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Abstract

Invariance of Type IIB superstring theory under SL(2,Z) or S-duality implies de-
pendence on the complex coupling T through real and complex modular forms in T .
Their structure may be understood explicitly in an expansion of superstring correc-
tions to Einstein’s equations of gravity, in powers of derivatives D and curvature R.
The perturbative loop expansion in the string coupling for the 4-string amplitude gov-
erns corrections of the form D2pR4 for all p. We show that, at two-loop order, the
D6R4 term is proportional to the integral of a modular invariant introduced by Zhang
and Kawazumi in number theory and related to the Faltings δ-invariant studied for
genus-two by Bost. The structure of two-loop superstring amplitudes for p > 3 leads
to higher invariants, which generalize Zhang–Kawazumi invariants at genus two. An
explicit formula is derived for the unique higher invariant associated with order D8R4.
In an attempt to compare the prediction for the D6R4 correction from superstring per-
turbation theory with the one produced by S-duality and supersymmetry of Type IIB,
various reformulations of the invariant are given. This comparison with string theory
leads to a predicted value for the integral of the Zhang-Kawazumi invariant over the
moduli space of genus-two surfaces.
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1 Overview and outline

There are a variety of tools for approximating string theory scattering amplitudes. String
perturbation theory is an expansion in powers of the string coupling parameter, gs, that
generalizes the field theoretic Feynman diagram expansion. A term of order g2h−2

s in the
expansion is referred to an h-loop contribution. It arises from integrating over the moduli
spaceMh of genus h Riemann surfaces. Although there is a large body of literature concern-
ing the structure of superstring perturbation theory and its effective field theory limits there
are few explicit multi-loop amplitude results. Indeed, the highest order explicit amplitude
calculations are at two loops, where the four-string amplitude in closed superstring theories
has been reduced to an integral over the genus-two moduli space M2 [1, 2] (see also [3] for
a survey, and references to earlier work, as well as [4] for the relation with the pure spinor
approach).

An alternative approximation of (super)string amplitudes is the low energy, or α′, expan-
sion (where α′ is the square of the string length scale), in which successive terms describe
local and nonlocal interactions of higher dimension with the lowest order term typically
defining a point-like field theory limit based on classical (super)gravity. Each term in this
expansion depends on the moduli, or scalar fields, that characterize the theory. Expanding
around the boundary of moduli space gives the perturbation expansions of these coefficients.
Although the low energy expansion of the tree amplitude is easy to analyse and the one-loop
amplitude has been studied up to order (α′)6, there has been no discussion of the low energy
expansion of the two-loop amplitude beyond its lowest order non-zero term.

It is fruitful to consider the constraints imposed by SL(2,Z)-duality (which in physics is
often referred to as S-duality) together with supersymmetry on the combination of the α′

expansion and string perturbation theory. Since SL(2,Z)-duality relates theories in different
regions of moduli space it is a non-perturbative feature. In particular, effective interactions
at any order in the low energy expansion of the amplitude must transform covariantly under
SL(2,Z)-duality. The moduli, or couplings, dependence of certain highly supersymmetric
interactions that arise at low orders in α′ are exactly determined by the SL(2,Z)-duality
constraints and in such cases this leads to precise relationships between perturbative contri-
butions at different orders in perturbation theory.

The simplest non-trivial example of SL(2,Z)-duality arises in the ten-dimensional Type
IIB theory. In this theory, the string coupling gs is related to the imaginary part of a complex
coupling T = T1 + iT2 by the relation T2 = g−1

s and the requirement T2 > 0. The duality
group SL(2,Z) acts on T by Möbius transformations, and includes exchanges of weak and
strong coupling, namely small and large gs = T−1

2 . Invariance under SL(2,Z) duality implies
that the coefficient of any effective interaction in the low energy expansion of a Type IIB
superstring amplitude is a function of T that must transform covariantly under SL(2,Z) and
encode the exact dependence of the interaction on the string coupling. Interactions of low
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enough dimension satisfy supersymmetry conditions and a great deal is known about their
moduli dependence. In particular, supersymmetry together with SL(2,Z) invariance can be
used to determine the exact T dependence of the coefficients of the the first two orders in the
low energy expansion of the effective action beyond classical supergravity [5, 6, 7]. These are
the R4 interaction (which preserves half of the total number of 32 supersymmetries) and the
D4R4 interaction (which preserves 8 supersymmetries). The quantity D2pRn schematically
represents a scalar built out of n factors of the Riemann curvature tensor R and 2p covariant
derivatives D. In the perturbative limit, gs → 0, these coefficients only contain two pertur-
bative terms, namely a tree-level and a one-loop term (for the R4 case) or a two-loop term
(for the D4R4 case).

The expression for the coefficient of an interaction preserving only 4 supersymmetries has
also been strongly motivated from arguments based on SL(2,Z)-duality of M-theory on a
torus and is conjectured to satisfy an inhomogeneous Laplace eigenvalue equation in moduli
space [8]. However, this structure has yet to be derived directly by use of supersymmetry.
This function possesses four power-behaved terms in its zero Fourier mode, corresponding
to string perturbation theory contributions from genus zero to genus three and receives
no corrections at higher orders in perturbation theory. However, only the genus-zero and
genus-one components of this coefficient function have been tested by direct comparison with
perturbative string amplitude calculations, although there is also indirect evidence that the
genus-three component is correct.

Motivated by the preceding comments, in this paper we will initiate the study of the low
energy, or α′, expansion of the genus-two amplitude by considering the structure of its first
non-trivial term, which contributes to the D6R4 interaction. This will be expressed as an
integral of an Sp(4,Z)-invariant over the moduli of the genus-two surface. We will show that
this is equal to an invariant that has been independently defined in the mathematics literature
by Zhang [9] and by Kawazumi [10]. This invariant is related [11] to the Faltings invariant,
which has special features on genus-two surfaces, as shown by Bost and collaborators [12, 13].
Here we will argue that the duality-invariant coefficient of the D6R4 interaction in the Type
IIB theory gives a prediction for the value of the integral of this invariant over the moduli
space of genus-two surfaces. It remains a challenge to perform the integration directly and
thereby confirm this prediction.

1.1 Outline of paper

The outline of this paper is as follows. In section 2 we will review the expressions for the
four-string amplitudes of Type II closed-string theories in superstring perturbation theory
up to two loops (up to this order in perturbation theory there is no distinction between
Type IIA and Type IIB). We will describe the structure of the low energy expansion of
these expressions, which is a sum of powers of Mandelstam invariants. The expansion of the
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tree-level (genus-zero) amplitude is straightforward and gives coefficients that are rational
numbers multiplying monomials in Riemann zeta values. The expansion of the genus-one
amplitude is more subtle since it involves integrating products of Green functions between
points on a given surface, followed by integration over the complex structure. Importantly,
the amplitude includes non-analytic parts that need to be subtracted before expanding the
analytic part of the amplitude. We will survey the structure of the genus-one amplitude
before turning to the genus-two case.

The genus-two four-string amplitude is expressed as an integral of the four vertex operator
positions on a given Riemann surface Σ paramaterized by a period matrix Ω, followed by
integration over Ω in the moduli space M2 of genus 2 Riemann surfaces. The leading term
in the low energy limit is of order D4R4, with a normalization that was determined in [14],
as will also be reviewed in section 2.

