying which coeffi-

cients are non-zero. As stated by Fóldiak in [39], sparse coding relates to

redundancy reduction only for code words of fixed length as found in neu-

ral circuitry in which the number of neurons used to code a signal is fixed.

Fóldiak argues that sparse representations have, in fact, a lower capacity

than distributed codes and that loss of information is only avoided by a

reduction in redundancy in the sparse representation.

Measures of Sparsity

In general, the problem of sparse signal approximation can be solved by

finding a solution to the optimisation problem:

ssparse = arg min
s

g(x,A, s) + λf(s), (2.2)

where g(·) is a term measuring the reconstruction accuracy or approxima-

tion error and f(·) is a measure of sparsity used as a regularisation term.

Throughout this thesis, the approximation error measure is assumed to

be the L2 norm.

A measure of the sparsity of a representation as given in the definition

at the beginning of this section would be the numerosity or L0 norm. This

norm is easy to compute, however, the problem of finding the minimum of

equation (2.2) with this norm is NP-hard [19]. Different approximations

to this norm have therefore been discussed [109, 71, 111, 70]. These papers
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argue that, when using a gradient optimisation method, the measure has

to be concave in order to force coefficients to zero. A limiting case of these

concave measures is the L1 norm. The ‘quasi norms’ Lp for 0 < p < 1

have also been proposed1. Other concave functions are possible.

From a Bayesian point of view, regularisation terms in the form of

sparsity measures can be expressed as prior distributions. The optimisa-

tion problem in equation (2.2) can then be interpreted as the negative log

posterior of p(x, s|A). The L2 reconstruction error term corresponds in

this case to a Gaussian likelihood. If the sparsity measure is one of the Lp

‘quasi norms’ with 0 < p < 1 or the L1 norm, this leads to a generalised

Gaussian prior on the coefficients s. Probably the most commonly used

sparse prior is the Laplacian (a generalised Gaussian with p = 1, i.e. the

prior form of a L1 norm) which leads to convex optimisation problems as

discussed below.

2.2.2 Probabilistic Formulation

The sparse coding model introduced in this chapter is based on the as-

sumption of sparsity of the coefficients s. We have stated that this sparsity

can be expressed using prior densities for the coefficients. In order to fa-

cilitate Bayesian analysis and for further development of the algorithm,

we have to specify the exact form of this prior distribution, together with

the distributions of other parameters of interest.

Throughout this thesis, the error term is assumed to be i.i.d Gaus-

sian. This simplifies the used notation and computation, however, most

algorithms can be extended to the case of non-white Gaussian noise. The

noise variance is denoted by σ2
ǫ and its inverse by λǫ.

In this thesis we use a number of different priors for s that can always

be expressed as factorial priors of the form p(s|θ) =
∏

p(s|θ). The used

factorial form of the prior assumes that the representation coefficients are

independent a priori. This independence links the sparse-coding model to

the noisy and over-complete ICA model and is reasonable for the problems

1It is important to stress that Lp for 0 < p < 1 are not norms as they do not satisfy the
triangle inequality.
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studied here. However, dependence structure can be incorporated into the

prior if such information were available for a certain problem. This added

complexity would then be reflected in more complex algorithms.

The EM algorithm discussed in chapter 4 uses an improper prior of the

form p(s) = s−2. This prior is justified in section 4.2 where it is shown

that it is the marginalisation of the form p(s|τ) =
∏

p(s|τ) with p(s|τ)
being zero-mean normal distributions with variance τ having a Jeffrey’s

hyper-prior. The marginal distribution p(s) can take on a variety of other

distributions such as the generalised Gaussians if 1
τ

has a distribution pro-

portional to τ 0.5pα(α/2) where pα(α/2) is a symmetric alpha-stable dis-

tribution of 1
τ
. The parameter α specifies the exponent in the generalised

Gaussian. See [149] and [145] for more details.

In chapters 5 and 6 we use mixture priors p(s) = u ∗ p(s|u = 1) +

(1 − u)p(s|u = 0) where u is a binary indicator variable with distribution

p(u) = 1
Z
e−

λu
2

u2

. To force coefficients to be exactly zero we use a delta

function for p(s|u = 0). The non-zero coefficients can then have different

distributions. In chapter 5 we let p(s|u = 1) be a zero mean Gaussian dis-

tribution, while in chapter 6 p(s|u = 1) is a modified Rayleigh distribution,

which is introduced in that chapter.

2.2.3 Additional Constraints

In order to find solutions to a particular problem it is of advantage to

use all possible information available to guide the algorithm. Such prior

information can be incorporated to further constrain the solutions of the

algorithm. One powerful but still quite general constraint is the non-

negativity constraint. In addition, we can for certain problems assume

the features themselves to be strictly non-negative. This constraint has

been proposed to extract salient features using the Non-Negative Matrix

Factorisation algorithm of [74, 73]. For most signals, however, the con-

straint of non-negativity alone does not seem able to extract meaningful

features. This led to the development of methods enforcing both, sparsity

and positivity [55, 108, 7].

From a Bayesian point of view, both sparsity and non-negativity, are
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prior beliefs and can be incorporated into prior distributions as in [108].

This approach is taken in chapter 6 in which we introduce a non-negative

sparseness enforcing prior.

2.3 Algorithms for Sparse Approximation/Represen-

tation

In this section we assume that A is known and that N > M and con-

centrate on methods to compute sparse approximations s for given ob-

servations x. Without the use of additional regularisation terms such as

sparsity measures, a linear estimate of s can be calculated as s = Wx

where W is a general left inverse or the pseudo-inverse of A. If N ≤ M

such as in standard ICA and PCA, there is a unique minimum mean square

error solution, however, if N > M there is no unique solution in general.

In fact, there is an infinite number of left inverses W [86] that map the

space of observations x onto the space of coefficients s. However, there

is a unique pseudo-inverse. This is often used in frame theory to find a

solution to the over-complete signal model [86]. However, this solution

spreads the energy of the observation x over all coefficients sk and does

therefore not conform with our belief that an observation can be explained

by a combination of a small selection of features.

Instead of using the pseudo-inverse we can impose additional regu-

larisation terms on the solution of a linear, over-complete system. In

particular we use the regularisation term that enforce sparsity as defined

above. The problem of finding approximations or representations s with

a small number of non-zero coefficients in the linear over-complete model

with a known dictionary A has been studied in different areas of mathe-

matics, statistics and signal processing. In the signal representation and

approximation literature the problem of sparse signal representations with

over-complete dictionaries has been studied as discussed in [86]. In the re-

gression literature, a similar problem is that of subset selection [91]. This

problem deals with the selection of a small number of regression variables

from a larger set of possible regressors.
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Several methods have been proposed for the problem in which A has

known structure. If A is the union of orthogonal bases, it is possible to

select the basis that leads to a minimum norm representation for some

norm [17].

The solutions suggested in the literature can be roughly partitioned

into search methods, greedy methods, Bayesian methods and optimisation

methods. In the following, a short overview covering the most commonly

used approaches is given.

2.3.1 Search Methods

If the matrix A is unconstrained, there is only one known method to find

an approximation with the smallest number of non-zero coefficients. This

method is exhaustive search, which is NP hard [19]. This method has been

used in the subset-selection literature [91] for problems in which N < 25

but is impractical for larger problems. Random search methods have also

been proposed for subset-selection as in [133]. These methods have so-far

only been applied to problems of moderate size and are still too slow for

large scale problems. However, the sampling method discussed in chapter

6 can be seen as a stochastic search and can offer good performance as

is shown in this thesis, but these methods are not guaranteed to find the

optimal solution.

2.3.2 Greedy Methods

One of the fastest and most widely used families of algorithms is the family

of greedy methods. The Matching Pursuit (MP) algorithm is an iterative

method that selects at each iteration the atom ak closest (under some

metric) to the residual reconstruction error [87, 60]. The error is then

projected onto the direction of this atom to calculate sk, after which the

residual is reduced by aksk. An extension of this method, called Orthog-

onal Matching Pursuit (OMP) (also known as forward selection [91]), has

been proposed [86], which, after each selection of an atom, updates the

residual by calculating the difference between x and the projection of x

onto the set of all previously selected atoms.



CHAPTER 2. SPARSE CODING 37

Instead of adding an atom to the set of atoms representing the signal

at each iteration, a backwards selection is possible. In this method the

atom is removed from the set of atoms that leads to the smallest increase

in reconstruction error in each iteration. Hybrid methods of these strate-

gies and incorporation of random selection is also possible [91, 96]. Prior

information has been incorporated into these greedy algorithms by weight-

ing the atoms, giving larger weights to atoms that are more likely [26].

These methods do not have guaranteed performance in general (certain

exceptions are mentioned below) and it was found that these methods are

not applicable to the learning task studied here.

2.3.3 Bayesian Methods

We have shown that the different sparsity measures do have an interpreta-

tion as prior probabilities. This allows us to deal with the problem using

Bayesian theory. From a Bayesian point of view we are interested in ei-

ther the mean or maximum of the posterior p(s|x,A). The problem of

learning the matrix A in the next section also requires the evaluation of

expectations with respect to this probability. For the sparsity measures

discussed above, this posterior does not have an analytic representation

and expectations with respect to this distribution cannot be evaluated

exactly and no closed form solution for the mean is available. Different

Gibbs sampling methods have been proposed in [43, 105, 126] (See also

[132, 25, 88, 52, 2] for similar approaches) that can be used to estimate

the mean or maximum of p(s|x,A).

In order to enforce sparsity as defined above we would like to exactly

set coefficients to zero. This can be achieved by a mixture prior of a

Gaussian and a delta mass at zero as proposed in [88, 153, 126]. This

model is discussed further in chapter 5, while in 6 we develop a similar

model based on a mixture of a non-negative and delta distribution. In

[45] a similar method is proposed in the context of model selection and

Reversible Jump Markov chain Monte Carlo methods [47]. The problem

of sparse signal approximations therefore has strong links to problems in

model order selection.
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Instead of finding the mean of the posterior p(s|x,A) we can also find

a local maximum of the distribution. Annealing methods could be used to

find these maxima when using Markov chain sampler. Another approach

based on sampling methods, which are a form of stochastic search, is to

select the sample for which the posterior is highest. This approach can

be used in the sampling strategies used in this thesis to select the non-

zero coefficients. Based on this selection, the MAP estimation of s can

be evaluated analytically. Another method would be to use maximisation

methods as discussed in subsection 2.2.1. For this optimisation we can

use the methods discussed in the next paragraph. These optimisation

methods use a scale mixture of Gaussians as a prior on s. This model is

discussed further in chapter 4.

2.3.4 Optimisation Methods

If the L1 norm is used (or equivalently if we use a Laplacian prior), linear

programming techniques can be used to solve the optimisation problem.

This leads to the method of Basis Pursuit (BP) [15]. The advantage of

using the L1 norm is that the optimisation problem has a unique optimum

(apart from pathological cases). However, whether this optimum coincides

with a solution of the optimisation problem based on the L0 norm cannot

be assumed in general. However, for dictionaries with certain structures

and certain signals this is true as discussed below.

For general sparsity enforcing norms, other optimisation methods have

been proposed, the simplest of which are gradient descent type algorithms.

More involved optimisation algorithms have been developed such as the

Focal Underdetermined System Solver (FOCUSS) proposed in [110, 112,

69, 95] and [30]. This algorithm is a flavour of the Iterative Re-Weighted

Least Squares algorithm by Nelder [101] (see also [93]) which was used for

sparse signal representations in [21]. The work by Figueiredo [35, 33, 34,

36] shows the equivalence of this method to a family of EM algorithms.

This method is used extensively in this thesis and is therefore discussed

in detail in chapter 4.

A different approach to MAP estimation of the posterior p(s|x,A)
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is to use methods similar to Type 2 maximum likelihood estimates as

discussed in [85]. These methods led to the development of the Relevance

Vector Machine (RVM) [137, 29] and similar methods for sparse signal

representations [150].

2.3.5 Uniqueness and L0 Optimality of BP and OMP

There now exists a number of papers studying the conditions on the ma-

trix A under which OMP and BP find unique solutions and under which

conditions these solutions identify the elements of the optimal solution

to the L0 optimisation problem [140, 139, 138, 41, 42, 49]. The bounds

derived depend on the distance between the atoms ak and the number of

atoms required to represent the signal. In [48] a practical test was pro-

posed to determine whether any given sparse approximation identifies the

non-zero elements of the optimal L0 optimisation problem. Even though

these results are promising, for many common dictionaries and signals the

results do not apply. This is in particular true for the problem studied in

this thesis, in which the necessary conditions on A cannot be guaranteed,

so that these results are not discussed further.

2.4 Adaptive Sparse Approximations

For a given class of signals, the question arises how to choose or adapt the

matrix A such that we can find an optimal sparse approximation of signals

from this particular class. A review of current methods that can be used

to find such adaptive sparse approximations is presented in this section.

Particular attention is given to maximum likelihood (ML) estimation of

the matrix A and other model parameters excluding the coefficients s.

We concentrate here and in the rest of this thesis on maximum likelihood

estimates and do not investigate possible maximum a posterior (MAP)

estimates. For the problems studied here we justify this choice by the

assumption that our prior knowledge of the parameters (in particular of

A) would lead to relatively flat priors. Under these conditions we as-

sume that the MAP estimate and the ML estimate only differ slightly and
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an introduction of additional priors would unnecessarily complicate the

development and distract from the main focus, which is the use of sparse-

ness. The inclusion of priors for the parameters, if these are assumed to

be independent from the prior on s, is straightforward and only requires

the addition of the gradient of the log of this prior to the learning rules

developed in this thesis.

2.4.1 Possible Strategies

Different methods have been proposed to adapt the matrix A and a good

overview is presented in [68].

The first adaptive sparse approximations have been studied in the Neu-

ral Network literature. Inspired by Barlow’s [3] idea of redundancy reduc-

tion, Fóldiak [37, 39] and Harpur [53] developed artificial Neural Networks

able to find sparse approximations of input signals. This work led to the

work on sparse coding in [103, 104] and [80, 78], which is further discussed

below.

Another approach was taken recently in [8] based on the assumption

that vectors in high dimensional spaces are likely to be ‘nearly’ orthogo-

nal. However, enforcing near orthogonality might not necessarily lead to

the emergence of salient features. Other approaches based on geometric

considerations are those in [134, 144, 82] and [135] whilst a method based

on histograms can be found in [136]. These methods exploit the assump-

tion that observations x are clustered around the directions specified by

the features ak when the coefficients s are very sparse. However, for very

over-complete models and for high dimensional observation spaces, these

assumptions are not met in general and the applicability of these methods

to such problems is questionable.

The work in [22] is based on the same assumptions but uses a Gaus-

sian mixture data model to describe the sparse prior distribution of s. A

simplified inference algorithm is then developed making the assumption

that each observation coefficient is due to a single source. This leads to a

model in which the data follows a mixture of Gaussian distribution, where

each source is directly related to a Gaussian in the data distribution.
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2.4.2 ML Estimation of the Model Parameters

The problem of learning the matrix A can be formulated from a proba-

bilistic point of view as the problem of finding the maximum likelihood

estimate of the marginal likelihood [80]:

p({x}|A) =

∫

p({x}|A, s)p(s) ds,

where we use {x} to denote the set of all available data vectors x.

Unfortunately, for the sparseness inducing priors discussed above, this

integral cannot be solved analytically and approximations are required. If

we assume the observations x to be independent we can use the factori-

sation p({x}|A) =
∏

p(x|A) where the product is over all observations.

Instead of maximising this joint distribution, it is possible to use stochas-

tic gradient descent optimisation. This procedure has the advantage that

not all data needs to be taken into account in each step, reducing the

memory demands of the algorithm. Furthermore, it is then possible to

update model parameters ‘on-line’ as new data becomes available. Fur-

thermore, for the maximisation studied here, the gradient, whether with

respect to all data or with respect to a single observation, is not available

analytically. The approximations introduced below can only offer noisy

estimates and naturally lead to stochastic gradients.

In the stochastic gradient descent procedure used here, the matrix A is

updated iteratively using a single data-point in each iteration to calculate

an approximation of the gradient. If the gradient with respect to a single

data point is unbiased, then this method converges to a local maximum

of the likelihood [72].

In order to derive a stochastic gradient learning rule and in order to

gain a better understanding of the problem we rewrite the required gradi-

ent by following [78] and use the notation:

Z = p(x|A) =

∫

p(x|A, s)p(s)ds

and the abbreviation:

E(s) = log p(x|A, s) + log p(s). (2.3)
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An expression for the gradient of the log-likelihood:

L = log p({x}|A)

can be found as:
∂ log p({x}|A)

∂A
,

where the derivative is w.r.t. the individual elements of the matrix A.

The learning algorithm is derived as a stochastic gradient algorithm

for which in each iteration the gradient has to be evaluated for a single

observation vector x and not for the set of all available observations {x}.
This gradient can be written as:

∂ logZ
∂A

=
1

p(x|A)

∂

∂A
p(x|A)

=

∫

1

Z e
E(s) ∂

∂A
E(s) ds

=

∫

p(s|A,x)
∂

∂A
E(s)ds

=

〈

∂

∂A
E(s)

〉

p(s|A,x)

(2.4)

where < · > denotes expectation.

So the gradient can be written as an expectation of the derivative of

equation (2.3) with respect to p(s|A,x). Taking the derivative of equation

(2.3) and assuming ǫ ∼ N (0, σ2
ǫ I) the negative of the gradient can be

written as:

−∂ logZ
∂A

=
〈

σ2
ǫ (x −As)sT

〉

p(s|A,x)
, (2.5)

where the derivative is again with respect to the individual elements of

the matrix A.

2.4.3 Approximations to ML Learning

As the expectation w.r.t. p(s|A,x) cannot be evaluated analytically, dif-

ferent strategies have been proposed. In [72] different conditions on the

estimation of the gradient w.r.t. a single data-point are given that en-

sure convergence to a local maximum. One important condition is the
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(asymptotic) unbiasedness of the gradient estimate. The first two meth-

ods discussed below do not take this bias into account. The Gibbs sam-

pling method in chapter 6, however, does offer such an unbiased estimate

(at least asymptotically). The importance sampling method developed in

chapter 5 also address this problem and is also asymptotically unbiased,

however, for finite samples, the bias can be significant.

Delta Approximation

The simplest approximation of the integral in equation (2.5) is to approx-

imate the posterior p(s|x,A) with a delta function at its maximum as

suggested in [103]. In [57] this approximation was shown to lead to the

joint maximum likelihood estimation of s and A for the complete likeli-

hood function in a missing data problem, in which the missing data is s.

In this case the gradient estimate becomes:

∂ logZ
∂A

≈ σ2
ǫ (x − Aŝ)ŝT ,

where we use ŝ to denote the MAP estimate of p(s|x,A). This method re-

quires the estimation of ŝ, which can be done using the methods discussed

in the previous section.

Gaussian Approximation

Lewicki [80] proposed a Gaussian approximation of the posterior around

the MAP estimate of s which leads to the approximation:

∂ logZ
∂A

≈ σ−2
ǫ ((x −As) − AH−1),

where H is the Hessian of the log-posterior evaluated at the current MAP

estimate of p(s|x,A). Further approximations can be made [80] leading

to:
∂ logZ
∂A

≈ −µA(− ∂

∂s
log p(s)ŝT + I).

This method also requires the evaluation of ŝ, which can again be done

using methods introduced in the previous section.
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Monte Carlo Approximation

Using sampling methods to sample from p(s|x,A) does not only allow us

to estimate the mean or maximum of the posterior as discussed in section

2.3, it also allows us to use Monte Carlo approximations of the expectation

in equation (2.5). This method was proposed in [126, 105]. This approxi-

mation is extensively used in chapters 5 where we develop an importance

sampling method and in 6 where we study a Markov chain sampler. More

details on previous methods based on Monte Carlo approximations are

given in these chapters.

Other Approximations

For completeness we mention two other solutions suggested in the litera-

ture. One of these approaches is to approximate equation (2.5) with the

help of variational methods (see for example [44, 59, 92, 116]). The other

approach was proposed by Engan in [30]. This batch method (Method of

Optimized Directions) is similar to the solution of the standard Wiener

Filter [63], because once the vector s or its correlations with x are known,

or assumed to be known, the model reduces to the standard linear model

with Gaussian noise.

2.5 Applications of Sparse Coding

There are two main areas for which sparse coding ideas have been used:

feature extraction and Blind Source Separation (BSS). BSS based on

sparse signal representations uses the realisation that most signals can be

transformed with an orthogonal transform into a representation in which

expected features occur sparsely. For example, the time domain repre-

sentation of a spoken word is not sparse, however, the frequency domain

representation has only a small number of significant coefficients.

Feature extraction based on sparse coding ideas uses the assumption

that most features do not occur most of the time in any one observation.

This is the assumption used in this thesis. A general overview of previous

applications based on this approach to feature extraction can be found
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in [16]. Possible applications include audio, image, and biomedical data

analysis. Previous contributions to these areas as well as applications to

BSS are given below.

2.5.1 Sparse Image Representations

Analysis of image data was the main application area of the early papers by

Olshausen and Lewicki [103, 104, 80, 78]. This work was motivated by neu-

rological signal processing mechanisms and it was shown that sparse image

representations share many similarities to the representations found in the

primary visual pathways in the mammalian brain. This work showed the

similarity between the features learned from images of natural scenes and

the receptive fields of simple cells in the primary visual cortex V1. Fur-

ther applications to images can be found in [94, 78, 106, 126]. In general,

the features found from image data were localised in space, had a narrow

frequency support and showed a clear orientation. However, in this work

features occurred at fixed positions of the analysed data blocks and only

a small number of features was learned (about twice the number of input

block dimensions). We argue in section 3.3.1 that such representations are

not able to learn reoccurring features in the signal and do in general lead

to features with small space (or time) and frequency support.

2.5.2 Sparse Audio Representations

Audio signals were analysed in the time domain by Lewicki in [76]. In this

work, the signal was analysed in blocks and only a relatively small number

of features was learned. Three types of audio signals were used and the

features learned from each of the signals compared. The used signals

were animal vocalisation, music and natural sounds. The features found

had different time support, with the features learned from music having

the longest time support and the features learned from natural sounds

having the shortest time support. The features were again localised in

frequency. The number of features learned in these experiments was again

only slightly larger than the dimension of the observation space, leading to

the same problems as mentioned in the above section on image analysis.
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Features, such as particular sounds in a mixture, can occur at arbitrary

time locations. This is not reflected in the time domain sparse coding

method. For this reason, sparse coding has been used on audio spectra

in [1, 129, 66]. This representation is phase blind and is less affected by

the arbitrary location of events in audio. Harmonic sounds lead to similar

spectral features if they occur at shifted positions. This was used in [1]

to learn note spectra. These spectral features could then be used to find

a music representation which was similar to the score of the performance.

This method assumes that spectral features add linearly. Furthermore, as

the learned features are phase blind, Wiener filtering has to be used to

reconstruct the original signal from the representation. This can lead to

artefacts when using the method for source separation. In chapter 7 we

compare such a phase blind spectral method to the shift-invariant method

studied in this thesis.

2.5.3 Applications to Biomedical Data

Spare coding can be used for other application domains such as biomedical

data analysis. One interesting example of this is the work in [18], which

studies the activation of different muscles in the frog leg. The question

posed is whether the complex movements of the frog leg can be modelled

as a scaled mixture of a small number of activation patterns. In this work

it was found that different combinations of a small number of features

can explain the activation of the different muscles in the frog leg leading

to a wide range of different leg movements. This problem not only used

sparseness, but also used a positivity constraint as muscle activations are

necessarily positive. Furthermore, muscle activations can occur at arbi-

trary time locations and the algorithm used a shift-invariant formulation

similar to the one introduced in the next chapter.

2.5.4 Sparse Representations for Blind Source Separation

There is a large amount of publications studying the separation of a small

number of sources from a smaller number of observations. In this work,

the number of observations is typically larger than one. The solution
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to this problem is often based on the fact that the representation of the

signal is sparse in some transform domain. A decomposition of the signal

can then be found by constraining the individual sources to have a sparse

distribution. The extensive work by Zibulevsky and co-workers [157, 156,

158, 84, 159, 155] is a good example of this approach. Further examples

can be found in [75, 81].

A Bayesian view of the problem is taken by Rowe in his work [124, 125,

123] and by Févotte in [32] while the work in [22] proposes a Gaussian

mixture model as mentioned previously to solve this problem.

This work requires that more than one observation of the mixture is

available. In chapter 10 we study the use of the model proposed in chapter

3 for the problem of single channel source separation. Models for single

channel source separation were previously introduced in [142] and [61, 62].

These models, however, incorporate prior knowledge of the sources in the

form of source models. Shift-invariant spectral methods for single channel

source separation have been studied in [143] and [130]. However, these

papers assume a linear combination of features in the spectral domain and

do not address the problem of clustering features into individual sources.

Conclusions

In this chapter we have introduced a linear generative model to describe

observations. In order to discover salient structures, restrictive conditions

are forced upon the representation. Sparsity has been shown to be a very

powerful assumption in this context, but positivity, where applicable, can

also produce good results.

We formulated the sparse coding model in a probabilistic framework.

This allows us to specify sparseness measures as prior distributions. Max-

imum likelihood methods can then be used to adapt model parameters

and in particular the set of features. This method leads to (at least local)

optimal solutions. However, exact solutions are not possible and approxi-

mations have to be introduced.

From the section on applications, it is clear that time-series and images

pose additional difficulties. Features can often occur at arbitrary locations.
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The standard method of processing time-series in blocks leads to a model

that has to learn features at all possible shifts. This not only increases

the number of parameters to be adapted, it also requires the number of

features to be large enough to cope with this repetition of features at dif-

ferent shifts. These effects and their influence on the extraction of features

are studied in the next chapter, in which a shift-invariant sparse coding

formulation is introduced. In this formulation, the model is explicitly con-

strained so that features can be used at arbitrary locations to describe the

signal.



Chapter 3

Shift-Invariant Sparse Coding1

In the standard sparse coding formulation introduced in the previous chap-

ter, the observations x are vectors. However, many signals of interest in

engineering, such as audio signals, are time-series. In order to deal with

these time-series, it is customary to partition the sequence into smaller

blocks. These blocks can then be used as the observations x in the sparse

coding model. However, one motivation for the use of the sparse coding

model is to represent the observations as a linear combination of salient

features. In time-series such as audio, it is not generally known a priori at

which time-locations features occur. The features present in a particular

observation block are then randomly shifted with respect to the begin-

ning of the block. In order to model this uncertainty, the standard sparse

coding model has to include several copies of each feature at all possible

time-locations.

This structure can be learned from the observations themselves, which

requires that the model includes enough free parameters so that the fea-

tures can be learned at different locations. It is, however, of advantage

to keep the number of free parameters low, which can be done by explic-

itly enforcing the shift-invariant structure in the dictionary as suggested in

[113, 79, 14, 102, 126, 147]. In this chapter we introduce this shift-invariant

sparse coding model, which explicitly takes possible feature shifts into ac-

count.

The first section defines and clarifies the notion of shift-invariance used

in this thesis and distinguishes the concept of shift-invariance used here

1Some of the material in this chapter has previously been published in [10]

49
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from a concept that we call shift-consistency. With this terminology in

place, section 3.2 introduces the shift-invariant model studied and used

throughout this work. This model is based on the linear model of the

previous chapter, however, additional structure is imposed on the matrix

A. The inclusion of these structures then leads to a modification of the

learning rule used to update the features.

The number of features learned and the number of features in the

signal are important parameters in the learning process. In section 3.3.1

we analyse this relationship and discuss the advantages offered by the

shift-invariant sparse coding model introduced here when compared to

the standard sparse coding formulation. In digital signal processing we

are dealing with discretised time-series. Often the original time-series is a

mixture of features that can occur at continuously shifted time-locations.

