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1 Introduction

Segmented strings in flat space are piecewise linear classical string solutions: at any given

time the string embedding is a union of straight lines. Kinks between the segments move

with the speed of light and their worldlines form a lattice on the worldsheet. The constraint

on the kink velocity is necessary, otherwise the shape of the string would deform due to the

non-zero string tension, and would not stay piecewise linear. Segmented strings generalize

the string constructions in [1, 2] which play a role in the Lund model of hadronization.

Furthermore, the kinks can be regarded as a toy model for gravitational shockwaves in the

two-dimensional “gravity theory” on the string worldsheet [3]. Finally, we note that any

smooth string can be approximated by segmented strings to arbitrary accuracy (although

segmented strings involve no approximations).

The idea of segmented strings can be generalized to AdS3 target space (or more gener-

ally to (A)dSn and their orbifolds) where the embedding is built from AdS2 patches [4, 5].

The construction provides an exact discretization of the non-linear string equations of mo-

tion. Since the string is discrete in both space and time, the time-evolution equations are

reduced to purely algebraic operations on the initial data. Solving discrete equations has

numerous advantages over approximate numerical solutions of partial differential equations.

Most importantly, there are no numerical errors that would otherwise accumulate over a

long period of time.

For recent developments, the reader is referred to [6–9].

In [10], the area of segmented strings has been computed using cross-ratios constructed

from the kink momentum vectors. The cross-ratios were expressed in terms of purely left-

handed (or right-handed) Toda variables. In this way, classical Nambu-Goto string theory

in AdS3 could be reduced to an integrable time-discretized relativistic Toda-type lattice.
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In [7], Gubser pointed out that the segmented string evolution equations simplify if

they are derived from the SL(2,R) Wess-Zumino-Witten action. In this theory, strings

couple to the NSNS three-form field strength which supports the AdS3 geometry. (For the

quantum theory see [11].) AdS3 backgrounds are special since they can be supported by

a combination of NSNS and RR fluxes. String motion on such mixed backgrounds is still

integrable [12–16].

In this paper we study classical segmented strings on mixed backgrounds. This gener-

alizes our earlier results in [10]. Our starting point is the action [8]

S = −τ1
2

∫

d2σ ∂aY
M∂bY

N (
√
−hhabGMN + κǫabBMN ) (1.1)

where τ1 is the tension. In order to simplify the formulas, we set the prefactor to one

(τ1 = −2). Y M are coordinates on AdS3, h and G are the worldsheet and background

metrics, respectively. B is the background two-form with field strength proportional to the

volume form of AdS3. Finally, κ is the coupling of the two-form to the worldsheet. On

causal grounds [8], its value is restricted to κ ∈ [−1, 1]. We can without loss of generality

restrict κ to be non-negative.

The equations of motion derived from (1.1) are

∂a
√
−hhab∂bY

M +
√
−hhabΓM

NL∂aY
N∂bY

L − κ

2
ǫabHM

NL∂aY
N∂bY

L = 0. (1.2)

Following [8], we will choose coordinates (τ, σ) on the worldsheet such that
√
−hhab =

ηab = diag{−1, 1}, and ǫ01 = −1. The canonical embedding of AdS3 into R
2,2 is given by

the universal covering space of the surface

~X · ~X ≡ −X2
−1 −X2

0 +X2
1 +X2

2 = −1. (1.3)

In terms of these ambient coordinates, and if we pick the gauge in which Hµνλ = 1
2ǫµνλρX

ρ,

the equation of motion becomes

∂+∂−Xµ − (∂+X
ρ∂−Xρ)Xµ − κǫµνλρX

ν∂+X
λ∂−X

ρ = 0. (1.4)

The second term comes from a Lagrange multiplier that keeps the string on the AdS3
hyperboloid. Here we have used lightcone coordinates

σ± =
1

2
(τ ± σ), ∂± = ∂τ ± ∂σ. (1.5)

The equations are supplemented by the Virasoro constraints

∂+ ~X · ∂+ ~X = ∂− ~X · ∂− ~X = 0.

In terms of the Y variables, these constraints can be derived by varying (1.1) w.r.t. hab.