The next term in the low energy expansion is of order D6R4. The coefficient of this term,
which is the main focus of interest in this paper, is given by an integral of a density B(0,1)

2 (Ω)
over genus-two Riemann surfaces parameterised by the period matrix Ω. In section 3 we will
show that B(0,1)

2 (Ω) is given by a certain projection of the scalar Green function,

B(0,1)
2 (Ω) = −8

∫
Σ2

P (z, w)G(z, w) , (1.1)

where the P (z, w) is a section of Kz ⊗ K̄z ⊗ Kw ⊗ K̄w, and K is the canonical bundle on

Σ. Further manipulations will lead to the identification B(0,1)
2 (Ω) = 64ϕ(Ω), where ϕ is an

invariant that has been considered for altogether different reasons in papers by Zhang [9],
Kawazumi [10] and De Jong [11, 15]. Generalizations to higher order invariants are obtained
in an obvious manner by expanding the string theory N -particle amplitude to higher orders
in α′ as briefly discussed in section 4.

In section 5 we will study further properties of ϕ, making use of its relation to the Faltings
invariant, δ, that was obtained in [11]. This leads to an expression for ϕ in the form,

ϕ(Ω) = ϕ0 −
1

4
ln |Ψ10(Ω)|2 + 5 ln Φ(Ω) (1.2)

where ϕ0 is a simple constant, and Ψ10 is the weight-ten Igusa cusp form. Also, Φ is a
real-valued genus-two modular form of weight (1, 1) defined by an integral over the real
four-dimensional torus T 4 = (R/Z)4 associated with the Jacobian of the surface,

ln Φ(Ω) =

∫
T 4

d4x ln
∣∣∣ϑ[x](0,Ω)

∣∣∣2 . (1.3)

We will confirm that ϕ is not pluri-harmonic, i.e. it is not the real part of a holomorphic
function in Ω (a result shown in [10]; see also [11]), by showing that also ln Φ is not pluri-
harmonic. The obstruction will be simply related to the non-trivial dependence, at genus two,
of the ϑ-divisor on Ω. An alternative simplified expression for ϕ is obtained in appendix A.
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In section 6 we will discuss the integral of ϕ(Ω) over moduli space, which is relevant for the
connection with the coefficients of the low energy expansion of the string theory amplitude.
Although we will prove that this integral is finite (with details given in appendix B) we have
not succeeded in evaluating it.

We are therefore led in section 7 to consider the value of this integral based on its connec-
tion to the low energy expansion of Type IIB superstring theory, which is highly constrained
by SL(2,Z)-duality. We will, in particular, review the structure of the moduli-dependent
coefficients of the three leading terms in the α′ expansion beyond the classical Einstein (su-
per)gravity term, that were mentioned earlier. The first two of these (the coefficients of R4

and D4R4) are specific examples of non-holomorphic Eisenstein series, which satisfy Laplace
eigenvalue equations in moduli space. The perturbative expansion of such series’ (i.e., the
expansion as T2 →∞) possess precisely two power-behaved pieces in their zero Fourier mode
that reproduce the tree-level, genus-one and genus-two parts of these interactions. The ab-
sence of higher-order corrections to R4 beyond genus one and to D4R4 beyond genus two
are striking non-renormalization conditions.

The form of the coefficient of the interaction D6R4, which preserves 4 supersymmetries,
has also been strongly motivated from arguments based on SL(2,Z)-duality of M-theory
on a torus [8], and is conjectured to satisfy an inhomogeneous Laplace eigenvalue equation
in moduli space. The function that satisfies this equation possesses four power behaved
terms in its zero Fourier mode, corresponding to string perturbation theory contributions
from genus zero to genus three and receives no corrections at higher orders in perturbation
theory. The genus-zero and genus-one contributions have been checked by direct comparison
with perturbative string amplitude calculations. The genus-three contribution has not been
checked directly. However, an indirect indication that the predicted value of the Type IIB
genus-three contribution to D6R4 is correct is the agreement of its value with the value of
the corresponding Type IIA contribution that was obtained from M-theory compactified on
a circle [8].

The genus-two contribution to D6R4 relates directly to the content of this paper. We
will show that the value of this contribution contained in the conjectured SL(2,Z)-duality
invariant coefficient leads to a predicted value for the integrated Zhang–Kawazumi invariant,

∫
M2

dµ2 ϕ =
3

2
V2 =

2π3

45
, (1.4)

where dµ2 is the Sp(4,Z)-invariant measure and V2 =
∫
dµ2 is the volume of the moduli space

of genus 2 Riemann surfaces M2. An explicit check of this relation would be of interest,
both for its mathematical content and for confirming the SL(2,Z)-duality prediction.
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2 Low energy expansion of Type IIB amplitudes

The overall kinematic structure of the exact four-string amplitudes are constrained by max-
imal supersymmetry to have the form

A(4)(ζi, ki, T ) = κ2
10 R4

ζ1,ζ2,ζ3,ζ4
(k1, k2, k3, k4) T (s, t, u;T ) . (2.1)

where

R4
ζ1,ζ2,ζ3,ζ4

(k1, k2, k3, k4) = ζAA
′

1 ζBB
′

2 ζCC
′

3 ζDD
′

4 KABCD K̃A′B′C′D′ . (2.2)

The external states are any of the 256 massless states in theN = 2 supermultiplet of Type IIB
superstring theory, and are described by polarization tensors, ζABi (i = 1, . . . , 4), where the
indices A,B run over both vector and spinor values. The tensor K K̃ is defined in [16]. The
amplitudes also depend on the momenta of the external massless states, kµi (i = 1, . . . , 4,
µ = 0, 1, . . . , 9), which satisfy ki · ki = 0, and overall momentum conservation requires
k1 + k2 + k3 + k4 = 0. It will be convenient to introduce dimensionless Lorentz-invariant
variables s, t, u defined by s = −α′(k1 + k2)2/4, t = −α′(k2 + k3)2/4, u = −α′(k1 + k3)2/4,
and which obey s + t + u = 0. The scalar function T (s, t, u;T ) in (2.1) depends on s, t, u
and the modulus field, T .

2.1 Structure of the full amplitudes

For convenience, we will follow the notation of [1, 2] in the construction of the amplitudes,
which concentrated on the sector of amplitudes with external NS-NS bosons, with polariza-
tion tensors εµµ̄i . Such amplitudes will be denoted by A(4)(εi, ki, T ). Since these amplitudes
are linear in each εµµ̄i , a general amplitude is a linear combination of a basis of amplitudes
in which the polarization tensor is factorized, εµµ̄i = εµi ε̄

µ̄
i . More explicitly, the prefactor that

multiplies the amplitude has the form

KK̄ = 26R4 (2.3)

The kinematic factor K is normalized as follows,

K = (fµν1 f νµ2 )(fρσ3 fσρ4 ) + (fµν1 f νµ3 )(fρσ2 fσρ4 ) + (fµν1 f νµ4 )(fρσ2 fσρ3 )

−4fµν1 f νρ2 fρσ3 fσµ4 − 4fµν1 f νρ3 fρσ2 fσµ4 − 4fµν1 f νρ2 fρσ4 fσµ3 (2.4)

where we use the following notation for the gauge invariant field strength, fµνi = εµi k
ν
i −ενi k

µ
i .