The effect that sampling of such signals has on the features learned is

analysed in section 3.3.2.

3.1 Shift-Invariant Approximations/Representations

We can distinguish two cases of ‘shift-invariance’; one in which the repre-

sentation remains unchanged for a shift in the input of the system and one

for which the representation is shifted linearly with a shift in the input.

The second definition is the standard definition for shift-invariant systems

in engineering and is the definition used throughout this thesis. As there

has been work on systems that show ‘shift-invariance’ with either of the

definitions, we first summarise some work for which the representation

does not shift with a shift in the input. We call such a representation

shift-consistent. A formal definition is given below.

To motivate the notion of shift-invariance and shift-consistency let us

think of an illustrative example. Imagine we have a picture and would like

to know whether the picture contains a face. So we are looking for a rep-

resentation that has an element that signifies the presence of a face. If this

representation remains unchanged when we shift the face in the image, i.e.

the same element in the representation is active due to the presence of the

face, then we have a shift-consistent representation. The representations
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we are dealing with in this thesis also give information of the location of

the face in the image. This representation has an element for a face at

every possible location, so if the face is moved in the picture, the represen-

tation also moves, and a different element in the representation becomes

active. This behaviour of the representation is called shift-invariance here.

3.1.1 Shift-Consistent Approximations/Representations

Definition 3.1. A map, such that x(t) 7→ s(t) and x(t+t0) 7→ s(t) ∀to ∈ T
is called shift-consistent for the set of admissible shifts T .

Phase blind methods are approximately shift-consistent for small shifts.

Another example of a shift-consistent representation can be found in neu-

roscience. Here the problem of shift-invariant vision is assumed to be

dealt with in two distinct systems, the ’where’ system that deals with the

localisation of a feature and the ’what’ system that deals with the identi-

fication of a feature [117]. The system that deals with the identification

of the feature is then shift-consistent.

Computational models of this have first been proposed in [38] and ex-

tensive studies on invariant vision can be found in [121, 117, 118, 122, 120,

119]. These methods learn a representation based on time constraints. It

is assumed that features change slowly during observation. The represen-

tations then enforce features to be active over longer time periods. This

was formalised as Slow Feature Analysis in [151].

Another method for shift-consistent representations are the averaging

of filter coefficients in [28]. Here transforms such as discrete wavelet-

transforms or the discrete Fourier transform are implemented using filter

banks and instead of downsampling the filter bank output, averages over

the filter coefficients are taken.

In [56], independent subspaces were learned and it was found that the

representations were shift-consistent to a certain degree, i.e. for small

shifts. This behaviour is also known from complex wavelets [64].

In [40] a Bayesian model is studied that uses a Gaussian translation

prior and an EM algorithm for clustering to find shift-consistent repre-

sentations. This model is not additive as the model studied in this thesis
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but assumes that each observation is produced by an individual feature

represented by the mean of a Gaussian distribution. The realisation of

this distribution is assumed to be transformed and noise is again added

to the transformed signal. This model can be used to learn and infer the

feature as well as the transform, which is not restricted to be a shift.

3.1.2 Shift-Invariant Approximations/Representations

Definition 3.2. A map, such that x(t) 7→ s(t) and x(t+t0) 7→ s(t+t0) ∀to
is called shift-invariant.

An often encountered problem in engineering in which a single fea-

ture has to be learned in a shift-invariant model is the blind equalisa-

tion problem in which both, the impulse response of a linear and shift-

invariant system as well as the input signal of this system are unknown

[54]. An early approach to shift-invariant feature learning which uses a

linear combination of features was developed by Zazula and can be found

in [107, 154, 67]. In these papers a mixture of MA models plus noise is

studied. There, the functional relationship of the fourth order cumulant

of the input of a general filter to the fourth order cumulant of the output

of the filter is used. It can be assumed that the fourth order cumulant of

a sparse and independent source is given and the fourth order cumulant of

the output is easily estimated and not influenced by the additive Gaussian

noise. This then leads to a set of quadratic equations of the individual

transfer functions, which can be solved using standard optimisation meth-

ods. Unfortunately for the problems studied in this thesis this method is

not feasible due to its computational complexity and memory demands.

The fourth order cumulant of a stationary process can be expressed using

a third order tensor if we assume a non-time-varying system (see [23]).

This third order tensor has N3 values. With N = 1024 as used in some of

the experiments described in this thesis, the computation of this tensor is

computationally taxing. It should be noted that in order to estimate the

impulse responses of K MA systems with an impulse response of length

F , we need to specify at least FK equations so that we have to estimate
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at least FK different fourth order cumulants. However, due to the esti-

mation error in the fourth order cumulants it is of advantage to specify a

higher number of equations and to use non-linear optimisation methods to

find a minimum mean square error solution. Unfortunately, the solution

to the set of non-linear equations is computationally taxing and not fea-

sible for the problem dimension used in some of the examples of interest

in this thesis.

Another possible approach to shift-invariant feature learning is the

work in [128, 127] that deals with frame design, i.e. with the design of

synthesis frames similar to the ones used in sparse coding. The overlapping

frames learned in this work do not occur at all possible locations. However,

the model developed here can be seen as an extension of this idea to frame

design in which the overlapping frames are located at all possible shifts.

In neuroscience, shift-invariant representations have been studied re-

cently in [79, 77, 131]. In this work, the observation is modelled as a

linear combination of convolutions of the sparse representation, (i.e. the

coefficients s) with a set of known features. This convolutive model is the

same generative model introduced in the next section. This work deals

with the problem of finding the sparse representation s for a given model

matrix A and does not investigate methods to adapt the matrix A. In

[113] the same convolutive model was suggested to reconstruct the obser-

vation signal from the recording of neurons. In this example the features

are defined by each neuron and the sparse representation is the action po-

tential of this neuron. It was shown that such a convolutive model can be

used to reconstruct observation signals from neural activations. However,

in this work, both, the input signal, i.e. the observation, as well as the

neural activations were known and only the impulse response of the filter,

which defines the feature, had to be found.

The model introduced in this chapter as well as some of the learning

rules developed in the next chapter have recently been published in [148,

147]. A similar model was also used in [126], however, here the features

were constrained to be wavelets. The learning rule used in this paper uses

a Gibbs sampling method, which is discussed in chapter 6 where we extend

this method further.
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Another method proposed for invariant sparse representations is the

method proposed in [51], which uses a bilinear transformation to model

shift invariance. This model is also of a similar form to the model in-

troduced here and so is the learning rule. The specification of the prior

distribution however differs.

An extension of Non-Negative Matrix Factorisation to a shift-invariant

model was also recently proposed in [130], where it was used to learn

audio features such as words in the spectral domain. This method models

audio spectra as a summation of spectral features at all possible shifts. A

similar shift-invariant model is proposed in [18] to study frog leg muscle

activations and enforces both sparsity and positivity.

3.2 Shift-Invariant Sparse Coding Model

In this section we introduce an extension of the general sparse coding

model for time-series and similar data in which features can occur at

arbitrary locations. First, we define a generative model that includes all

shifted features. We then derive learning rules for this extended model by

finding approximations to the gradient of the marginal likelihood w.r.t.

the feature parameters.

In time-series, features can often occur at arbitrary time locations. The

application of the sparse coding model described in the previous chapter

to such time-series has previously been achieved by arbitrarily cutting the

time-series into blocks x. However, these blocks seldom align with the

features in the time-series such that the shifts of the different instances

of a feature relative to the block positions vary arbitrarily. We therefore

modify the model to account for these arbitrary shifts of features relative

to a selected block position. This can be achieved by enforcing structure

on the matrix A. From now on we use the notation A to refer to this

structured matrix. To state the model used in [113, 79, 14, 102, 126, 147]

we introduce the following notation:

The index k labels a particular feature whilst the index l denotes the

corresponding shift relative to the beginning of the data-block analysed.

K and L are the sets of indices of all features and shifts respectively, while
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we denote the length of the features ak as L. From now on we let l be

zero to denote no shift2, i.e. ak0 = [ak1, ak2, · · · , akL, 0, · · · , 0]T whilst, for

example, ak−4 = [ak5, ak6, · · · , akL, 0, · · · , 0]T and so forth. Note that for

all p− l /∈ [0, L] the elements of akl are set to zero and that for l < 0 and

l > M − L the features ak have to be truncated. We use akp to denote

the pth component of a feature, which should not be confused with the

notation akl that refers to a shifted feature. With this notation we can

write A = [a1,−L, a1,−L+1, . . . , ak,M−1, ak+1,−L, . . . , aK,M−1].

A is shown graphically for M = 4, N = 12, L = 3, K = 2 below:








⋆3 ⋆2 ⋆1 0 0 0 ◦3 ◦2 ◦1 0 0 0

0 ⋆3 ⋆2 ⋆1 0 0 0 ◦3 ◦2 ◦1 0 0

0 0 ⋆3 ⋆2 ⋆1 0 0 0 ◦3 ◦2 ◦1 0

0 0 0 ⋆3 ⋆2 ⋆1 0 0 0 ◦3 ◦2 ◦1









Here the two features are shown as stars ⋆ and circles ◦ respectively with

the subscripts labelling the sample.

If we use skl as the coefficient multiplying feature akl, then the data

model can be written as

x =
∑

k∈K,l∈L

aklskl + ǫ = As + ǫ.

The observation block x is modelled with features and all their possible

shifts. Note that this model is a mixture of convolutions and that the

matrix A is the concatenation of convolution matrices. The coefficient

vector s is now a concatenation of the signals being convolved.

This is shown more clearly by writing the model in the familiar form

of a discrete system:

x[t] =
∑

k∈K

∑

l∈L

ak[L+ 1 − l]sk[t+ 1 − l] + ǫ[t],

which shows the equivalence of the model to a mixture of linear shift-

invariant filters with added noise.

The above model can be used to describe data blocks of arbitrary length

and it would be possible to model the complete observation sequence.

2Note that the observation x ∈ R
M with M ≥ L so that the features ak have to be

zero-padded accordingly.
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However, for many time-series of interest, it is infeasible to deal with the

complete observation at once. Nevertheless, it is possible to randomly

select blocks of data from the time-series of interest and to use stochastic

gradient descent to learn the model parameters by using a similar method

to the one introduced in the previous chapter. In this case, the length M

of the observation vector x can be chosen arbitrarily to be at least L. In

the experiment reported later this vector was chosen to be twice the size

of the feature length.

3.2.1 Learning Rule

The model introduced above requires a revision of the learning rules in-

troduced in the previous chapter. The elements of the features ak are now

repeated along the diagonals of the matrix A. The values of A cannot be

updated individually without taking this repetition into account, which is

achieved by calculating the gradient of log p(x|A, s) (which is required in

equation (2.4)) w.r.t. the pth component of the feature ak.

Using ǫm = xm −∑k∈K,l∈L akm+lskl we can write the log likelihood as:

log p(x|A, s) ∝ −0.5

σ2
ǫ

∑

m

ǫ2m.

We can now calculate the derivative of this w.r.t. akp and write:

∂ log p(x|A, s)
∂akp

= − 1

σ2
ǫ

∑

m

ǫm
∂ǫm
∂akp

.

The derivative on the right only leaves those ak,m+l for which m+ l = p.

The gradient then becomes:

∆akp =
1

σ2
ǫ

〈

∑

m

ǫmsk,m−p

〉

p(s|A,x)

. (3.1)

If x and ak are both in R
L, we can write this expression as a convolution

and derive a gradient update rule for the set of features {ak} as:

∆{ak} ∝ σ−2
ǫ 〈ǫ ⋆ {sk}〉p(s|A,x) ,

where ⋆ is the convolution operator and ǫ = {ǫm}.



CHAPTER 3. SHIFT-INVARIANT SPARSE CODING 57

This gradient then leads to an update of the features of the form:

{ak}r+1 =
{ak}r + ν∆{ak}

‖{ak}r + ν∆{ak}‖2

.

Due to the scale ambiguity in the model, in each update the features ak

are normalised to unit L2 norm.

This learning rule again requires the evaluation of an expectation w.r.t.

p(s|x,A), which cannot be solved analytically, so that approximations are

required that are similar to the methods discussed in the previous chapter.

We introduce and study several possible approximations to the learning

rule for the shift-invariant sparse coding model in the next part of this

thesis. Chapter 4 studies analytic approximations to the required integra-

tion whilst chapter 5 develops an importance sampling method. Chapter

6 developes and studies a Markov chain Monte Carlo approximations.

3.3 Theoretical Analysis of Feature Extraction with

the Shift-Invariant Sparse Coding Model

3.3.1 Sensitivity to the Model Size

If the analysed signal consists of a superposition of features at arbitrary

locations, then the model used to learn these features has to have enough

free parameters to represent these features. In general this means that

at least one feature has to be learned for each feature present. However,

in the standard sparse coding model, features have to be learned at all

possible shifts, so that the number of features to be learned is much larger

than the number of features in the signal. If the standard sparse coding

model does not have enough free parameters to represent the features in

the signal, not all features are learned. Instead, some features have to be

used to model more than one feature in the observation.

In this section we study the influence of the number of features used

in the traditional sparse coding model, when this number is smaller than

the number of features in the signal. We assume here that the observed

signal follows the model x =
∑

aksk + ǫ. âk̂ and ŝk̂ are used to denote the

estimated features and coefficient respectively. We now use the indices k
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to denote the features and the associated shifts of the underlying process,

while k̂ indexes the learned features.

The expected ML estimate of a feature âǩ w.r.t. the distribution of

the data, i.e. w.r.t. the distribution of ǫ and s, is the value for which the

expected gradient is zero. We can write this expected gradient as:

〈∆âǩ〉p(ǫ,s) =

〈

µσ−2
ǫ

∫





∑

k

aksk −
∑

k̂

âk̂ŝk̂ + ǫ



 ŝǩ p(ŝ|x, Â) dŝ

〉

p(ǫ,s)

.

Note the use of ǩ to index the particular feature for which we evaluate

the gradient and the corresponding coefficient sǩ, while k indexes the true

features in the generative model. k̂ indexes all of the estimated features

and coefficients. Using the abbreviation

T = µσ−2
ǫ





∑

k

aksk −
∑

k̂

âk̂ŝk̂ + ǫ



 ŝǩ

we can write this as:
∫ ∫ ∫

T p(ŝ|x, Â)p(ǫ, s) dŝ ds dǫ

=

∫ ∫ ∫

T p(ŝ|ǫ, Â,A, s)p(ǫ)p(s) dŝ ds dǫ ,

where the last step is possible as s,A and ǫ define x and as ǫ is assumed

to be independent of s. Setting the gradient to zero and rearranging gives:

âǩ 〈ŝǩŝǩ〉p(ŝ|ÂA) = ak 〈skŝǩ〉p(ŝ,s|ÂA)

+
∑

k 6=k

ak 〈skŝǩ〉p(ŝ,s|ÂA)

−
∑

k̂ 6=ǩ

âk̂ 〈ŝk̂ŝǩ〉p(ŝ|ÂA)

+ 〈ǫŝǩ〉p(ŝ,ǫ|ÂA) .

where we have introduced the index k to label the true feature and co-

efficient associated with the feature and coefficient to be learned, i.e. we

assume that feature âǩ converges to feature ak. If we assume that ŝǩ is

uncorrelated to ǫ then the last term is zero. 〈ŝk̂ŝǩ〉p(ŝ|ÂA) is also zero due
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to the assumed independence of the individual ŝk̂. So we are left with:

âǩ 〈ŝǩŝǩ〉p(ŝ|ÂA) = ak 〈skŝǩ〉p(ŝ,s|ÂA)

+
∑

k 6=k

ak 〈skŝǩ〉p(ŝ,s|ÂA)

In order for a feature âǩ to converge to a feature ak we require the corre-

lation between ŝǩ and sk to be zero for all k 6= k.

If the number of features used to model a signal is less than the number

of features in the signal at all locations, then dependencies between ŝǩ and

several sk have to occur. Dependencies can also occur as a result of the

inference process or the approximations to the learning rule used.

To analyse the possible dependencies which can occur due to the in-

correct model size, we assume that all learned features have converged

to some of the true features. The dependency between ŝk̂ and sk (and

therefore the exact form of the averaging process described above) then

depends on which of the features ak are modelled by each feature âk̂. The

feature chosen to model a feature which has not been learned, depends on

the decrease in reconstruction error when using this feature. The highest

decrease in this error is achieved by modelling a feature in the signal with

the same feature at the exact location. If this feature is not available at

this location, a feature at a different location or a different feature has to

be used.

In the following list three forms of dependencies which can occur are

given together with the influence they have on the learned features:

• A feature can be modelled with a slightly shifted version of itself.

If several slightly shifted features are modelled by a single feature,

then the average update of this feature is a low-pass filtered version

of the true feature.

• A windowed periodic feature can be modelled with a version of itself

which is shifted by multiples of the period. A weighted averaging

over such feature shifts leads to a windowing of the learned feature.

• A missing feature can also be modelled with a different feature. The

chosen feature is likely to share a strong frequency component and
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is at a location at which both features have the same phase for this

component. Averaging then increases this frequency component but

might decrease other frequency components, as the phase for those

other components might not match.

This seems to suggest that if the number of features to be learned is less

than the number of features in the signal, windowed and filtered features

emerge. However, the above derivation uses the traditional sparse coding

formulation. If shift-invariance is explicitly enforced and if the inference

process is working correctly (i.e. the sk are uncorrelated to ŝk̂ for all but

one pair of coefficients) then the first two effects (i.e. the filtering and the

windowing) cannot occur.

3.3.2 Sampling and Shift-Invariant Sparse Coding

Many time-series encountered in signal processing are sampled versions of

continuous signals. Often the features that contribute to the original signal

can occur at arbitrary and continuous time locations. Such a continuously

shifted feature occupies a 1-dimensional manifold in the sampled space.

This path is shown in the left panel of figure 3.1 for a 3-dimensional

signal. (The circles show the location of the sampled signal and its shifted

versions. The dotted lines are the projections onto the xy, xz and yz

planes.)
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Figure 3.1: Path of a shifted feature (left) and filtering due to sampling (right).
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If we assume that during learning each true feature in the signal is

assigned to the single shift position that is closest to the true position of the

feature, then the updates of a feature to be learned are averages of the true

feature over shifts of one sample. The frequency response of this averaging

process can be found as the Fourier transform of a rectangular window.

The amplitude response is sinc(πf)
πf

where f is the normalised frequency.

This sinc function is plotted in the right panel of figure 3.1. It can be seen

that the effect of continuously shifted features in the original signal leads

to the emergence of low-pass filtered features. This effect cannot easily be

overcome without substantially increasing computational complexity.

Conclusions

The sparse coding model can be used for time-series data. However, for

such data, features can occur at arbitrary time locations, which requires

the model to learn features at different shifts. In this chapter we have

extended the sparse coding model to explicitly take these shifts into ac-

count. In this formulation, the model is explicitly constrained so that

features can be used at arbitrary locations to describe the signal.

The theoretical analysis presented suggests several advantages of this

model. However, a practical implementation can only approximate the

learning rule proposed and practical results have to be analysed for such

approximations.

In the next part of this thesis three different approximations to the

learning problem are proposed. The first method is an extension of previ-

ously proposed methods used for the standard sparse coding model. The

problem size requires the implementation of further approximations dis-

cussed in the next chapter. The other two methods are based around

Monte Carlo approximations of the learning rule. In chapter 5 an impor-

tance sampling strategy is proposed and in chapters 6 a Markov chain

sampler is developed and studied.



Part II

Algorithmic Advances

62



Chapter 4

Analytic Approximation1

The integral in equation (2.5) cannot be solved analytically and approx-

imations are required. In chapter 2 two analytic approximations for the

sparse coding learning rule have been introduced. These learning rules ap-

proximate the integral with either a delta function or a Gaussian around

the MAP estimation of s.

In this chapter we derive a learning rule similar to the delta approxi-

mation learning rule introduced in chapter 2. This approximation of the

learning rule can again be interpreted as a joint ML estimation of both A

and s in the missing data problem where s can be interpreted as missing

data. This learning rule requires the MAP estimate for s conditioned on

x and A. One possible method of evaluating this estimate is discussed

and derived as an Iterative Re-weighted Least Squares algorithm. We also

show that this algorithm has an interpretation as an EM algorithm. This

realisation allows us to use the well developed theoretical results for EM

algorithms that guarantee convergence of the method. This also allows

implementations of the optimisation based on generalised EM methods.

The size of the problems studied in chapters 8, 9 and 10 does not

allow for the straightforward use of the optimisation method introduced.

We therefore describe a strategy to select a small number of features to

reduce the problem size. This subset selection is based on the distance

of the features from the signal. Finally, we discuss issues relating to the

implementation of this method.

1This chapter is partly based on material published in [9]
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4.1 The Delta Approximation Learning Rule

In the shift-invariant sparse coding model introduced in the previous chap-

ter the main problem is the learning of the features ak. This requires an

estimation of the gradient:

∆akp =
1

σ2
ǫ

〈

∑

m

ǫmsk,p−m

〉

p(s|A,x)

.

For the standard sparse coding model, this gradient cannot be evalu-

ated analytically. If we drop the expectation in the learning rule and use

the MAP estimate of p(s|x,A), we get the following delta approximation

to the learning rule that is similar to the learning rule in [103]:

∆akp =
1

σ2
ǫ

∑

m

ǫ̂ms̃k,p−m. (4.1)

Here we use ǫ̂m to denote themth element of the vector x−Aŝ. We have

introduced the notation s̃k,p−m. Intuitively one would choose s̃k,p−m =

ŝk,p−m, i.e. use the MAP estimate of the coefficients s. However, by using

the delta approximation of the posterior p(s|A,x), information about the

distribution is lost. This is especially critical for those feature shifts for

which only part of the feature contributes to the current observation x

(in the example in the previous chapter these are columns one, two, five

to eight, eleven and twelve.). For example, at the extreme shift positions,

where a feature only overlaps with the observation block by one sample

(i.e. columns one, six, seven and twelve in the example in chapter 3),

there is no information in the observation block to guide the selection of

a specific feature. Any error in modelling the first and last sample in the

observation block can therefore be reduced to exactly zero by selecting

any feature at such an extreme shift with an appropriate coefficient value.

This uncertainty would be reflected in the full posterior p(s|Â,x) by an

increased variance for the coefficients associated with these features. This

information is not available in the delta approximation in Eq. (4.1) and,

as suggested in [14], only those coefficients are used in the feature update

for which the entire feature contributes to the observation. We therefore
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use:

s̃k,p−m =







ŝk,p−m if 0 ≤ p−m ≤M − L

0 otherwise.

In the example in the previous chapter, we would therefore only use the

coefficients associated with the third, fourth, ninth and tenth columns.

This does not bias the estimate of the features if the data blocks x are

selected at random locations during learning.

4.2 Inference by MAP Estimation via the EM Algo-

rithm

Inference of the coefficients s can be done using the same methods em-

ployed in the non-shift-invariant case. For example, the gradient rule used

by Lewicki as well as Olshausen and their co-workers [103, 104, 80, 78] can

be used by simply replacing their matrix A with the version containing

all shifts. In this section, however, we derive an EM algorithm to find

the MAP estimate of p(s|x,A). This algorithm has been derived inde-

pendently by different researchers and we present the different derivations

here.

We use the method discussed in this subsection in many of the exper-

iments reported in this thesis and therefore discuss it in more detail. The

explanation of the FOCUSS algorithm (defined below) as a form of IRLS

(also defined below) and its equivalence to an EM algorithm for certain

prior formulations has also not been given in the literature before.

4.2.1 Prior Formulations

In order to use the optimisation method developed in this chapter, a con-

tinuous prior formulation is required. This means, that we cannot use

a formulation in which a discrete probability mass is placed at zero, as

gradient optimisation methods cannot be used for such models and more

sophisticated methods such as those developed in the next chapters are

required.
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In this chapter we therefore use a scale mixture of Gaussians prior of

the form p(sn|σ2
sn

) ∼ N (0, σ2
sn

). By using different hyper priors for the

variance term we can model a range of different distributions for p(sn).

For hyper priors of 1
σ2

sn

of the form σsn
pα(α/2) where pα(α/2) is a symmet-

ric alpha-stable distribution of 1
σ2

sn

[149, 145] the marginalised prior p(sn)

become generalised Gaussians of which the Laplacian as well as the Gaus-

sian distributions are special cases. The generalised Gaussian distribution

is given as:
1

Z
e−

λc
2
|s|p.

This prior leads to sparseness measures in the optimisation method that

are of the Lp (quasi) norm type. For p > 1, the distribution has weaker

tails than the Laplacian, i.e. has a non-convex logarithm and as discussed

in [71] and cannot be used as a sparsifying prior. Another possible hyper

prior is the inverse gamma. The marginal likelihood is then of Student

t form. Other hyper priors are possible and an extensive list for hyper

priors for scale mixtures of Gaussian models and the associated marginal

distributions are given in [31].

4.2.2 The EM Interpretation of the Algorithm

In the EM algorithm by Figueiredo et al. in [36, 33, 35, 34] a parameter

free model was proposed. The algorithm is based on a hierarchical prior

p(sn|σ2
sn

) ∼ N (0, σ2
sn

) with the uninformative and parameter free Jeffrey’s

hyper prior p(σ2
sn

) = 1
σ2

sn

. This hyper-prior is improper and leads to an

extremely super-Gaussian prior.

For the Gaussian noise model the likelihood is:

p(x|A, s) ∼ N (x −As, σ2
ǫ I).

Using the prior

p(s|Σs) ∼ N (0,Σs),

where we use Σs = diag{σ2
sn
}. This leads to the well known expression

for the mode of the posterior p(s|A,x,Σs) of:

(σ2
ǫΣs

−1 + ATA)−1ATx.
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Σs can be thought of as missing data and thus the EM algorithm can be

used. The logarithm of the posterior can now be written as:

log p(s|A,x,Σs) ∝ log p(x|A, s) + log p(s|Σs) (4.2)

∝ −n log σ2
ǫ − ‖x − As‖ − sT W(Σs)s,

where W = diag(σ−2
s1
, · · · , σ−2

sn
) is the inverse of the covariance matrix Σs

of the prior. The E step is then:

Ŵ[r] = 〈W|x, ŝ〉,

where ŝ is the current estimation of s and Ŵ[k] is the expectation of the

inverse of the prior covariance matrix. As p(σ2
sn
|A,x, s) = p(σ2

sn
|sn) ∝

p(sn|σ2
sn

)p(σ2
sn

) the expectation of the inverse of each σ2
sn

can be calcu-

lated individually. For the Jeffrey’s hyper prior this expectation can be

evaluated and is |ŝn|−2, so that W [k] = diag{|ŝ1|−2, |ŝ2|−2, · · · }. The ex-

pectation can also be evaluated for a hyper prior of the form λp

2
e−λpσ−2

sn

with σ−2
sn

≥ 0. This exponential prior is a special form of the gamma distri-

bution and also a particular case of the hyper prior of the form σsn
pα(α/2),

where pα(α/2) is a symmetric alpha-stable distribution of 1
σ2

sn

. For this

hyper prior the marginal distribution for p(sn) is a Laplacian (see [31]

and [34]) and the E step can be written as W [k] = diag{|ŝ1|−1, |ŝ2|−1, · · · }
(Note the change in the exponent).

In the M-step the noise variance can be estimated as the argument σ2
ǫ

that maximises equation (4.2) which is:

σ̂2
ǫ =

‖x −As‖
M

.

An estimate of the coefficient s can be found by:

ŝ = arg max

(

−‖x −As‖
σ2

ǫ

− sTŴ[r]s

)

=
(

σ̂2
ǫŴ

[r] + ATA
)−1

ATx. (4.3)
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4.2.3 The FOCUSS Derivation of the Algorithm

The above iterative method is the same as the FOCUSS algorithm for

noisy observations proposed in a series of papers [110, 111, 112] by Rao et

al.. A good overview of the algorithm and underlying theory can be found

in [68].