The equations of motion are exactly solved by segmented strings. These can be built

by gluing diamond-shaped worldsheet patches. Each patch borders four others along null

kink lines. Let us consider the patch in figure 1. The four vertices in the R
2,2 embedding
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Figure 1. A single patch of the worldsheet. The four edges are the kink worldlines where the

normal vector jumps. In R
2,2 these are straight null lines with direction vectors pi.

space of AdS3 are labeled by Vij . We have V 2
ij = −1. The boundary of the worldsheet

patch consists of four null kink lines. Let us define the following kink momentum vectors

p1 = V01 − V00 p2 = V11 − V01

p3 = V11 − V10 p4 = V10 − V00 (1.6)

These vectors satisfy

p2i = 0 and p1 + p2 = p3 + p4

The latter equation can be interpreted as “momentum conservation” during the scatter-

ing of two massless scalar particles with initial and final momenta p1,2 and p3,4, respectively.

Let X(σ−, σ+) ∈ R
2,2 denote the embedding function of the string into spacetime

where σ± are lightcone coordinates on the worldsheet. The patch is bounded by

X(σ−, 0) = V00 + σ−p4

X(0, σ+) = V00 + σ+p1

for σ± ∈ (0, 1).

Points on the surface are given by the interpolation ansatz [8] which solves the equation

of motion (1.4)

X(σ−, σ+) =
1 + (1 + κ2)σ−σ+p4 · p1/2
1− (1− κ2)σ−σ+p4 · p1/2

V00 +

+
σ−p4 + σ+p1 + κσ+σ−N

1− (1− κ2)σ+σ−p4 · p1/2
(1.7)

where

Nµ = ǫµνλρV
ν
00p

λ
4p

ρ
1

From the interpolation ansatz, we have

V11 = X(1, 1). (1.8)
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This equality constitutes a discrete evolution equation for segmented strings. The set of

points in AdS3 null separated from both V10 and V01 is a one-dimensional locus, conve-

niently parametrized by V11(κ). Note that at κ = 0, the interpolation ansatz gives an AdS2
patch embedded into AdS3.

In the next section, we evaluate the action for a single patch. The action can be written

in terms of Mandelstam variables corresponding to kink momentum vectors. Section III

computes the Euler character for the string. Section IV discusses the singular κ = 1 case

where the map into Toda variables degenerates. We finish with a short discussion of the

results.

2 The action of segmented strings

The value of the action evaluated on the patch is analogous to a scattering amplitude in four

dimensional Minkowski spacetime. Instead of the Lorentz symmetry, however, the action

is invariant under the SO(2, 2) isometry group of AdS3. The only independent invariants

are the Mandelstam variables s = (p1 + p2)
2 and u = (p1 − p4)

2 where the pi ∈ R
2,2 are

the difference vectors in (1.6), see also figure 1. The patch action then takes the form

Spatch = L2F
(u

s

)

where L is the AdS3 radius (henceforth set to one) and F(x) is a dimensionless func-

tion. In the following, we will determine this function by evaluating the action for certain

symmetrical patches.

2.1 Fixing the patch

Using the SO(2, 2) symmetry we can rotate and boost any patch such that V00, V10, V01 are

parametrized by two numbers c, c̃ ∈ R as follows

V00 = (1, 0, 0, 0)T

V10 = (1, c,−c, 0)T

V01 = (1, c̃, c̃, 0)T .

These points satisfy V 2
ij = −1. It is easy to check that the corresponding difference

vectors from (1.6) indeed satisfy p2i = 0.

The interpolation ansatz in (1.7) gives the patch surface which stretches between the

vertices V00, V10, V01:

X(σ−, σ+) =
1

1 + cc̃(1− κ2)σ−σ+











1− cc̃
(

1 + κ2
)

σ−σ+

cσ− + c̃σ+

−cσ− + c̃σ+

−2cc̃κσ−σ+











(2.1)

where σ± ∈ (0, 1). The fourth vertex is computed from V11 ≡ X(1, 1).
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The Mandelstam variables are found to be

s = − 4cc̃

1 + cc̃(1− κ2)
and u = 4cc̃

from which
u

−s
= 1 + cc̃(1− κ2) (2.2)

for the argument of F(x). Note that κ = 1 is a special point, since at this value the ratio

is independent of cc̃. This is precisely the Wess-Zumino-Witten theory.