The kinematic factor K̄ is obtained from K by substituting εµi → ε̄µ̄i . In the case of four
external gravitons the prefactor R4 reduces to the product of four linearized Weyl curvatures
contracted into each other by a well-known sixteen-index tensor, t8t8.
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In string perturbation theory the amplitude has an expansion in integer powers of T−1
2 =

gs that has the form

A(4)(εi, ki, T )
∣∣∣
pert.

=
∞∑
h=0

A(4)
h (εi, ki, T2) , (2.5)

where A(4)
h (εi, ki, T2) is the h-loop amplitude defined by a functional integral over genus-h

Riemann surfaces, and is proportional to T 2−2h
2 = g2h−2

s . Note that the perturbative terms
in the IIB theory do not involve the Ramond–Ramond scalar, T1, but it enters into the
non-perturbative contributions to the amplitude through the effects of D-instantons, as will
be apparent when we consider the implementation of SL(2,Z) duality later in this paper.
The properly normalized perturbative amplitudes for h = 0, 1, 2 are given as follows [14],1

A(4)
0 (εi, ki, T2) = κ2

10 T
2
2 R4 Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
, (2.6)

A(4)
1 (εi, ki, T2) =

π

16
κ2

10 T
0
2 R4

∫
M1

|dτ |2

(Im τ)2
B1(s, t, u|τ) , (2.7)

A(4)
2 (εi, ki, T2) =

π

64
κ2

10 T
−2
2 R4

∫
M2

|d3Ω|2

(det Im Ω)3
B2(s, t, u|Ω) (2.8)

In these formulas, κ2
10 is the 10-dimensional Newton constant. The dimensionless reduced

amplitudes Bh at fixed moduli only depend on the Mandelstam variables, and are given by,

B1(s, t, u|τ) =

∫
Σ4

∏4
i=1 d

2zi
(Im τ)4

exp

{
−α

′

2

∑
i<j

ki · kj G(zi, zj)

}
(2.9)

B2(s, t, u|Ω) =

∫
Σ4

|YS|2

(det Im Ω)2
exp

{
−α

′

2

∑
i<j

ki · kj G(zi, zj)

}
(2.10)

The integration over Σ4 stands for a 4-fold integral over the Riemann surface Σ. To define
the other ingredients, we fix a canonical homology basis of 1-cycles AI , BI with I = 1, · · · , h
(with h = 1, 2 in this paper), and a dual basis of holomorphic 1-forms ωI satisfying,∮

AI

ωJ = δIJ

∮
BI

ωJ = ΩIJ (2.11)

1In the two-loop amplitude A(4)
2 given in formula (2.23) of [14], it is understood that each factor of YS

is accompanied by a factor of α′/2, since the convention α′ = 2 was used in [2] where these formulas were
originally obtained. Properly restoring these factors produces a factor of 4, which has been carefully taken
into account in writing formula (2.8) below. We take this opportunity to also correct a typo on the last line
of equation (2.31) of [2], where the factor of ρ should be removed.
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For h = 1, the holomorphic Abelian differential is constant, ω1(z) = dz in terms of a local
complex coordinate z. The moduli spaceM1 of genus-one Riemann surfaces is parametrized
by the local complex coordinate τ = Ω11 in the range 1 ≤ |τ | and −1 ≤ 2Re (τ) ≤ 1.

For h = 2, the moduli space M2 of genus-two Riemann surfaces is parametrized by the
entries of the period matrix ΩIJ , subject to the following set of inequalities [17],

(1) 0 ≤ |2Im (Ω12)| ≤ Im (Ω11) ≤ Im (Ω22)

(2) |Re (Ω11)| ≤ 1

2
, |Re (Ω22)| ≤ 1

2
, |Re (Ω12)| ≤ 1

2

(3) |det (CΩ +D)| ≥ 1 for all

(
A B
C D

)
∈ Sp(4,Z) (2.12)

The dependence on moduli of Abelian differentials, the prime form, and the Green function
will not exhibited, unless otherwise indicated. The differential form YS on Σ4 is given by,

3YS = (t− u)∆(1, 2) ∧∆(3, 4)

+(s− t)∆(1, 3) ∧∆(4, 2)

+(u− s)∆(1, 4) ∧∆(2, 3) (2.13)

where the bi-holomorphic form ∆(z, w) is a section of Kz ⊗Kw, and is defined by

∆(i, j) = ∆(zi, zj) = ω1(zi) ∧ ω2(zj)− ω2(zi) ∧ ω1(zj) (2.14)

The differential is symmetric ∆(j, i) = ∆(i, j), and satisfies the relation,

∆(1, 2) ∧∆(3, 4) + ∆(1, 3) ∧∆(4, 2) + ∆(1, 4) ∧∆(2, 3) = 0 (2.15)

With the help of (2.15), and momentum conservation, the following alternative expressions
for YS may be derived,

YS = −s∆(1, 4) ∧∆(2, 3) + t∆(1, 2) ∧∆(3, 4)

YS = −u∆(1, 2) ∧∆(3, 4) + s∆(1, 3) ∧∆(4, 2)

YS = −t∆(1, 3) ∧∆(4, 2) + u∆(1, 4) ∧∆(2, 3) (2.16)

Finally, for genus one and two, G(z, w) is a scalar Green function. Since the range of the
scalar Laplace operator on a compact Riemann surface is orthogonal to the constant function,
the scalar Green function is not uniquely defined. This non-uniqueness is reflected in the
fact that one may shift G by an arbitrary function f as follows G(z, w)→ G(z, w) + f(z) +
f(w). This shift is inconsequential in the string amplitudes of (2.6) in view of momentum
conservation, s+ t+ u = 0. One convenient choice for the Green function is given by,

G(z, w) = − ln |E(z, w)|2 + 2π(Im Ω)−1
IJ

(
Im

∫ w

z

ωI

)(
Im

∫ w

z

ωJ

)
(2.17)
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where E(z, w) is the prime form. For h = 1, the prime form is given in terms of the Jacobi
ϑ-function ϑ1(z, τ) = ϑ[1

2
1
2
](z, τ) by E(z, w) = ϑ1(z −w)/ϑ′1(0) for modulus τ , where Jacobi

ϑ-functions with general real characteristics κ = [κ′κ′′] are defined by,

ϑ[κ′κ′′](z, τ) =
∑
n∈Z

exp
{
iπτ(n+ k′)2 + 2πi(n+ k′)(z + κ′′)

}
(2.18)

and the Green function takes on a simplified form,

G(z, w) = − ln

∣∣∣∣ϑ1(z − w)

ϑ′1(0)

∣∣∣∣2 +
2π

Im τ
(Im (z − w))2 (2.19)

For h = 2, the prime form may be found in (A.5) of this paper, and in equation (3.9) of [2],
but its explicit expression will not be needed here.

2.2 Structure of the low energy expansion

For fixed moduli τ and Ω, the integrations over Σ in the reduced amplitudes B1 and B2 of
(2.9) and (2.10) will not converge for all values of s, t, u. Instead, poles will be produced at
positive integer values of s, t and u. The physical origin of these poles is the appearance of
massive on-shell intermediate states, just as was the case in the tree-level amplitudes. Since
no such poles, or any other singularities, can occur for sufficiently small s, t, u, the Taylor
series expansion in these variables has finite coefficients, and the series will have a finite
radius of convergence. A separate issue, which arises upon further integration over moduli,
is the fact that the loop amplitude has non-analytic thresholds, as prescribed by unitarity.
These arise from degenerations of Riemann surfaces at boundaries of moduli space, and were
discussed in the context of the genus-one case in [18, 19]. Earlier discussions of the analytic
behavior of the one loop amplitude may be found in [20, 21].