To derive the algorithm, we write the prior for s in the general form:

p(s) = Z−1e−λcf(s).

This density is further assumed to be zero mean and symmetric. Using

this general distribution together with an assumed i.i.d. Gaussian error

term, the MAP estimate of s can be found as:

ŝ = arg max
s

p(x|A, s)p(s),

which leads to:

ŝ = arg min
s

1

2
‖x − As‖2 + σ2

ǫλcf(s). (4.4)

The FOCUSS algorithm can now be derived by looking at the fixed

points of the above minimisation problem. The derivative at the fixed

point s∗ can be written as:

AT (As∗ − x) + σ2
ǫλc∆sf(s∗) = 0. (4.5)

In general this cannot be solved but if the following factorisation is as-

sumed:

∆sf(s) = α(s)W(s)s,

where α(s) is a scalar function of s and W(s) symmetric, positive definite

and diagonal a solution becomes feasible. The diagonal form of W(s) fol-

lows from the assumption of independence of the different si and the other

assumptions can generally be assumed for convex/schur convex functions

as discussed in [112].

Equation (4.5) can now be written as:

AT (As∗ − x) + σ2
ǫλcα(s∗)W(s∗)s = 0,
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which has a solution at:

s∗ = (σ2
ǫλcα(s∗)W(s∗) + ATA)−1ATx.

As the fixed points s∗ are not known, the matrix W has to be recalcu-

lated iteratively for the current estimation of ŝ and this estimate has then

to be used in the above equation to find a better estimate of ŝ. In the EM

algorithm this step corresponds to the E step or the estimation of the prior

variance in the hierarchical model. If f(s) is one of the Lp (quasi) norms,

then W can be calculated iteratively as W(s) = diag(|sp−2
1 |, · · · , |sp−2

N |).
For p = 1, i.e. for a Laplacian prior, this is exactly the same expression

as the EM algorithm with the same marginal prior distribution. For p =

0, i.e. for a prior which can be thought of as the limiting case of the

generalised Gaussian, the expression is exactly the same as for the EM

algorithm with a Jeffrey’s hyper prior.

4.2.4 The IRLS Interpretation of the Algorithm

Here we derive the FOCUSS algorithm and the algorithm proposed by

Figueiredo in the light of the well known Iterative Reweighted Least

Squares (IRLS) approach used in statistics to solve generalised linear mod-

els (See Nelder’s original paper [101]). As already noted by Dempster in

[24], the EM algorithm often leads to IRLS solutions, a fact also mentioned

in the thorough discussion paper by Green [46].

Equation (4.4) can be written as the weighted least squares problem:

ŝ = arg min
s

1

2
‖x − As‖2 + λsTWs, (4.6)

where we use λ = σ2
ǫλc, with λc being the scale parameter of the prior.

In order for equation (4.6) to have the same fixed points as equation (4.4)

the weights have to be determined so that both functions have the same

gradient at the fixed points. This is exactly the same approach taken in

the derivation of the FOCUSS algorithm, which can therefore be seen as

an IRLS algorithm.

Again, the weighting matrix W (s) is a function of s and has to be re-

evaluated in each iteration. The particular form of W (s) has to be chosen
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such that the optimisation problems have the same fixed points. This is

done by using sTW (s)s = f(s). This leads to exactly the same solution

as the FOCUSS algorithm.

The FOCUSS and IRLS algorithms that use the Lp (quasi) norm or,

equivalently, a generalised Gaussian prior, lead to an iterative calculation

of the weighting matrix as W(s) = diag(|sp−2
1 |, · · · , |sp−2

N |). Intuitively one

would expect that in the limit, if we let p be zero, the algorithm would use

a L0 norm. This is however not true. In order to determine the exact form

of the regularisation term, and therefore the marginalised prior used when

p becomes zero, the general regularisation term minimisation problem has

to be considered:

ŝ = arg min
s

1

2σ2
ǫ

(x −As)T (x −As) + λcf(s),

the gradient of which is

1

σ2
ǫ

(x − As)A + λc
∂

∂s
f(s).

The weighted least squares equivalents are:

ŝ = arg min
s

1

2σ2
ǫ

(x − As)T (x − As) + sTWs,

with a gradient of
1

σ2
ǫ

(x − As)A + 2sTW.

With the weights obtained by setting p = 0 in the IRLS algorithm or the

EM algorithm with a Jeffrey’s hyper prior we can write

2sTW = λc
∂

∂s
f(s) = 2[|s1|−1, |s2|−1, · · · , |sN |−1].

By integration it can be found that for λc = 1 the regularisation term

minimised in this case is

f(s) =
∑

n

log |sn|2,

which is one of the regularisation terms proposed by Rao et al. in [71] and

[112], which he termed Gaussian entropy 2. This regularisation term goes

2The relation to Shannon-entropy however, is not clear. The term seems to stem from
Donoho’s paper [27] in which he called all sparsity enforcing measures entropy.
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to − inf when any of the s goes to zero and it is therefore not possible

to think of a global optimal solution for the optimisation problem. Fur-

thermore, once a coefficient s becomes small enough, it is forced to zero

very rapidly [20]. In practice, this behaviour is found to be of advantage

if very sparse solutions are required, and it was found in practice, that

the algorithm had a fast convergence. However, the results were clearly

influenced by the starting conditions as there is no unique solution.

The EM algorithm leads to exactly the same algorithm as the IRLS

approach when both algorithms assume a Laplacian prior distribution

for s. For p = 0, IRLS and FOCUSS algorithms use the logarithmic

regularisation term, which can be seen to be the log prior of a parameter

free, improper distribution of the form
∏N

1 s
−2
n . For other values of p

the equivalence of the IRLS algorithm and the EM algorithm shows that

the IRLS algorithm with a generalised Gaussian prior leads to the same

maxima in the posterior as a scale mixture of Gaussians with a hyper prior

of 1
σ2

sn

of the form σsn
pα(α/2) where pα(α/2) is a symmetric alpha-stable

distribution of 1
σ2

sn

. This suggests that the IRLS algorithm can also be

interpreted as an EM algorithm for the priors of the generalised Gaussian

family, however, an exact proof of this is not yet available. This also leads

to the question of whether the generalised Gaussian family converges to

p(s) ∝ s−2
n in the limit as the generalised exponent p goes to zero.

Convergence is a key issue when dealing with iterative algorithms. The

convergence of the FOCUSS algorithm has been proven in the noiseless

case for both p = 0 and for 0 6= p ≤ 1 in [110] and [112]. The previous

discussion on the equivalence of the FOCUSS and the EM algorithms for

certain priors and regularisation terms allows for the application of the

convergence properties of the EM algorithm [90] to the FOCUSS algorithm

in the noisy model. The rate of convergence of the FOCUSS algorithm in

the noiseless case was also investigated in [110]. The rate of convergence

for the noisy case is analysed in [20].
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4.2.5 Parameter Estimation

The general optimisation problem to be solved can be written as:

ŝ = arg min
s

1

2σ2
ǫ

(x −As)T (x −As) + λcf(s).

The ratio of the parameters σ2
ǫ and λc defines a trade-off between

reconstruction accuracy and sparsity of the coefficients s. In general, these

parameters can be defined a priori, as was done in the case in which

Jeffrey’s hyper prior was used (which in effect defines λc = 1), or they can

be estimated from the data as is done with the noise variance in the EM

algorithm.

Different choices of prior formulations naturally lead to a different

trade-off between reconstruction error and sparsity. Instead of using the

Jeffrey’s hyper prior as suggested above, it would also be possible to use

the more general hyper prior σ−2b
sn

leading to the same algorithm as above,

however, with differing values for λc.

Instead of fixing the parameter λ = λcσ
2
ǫ a priori, it is possible to

estimate it. Engan [30] discusses three different approaches for estimating

this parameter: a quality of fit criterion, a sparsity criterion and a modified

L-curve criterion. In [68] a more heuristic method is given which enables

a tuning of the trade-off between sparsity and noise. Here λ is calculated

as:

λ = λmax

(

1 − ‖ǫ‖
‖x‖

)

(4.7)

Here λmax is a scaling of the λ parameter which can be adjusted depend-

ing on the problem at hand. In chapter 8 the results obtained using

this λ parameter are compared to those obtained with the method pro-

posed by Figueiredo, where an additional scaling parameter λc is used in

Figueiredo’s method for additional flexibility. Another method in which

these parameters are estimated using maximum likelihood ideas is dis-

cussed in the next chapters.
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4.2.6 Gauss Seidel Implementation

As was shown above, the FOCUSS algorithm can be interpreted as an

EM algorithm for certain prior formulations. It is well known, that con-

vergence of the EM algorithm is guaranteed even if the maximisation step

is replaced by any method increasing the likelihood. It is therefore pos-

sible to replace the maximisation with respect to all coefficients s with a

maximisation with respect to only a single coefficient or a set of coeffi-

cients. This can be done by using a Gauss Seidel iteration such that the

inversion of the matrix can be avoided. However, more iterations are then

needed in general. For structured dictionaries, such as unions of orthog-

onal dictionaries, the optimisation can be done with respect to a subset

of the coefficients associated with a single orthogonal sub-dictionary. The

optimisation can then be carried out very efficiently as no matrix inversion

is required.

4.3 Subset Selection

Many engineering problems of interest suffer from high dimensionality. In

the problems studied here, the length of the expected features can often

be of the order of a few thousand and the number of features often in

the hundreds. In the shift-invariant model this leads to a matrix A of

substantial size, which means that the calculation of the maximum of

the posterior p(s|A,x) becomes prohibitively costly. This forbids a direct

implementation of the above algorithms. Therefore, we propose the use

of a subset selection step that offers a fast way to select a small subset

of features depending on their correlation with the observation. After

this selection, the optimisation routines mentioned in the previous section

can be used by ignoring features not contained within the subset. With

this approach, results can be obtained, even for problems of very high

dimension.

Most of the coefficients s are zero with high probability and therefore

most columns of A do not contribute to any one observation. In order to

speed up the optimisation required to find the maximum of p(s|A,x), we
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propose to exclude a large set of the columns of A from the optimisation.

Information about which features to keep and which to exclude has to be

taken from a particular observation x. An additional requirement is that

this selection process can be performed efficiently.

For extremely sparse approximations (as used in this thesis) we assume

that each feature contributing to the observation has a high correlation

with this observation, i.e. it is assumed that such signals are similar to

their component features. The selection of a subset of features is therefore

based on the correlation between the observation x and all columns of A.

Due to the structure in the matrix A, this correlation can be evaluated

efficiently using fast convolution. Based on this correlation it is possible

to only select those features for which this correlation is high. However,

an additional constraint has to be imposed. As smooth features shifted

only slightly are similar to themselves, the same feature would be selected

several times at adjacent locations. This can be avoided by constraining

the selected subset to only include shifted versions of the same features if

these are shifted by more than a certain distance, i.e. by selecting akl and

akl̃ only if |l−l̃|
L

> Q for some Q < 1.

The iterative selection procedure then selects the feature and shift with

the highest correlation

{ki, li} = arg max
{k,l}∈Ki×Li

〈akl,x〉,

where the product space of indices Ki×Li is defined iteratively by remov-

ing subsets from the set of all features and shifts

Ki ×Li = K × L\
⋃

ĩ<i

kĩ × [l̃i −QL; l̃i +QL].

To better understand the assumptions made in this subset selection

procedure we present the method from a statistical point of view. The

posterior for s can be factored, using the index n instead of the indices k

and l to denote the feature and the associated shift.

P (s|A,x) = P (sn1
|A,x)P (sn2

|sn1
,A,x) . . .

As a first approximation we only work with the MAP estimates for each

distribution (i.e. to approximate the distributions with delta functions)
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and to further truncate the right hand side to a few terms, which are

assumed to be non-zero. For the terms with non-zero sn we assume a

uniform prior for P (sn), and P (x|A, sn) is assumed to be Gaussian. These

approximations lead to the posterior:

P (sn|A,x) ∼ N (ansn, σ
2I)

The problem now is to determine which coefficients to select to be non-

zero. This is done iteratively. The first non-zero coefficient sn1
is chosen

by calculating:

n1 = arg max
n

P (sn|A,x),

which is the index n, which maximises xTan.

In order to approximate the other terms in the factorisation, an ex-

pression for P (sn|s1:n̂−1,A,x) has to be found where we use the subscript

notation 1 : n̂ to denote all variables with subscripts between 1 and n̂.

Here the notation n̂ is used to distinguish the ordered indices n̂ from the

unordered indices n. Bayes’ rule gives:

P (sn̂|A,x, s1:n̂−1) ∝ P (x|A, s1:n̂)P (sn̂|s1:n̂−1).

The constraint on feature shifts can be interpreted in probabilistic terms

as the use of the prior P (sn̂|s1:n̂−1) = P (sn̂)U1:n̂−1, where P (sn̂) is again a

uniform distribution and U1:n̂−1 is a function which is zero for shifts around

l1:n̂−1 but otherwise has a value normalising the distribution.3 The main

computational advantage in the subset selection procedure is the result

of the selection of features close to the observation which has a statis-

tical interpretation as an approximation of the probability P (x|A, s1:n̂)

by P (x|A, sn̂). Note that for a Matching Pursuit algorithm, where each

feature is selected to model the residual and not the original observation,

the distribution P (x|A, s1:n̂) is Gaussian with a mean of
∑

a1:n̂s1:n̂, whilst

here a mean of an̂sn̂ is used.

Selecting the index n̂ can therefore be done in a similar fashion as

above. The correlation of all features at those shifts which do not violate

3This interpretation of the constraint in terms of conditional priors is somewhat contrived,
however it can be used to develop alternative methods in which other priors are specified such
that close features are selected with a small but non-zero probability.
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the constraint are again required. These correlations have already been

calculated and do not have to be re-evaluated. In a Matching Pursuit

algorithm the correlation would have to be recalculated at each step as it

is determined from the residual.

The difference between Matching Pursuit and the method proposed

here is that Matching Pursuit selects in each step a set of features that

are as orthogonal as possible, whilst the proposed method selects a set of

similar features. This choice seems to be more appropriate for harmonic

musical mixtures as studied in this thesis, but may not have to be ap-

propriate for other signals. The results presented in the later chapters of

this thesis show the performance of this subset selection method. Similar

experiments with an Orthogonal Matching Pursuit algorithm for subset

selection did not produce satisfying results.

4.4 Implementation

The proposed algorithm can roughly be broken into three parts.

1. Selecting a subset of the features for each observation vector x.

2. Finding the maximum of p(s|A,x) within this subset.

3. Updating the features in matrix A.

These steps are further explained below. The complete algorithm is shown

in table 4.1.

In the algorithm described here, the length of the observation vector

x can be chosen arbitrarily to be at least as long as the features ak. In

the experiment reported later this vector was chosen to be twice the size

of the feature length so that the matrix A contained 3 ∗ K − 1 shifted

versions of each feature (where K is the feature length). The choice of the

length of x must be a compromise between computational complexity and

the problems caused by truncated features and the associated end-effects.

The features can be initialised with Gaussian noise but can also be

pre-set to known functions such as Fourier bases. This can speed up

convergence, but might also influence the outcome.
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Table 4.1: Shift-invariant learning algorithm via EM.

Input:

User defined: signal {xi}, the size of the subset W ,

the percentage of maximal overlap µ and

the number and length of features ak.

Output:

A.

1 {ak}k∈K=random,

K is the set of all features

2 randomly select a data vector x

3 calculate inner product between x and all shifted features

{dk,l}k∈K,l∈L =< x, {ak,l}k∈K,l∈L >

K is the set of all features

L is the set of all shifts.

4 for γ = 1, γ < W

[K̃(γ), L̃(γ)] = arg maxk,l dk,l

set {dk,l}k=K̃(γ),l∈L̂ = 0

L̂ is the set of shifts close to the selected position.

5 for r = 1, r < R

{s[r+1]}k∈k̃,l∈L̃

= EM({s[r]}k∈k̃,l∈L̃, {ak,l}k∈K̃,l∈L̃)

6 calculate gradient {∆ak}k∈K

{∆ak}k∈K̃ = {∑l∈L(x − ak,lsk,l)sk,l}k∈K,l∈L

L is the set of all shifts for which features are not

truncated

7 update {ak,l}k∈K,l∈L

{ak}[r+1]

k∈K̃
= {ak}[r]

k∈K̃
+ µ{∆ak}k∈K̃

8 normalise {ak}k∈K̃

{ak}[r+1]

k∈K̃I
:= {ak}[r+1]

k∈K̃
/‖{ak}[r+1]

k∈K̃
‖2

9 µ[r+1] = µ[r]ν; ν < 1

10 repeat from step 2 until convergence

The sparse coding model studied here has some indeterminacies. For

example the value of the coefficients and the energy of the features can be
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scaled so that the model is still valid. To avoid problems with constant

growth of the features re-normalisation has to be applied after each up-

date. Here the L2 norm of the features is arbitrarily normalised to 1. The

model also has an ordering ambiguity, but as there is no natural order to

the features, the found order is not relevant for the implementation.

The algorithm involves repeated calculation of As as well as ATx. In

the shift-invariant model these products are convolutions and can therefore

be evaluated efficiently in the Fourier domain. However, due to the high

sparsity of s a simple multiplication might be faster in some circumstances.

Due to the shift-invariant structure, A does not have to be stored entirely;

it is sufficient to store the individual features.

Conclusions

Approximations to the learning rule of the features ak can be based on

integral approximations around the MAP estimate of p(s|x,A). An easy

approximation based on a delta function can be used. This delta rule has

an interpretation as a joint maximisation of the complete data likelihood

in a missing data problem, which can justify its application.

For large problems, the derived learning rules cannot be used directly.

Instead, we developed a subset selection step which can reduce the problem

size. The reduced problem can then be solved using the learning rules

derived. Experimental results and different applications of the developed

algorithm are presented in chapters 7 and 8.

However, before studying the performance of the proposed method we

develop other approximations to the learning rule. In the next two chap-

ters we use Monte Carlo approximations. Chapter 5 deals with importance

sampling Monte Carlo approximations of the learning rule, which can be

much faster than the method developed here, so that the subset selec-

tion step is not required. In chapter 6 we study Gibbs sampling to draw

samples from the posterior of s. This method allows for an easy incorpo-

ration of additional constraints by the specification of more complex prior

distributions.



Chapter 5

Importance Sampling

Approximation1

The learning rule developed in chapter 3 used stochastic gradient descent

steps for each data vector. As we use individual data vectors and not

the entire set of available observations, the gradient is only on average the

gradient of the complete data likelihood. This is however, sufficient for the

stochastic gradient descent procedure [72] to find the maximum likelihood

estimate. If we have a large amount of data we have to take many small

gradient steps in this procedure. The learning rule developed in the previ-

ous chapter attempted to find a good approximation of the gradient of the

likelihood of a single data vector. But as we have just stressed, this gradi-

ent is only a rough approximation of the gradient of interest and it seems

wasteful to spend too much computation on an accurate approximation

of this gradient.

Instead of finding a good approximation of the gradient we concentrate

in this chapter on a fast method able to find a ‘rough’ approximation to

this gradient. The parameters of interest in such an approximation are the

variance and the bias. If the approximation is biased, then the stochastic

gradient descent procedure only finds a biased estimate.

In this chapter we introduce an importance sampling approximation

of the gradient. In order to develop such a method we first define a prior

distribution that is a mixture of a Gaussian and a delta function. The

delta function, which is centred at zero, forces coefficients to zero, whilst

1This chapter is based on work published in [12]

79
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the Gaussian distribution models the non-zero coefficients.

In this model we have additional parameters, all of which can be es-

timated using maximum likelihood estimates. This is also done using

stochastic gradient descent similar to the estimation of the dictionary. We

therefore introduce the learning rules for these parameters in section 5.2.

In the same section the particularities of the importance sampling method

are introduced and the algorithm derived.

5.1 Model Formulation

The definition of sparsity used here assumes that many of the coefficients

s are exactly zero. However, the prior probabilities used in the previous

chapter had most of their probability mass close to zero but not at zero.

In this and the next chapters we use different prior formulations that have

a high probability mass at zero. Monte Carlo approximations can then be

used to approximate the learning rule 3.1 introduced in subsection 3.2.1.

5.1.1 Prior Formulation

In this chapter we impose the following mixture prior in order to enforce

sparsity of the coefficients s:

p(s|u) =
∏

n

p(sn|un) =
∏

n

(un

√

λG

2π
e−

λG
2

s2
n + (1 − un)δ0(sn)), (5.1)

where un is a binary indicator variable with discrete distribution:

p(un) =
1

1 + e−
λu
2

e−
λu
2

un (5.2)

and δ0(sn) is the Dirac mass at zero. This prior is a mixture of a Gaussian

distribution and the Dirac mass, therefore forcing many of the coefficients

to be exactly zero with the hyper-prior regulating the sparsity of the dis-

tribution.

5.1.2 Dealing with Parameters

The parameters defining this model are θ = {A, λG, λu, λǫ}. These pa-

rameters can generally be dealt with in several ways: type one or two
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maximum likelihood, MAP estimation or marginalisation. Marginalisa-

tion is the proper Bayesian approach to deal with nuisance parameters;

the MAP estimate would be the best possible estimate under zero-one

error loss, whilst the posterior mean is the best estimate of a parameter

of interest under a squared error loss. The main problem in this thesis is

the approximation of integrals for marginalisation over nuisance param-

eters. Which parameters to estimate and which parameters to integrate

out depends on the specific application and model. In this thesis we are

primarily interested in marginalising over the coefficients s in the above

model in order to calculate estimates of parameters of interest. The ex-

tension of the proposed methods to marginalisation over other parameters

is possible by a straightforward extension of the ideas presented here and

is not discussed further.

5.1.3 ML Learning of Model Parameters

Instead of adopting a fully Bayesian approach to the estimation of the

parameters θ, i.e. instead of specifying prior distributions and calculating

their joint posterior distribution or the maximum thereof, we again use

a stochastic gradient descent algorithm to find the maximum likelihood

estimate. In this model, the coefficients s and u are assumed to be nuisance

parameters and are therefore integrated out of the data likelihood. The

maximum likelihood estimate is then

θ̂ = arg max
θ

∏

i

∫

p(xi, si,ui|θ) d{si,ui}.

We use the subscript i to denote the ith observation vector and the as-

sociated coefficients, and I to denote the number of observations. This

maximisation can again be solved using stochastic gradient optimisation

by approximating the gradient w.r.t. all data with the gradient w.r.t. a

single data vector xi. As discussed in chapter 2, we can write the gradient

as:
∂

∂θ
log p(x|θ) =

∫

p(s,u|x, θ) ∂
∂θ

log p(x, s,u|θ) ds du, (5.3)

where from now on we drop the index i. Again, this expectation cannot be

evaluated analytically in general and different approximations have been
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proposed in the literature [68, 80, 103], all of which require the calculation

of the MAP estimate of p(s,u|x, θ). However, for many prior distributions

the posterior over the coefficients is multi-modal and such estimates then

only reflect a section of the distribution and might fail to account for

most of the probability mass. Furthermore, such estimates are generally

biased, so that convergence to the true maximum of the likelihood is not

guaranteed.

During stochastic gradient learning of the parameters the algorithm

randomly iterates through the available data, updating the parameters

by a small amount in each iteration. This method therefore averages

the gradient over several steps. This suggests the use of a less accurate

approximation of the gradient in equation (5.3), which itself is already a

rather poor approximation of the true gradient with respect to all available

data. The stochastic gradient algorithm is then still able to converge to

a maximum, given that the unbiasedness of the approximation is ensured

and that the learning rate is decreased to zero [114].

Here we discuss a Monte Carlo approximation of the above integral

using importance sampling [115]. This technique does not rely on MAP

estimation and can therefore be implemented efficiently as shown below.

Importance sampling approximates an integral by a sum of weighted

samples,

∫

p(s,u|x, θ) ∂
∂θ

log p(x, s,u|θ) ≈
J
∑

j

wj
∂

∂θ
p(x, ŝj , ûj|θ),

where ŝj and ûj are samples drawn from a proposal distribution q(s,u)

with the same support as p(s,u|x, θ). Here we use the subscript j to

label the individual samples drawn. We further use J to denote the total

number of samples. The weights are calculated as:

wj =
1

J

p(ŝj, ûj |x, θ)
q(ŝj , ûj)

=
1

J

p(ŝj|ûj ,x, θ)p(ûj|x, θ)
q(ŝj , ûj)

. (5.4)

The use of the weights calculated with this formula gives an unbiased

gradient estimate for the problem at hand. It can also be shown that the

above Monte Carlo approximation converges for J → ∞.
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5.2 Algorithm

The dictionary learning algorithm is an iterative procedure repeating the

three steps below until convergence.

1. Draw a data vector xi at random from the available training data

and draw a set of samples {ŝj} and {ûj} from the data-dependent

proposal distribution p(s|û,xi,A)α(u|x).

2. Calculate the weights wj for each of the samples ŝj and ûj.

3. Update the parameters θ using a gradient step with a gradient ap-

proximation found by Monte Carlo integration using the weighted

samples.

Each of the above steps and the required calculations are discussed below.

5.2.1 Proposal Distribution and Sampling

The mixture prior used enables us to draw samples ŝ conditionally on û

by setting ŝn = 0 if ûn = 0. The non-zero coefficients ŝø are then Gaussian

distributed with variance Λ−1 and mean

ΛΛ−1
n,øs̃ø,

where s̃ø is the least squares solution to the linear equation

x = Aøsø + ǫ,

with

Λ = (Λn,ø + λGI)

and

Λn,ø = λǫA
T
ø Aø.

Here the subscript ø refers to a vector or matrix only including the ele-

ments associated with the non-zero coefficients un, e.g. Aø is a matrix with

those columns of A which are multiplied by non-zero coefficients sn. These

calculations can be executed efficiently if only a few of the coefficients are

non-zero. The distribution p(u|x, θ) cannot be sampled efficiently, so we
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resort to importance sampling. The variance of the approximation of the

integral in equation (5.3) then depends not only on the number of sam-

ples used but also on the similarity between the proposal density and the

density of interest. We therefore specify a proposal density that is propor-

tional to the correlation between each feature and the data, hoping that

this is a good first approximation of the true density.

α(u|x) =
∏

n

α(un|x), (5.5)

where we use

α(un = 1|x) = p(un = 1) ∗ fn(x),

with

fn(x) = 2 ∗ < an,x >
0.4

maxn̂ < an̂,x >
,

where an is the nth column of A. The optimal non-linearity in fn(x)

depends on the unknown distribution p(u|x, θ) and is therefore problem

specific. The particular nonlinearity given above has been chosen empiri-

cally to give a small variance in the weights for the problem under study.

5.2.2 Calculating the Weights

Unfortunately p(ûj|x, θ) in equation (5.4) can only be evaluated up to a

normalising constant. Furthermore, evaluation of p(ûj |x, θ) is computa-

tionally expensive. Equation (5.4) can, however, be replaced by:

ŵj =
p(x|ŝj, ûj , θ)p(ŝj|ûj)p(ûj)

p(ŝj |ûj,x, θ)q(ûj)
,

wj =
ŵj

∑

j ŵj
. (5.6)

Unfortunately, normalising the weights introduces a bias in the gradient

estimation. Nevertheless,
∑

j ŵj converges to p(x|θ) as J → ∞ so that the

gradient estimate is asymptotically (in the number of samples) unbiased.

5.2.3 Updating the Parameters

The parameters can be updated in each iteration using a gradient step.

