Trauma is a leading cause of death worldwide with 5.8 million deaths occurring yearly. Almost 40% of trauma deaths are due to bleeding and occur in the first few hours after injury. Of the remaining severely injured patients up to 25% develop a dysregulated immune response leading to multiple organ dysfunction syndrome (MODS). Despite improvements in trauma care, the morbidity and mortality of this condition remains very high. Massive traumatic injury can overwhelm endogenous homeostatic mechanisms even with prompt treatment. The underlying mechanisms driving MODS are also not fully elucidated. As a result, successful therapies for trauma-related MODS are lacking.

Trauma causes tissue damage that releases a large number of endogenous damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs released in trauma, such as mitochondrial DNA (mtDNA), could help to explain part of the immune response in trauma given the structural similarities between mitochondria and bacteria. MtDNA, like bacterial DNA, contains an abundance of highly stimulatory unmethylated CpG DNA motifs that signal through Toll-like receptor (TLR)-9 to produce inflammation. MtDNA has been shown to be highly damaging when injected into healthy animals causing acute organ injury to develop. Elevated circulating levels
of mtDNA have been reported in trauma patients but an association with clinically meaningful outcomes has not been established in a large cohort.

We aimed to determine whether mtDNA released after clinical trauma haemorrhage is sufficient for the development of MODS. Secondly, we aimed to determine the extent of mtDNA release with varying degrees of tissue injury and haemorrhagic shock in a clinically relevant rodent model. Our final aim was to determine whether neutralising mtDNA with the nucleic acid scavenging polymer, Hexadimethrine bromide, at a clinically relevant time point in vivo would reduce the severity of organ injury in this model. Conclusions: We have shown that release of mtDNA is sufficient for the development of multiple organ injury. MtDNA concentrations likely peak at different points in the early postinjury phase dependent on the degree of isolated trauma vs combined trauma and haemorrhagic shock. Hexadimethrine bromide scavenging of circulating mtDNA (and nDNA) is associated with rescue from severe multiple organ injury in the animal model. This suggests that it may have utility in rescue from human trauma induced-MODS.
According to the latest data from the World Health Organisation (WHO, 2016), trauma accounts for 10% of deaths and 16% of disabilities worldwide. Critically injured patients who survive their initial resuscitative phase are at high risk of developing Multiple Organ Dysfunction Syndrome (MODS) (Dewar et al., 2009). Isolated overwhelming tissue injury can lead to MODS but more commonly there is a combination of tissue injury and haemorrhagic shock. Half of MODS cases occur within 3 days postinjury (Sauaia et al., 2014). The development of MODS is associated with complications such as sepsis, poor outcomes including death and high resource utilization and healthcare costs (Lord et al., 2014).

Traumatic injury can lead to a range of cellular injury including physical destruction, cell stress and frank necrosis, all of which can lead to the release of Damage Associated Molecular Patterns (DAMPs) into the extracellular and vascular compartments (Medzhitov, 2008, Kono and Rock, 2008, Timmermans et al., 2016a). Mitochondrial DNA has recently been identified as a DAMP and a potential important activator of the innate immune response to trauma (Zhang et al., 2010b). A number of diverse nucleic acid scavenging polymers (NASPs) have recently been evaluated in vitro and in vivo (Oney et al., 2009). Hexadimethrine bromide HDMBr is a NASP that has been shown to prevent the activation of endosomal TLRs in a CpG DNA dependent toxic shock murine model and improve survival (Lee et al., 2011). If mtDNA is critical to the development of MODS, then administration of a nucleic acid scavenging agent such as Hexadimethrine bromide may be a therapeutic opportunity in critically injured trauma patients.
The overall objective of this study was to understand the association of mtDNA release in trauma with the development of MODS and its potential for therapeutic modulation. We first aimed to determine whether mtDNA released after clinical trauma haemorrhage is sufficient for the development of MODS. We then aimed to determine the extent of mtDNA release with varying degrees of tissue injury and haemorrhagic shock in a clinically relevant rodent model. Our final aim was to determine whether neutralising mtDNA with the nucleic acid scavenging polymer HDMBr at a clinically relevant time point in vivo would reduce the severity of organ injury in this model.

Methods

Human Study

The Royal London Hospital (RLH) is a busy, urban Major Trauma Centre and home to The London Air Ambulance. Trauma research is conducted at the RLH by The Barts Centre for Trauma Sciences (C4TS), Queen Mary University, London, who have been recruiting to a prospective, observational cohort study called the Activation of Coagulation and Inflammation in Trauma 2 (ACIT2) since 2008, to investigate the host response to traumatic injury.

Trauma patients are recruited on admission to the emergency department if they present within 2h of injury. Blood samples are drawn on admission, 24h (+/- 1h) and 72h and participants are seen daily until death or discharge. Written consent is obtained from all subjects although, if incapacitated, temporary consent can initially be obtained from a legally appointed representative (LAR). The study has approval from the National
Health Service Research Ethics committee REC: 07/Q0603/29. At the time of this clinical study, 367 patients had been enrolled in to ACIT2. From this biobank, 140 patients were selected for mtDNA measurement. The injury profile of the cohort was characterised using categories of Injury Severity Score (ISS) 0-4, 5-15, 16-25, >25 and Base Deficit (BD) on admission -2 -2, 2-6, >6. Patients were randomly selected from each category, to achieve a balanced population for study. Control patients were defined as ISS 0-4 and no shock (BD 2 - 2 mEq/L). Therefore, our controls were part of the overall cohort and represent very minimally injured patients as opposed to healthy uninjured controls. MODS was defined using the Sequential Organ Failure Score (SOFA) as a score of ≥ 5 on at least 2 consecutive days, 48h or more following admission. One set of blank readings was subsequently excluded from analysis.

Animal Study

Ethics Statement

All experiments were carried out using male Wistar rats (Charles River, UK) weighing between 280 and 350g. Animals received a standard diet and free access to water during a seven-day adaptation period after transport into the laboratory from the supplier. This was performed in accordance with Home Office Guidance in the Operation of the Animals (Scientific Procedures) Act 1986 and the Guiding Principles in the Care and Use of Animals published by the American Physiological Society.

Anaesthesia
All animals were anaesthetised using intraperitoneal injections (i.p.) of sodium thiopentone, a barbiturate anaesthetic agent, at a dose of 120mg/kg (Merial Animal Health, UK). Small supplementary injections of thiopentone were administered intravenously during the course of the experiment as required.