Exploiting the invariance of the integrands in B1 and B2 under permutations of the index
i on the variables (zi, ki), the Taylor series expansions of the functions B1 and B2 may be
arranged in symmetric polynomials in s, t, u. To do so, we write the exponential factor in
the integrals in terms of s, t, u,

exp
{
sG(1, 2) + tG(1, 4) + uG(1, 3) + sG(3, 4) + tG(2, 3) + uG(2, 4)

}
(2.20)

Since we have s+ t+ u = 0, only two independent invariants remain,

σ2 = (s2 + t2 + u2) σ3 = (s3 + t3 + u3) = 3stu (2.21)

Thus, Bh will admit the following expansions,

Bh(s, t, u|Ω) =
∞∑

p,q=0

B(p,q)
h (Ω)× (σ2)p(σ3)q

p! q!
(2.22)
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where we will set Ω = τ for h = 1. By construction, the coefficients B(p,q)
h (Ω) are smooth real

modular invariants, and thus depend only on the surface Σ, and not on the specific period
matrix representing Σ.

However, care has to be taken in integrating the coefficients B(p,q)
h (Ω) over moduli space

since such integrals may be divergent, just as had already been the case for the full super-
string amplitudes. The divergent parts are accounted for by the presence of non-analytic
contributions in the variables s, t, u due to thresholds that are prescribed by unitarity [18, 19].

2.3 Review of genus-zero and genus-one expansions

Since we will be interested in comparing the coefficients of the σ3R
4 interaction at different

genera, we will here review the low energy expansions up to this order at genus 0 and 1
before considering the genus 2 case.

2.3.1 The genus-zero expansion

The genus-zero four point amplitude, (2.6), can easily be expanded to all orders in the limit of
s, t, u� 1 using standard properties of the Γ function. The first few terms in the expansion
are as follows,

A(4)
0 (εi, ki, T2) = κ2

10 T
2
2 R4 1

stu
exp

(
∞∑
n=1

2ζ(2n+ 1)

2n+ 1
(sn + tn + un)

)

= κ2
10 T

2
2 R4

(
2ζ(3) + ζ(5)σ2 +

2

3
ζ(3)2 σ3 + . . .

)
. (2.23)

In writing this we have used the fact that [18]

sn + tn + un = n
∑

2p+3q=n

(p+ q − 1)!

p! q!

(σ2

2

)p (σ3

3

)q
. (2.24)

The coefficient of the term of order σp2 σ
q
3R4 ∼ s2p+3qR4 in this expansion is a monomial in

Riemann ζ values of depth 2p+ 3q + 3 with rational coefficients2.

2.3.2 The genus-one expansion

The low energy expansion of loop amplitudes is considerably more difficult than the tree-level
case. At genus one and higher qualitatively new issues arise since the Sp(2h,Z)-invariant

2In the generalisation to the expansion of N -particle closed superstring tree amplitudes the coefficients
are generally multi-zeta values [22].
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coefficients B(p,q)
h (s, t, u|Ω) in (2.22) are integrals of (2p + 3q) powers of the Green function

on a genus-h surface that arise in the expansion of the exponential factor (2.20). We will
here review the genus-one expansion, which was discussed in detail in [18, 19], where the
SL(2,Z)-invariant expansion coefficients were determined up to order s6R4. The genus-one
Green function G(z, w) of (2.19) may be expressed as a double Fourier expansion in the form,

G(z, w) =
1

π

∑
(m,n)6=(0,0)

τ2

|mτ + n|2
exp [2πi(nx− ny)] + 2 ln

(
2π |η(τ)|2

)
. (2.25)

The Dedekind eta-function η(τ) is defined by,

η(τ) = eiπτ/12

∞∏
n=1

(
1− e2πinτ

)
, (2.26)

and we have parametrized z − w by real coordinates, x and y,

z − w = x+ τy , (2.27)

so that x and y are normalized to have period 1. The zero mode in (2.25) (the last term)
cancels in the combination of Green functions that arises in the amplitude in the expansion
of (2.20). This has the immediate consequence that the term linear in G does not arise in
the expansion (2.22). In this way we may identify the momentum space Green function as,

Ĝ(m,n) =
1

π

∑
(m,n) 6=(0,0)

τ2

|mτ + n|2
, (2.28)

which only contains non-zero modes.

The coefficient, B(p,q)
1 , of the order s2p+3q R4 contribution to the expansion involves sums

of terms that are products of 2p+3q Green functions joining pairs of vertex positions, which
are then integrated over the torus. Any such term can be simply expressed in momentum
space by a diagram with the four external vertices represented by nodes and each Green
function by a propagator joining two of the nodes. The integer world-sheet momenta in each
propagator of the form (2.28) are summed with momentum conserved at each vertex. The
absence of a zero momentum component in the propagator (2.28) means that there are no
diagrams in which any vertex has a single propagator joined to it. In particular, this means
that there is no contribution with a single power of the Green function. This contrasts with
the situation at higher genus, where there is a contribution with a single Green function,
which we will consider in detail later.

The first term in the expansion is the trivial term with coefficient B
(0,0)
1 = 16 in (2.22)3.

Substituting in (2.7) gives the leading contribution to the genus-one amplitude, which is

3Note that with our conventions
∫
|dz|2 =

∫
|dz ∧ dz̄| = 2Im τ .
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proportional to the volume of M1,

A(4)
1 (εi, ki, T2)

∣∣∣
s,t,u=0

=
2π2

3
κ2

10R4 . (2.29)

The first non-trivial term in the expansion is of order s4R4 with a coefficient that is propor-
tional to4

• •• • =: 2
π2 ζ(4) E2 ,

where E2(τ) is the s = 2 case of a non-holomorphic Eisenstein series, defined by

Es(τ) =
1

2ζ(2s)

∑
(m,n)6=(0,0)

τ s2
|m+ nτ |2s

=
∑
p,q∈Z

gcd(p,q)=0

τ s2
|p+ qτ |2s

, (2.30)

which is easily seen to be invariant under SL(2,Z) transformations that act on τ by

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z ad− bc = 1 . (2.31)

It also satisfies the Laplace eigenvalue equation

∆τEs(τ) = s(s− 1)Es(τ) , (2.32)

where the SL(2) Laplace operator is defined by ∆τ = τ 2
2 (∂2

τ1
+ ∂2

τ2
). The integral of an

Eisenstein series over a fundamental SL(2,Z) domain is generally divergent at the boundary
τ2 →∞ so we will integrate over the cutoff fundamental domain FL defined by

FL = {τ | − 1/2 ≤ τ1 ≤ 1/2, τ2 ≤ L, |τ | ≥ 1, L� 1} . (2.33)

Such an integral is evaluated by using Gauss’s law to localize the result on the boundary of
the cutoff fundamental domain,∫

FL

d2τ

τ 2
2

Es(τ) =
1

s(s− 1)

∫
FL

d2τ

τ 2
2

∆τEs(τ) =
2ζ(2s)

s− 1
Ls−1 +O(L−s) (2.34)

where we have used the asymptotic behavior of the Eisenstein series, limτ2→∞Es(τ) =
2ζ(2s)τ s2 + O(τ 1−s

2 ). Terms that are power behaved in the cutoff L are cancelled once the

4Note that the normalization of Ĝ in (2.28) differs by a factor of 4π from that in [19] and the definition
of Es in (2.30) differs by a factor of 2ζ(2s) from the definition in [19]. This leads to differences in the
normalizations of the modular invariant coefficients.
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non-analytic part of the amplitude is taken into account. The non-analytic contributions
arise from the large-τ2 boundary of (2.9). In order to isolate these contributions it is nec-
essary to consider the region of the integral with L ≤ τ2 ≤ ∞. The first of these arises at
order O(sR4 ln s) and is identified with the logarithmic singularity that can be obtained by
dimensional regularization of one-loop supergravity.