2.2 Evaluating the action

Let us now evaluate action (1.1) for our worldsheet patch (2.1). For simplicity, we will use

Poincaré coordinates (using ambient coordinates would not be particularly beneficial for

this calculation). The metric and a canonical B-field are

ds2 =
−dt2 + dx2 + dz2

z2
B0 =

dx ∧ dt

2z2
.

The field strength three-form is

H = dB0 = −VolAdS3

Since H and the background metric are both SO(2, 2) invariant, we expect that the patch

action will also be invariant and therefore it can be expressed in terms of Mandelstam

variables. A coordinate transformation between the ambient and Poincaré coordinates is

given by

(t, x, z) =

(

X0

X−1 −X1
,

−X2

X−1 −X1
,

1

X−1 −X1

)

.

In terms of these coordinates, the interpolation ansatz (1.7) is given by

t(σ−, σ+) =
cσ− + c̃σ+

1− c̃σ+ − cσ−(c̃(1 + κ2)σ+ − 1)

x(σ−, σ+) =
2cc̃κσ−σ+

1− c̃σ+ − cσ−(c̃(1 + κ2)σ+ − 1)
(2.3)

z(σ−, σ+) = − 1 + cc̃(1− κ2)σ−σ+

1− c̃σ+ − cσ−(c̃(1 + κ2)σ+ − 1)

The κ = 0 case is straightforward and the results for evaluating the action were pre-

sented in [10]. At κ 6= 0, however, the action would depend separately on c and c̃ and thus

it cannot be expressed in terms of Mandelstam variables which are functions of the product

cc̃ only (see eq. (2.2)). This issue is due to the fact that the bulk action alone is not gauge-

invariant if the worldsheet has boundaries. In order to preserve gauge invariance, point

particles with opposite charges must be attached to the string endpoints. These particles

are charged under a one-form gauge field A. The minimal coupling is described by

SA =

∫

∂Σ
A
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where ∂Σ is the worldsheet boundary. The variation of the bulk worldsheet action under

a gauge transformation Λ can be canceled if we let A transform according to

B → B + dΛ

A → A+ Λ

Our strategy will be the following. For a given B, we choose A such that S+SA is SO(2, 2)

invariant (and thus a function of s, t, u). Clearly, A does not affect closed string motion

because those worldsheets have no boundaries. Using the gauge transformation above, we

set A = 0. As a result, SA vanishes and the entire patch action will come from S. When

the dust settles, all we have done was a gauge transformation on B (and we can forget

about SA).

Consider the following B-field

B =
b+

2z2b−
dx ∧ dt+

x

zb−
dt ∧ dz +

1− t

zb−
dx ∧ dz

with b± ≡ 1 + t2 − 2t− x2 ± z2

It is gauge-equivalent to B0 and — as we will see — gives an SO(2, 2) invariant result.

Let us now evaluate (1.1) on the patch given by the interpolation ansatz (2.3) using the

expression above for the B-field. The explicit form of the Lagrangian density is somewhat

complicated

L =
− (∂σt)

2 + (∂σx)
2 + (∂σz)

2 + (∂τ t)
2 − (∂τx)

2 − (∂τz)
2

z2
+

+
κ

z2 (−(t− 2)t+ x2 + z2 − 1)

{

4xz[(∂σt) (∂τz) − (∂σz) (∂τ t) ] +

+2
(

(∂σt) (∂τx) x
2 − (∂τx)

(

(∂σt)
(

(t− 1)2 + z2
)

− 2 (∂σz) (t− 1)z
))

+

+2 (∂σx)
(

(∂τ t)
(

(t− 2)t− x2 + z2 + 1
)

− 2 (∂τz) (t− 1)z
)

}

(2.4)

where t = t(τ, σ), x = x(τ, σ), and z = z(τ, σ) are the embedding coordinates. By plugging

in (2.3), the purely geometrical part (i.e. the first line in (2.4)) gives (using worldsheet

lightcone coordinates)

L1 =
2cc̃

(cc̃ (κ2 − 1)σ−σ+ − 1)2
(2.5)