Temperature Control

Animals were then placed supine onto a thermostatically controlled heating mat (Harvard Apparatus, UK). Body temperature was maintained at 38±1°C with temperature feedback via a rectal temperature probe connected to the homeothermic blanket. Desk lamps provided extra heat as required during particularly hypothermic phases such as controlled haemorrhage.

Airway and Ventilation

Airway patency and spontaneous respiration was facilitated by a tracheotomy and insertion of 2cm length of polyethylene tubing (I.D. 1.67mm, Portex, UK) approximately 5mm into the trachea where it was secured with nylon sutures.

Arterial Catheterisation

The left carotid artery was cannulated under direct vision with PE50 tubing (I.D. 0.58mm, Portex, UK) and attached to a pressure transducer (AD Instruments, UK) and connected to a data acquisition system (Powerlab 8/35, AD Instruments, UK) for the measurement of mean arterial blood pressure (MAP) and heart rate (HR). The arterial
catheter was primed with heparinised saline at a concentration of 50IU/ml to prevent clot formation.

Venous Catheterisation

The right jugular vein was cannulated under direct vision with PE25 tubing (I.D. 0.40mm, Portex, UK) for the administration of fluid, blood or therapeutic agent. After baseline instrumentation was completed, animals were allowed to stabilise for 15 minutes before the next phase commenced.

Induced Traumatic Injury

1. Closed lower limb midshaft fractures. One or both tibias and fibulas were fractured manually, taking care not to break the overlying skin and tissue.

2. 4cm midline laparotomy. After hair removal and skin sterilisation with 70% isopropyl alcohol wipes (Molnlycke Healthcare, UK), a midline incision was made without bowel manipulation. The wound was closed within 5 minutes in one layer with interrupted surgical 4/0 sutures (Prolene, Ethicon, UK). Highly standardised elements of both the trauma and haemorrhage phases were required to minimise variation and to allow the smallest number of animals to be used. Intentional or accidental bowel manipulation during laparotomy, for example, has been suggested as a driver for increased inflammation, remote organ injury and increased model severity (Thomas et al., 2005, Atkins et al., 2013).
3. Bilateral lower limb muscle crush. Haemostatic forceps were applied to the upper musculature of each lower limb and clamped down maximally for 10 seconds.

4. Limb fracture haematoma, intraperitoneal haematoma and laparotomy wound haematoma were excluded at necropsy.

Haemorrhagic shock protocol

During right-sided jugular vein catheterisation, PE 25 tubing was advanced gently into the right heart such that blood could be freely aspirated. Jugular catheter tip positioning was confirmed at necropsy. Haemorrhagic shock was induced via bleeding from the jugular catheter to achieve a MAP of 35+/−5mmHg within 10 minutes, at a rate not faster than 1ml per minute. Haemorrhage was continued over 20-35 minutes until 20-30% of the estimated blood volume had been removed. No resuscitation was delivered to the animal subsequently. The carotid arterial catheter was primed with a reduced concentration of heparinised saline (25IU/ml) to maintain patency. If the MAP signal indicated a problem with catheter patency, every attempt was made to bleed back the catheter to remove any potential heparinised saline before flushing with plain saline 20μl (the dead space of a 150mm length of PE25 tubing), then reconnecting to the heparinised saline system and finally, re-priming with 20μl heparinised saline. Thus, systemic administration of heparin was mimimised.

Therapeutic agent administration
At 15 minutes after the haemorrhage phase was completed, animals received either an intravenous bolus of saline 250μl (0.9% NaCl, Baxter Healthcare, UK) or the Nucleic Acid Scavenging Polymer (NASP) study drug (Hexadimethrine bromide, Sigma, UK) at a concentration of 1-4mg/kg, dissolved in saline 250μl, both administered over 10 minutes.

Point of Care (POC) tests

Lactate measurement. A 20μl blood sample was withdrawn and used for lactate measurement (Accutrend, Roche, UK)

Blood gas analysis. A 100μl blood sample was aspirated into a heparin-coated (heparin fully expelled) syringe for blood gas analysis (Radiometer, UK).

Plasma preparation

Terminal blood was collected into EDTA containing tubes (3 x 1.3ml, Sarstedt, UK), gently inverted 3 times and immediately centrifuged at 200g for 10 minutes at room temperature to remove the platelet rich fraction. The plasma layer was then aspirated taking care not to disturb the cellular fraction and again centrifuged at 3000g for 15 minutes at 4°C, and then again at 3000g for 15 minutes at 4°C.

Biochemical Organ Function Analysis

Plasma samples were sent to a contract laboratory (Vetlab Services, Sussex, UK) for
analysis within 24 h for urea, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatine kinase (CK). Renal dysfunction was quantified by the rise in urea (a marker of pre-renal renal impairment and/or increased catabolism) and creatinine (a marker of impaired glomerular filtration rate (GFR) (Chatterjee and Thiemermann, 2003). Liver injury was quantified by a rise in ALT (a specific marker of parenchymal damage) and also in AST (a non-specific marker of liver injury, which is also raised in myocardial, renal and muscle necrosis) (Gill et al., 2011). Muscle injury was quantified by a rise in CK, which is also elevated in cardiac muscle injury and brain injury (Strecker et al., 1999).

Lung Myeloperoxidase (MPO) Activity

MPO activity, used as an indicator of leukocyte accumulation into the lung, was determined as previously described (Collino et al., 2011). Briefly, samples were homogenised and centrifuged for 30 min at 13,000g at 4°C. An aliquot of the supernatant was then allowed to react with a solution of 1.6 mM tetramethylbenzidine and 0.1 mM H_2O_2. The rate of change in absorbance was measured spectrophotometrically at 460 nm. MPO activity was defined as the quantity of enzyme degrading 1 µmol of peroxide per min at 37°C and was expressed in milliunits per gram of wet tissue. All compounds from Sigma, Missouri, USA.

Plasma and lung cytokine analysis

Commercial colorimetric rat ELISA kits for the measurement of plasma IL-1β, IL-6
and TNF-α were used (R&D Systems, UK). Rat HMGB1 (MyBioSource, USA) and TFAM (Cusabio, Japan) ELISA kits were also used. Plasma dilutions were none (neat) for all ELISA kits except IL-6 (1:2 dilution). Lung homogenates were tested for IL-6 concentration using a rat ELISA kit (Sigma, UK).

Extraction of free circulating DNA in cell-free plasma

DNA was extracted from cell-free EDTA plasma with the QIAamp Blood Mini kit (Qiagen, UK). Frozen plasma was thawed over ice, vortexed for 5 seconds and then centrifuged at 1600g for 5 seconds. Qiagen Protease or proteinase K was used. DNA was eluted into 60μl sterile water. DNA purity and yield was examined with the spectrophotometer (Nanodrop, Thermo Fisher Scientific, UK).