The approximations of the gradients are calculated using a Monte Carlo
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approximation using the weighted samples drawn with the importance

sampling method. The update for the features ak used in the shift-

invariant sparse coding algorithm can be approximated as:

{a}[r+1]

k∈K̃
= {a}[r]

k∈K̃
+ ν{∆ak}k∈K̃,

with

{∆ak}k∈K̃ = {
I
∑

i=1

wi

∑

l∈L

(x − ak,lsk,l,j)sk,l,j}k∈K,l∈L.

The inverse of the noise variance can be estimated using a gradient of

the form:

∆λǫ =
J
∑

j=1

wj

(

M

2λǫ

− 1

2
(x −Asj)

T (x − Asj)

)

.

The inverse of the variance of the Gaussian in the mixture prior has a

gradient approximation of:

∆λG =
J
∑

j=1

wj

(

uT
j uj

2λG
− 1

2
sT
j sj

)

and the parameter specifying the mixture hyper-prior has a gradient

estimate of:

∆λu =

I
∑

j=1

wj

(

N

2(1 + e
λu
2 )

− 1

2
uT

j uj

)

.

One issue has to be raised here; the issue of identifiability. With the

model used here and in the next chapter, where a similar approach is taken,

it is not clear, whether all the parameters for which update rules are given

above can be identified uniquely. For example, two extreme signal models

would be x = ǫ and x = As. In the first case the noise variance parameter

would be set to the variance of the observations and the hyper-parameter

λu would be set so that the probability of setting any coefficient si to a

non-zero value would be negligible. In the second case the noise variance

would be set to zero with all the variation being explained by the variation

in s, which is possible when A spans the space of x. However, whether

the learning problem as stated above has a global maximum at parameters
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different from these extreme values is not immediately clear. This is an

open problem and has not yet been investigated in full. Nevertheless,

in the experiments reported in this thesis, we found that all parameters

converged to some values different from the extreme points mentioned

above. These points of convergence did depend on the starting values

of the parameters, so that the learning problem seems to have multiple

maxima. These issues are not fully investigated in this thesis as the main

focus is on the convergence of the features, ak.

5.2.4 Implementation

An overview of the importance sampling method for shift-invariant feature

learning is given in table 5.1.

5.3 Experimental Analysis

In this section we explore the performance of the importance sampling

method when applied to the dictionary learning problem. The motivation

for the introduction of the importance sampling method was to develop

a method that is able to give a fast approximation of the gradient of the

learning rule and that the possible increase in the variance of this estimate

would have only a small effect over the many iterations required for the

learning algorithm.

In order to evaluate the efficiency of the algorithm for different dic-

tionary sizes, a measure of this efficiency is required. An estimate of the

time required to calculate a gradient estimate with a certain accuracy, i.e.

of approximating the gradient with a certain variance, cannot be used as

a measure, as the idea behind the introduction of an importance sam-

pling method is based on increasing this variance for each gradient esti-

mate. Furthermore, the different prior formulations used with the different

methods lead to different gradient estimates. It is therefore necessary to

estimate the computation time required to calculate an estimate of the

features to a certain accuracy. It was found that for the dictionary sizes
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Table 5.1: Shift-invariant learning algorithm with the importance sampler.

Input:

User defined: signal {xi}, number and length of ak,

J, ζ and ν.

Output:

A and parameters λu, λR and λǫ.

1 {ak}k∈K=random,

K set of all feature indices

random initialisation of λu, λR and λǫ.

2 randomly select a data vector x

3 for j = 1, j < J

draw samples uij ∼ α(u|x)

if uij = 0 draw samples sij ∼ N
calculate weights wj

4 Calculate the gradient for the dictionary elements {∆ak}k∈K

{∆ak}k∈K = {∑J
j=1 wj

∑

l∈L(x − ak,lsk,l,j)sk,l,j}k∈K,l∈L

5 update {ak,l}k∈K,l∈L

{ak}[r+1]
k∈K = ({ak}[r]

k∈K + ν [r]{∆ak}k∈K)/‖{ak}[r]
k∈K + ν [r]{∆ak}k∈K‖2

6 calculate the gradients of the parameters:

∆λǫ =
∑I

j=1 wj

(

M
2λǫ

− 1
2(x −Asj)

T (x− Asj)
)

,

∆λu =
∑I

j=1 wj

(

N

2(1+e
λu
2 )

− 1
2u

T
j uj

)

∆λG =
∑I

j=1 wj

(

uT
i uj

2λG
− 1

2(sj)
T (sj)

)

7 update the parameters:

λǫ = λǫ + ν [r]∆λǫ

λu = λu + ν [r]∆λu

λG = λG + ν [r]∆λG

8 ν [r+1] = ν [r]ζ; ζ < 1

9 repeat from step 2 until convergence

considered in this section, all algorithms found approximations of the fea-

tures with comparable L2 distance from the true features after the same

number of iterations. In order to compare the speed of the methods we

therefore only estimate the time required with the different methods to
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compute a single iteration.

This was done by estimating the time required to calculate the MAP

estimate using 1) the EM algorithm [68] discussed in chapter 4; and 2)

a standard gradient descent algorithm. These results are then compared

to the estimated time required to generate 100 samples and calculate the

associated weights using the importance sampling method proposed in this

chapter. The test data was generated using a dictionary of five different

functions (and all their shifts). The function length L was set to c ∗ 32

with c ∈ {1, 2, 3, 4, 5}. The sizes of the dictionaries A were then 64×480,

128×960, 192×1440, 256×1920 and 320×2400, i.e. both M and N were

increased linearly. We further used λǫ = 100 and λG = 1 and set the

average number of non-zero coefficients to 1% so that the average number

of non-zero coefficients was also increased linearly. In this experiment we

assumed that all model parameters including the dictionary were known.

Figure 5.1 gives the computation time (using Matlab on a Macintosh

G4 1.42 GHz dual processor machine) in seconds (averaged over 10 runs)

for the three algorithms and for the different dictionary sizes. The di-

amonds in figure 5.1 show the performance of the importance sampling

method, the crosses are the measurements from the EM algorithm and the

circles are the measurements from the gradient descent algorithm. The

inner panel in figure 5.1 shows the graph zoomed in on the y-axis to reveal

the difference between the gradient descent and the importance sampling

algorithms.

In these experiments we did not take advantage of the structure of the

shift-invariant sparse coding formulation (i.e for the system matrix with

all shifts, most operations can be calculated efficiently using convolutions).

The results are therefore applicable to general dictionaries. It is important

to realise that the performance of all three algorithms depends on different

parameters. Both the computation time for the EM algorithm and for

the gradient descent algorithm depend on the stopping rule employed.

We stopped both algorithms when the change in the optimised function

was below 0.0001. The EM algorithm has a computational complexity of

O(M3), the gradient algorithm of O(MN) while the proposed sampling

algorithm only relies on the average number of non-zero components in the



CHAPTER 5. IMPORTANCE SAMPLING APPROXIMATION 89

Figure 5.1: Computation time for the different algorithms for different dictio-
nary sizes. Top left panel shows plot zoomed in on y-axis.

samples and is therefore dependent on the prior. For large problems, as

investigated in the next chapters, the dominating computational burden

is associated with sampling of u together with the search for the non-zero

values.

Conclusions

The stochastic gradient descent learning rule used for sparse coding re-

quires the repeated estimation of the gradient. This estimate is here only

calculated with respect to a randomly selected single data vector. As this

estimate is averaged over a large number of data-points, each gradient

estimate has a large variance. The importance sampling algorithm in this

section was developed as a fast method to estimate this gradient. This

estimate has a larger variance than the previous one, however, the speed

advantage allows for a much faster evaluation. For the problem studied

here, the overall learning performance was equivalent between the algo-

rithms for the same number of iterations. The speed advantage of the

importance sampling method furthermore allows the use of more data-

points and can therefore further reduce the overall variance. However, the

used importance sampling method did not offer an unbiased estimate of

the gradient. In chapter 7, in which we compare the importance sam-

pler to the other methods developed in this thesis, we show that this bias
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becomes significant for larger dictionary sizes.



Chapter 6

Gibbs Sampling Approximation1

For many instruments such as the piano, we know that the excitations of

the sound producing part of the instrument, e.g. the strings in the piano,

are always in the same direction. In the piano, the hammer that hits the

strings always moves the string in the same direction before the string

oscillates on its own. Therefore, the excitation of the first half cycle of

the recording of a piano note is also always in the same direction. For

our model this means that for such instruments, the coefficients s always

have the same sign. This additional knowledge can be incorporated into

the model by specifying a non-negative prior distribution for these s.

Such a prior formulation is introduced in this chapter. Again, a mixture

distribution is used, where a delta function models the probability mass at

zero. The non-zero coefficients are described by a modified Rayleigh dis-

tribution, which only has probability mass for all values greater than zero.

To calculate approximations to the learning rule and to evaluate approx-

imations to the gradient required for the estimation of other parameters,

we introduce a Gibbs sampling method.

The Gibbs sampler offers potentially high performance, however, the

high dimension of the distribution to be sampled from requires further

thought. A modification of the subset selection procedure introduced pre-

viously is described, which keeps the asymptotic convergence of the Gibbs

sampler and offers good performance in practice.

1The work presented here is based on [11]

91



CHAPTER 6. GIBBS SAMPLING APPROXIMATION 92

6.1 Model Formulation

Again we consider the problem of estimating the learning rule:

∆akp =
1

σ2
ǫ

〈

∑

m

ǫmsk,p−m

〉

p(s|A,x)

.

In this chapter we develop and analyse Markov chain Monte Carlo approx-

imations of the integral in this learning rule. First we develop a Gibbs

sampling strategy to draw samples from the posterior p(s,u|x,A), where

we again use a mixture prior. However, we introduce a novel distribution

for the non-zero coefficients that differs from the one used in the previous

chapter.

6.1.1 Sparse Coding with the Gibbs Sampler

In this chapter we again impose the following mixture prior given in equa-

tion (5.1) and equation (5.2) in order to enforce sparsity of the coefficients

s:

p(s|u) =
∏

n

p(sn|un) =
∏

n

(unp(s) + (1 − un)δ0(sn)),

where un is a binary indicator variable with discrete distribution:

p(un) =
1

1 + e−
λu
2

e−
λu
2

un

and δ0(sn) is the Dirac mass at zero. Contrary to the model in the previous

chapter, the distribution p(s) is not necessarily assumed to be Gaussian.

The Gibbs sampler introduced here can also be used if this distribution is

uniform over some interval or has the distribution of the modified Rayleigh

distribution introduced below.

In [43, 105] and [126] two Gibbs sampling algorithms [115] were pro-

posed to solve the problem of learning an over-complete dictionary matrix

A for sparse signal representations. Similar methods were previously sug-

gested in [132, 25, 88, 52, 2]. These methods are based on a mixture prior

similar to the one introduced above, but in [43, 105], the mixture was a

mixture of Gaussians. A related approach is the method in [152, 153],

which in addition modelled the relationships between the coefficients s.
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A connection between indicator variable methods as discussed here and

model order selection is given in [45].

For the model discussed here, different implementations are possible

in order to draw samples from the model. For a mixture of Gaussians it

is possible to draw samples p(un|un̂6=n, s,x, θ) and p(sn|sn̂6=nu,x, θ) [89],

i.e. by standard Gibbs sampling from the conditional densities, where

the subscript notation n̂ 6= n refers to quantities with subscripts other

than n. The problem with this method is that for mixtures of Gaussians

in which each Gaussian has very different variances, the chain seldom

switches states [43]. An extreme case would be the mixture of a Gaussian

and a delta function used in the previous chapter, in which, whenever sn

is non-zero, the chain is not able to change the variable un, as such a

change would have zero probability. In order to overcome this problem

it is possible to sample from p(un|un̂6=n,x, θ) [43, 105], i.e. by integrating

out the coefficients s. The distribution p(un|un̂6=n,x, θ) is calculated as:

p(un|un̂6=n,x, θ) ∝ p(un|un̂6=n)

∫

p(x|s,u, θ)p(s|u, θ) ds.

However, the evaluation of this distribution involves matrix inversion.

This can be avoided by only integrating out a single coefficient sn, i.e by

sampling from

p(un|sn̂ 6=n, un̂6=n,x, θ) ∝ p(un|un̂6=n)

∫

p(x|s,u, θ)p(sn|u, θ) dsn. (6.1)

After sampling of the indicator variable from either p(un|un̂6=n,x, θ) or

p(un|sn̂ 6=n, un̂6=n,x, θ) it is then easy to sample from p(s|u,x, θ) or alterna-

tively from p(snn̂ 6= n, un,x, θ) as these distributions are either Gaussians

or delta functions with parameters that are easily calculated.

An extension combining both methods can be developed by integrat-

ing out any set of coefficients sn in each step. This would then lead to a

block Gibbs sampler. The drawback, however, of both the first method

and the proposed block method is the required evaluation of a full co-

variance matrix in the calculations. This problem does not arise in the

second method, as all calculations can be done with univariate distri-

butions. We therefore concentrate here on the second approach. The
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marginalisation method has another advantage as discussed in [115] as

Rao-Blackwellisation. Marginalisation does reduce the variance of the

chain and is therefore desirable.

In order to use this strategy, it is beneficial to choose a prior distribu-

tion which facilitates this integration. The mixture of Gaussian and delta

function in the previous chapter as well as a mixture of Gaussians or a mix-

ture of a delta and a uniform distribution can be used. The non-negative

mixture prior developed in this chapter also allows this integration to be

performed analytically.

If we integrate out a single coefficient, we set variable un = 1 with

probability:

P (un = 1|sn̂ 6=n,x, θ) =
p(un = 1|sn̂6=n,x, θ)

∑1
k=0 p(un = k|sn̂ 6=n,x, θ)

=
1

1 + e−E1
, (6.2)

where

E1 = log
p(un = 1|sn̂6=n,x, θ)

p(un = 0|sn̂6=n,x, θ)
. (6.3)

So we only have to evaluate the logarithm of the ratio of the distributions

such that the conditional distributions have to be known only up to a

normalising term. The calculations for the other methods are similar,

with the conditional distributions replaced accordingly.

6.1.2 Non-Negative Prior Formulation

The Bayesian paradigm allows for an easy incorporation of further con-

straints both on the parameters θ as well as on the coefficients s. This

is done by specifying a prior distribution that enforces these constraints.

In this section we study one possible example of such an additional con-

straint; the positivity of the coefficients s. To model the sparseness and

independence assumptions on s we also use the factorial mixture prior for

p(s) of the form
∏

p(sn|un)p(un), where un are binary indicator variables,

p(sn|un = 0) = δsn
(0), i.e. a mass at zero and p(sn|un = 1) is a positive

distribution which is specified below. The factorial prior used reflects the

prior belief that the coefficients s are independent a priori. This assump-

tion can again be relaxed if certain prior dependencies can be assumed

for a problem at hand. However, the derivation of the following algorithm
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Figure 6.1: Histogram of MIDI note velocities (solid) versus the modified
Rayleigh distribution (dashed). Also shown are an unshifted Rayleigh distribu-
tion (dotted) and a shifted Rayleigh distribution (dash dotted).

then becomes slightly more involved and the computational burden might

increase.

The observation noise ǫ is again assumed to be i.i.d. Gaussian. (The

extension to coloured noise is possible, however, many of the computa-

tional advantages of the algorithms discussed do not apply in this case.)

Positivity of the coefficients s can be enforced by restricting the prior

distribution for the sn to R
+. Here we propose the use of a modified

Rayleigh distribution. The use of this distribution is motivated by the

application to piano music analysis that is studied in this thesis.

The physical mechanism in a piano always excites the piano strings in

the same direction such that the first excursion of the observed waveform

of a piano note is also always in the same direction. This means that the

coefficients s always have the same sign. As the note prototypes ak and the

coefficients s can be inverted together without changing the reconstruction

we can, without loss of generality, assume s to be non-negative. Further-

more, in most music performances notes are played at similar amplitudes

- otherwise louder notes would overshadow quieter ones, and these would

then be inaudible. These considerations lead us to propose the distribution

for non-zero coefficients s described below.

This argument can be strengthened by comparing the modified Ray-

leigh distribution to the histogram of note amplitudes, which is done in

figure 6.1. Here we show the histogram of note amplitude as recorded

from the velocity value of a MIDI keyboard, i.e. an electronic keyboard

which records the velocity with which keys are pressed during a musi-

cal performance. The histogram here shows the velocity values for the
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notes of a performance of Ludwig van Beethoven’s Bagatelle No. 1 Opus

33. The dashed line in this figure is the graph of a modified Rayleigh

distribution defined formally below. For comparison, we also show the

standard Rayleigh distribution (which is also known as a square-root in-

verted Gamma distribution) with the dotted line and a shifted version of

this Rayleigh distribution with the dash dotted line.

It is clear that the modified Rayleigh distribution fits the estimated dis-

tribution of the note activations better than the other two distributions.

For other data such as biomedical time-series, other positive distributions

for the non-zero coefficients might be more appropriate. For example, the

modified Rayleigh distribution can be replaced by a zero mean Gaussian

distribution restricted to positive values or by a uniform distribution over

some positive interval. Both of these distributions can be used in the

Gibbs sampler developed below. For these well known distributions the

derivation of the required terms is relatively easy. We therefore concen-

trate on the presentation of the derivation of the algorithm for the more

complicated modified Rayleigh distribution.

The Rayleigh distribution is given as:

pR(s; σ2
R) =

1

σ2
R

se−s2/2σ2
R

for s > 0 and zero otherwise. This distribution is a special case of the

inverted square-root gamma distribution. This distribution can be easily

extended to allow for a shift parameter µ and is then:

pR(s; σ2
R) =

1

σ2
R

(s− µ)e−(s−µ)2/2σ2
R

for s > µ and zero otherwise. However, this distribution is zero for all

values smaller than µ. In the problem studied here this is not desired. We

therefore introduce a modification of the above distribution, which we call

modified Rayleigh distribution in this thesis and define as:

pmR(s;µσ2
R) =

1

ZmR
(s)e−(s−µ)2/2σ2

mR

for s > 0 and zero otherwise. Note that this distribution is nonzero for all

positive values of s. An example of this distribution is shown in figure 6.1
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(dashed line). The normalising constant for this distribution is:

ZmR = σmRe
−(µ)2/2σ2

mR + 0.5µ
√

2πσ2
mR(1 + erf(

µ
√

2σ2
mR

)), (6.4)

where erf(·) is the error function.

6.2 Algorithm

6.2.1 The Gibbs Sampler with the Modified Rayleigh Distribu-

tion

It is interesting to note that the modified Rayleigh distribution is a con-

jugate prior for the Gaussian mean so that the posterior of the Gaussian

mean is also a modified Rayleigh distribution. Therefore, the integral in

equation (6.1) is still tractable analytically.

If we use p(sn) = pmR(s;µn, λ
−1
R ), the expression for E1 in equation

(6.2) becomes:

E1 = −λun

2
+
λEn

2
b2n + lnΦ,

where

Φ =
ZE

Zp

[

1

Ψn
e−0.5η2Ψn + 0.5η

√

2π

Ψn

(

1 + erf

(

η

√

Ψ

2

))]

with

ZE = e−0.5(−η2Ψn+b2nλEn+µ2
nλR)

and

Zp = λ−1
R e−µ2

n0.5λR + 0.5µn

√

2πλ−1
R

(

1 + erf
(

µn

√

0.5λR

))

.

The derivation of the above expressions is given in appendix A. ηn and
1

Ψn
are the parameters of the posterior p(sn|sn̂6=n, un = 1, θ), which due to

the conjugate prior is also of the modified Rayleigh form. The parameters

are given analytically as:

ηn =
λEn

bn + λRµn

λEn
+ λR

and

Ψn = λEn
+ λR
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Here we have used the notation λEn
= ‖An‖2λǫ and bn = AT

n (I−A§n=0)
‖An‖2

where An is the nth column of the matrix A and λǫ is the inverse of the

variance of the likelihood.

To update the parameters we approximate the gradient of the marginal

log likelihood using Monte Carlo integration. For a general parameter θ

this gradient estimate is again:

∆θ ∝
∑

j

∂

∂θ
p(x, sj,uj |θ)p(sj,uj|θ,x).

Using the notation

∆jθ =
∂

∂θ
p(x, sj ,uj|θ)p(sj ,uj|θ,x)

and replacing θ by the parameters of interest we get:

∆jλR = −0.5
∑

sjn 6=0

(sjn − µ)2 − U

c1
(−0.5µλ−1

R c2 − c3λ
−2
R ),

where the sum is over the non-zero sjn, U is the number of the non-zero sjn,

c1 = µc2 + λ−1
R c3, c2 = 0.5

√

2πλ−1
R (1 + erf(µ

√
0.5λR)) and c3 = e−0.5λRµ2

,

∆jλǫ = λ−1
ǫ − (x −Asj)

2

µ
,

∆jλu =
1

1 + e0.5λu
− U

N

and

∆jµ =
∑

λR(sjn − µ) − U

c1
c3,

where the summation is again only over the non-zero sjn.

6.2.2 Sampling from the Modified Rayleigh Distribution

In the above sampling scheme it is necessary to draw samples from the

posterior distribution of sn conditioned upon the other s. As the modified

Rayleigh distribution is a conjugate prior for the Gaussian mean, this

distribution is also of the modified Rayleigh form with the parameters

given above. It is therefore necessary to implement a method that allows

us to draw samples from this distribution for different parameters. Due
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to the non-standard form of this distribution a direct sampling scheme is

not obvious. It is instructive to write the modified Rayleigh distribution

in the form:

1

ZmR
se−(s−µ)2/2σ2

R =
1

ZmR

(

(s− µ)e−(s−µ)2/2σ2
R + µe−(s−µ)2/2σ2

R

)

. (6.5)

For s > µ and µ > 0, the modified Rayleigh distribution can be un-

derstood as a mixture distribution of a Gaussian and a shifted Rayleigh

distribution. However, the modified Rayleigh distribution is defined for

values greater than zero, while the shifted Rayleigh distribution is defined

for values greater than µ, as it would be negative for values smaller than

µ. We therefore propose a hybrid sampling strategy if µ > 0, which first

determines whether the value is greater or smaller than µ. We have

p(s > µ) = p1 =
1

ZmR
(σmR + 0.5µ

√
2πσmR)

and

p(s < µ) = p2 = 1 − p1.

With probability p1, s > µ which means that we can sample from:

p(s|s > µ) = µ+

[

σmR

ZmR

]

σ−1
mR(s)e−0.5σ−1

mR
s2

+

[

0.5
µ

ZmR

√
2πσmR

]

2

√

σ−1
mR

2π
e−0.5σ−1

mR
s2

,

which is a mixture of a rectified Gaussian and a shifted Rayleigh distri-

bution with mixing probabilities given in the square brackets. For s < µ

we know that the distribution is bounded from above by

1

ZmR
µe−(s−µ)2/2σR

as
1

ZmR

(s− µ)e−(s−µ)2/2σR

is negative. We can therefore use a simple rejection sampler to draw

samples for 0 < s < µ when µ > 0.

If µ < 0 we see from equation (6.5) that the second term becomes

negative while the first term is positive for all s > 0. The distribution is
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then bounded from above by a shifted Rayleigh distribution which can be

used for rejection sampling. This might not be a good strategy in general

as it can lead to a very high rejection rate for certain parameter values.

For our experiments, however, this was found to be of no great concern.

6.2.3 Random Subset Selection

The probabilistic model used in this chapter leads to a posterior for u that

is multi-modal 2. Furthermore, for many of the problems of interest here

the dimension of this state space is very high. As the sampler has to be

able to draw samples from often far apart modes associated with much

of the probability mass and as the states between these modes have often

very low probability, we generally require a large number of samples to be

drawn.

In order to improve the Gibbs sampler performance different approach-

es could be adopted. We tried several methods, but most of these did not

offer significant advantages. However, as these methods can be of interest

for related applications, they have been included in appendix B. In order

to significantly reduce the computational requirements we instead resort

to subset selection. For example, the subset selection step introduced

in chapter 4 could be used and we found this to work well in practice,

however, the Gibbs sampler then does not have the chance to explore

certain parts of the distribution.

An improvement on the deterministic subset selection procedure, which

asymptotically explores the full probability space and therefore asymptot-

ically draws samples from the correct distribution, is to use a random

subset selection during each Gibbs cycle. The method that we found

worked best for the problems under study used a combination of both

approaches. We used the subset selection algorithm to select a fixed sub-

set at the beginning of each Gibbs run. In each Gibbs cycle we then

2We use the term multi-modal here for discrete state spaces. In order to be able to talk
about modes, we need to define a neighbourhood for each point. In the discrete state space
used here, such a neighbourhood can be defined based on Levenshtein distance (more com-
monly known as edit distance). With such a definition, points that differ from any point by
only a single indicator variable un constitute its neighbourhood. A mode is then a point with
higher probability than all its neighbours.
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added a random selection of further features to this initial set. In each

Gibbs step we sample from p(un|sn̂6=n, un̂6=n,x, θ) and p(sn|sn̂6=n,u,x, θ).

The order in which we sample from these distributions can be chosen at

random and it is not necessary to cycle through all n before returning to

any one coefficient. The sampler is still guaranteed to converge to the

stationary distribution if we ensure that we sample from each coefficient

with non-zero probability. The random subset selection method can be

seen as a way to specify a random set of subscripts n. If we combine the

random subset selection method with the fixed subset selection as pro-

posed here, we use a fixed set of subscripts, say {n1, n2, · · · , nW1
}. In each

cycle of the sampler we further select a random set of indices from the

remaining set, i.e. {nW1+1, nW1+2, · · · , nW1+W2
}. Each Gibbs cycle than

samples from p(unk
|sn̂6=nk

, un̂6=nk
,x, θ) and p(snk

|sn̂6=nk
,u,x, θ) where nk is

a random permutation of the indices n1 to nW1+W2
. This method ensures

that a fixed region of the probability space was explored by the sampler,

but enables the sampler to asymptotically explore the complete space.

6.2.4 Convergence

A Markov chain requires several steps before the samples can be assumed

to be generated from the stationary distribution and a major problem is

to assess after how many samples the sampler has achieved this conver-

gence. As there are no general numerical methods to assess convergence,

convergence is normally monitored graphically by plotting estimates of in-

terest versus sample number, however, this method has its problems [115]

and we found that for the application studied here such plots were often

ambiguous.

As we are only able to draw a very small number of samples for the

applications of interest, it was found that the sampler often converges to

a single local maximum of the distribution and that it is rarely capable

of escaping this local mode. Nevertheless, similar learning algorithms to

the ones proposed in [103] and [80] and discussed in chapter 4 use even

cruder approximations based on local maxima. It is therefore likely that

the Gibbs sampler offers better approximations to the distributions than
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these methods. This is shown empirically in chapter 7 in which the Gibbs

sampler outperforms the other approaches even with a small burn in period

of only 50 samples.

In order to improve convergence, an annealing method as discussed

in [98] could be used. This method has similarities with the methods in

[100, 141]. Instead of starting the chain using kernels with the stationary

distribution of interest, sampling can be started from a more dispersed

distribution. This flatter distribution can be derived by raising the distri-

bution of interest to a power T < 1. During the first samples, which are

discarded anyway, the target distribution is annealed to the distribution of

interest by increasing T gradually to 1. We found this method improved

performance, but due to the difficulty of assessing convergence it is hard

to give a conclusive evaluation.

6.3 Implementation

As with the importance sampling approach in the previous chapter, the

Gibbs sampling method can be used with dictionaries other than the shift-

invariant dictionary. Again, the only change is the use of a different learn-

ing rule. An overview of the learning algorithm based on the proposed

Gibbs sampling method is given in table 6.1.

Conclusions

For piano music we assume that note waveforms follow a similar time-

domain waveform for different renditions of the same note. Due to the

physical generation of the note, the first excursion of this waveform is

assumed to be always in the same direction. This means that the coeffi-

cients s can be restricted to be non-negative. This reasoning, as well as

the observed statistics of the strength with which each note is played in a

typical piano performance, lead us to the introduction of the non-negative

mixture prior in this section.