Since the expression for
∫
M1

E2(τ) vanishes after subtracting the term linear in L in
(2.34) there is no genus-one contribution to the terms of order σ2R4 [18]. This fits in with
expectations based on SL(2,Z)-duality that predict that the σ2R4 term is absent at genus
one but is present at genus two, as will be reviewed in section 7.

The two diagrams that contribute to B(0,1)
1 , the coefficient of the term of order σ3R4, are

• •• • =: D3(τ) .

•

•

• = 2
π3 ζ(6)E3(τ) ,

The first term is another Eisenstein series that gives zero contribution to
∫
M1
B(0,1)

1 by the
same reasoning as in the earlier case. However, the coefficient D3 is tricker to evaluate and
has the form [19]5

D3(τ) =
2

π3
ζ(6)E3(τ) + ζ(3) . (2.35)

Taking into account the combinatorial factor that specifies the number of ways in which the
diagram D3 arises from expansion of the exponential (2.20) and performing the τ integral
over the cutoff fundamental domain (again dropping terms that are power behaved in the
cutoff L) gives a contribution to the amplitude at order σ3R4 [18]

A(4)
1 (εi, ki, T2)

∣∣∣
σ3

=
2π2

9
ζ(3)κ2

10 σ3R4 . (2.36)

Note that higher order diagrams contributing to the expansion of the loop amplitude inte-
grand for the N -particle amplitude give invariants of the form,

Dl12,l13,...(τ) =
∑
lij

∏
1≤i<j≤N

τ
lij
2

|mij + nijτ |2lij

N∏
i=1

δ
(∑

j

σjimij

)
δ
(∑

j

σji nij

)
. (2.37)

where σji = sign(j− i), while lij is the number of propagators joining vertices labelled i and
j, and the weight, w =

∑
1≤i<j≤N lij labels the order in the α′ expansion. The Kronecker

5This expression was originally believed [19] to be an approximation up to terms that vanish in the limit
τ2 →∞, but was subsequently shown to be exact by Zagier (private communication).
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delta’s impose conservation of the integer momenta at each vertex labelled by i. In the case
of the four-string amplitude (N = 4) diagrams of the form (2.37) arise at order swR4. Some
of these higher-order terms were analyzed in [19], but we will not consider them further here
since they are not of direct relevance to this paper.

Generalizing to N -particle amplitudes with N > 4 not only leads to analogous diagrams
with N vertices, but also to modifications of the rules in (2.37) to account for world-sheet
propagators with numerator momentum factors [23].

2.4 The two lowest-order genus-two contributions

Since the prefactor, |YS|2, in the genus h = 2 amplitude is of degree 2 in s, t, u, it follows

immediately that B(0,0)
2 (Ω) = 0, a result first proven in [2].

The simplest non-zero contribution arising at two-loop level is B(1,0)
2 . It is obtained by

retaining the lowest order contribution of the exponential, namely 1, and setting t = −s and
u = 0. Using the Riemann bilinear relation for the period matrix Ω,

i

2

∫
Σ

ωI ∧ ωJ = Im ΩIJ (2.38)

we readily derive the following expression,

B(1,0)
2 (Ω) =

1

2

∫
Σ4

|∆(1, 3) ∧∆(2, 4)|2

(det Im Ω)2
= 32 (2.39)

Its value was used in [14] to compute the coefficient of the correction D4R4 to two loop
order, giving the result,

A(4)
2 (εi, ki, T2)

∣∣∣
σ2

=
π

2
V2κ

2
10 T

−2
2 σ2R4 =

2π4

135
κ2

10 T
−2
2 σ2R4 (2.40)

We have used the fact that the volume of M2 is V2 = 4π3/135 (see for example [17] and
Appendix A of [2]). As we will review later, this value is in precise agreement with the one
expected from the implementation of SL(2,Z)-duality at order σ2R4.

3 Relating B(0,1)
2 to the Zhang–Kawazumi invariant

We will now simplify the first non-trivial term in the expansion of the genus-two amplitude,
which has the form D6R4

∫
M2

dµ2 B(0,1)
2 . This is the term that is linear in the Green func-

tion G. We shall then review the definition of an invariant introduced by Zhang [9] and by

Kawazumi [10], and show that for genus two it is proportional to B(0,1)
2 (Ω).
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3.1 Simplification of B(0,1)
2

Given the general expansion of B2(s, t, u|Ω) in terms of s, t, u, we may set s = t and u = −2s

to determine B(0,1)
2 (Ω), while choosing the s, t symmetric representation for YS on the first

line of (2.16). We find the following expression,

B(0,1)
2 (Ω) = −1

3

∫
Σ4

|∆(1, 2) ∧∆(3, 4)−∆(1, 4) ∧∆(2, 3)|2

(detY )2

×
{
G(1, 2) +G(3, 4)−G(1, 3)−G(2, 4)

}
(3.1)

where we shall use the abbreviation Y = Im Ω throughout. The term involving G(1, 2) may
be integrated over the points 3 and 4, and so on, making use of the following formulas,∫

Σi

∆(i, j) ∧∆(i, k) = 2i (detY )
∑
J,K

Y −1
JKωJ(j) ∧ ωK(k)∫

Σj

∫
Σk

∆(i, j) ∧∆(j, k) ∧∆(k, `) = −4 (detY ) ∆(i, `) (3.2)

which follow from (2.38). As a result, we find,

B(0,1)
2 (Ω) = −8

∫
Σ2

P (z, w)G(z, w) (3.3)

We have introduced the form P (z, w) of tensor type (1, 1)z ⊗ (1, 1)w, which may be defined
for arbitrary genus h by,

P (z, w) =
∑

I,J,K,L

(
−Y −1

IJ Y
−1
KL + hY −1

IL Y
−1
JK

)
ωI(z) ∧ ωJ(z) ∧ ωK(w) ∧ ωL(w) (3.4)

It is readily verified that P (z, w) is symmetric under interchange of z and w, and integrates
to 0 against a constant function,∫

Σz

P (z, w) =

∫
Σw

P (z, w) = 0 (3.5)

In view of this property, B(0,1)
2 (Ω) (defined in (3.3)) is still invariant under shifting the Green

function by an arbitrary function f , namely G(z, w)→ G(z, w) + f(z) + f(w).