Real time polymerase chain reaction (RT-PCR) to measure plasma circulating mtDNA and nDNA

Primers for three rat mtDNA genes and one nDNA gene were used (Invitrogen, UK):

Cytochrome B (Cyt B) TCCACTTCATCCTCCCATTC (Forward)
CTGCCTCGGGATTAAATCCT (Reverse); Cytochrome C oxidase subunit III (Cyto C III) ACATAACAGGACCACCAAC (Forward) CAGAAAATCCCGGCAAAGAA (Reverse); NADH dehydrogenase CAATACCCCACCCCTTATC (Forward)
GAGGCTCATCCGATCATGAG (Reverse); Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) GAAATCCCCCTGGAGCTCTGT (Forward)
GAGGCTCATCCGATCATGAG (Reverse); Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) GAAATCCCCCTGGAGCTCTGT (Forward)
CTGGCACCAGATGAAATGTG (Reverse). GAPDH is a nuclear gene that is expressed at high levels in most tissues and cells, and is considered a housekeeping
gene. GAPDH is commonly used as a loading control for western blot and as a control for RT-PCR (Barber et al., 2005). However, this study was also concerned with nDNA concentrations per se. All primer sequences were specific for their targets and had no similarity with bacterial sequences on BLAST analysis. PCR reaction volume was 20μl (containing 6μl DNA) using SYBR Green Mastermix (Life Technologies, UK) and primers in a final concentration of 1.0μM. The Rotorgene 6000 RT-PCR machine was used (ex-Corbett Life Science, currently Qiagen, UK) to perform 40 cycle PCR comprising 10 sec hold at 95°C, 30 sec annealing at 55°C and 30 sec extension at 72°C. Data analysis was performed on Corbett Life Science proprietary software. Absolute quantification of mtDNA was performed using serial dilutions of pure mtDNA extracted from rat liver to generate standard curves. NDNA was quantified using 1/Ct values relative to the change in sham levels.

Preparation of pure mtDNA from rat liver

Mitochondria were isolated from rat liver either with the use of the Mitochondrial Isolation Kit (Sigma, UK). Liver was prepared in a sterile manner at 4°C. Liver was homogenised at 4°C with a 3ml volume electric homogeniser for 30 seconds. DNA was extracted using the QIAamp DNA mini kit (Qiagen, UK) using proteinase K. Yield and purity was assessed spectrophotometrically.

Bacterial 16S rRNA PCR screening of plasma and pure mtDNA fractions

Bacterial screening of animal cell-free plasma and pure mtDNA fractions was performed using RT-PCR against bacterial 16S rRNA. NADK primers specific for 16S
were used (Invitrogen, UK) and NADK probe modified with FAM-BHQ (black hole quencher) and shrimp nuclease (Affymetrix, UK) to remove contaminating bacteria present in reagents. PCR reaction volume was 10μl comprising 2.9μl molecular grade water (Ambion, Thermo Fisher Scientific, UK), 5μl SSOFAST probe supermix (Bio-Rad, UK), 0.8μl primers (F+R) 10μM concentration, 0.2μl probe, 0.1μl shrimp nuclease. CFX 96 RT-PCR machine with C1000 thermal cycler (Bio-Rad, UK) used. 40 cycles: 2 minutes at 95°C, 10 sec at 61.4°C, 5 sec at 95°C. Enterococcus faecalis standards were serially diluted 1:10 from 200ng/μl to 20fg/μl.

NASP toxicity experiments

Healthy controls were anaesthetised and instrumented as described previously. NASP 2mg/kg or 4mg/kg in 250μL saline 0.9% total volume was intravenously injected into animals over 10 minutes. Plasma and organs were sampled at 6 h.

Pure mtDNA Challenge in Healthy Animals

Healthy controls were anaesthetised and instrumented as described previously. Pretreatment with NASP 2mg/kg was followed by intravenous injection of pure mtDNA from 5% liver by weight (Sigma, UK). Pure mtDNA from either 3% liver or 5% liver was also intravenously injected alone into healthy instrumented animals. Plasma and organs were sampled at 6 h.

Lung Tissue Western Blot Analysis
Performed in association with Prof. Massimo Collino, Department of Drug Science and Technology, Turin University, Italy. Western blots were carried out as previously described (Collino et al., 2013). Proteins were separated by 8% sodium dodecyl sulphate-polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membrane, which was then incubated with primary antibodies (rabbit anti-NF-κB p65, rabbit anti-STAT-3 and rabbit anti-phospho-STAT-3). Blots were then incubated with a secondary antibody conjugated with horseradish peroxidase (dilution 1:10000) and developed using the ECL detection system. The immunoreactive bands were visualized by autoradiography and the density of the bands was evaluated densitometrically using Gel Pro®Analyzer 4.5, 2000 software (Media Cybernetics, Silver Spring, MD, USA).

The membranes were stripped and incubated with β-actin monoclonal antibody (dilution 1:5000) and subsequently with an anti-mouse antibody (dilution 1:10000) to assess gel-loading homogeneity. Unless otherwise stated, all compounds were purchased from the Sigma-Aldrich, Missouri, USA. The BCA Protein Assay kit and SuperBlock blocking buffer were from Pierce Biotechnology (Illinois, USA). Antibodies were from New England Biolabs, UK. Luminol ECL was from Amersham (Buckinghamshire, UK).

Lung Histological Analysis

The rat lung was fixed in 10% formalin (Sigma) for 24 hr, followed by embedment and 6μm sectioning for haematoxylin and eosin staining. Samples were dehydrated using graded ethanol, embedded in paraffin wax, and cut into sections using a Leica rotary microtome (thickness, 6μm). Sections were deparaffinized with xylene, stained
with Gills haematoxylin, and washed. Sections were then subsequently counterstained with 1% eosin, dehydrated with ethanol, and cleared with Neo-Clear (Darmstadt, Germany) before mounting using HistoMount (Atlanta, Ga, USA). Sections were analyzed using a Leica DM2000 upright microscope (Wetzlar, Germany). The entire H&E-stained section was evaluated at low magnification (5 x objective) for inflammatory cell infiltration. A 4-point scoring scale of cell infiltration was used to determine the grade of lung inflammation: 0 = normal; 1 = mild; 2 = intermediate; 3 = severe (Downing et al., 2010). Features examined were inflammatory cell infiltration, pulmonary congestion, and thickening of the alveolar septa. A total of 10 fields were evaluated randomly for each sample. The score for each group was the average score for all samples in the group. Quantitative analysis was performed in a blinded way.