The remaining terms in the Lagrangian are proportional to κ. They give

L2 = −κ2L1 (2.6)

Integrating L1 + L2 over the patch gives the value of the action. We get

Spatch =

∫ 1

0
dσ−

∫ 1

0
dσ+(L1 + L2) = 2 log[1 + cc̃(1− κ2)]

Combining these results with (2.2) results in the covariant formula

Spatch = 2 log
u

−s
(2.7)

Note that the expression is independent of κ.
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2.3 Toda variables

The Mandelstam variables may be expressed in terms of Toda variables as in [10]. In order

to do this, the lightlike kink momenta p are written as products of helicity spinors. We

define

σµ = (1,−iσ2, σ1, σ3)

paȧ = σµ
aȧpµ

Since p2 = det(paȧ) = 0, we can write

paȧ = λaλ̃ȧ

We will call λ left-handed spinors and λ̃ right-handed spinors. In terms of these two-

component variables, the patch action can be written as

Spatch = 2 log

∣

∣

∣

∣

〈λ1, λ4〉〈λ2, λ3〉
〈λ1, λ2〉〈λ3, λ4〉

∣

∣

∣

∣

There is a similar formula in terms of right-handed spinors. The spinor modulus drops out

of the action. Thus, by defining the angles αi via

|λi|eiαi := λ1
i + iλ2

i

one can write

Spatch = 2 log

∣

∣

∣

∣

sin(α1 − α4) sin(α2 − α3)

sin(α1 − α2) sin(α3 − α4)

∣

∣

∣

∣

The α angles are the global Toda variables. Let us further define the left-handed Poincaré

Toda variables by

ai := tanαi .

For a kink momentum vector p ∈ R
2,2, the left-handed and right-handed Poincaré Toda

variables are simply given by

a(p) =
p−1 + p2
p0 + p1

, ã(p) =
p−1 + p2
−p0 + p1

(2.8)

In terms of these fields the patch action becomes

Spatch = 2 log

∣

∣

∣

∣

(a1 − a4)(a2 − a3)

(a1 − a2)(a3 − a4)

∣

∣

∣

∣

. (2.9)

The total action is then the sum of all patch contributions

S = 2
∑

i,j

log

∣

∣

∣

∣

ai,j − ai+1,j

ai,j − ai,j+1

∣

∣

∣

∣

(2.10)

where the i, j indices indicate the position of the kink edge in the two-dimensional lattice

(see figure 3). The previously used one-index ak are

a1 → aij a2 → ai,j+1

a3 → ai−1,j+1 a4 → ai−1,j

and aij sits on a white dot in the lattice, see figure 3.
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Figure 2. Two adjacent patches on the worldsheet. V00 and V12 can be computed using the

interpolation ansatz. Then, the five left-handed Toda variables aij computed from the difference

vectors will satisfy the Toda-type equation of motion.

2.4 Equation of motion

The equation of motion computed from (2.10) is [10]

1

ai,j − ai,j+1
+

1

ai,j − ai,j−1
=

1

ai,j − ai+1,j
+

1

ai,j − ai−1,j
(2.11)

This equation is independent of κ. It has been obtained in [17] as the equation of motion

of a time discretization of a relativistic Toda-type lattice.

The validity of the above equation of motion can be checked directly as follows. Let us

consider two adjacent worldsheet patches as in figure 2. The solid and dashed lines are the

kink worldlines. We will pick four vertices V10, V11, V01, V02 ∈ R
2,2 as initial data. Since

the kink worldlines are null, these vertices must be lightlike separated,

(V10 − V11)
2 = (V11 − V01)

2 = (V01 − V02)
2 = 0

In order to simplify the calculation, one can pick a frame in which V01 is moved into a

fixed location

V01 = (1, 0, 0, 0)T

V11 =

(

1,
√

c21 + c22, c1, c2

)T

V02 =

(

1,
√

c23 + c24, c3, c4

)T

.

V11 and V02 are specified by four parameters ci. We now have to choose V10 such that

(V10 − V11)
2 = 0 and V 2

10 = −1.