3.2 The Arakelov Green function

The Zhang–Kawazumi invariant ϕ(Ω) introduced in [9] and [10] is expressed in a number
of equivalent forms which all involve the Arakelov Green function. The Arakelov Green
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function ln g(x, y) on Σ × Σ is symmetric ln g(x, y) = ln g(y, x) and provides an inverse to
the scalar Laplace operator on Σ, just as the Green function G of (2.17) does,

∂ ∂̄ ln g(z, w) = πδ(z, w)− πµΣ(z)

∂ ∂̄ G(z, w) = −2πδ(z, w) + 4πµΣ(z) (3.6)

where ∂ = dz∂z and ∂̄ = dz̄∂z̄ and
∫

Σ
δ(z, w) = 1 in local complex coordinates z, z̄. The

normalization conditions on µΣ are as follows,∫
Σ

µΣ = 1

∫
Σz

µΣ(z) ln g(z, w) = 0 (3.7)

To define the form µΣ, we proceed as follows. We shall keep the dependence on the genus h
explicit whenever possible, though our main interest will be in the case h = 2. The canonical
Kähler form µ on the Jacobian J(Σ) of a Riemann surface Σ is defined by,

µ =
i

2

∑
I,J

Y −1
IJ dζI ∧ dζ̄J (3.8)

The integrals of the holomorphic 1-forms dζI along any closed cycle on J(Ω) are normalized
to belong to Z2⊕ΩZ2. Alternatively, in terms of a parametrization of J(Σ) by real variables
x′I , x

′′
I ∈ R/Z, we have,6

ζI = x′′I +
∑
J

ΩIJx
′
J µ =

∑
I

dx′′I ∧ dx′I (3.9)

The Abel map j : z → ζI is defined by,

ζI(z) =

∫ z

z0

ωI −∆I(z0) (3.10)

where the Riemann vector is defined by

∆I(z0) =
1

2
− 1

2
ΩII +

∑
J 6=I

∮
AJ

ωJ(z)

∫ z

z0

ωI (3.11)

The form µΣ is defined as the pull-back under the Abel map j of the canonical Kähler form
µ, divided by a factor of h in order to achieve the normalization of (3.7),

µΣ(z) =
1

h
j∗µ(z) =

i

2h

∑
I,J

Y −1
IJ ωI(z) ∧ ωJ(z) . (3.12)

6The notation with prime x′ and double prime x′′ is borrowed from the representation of real character-
istics, with which we shall soon identify these parameters.

17



The Arakelov Green function ln g(z, w) is related to G(z, w) by the shift,

ln g(z, w) = −1

2
G(z, w) + f(z) + f(w)

f(z) =
1

2

∫
Σ

µΣ(w)G(z, w)− 1

4

∫
Σ2

µΣ(z)G(z, w)µΣ(w) (3.13)

Both integrals above are convergent, and f(z) has been determined by enforcing the nor-
malization condition (3.7) on ln g.

3.3 The Zhang–Kawazumi invariant, ϕ

For any genus h, the Zhang–Kawazumi invariant ϕ(Ω) of [9, 10] admits the representation,7

ϕ(Ω) =
∑
`

∑
I,J

2

λ`

∣∣∣∣∫
Σ

φ`(z)ω′I(z) ∧ ω′J(z)

∣∣∣∣2 (3.14)

in a basis of Abelian differentials ω′ normalized by
∫

Σ
ω′I ∧ω′J = −2iδIJ , and where λ` are the

non-zero eigenvalues of the Laplace operator evaluated for the Arakelov metric on Σ, and φ`
are the corresponding eigenfunctions, normalized with respect to the volume form µΣ. The
Zhang–Kawazumi invariant ϕ(Ω) also admits the following equivalent representation [9],

ϕ(Ω) =

∫
Σ2

ν(z, w) ln g(z, w) . (3.15)

where the bi-form ν(x, y) may be expressed as follows,8

νΣ(z, w) = 2µΣ(z) ∧ µΣ(w) +
1

2

∑
I,J,K,L

Y −1
IL Y

−1
JKωI(z) ∧ ωJ(z) ∧ ωK(w) ∧ ωL(w) (3.16)

with the following normalization,∫
Σz

νΣ(z, w) = (2− 2h)µΣ(w)

∫
Σ2

νΣ(z, w) = 2− 2h (3.17)

Note that both representations of the Zhang–Kawazumi invariant are expressed in terms
of the Arakelov Green function ln g, and that neither formula is invariant under shifts
ln g(z, w)→ ln g(z, w) + f(z) + f(w) by an arbitrary function f .

7In the mathematics literature, the Zhang-Kawazumi invariant ϕ and the Faltings invariant δ are usually
denoted as functions of the surface, ϕ(Σ) and δ(Σ) in order to stress that they are real modular invariant
functions of Ω and Ω̄ and thus depend only on the surface, not on the specific Ω chosen to represent Σ. Here
we shall follows physics notation and denote both as functions of Ω.

8Note that the corresponding expression for k in (2.5) and for ν in equation (2.6) of [24] are incompatible
with the normalization of the Abelian differentials implied by the pairing of (1.1). The problem may be
traced to an inconsistent change in normalization of the Abelian differentials effected in Proposition 2.5.3 of
[9]. These inconsistencies have been resolved in writing our equation (3.15) and (3.16).
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3.4 Proportionality of ϕ and B(0,1)
2

We will now show that the invariant ϕ(Ω), and the coefficient B(0,1)
2 (Ω) are simply pro-

portional to one another. The first step in this proof uses the following relations between
bi-forms, which may be easily proven by inspection,

P (z, w) = 2hνΣ(z, w) + 4h(h− 1)µΣ(z) ∧ µΣ(w) (3.18)

Next, we recast B(0,1)
2 (Ω) in terms of the Arakelov Green function in (3.3), using the relation

on the first line of (3.13). The terms in f cancel out in view of (3.5), and we find,

B(0,1)
2 (Ω) = 16

∫
Σ2

P (z, w) ln g(z, w) (3.19)

Next, we express P in terms of νΣ and µΣ using (3.18), and make use of the defining relation
of the Arakelov Green function in (3.7) to drop the term in µΣ. As a result, we find,

B(0,1)
2 (Ω) = 32hϕ(Ω) (3.20)

An alternative way of stating the result is that the invariant ϕ(Ω) admits a simple represen-
tation in terms of the Green function G(z, w) by,

ϕ(Ω) = − 1

4h

∫
Σ2

P (z, w)G(z, w) (3.21)

This expression for ϕ(Ω) is now invariant under any shift G(z, w)→ G(z, w) + f(z) + f(w).

4 Higher-order invariants

A natural generalization of the Zhang-Kawazumi invariant ϕ is obtained by considering
higher order expansion terms of the superstring 4-point function, and more specifically of
the unintegrated partial amplitudes Bh(s, t, u|Ω).

Recall that for genus 2, we have B(0,0)
2 = 0, while the coefficient B(1,0)

2 is the constant which

governs the D4R4 correction. Next, the coefficient B(0,1)
2 produces the Zhang–Kawazumi in-

variant. Finally, all coefficients B(p,q)
2 with p+q ≥ 2 produce new invariants which generalize,

in a way, the ϕ invariant at genus two. The general form of the invariants B(p,q)
2 is obtained

by expanding the exponential to order n = 2p+ 3q in all variables s, t, u, so that we have,

B2(s, t, u|Ω)
∣∣∣
n

=
1

n!