Lung immunohistochemistry analysis

Paraffin-embedded sections were deparaffinized with histo-clear/ethanol and rehydrated. Antigen retrieval was made in sodium citrate buffer (10 mM, pH 6.0) at a sub-boiling temperature for 10 min, followed by 30 min cooling on bench top. After incubation with 3 % hydrogen peroxide to remove endogenous peroxidase activity, the slides were washed with PBS and blocked with 5 % normal serum for 1 hr. The sections were immunostained with anti-rat cleaved caspase-3 (1:1000, Cell Signaling Technology, Danvers, MA, USA) and anti-rat nitrotyrosine (1:1000, EMD Millipore, Temecula, CA, USA) at 4 °C overnight. After washing with PBST, the slides were incubated with a biotinylated secondary antibody (Vector labs, Burlingame, CA, USA), followed by streptavidin-HRP (Vector labs). The bound antibodies were developed by ImmPACT™ DAB peroxidase substrate kit (Vector labs). The cleaved caspase-3+ cell
number was quantified by counting positively stained cells in 20 randomly selected fields under 60 x objective.

Statistical Analysis

All statistical analyses were performed using Graphpad Prism version 6. Parametric data was analysed using student’s t test; multiple groups using ANOVA with Dunnett’s/Tukey’s comparisons as appropriate. Non-parametric data was analysed using Chi-square tests. Mean values with SEM quoted throughout unless otherwise stated.

Results

Human Study

This human study examined mtDNA levels in 139 trauma patients, and demonstrated that patients who developed MODS had significantly higher concentrations of MtDNA in their circulation at only 2h following injury.

The human cohort comprised Controls (n=16), No MODS (n=85) and MODS (n=27) and 11 patients who died within 48h. The demographics are reported in Supplementary Table 1. MODS patients had significantly higher ISS and BD reflecting a higher injury burden and a higher associated mortality (No MODS 0% vs MODS 22%, p<0.05). Acute lung injury was the dominant organ dysfunction component (93% of all cases of MODS at 48h). Secondary adverse outcomes such as development of infection, length of stay and mortality were also higher in the MODS group. Patients who developed
MODS had significantly higher concentrations of mtDNA in their blood compared to patients who did not develop MODS (Figure 1A). Control patients had very low concentrations of circulating mtDNA. Isolated tissue injury, without shock, led to a dose dependent increase in mtDNA release (Figure 1B). The combination of severe shock and severe trauma resulted in a substantial rise in circulating mtDNA. This data suggests that mtDNA release into the circulation occurs as a result of mechanical tissue injury and cellular injury, related to hypoperfusion. The presence of MODS was also associated with a rise in plasma IL-6 concentration (Supplementary Table 1). Influence of bacterial components as a MODS stimulus was excluded using PCR analysis of bacterial 16S rRNA in patient plasma, which demonstrated negligible concentrations (data not shown).

Animal Study

Rodents were subjected to increasing degrees of traumatic injury and shock. As can be seen in Figure 2, the development of shock resulted in varying degrees of organ injury. The addition of traumatic injury to haemorrhagic shock resulted in more severe organ injury. Traumatic injury by itself did not result in the development of severe organ injury in these models and was associated with 100% experimental survival. Lung MPO was the most sensitive marker of increasing traumatic injury and/or shock, followed by urea/creatinine and then derangement of liver function tests (Spearman correlation analysis, data not shown). This correlates with the progression of organ dysfunction found in clinical postinjury MODS described in the literature (Ciesla et al., 2005) as well as in our clinical series of 139 patients.
As can be seen in Figure 3, both mtDNA and nDNA concentrations broadly rose with increasing severity of injury. However, important differences were evident. MtDNA levels exhibited a dose dependent increase with increasing isolated traumatic injury, whereas nDNA did not. Plasma nDNA concentrations were increased significantly with 30% haemorrhagic shock, whereas mtDNA concentrations were not. With severe combined trauma and shock both concentrations were significantly raised with respect to sham levels: 10 fold and 50 fold for mtDNA and nDNA, respectively. Interestingly, the 0-10ng/ml range for mtDNA concentration found in this study correlates well with other studies of clinical trauma (Lam et al., 2004, Gu et al., 2013, Zhang et al., 2014). Similar magnitude increases in nDNA levels have also been reported by others (Timmermans et al., 2016b).

A further large correlation analysis including all measured parameters of inflammation, organ dysfunction and DNA concentrations was then carried out (Supplementary Table 2). MtDNA and nDNA were only moderately correlated to each other (p<0.01), which lead to some divergent findings in this analysis. Interestingly, of all the variables measured (except lung IL-6), mtDNA was the most highly correlated to lung MPO levels (p<0.001). NDNA, by contrast, was weakly correlated with lung MPO (p=0.051). MtDNA was highly correlated with urea concentrations (p<0.0001) and moderately correlated with plasma IL-6 and the other organ function scores (p<0.05 to p<0.01). NDNA, on the other hand, was highly correlated with plasma IL-6 and the non-lung organ injury markers (p<0.0001). Although this does not confirm causation, it supports a large body of work suggesting lung injury is particularly driven by mtDNA.
concentrations rather than nDNA (Collins, 2004, Zhang et al., 2010b, Hauser et al., 2010, Zhang et al., 2014, He et al., 2015, Gan et al., 2015, Wei et al., 2015, Gu et al., 2015). By contrast, these studies have shown nDNA to be immunologically inert. The high expression of CpG repeats present in mtDNA and relative CpG suppression in nDNA also adds weight to this view. There is some doubt, however, as to the biological plausibility of injections of pure mtDNA or nDNA as a relevant traumatic insult. Although tempting to conclude that circulating nDNA in trauma is inert, this view downplays a significant body of work that suggests nDNA is inflammmogenic in certain circumstances, most evident in studies of chronic autoimmune diseases (Tian et al., 2007, Pisetsky et al., 2012, Magna and Pisetsky, 2016). This is particularly evident when the nDNA is fragmented (as would be the case as a product of cellular necrosis), when it is present in double stranded form and when it is associated with histones in the form of nucleosomes (Mittra et al., 2012). MtDNA probably has greater inflammatory potential with less purity (Prikhodko et al., 2015), when derived as a synthetic PCR product (Collins, 2004, He et al., 2015) when co-present with other mitochondrial molecules such as TFAM or formyl peptides (Crouser et al., 2009, Julian et al., 2013), such as when derived from whole mitochondria (Zhang et al., 2010b) or when administered in high concentrations (Hazeldine et al., 2015). These factors are not readily simulated in experimental conditions. In summary, these results suggest that the mechanisms of release of nDNA and mtDNA are different in trauma haemorrhage. Clinically, elevated nDNA levels may simply be reflective of general illness severity, hypoperfusion status or be a marker of the release of other DAMPs (Timmermans et al., 2016b), whereas mtDNA release appears to be more closely related to cell disruption and necrosis, at least in the early postinjury phase.
The time course of plasma DNA levels appears to depend on the degree of trauma and/or shock sustained. Isolated traumatic generates a disproportionate rise in mtDNA within 2h post injury (unpublished data from our group, also reported by (Lam et al., 2004, Zhang et al., 2017). The peak of mtDNA post combined trauma haemorrhage clinically has been found to occur within the first 24 h of injury and levels remained elevated for a week in several studies (Simmons et al., 2013, Yamanouchi et al., 2013, Timmermans et al., 2016b, Zhang et al., 2017). This concurs with an animal study which showed that resuscitated trauma haemorrhage resulted in a peak of mtDNA at around 24 h as well (Zhang et al., 2010a). Delayed rises in mtDNA at 3-5 day post injury have also been noted and attributed to NETosis (Itagaki et al., 2015, McIlroy et al., 2015).