We can take

V10 = (x, y, c5, c6)
T ,

and then determine x and y from the two equations.
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There are two solutions and either one can be picked for V10:

V10 =

(

1 + c1c5 + c2c6 ∓D
√

c21 + c22
1 + c21 + c22

,

√

c21 + c22(1 + c1c5 + c2c6)±D

1 + c21 + c22
, c5, c6

)T

where D =
√

(

1 + c26
)

c21 − 2c1c5 (1 + c2c6) + c25 + c26 + c22
(

1 + c25
)

− 2c2c6. Let us pick the

first solution.

Altogether there are six real constants c1 . . . c6 parametrizing the vertices in the initial

data. Using the interpolation ansatz (1.7) we now compute1 V00 and V12. We get

V12 =
1

C













1 + 1+κ2

2

(

c1c3 + c2c4 −
√

c21 + c22
√

c23 + c24

)

√

c21 + c22 +
√

c23 + c24 + κ(c1c4 − c2c3)

c1 + c3 + κc4
√

c21 + c22 − κc2
√

c23 + c24
c2 + c4 − κc3

√

c21 + c22 + κc1
√

c23 + c24













with

C = 1− 1− κ2

2

(

c1c3 + c2c4 −
√

c21 + c22

√

c23 + c24

)

.

and

V00 =
1

2− λ2(1− κ2)













2− λ2(1− κ2)
√

c21 + c22
(

κ2 + 1
)

λ2 + 2c2c5κ− 2c1c6κ− 2
√

c21 + c22 + 2λ3

c1
((

κ2 + 1
)

λ2 − 2
)

+ 2
(

c2κλ3 −
√

c21 + c22c6κ+ c5

)

c2
((

κ2 + 1
)

λ2 − 2
)

+ 2
(

−c1κλ3 +
√

c21 + c22c5κ+ c6

)













with

(λ1)
2 =

(

c26 + 1
)

c21 − 2c5 (c2c6 + 1) c1 + c25 + c26 + c22
(

c25 + 1
)

− 2c2c6

λ2 =

√

c21 + c22λ1 + c21 − c5c1 + c22 − c2c6
1 + c21 + c22

λ3 =

√

c21 + c22 (c1c5 + c2c6 + 1) + λ1

1 + c21 + c22

Now that we have all six vertices, from the difference vectors (e.g. p01 ≡ V11−V10) the

five aij variables can be computed using eq. (2.8). For instance we get

a11 =
c2

√

c21 + c22 + c1

a21 =
c4

√

c23 + c24 + c3

a01 =
−−

√
c2
1
+c2

2
λ4+c1c5+c2c6+1

c2
1
+c2

2
+1

+ c2 − c6 + 1

−
√

c2
1
+c2

2
(c1c5+c2c6+1)+λ4

c2
1
+c2

2
+1

+
√

c21 + c22 + c1 − c5

where (λ4)
2 =

(

c26 + 1
)

c21−2c5 (c2c6 + 1) c1+c25+c26+c22
(

c25 + 1
)

−2c2c6. The formulas for

a12 and a10 are too large to present here but can be computed in a straightforward way.

These variables can be plugged into (2.11) and they satisfy the equation.

1Note that in order to get V00 from V10, V11, V01, the sign of κ must be reversed in the formula.
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Figure 3. Kink worldlines form a rectangular lattice on the string worldsheet. The field aij lives

on the edges (black or white dots depending on edge orientation). For κ = 1, the variables grouped

together are equal (blue shading).

3 Degenerate WZW limit

Classical solutions for the SL(2) Wess-Zumino-Witten model are given by

g = g+(σ
+)g−(σ

−) ∈ SL(2,R)

How can such a (classically) trivial theory be mapped into the non-trivial Toda-type theory?

The answer is that at κ = 1 the map is not surjective: segmented strings are mapped into

a smaller subspace of the Toda phase space.2 The fact that this point in coupling space is

singular can already be seen from (2.2) that gives u/s = −1 which is independent of the c

and c̃ patch parameters.

Figure 3 shows the trivial subspace of the left-handed Toda phase space. The aij
variables sitting on the black dots depend only on i+ j and they are independent of i− j.

This means that the black dots grouped together (blue shading) have the same values. This

is clearly a lower dimensional subspace. We have not included a separate (mirror) figure,

but the right-handed variables ãij are similarly degenerate: the ones sitting on white dots

depend only on i− j (and not on i+ j).