∫
Σ4

|YS|2

(det Im Ω)2

(
sG(1, 2) + tG(1, 4) + uG(1, 3)

+sG(3, 4) + tG(2, 3) + uG(2, 4)
)n

(4.1)

Next, one recasts this homogeneous polynomial of degree n+ 2 into the symmetric functions
σ2 and σ3. This combinatorial problem can be solved with the help of a graphical expansion.
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4.1 The invariants B(2,0)
2 and B(1,1)

2

In this section, we shall make the simplest of these generalizations as explicit as possible. As
examples, we shall work out in some detail the invariants of order low orders (σ2)2 and σ2σ3.
In view of the general analysis that leads to (2.22), this contribution is proportional to σ2,

a fact that may also be checked by direct calculation. To obtain the coefficient B(2,0)
2 (Ω) it

will suffice to set u = −t and s = 0. To obtain B(1,1)
2 (Ω) one proceeds analogously, but sets

t = s and u = −2s instead. One finds,

B(2,0)
2 (Ω) =

∫
Σ4

|∆(1, 2)∆(3, 4)|2

det (Im Ω)2

(
G(1, 4) +G(2, 3)−G(1, 3)−G(2, 4)

)2

B(1,1)
2 (Ω) = − 1

63

∫
Σ4

|∆(1, 2)∆(3, 4)−∆(1, 4)∆(2, 3)|2

det (Im Ω)2

(
G(1, 2) +G(3, 4)

+G(1, 4) +G(2, 3)− 2G(1, 3)− 2G(2, 4)
)3

(4.2)

These expressions are manifestly modular invariant, and convergent. They are also mani-
festly invariant under shifting the scalar Green function G(z, w) → G(z, w) + f(z) + f(w),
so that the argument may be expressed in terms of cross-ratios.

4.2 Diagrammatic expansion

As in the case of the genus-one amplitude, the coefficients of the terms in the low energy ex-
pansion have an obvious graphical representation in terms of products of propagators. Since
the amplitude has an overall measure that is of order s2R4, a diagram with n propagators
contributes to a term of order sn+2R4 that has a coefficient B(p,q)

2 , where 2p + 3q = n + 2.
An important qualitative difference between the genus-one and genus-two cases is that the
zero mode part of the Green function does not decouple from the amplitude for genus h > 1.
Consequently, there are non-zero contributions from diagrams in which one or more vertices
are connected to a single propagator.

The simplest example of a non-vanishing diagram with h = 2 is the single propagator,
which gave zero contribution at genus one but contributes to B(0,1)

2 (the integrand of the
coefficient of D6R4), as discussed in this paper,

• •

In the genus-one case there was only one diagram with two propagators that contributed
to the expansion. For genus h = 2 here are two additional diagrams that also contribute to
B

(2,0)
2 (the integrand of the coefficient of D8R4).
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• •

• ••

•

•

In addition to the two diagrams with three propagators shown earlier for the genus-one
case the following diagram contribute to the coefficient B

(1,1)
2 (the integrand of the coefficient

of D10R4),

• •• •

•

• •• •

• •

• •

•• •

••

•••

At this order the following diagrams with more vertices contribute to the five-point and
six-point functions,

•

• •

• •

• •

• •

• •

5 Alternative forms and the Faltings invariant

The Zhang–Kawazumi invariant may be re-expressed in a number of useful ways, of which
perhaps the most important is via the Faltings δ-invariant. It is not so much the Faltings
invariant itself that is of use to us, but rather the circumstance that δ(Ω) itself admits many
alternative formulations. We shall not present a general definition of δ(Ω) here, but rather
we refer the interested reader to [12, 13] for detailed information.

We begin by exhibiting the relation between the invariants ϕ(Ω) and δ(Ω) obtained in
Corollary 1.8 of [11], and specialized here to the case of genus two,9

ϕ(Ω) = 36 ln 2− 40 ln(2π)− 3 ln ‖Ψ10(Ω)‖ − 5

2
δ(Ω) (5.1)

9Note that the Faltings invariant, denoted here and in [12, 13] by δ, is referred to as δF in [11].
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Here, Ψ10 is the unique genus-two cusp modular form of weight 10 introduced by Igusa, and
‖Ψ10‖ is its modular invariant Peterson norm, which are respectively defined by,

Ψ10(Ω) =
∏
δ even

ϑ[δ](0,Ω)2

‖Ψ10(Ω)‖ = (detY )5|Ψ10(Ω)| (5.2)

The genus-two ϑ-function with general real characteristics [x] is defined by

ϑ[x](ζ,Ω) =
∑
n∈Z2

exp
{
iπ(n+ x′)tΩ(n+ x′) + 2πi(n+ x′)t(ζ + x′′)

}
(5.3)

where the characteristics are parametrized in terms of x′ and x′′ following (3.9),

[x] = [x′ x′′] x′ =

[
x′1
x′2

]
x′′ =

[
x′′1
x′′2

]
(5.4)

The ϑ-function without characteristics is defined by ϑ(ζ,Ω) = ϑ[0](ζ,Ω).

5.1 ϕ as an integral over the Jacobian

In [12, 13], two alternative expressions are provided for the Faltings invariant δ(Ω) at genus
two. The first is as an integral over the Jacobian J(Ω),10

δ(Ω) = 12 ln 2− 16 ln(2π)− ln ‖Ψ10(Ω)‖ −
∫
J(Ω)

µ ∧ µ ln ‖ϑ‖2 (5.5)

In this expression, µ is the canonical Kähler form on J(Ω) defined in (3.8). The Peterson
norm of ϑ is defined for ζ ∈ J(Ω) as follows,

‖ϑ‖2(ζ,Ω) = (detY )
1
2 |ϑ(ζ,Ω)|2 exp{−2π(Im ζ)tY −1(Im ζ)} (5.6)

Expressed in terms of the integral over J(Ω), the Zhang–Kawazumi invariant takes the form,

ϕ(Ω) = ϕ0 −
1

2
ln ‖Ψ10(Ω)‖+

5

2

∫
J(Ω)

µ ∧ µ ln ||ϑ||2 (5.7)

where ϕ0 = 6 ln 2. Remarkably, in this combined expression, the terms in ln(detY ) cancel
one another, and the following simplified form may be obtained,

ϕ(Ω) = ϕ0 −
1

4
ln |Ψ10(Ω)|2 + 5 ln Φ(Ω) , (5.8)

10The integral of [12, 13] is originally to be carried out over Pic1(Σ), the Picard variety of holomorphic
line bundles over Σ with first Chern class equal to 1. Choosing an arbitrary reference point in Pic1(Σ), we
use the standard isomorphism between Pic1(Σ) and J(Σ) to recast the integral over J(Σ) = J(Ω).
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where Φ(Ω) results from the integral over the Jacobian. To represent this quantity, a par-
ticularly convenient parametrization of J(Ω) is in terms of the real coordinates x′I and x′′I
introduced in (3.9) and (5.4). In terms of this parametrization, we have,11

Φ(Ω) = exp

{∫
T 4

d4x ln
∣∣∣ϑ[x](0,Ω)

∣∣∣2} (5.9)

The measure of integration is d4x = dx′1dx
′′
1dx

′
2dx

′′
2 which is subject to the relation µ ∧ µ =

2d4x, while the domain of integration is T 4 = (R/Z)4. In te passage from (5.7) to (5.8) we
have also made use of the standard formula,

ϑ[x](ζ,Ω) = ϑ[0](ζ + Ωx′ + x′′,Ω) exp
{
iπ(x′)tΩx′ + 2πi(x′)t(ζ + x′′)

}
(5.10)

Since |ϑ[x](0,Ω)| is invariant under shifts in x by Z4, the range of integration T 4 may be
replaced by [0, 1]4. For any fixed Ω, the integral over x is convergent. Thus, Φ(Ω) is finite
throughout the interior of Siegel upper half space H2, without poles or zeros. However, we
shall see in section 6 that Φ(Ω) has singularities near the boundary of moduli space.