Circulating nucleic acid concentration is decreased with NASP treatment in T-HS

As can be seen in Figure 4, circulating plasma mtDNA at 6 hours increased 10-fold in untreated trauma haemorrhage compared to sham controls. The use of NASP 1mg/kg post injury resulted in a non-significant reduction in mtDNA (p=0.06); NASP 2mg/kg caused a significant reduction in mtDNA by about 50% (p=0.015). Interestingly, NASP 4mg/kg showed an approximately unchanged mtDNA concentration compared to controls. Figure 5 illustrates the corresponding changes in nDNA. Untreated severe trauma haemorrhage resulted in a 50-fold rise in nDNA. NASP 1mg/kg resulted in attenuation in nDNA levels to approximately 5 fold sham levels, followed by a 17 and...
22 fold rise for NASP 2mg/kg and NASP 4mg/kg groups, respectively. Lung MPO appears to be a very sensitive marker of lung injury that is responsive to higher doses of NASP per se, probably reflecting toxicity and cell necrosis at 4mg/kg dosing (Figure 10). MtDNA release could be a result of this toxicity itself reflecting cellular oxidative stress and damage. Similar toxicity has been noted with other cationic agents (Prevette et al., 2010, Hunter and Moghimi, 2010, Wei et al., 2015). Bacterial contamination was excluded in all studies with the use of PCR targeting bacterial 16S rRNA (Supplementary Figure 3).

NASP treatment produces broad anti-inflammatory action at the transcriptional level in T-HS

IL-6 was the most consistently elevated cytokine measured in this study. Of note, other cytokines and DAMPs were measured at 6 hours in this experiment including IL-1β, TNFα, HMGB1 and TFAM but extremely low or undetectable levels were found in all groups (data not shown). IL-6 exerts its action via the signal transducer gp130 leading to the activation of the STAT (Signal transducer and activator of transcription) and MAPK cascades (Heinrich et al., 2003). TLR-9 is known to signal via Myd88 which then activates NF-κB signalling to produce a broad inflammatory phenotype (Wei et al., 2015). NF-κB is also a strong inducer of IL-6 (Keller et al., 1996). Western Blot analysis of lung homogenates for phosphorylation of NF-κB and STAT-3 was performed (Figure 6). There was marked attenuation of phosphorylation of NF-κB to sham levels with both NASP 2mg/kg and NASP 4mg/kg. With regards to STAT-3, NASP 2mg/kg produced attenuation of phosphorylation to sham levels; NASP 4mg/kg
produced less but still significant attenuation. No loss of anti-inflammatory action was noted at the higher dose of NASP used.

NASP treatment improves lung histological appearance in T-HS

Trauma haemorrhagic shock leads to cellular stress, failure of mitophagy and autophagy, increasing degrees of oxidative stress, translocation of mtDNA to the cytosol, and activation of apoptotic cell death pathways (Kepp et al., 2011, Oka et al., 2012). When the ischaemia is prolonged and/or reperfusion injury supervenes, cellular necrosis occurs with resultant movement of mtDNA into the extracellular space. Apoptosis is known to be associated with the release of oxidised mtDNA into the cytosol, where it binds to the NLRP3 inflammasome causing local and systemic inflammation (Shimada et al., 2012).

Immune cell infiltration, apoptotic cell death and oxidative injury in lung tissue was assessed by the use of H&E, cleaved caspase-3 and 3-NT staining, respectively (Figures 7-9). There was a broad protective effect evident with all three stains with NASP use and evidence of a dose-dependent protective effect. Again, no loss of protection was noted at the highest dose of NASP used.

NASP toxicity study

De novo toxicity was evaluated by the injection of NASP 2mg/kg and NASP 4mg/kg into healthy animals (Figure 10). Significant increases in lung MPO were noted with increasing doses of NASP compared to naïve animals. This is in keeping with the
known and predicted side effects of this agent given its charge chemistry and likely affinity for binding to pulmonary vascular endothelium. There was no evidence of significantly increased renal, liver or muscle injury with the higher NASP 4mg/kg dose (p>0.10, data not shown). The kidney has been noted to be particularly resistant to the inflammatory potential of mtDNA challenge in a previous study in mice and rats (He et al., 2015). There was a trend towards increased mtDNA concentrations with NASP 4mg/kg (p=0.06) and no significant increase in nDNA concentrations (Supplementary Figure 2). Overall, this suggests possible cytotoxicity with this dose of NASP, which could potentially lead to a feed-forward cycle of mtDNA-propagated inflammation.

MtDNA challenge in healthy animals

Pure mtDNA extracted from rodent liver was injected into healthy animals and plasma and organs were sampled at 6 hours (Figure 10). Two doses of mtDNA were chosen, 3% and 5% of liver by weight, because they had been used extensively by Hauser’s group and produced clinical range plasma mtDNA concentrations with subsequent organ injury (Zhang et al., 2010a, Zhang et al., 2010b). The pure mtDNA extracts were proven to be infection-free with the use of PCR for bacterial 16S rRNA (data not shown). A dose dependent increase in lung MPO was detected with increasing dosage of mtDNA compared to shams. However, post treatment with NASP 2mg/kg 30 minutes after mtDNA challenge failed to attenuate this rise in MPO. Similarly, pretreatment with NASP 2mg/kg 15 minutes before mtDNA challenge failed to attenuate the lung injury as measured by MPO. The reasons for the inability to rescue MPO induced lung injury are not clear but include extreme sensitivity of the lung MPO
test to measure inflammation, crude modelling of the clinical injury with a single bolus
of mtDNA and susceptibility of the animal lung to the toxicity of the treatment itself.