Let us sketch the proof of degeneracy discussed above. The calculation is similar to

the one in section 2.4.

Consider the following forward null triple

V00 = (1, 0, 0, 0)T

V10 =

(

1, c1,−c2,
√

c21 − c22

)T

V01 =

(

1, c̃1, c̃2,
√

c̃21 − c̃22

)T

2Note that for strings with |κ| < 1, only positive Toda solutions play a role. These are the field

configurations for which elementary patch areas (2.9) are non-negative.
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The interpolation ansatz (1.7) then gives the fourth vertex,

V11 = X(1, 1) =
1

C













κ2+1
2

(

√

(c21 − c22)(c̃
2
1 − c̃22)− c1c̃1 − c2c̃2

)

+ 1

−κ
(

c̃2
√

c21 − c22 + c2
√

c̃21 − c̃22

)

+ c1 + c̃1

−c̃1κ
√

c21 − c22 + c1κ
√

c̃21 − c̃22 − c2 + c̃2
√

c21 − c22 +
√

c̃21 − c̃22 − κ(c1c̃2 + c̃1c2)













C =
κ2 − 1

2

(

√

(c21 − c22)(c̃
2
1 − c̃22)− c1c̃1 − c2c̃2

)

+ 1

We now perform a global

R ∈ SO(2, 2) = SL(2)L × SL(2)R

transformation on the kink momentum vectors which transforms V00 into a generic position.

Left-handed variables are invariant under SL(2)R and thus it is enough to consider w ∈
SL(2)L rotations. The left-handed Toda variables computed from the difference vectors are

a1 ≡ a(R(V01 − V00)) =
w11

√
c̃1 − c̃2 + w12

√
c̃1 + c̃2

w21

√
c̃1 − c̃2 + w22

√
c̃1 + c̃2

a4 ≡ a(R(V10 − V00)) =
w11

√
c1 + c2 + w12

√
c1 − c2

w21
√
c1 + c2 + w22

√
c1 − c2

where a(p) denotes the Poincaré Toda variable corresponding to a kink momentum vector

p, see eq. (2.8).

The other two variables a2 and a3 depend on κ. They are easy to compute, but the

formulas are too large to present here. They satisfy

a2 ≡ a(R(V11 − V01))
κ→1−→ a4

a3 ≡ a(R(V11 − V10))
κ→−1−→ a1

There are degeneracies in the right-handed variables which can be proven in a similar

fashion.

We finish this section with the following observation. Let us exchange black and white

dots in the lattice. This duality exchanges patches and kink collision vertices and changes

the string embedding. After the transformation, left-handed variables sitting on white dots

along the same kink line will be equal. This configuration correspond to trivial left-moving

kinks (edges with black dots), since they do not cause a time delay when they cross a

right-moving kink. Thus, this string embedding only contains right-moving shockwaves

and in the κ = 0 case it is equivalent to Mikhailov’s construction [18].

4 Discussion

In this paper, we have computed the action of segmented strings in AdS3. The worldsheet is

coupled to a background two-form whose field strength is proportional to the volume form.
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We have used the interpolation ansatz of [8] to parametrize elementary patches. Segmented

string solutions are obtained by gluing the patches along null boundaries (kink lines).

The null kink momentum vectors in the embedding space R
2,2 can be decomposed

using helicity spinors. Then, the action can be expressed in terms of cross-ratios of the

spinor angles. We have called both these angles and their tangents “Toda variables”. Time

evolution of segmented strings can be described by the evolution equation of a discrete-time

Toda-type lattice. This equation was presented in section 2.4.

Interestingly, the final form of the action does not depend on the two-form coupling

κ. Thus, the theory in terms of Toda variables treats the classical Nambu-Goto theory

(κ = 0) and the SL(2) Wess-Zumino-Witten model (κ = 1) on the same footing. However,

the latter theory is a special one, because the map from the segmented string into Toda

variables degenerates as κ → 1. This is seen in figure 3: the variables grouped together will

become equal at κ = 1. By performing a duality that exchanges black and white dots in

the lattice, WZW solutions can be mapped to string solutions with purely left- or purely

right-moving kinks.