We introduced a Gibbs sampling method to approximate the learning

based on this prior. As one of the mixture components in this prior is
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Table 6.1: Shift-invariant learning algorithm with a non-negative prior.

Input:

User defined: signal {xi}, number and length of ak,

J, ζ and ν.

Output:

A and parameters λu, λR, λǫ and µ.

1 {ak}k∈K=random,

K set of all feature indices

random initialisation of λu, λR, λǫ and µ

2 randomly select a data vector x

3 calculate inner product between x and all shifted features

{dk,l}k∈K,l∈L =< x, {ak,l}k∈K,l∈L >

K is the set of all features

L is the set of all shifts.

4 draw samples s(j) using the Gibbs sampler. In each Gibbs cycle

only use a randomly selected subset of features where the probability

of using any feature depends on {dk,l}
5 Calculate the gradient for the dictionary elements {∆ak}k∈K

{∆ak}k∈K = {∑J
j=1

∑

l∈L(x − ak,lsk,l,j)sk,l,j}k∈K,l∈L

6 update {ak,l}k∈K,l∈L

{ak}[r+1]
k∈K = ({ak}[r]

k∈K + ν [r]{∆ak}k∈K)/‖{ak}[r]
k∈K + ν [r]{∆ak}k∈K‖2

7 calculate the gradients of the parameters:

∆λǫ = λ−1
ǫ − (x−As)2

µ ,

∆λu = 1
1+e0.5λu

− U
N

∆µ =
∑

λR(sn − µ) − U
c1

c3

∆λR = −0.5
∑

sn 6=0(sn − µ)2 − U
c1

(−0.5µλ−1
R c2 − c3λ

−2
R )

8 update the parameters:

λǫ = λǫ + ν [r]∆λǫ

λu = λu + ν [r]∆λu

µ = µ + ν [r]∆µ

λR = λR + ν [r]∆λR

9 ν [r+1] = ν [r]ζ; ζ < 1

10 repeat from step 2 until convergence
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a modified version of the Rayleigh distribution, we introduced a novel

sampling strategy to draw samples from this distribution. The Gibbs

sampler is relatively slow. To overcome this, we introduced a random

subset selection step that only includes a small number of features in each

Gibbs cycle. A comparison of the different methods introduced in this

and the previous two chapters is presented in chapter 7.
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Chapter 7

Comparative Study

In the previous three chapters we have developed three different approach-

es to the learning problem. The performance of these methods is evaluated

in this chapter. To better assess the performance we used a simplified test

signal that enabled us to analyse the influence of the choice of different pa-

rameters, assumptions and approximations on the results. This influence

was evaluated in terms of the quality of the solution, the computational

complexity and the convergence to local or global solutions. A better un-

derstanding of the behaviour of the algorithms developed in this thesis can

then be used in the selection of a particular method for a particular appli-

cation or problem. We also compare the performance of these algorithms

to the Gibbs sampling method proposed in [126].

After introducing the simplified test signal in section 7.1, we analyse

the learning performance of the methods in section 7.2 and compare the

dictionary elements found with the different methods to the dictionary

used to generate the test signal. Furthermore, we look at the learned

model parameters and compare them to the estimates directly calculated

from the true coefficients s used to generate the test signal.

In section 7.3 we analyse the representations s calculated with the dif-

ferent methods. To estimate the coefficients s we use the parameters and

dictionary from which we generate the signal, as well as the learned param-

eters and dictionaries. These estimates are compared to the true sequence

used to generate the signal. For the sampling based methods developed

in this thesis we compare two different estimations of the representation,

the MAP estimation of s and the estimated mean of s.

106
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In the final section of this chapter we compare the methods intro-

duced in this thesis using a music analysis task. In this section we use

the different algorithms to learn sets of piano notes from polyphonic pi-

ano recordings and concentrate on the differences and similarities in the

learned features. A more detailed study of the musical structures found

with one of the proposed methods is left for the subsequent chapters in

this thesis.

7.1 Methodology

In this section we compare the performance of the EM method discussed

in chapter 4, the importance sampler derived in chapter 5 and the Gibbs

sampler with the non-negative prior developed in chapter 6. Furthermore,

we compare these methods to the Gibbs sampler developed in [126], which

is similar to the Gibbs sampler developed in chapter 6, but with a Gaussian

and delta mixture prior.

In order to compare the different methods, we generated a test signal

with known properties. To be able to draw conclusions from these experi-

ments that are valid for the real world problems of interest, the test signal

should have many of the properties of these signals. To simplify analysis

the test signal should also have a smaller number of parameters to be

estimated. Furthermore, the properties of such a signal should be control-

lable so that the influence of different signal properties can be studied in

more detail. These requirements were met by using the recorded perfor-

mance information of a real piano performance of Ludwig van Beethoven’s

Bagatelle No. 1 Opus 33 (see [6] for more information about the data).

This information included the strength with which each note was played,

the length of each note, the pitch of each note and the timing of each note.

To generate the test signal, we restricted all pitches played to one octave

(i.e. the note pitches were mapped onto a single octave) and reduced the

time scale. The relative timing, as well as the strength of the notes, was

preserved. We then generated the signal using notes with a fixed length

of 128 samples. These notes were generated using an FM synthesis tech-

nique and are shown in figure 7.1. The signal therefore followed the model
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A B C D

E F G H

I J K L

Figure 7.1: The twelve notes used to generate the test signal.

studied here in that it was generated from 12 waveforms at different loca-

tions and with different amplitudes. The location and the amplitudes of

the waveforms had the same statistics as the original piano performance.

However, we did not add noise to the model.

In all experiments we initialised the features in the matrix A with the

same set of sinusoidal functions. The number of features to be learned

was set to 12 with a length of 128 samples each. We then ran the ex-

periments for 10 000 iterations, after which all methods had converged.

The speed advantage of the importance sampling method allowed us to

run this method for a further 1 000 000 iterations, however, no significant

change in the results was observed after these additional iterations. As the

importance sampling algorithm is much faster than the Gibbs sampler, all

three Monte Carlo methods took roughly the same amount of time (ca.

three days on a Macintosh G4 1.43 GHz computer).

For the EM method of chapter 4 we used 10 iterations for each EM step

(this was found to be enough for the algorithm to converge sufficiently).

In the subset selection step we set the maximally allowed overlap of one

feature with a shifted version of itself to 50% and selected a maximum of

50 features for each data-block.
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For the Monte Carlo methods we estimated the parameters with the

maximum likelihood learning rules given in section 6.2 and subsection 5.2.3

respectively. Note that the learning rules for the Monte Carlo methods

based on the Gaussian and delta mixture prior are similar and only differ

in the use of the importance weights in the importance sampling estimate.

We used 100 samples in the importance sampler and the last ten sam-

ples of 50 for the Gibbs sampler. For both Gibbs samplers, the first sample

in the chain was set to a vector of zeros.

It is important to stress that the small number of samples generated

with the Markov chain sampling methods means that it cannot be assumed

that the samples follow the exact distribution of interest. However, the

computational burden is already very high with this small number of sam-

ples and an increase in the number of samples infeasible. Nevertheless,

the results reported below show that the overall error introduced by the

integral approximation was small, even with this small number of samples.

The importance sampling weight calculation introduces a bias, which,

for the small number of samples used here, influences the results signif-

icantly. This bias decreases with the number of samples and to analyse

this influence, we increased the number of samples used in a second exper-

iment to 10 000. In this experiment we initialised the algorithm with the

solution found in the previous experiment (which used 100 samples) and

ran the method for 10 000 further iterations. With this increased number

of samples the performance improved, however, the increase in the sample

number also increased the computation time. The 10 000 iterations now

took 5 days.

7.2 Learning Performance

7.2.1 Qualitative Evaluation

The 12 notes used to generate the test signal are shown in figure 7.1 and

are also shown in figure 7.2 with dotted lines. In the same figure we show

10 of the features learned with the Gibbs sampler using the non-negativity

constraint (solid lines). We assigned the features here depending on the
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A B C D

E F G H

I J K L

Figure 7.2: The twelve features learned with the Gibbs sampler and the non-
negativity constraint. The dotted lines show the original notes.

A B C D

E F G H

I J K L

Figure 7.3: The twelve features learned with the importance sampler (b). The
dotted lines show the original notes.

correlation between the learned features and the true features and took

account of the different shifts of the learned features. As two of the original

notes (B and K) did not have a high inner product with any of the learned
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Figure 7.4: Learning performance comparison for note C. The features learned
with the Gibbs sampler with the non-negativity constraint (1), the Gibbs sam-
pler (2), the EM method (3), the importance sampler with 100 samples (4),
and the importance sampler with 10 000 samples (5). The top left panel shows
the features in the time domain with the true notes in red. The top right panel
shows the power spectrum of the learned features, again with the true notes in
red. The bottom left panel shows the difference between the learned and true
notes in the time domain and the bottom right panel shows the difference of
their power spectra.
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features, we matched these up with the closest learned features, which are

the features learned to model notes A and L. The similarity between most

learned features and the true notes is evident.

Figure 7.3 compares the original notes to the features learned with the

importance sampler using 100 samples. This time the true notes B and K

are compared to the same learned features as notes C and L respectively.

The features learned with the importance sampler are less similar to the

true notes than the features learned with the Gibbs sampler using the

non-negative prior. It is interesting to note that the features learned with

the importance sampler have a smooth amplitude envelope. This seems

to suggest that, during learning, the features were updated with notes at

shifted positions where the shifts are multiples of the feature period as was

discussed in section 3.3.1. This might be a result of the bias introduced

in the normalisation of the weights as discussed below.

The difference in the learning performance can be clearly seen by look-

ing at a single note. Figure 7.4 compares the time-domain and the power

spectrum of note C to the closest features learned with all methods (The

Gibbs sampler with the non-negative prior (1), the Gibbs sampler (2), the

EM method (3) and the importance sampler with 100 (4) and 10 000 (5)

samples). The top two panels show the features in the time-domain (left)

and in the spectral-domain (right). The two panels at the bottom show

the error between the learned and the true notes. It is again clear that the

error is worse for the importance sampling method. We also see that the

features learned with the importance sampling method have a stronger

fundamental frequency but weaker upper harmonics. This is again an ef-

fect similar to the one discussed in section 3.3.1 and a result of the bias

introduced in calculating the sample weights.

7.2.2 Quantitative Evaluation

A quantitative analysis of these results is given in table 7.1 where the inner

products between the true notes and the closest learned features at the

best shift are compared for all methods used. Here it is evident that the
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Method NN Gibbs Gibbs EM Imp.100 Imp.10000

Note A 0.9980 0.9988 0.9962 0.9343 0.9779

Note B 0.7106 0.8241 0.7635 0.7693 0.7941

Note C 0.9986 0.9980 0.9980 0.9337 0.9280

Note D 0.9721 0.9879 0.9947 0.6786 0.6852

Note E 0.9958 0.9981 0.9971 0.9032 0.9265

Note F 0.9987 0.9974 0.9997 0.8509 0.8760

Note G 0.9957 0.9960 0.9980 0.6274 0.6149

Note H 0.9942 0.9960 0.9993 0.9757 0.9901

Note I 0.9102 0.4808 0.4891 0.5180 0.5201

Note J 0.9719 0.9966 0.9735 0.3453 0.3444

Note K 0.4836 0.5359 0.4901 0.5073 0.4859

Note L 0.9966 0.9904 0.9974 0.8995 0.9602

Total 11.0260 10.8010 10.6966 8.9433 9.1034

Table 7.1: Correlation between the learned features and the original notes.

Gibbs sampler with the non-negativity constraint offers the best perfor-

mance. Interestingly, the EM method with a subset selection step offers

nearly as good a performance as the Gibbs sampler with the Gaussian and

delta mixture prior. This is somewhat surprising at first, as the MAP es-

timate used in this method gives a biased gradient estimate. However, the

interpretation of this method as a joint estimation of the features and the

coefficients s (as discussed in [57]) gives a statistical motivation for the use

of this method. The fact that the Gibbs sampler with the non-negativity

constraint outperforms these other methods can be assumed to be due to

the prior distribution used, which more closely follows the actual distri-

bution of the coefficients as shown in section 6.1. Interestingly the subset

selection step does not seem to degrade the performance significantly.

The performance decrease for the importance sampling method is also

clear from this table. The influence of the bias introduced by the required

weight normalisation depends on the number of samples used. When the

sample size is increased, the performance improves, nevertheless, even with

10 000 samples the importance sampler does not reach the performance

of the other methods.

As is evident from table 7.1, not all notes were learned in the experi-

ments. This seems to be due to local maxima in the marginal likelihood.
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Figure 7.5: The correlation between the learned features and the original notes
for the different methods and the histogram of the note occurrence in the train-
ing signal (bottom).

The notes which have no corresponding learned features are those which

occur less frequently in the signal, as is clear from figure 7.5, where we

compare the histogram of the occurrence of the notes in the signal to

the correlation between the learned features and the original notes. It

is evident that, independent from the method used, there exists a strong

correlation between the note occurrence and the learning performance.

The overall results in table 7.1 are due to two distinct effects. On the

one hand, the correlation between the true notes and the learned features

varies between the different methods. The Gibbs sampler with the non-

negativity constraint offered the best performance and the importance

sampler offered the worst performance. On the other hand, the number of

learned features also differed. The Gibbs sampler with the non-negativity

constraint found all but two notes, whilst the importance sampling method

again performs worst, with only six of the true notes having a correlation

of more than 0.8 with any of the learned features. With all methods some

notes have been learned more than once. With the EM method, the second

note has been learned but is not very good. Running the algorithm for

further 100 000 iterations did not improve the results and it appears that

the non-convergence of some of the features is due to the convergence to

local maxima in the likelihood function.
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λN λR λG µ λu

True inf 21.1 1.54 0.73 14.25

Imp 185 n.a. 1.13 n.a. 15.07

NN 197.93 1.07 n.a. 0.99 13.44

Gibbs 436.46 n.a. 1.35 n.a. 14.82

Table 7.2: Estimation of the other model parameters compared for the different
methods.

7.2.3 Parameter Estimation

In addition to the features ak, the proposed sampling methods calcu-

late maximum likelihood estimates of some of the other parameters using

stochastic gradient optimisation. These parameters include the noise vari-

ance, the prior parameters, λR or λG, the hyper prior parameter λu and,

for the non-negative prior, µ. We used maximum likelihood methods to

estimate these parameters from the true coefficient vector s, which was

used to generate the test signal. The true noise variance was not esti-

mated as the signal was produced without added noise. Nevertheless, the

algorithms developed in this thesis require the specification of a non-zero

noise variance and in the experiments reported below the noise variance

was set to 0.01 when the true parameters were used.

Table 7.2 compares the parameters estimated with the different ap-

proaches to the parameters estimated directly from the true coefficients

s. It is interesting to note that the Gibbs sampling method with the non-

negative prior underestimated the prior parameters. There seem to be

two reasons for this. The assumed noise term influenced the estimate,

as the signal did not have added noise. Furthermore, it was found that

the likelihood function did have several local maxima, so that the results

found might correspond to such a local maximum. This was investigated

by setting the parameters to the estimates found from the true parameters

and running the algorithm for a further 10 000 iterations whilst keeping

the dictionary fixed at the true values. In this experiment the λR value

converged to 21, while the µ parameter converged to 0.45. The prior model

that uses a mixture of a delta and a Gaussian did not suffer from these

problems.
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Figure 7.6: Convergence of the normalising constant estimate for the impor-
tance sampler plotted against the number of samples drawn. It is clear that at
least 1 000 000 samples are required for the example used here to guarantee a
good estimate.

7.2.4 Importance Sampler Convergence

To better understand the performance of the importance sampler and to

see how many samples might be required for the importance sampler to

significantly decrease the bias, we can monitor the convergence of the nor-

malising constant
∑

j ŵj in equation (5.6). Note that this quantity is an

approximation of 1
J

∑

j ŵj ≈ p(x|θ), i.e. the marginalised likelihood eval-

uated at the current data point and parameter values. In order to get an

unbiased gradient estimate we need an accurate estimation of this quan-

tity in the weight calculation of the importance sampler. To show the

convergence of this estimate, we plot 1
J

∑

j ŵj against J (i.e. the number

of samples used) in figure 7.6. We plot the estimate for ten different runs

of the importance sampler. The jumps in the curves are due to samples

drawn that fit the posterior well, leading to large weights. As most weights

are very small the result is dominated by these few larger weights. For
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smaller dictionary sizes (as used in the comparison of chapter 5), the im-

portance sampling method is a good and fast alternative. Unfortunately,

for the problem of interest here, it can be seen that a good gradient es-

timate requires at least 1 000 000 samples, a prohibitively large number,

which would make the method very slow, even when compared to the

Gibbs sampling approach.

7.3 Representations

In this section we investigate the properties of the coefficients s found

with the different algorithms and compare these representations to the

coefficients s used to generate the data. We also analyse the signal ap-

proximation as measured by the L2 norm of the reconstruction error.

The sampling methods enable us to calculate different estimates of s.

They can be used to calculate the sample mean but can also be used to

estimate the MAP value by choosing the samples for which the posterior

p(u|x,A) is maximal. The coefficients s that maximise p(s|u,x,A) can

then be found analytically. Another method of estimating the MAP with

Markov chain methods is to use annealing techniques. However, we found

that for the discrete state space of the indicator variables u used in the

sampling strategies, an annealing method did not offer any significant ad-

vantages. Whether the sampler uses annealing or not, the sampler has

to visit the discrete state at which the posterior reaches its maximum.

The number of samples required for such an exploration with an anneal-

ing strategy, as well as the time required for the necessary slow annealing

schedule, makes this method far too slow and we found that a direct cal-

culation and comparison of the probability of all visited states performed

better in practice when only a limited number of samples could be drawn.

Whether to use the mean or the MAP estimate depends on the applica-

tion. The mean would be the optimal choice under a squared error utility,

while the MAP would be optimal with a zero-one utility. However, in this

thesis we have not specified utilities and will not do so now, but instead

only mention the difficulty in doing so for the sparse coding problem. Our

motivation for sparsity lead us to a prior formulation which forces many
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True Learned

Imp MEAN 24.10 23.58

Imp MAP 25.41 24.97

NN MEAN 3.88 4.40

NN MAP 9.74 8.09

Gibbs MEAN 8.20 7.47

Gibbs MAP 10.12 9.73

EM 7.00 6.69

Table 7.3: Reconstruction error

coefficients to be zero. From a Bayesian point of view, the specification

of such a prior is justified if we believe the generating process to follow

such a distribution. However, the model used here only crudely models

the physical generation of sound and such a prior assumption might then

not be accurate for musical signals. On the other hand, we also enforced

sparsity, as we believe that such a representation offers advantages for

certain applications. This belief should, from a Bayesian perspective, be

incorporated into the utility.

In general, a mean approximation leads to less sparse representations

but better reconstructions under a squared error norm, while the MAP

estimations can be expected to lead to sparser representations but worse

reconstructions. This is shown experimentally below, where we compare

the mean and MAP estimation for the methods developed here.

7.3.1 Comparing the Signal Reconstructions

We first analyse the reconstructions calculated by multiplying the esti-

mated coefficients s with the dictionary. The L2 distances of the recon-

structed signals to the true signal are shown in table 7.3. The second col-

umn shows the reconstruction error found with the true parameters and

dictionary and the third column shows the reconstruction error achieved

with the learned model parameters and dictionary. The methods used

are listed from top to bottom; the mean and MAP estimates found with

the importance sampler (Imp), the Gibbs sampler with the non-negative

prior (NN), the Gibbs sampler with the Gaussian and delta mixture prior

(Gibbs), and the EM method. As expected, the reconstruction error is
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smaller if the mean is used instead of the MAP. Again the best perfor-

mance is achieved with the Gibbs sampler with the non-negativity con-

straint followed by the EM method, the Gibbs sampler and the importance

sampler. Interestingly, the performance is better with the learned dictio-

nary and parameters, even though the learned dictionary does not include

all of the features used to generate the signal. This shows that the model

with the learned parameters better models the actual data. This difference

in performance is particularly large for the two Gibbs sampling methods.

It should be noted that all algorithms work for non-zero noise terms only.

and so for the results based on the true parameters presented here, we

have used a noise variance of 0.01. As the test signal did not have any

noise added, the model parameters used did not exactly fit the data which

explains why we obtained better results with the learned parameters.

7.3.2 Comparing the Signal Representations

The different representations are compared visually in figures 7.7 to 7.10.

Here extracts of the estimated representations are shown in blue and are

compared to the true coefficients s, which are shown in red. For each

method we show the representations estimated with the true (T) and

the learned (L) parameters. For the sampling methods we also show the

different estimation methods, mean (MEAN) and MAP. In these figures

we have rectified the coefficients s (apart from the coefficients s found

with the non-negative prior for which the coefficients s were already non-

negative). We have also reduced the time resolution by a factor of 100 in

order to produce clearer graphs.

For the coefficients s estimated with the learned parameters, it was

difficult to relate all learned features to a different true note, as not all

notes had been learned. However, the notes that had not been learned do

not occur often in the true signal. Furthermore, some features were learned

more than once leading to some notes being represented by more than

one learned feature. This is, for example, evident in the representation

calculated with the Gibbs sampler.

The coefficients s estimated with both Gibbs samplers, as well as the
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Figure 7.7: Comparison of the representations found with the Gibbs sampler
with the non-negative prior (blue) to the true coefficients (red). The top left
panel shows the MAP approximation found with the true parameters, the top
right panel shows the MAP approximation found with the learned parameters,
the lower left panel shows the mean approximation found with the true param-
eters and the lower right panel shows the mean approximation found with the
learned parameters.
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Figure 7.8: Comparison of the representations found with the Gibbs sampler
(blue) to the true coefficients (red). The top left panel shows the MAP approx-
imation found with the true parameters, the top right panel shows the MAP
approximation found with the learned parameters, the lower left panel shows
the mean approximation found with the true parameters and the lower right
panel shows the mean approximation found with the learned parameters.
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Figure 7.9: Comparison of the representations found with the importance sam-
pler (blue) to the true coefficients (red). The top left panel shows the MAP
approximation found with the true parameters, the top right panel shows the
MAP approximation found with the learned parameters, the lower left panel
shows the mean approximation found with the true parameters and the lower
right panel shows the mean approximation found with the learned parameters.
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Figure 7.10: Comparison of the representations found with the EM method
(blue) to the true coefficients (red). The left panel shows the approximation
found with the true parameters and the right panel shows the approximation
found with the learned parameters.

coefficients s estimated with the EM method, can be seen to closely mirror

the underlying structure, while the importance sampling method does not

offer a good representation.

MAP estimation via sampling can be seen as a form a random search,

where the search is distributed depending on the posterior distributions.

The Gibbs samplers draw samples from the correct distributions and the

search frequently visits areas with high probability. The importance sam-

pling method draws the samples from a different distribution and the

searched areas are less likely to correspond to areas in the true distribu-

tion that have high probability, which explains the poor performance of

the importance sampler in this task.

The number of non-zero atoms in the original signal was 1324. In

table 7.4 the number of non-zero atoms is listed for each of the different

methods. For mean estimates it is clear that the number of non-zero atoms
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True Learned

Imp MEAN 94448 67283

Imp MAP 1165 1484

NN MEAN 143181 6266

NN MAP 5247 1464

Gibbs MEAN 1850 3155

Gibbs MAP 1184 1621

EM 4956 3136

Table 7.4: Number of atoms

is much larger than the number for MAP estimates.

7.4 Piano Note Extraction

In section 7.2 we have studied the learning performance using a simplified

test signal. In this section we compare the different methods using a poly-

phonic piano recording and focus on the performance differences between

the methods. A more thorough study of the applicability of shift-invariant

sparse coding to music analysis is presented in the next chapters.

In this experiment we used a recording of Ludwig van Beethoven’s

Bagatelle No.33 Opus 1 as a test signal, which we resampled at 8000 Hz

and summed to mono. We then used this signal as a training sequence for

the three methods introduced in the previous chapters, utilising the subset

selection method for the EM algorithm and the random subset selection

method for the Gibbs sampler with the non-negativity constraint. The

importance sampler was fast enough to be used without such a scheme,

however, we only drew 100 samples in each iteration.

The features ak learned with the different methods are shown in fig-

ures 7.11, 7.12 and 7.13 for the Gibbs sampler with the non-negativity

constraint, the EM method and the importance sampler respectively. We

show the features ordered by their approximated fundamental frequency.

The time-domain representation of the features is shown on the left while

the spectrum of the features is shown on the right. It is evident that the

estimated features show clear harmonic structures, as is to be expected
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Figure 7.11: Features learned with the Gibbs sampler using the non-negative
prior. Time domain representation on the left and spectral representation on
the right.

from piano notes. However, the features learned with the importance sam-

pler do have less clear harmonic structures than the results obtained with

the other methods, confirming the results in section 7.2. It is interesting to

note that with the importance sampling approach all features converged,

however, many features have been learned repeatedly. With both other

methods this phenomenon was less pronounced. The reason why the im-

portance sampler learns features repeatedly seems to be due to the fact
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Figure 7.12: Features learned with the EM method. Time domain representa-
tion on the left and spectral representation on the right.

that the proposal distribution is more likely to draw different samples to

model the same feature in the signal.

The main difference between the results obtained for the Gibbs sampler

and the EM method are the number of harmonic features learned. With

the EM method, more harmonic features emerged. This might be due to

the fact that the random subset selection method selected fewer features

in each iteration as compared to the subset selection method used for

the EM algorithm. This was done in order to keep the computation time
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Figure 7.13: Features learned with the importance sampler. Time domain
representation on the left and spectral representation on the right.

comparable, as the Gibbs sampler is generally slower than the EM method.

However, the number of features with different fundamental frequencies

was the same for the Gibbs sampling and the EM based methods. From

the features learned with the Gibbs sampler, 34 of the 35 features with

clear harmonic structures had different fundamental frequencies. With

the EM method 34 features with different fundamental frequencies were

also found.

The features learned with the importance sampling method are very
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Figure 7.14: A comparison of the spectra of some of the features learned with
the EM algorithm and the Gibbs sampler. The red dash-dotted line shows the
spectra of the features learned using the EM method, while the solid black line
shows the spectra of the features found with the Gibbs sampling method.

dissimilar to the features learned with the other methods, while many of

the features found with the Gibbs sampler and the EM approaches are

nearly identical. This similarity is shown in figure 7.14 where we compare

the spectra of five of the features found with these two methods. Here we

have overlaid the spectrum of the features learned with the EM algorithm

(dash dotted red line) over the features learned with the Gibbs sampling

method (black solid line). In this figure it is difficult to distinguish the red

dash dotted line from the black solid line, which illustrates how similar
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the features learned with the different methods are.

Conclusions

We can distinguish two different performance criteria; the performance

in learning of the parameters of the signal model, which include the dic-

tionary elements, and the similarity of the found representation s to the

coefficients used to generate the signal. In this chapter we have looked at

these two aspects of the model and compared the proposed methods using

a simplified test signal. It can be seen that the Gibbs sampler with the

non-negative prior offers the best performance in terms of feature estima-

tion and signal reconstruction. The method also found the representation

which was closest to the true coefficients s. The superiority in these re-

spects can be mainly attributed to the prior distribution, which better

models the true underlying signal structure and further offers strong con-

straints on the solution space. However, the Gibbs samplers are slower in

general than the importance sampling method or the EM method with a

subset selection step. When using the subset selection method for both

approaches we found that, for the experiments reported in the last section

of this chapter, the computation time for the Gibbs sampler was roughly

twice as long as for the EM method. However, this depends on the size of

the subsets, which affects the speed of the algorithms differently.