A small but significant rise in plasma IL-6 and lung IL-6 was evident with the 5% liver
mtDNA dose (Figure 10). Other plasma organ injury markers were not elevated. However, pre-treatment with NASP 2mg/kg attenuated the rise in lung and plasma IL-6 to sham levels.

Further histological examination of lungs from this experiment using H&E, cleaved
caspase-3 and 3-NT stains further confirmed that the injection of pure mtDNA into
healthy animals caused moderately severe acute lung injury on histological
appearances. NASP pre-treatment was able to attenuate inflammatory cellular
infiltration, apoptotic cell death and oxidative cellular injury in lung tissue in a dose
dependent manner (Figure 11).

Other plasma organ injury markers
The results of this array of tests were more mixed (Figure 12). All three doses produced
a similarly statistically reduced 6-hour lactate compared to untreated T-HS animals. As
the bleeding phase, injury phase and post mortem examinations (to exclude large limb
haematomas or intraperitoneal bleeding, for example) were similar in all groups, this
improvement in lactate supports a broad cellular protective mechanism with NASP
treatment. However, multiple organ protection was most consistently shown with
NASP 2mg/kg.
Discussion

We have shown that release of mtDNA is sufficient for the development of severe organ injury. Hexadimethrine bromide scavenging of circulating mtDNA (and nDNA) in an in vivo model of trauma haemorrhage is associated with protection from severe organ injury. This suggests that hexadimethrine bromide can also rescue patients from trauma-induced MODS.

Hexadimethrine bromide has previously been safely and extensively used as an antiheparin agent in cardiopulmonary bypass surgery in doses up to 5mg/kg (Hohf et al., 1956, Keats et al., 1959, Weiss et al., 1958, Lillehei et al., 1960, Blumberg et al., 1960, Haller et al., 1962, Pate and Lee, 1963, Yasargil et al., 1965, Ransdell et al., 1965, Cooney and Mann, 1999). Therefore, a safety profile exists clinically for HDMBr which could allow a feasible translation of its use as a NASP in trauma haemorrhage.

Overall, the results pertaining to acute lung injury and the use of NASP in T-HS suggest that HDMBr has definite lung protective properties, most convincingly at 1mg/kg and 2mg/kg doses. Higher doses appear to elicit toxicity as evidenced by increased lung MPO concentrations and possibly higher plasma mtDNA levels. Polycationic compounds in general have been shown to accumulate in lung tissue in particular (Wei et al., 2015). However, this toxicity is neither demonstrated in the cytokine profile nor on histological examination of lungs from rats subjected to T-HS and treated with HDMBr. The expected toxicity of cationic agents such as HDMBr would include plasma membrane destabilisation and apoptotic cell death signalling. These features
have not been demonstrated in this study in the context of rescue from severe trauma hemorrhage induced injury. Clearly, there is a risk-benefit profile and therapeutic index to be established in further studies. The mechanistic mtDNA challenge experiments in HDMBr-pretreated rodents confirm that mtDNA is an important mediator in the pathogenesis of T-HS induced lung injury and that mtDNA can be targeted by a NASP such as that used here. However, circulating nDNA is also reduced in these experiments, so an effect from nDNA cannot be fully excluded.

The ability of HDMBr to bind free plasma mtDNA could be a large part of its protective mechanism. This is also supported by recent studies in which NASPs were immobilised on microspheres or incorporated into nanofibre mesh and co-incubated with cells and CpG DNA to produce cellular protection (Zhang et al., 2015, Jackman et al., 2016).

The exact nature of HDMBr-DNA interactions and their subsequent cellular trafficking remains poorly elucidated. HDMBr is a nanoscale compound which has a well-recognised ability to condense DNA into nanocomplexes for delivery into cells (Lee et al., 2011). Its ability to disrupt plasma membranes and increase membrane permeability to itself and other molecules probably also plays a part in its cellular uptake (Carmona-Ribeiro and de Melo Carrasco, 2013). Despite being positively charged and still retaining most of this charge with the addition of cargo such as DNA, these nanomolecules are small enough to penetrate within cells. HDMBr has one of the smallest molecular weights in this class which probably aids its cellular entry, although no direct evidence exists for the internalisation of HDMBr itself. These effects have been indirectly measured in the case of HDMBr-CpG interactions; CpG, in the presence of HDMBr treated cells, was seen to localise in the cytoplasm and the nucleus rather than co-localise at the endosomal compartment where TLR9 is located (Lee et al.,...
2011). Other than entry via the (disrupted) plasma membrane, polycation-DNA complexes have been shown to be internalised via endocytic and phagocytic routes into vesicles where they then destabilize endosomal membranes or act as proton sponges, which then releases the complexes into the cytoplasm. Lysosome perforation with lysosomal enzyme leakage, and mitochondrial permeabilisation and mitochondrially mediated apoptosis with resultant cytochrome c leakage have also been demonstrated (Hunter and Moghimi, 2010, Fang et al., 2015). Recent work has documented direct polycationic toxicity due to its direct binding with Na⁺/K⁺-ATPase and its resultant impairment. This resulted in cell necrosis with leakage of mtDNA and canonical TLR9/MyD88 dependent inflammation (Wei et al., 2015). A trend towards increased mtDNA concentrations was found in our NASP 4mg/kg T-HS and toxicity experiments. Necroptosis, NETosis and pyroptosis can also liberate mtDNA and may account for this rise (Magna and Pisetsky, 2016).