The results generalize those in [10] which can be obtained by setting κ = 0. We

have not discussed the reconstruction of string embeddings from solutions of the Toda-like

lattice. The procedure should be analogous to the κ = 0 case.

An interesting question is how these ideas generalize to other spacetimes (e.g. dSn or

AdSn) and what kind of Toda-like theories one would get by a similar reduction. We leave

this for future work.
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A Euler character

In this appendix, we compute the Euler character

χ =
1

4π

∫

d2σ
√−g R .

The main reason for this is to provide an independent check on previous calculations.

Let us consider a worldsheet with torus topology.3 Such worldsheets are known to give

χ = 0. In the following, we will check this result for segmented strings.

Using the interpolation ansatz (1.7) and σ± = 1
2(τ ±σ), the induced metric is diagonal

with components

gσσ = −gττ =
cc̃

(

1 + 1−κ2

4 (τ2 − σ2) cc̃
)2 .

3This is possible if the target space is the surface X
2 = −1, without going to the covering space.

Equivalently, one may consider time-periodic solutions in AdS3.
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The Ricci scalar computed from g is constant away from kink collision vertices

R0 = −2(1− κ2) (A.1)

Let us decompose the Euler character as an integral away from the vertices plus integrals

at the vertices

4πχ = R0

∫

d2σ
√−g +

∑

i

∫

Vi

d2σ
√−g R . (A.2)

Here the sum is over kink vertices and Vi labels an infinitesimally small area around the

ith vertex.

Let us momentarily set κ = 0. From the appendix of [10], we have

∫

Vi

d2σ
√−g R

κ=0
= 8 log cos

φi

2

where φi is defined such that cosφi is the scalar product of the normal vectors of the two

space-like separated patches around the ith collision point.

Denote the kink collision point by XM ∈ R
2,2. Then, two kink momentum vectors

emanating from this point span an AdS2 patch with normal vector [10]

N(α, β) =
1

sin(α− β)
×

×











X0 cos(α− β)−X1 cos(α+ β)−X2 sin(α+ β)

−X−1 cos(α− β)−X2 cos(α+ β) +X1 sin(α+ β)

−X2 cos(α− β)−X−1 cos(α+ β) +X0 sin(α+ β)

X1 cos(α− β)−X0 cos(α+ β)−X−1 sin(α+ β)











Here α and β are the left-handed global Toda variables corresponding to the two kink

momentum vectors. Using this formula, φi can be expressed and we arrive at

∫

Vi

d2σ
√−g R

κ=0
= 4 log

∣

∣

∣

∣

∣

(a
(i)
1 − a

(i)
4 )(a

(i)
2 − a

(i)
3 )

(a
(i)
1 − a

(i)
2 )(a

(i)
3 − a

(i)
4 )

∣

∣

∣

∣

∣

(A.3)

where a
(i)
k are the four left-handed Poincaré Toda variables around the ith collision point

on the worldsheet.

The result (A.3) holds even for κ 6= 0. Recall that in [10], the integrated Ricci scalar was

computed in flat background space and then the result was expressed in terms of AdS3 quan-

tities (i.e. R2,2 normal vectors). The curvature of the target space did not matter since the

collision of kinks was instantaneous. The Christoffel symbols can therefore be neglected in

a limit where we zoom in on the collision point. Similary, we can argue that the three-form

field strength can also be neglected in this limit and thus (A.3) should be independent of κ.

By performing the sum over kink collisions we get

∑

i

∫

Vi

d2σ
√−g R = 4

∑

i,j

log

∣

∣

∣

∣

ai,j − ai+1,j

ai,j − ai,j+1

∣

∣

∣

∣

(A.4)
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where now the indices of aij label positions in the kink lattice, see figure 3. In the r.h.s. ,

using the results of the previous section, we recognize twice the total action (2.10).

Plugging (A.4) into (A.2) and using (A.1) we get

4πχ = −2(1− κ2)A+ 2Stotal (A.5)

where A is the worldsheet area. From (2.5) and (2.6) the integrand in the bulk action is

Ltotal = L1 + L2 = (1− κ2)L1

which, after integration, yields Stotal = (1 − κ2)A. Plugging this result back into (A.5)

finally gives χ = 0.
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