The observed decrease in performance, which due to the bias in the

gradient estimate introduced by the importance sampler, shows the same

artefacts discussed in section 3.4. Both a decrease in high frequency com-

ponents (figure 7.4) and the emergence of an envelope (figure 7.3) have

been observed. This shows that learning performance depends on the

inference accuracy or bias of the gradient estimate.

The decrease in performance found when using the true parameters and

dictionary was surprising. This decrease was independent of the particular

method used. Even the EM method, which has no adjustable parameters

apart from the dictionary A, offered a slightly better performance with the

learned dictionary when compared to the dictionary used to generate the

training signal. This seems to be the effect of the algorithms used, which
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require the specification of a non-zero noise term that was not included in

the signal generation.

In the next chapters we investigate the performance of the shift-invar-

iant sparse coding model on several tasks in music analysis. The shift-

invariant sparse coding model is applicable to a variety of tasks and we

study the problems of source separation and polyphonic music transcrip-

tion. Because of the good performance and speed of the EM method with

the subset selection step we chose this method for the experiments in the

remainder of this thesis.



Chapter 8

Emergence of Musical Structures1

Music is a highly structured signal. In most music, different harmonic and

percussive sounds are superimposed and concatenated to create harmonic

and rhythmic patterns. The model developed throughout this thesis can

be seen as an approximation of this process. In particular the linear ad-

ditive structure models signals such as music as a superposition of atomic

elements. For certain instruments, such as the piano, these elements can

be seen as individual notes or parts thereof. This is obviously a simplifica-

tion, the time domain representation of a recorded and discretised piano

note can vary both with respect to the short-time spectrum as well as

with respect to its length. The proposed model can compensate for these

variations to a certain extent by using several atoms to represent each

note.

In the first section of this chapter we take a step back from the dis-

cussion of the previous chapters and take a closer look at piano notes and

in particular the ability of a linear additive representation of such notes.

The main finding is that over 88% of the variation in a set of fourteen

renditions of a single piano note can be explained as the superposition of

only two features. This suggests the applicability of the proposed model

to the problem of modelling piano music.

In section 8.2 we tackle this problem using the shift-invariant sparse

coding model. Here we extend on the experiments on piano note extraction

from the previous chapter and analyse the learning performance in more

detail. We also look at the emergence of score-like structures. If the

1Some of the results in this chapter also appear in [13]

131
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features ak represent individual notes or parts thereof, then the coefficients

s encode information relating to the occurrence and strength of these notes

in the performance. This relationship is further investigated in section

8.3, where we compare the original score of a piano recording with a

transcription of this score obtained from the coefficients s estimated using

the shift-invariant sparse coding model.

8.1 Applicability of the Shift-Invariant Sparse Cod-

ing Model to Piano Music

To gain a better understanding about the features found in polyphonic

music recordings, it is beneficial to analyse the statistics of a single pi-

ano note. If the goal of a learning algorithm is to learn representations

of individual notes, it has to be investigated if such representations are

feasible in the time domain and, if so, of which form these representations

are likely to be. The questions of interest are:

1. Is there a single time domain representation that contains the rel-

evant features of a note in order to distinguish notes of different

instrument types or even of different models of the same instrument,

so that such a representation can be assigned to an individual note

and instrument in a recording?

2. Does a single feature contain enough information for transcription,

source separation or signal compression, i.e. can a signal be com-

pressed using one general feature vector for each different note pres-

ent?

3. What do such features look like and what information do they con-

tain? Is, for example, the relationship of the phase of high frequency

and low frequency components similar for different realisations of the

same note?

4. How high is the dimension spanned by a note played several times?

Can the series of notes be represented accurately enough with a single

vector and what information gets lost in such a representation.
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Here several realisations of a single note played on a piano under similar

conditions are analysed and their properties studied. The notes analysed

were taken from a commercial recording of Ludwig van Beethoven’s Sonata

for Piano No. 12, in A flat, Scherzo (Allegro molto) in which this particular

note was played 14 times without any other overlapping notes. The note

was extracted by cutting the recording just before the note onset and

again just before the onset of the following note. This procedure gave a

set of 14 notes of identical pitch, played at roughly the same loudness and

of roughly the same length.

Principal component analysis (PCA) of the 14 piano notes was per-

formed. The individual piano notes were normalised and time aligned to

maximise the cross correlation between them before conducting PCA. The

results are shown below. The top panel in figure 8.1 shows the ordered

contribution each principal component makes to the variance observed in

the 14 observations. It was found that two principal components account

for 88% of the variance of the original notes. The other components are

much less significant, with the third component accounting for about 4%

of the variance. Note that only 13 principal components have been found,

which means that the 14th component had such a small contribution that

it was smaller than the accuracy of the computation so that the 14 notes

effectively span a 13 dimensional space. It is also clear that a two di-

mensional representation would account for 88% of the information and

it seems that at least two components are necessary to represent a single

note.

The time domain and spectral representations of one of the original

piano notes is shown in the second row of figure 8.1. In the third and

fourth row of figure 8.1 the time domain and spectral representations of the

principal components related to the highest and second highest variance

are shown respectively. The similarity of the spectrum of the original note

to the principal components is evident. It can further be seen that the

second principal component has much higher fifth and seventh harmonics

than the first principal component.

The time domain and spectral representations of the weakest principal

component are shown in the last row in figure 8.1. It is obvious that it
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Figure 8.1: Principal component analysis of piano notes. Percentage that each
principal component contributes to the variance of 14 piano notes (top), the
time-domain (left) and spectral-domain (right) representations of one of the
original piano notes (second row), the principal components with the largest
eigenvalue (third row), the second largest eigenvalue (fourth row) and the small-
est eigenvalue (fifth row).

contains much more noise but it still contains some harmonic structure. It

is interesting to note that the higher harmonics are of comparable strength



CHAPTER 8. EMERGENCE OF MUSICAL STRUCTURES 135

0.125 0.25 0.375
−0.1

−0.05

0

0.05

0.1

fir
st

 p
rin

ci
pa

l 
 c

om
po

ne
nt

0.125 0.25 0.375
−0.2

−0.1

0

0.1

0.2

se
co

nd
 p

rin
ci

pa
l 

 c
om

po
ne

nt

time/ms
1 2 3 4

0

5

10

15

frequency/kHz

1 2 3 4
0

5

10

15

Figure 8.2: Time-domain (left) and spectral-domain (right) representations of
the two strongest principal components of the left channel. The form of the
envelope clearly suggests that the two principal components are necessary to
represent the piano notes with different envelopes.

to the high harmonics in the other principal components, while the low

harmonics are much weaker.

Here, as well as in the results presented in the next chapter, a stereo

recording was summed to mono before analysing the signal. In order to

see the effect of this summation and to investigate whether the second

strongest principal component might be due to the signal reaching the

different recording microphones with varying strengths and delays, the

same experiment was conducted using only one of the stereo channels.

The same observations were made as reported above. It is interesting to

note that the two principal components that are responsible for most of

the variation in the signal have different amplitude envelopes. One com-

ponent models mostly the note onset, while the other component models

mainly the latter part of the note. This is shown in figure 8.2. A similar

observation, though not as pronounced, can be made for the strongest

principal components shown in figure 8.1, which were found in the previ-

ous experiment. In both cases, the second strongest component is found

to have a slightly higher high frequency content compared to the strongest

component.
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The above results were obtained from a set of notes, all of which were

roughly of the same length. Obviously for notes of different lengths these

results are not valid, however, the rest of this thesis demonstrates that

notes of different lengths can be handled by the shift-invariant sparse

coding model by concatenating features. This is shown in detail in chapter

9. It should also be mentioned that the piano notes used above where all of

roughly the same loudness and the influence of changes in the loudness on

a linear representation, could not be deduced from the above experiment.

For the case of notes of similar lengths and with roughly similar amplitude

we can give the following answers to some of the questions raised above.

1. It can be seen that a single component can represent the magnitude

spectrum of a piano note quite accurately, but fails in representing

the different time envelopes observed for different notes. For accurate

reconstruction of notes it seems necessary to model a note with at

least 2 features to cater for the different time envelopes. It can,

however, be assumed that a single feature can capture much of the

information and that two features can represent a piano note quite

accurately. The question of whether features learned from different

sources are significantly different in order to separate two sources

was not investigated here, but experimental results are presented in

chapter 10. These results show that at least for certain mixtures this

assumption can be made.

2. In the piano example reported above it is evident that the pitch of

a piano note can be described by a single feature. Whether this is

still true for notes played on different pianos or for notes recorded in

different acoustical environments is questionable. However, for the

task of identifying individual notes played by a single piano, a set of

features each describing an individual piano note might be sufficient.

For blind source separation, features have to be found and grouped

that relate to single sources and that offer good reconstruction of

those sources. For piano signals, it was shown that at least 2 features

are required for good reconstruction of individual notes. For high

quality signal compression a single feature is therefore not enough.
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However, if a MIDI representation of a musical signal is seen as a low

quality compression of the original audio file, then such a compression

can be achieved from transcription, which seems feasible with only

a single feature.

3. It can be seen that the single time domain feature that represents

the above piano notes relatively well, has a similar spectrum to the

original piano note. It also has an envelope that is similar to the

original time envelope of the notes in the sample space. It must

again be mentioned that the above sample set was quite restricted in

that it not only contained notes at the same velocity, but also notes

of a similar length with only slight envelope deviations. It is therefore

not surprising that a single time domain representation can be found

with a similar time envelope. Such a simple representation is not

possible for sounds of varying length or for sounds with different

time envelopes.

4. It has been shown that for the example studied here, most of the

variance of the notes is concentrated in a two dimensional subspace.

However, the dimension of this subspace is likely to increase for more

complex signals.

8.2 Learning Piano Notes

We have shown in section 8.1 that piano notes can be modelled using

a linear additive time-domain model. In this section we use the shift-

invariant sparse coding model to learn sparse approximations of piano

music and investigate the estimated features. Here and in the rest of this

chapter we use the EM algorithm developed in chapter 4.

To test the algorithm, a recording of Ludwig van Beethoven’s Sonata

for Piano No. 12, in A flat, Scherzo (Allegro molto) was used. The original

stereo recording was summed to mono and resampled at 8 000 Hz. The

number of possible features was set to 50, a feature length of 1024 samples

was chosen, ν was set to 0.1 and the maximally allowed amount of overlap

of one feature with a shifted version of itself was set to 50%. The EM
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Figure 8.3: The 50 features learned from a recording of Beethoven’s Sonata for
Piano No. 12, in A flat, Scherzo (Allegro molto) shown in the time domain.

algorithm used a fixed number of 10 iterations and a sparsity measure of

the form
∑

n log |sn|.
After 100 000 iterations, 12 of the features did not show any harmonic

structure and were of a noisy nature. The other 38 features had a clear

harmonic structure. Of these 38 features 35 had different fundamental

frequencies whilst the other 3 features had a fundamental frequency equal
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Figure 8.4: Extract of the rectified activation pattern of the features represented
by spikes with grey blocks representing the notes in the original score (left),
magnitude-spectrum of features (middle) and their number of occurrence in
the decomposition (right).

to at least one other feature, however, these features differed in their

harmonic structure. Further analysis of the features showed that the fun-

damental frequencies corresponded to the notes of the western equally

tempered 12 tone scale spanning a range from C#2 to A5 with some

notes missing. Most features were harmonic in that their spectrum had a

harmonic series of peaks. The amplitude of these peaks varied with one

harmonic often having a much higher amplitude than the others. It was

noted that there were no harmonic series present with very low funda-

mental frequencies even though such notes were present in the analysed

signal.

The time-domain representations of the learned features are shown

in figure 8.3 while the middle panel of figure 8.4 shows the magnitude-

spectrum of the features. The features have been ordered by their approx-

imated fundamental frequencies. Features 38-50 could not be assigned to

a certain frequency as they had no clear peaks in their spectrum. 4 of the

features with clear spectral peaks did contain more than one harmonic

series of peaks, i.e. they represented chord-like structures. However, it

cannot be assumed that these features model piano chords in general, as

the different notes in a chord are generally not phase locked for different
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renditions of the same chord. It seems more likely that these features

have converged to local optima and are used to model different notes at

different times.

As most of the features ak can be assigned to individual notes, the

coefficients s contain information about the occurrence of the notes in the

piano recording. This can be seen in the left panel of figure 8.4, where we

show an extract of the rectified coefficients s associated with each of the

features. In grey we show the position and length of notes with the same

pitch as they occur in the original score of the sonata. It can be seen that

many of the occurrences of the features correspond to notes in the score.

In the left panel of figure 8.4 we only show the notes of the original score

for which a feature has been found. Some of the notes in the performance,

however, do not have associated features and are therefore omitted. It is

also clear that some of the notes in the score have no associated non-zero

coefficients and that some non-zero coefficients do not correspond to notes

in the score. Some of these errors seem to be due to a feature modelling a

different note to the one assigned to it here. This can be seen in the left

panel of figure 8.4 where non-zero coefficients in the activation of feature

23 correspond to notes that, in the assignment here, should have been

modelled by feature 20.

It was noted that some features emerged with the same fundamental

frequency but with different harmonic structure. An example for this are

features 29 and 30 in figure 8.4. In the left panel it can be seen that

these different features model different parts of a note and it was found

that the note onset was often modelled by a feature with higher high

frequency contents, while the latter part of the note was often modelled

with a feature with less high frequency content. This is discussed in more

detail in the next chapter.

In the right panel of figure 8.4 the number of occurrences of each feature

in the decomposition is given. It is evident that a high number of features

do not occur at all (7 features) and that other features only occur a few

times (12 features occur fewer than 10 times each) in the entire training

signal. The features that do not occur in this particular decomposition are

those features shown on the top in figure 8.4. It can therefore be assumed
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that these features have not been updated during learning and so cannot

represent salient features of the signal.

8.3 Quantitative Evaluation

In section 8.2 it has been shown that the shift invariant sparse coding

algorithm is able to learn features from a polyphonic piano recording that

represent individual notes or parts thereof. In the previous section we

could also show that many of the coefficients s correspond to the occur-

rence of individual notes in the original score of the performance. This

correspondence is explored further in this section, in which we present a

numerical evaluation.

A recording of Ludwig van Beethoven’s Bagatelle No.33 Opus 1 was

used. In order to generate this recording we used the same MIDI infor-

mation obtained from a real performance that we used in the previous

chapter. However, this time this MIDI information was used to control

the keys of a MIDI controlled acoustic grant piano. We therefore had

a live recording of a real acoustic piano as well as the associated exact

performance information. In order to learn the features an approach sim-

ilar to the one used in the previous section was taken. The original stereo

recording was summed to mono and resampled at 8 000 Hz. The number of

possible features was set to 57 (as this was the known number of different

notes played in this piece), a feature length of 1024 samples was chosen, ν

was set to 0.1 and the maximally allowed amount of overlap of one feature

with a shifted version of itself was set to 50%. The EM algorithm used

a fixed number of 10 iterations and the
∑

n log |sn| sparsity measure was

used again unless noted otherwise. In the general optimisation problem

arg min ‖x−As‖2 +λf(s), where f(s) is a sparseness measure, we are left

with the choice of λ. Different methods have been discussed in subsection

4.2.5. In the experiments in this section, λ was set to the estimated noise

variance during learning of the features, however, different methods were

used for the inference of the coefficients s once the features had converged.

More details on this are given below. The features ak were initialised with

Gaussian noise.
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After 100 000 iterations, 47 of the 57 learned features were found to

have harmonic structures, whilst 10 features had not converged and re-

mained in their original ‘noisy’ state. Of the 47 harmonic features, 10

features were found that represented the same note as at least one of the

other features, so that 37 features with different fundamental frequencies

were learned.

To evaluate the correspondence between the coefficients s and the orig-

inal score numerically, a sparse approximation of the signal was calculated

and the estimated coefficients s mapped into a score representation. It is

clear from the example in the previous section that such a mapping is not

trivial, as some features are used for more than one note. Furthermore,

the features are of fixed length and notes are generally described by a

concatenation of the features. The mapping used here associated a pitch

to each feature depending on its estimated fundamental frequency. The

occurrence of a non-zero coefficient s was then taken as the beginning of a

note. Each note was assumed to be of the same length as a feature. How-

ever, if a non-zero coefficient followed another non-zero coefficient within

the length of a feature, the note was assumed to start at the first coefficient

in such a chain (which might have more than two non-zero coefficients in

short succession) and end after the last non-zero coefficient in that chain.

To investigate the accuracy of such a transcription, the number of

correctly identified notes was calculated by searching for a detected note

in a window of 200ms centred at the start of each note in the original

score. The percentage of detected notes is denoted by de.

Two types of error can then be found; firstly, false positive detec-

tions (denoted by fp), which are detected notes that are not occurring in

the original score and secondly, false negative detections (denoted by fn),

which are notes in the original score that are not detected. These numbers

are expressed as a percentage of the total number of notes in the original

score. The number of correctly identified notes or true positives is then

related to fn as true positives = 1 − fn.

It is clear that the performance cannot be measured by the number of

correct detections or the number of false positive or false negative errors

alone. It would be possible to get one-hundred percent detection by just



CHAPTER 8. EMERGENCE OF MUSICAL STRUCTURES 143

Noise variance Noise variance Eq.(4.7) Fixed λ No EM

λc=100 L1, λc=1 000 λmax = 0.01 λ=0.01 step

de 0.5340 0.4824 0.5790 0.5553 0.6069

fn 0.4660 0.5176 0.4210 0.4447 0.3931

fp 0.0934 0.0885 0.1458 0.1032 0.3997

error 0.5594 0.6061 0.5667 0.5479 0.7928

Table 8.1: Comparison of transcription performance. Influence of different
estimation methods for λ. For details see text.

assigning notes to all time locations. Obviously this would lead to a huge

number of false positive errors. We calculate the total error as:

error =
fn+ fp

No

where No is the number of notes in the original recording and fn and fp

are the number of false negative and false positive errors. This value can

become greater than 1 as we have theoretically an unlimited number of

false positive detections. Note that the above error term is linear in both

the false positive and the false negative errors. Other suggested measures

(for example [6]) are not linear in both error types, but give values in a

range between 0 and 1, which does not seem necessary here. The problem

of counting certain errors twice as would happen when a note is detected

in, for example, the wrong octave, which leads to a false negative as well

as a false positive error is not accounted for in this measure.

As the learned features did not represent all notes in the original score,

only those notes for which a corresponding feature was found are used in

the calculations. This was done in order to evaluate the performance of

the approximation algorithm and not the feature estimation, which clearly

requires improvement in order to learn representations of all notes present

in the signal. For example, notes for which no feature has been learned

could be modelled by pitch shifting features learned to represent notes

with similar fundamental frequencies.

The labelling of features with individual pitches and MIDI note num-

bers was done by hand, however an automatic algorithm could be devel-

oped to find the pitch (i.e. the periodicity) of the individual features.
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Several ways of calculating the λ parameter in the EM algorithm have

been mentioned. Here different methods are compared, the first of which

is the estimated noise variance as proposed by Figueiredo and discussed

at the end of section 4.2. The values reported below are given for a

range of different scaling parameters λc to investigate the optimality of the

parameter. The scaling parameter λc was used to multiply the estimated

noise variance in order to calculate λ (λ = λcσ̂
2). The method described

in subsection 4.2.5 proposed by Rao et al. and given in equation (4.7) is

also used.

The best results obtained with each method are shown in table 8.1

together with the corresponding value for λ. The results calculated with

the scaled noise variance are given in the first column and the results

calculated by using equation (4.7) are given in the third column. In the

second column the results obtained by using the EM algorithm with the

L1 norm are shown again for different values for the scaling of the noise

variance. In the fourth column, these results are compared to the results

obtained by using a fixed λ value. In the last column of table 8.1 the

transcription results are shown that were obtained by only using the subset

selection step in the approximation together with a simple least squares

minimisation in this set. The errors obtained in this case give an upper

bound on the achievable false positive performance and a lower bound on

the false negative error. The main limiting factor in the detection of notes

is due to the subset selection step whilst the performance with respect to

false positive notes can be attributed to the sparse coding in the selected

subset.

Figure 8.5 shows a graphical representation of the performance for

the four different approaches. Here the red line shows the percentage of

correctly identified notes, the cyan line the total error, the blue line the

percentage of false negatives and the green line shows the false positive

detection. The abscissa gives the different scaling values used for each

method (note that this axis is not linear).

From the figures and the tables in this section it is clear that the choice

of method used to calculate λ has not had a strong impact on the results

obtained. However, the choice of the free parameter (e.g. the prior scale
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Figure 8.5: Transcription performance of the different approaches. Performance
for the estimation of s based on different methods to estimate λ. The results
for the method that uses the scaled estimated noise variance is given in the first
row, the results for the method that uses equation (4.7) are given in the second
row, the results for the method that uses the scaled estimated noise variance
and a L1 norm are given in the third row and the results for the method that
uses a fixed λ are given in the fourth row. Correctly identified notes (red),
total error (cyan), percentage of false negatives (blue) and percentage of false
positive (green) are plotted vs. the free parameter in each of the approaches.



CHAPTER 8. EMERGENCE OF MUSICAL STRUCTURES 146

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive

tr
ue

 p
os

iti
ve

Figure 8.6: True positives vs. false positives. ROC style plot for the influence
of the λ parameter on the transcription error. The solid line shows the results
for the scaled variance, the dashed line shows the results for the scaled variance
using the L1 norm, the dash-dotted line shows the results when using equation
(4.7) and the dotted line shows the results for fixed λ.

parameter λc or λmax as discussed in subsection 4.2.5) in each method

clearly has. It is also clear that the results do not differ greatly when using

the L1 norm instead of the
∑

n log |sn| sparsity measure. The performance

limit due to the subset selection step, which is the main restriction once

an optimal value for the free parameter has been chosen, is also evident.

It was suggested that an optimal value for λ can be obtained by using

a L-curve method (See for example [30]). This method is related to the

common practise of comparing two error types using a receiver operation

curve (ROC). As fp is unbounded, this error is plotted on the abscissa and

1 − fn, or the true positives, is plotted on the ordinate. This plot can be

seen in figure 8.6 where the results for the different methods of estimating

λ are plotted. The solid line shows the results obtained using the scaled

variance with the
∑

n log |sn| sparsity measure, the dashed line shows the
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results for the scaled variance using the L1 norm, the dash-dotted line

shows the results when using equation (4.7) and the dotted line shows the

results for fixed λ. The results for the EM algorithm with the
∑

n log |sn|
sparsity measure, either with fixed or estimated noise variance, seem to be

slightly better compared to the other methods, however, this advantage is

small.

Further insight can be gained when looking at the types of errors made.

It has to be determined whether notes that have been detected incorrectly,

i.e. false positive notes, have an octave relationship to undetected or de-

tected notes. This type of error is likely to occur due to the high correla-

tion of octave related notes. Other harmonic relationships such as fifths

and fourths might also occur. We also investigated semitone relationships.

This was done, as for the short feature length used here, the uncertainty

principle might lead to features being unable to distinguish between notes

with close fundamental frequencies, i.e. a note might be modelled with a

feature representing a note one semitone in either direction, as the feature

might fit the note relatively well due to its short time support. This effect

could be seen in the previous chapter, where in the toy example, certain

features were not learned. However, features learned to model notes a

semitone either side did model the missing feature relatively well. Other

errors that we investigated were double detection (i.e. detecting a single

note twice in short succession) and detection of only one note when the

same note is played twice in fast succession.

To investigate the occurrence of these types of errors a window of

200ms centred on the note onset was defined and the different types of

errors counted in this window. The results obtained can be found in table

8.2. The error of not detecting a fast repetition of a note is normalised

to the number of false negative errors whilst all other types of errors are

normalised to the number of false positive errors. The results given here

were obtained for the experiment as given in the first column of table 8.1.

It can be seen that the most common of the investigated errors are

octave relationships between a false positive and a false negative error.

Further investigation of the features that were used to describe notes in
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Octave detected (2 octaves up/down) 7.02%

Fifth detected 4.39%

Fourth detected 2.63%

Semitone detected 4.39%

Thirds detected (Major or minor) 5.26%

Note detected twice 5.26%

Fast repetition of note not detected 0.35%

Table 8.2: Different sources of error encountered in the transcription.

different octaves showed that these features had a very strong second har-

monic and very weak other harmonics. It was also observed that the

number of octave-related errors started to rise faster when the number of

false positive detections increased than compared with the other types of

error.

It is clear that the coefficients s have captured much of the information

about the score of the performance. However, the simple transcription

scheme presented here is not the best solution to the problem of music

transcription and much better results for piano music transcription have

been obtained with more sophisticated approaches [146]. Nevertheless, it

could be shown that the shift-invariant sparse coding algorithm can extract

much of the information in a piano signal without prior specification of

musical structures.

Conclusions

In this chapter we have used music as a testbed for the shift-invariant

sparse coding algorithm. Music is a highly structured signal and it can

be shown that the shift-invariant sparse coding algorithm is able to ex-

tract much of this structure without the use of prior musical knowledge.

In music, such prior knowledge is often available, however, for other sig-

nals such information is often not given. Finding such structures is an

important requirement for many tasks in signal processing such as cod-

ing, source separation and pattern analysis and the shift-invariant sparse

coding model offers an important tool to discover such structures.
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In this chapter it was shown that for piano music, the linear generative

model is approximately valid and that the shift-invariant sparse coding

model is able to extract much of the information in a musical signal, such

as note waveforms and score representations. However, it is also clear that

not all information can be captured with a linear mixture model using a

restricted set of components.

Other models have been proposed to extract meaningful features and

structures without the use of prior musical knowledge. In the next chapter

we compare one such method to the shift-invariant sparse coding formu-

lation. This method is based on a phase-blind spectral signal model and

uses the positivity of the spectrum together with a sparseness measure.



Chapter 9

Comparison to Phase-Blind

Methods1

A small number of papers exist that present results on the extraction of

time-domain features [5, 76, 1] from audio signals. These results differ

from the work in this thesis in that the sets of sound stimuli were much

larger to the ones used here and, more crucially, the number of features was

substantially smaller than the effective number used in the shift-invariant

sparse coding model (it should be remembered that the standard sparse

coding model has to learn each feature at all shifted positions). These

experiments could therefore not be expected to produce features that cor-

respond to certain ‘sound objects’ as found in this thesis.

The shift-invariant sparse coding model is not the only possible ap-

proach based on sparseness or similar constraints able to extract such

features from audio signals. The requirement for shift-invariance has led

to the use of phase-blind spectral methods, which are less sensitive to

the location of features in the analysed observation block. Most previous

approaches based on sparse coding or non-negative matrix factorisation

[74] or derivatives of these methods, have therefore concentrated on the

analysis of audio spectrograms [1, 129, 66, 130, 143].

In order to better assess the differences between the time-domain ap-

proaches as used in this thesis and these spectral methods, we compare

the shift-invariant sparse coding model to a recently proposed phase-blind

1The results in this chapter were part of a collaborative journal paper[108].

150
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spectral method. The phase-blind spectral method is based on a non-

negative sparse coding model and was developed to learn note features

from audio spectrograms. The details of this method can be found in

[108], in which most of the results presented in this chapter have previ-

ously been published.

In section 9.1 we describe the signal used and state the parameters used

for the two models. The results obtained are then discussed, in section

9.2 we compare the learned features and in section 9.3 we compare the

found sparse representations. In section 9.4 we take a closer look at how

individual notes are represented with the two methods.

9.1 Methodology

In order to compare the two different models we used the results calculated

with the shift-invariant sparse coding method in section 8.3 of the previous

chapter. The same signal (summed to mono and resampled to 8 000 Hz)

of a recording of Ludwig van Beethoven’s Bagatelle Opus 33 No.1 was also

used to train the non-negative sparse coding method based on spectrogram

decomposition. In order to learn comparable features, we used a frame-

size of 1024 samples for the spectral method, which led to a feature length

of 513 samples. The number of features in the spectral domain dictionary

was set to 101 elements, as this is the number of notes in the western equal

tempered scale between the lowest and the highest note in the recording

plus three. This dictionary was initialised with 98 harmonic features in

half-tone steps from the lowest note in the signal to the highest note in the

signal. The three remaining features were initialised with ‘flat’ vectors.