Important limitations of this study should be noted. It was underpowered to detect differences in survival. The study, although randomised for the intervention, was not blinded; however, every effort was made to standardise the trauma and haemorrhage phases for each animal (Supplementary Figure 1). Inspection of laparotomy wounds showed them all to be dry at the termination of the experiments, and post mortem examinations of all animals excluded intraperitoneal bleeding and limb haematomas related to fracture sites. However, an analysis of coagulation was not carried out; this would be useful given the unknown effects of HDMBr on the coagulation system when used in severe trauma haemorrhage. Finally, the experimental model was a short-term unresuscitated trauma haemorrhage rodent model which does not mirror the clinical course exactly. It does have greater relevance for the military or extreme pre-hospital
scenario, where extraction times are prolonged. We identified heparin as a potent inhibitor of PCR in an previous model using shed heparinised blood resuscitation (unpublished data and also reported by others, (García et al., 2002). We initially felt that this would best represent modern damage-control resuscitation strategies, which includes the use of permissive hypotension, avoidance of large volumes of crystalloid or colloid, and the use of balanced ratios of blood products during massive blood transfusion. Further investigation of this compound using larger more relevant models, potentially with citrated blood resuscitation, appear to be sensible next steps. Despite these limitations, mtDNA concentrations at 2h post clinical injury and 6h post injury in the animal appear to show a degree of similar predictive value for the development of MODS or severe organ dysfunction, respectively. Interestingly, Simmons et al. (2013) reported on clinical trauma and found that baseline mtDNA concentrations (taken within 8h of injury) were broadly comparable to subsequent levels taken over the first 7 days as well and were highly associated with the development of MODs and mortality.

Further exploration of HDMBr and other members of this class of therapeutic agent is required to build on the proof of concept as explored in this paper. If successful, this could potentially provide a much-needed treatment in critically injured trauma patients.

Legends

Figure 1A (left). Plasma mtDNA concentration at 2h from injury is associated with the development of MODS in injured trauma patients. Injured patients who developed MODS (n=27) had higher concentrations of mtDNA (as measured by Cytochrome B concentration) in their peripheral blood than injured patients who did not develop MODS (n=85). Control subjects had an ISS 0-4 and Base Excess <-2 (n=16) (Mean (95% CI): 0.9 (0.4-1.3) ng/ml, No MODS: 2.6 (1.8-3.3) ng/ml, MODS 9.2 (4.6-13.7) ng/ml. Bar graphs indicate mean values with SEM. † Denotes p<0.01 when No MODS and MODS groups were compared with a t test. DNA was extracted from cell-free
plasma and mtDNA was measured using RT-PCR with cytochrome B as the target gene.

Figure 1B (right). Plasma mtDNA concentration in patients at admission with increasing tissue injury and shock from left to right. MtDNA levels demonstrated a dose-dependent relationship with ISS. Controls (ISS 0-4 and normal base excess, n=16) Mean±SEM mtDNA 0.8471 ± 0.2525ng/ml, Mild/Moderate trauma (ISS 5-24, normal BE, n=34), 1.850 ± 0.4266 and Severe Trauma (ISS ≥25, normal BE, n=16) 5.960 ± 2.691. * denotes p<0.05 vs. Controls, ANOVA/Dunnett’s. Isolated shock (ISS 0-4, BE -2.1 to -10, n=11) did not significantly raise mtDNA levels (1.796±0.553ng/ml) vs. controls. However, the addition of severe trauma to mild/moderate shock (ISS>25, BE -2.1 to -10, n=32) caused a significant rise in mtDNA compared to controls but not to isolated severe trauma: 5.425±1.422ng/ml, † denotes p<0.01, ANOVA/Dunnett’s. The combination of severe trauma and severe shock (ISS>25, BE <-10, n=11) resulted in the greatest rise in plasma mtDNA levels: 16.93 ± 5.894ng/ml, § denotes p<0.0001 vs. controls, p<0.05 vs. isolated severe trauma and p<0.05 vs. severe trauma and mild/moderate shock, t tests. Bar graphs indicate Mean with SEM

Figure 2. Organ injury plasma biomarkers in various models of (trauma) haemorrhage. Trauma was inflicted during -5 minutes to 0 minutes. Naïve group, uninstrumented animals, n=4. Sham group, instrumented animals, n=8. Mild trauma group: Left leg fracture only, n=6. Severe trauma: Bilateral leg fractures, 4cm laparotomy, 10 sec bilateral leg muscle crush injury, n=8. HS 30% group: Bleeding of 30% circulating volume over 20 minutes, n=8. T-HS 20% group: Bilateral leg fractures, 4cm laparotomy, bleeding 20% circulating volume over 20 minutes, n=8. Severe T-HS 25% group: Bilateral leg fractures, 4cm laparotomy, 10 sec bilateral leg muscle crush injury, bleeding 25% circulating volume over 35 minutes, n=8. * denotes p<0.05 vs sham; ** denotes p<0.01 vs sham; § denotes p<0.0001 vs sham, all t tests. For Lung MPO symbols denote significance vs. naïve animals, n=4 (uninstrumented controls). For CK, § also denotes p<0.0001 for Severe T-HS 25% vs Severe trauma alone. Mean values +/-SEM bars shown

Figure 3. Plasma mtDNA and nDNA concentrations taken at 6 h from rodents subjected to increasing degrees of traumatic injury and shock. Top panel, fully quantified mtDNA concentrations from RT-PCR (Cyt B). Bottom panels, nDNA, 1/Ct (GAPDH) and fold increases relative to sham concentrations displayed. There was a dose dependent increase in mtDNA with increasing trauma severity as opposed to pure HS; † denotes p<0.01 for severe trauma vs naïve animals. With increasing severity of concomitant shock there again was a dose dependent increase in mtDNA, ‡ denotes p<0.001 and § denotes p<0.0001 for T-HS 20% and Severe T-HS 25%, respectively, vs naïve animals. There was moderate correlation between changes in mtDNA and nDNA concentration overall (p<0.01) but important differences emerged. There was no rise in nDNA with increasing traumatic injury but pure HS 30% induced a small but significant rise in nDNA, † denotes p<0.01 vs naive animals. Severe T-HS resulted in a large rise in nDNA, § denotes p<0.0001 vs naïve animals. t tests used. Mean values with SEM bars shown.
Figure 4. 6-hour plasma mtDNA, lung inflammation scores and systemic IL-6. Cell-free mtDNA was measured with RT-PCR using Cytochrome B as the target gene: Severe T-HS 25% resulted in an approximately 8 fold increase in mtDNA compared to sham, 0.57(+/-0.1) to 4.1(+/-0.6) ng/ml, p<0.0001, t test. The addition of NASP (Hexadimethrine bromide) 1mg/kg post injury resulted in a non-significant trend towards reduced mtDNA, mean 2.46(+/-0.46) ng/ml, p=0.06. NASP 2mg/kg reduced circulating plasma mtDNA by half to 2.2(+/-0.36) ng/ml, * denotes p<0.05. NASP 4mg/kg resulted in an increased mean mtDNA 5.09(+/-0.9) ng/ml relative to untreated T-HS 25%, p>0.05. Lung MPO: Untreated T-HS 25% showed a marked increased in lung MPO compared to shams, 140(+/-5) vs 25.8(+/-0.8) uU MPO/g, p<0.0001. There was significant attenuation of lung MPO in the NASP 1mg/kg and 2mg/kg groups, 49.4(+/-0.4) and 61.9(+/-0.9) uU MPO/g respectively, § denotes p<0.0001, but not in the NASP 4mg/kg group. Lung IL-6 concentration was measured by ELISA: There was a marked increase in plasma IL-6 in untreated T-HS compared to controls, 2999(+/-782) pg/ml vs 186(+/-2) pg/ml, p<0.0001. There was significant attenuation of IL-6 release with all three doses used: 373(+/-51) pg/ml, 1299(+/-298) pg/ml and 738(+/-69) pg/ml respectively, † denotes p<0.01 and § denotes p<0.0001 vs untreated T-HS 25%, t tests throughout. Mean values with SEM bars shown.