The spectral domain method was run for 3 hours on a 1.3GHz Apple

PowerBook G4 laptop while the shift-invariant sparse coding method con-

verged after approximately 24 hours on a Apple PowerMac 1.42 dual pro-

cessor G4. However, to guarantee convergence, the shift-invariant method

was run for an additional 6 days without any significant changes to the

dictionary elements.



CHAPTER 9. COMPARISON TO PHASE-BLIND METHODS 152

9.2 Comparison of Dictionary Elements

Both methods learned features that display note-like structure. The 57

features learned using the time-domain method are given in figure 9.1.

Inspection of the spectrum of these features reveales, that 47 of the learned

features (1 to 47) have harmonic structures and are here shown ordered by

their estimated fundamental frequency. The other ten features (48 to 57)

cannot be assigned to a fundamental frequency. With some exceptions,

the features have time-support over their entire length.

We show the spectra of these features in the left panel of figure 9.2.

Again we see the harmonic structure of the features and it is also evident

that some of the features have similar fundamental frequencies. These

features and the contribution they make to the reconstruction of a single

note are investigated below.

The features learned using the spectral-domain method are shown in

the right panel of figure 9.2. The dictionary was initialised with single

frequency features, so that the learned features did not have to be ordered.

Again, the harmonic structure of these features is evident. We can also

observe that some features have similar fundamental frequencies.

The main difference observed between the two methods is a small de-

crease in the strength of harmonics with high frequencies for the results

obtained with the shift-invariant time-domain approach. This might be

due to the higher variance of the phase in the higher harmonics of a piano

note, which leads to a ‘smearing out’ of these higher harmonics. Another

reason for this decrease could be due to the filtering effects mentioned in

section 3.3.2, in which we predicted this behaviour for sampled signals

with features at continuous locations.

We also observed that, with both methods, features emerged that could

not be assigned to an individual pitch, i.e. that had more than one har-

monic series of spectral peaks. These features occurred less frequently

with the shift-invariant sparse coding method as notes in a chord would

need to be phase locked.
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Figure 9.1: Time-domain waveforms of the dictionary learned using the time-
domain method. The waveforms of each of the features are shown in each row,
ordered by their estimated fundamental frequency. The top 10 features are
those that could not be assigned to an individual fundamental frequency. Most
features have a support of the full feature lengths, however some features (e.g.
13, 14, 22, 28 and 39) have a shorter time-support.
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Figure 9.2: The log spectra of the dictionary learned using the time- (left) and
spectral-domain (right) approach. The first 47 features learned using the shift-
invariant sparse coding model have a clear harmonic structure and are ordered
here by increasing fundamental frequency from left to right. The 10 features
to the right in the left panel could not be assigned to any individual harmonic
series. Spectra of the dictionary learned with the spectral-domain approach
are shown in the right panel. As the dictionary elements were initialised with
features with increasing frequency, reordering was not necessary. Most of these
features clearly show the hormonic structure.

9.3 Comparison of Sparse Representations

Figures 9.3 shows the coefficients s found with the shift-invariant sparse

coding approach. Here we have rectified the coefficients in order to clar-

ify the presentation. We also omit the coefficients associated with non-

harmonic features, as these did not significantly contribute to the repre-

sentation.

A similar representation of the sparse coefficients found with the spec-

tral method is shown in figure 9.4 and, for comparison, figure 9.5 shows

the same part of the original Bagatelle score in a piano role notation. In

figures 9.3 and 9.4 the coefficients have been ordered according to the es-

timated pitch of their associated features. The structures in these figures

are clearly visible and many of the melodic lines, rhythmic patterns and

chords in the score of the Bagatelle (figure 9.5) are evident in both sparse
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Figure 9.3: This figure shows the rectified activation of the different atoms found
with the time-domain method. Again, the atoms are ordered by decreasing
fundamental frequency.
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Figure 9.4: This figure shows the activation of the different atoms found with
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damental frequency.
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Figure 9.5: Representation of the notes from the Bagatelle Opus 33 No1. This
‘piano-role’ representation of the notes shows note pitch on the ordinate (higher
notes on the top and lower ones on the bottom) and time along the abscissa.
The bars represent the note activation.

representations (figures 9.3 and 9.4). However, as not all notes in the per-

formance led to the emergence of associated features, some notes are not

represented.

The main difference between these representations is that the shift-

invariant sparse coding method leads to a representation in which clusters

of spikes represent the occurrence of notes in the original score. The

spectral method on the other hand leads to a representation with lower

time resolution.

9.4 Representation of Notes by Multiple Components

As stated above, it was observed that several features learned using both

approaches had the same fundamental frequency and therefore modelled

a single note. We plot the original waveform of a piano note recorded

with the same piano as the bagatelle in figure 9.6. The top panel shows

the attack phase of the original note and the second panel shows the time

domain waveform during the sustain of the note. In the third panel we
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Figure 9.6: Comparison of the waveform of a single piano note with some
waveforms of features learned using the time-domain method. The top two
panels show the note onset and sustain of the same piano note respectively.
This note was recorded in exactly the same way and using the same instrument
as the training recording. The lowest panel shows five different features, all
with the same fundamental frequency as the piano note in the first two panels.
It is clear that the waveforms of the five features vary greatly, both with respect
to the actual wave-shape as well as with respect to the overall time support and
envelope.

show a set of five features learned using the shift-invariant sparse coding

method, all of which have the same fundamental frequency as the note

shown in the top two panels. In figure 9.7, we show the spectrum of these

five features with the spectrum of the original piano note in the upper

panel.

All five features differ significantly. The spectra of the features show

a variation in the strengths of their individual harmonics, while the time-

domain representation reveals their differing time-support and wave-shape.
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Figure 9.7: Comparison of the magnitude spectrum of a single piano note with
the magnitude spectra of features learned using the time-domain method. The
top panel shows the magnitude spectrum of the same piano note shown in
figure 9.6. The lowest panel shows the magnitude spectra of the same features
as shown in figure 9.6.

Figure 9.8 shows the coefficients s associated with these five features

during a short time interval. In the piano score the note modelled by the

five features is played twice, once at around 37.5 seconds and a second

time at around 38.4 seconds. From figure 9.8 it can be seen that during

the evolution of the note, different features from the above set become

active. Feature 33 seems to model the note onset as it is only active

at the beginning of the note. On both occasions this feature is followed

by feature 29, which also only occurs during the note onset. Feature

30 is active only once during each note, but at different locations, while

features 31 and 32 are modelling the sustain part of the note and are active
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Figure 9.8: Activity of the five features shown in figures 9.6 and 9.7 over the
duration of two notes. In this figure the activation (again rectified) of the five
features is shown whilst modelling the note being played twice. This clearly
shows how the different features are combined to reconstruct a single note.
Features 29 and 33 are only active during note onset, feature 30 is only used
once in each note while the other two features are used repeatedly with varying
magnitude.

repeatedly throughout the note. From the spectra of the features it is clear

that feature 29, which models the note onset, has much stronger higher

harmonics. A similar observation can be made for feature 33, which has

most of its energy in the second harmonic. This is in line with the well

known fact that many musical sounds, such as piano notes, have more

energy in their higher harmonics during note onset. During the evolution

of the note, the energy in the higher harmonics decreases faster than the

energy in lower harmonics. This is clearly reflected in the harmonic content

of the features that model different parts of the note.

For the features extracted with the spectral method, features with

equal fundamental frequency also emerged. The two features with the

same fundamental frequency as the note used above are shown in figure

9.9, with the spectrum of the original note shown in the top panel. The

different strengths of the high frequency harmonics is once again evident

in the two features learned.

Figure 9.10 shows the activation of these features for the same two

notes as in the example above. It is again clear that the features model
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Figure 9.9: Comparison of the magnitude spectrum of two features learned
using the spectral-domain method that are modelling a single note.
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Figure 9.10: Activity of the two features shown in figure 9.9 over the duration
of two notes. In this figure the activation of the two features is shown whilst
modelling the note being played twice. This shows how the different features
are combined to reconstruct a single note. Feature one is mainly active during
the note onset while feature two is used repeatedly with varying magnitude
through the steady state of both notes.

different parts of the note, with feature 80 modelling the note onset and

feature 79 modelling the sustain part of the note. The spectra of these

features also shows that the feature for the note onset has stronger high

frequency harmonics.

Both models are not able to represent the varying spectrum of a pi-

ano note with a single feature. Nevertheless, only a small number of the
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notes in the composition were represented by multiple features. In the

experiment with the bagatelle we found that 5 notes were represented by

more than one feature when learned using the time-domain method, while

12 notes were represented by more than one note when learning used the

spectral domain method. The notes with multiple representations were

those notes that occurred very frequently in the recording.

The main difference between the two approaches with respect to the ap-

proximation is the higher over-completeness in the time-domain approach.

It is clear from the previous figures that the time-domain approach of-

fers sample accurate location of features, while the feature location for

the spectral-domain approach is fixed to the window location used in the

transform. This can be clearly seen in figures 9.8 and 9.10

Figure 9.4 reveals another artefact in the representation produced by

the spectral method. As was shown above, during the onset of a note

the spectrum typically has a much wider frequency support than during

the sustain of the note. In the spectral method this often leads to the

activation of several features that have a different fundamental frequency

to the note to be modelled. This artefact has not been observed with the

time-domain approach. However, this might be due to the much stronger

sparsity measure used in the time-domain approximation. Nevertheless,

spurious activity of features can also be observed with the shift-invariant

sparse coding method, although these are not generally associated with

note onsets.

Conclusions

Phase blind spectral methods offer an alternative approach to deal with the

ambiguity of feature location in time-series and have therefore been used to

model musical signals. In this chapter we have shown that these methods

extract similar structures to those found with the shift-invariant sparse

coding model. These structures include the representation of individual

notes, often by more than one feature, and the emergence of score-like

structures.

Several differences were, however, observed; the shift-invariant sparse
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coding model offers sample accurate timing, which cannot be achieved

with the spectral method. We also observed that the features extracted

by the spectral method had slightly stronger high frequency harmonics

than the features found by the shift-invariant sparse coder, which seems

to be due to the variation in the phase of these high frequency components

in the piano signal. This observation also confirms the findings presented

in chapter 3. Nevertheless, the shift-invariant sparse coding was less prone

to finding features that corresponded to more than one harmonic series.

The phase information learned also leads to a direct signal reconstruction,

while for the phase blind method, the phase has to be estimated. How-

ever, these advantages came at the cost of greatly increased computational

complexity.



Chapter 10

Single Channel Source Separation1

We can think of the separation of several source in terms of a weighted as-

signment of time-frequency points to each source. If different sources over-

lap in frequency, linear transforms such as the short-time Fourier trans-

form cannot be used directly for this assignment. Sparse coding methods

on the other hand offer such an assignment and can be used to learn source

models with overlapping time-frequency support.

Previous approaches to single channel blind source separation reported

in the literature either rely on prior knowledge of a source model for each

source to be recovered (see for example [142] and [61]) or treat the ex-

tracted features as individual sources (see for example [130] and [143]).

The models in [142, 130] and [143] are further based on phase-blind spec-

tral models that recover the sources by Wiener filtering methods.

In this chapter we investigate the performance of the shift-invariant

sparse coding algorithm for single channel blind source separation in the

case where it cannot be assumed in general that individual notes have

similar waveforms each time they occur. We nevertheless show that for

more general musical signals, features can be extracted that can be as-

signed to individual sources in the mixture. This classification then leads

to a reconstruction of a signal using only those features corresponding to

a single source.

The main problem with this approach is the assignment of the indi-

vidual features to each of the sources. In section 10.2 we use knowledge

1This chapter is taken to a large extent from [13].
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of the source signals themselves in order find such a clustering. This en-

ables us to derive an upper bound on source separation performance. In

section 10.3 we then develop an unsupervised clustering approach based

on features extracted from both the features ak as well as their associated

coefficients s.

10.1 Methodology

For this experiment we recorded two separate signals; a vocal and a guitar

track, which were mixed linearly and resampled to 8 000Hz. It is impor-

tant to stress that these signals were musically related, i.e. both guitar

and voice where performing the same musical piece in harmony and with

the same tempo so that both sources had much structure in common. We

used this single channel mixture as a training sequence for the algorithm.

We learned 500 features of length 256 samples in a similar fashion to the

experiments reported in the previous chapters. Of the 500 features 129

had converged after 500 000 iterations, while the remaining features had

not been updated substantially. In this experiment all of the converged

features had a clear harmonic structure. This can be seen in figure 10.1

where we show an extract of the coefficients s (left) associated with the

learned features shown in the time domain (middle) and the spectral do-

main (right). Here we only show those features which could be clearly

associated with a certain source using prior information (see below).

10.2 Oracle Clustering

In order to analyse the possible performance of the shift-invariant sparse

coding method for blind source separation we first perform separation

of the sources by assigning the learned features to each source based on

knowledge of the actual sources themselves, i.e. we use a non-blind (oracle)

method.

The oracle assignment of features to sources was done depending on

the energy each feature contributed to the representation of the individual
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Figure 10.1: Decomposition coefficients for the first 20 seconds of the piece
(left), the associated time domain features (centre) and their power-spectrum
(right).

sources, which was determined as:

pk,vox =
‖sk,vox‖

‖sk,vox‖ + ‖sk,guitar‖
,

with sk,vox (sk,guitar) denoting the coefficients associated with feature k

when analysing the original vocal (guitar) signal. Different clusters could

then be built by assigning features to a source whenever pk > P for some

P . The results below are given for different values of P < 1. Note that

P = 0 corresponds to the case in which all features are assigned to both

sources, P = 0.5 corresponds to the case where each feature is assigned to

a single source and P > 0.5 corresponds to the case where some features

are not assigned to any of the sources. For P = 0.9 we could assign 80 of

the 129 features to a single source. These are the 80 features shown with
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Figure 10.2: Distortion (in dB) for the separated sources. Vocal (top) and
guitar (bottom) and their associated distortions; SDR (solid), SIR (dashed)
and SAR (dotted).

their coefficients in figure 10.1.

After this clustering we used the coefficients s from the decomposition

of the mixture to reconstruct the sources using only those features assigned

to each individual source. The performance of this separation was then

measured using the method proposed in [50]. This gives us a measure of

the signal to inference ratio (SIR), i.e. the ratio of the true source to the

interference of the other sources in the estimated source, as well as the

signal to artefact ratio (SAR), i.e. a measure of the artefacts introduced

by the method. We can also calculate the overall signal to distortion ration

(SDR). For further details the reader may refer to [50].

The top panel of figure 10.2 shows the SDR (solid), the SIR (dashed)

and the SAR (dotted) results for the vocal reconstruction while the lower

panel gives the results for the guitar reconstruction. The SIR increases

when fewer features are assigned to a source, whilst the overall SDR peaks

at around 40% (vocal) and 50% (guitar) but is generally quite insensitive

to the threshold. It is also clear that as fewer features are used in the

reconstruction the SAR decreases as more artefacts are introduced. The



CHAPTER 10. SINGLE CHANNEL SOURCE SEPARATION 167

SIR (at P = 0.9) for the vocal reconstruction was 21dB while the SIR for

the guitar reconstruction at this value was also 21dB. This means that the

guitar track was suppressed by 21dB in the vocal reconstruction. However,

this reduction in interference between the sources leads to the introduction

of artefacts. For the SIR levels reported above the signal to artefact ratios

were -1.4dB and -6.1dB respectively. It can also be seen that even the

reconstruction of the signal with all features is not artefact free and the

highest SAR is 7dB for this example.

10.3 Unsupervised Clustering

In real situations, the information used for clustering in the previous sub-

section is not available and other methods for assigning features to sources

are required. In previous methods (e.g. [142]) the features and models

of the sources were learned from training sequences. However, different

recordings of even the exact same instrument might change the recorded

waveforms if the microphone position is changed or the recording made

in another acoustic environment so that such a prior assignment is not

feasible. Instead it is necessary to cluster the features based only on the

information available from the single mixture that was used in the feature

learning procedure.

To facilitate clustering we exploit higher level dependencies not mod-

elled in the shift-invariant sparse coding model. In particular, we exploit

the residual dependencies found in the coefficients s as well as dependen-

cies between the features ak.

The coefficients s have been modelled as independent and identically

distributed variables. However, for real sources, observations are not in-

dependent from previous observations and the coefficients s are not inde-

pendent over time.

In order to exploit temporal information in the coefficients s that has

been ignored by the shift-invariant sparse coding algorithm, we estimate

the probability of occurrence of a feature during a short time interval

pt(k̃, i) = p(l ∈ [li, li+1) : skl 6= 0, k = k̃)
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by

pt(k̃, i) ≈
1

∑

i

∑

l∈[li,li+1)
|sk̃l|

∑

l∈[li,li+1)

|sk̃l|.

The above histogram estimation does not only count the occurrence of

the features but also takes their strength into account, which can be justi-

fied by assuming that a larger coefficient s is a sum of smaller ‘quantum’

coefficients. This feature can also be thought of as a smoothed and down-

sampled version of the coefficients s and is based on the activation patterns

of the coefficients s, which are assumed to be similar for features ak asso-

ciated with a single source. Other features, such as a histogram estimate

of the distribution of the coefficients s associated with each feature ak or

features based on the autocorrelation of or the cross-correlation between

the coefficients s associated with each feature ak were found not to work

well for unsupervised clustering.

Individual instruments often have fixed physical characteristics that

shape the spectrum of the produced sounds in a characteristic manner.

The features ak associated with the same source can therefore be assumed

to be similar. This similarity can be measured based on a spectral feature

calculated by smoothing the power-spectrum of the features ak, which is

done here by averaging the energy in the spectrum over a partitioning of

the frequency range. In [76] the statistics of natural sounds have been

shown to lead to efficient codes that have a wider frequency support at

high frequencies. It was further argued in [76] that for speech, music and

some natural sounds the average power spectrum is approximately 1/f so

that in order for each frequency band to have equal average power, the

width of the frequency bands has to increase linearly with frequency. This

is reflected in the frequency-discrimination found in the human auditory

system, which is known to roughly follow a logarithmic scale. Therefore,

we use a logarithmic frequency-domain partitioning of each feature ak and

calculate the feature as:

pf (k̃, i) ∝
∑

l∈[2i,2i+1)

|ãk̃(l)|2

where ãk̃ is the Fourier transform of feature ak̃. A linear partitioning is

possible, however, for the experiments reported here, the results obtained
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were slightly worse than those obtained with the logarithmic partitioning.

Clustering of the features ak can then be performed using standard

clustering algorithms. Here we use the K-means algorithm. As a distance

measure between the individual features we use the symmetric Kullback-

Leiber divergence, which can be justified if we think of the features as

histogram estimates of probability measures. The symmetric Kullback-

Leiber divergence is

KL(p(k, i), p(k̃, i)) = 0.5
∑

i

p(k, i) log
p(k, i)

p(k̃, i)

+ 0.5
∑

i

p(k̃, i) log
p(k̃, i)

p(k, i)
,

where p(k, i) and p(k̃, i) are the two features to be compared.

In addition to the features pt and pf we can also use a combination of

these two features for clustering. The results obtained with these different

features are shown in table 10.1. It is evident that for the example studied

here, the feature pt outperforms the feature pf , a combination of both

features, however, offers the best overall performance. We also show the

results obtained with the oracle performance in the previous subsection

for P = 0.5.

To show the trade-off between the SIR and the SAR, it is again possible

to assign a feature to more than one source or to assign some features to

no source at all. This can be done by introducing a margin (positive, to

assign some features to no sources and negative, to assign some features

to more than one source). The SIR, SAR and SDR values are given in

pf pt [pt, pf ] Oracle P=0.5

SIR vocal 11.5 12.6 11.8 15.2

SIR guitar 4.7 9 9.9 7.6

SAR vocal -0.2 3 3.2 2.6

SAR guitar 3.7 3.3 3 4.0

SDR vocal -0.8 2.3 2.4 2.3

SDR guitar 0.4 1.8 1.8 1.9

Table 10.1: Comparison between the features for clustering.
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Figure 10.3: Distortion (in dB) for the blindly separated sources. Vocal (top)
and guitar (bottom) and their associated distortions; SDR (solid), SIR (dashed)
and SAR (dotted).

figure 10.3 for different margins. Here we show the results for clustering

based on the combined features. The values obtained with a margin of

zero are those shown in table 10.1. Again, the SDR is quite insensitive to

the margin used, however, the change in SIR and the inverse change in

SAR are less pronounced.

Conclusions

The human voice can produce a wide range of acoustic signals, which

can vary significantly with respect to their energy envelope, their spectral

characteristics as well as their phase spectra. Nevertheless, in this chap-

ter we have shown that shift-invariant sparse coding can learn features

from such a signal that capture salient structure in the singing voice. Fur-

thermore, we have shown that features learned from a mixture of human

singing voice and guitar can often be assigned to a single source. This ap-

proach can then be used for single channel blind source separation. The

assignment of features to a source, must be done using an unsupervised

technique and we have proposed a method based on features extracted



CHAPTER 10. SINGLE CHANNEL SOURCE SEPARATION 171

from the coefficients s as well as the features ak. The blind source separa-

tion performance of this clustering method was found to be similar to the

blind source separation performance achieved with the oracle method.



Chapter 11

Conclusions and Further Work

11.1 Conclusion

Signal processing methods find a huge number of applications in a variety

of scientific and engineering disciplines. In many of these applications it

is necessary to extract certain features and structures from observations.

Often, these features and structures have to reflect certain aspects of the

processes underlying an observed signal and should be able to offer further

insight into these processes. Unfortunately, it is not always possible to

specify such features and structures a priori and techniques able to discover

such features from observations alone are therefore of immense value.

In this thesis we have investigated a sparse coding model that is able

to discover salient signal structure. The method is based on a linear gen-

erative model and uses a shift-invariant structure in order to deal with

salient features in time-series. The main theoretical concept involved in

the work presented here is that of sparsity, i.e the assumption that salient

features occur sparsely. Without any further domain specific prior knowl-

edge it was shown that such a strong assumption can lead to the discovery

of many of the underlying features and structures in a signal. As an in-

teresting application domain, which has enabled a detailed analysis of the

method, we have concentrated on musical signals. Theses signals are gen-

erated containing a large amount of structures, such as harmonics, notes,

melodies, rhythms and chords and we have shown that the shift-invariant

sparse coding model developed in this thesis can extract note-like features

and find score-like representations from these signals.

In addition to sparsity, positivity is a strong constraint, significantly

172
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reducing the solution space. For many problems, even though the exact

form of features is unknown, positivity can often be assumed for certain

features. We have shown that the inclusion of this constraint further

improves the performance of the developed method. Again, this was done

using a musical example, assuming that notes in a piano recording have

non-negative amplitudes.

In the introduction, the four main contributions made in this thesis

were listed. Here we revisit these points and summarise the main advances

and findings in these four areas.

• Subset selection:

The subset selection step restricts the number of features used to

model each observation block. The experiments reported here show

that this restriction does not significantly restrict the algorithms abil-

ity to extract salient features from musical recordings and that this

restriction was actually necessary in order to apply the shift-invariant

sparse coding model to the problems studied here. The experiments

in chapter 7 showed that the approximation of the learning rule based

on a delta approximation of the posterior of s estimated using only

the selected subset, offered nearly the same level of performance as

the Gibbs sampling method that used the non-negative prior.

• Importance sampling for shift-invariant sparse coding:

The importance sampling algorithm introduced in chapter 5 offers a

fast method to approximate the learning rule. For small dictionary

sizes this method was found to offer comparable learning performance

to the other methods. However, for larger problems such as the ap-

plications to music studied here, the bias introduced by this method

becomes significant and the results obtained were found to be sig-

nificantly worse than those obtained by the other methods based on

a subset selection step. This suggests that the subset selection step

introduces less bias in the learning rule.

• Gibbs sampling with a novel positive prior for shift-invariant sparse

coding:
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For piano music a more accurate signal model can be specified by the

introduction of the modified Rayleigh distribution as a novel conju-

gate prior for the Gaussian mean. Approximations of the learning

rule can be calculated based on Markov chain Monte Carlo meth-

ods. However, these methods are computationally demanding. The

random subset selection procedure introduced in chapter 6, which

is based on the idea that the Markov chain is not able to explore

the complete posterior in any reasonable time, forces the chain to

concentrate on certain areas of the distribution that are likely to in-

clude much of the probability mass and was found to lead to good

approximations with finite computational resources. In appendix

B, other methods to increase the performance of the Gibbs sampler

were proposed and studied. Unfortunately, most of these did not

offer significant improvements.

• Application to Music:

Music approximately follows the additive signal model used here and

piano music in particular can be roughly modelled as a linear com-

bination of note prototypes. This makes musical signals an ideal

application domain in which to study shift-invariant sparse coding.

In this thesis it has be shown that this method can extract a variety

of structures from such signals and, to our knowledge, these results

are the first results that show the emergence of such structures from

real world time-series. Two main applications to music analysis have

been studied in this thesis; the extraction of musically relevant fea-

tures such as notes and score and blind separation of single channel

mixtures.

– Emergence of musical structure: Different musical structures

emerged from the application of shift-invariant sparse coding to

piano music. The features ak converged to note-like atoms that

could be assigned to individual piano notes. The coefficients

s associated with these atoms contained information about the

occurrence of notes in the recording. The similarity of the co-

efficients s to the score of the analysed music and the structure
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of the features ak was shown in chapters 8 and 9.

– Blind source separation: In chapter 10 we have shown that the

shift-invariant sparse coding model leads to representations in

which individual features contain information that is primarily

associated with a single source. The shift-invariant sparse cod-

ing model can therefore be used to separate different sources

from a single mixture. In order to blindly separate different

sources, an unsupervised clustering algorithm was introduced

and it was shown that clustering of the features can be based on

a combination of two features, one capturing spectral informa-

tion of the features and the other capturing average occurrence

of a feature during different intervals.

11.2 Open Problems and Further Work

Any PhD project like the one presented here throws up more new questions

than it can possibly answer. In this section we discuss some of the unan-

swered problems related to the work presented here and discuss several

possible directions for further study. In the following, we have grouped

the problems to be addressed into three main categories, work extending

the signal model, work improving the algorithms used for learning and

inference and work on specific applications.

• Model:

– It has been repeatedly reported in this thesis that not all of the

features converged and that some features were not updated

during learning. This problem seems to be inherent to the com-

petitive learning procedure used, where once a set of features

has been learned that models most observations relatively well,

no other additional features are learned to model the residual.

This might be overcome by increasing the update for features

that occur less frequently. In our model we have assumed that

all features occur with equal probability, i.e. we have used the
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same prior formulation for all features. In the Monte Carlo al-

gorithms, prior parameters were adapted and it is possible to

adapt the probability of occurrence of the features individually.

This probability can then be used in the updating step to give

more weight to less frequently occurring features.

Another possible approach could be to use a second modelling

step to model the residual. This would also overcome the re-

striction introduced with the subset selection step, which only

uses features that model the observation well on their own but

do not model residual structures well.

– In this thesis we have exploited the idea that meaningful features

occur sparsely in observations. Another possible constraint,

which might be used to extract meaningful features, would be

to utilise time consistency, i.e. to use the assumption that fea-

tures generally occur over certain time intervals. As discussed

in chapter 3, this has previously been exploited in Slow Fea-

ture Analysis in [151] and similar ideas could be combined with

sparseness and positivity constraints. With such a model, it

might be possible to learn structure over larger time-scales.