Figure 5. 6-hour plasma nuclear DNA concentrations. Cell-free plasma nDNA was measured by RT-PCR using GAPDH as the target gene. Y-axis is denoted as the reciprocal of the threshold count, Ct, the PCR cycle at which the rate of PCR product starts to rise exponentially, which corresponds to the amount of starting template. There was a 45-fold increase in nDNA concentration relative to sham, p<0.0001. NASP (Hexadimethrine bromide) 1mg/kg resulted in significant attenuation of this rise to 5 fold sham levels; ‡ denotes p<0.001. NASP 2mg/kg resulted in lesser but significant attenuation to 17 fold sham levels, * denotes p<0.05. Attenuation with NASP 4mg/kg was not significant statistically. t tests used. Mean values with SEM bars shown.

Figure 6. Western blot analysis of lung homogenates. Phosphorylated NF-κB levels were markedly increased at 6 hours post T-HS with attenuation to sham levels with NASP (Hexadimethrine bromide) 2mg/kg and 4mg/kg dosing, † denotes p<0.01 vs. untreated T-HS 25%. Phosphorylated STAT-3 levels were similarly attenuated by NASP 2mg/kg, ‡ denotes p<0.001 vs untreated T-HS 25%, less so with NASP 4mg/kg, † denotes p<0.01 vs. untreated T-HS 25%. n=3-4 animals per group. ANOVA/Tukey’s. Bar graphs indicate mean values with SEM. NASP 1mg/kg data not available.

Figure 7. NASP (Hexadimethrine bromide) treatment of rodent T-HS improved lung histological appearances. Haematoxylin & Eosin (H&E) staining to measure cell infiltration into the airway, an indicator of airway inflammation. NASP treatment showed a dose-dependent attenuation of cellular infiltration. † denotes p<0.01 vs
untreated Severe T-HS 25%, t test. n=4-7 animals per group. Mean values with SEM bars shown. Scale bars represent 50μm.

Figure 8. NASP (Hexadimethrine bromide) treatment of rodent T-HS improved lung histological appearances. Cleaved caspase-3 staining was used to evaluate apoptotic cell death. NASP treatment showed a dose dependent reduction of apoptotic cell death. † denotes p<0.01 vs untreated Severe T-HS 25%, t test. n=4-8 animals per group. Dark arrows indicate cleaved caspase-3 cells. Scale bar represents 50μm.

Figure 9. NASP (Hexadimethrine bromide) treatment of rodent T-HS improved lung histological appearances. Staining for 3-Nitrotyrosine (3-NT), a marker of peroxynitrite production and hence oxidative stress, was used to evaluate oxidative injury. There was a dose dependent improvement in lung histological appearance with increasing doses of NASP (not quantified). Black arrows indicate 3-NT positive stained cell. Red scale bar represents 50μm.

Figure 10. Lung MPO, lung and plasma IL-6. Lung MPO (Top): Injection of NASP (Hexadimethrine bromide) 2mg/kg and 4mg/kg into naïve rats. Lungs sampled at 6 h. There were significant increases in MPO with both doses compared to naive animals indicating lung toxicity at the higher dose especially, * denotes p<0.05, § denotes p<0.0001. Pure mtDNA extracted from 3% and 5% rat liver by total weight was injected into sham animals with dose dependent increases in lung MPO compared to sham animals, * denotes p<0.05. † denotes p<0.01. Then, pure mtDNA extracted from 5% liver was injected into shams followed by NASP 2mg/kg 30 minutes later; there was no significant change in MPO found. Finally, shams were injected with NASP 2mg/kg followed by 5% liver pure mtDNA injection 15 minutes later. No significant alteration in lung MPO was found. t tests throughout. n=3-5 animals per group. Plasma and Lung IL-6 (Bottom) were both measured by ELISA: Injection of pure mtDNA extracted from 5% liver resulted in a significant rise in both Plasma and Lung IL-6 concentrations, p<0.01. Pre-treatment of sham animals with NASP 2mg/kg followed by injection of pure mtDNA extracted from 5% liver 15 minutes later resulted in attenuation of both values to sham levels, ‡ denotes p<0.001, § denotes p<0.0001 vs pure mtDNA, t tests. n=3-5 animals per group. Overall, MPO appears to be a very sensitive marker of lung injury. Pre-treatment with NASP attenuated other inflammatory marker increases with pure mtDNA injections. Mean values with SEM shown.

Figure 11. NASP (Hexadimethrine bromide) 2mg/kg pre-treatment followed by 5% liver pure mtDNA injections into sham animals attenuated lung injury on histological examination with H&E, caspase-3 and 3-NT staining. * denotes p<0.05, † denotes p<0.01, both vs. Pure mtDNA injection alone, t tests. n=3-5 animals per group. Mean values with SEM bars shown.
Figure 12. Other organ injury markers at 6 hours. Urea: There was no detectable difference in urea concentration with increasing dose of NASP (Hexadimethrine bromide) used in severe T-HS 25%. Creatinine: Renal protection was evident with NASP 2mg/kg and 4mg/kg doses. ALT and AST: There was significant attenuation of liver injury evident with NASP 2mg/kg dosing. CK: There was significant attenuation of muscle injury with both NASP 1mg/kg and 2mg/kg doses. Lactate: There was significant reduction in 6h lactate with all three doses NASP used. * denotes p<0.05, † denotes p<0.01 vas untreated severe T-HS 25%, t tests. n=12-18 animals per group. Mean values with SEM bars shown. Overall, the NASP 2mg/kg group produced the most consistent multiple organ protection in severe T-HS 25%.

References