– The additive linear model used here is rather restrictive and

does not model all possible instruments well. For the piano

example used in this thesis, this model worked relatively well,

however, for more complex instruments, more complex models

are required. In general, there is no reason why more com-

plex instrument models should not be used instead of the note

prototypes used here, although in this case the computational

complexity would also increase. Nevertheless, a more compli-

cated model can offer better performance in the tasks studied

here and could be based on ideas similar to those in [142], in

which a phase-blind spectral signal model was introduced that

is more flexible than the one used in this thesis.

Computational savings could be made in a model by assuming

more structure on these models than was assumed here. For
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example, by assuming that instrument sounds are periodic sig-

nals, models with fewer free parameters could be constructed.

However, the aim of the work in this thesis was to show that mu-

sically relevant structures such as harmonic atoms could emerge

from a simple model with no prior musical constraints.

– In this thesis it has become evident that much residual structure

remains in the coefficients s that is not captured by the model.

This was exploited in the section on blind source separation, in

which this structure was used to cluster features into sources.

How such structures can be modelled is not yet clear and dif-

ferent approaches have to be evaluated. One possible method

would be to look at correlations and higher order relationships

between the coefficients s of the same and of different features.

However, it is difficult to estimate such correlations even if the

coefficients are assumed to be a stationary process, which is

clearly not the case. On the contrary, this non-stationarity is

one of the main structures remaining in the signal.

– Further structures can be modelled and the simple linear model

used here can be refined by taking expected structures into ac-

count. This can be done by developing more refined models of

the coefficients s similar to those suggested in [142], however,

these methods have to be adapted for the shift-invariant sparse

coding model. Such methods could then lead to better inference

and learning performance.

Another model refinement could be the introduction of addi-

tional structure on the features ak. Such structure could include

expected harmonic relationships or other knowledge of source

structure. In this thesis the focus was on the emergence of such

structures from simpler models, nevertheless, performance can

be increased by including such structures in the model a priori.

– The location of features in the analysed time-series were as-

sumed to be uniformly distributed a priori. In order to improve

inference, additional information could be used to estimate these
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locations. Such information could come from onset detection al-

gorithms often used in music analysis. Such algorithms could

guide the shift-invariant sparse coding method and lead to faster

implementations. Other information such as estimates of har-

mony or the key of the particular performance could also be

used in a similar manner.

• Algorithm

– Several methods have been analysed in this thesis in order to

improve the efficiency of the Monte Carlo methods. One further

possibility for improving the sampling strategies would be the

inclusion of a gradient term in the proposal distribution that

guides the Markov chain to areas of higher probability. How-

ever, the model used here has a high dimensional discrete state

space in which gradient information is not available. Whether

similar methods are applicable to such state spaces could be in-

vestigated. One possible approach might be to use Reversible

Jump Markov chain sampling in which local information is used

to guide the evolution of the chain as well as the jumps between

different models.

– The motivation for the introduction of the importance sampling

method was to find a method which could be used to calculate

a very rough but unbiased gradient estimate. It was found that

the bias in the importance sampling algorithm was too large for

the applications of interest. In order to improve this method

it is therefore necessary to find methods to reduce this bias.

How this could be achieved is, however, not yet clear. One

possible approach might be to use an annealed Gibbs sampler

(as introduced in the appendix) to calculate a proposal used in

a subsequent rejection sampler. The Gibbs sampler would be

used to achieve a proposal that is accepted with relatively high

probability. Such a single sample, or a small number of such

samples might then be used to estimate the gradient. Whether

this strategy offers any computational advantages depends on
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the required computational complexity of calculating the pro-

posal and, more critically, on the achievable acceptance rate.

• Applications:

– Previous applications of shift-invariant sparse coding have main-

ly been in image analysis, a problem domain in which the addi-

tive signal model is clearly not valid. Apart from the applica-

tion to musical signals studied in this thesis, there are a large

number of other signals that approximately follow the additive

linear model. Possible application areas include biomedical sig-

nal analysis of (for example, EEG data as in [18] or fetal ECG

data,) geological signal analysis and blind deconvolution in com-

munication systems.

– The results presented in this thesis on blind source separation

of a single channel observation are only of a preliminary nature

and a much more thorough evaluation must be undertaken. It

could be seen that many of the learned features could be associ-

ated with a single source, however, some features were used for

modelling of both sources. In order to increase the performance,

the model has to be adapted to better model individual sources.

The simple linear model used here is clearly restricted in this

respect. Modelling of additional structures in the coefficients s,

as well as in the features a as suggested above seems a possible

solution. In order to achieve a blind separation of single channel

recordings, good generative source models are required, which

have to be learned from the mixture itself. These models have

to be flexible enough to model a wide range of different sources.

Furthermore, a method to estimate the number of sources in

the signal is required. For such an estimation, sparsity might

be used by searching for the smallest number of sources able

to describe an observation. The source models then need to be

able to describe a single source, but not a mixture of sources.

– In this thesis we have applied the shift invariant sparse coding

model only to a single observation sequence. If more than one
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observation is available, to each of which the different sources

contribute with different delays and possibly with different am-

plitudes, then the shift-invariant sparse coding model can be

used to estimate this delay and therefore the direction of arrival

of the different signals. Two possible approaches could be taken;

in the first, the features are shared between the different obser-

vations. This approach can be used if the delay between the

observations can be approximated accurately with a multiple of

the sampling time and if the waveforms observed are not other-

wise changed by filtering effects. The delay is then encoded in

the delay between the coefficients s for the same feature between

the different observations.

The other approach would assume different features for each

source and observation but use a common set of coefficients

s for all observations. This approach can be used if features

have slightly different waveforms at different observations and

if the delays are of sub-sample length. The delay between the

observations can then be estimated from the different phase of

the features.

– One possible application area for sparse coding that has not

been analysed in this thesis is that of signal coding and com-

pression. A problem to be addressed is that the linear generative

model used here leads to a relatively large reconstruction error.

This is the result of the very strong sparsity constraint used

in order to extract musically meaningful features. High qual-

ity coding would require much weaker sparsity constraints or an

even higher number of features, both of which would lead to an

increase in coding cost. This also leads to the question of the

optimal size of the dictionary used for coding, as a larger dic-

tionary leads to a higher number of bits required to specify the

non-zero coefficients. Another important issue to be addressed

for coding is the use of perceptual distortion measures and how

such measures can be incorporated into sparse coding methods.
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– Depending on the application, a different trade off between spar-

sity and reconstruction error is required. This relationship has

not been investigated in detail in this thesis. From a Bayesian

point of view, such information should be incorporated using

utility functions. However, it is common practice to incorporate

such information in parameter priors. For the model used in

this thesis, this could be done by introducing prior distributions

on the parameters governing this trade off. A more heuristic

approach could be based on fixed parameters, set by experi-

ence gained from simulation studies. All of these approaches

are necessarily application driven and might depend on related

parameters to be optimised such as rate distortion in coding.
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Appendix A

Derivation of Gibbs Sampler

Probability

From equation (6.3) we have:

E1 = log
p(un = 1)

∫

p(x|s,u, θ)p(sn|un = 1) dsn

p(un = 0)
∫

p(x|s,u, θ)p(sn|un = 0) dsn

= log
e−0.5λu

∫

e−0.5λǫ(x−As)T (x−As) 1
Zp sne

−0.5λR(sn−µn )2 dsn
∫

e−0.5λǫ(x−As)T (x−As)δ0(sn) dsn

where Zp is the normalising constant of the modified Rayleigh distribution

given in equation (6.4). Using

bn = (aT
nan)−1aT

nx,

λEn
= λǫa

T
nan,

ηn =
λEn

bn + λRµn

λEn
+ λR

and

Ψn = λEn
+ λR,

we can write this as

E1 = log
e−0.5λu

∫

e−0.5λEn (bn−sn)T (bn−sn) 1
Zpsne

−0.5λR(sn−µn )2 dsn
∫

e−0.5λEn (bn−sn)T (bn−sn)δ0(sn) dsn

= log
e−0.5λu 1

Zp

∫

sne
−0.5Ψns2

n+Ψnηnsn−0.5(λEnb
n2+λRµ

n2
)
dsn

e−0.5λEn (bn)2

= log e0.5λEnb2ne−0.5λu
ZE

Zp

∫

sne
−0.5Ψn(sn−ηn)2 dsn,
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where in the last line we use

ZE = e0.5(Ψnη2−λE−nb2n−λRµ2
n)

The integral in the last line is the normalising constant in the modified

Rayleigh distribution given in equation (6.4) so that the expression for E1

in chapter 6 follows.



Appendix B

Gibbs Sampler Performance

In this appendix we discuss three different approaches developed in order

to increase the performance of the Gibbs sampler for sparse linear models.

These approaches are metropolisation discussed in section B.1, bridged

transitions developed in section B.2 and problem specific proposal distri-

butions introduced in B.3.

For the Metropolisation method each normal Gibbs step is replaced by

a Metropolis-Hastings step to sample from the conditional distribution.1

For discrete state spaces (such as the indicator variable in the mixture dis-

tribution) this method was suggested to improve performance, especially

with sparse distributions [65, 83].

The bridged transition method is an extension of the method developed

in [99] for Metropolis-Hastings sampler. Here we present the proofs for

irreducibility and the convergence to the stationary distribution if the

method is applied to the Gibbs sampler.

The problem-specific proposal introduced in section B.3 takes account

of the structure of the problem and in particular the shift-invariant nature

of the model under study. Using this structure we introduce a hybrid

sampler that randomly replaces the Gibbs sampler with a Metropolis-

Hastings step that tries to ‘shift’ individual features instead of switching

them ‘on’ and ‘off’.

The simulation study in section B.4 shows that all methods improve

1We use the term Metropolised Gibbs sampler to distinguish a sampler that uses a
Metropolis-Hastings step to sample from the conditional distribution required in the Gibbs
sampler from the standard Metropolis-Hastings algorithm that directly samples from the dis-
tribution of interest.
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the ratio of accepted state changes to proposed changes. Unfortunately,

for most methods, the additional computational cost leads to a decrease

in performance when the computation time is taken into account. The

only exception is the problem specific proposal, which was found to offer

some advantages for the shift-invariant sparse coding model.

B.1 Improving Efficiency by Metropolisation

In this section we use ideas introduced in [65] to improve the efficiency

of Gibbs sampling methods for sparse discrete distributions. For sparse

discrete distributions, the standard Gibbs sampling approach used in this

thesis has to evaluate the probability of a change for each of the coefficients

un. For very sparse distributions as used here, these un are zero with high

probability and set to one with a very small probability in each step of

the Gibbs sampler. This leads to a high number of computations that

have to be performed for each change in the sampler state. In [65] it was

suggested that each Gibbs kernel could be replaced with a Metropolis-

Hastings transition kernel to sample from the conditional probability. In

[65] the prior distribution was used as a proposal distribution for the

Metropolised Gibbs sampler. Such a method decreases the amount of

computation required for each sample, but it also reduces the speed of

the mixing of the chain. We therefore propose a data dependent proposal

distribution of the same form as used in chapter 5. For each data point

x the Euclidean distance between this point and all columns of A can be

calculated. The proposal density can then be constructed as a function of

these distances, giving a higher probability to include columns of A close

to the data. We use the same proposal distribution as in equation (5.5),

i.e.

α(un = 1|x) = p(un = 1) ∗ fn(x), (B.1)

with

fn(x) = 2 ∗ < an,x >
0.4

maxn̂ < an̂,x >
,

where < · > is the inner product, an is the nth column of A and the

exponent of 0.4 is a variable chosen for good average performance in the
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experiments to be reported below. Note that, for the above formulation,

we have the condition that p(un = 1) < 0.5 as can be assumed for many

sparse problems. Obviously fn(x) can be replaced by any function chosen

from prior beliefs or experience.

We assume that the distribution of interest generally has a higher prob-

ability of including coefficients and therefore columns of A for which these

columns are highly related to the data. The proposal distribution intro-

duced here has a higher probability of selecting such columns such that

the acceptance probability is then generally higher, which could be shown

experimentally in [65]. Why the replacement of an independent sampling

method by a Markov chain with correlated draws can be of advantage for

discrete distributions is not immediately obvious. However, in [83] it was

shown theoretically that this is the case for certain chains. These results

show that a Markov chain sampler can be an advantage if the transition

kernel of this method has larger off-diagonal elements than those of the

Gibbs sampler.

B.2 Bridged Transitions

The slow mixing of the sampler developed so far can be attributed to the

fact that in each step only one coefficient sn is changed. The probability of

changing many sn in series to arrive at a different mode of the distribution

is very low. Instead of employing this Gibbs strategy it would be possible

to use a Metropolis-Hastings algorithm that proposes a new coefficient

s and associated indicator variables u that depend less on the previous

coefficients. However, the proposal distribution must be chosen with care

to minimise the rejection of this new sample. We develop a proposal

distribution based on tempering ideas and the Gibbs sampler.

The proposal density samples a new state as follows. We use two Gibbs

cycles and in each individual step during the first Gibbs cycle we vary the

distribution we sample from to get more dispersed, i.e. we start with a

Gibbs kernel sampling from the actual distribution of interest as in the

normal Gibbs step but slowly change this distribution and finally draw

the last few coefficients sn and indicator variables un from the proposal
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distribution in equation (B.1). During the second Gibbs cycle we use the

inverse order of conditional distributions from the first cycle and therefore

return slowly to the distribution of interest. This method does not sample

from the required distribution directly, but a Metropolis-Hastings accep-

tance step can be developed to ensure the correct stationary distribution.

This method is an extension of the tempered transition kernel developed

in [99] for the use with individual Gibbs kernels.

To formally define this algorithm we need some additional notation.

We write the posterior distribution as po(s,u) := p(s,u|x, θ). We further

use the abbreviation qr(u
r
nr

) =
(

p(ur
nr
|sr

n̂ 6=nr
,ur

n̂ 6=nr
,x, θ)

)τr
(

p(ur
nr

)
)1−τr

and write ρr(s,u) := p(sr
nr
|sr−1

j 6=nr
,u,x, θ)qr(u

r
nr

) for the marginal tempered

distributions (we again use sn̂ 6=1 to denote the vector of coefficients s with-

out the first element). Note that during tempering we only change the dis-

crete distribution for un. We further use the notation {ŝr, ûr} to denote

the sequence of samples drawn during the first cycle of Gibbs steps while

we use the notation {šr, ǔr} to denote the samples drawn during the sec-

ond cycle. We use {ŝ0, û0} to denote the last sample drawn in the Markov

chain, i.e. the current state, and {š0, ǔ0} to denote the new proposed

sample. We also introduce the notation K̂r
nr

and Ǩr
nr

to denote the indi-

vidual Metropolised Gibbs kernels drawing samples snr
and unr

from the

conditional distributions ρr(s,u) and ρr−1(s,u) respectively2. We further

use the abbreviations

ĉr =
ρr(ŝ

rûr)

ρr(ŝr−1ûr−1)

and

čr =
ρr(š

r−1ǔr−1)

ρr(šrǔr)
.

Before formally defining the algorithm, it is instructive to consider the

sequence of Gibbs steps required to propose a new sample. This is best

2Note that kernel K̂r
nr

maps sample {ŝr−1, ûr−1} to {ŝr, ûr} while Ǩr
nr

maps sample
{šr, ǔr} to {šr−1, ǔr−1}, i.e. the first kernel has a stationary distribution of ρr(s,u) while
the second kernel has a stationary distribution of ρr−1(s,u). This is a notational convention
introduced to preserve the symmetries in the derivation.
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Algorithm 1 Tempered Transition Sampler

• For r = 1 to N and a random order of nr: Draw sample ûr
nr

conditional
on ŝr−1

nr
and ŝr

nr
conditional on ûr

nr
using a Gibbs kernel with stationary

distribution ρr(s,u).

• For r = N to 1, i.e. counting down: Draw sample ǔr−1
nr

from šr
nr

and šr−1
nr

from ǔr−1
nr

using a Gibbs kernel with stationary distribution ρr−1(s,u).

• Accept {ǔ0, š0} with probability

α = min

{

1,
p(š0, ǔ0|x, θ)

p(ŝ0, û0|x, θ)

1
∏N

r=1 ĉr
∏N

r=1 čr

}

(B.2)

or repeat {ŝ0, û0} otherwise.

done using the following representation.

{ŝ0, û0}
K̂1

n1
−−→{ŝ1, û1}

K̂2
n2

−−→ . . .
K̂N

nN
−−−→ {ŝN , ûN} =

{šN , ǔN}
ǨN

nN
−−−→{šN−1, ǔN−1}

ǨN−1
nN−1

−−−−−→ . . .
Ǩ1

n1
−−→ {š0, ǔ0}

Each Gibbs kernel K̂r
nr

or Ǩr
nr

only changes the nth
r coefficient, i.e. the

difference between two adjacent samples, say {ŝr, ûr} and {ŝr+1, ûr+1} is

in the coefficients snr
and unr

.

The tempered transition sampler is formally defined in algorithm 1.

The ratios ĉr and čr are evaluated in each step of the Gibbs sampler

and, in order to calculate the acceptance probability in algorithm 1, these

values do not have to be re-evaluated. Only the ratios of the conditional

distribution p(s|u) and the conditionals p0(s1|sn̂ 6=1,u) need to be evaluated

together with the product of these values and the ratio po(š)/po(ŝ). Note

that here we use two Metropolised Gibbs sampler cycles for each new

sample. This is not mandatory and any sequence of Gibbs kernels can be

used under the condition that, during the second part of the tempering

procedure, the reversed order is used as in the first part. Furthermore,

different strategies to select the temperature are possible. We found that

a sigmoidal change of the tempering variable gave good results and used:

τ̂r = τ̌r =
1

1 + e−(i−N
2

) 10

N

.
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Whether the Markov chain produced by drawing samples as described

in algorithm 1 satisfies the detailed balance condition and therefore leads

to the required stationary distribution is not directly evident. We can,

however, use a similar approach to the one in [99] to prove the following

theorem.

Theorem B.2.1. The Markov chain produced by drawing samples as in

algorithm 1 has a stationary distribution po(s,u).

Proof. It is sufficient to show that

po(ŝ, û)

N
∏

r=1

K̂r
Nr

1
∏

r=N

Ǩr
Nr
α({s,u}) = po(š, ǔ)

N
∏

r=1

Ǩr
Nr

1
∏

r=N

K̂r
Nr
α({s′,u′})

(B.3)

holds true for one sequence of samples {s,u}. Here we use the notation

{s,u} to denote the sequence of samples drawn from the proposed method,

i.e. {s,u} = û1, ŝ1, · · · , ŝN , ǔN , · · · š1 and {s′,u′} is the inverse of this

sequence, i.e. {s′,u′} = š1, ǔ1, · · · , šN , ûN , · · · û1. For a single Gibbs

kernel we know that the reversibility condition [115]

ρr(s
r,ur)K̂r

nr
(sr,ur, sr+1,ur+1) = Ǩr

nr
(sr+1,ur+1, sr,ur)ρn(sr+1,ur+1)

(B.4)

holds. Using this we write
[

N
∏

r=1

K̂r
nr

(ŝr−1, ûr−1, ŝr, ûr)

]

·
[

N
∏

r=1

Ǩr
nr

(šr, ǔr, šr−1, ǔr−1)

]

=

[

N
∏

r=1

ρr(ŝ
r−1, ûr−1)

ρr(ŝr−1, ûr−1)
K̂r

nr
(ŝr−1, ûr−1, ŝr, ûr)

]

·
[

N
∏

r=1

ρr(š
r, ǔr)

ρr(šr, ǔr)
Ǩr

nr
(šr, ǔr, šr−1, ǔr−1)

]

=

[

N
∏

r=1

ρr(ŝ
r, ûr)

ρr(ŝr−1, ûr−1)
Ǩr

nr
(ŝr, ûr, ŝr−1, ûr−1)

]

·
[

1
∏

r=N

ρr(š
r−1, ǔr−1)

ρr(šr, ǔr)
K̂r

nr
(šr−1, ǔr−1, šr, ǔr)

]
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=

[

N
∏

r=1

Ǩr
nr

(ŝr, ûr, ŝr−1, ûr−1)

][

1
∏

r=N

K̂r
nr

(šr−1, ǔr−1, šr, ǔr)

]

N
∏

r=1

ĉr
1
∏

r=N

čr

where the second equality follows from equation (B.4). Substituting these

results into equation equation (B.3) we get

p(ŝ0, û0|x, θ)
p(š0, ǔ0|x, θ)

N
∏

n=1

ĉr
1
∏

n=N

črα({s,u}) = α({s′,u′})

Note that ŝN = šN and ûN = ǔN . It can now be easily seen that the

above equality holds for the α as defined in equation (B.2), completing

the proof.

The other important property of a Markov chain is stated in the next

theorem.

Theorem B.2.2. The Markov chain produced by drawing samples as in

algorithm 1 is irreducible.

Proof. If the support of the distribution of each non-zero coefficient is

independent of the other coefficients, then it remains to be shown that

there is a path with non-zero probability from any point in the discrete

space of the indicator variables to any other point in this space. As we

randomly select the order of the Gibbs steps this leads to the condition

that switching any indicator variable from any possible state has a non-

zero probability. This can be guaranteed for the sampler in algorithm

1.

B.3 Problem Specific Proposals

When using a Markov chain sampler for the sparse coding problem we

need to ensure that the chain can easily jump from mode to mode. With

the simple Gibbs strategy used in this thesis such moves are not very

common as discussed in chapter 6. This is a general problem with many
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sparse multi-modal distributions and is not restricted to the model used

here. However, the structure of the shift-invariant sparse coding model can

be exploited. If we assume that the features in the shift-invariant sparse

coding model have a harmonic structure, i.e they are nearly periodic over

the length of the feature, then a feature is similar to itself when shifted

by its period. Features at periodic shifts also offer a similar reduction in

reconstruction error and have therefore a similar conditional probability.

We introduce a second possible kernel, which can randomly replace the

Gibbs kernel leading to a hybrid sampler [97].

For each indicator variable we propose a new vector of indicator vari-

ables u with un = 0 and u−→n = 1 where −→n is an indicator of a shifted

version of the same feature, i.e. we set one indicator variable that has

been one to zero and set an indicator variable that has previously been

zero to one. If we ensure that the changed indicator variables are of the

same feature but at different shifts, then we effectively ‘move’ a feature

in the reconstruction. Different strategies can be employed to select the

feature to be changed based on the first feature selected. The simplest

strategy gives equal probability for all indicator variables to be changed.

A more sophisticated method is to use a similar strategy as discussed for

the Metropolised Gibbs sampler and to select an indicator variable with

a probability proportional to the correlation of the feature at that shift

with the signal. In this case the proposal distribution is:

q(un = 0, u−→n = 1) = qn(u−→n = 1|x),

where
∑

−→n∈J

qn(u−→n = 1|x) = 1,

with J being the set of all shifts of the current features un being zero.

The Metropolis-Hastings acceptance probability for this move is then

min

{

1,
p(u−→n = 1, un = 0)p(x|sn̂ 6=n,−→n , un = 0, u−→n = 1, θ)qn(un)

p(un = 1, u−→n = 0)p(x|sn̂ 6=n,−→n , un = 1, u−→n = 0, θ)q−→n (u−→n )

}

.

Here we use sn̂ 6=n,−→n to denote the coefficients without the nth and −→n th

elements.
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This kernel ‘moves’ a feature, i.e it switches a feature ‘off’ and switches

the same feature ‘on’ at a shifted position. This kernel does not lead to an

irreducible Markov chain on its own as the number of non-zero coefficients

does not change. However, if used in conjunction with any Gibbs sampling

strategy then irreducibility follows from the irreducibility of the Gibbs

sampler.

B.4 Performance Analysis

B.4.1 Measures of Efficiency

To compare different Markov chain sampling strategies, measures of the

performance of different aspects of the chain need to be employed. Unfor-

tunately, many aspects of Markov chains are hard to monitor and generic

measures are often missing. A statistical measure of efficiency is intro-

duced here, which can be used to monitor the mixing of a Markov chain

and which gives an indication of the average performance of a Markov

chain Monte Carlo method.

Efficiency is measured based on estimates of the computation time, as

well as the statistic efficiency measured by the reduction in variance of an

estimate. Computation time is measured for a particular implementation

of the algorithm in the Matlab computational environment3. Statistical

efficiency is measured in samples required to achieve a certain variance of

an estimate. For the variance of a mean estimate g({x}) of functions of J

i.i.d. samples xj we have the textbook result of the form:

σ2
0 = var(g({x})) =

1√
J

∑

j

var(g(xj)),

whilst for correlated samples we have [4]:

var(g({x})) =
1

J
lim

I→inf

I
∑

r=−I

(

1 − |r|
I

)

cov{g(xj), g(xj+r)},

3We use such a measure instead of flops, as it also includes the time required for memory
management and auxiliary processes. This measure is dependent on the computer, the pro-
gramming language as well as the particular implementation. Nevertheless, it is an adequate
measure to compare different strategies.
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where var refers to the variance and cov denotes covariance. We estimate

the above variance as in [65] using:

v̂ar(g({x})) =
σ̂2

0

J
(1 + 2

I
∑

r=1

(1 − r

I
)ρ̂r),

with the estimates:

σ̂2
0 =

1

J

J
∑

j=1

g(xj)g(xj)

and

ρ̂r =
1

J

J−j
∑

j=1

g(xj)g(xj+r)

σ̂2
0

and the assumptions that the xj are zero mean and that ρ̂r is negligible

for j > I. The term 2
∑I

r=1(1 − r
I
)ρ̂r is the number of additional samples

required from a sequence of dependent samples to achieve the same vari-

ance of the mean as a sequence of i.i.d samples. This term is known as

the inefficiency factor or autocorrelation time. We can multiply this term

by the time the algorithm takes to calculate each sample to get a measure

of the computational efficiency of the proposed method.

B.4.2 Experimental Evaluation

We evaluated the efficiency of four different approaches: The standard

Gibbs sampler without any modifications (Method 1), the Metropolised

version of the Gibbs sampler (Method 2), the hybrid sampler (in which

each sample is generated either from method 2 with probability of 0.75 or

otherwise generated using the approach of subsection B.3) (Method 3) and

the bridged transition method (Method 4). In these experiments we used a

toy problem generated from five different features and all their shifts. The

length of the features was 32 samples. We generated 20 independent chains

of length 100 000 samples, with each chain using a different realisation of

the observation vector x. All parameters were assumed to be known. For

each approach the autocorrelation time was calculated using only the last

50 000 samples to ensure convergence to the stationary distribution. The

results are shown in the top panel of figure B.1. The second panel shows

the number of changes of the discrete state each second the sampler is
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Figure B.1: Comparison of the efficiency of the algorithms proposed measured
in seconds required to calculate the number of samples of the chain needed to
reduce the variance of an estimate by the same amount as an i.i.d sample would
(top). The number of state changes in each second is shown in the middle and
the ratio of accepted changes to the number of proposed changes is shown on
the bottom. The average (solid line) is shown with twice the standard deviation
of the sample statistic (dashed line). The crosses are the sample points.

run. The last panel shows the ratio of accepted changes to the number of

proposed changes.
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It is clear that methods 2 and 4 perform worse than the standard

Gibbs sampler. Method 3 seems to offer better performance than method

2, which means that the introduction of the problem specific proposal did

improve performance. It can be seen that the variance over different data

points is much larger than the improvements achieved.

The middle panel indicates that methods two and three both increase

the number of state changes per second, however, this graph does not take

the correlation between samples into account. Method four did not im-

prove the number of state changes per second but did significantly reduce

the correlation between samples. The poor performance of this method

is therefore mainly due to the large increase in computations required to

draw each sample. The last panel shows that the rate of accepted changes

to proposed changes increases with each method, such that many more

changes are accepted with method 4 than with method 1.