5.2 Modular properties

Modular transformations M ∈ Sp(4,Z) obey the defining relations,

M =

(
A B
C D

)
J =

(
0 −I
I 0

)
M tJM = J (5.11)

Their action on the period matrix in H2 is given by,

Ω→ Ω̃ = (AΩ +B)(CΩ +D)−1 (5.12)

while on real characteristics, we have,[
x′

x′′

]
→
[
x̃′

x̃′′

]
=

(
D −C
−B A

)[
x′

x′′

]
+

1

2
diag

(
CDt

ABt

)
(5.13)

Their action on ϑ-constants with characetristics takes the form,

ϑ[x̃](0, Ω̃) = det (CΩ +D)
1
2ϑ[x](0,Ω) (5.14)

Thus, the modular transformation property of Φ is as follows,

Φ(Ω̃) = |det (CΩ +D)| Φ(Ω) (5.15)

which makes it a real modular form of weight (1
2
, 1

2
).

11We thank Boris Pioline for pointing out an inconsistency of normalization, by a factor of 2 in the
exponent of Φ, in the first version of this paper.
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5.3 Holomorphy properties of Φ

Although formally we have ln |ϑ|2 = lnϑ + ln ϑ̄, the form Φ is not the absolute value of a
holomorphic modular form on moduli space. This property was shown in [10] and [15]. Here,
we shall give an elementary derivation of this result, and exhibit the difference in behavior
between the genus-one and genus-two cases.

• Genus two

We proceed from (5.9) by introducing an explicit regulator ε for the logarithmic singu-
larity of the integrand,

Φε(Ω) = exp

{∫
T 4

d4x ln

(∣∣∣ϑ[x](0,Ω)
∣∣∣2 + ε2

)}
(5.16)

In view of the integrability of the logarithmic singularity, we clearly have Φε → Φ as ε→ 0.
We shall use Φε to regularize the derivatives of Φ, as usual.

We restrict attention to the variation along a single complex parameter t in the Siegel
upper half space H2, with (locally) holomorphic dependence of the period matrix ΩIJ(t) on t.
Having already established that Φε is finite and non-zero everywhere on the interior of H2,
it suffices to compute the Laplacian in t which is given by,

∂t∂t̄ ln Φε(Ω(t)) =

∫
T 4

d4x

∣∣∣∣ ∂∂tϑ[x](0,Ω(t))

∣∣∣∣2 ε2

(|ϑ[x](0,Ω(t))|2 + ε2)2 (5.17)

As ε→ 0, the integral over T is supported on the subset of J(Ω) where ϑ vanishes,

∂t∂t̄ ln Φ(Ω(t)) =

∫
T 4

d4x

∣∣∣∣ ∂∂tϑ[x](0,Ω(t))

∣∣∣∣2 δ(2)(ϑ[x](0,Ω(t)) (5.18)

The integrand is everywhere positive or zero, which makes the integral itself positive or zero.

There is an interesting geometrical interpretation of this formula in terms of the ϑ-divisor,
which we shall denote by Θ, and which is defined by,

Θ(Ω) = {ζ ∈ J(Ω) such that ϑ(ζ,Ω) = 0} (5.19)

A variation in t produces a variation δJΘ in Θ because the Jacobian changes with Ω(t). But
there is also another variation δxΘ due to an intrinsic co-moving change of Θ. These contri-
butions are most clearly disentangled by formulating the ϑ-divisor without characteristics,
and parametrizing ζ by real characteristics,

ζI = ΩIJx
′
J + x′′I (5.20)

24



As t varies, x′, x′′ must vary, along with Ω, to keep ζ in the ϑ-divisor, so that we must have,12

(Ω̇IJx
′
J + ΩIJ ẋ

′
J + ẋ′′I )∂Iϑ(ζ,Ω) + Ω̇IJ∂IJϑ(ζ,Ω) = 0 (5.21)

evaluated at Ω = Ω(t). In the parentheses, the first term represents δJΘ, while the remaining
two terms represent δxΘ. Equivalently, in terms of ϑ-functions with characteristics, the
variation of Θ in t is given by,

ẋ′I∂
′
Iϑ[x](0,Ω) + ẋ′′I∂

′′
I ϑ[x](0,Ω) + Ω̇IJ∂IJϑ[x](0,Ω) = 0 (5.22)

Combining this formula with the Laplace equation in t, we find,

∂t∂t̄ ln Φ =

∫
T 4

d4x
∣∣∣ẋ′I ∂′Iϑ[x](0,Ω(t)) + ẋ′′I ∂

′′
I ϑ[x](0,Ω(t))

∣∣∣2 δ(2)(ϑ[x](0,Ω(t)) (5.23)

The Laplacian in t receives contributions from the intrinsic variation δxΘ only. For genus
two, this intrinsic variation is not everywhere vanishing, as Θ(Ω) varies non-trivially in
J(Ω) with Ω. The non-trivial variation of Θ with t is illustrated in Figure 1. As a result,
∂t∂t̄ ln Φ 6= 0, and the function ln Φ is not pluri-harmonic. In [10] and [15], explicit formulas
for the Laplacian of ϕ were derived in terms of characteristic classes.

• Genus one

However, the same arguments transposed to genus one lead to a different conclusion, as
should have been expected from the explicit formula we have available for the genus-one
Faltings invariant. The genus-one equivalent is given by,

∂τ∂τ̄ ln Φ(τ) =

∫
T 2

d2x
∣∣∣ẋ′ ∂′ϑ[x](0, τ) + ẋ′′ ∂′′ϑ[x](0, τ)

∣∣∣2 δ(2)(ϑ[x](0, τ) (5.24)

For genus one, the ϑ-divisor is a single point, ζ = 1/2 + τ/2, or in terms of characteristics
x′ = x′′ = 1/2. Thus, Θ has no intrinsic variation as τ is being varied, and hence we have,

∂τ∂τ̄ ln Φ(τ) = 0 (5.25)

This result is consistent with the explicit result Φ(τ) = |η(τ)|2.

12We shall use the following notations: a dot refers to the derivative with respect to t; the derivatives
with respect to Ω are denoted by ∂II = ∂/∂ΩII and ∂IJ = 1

2∂/∂ΩIJ when J 6= I; and the derivatives with
respect to x′I and x′′I are denoted respectively by ∂′I and ∂′′I .
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Plotting the absolute value of theta at the approximate values of the theta-divisors for 
a=0.1, 0.2, 0.25, and 0.3

q1:=plot(TET1, style=point, labels=["Re(tau)", "10^5 |theta|"],
color=red):
q2:=plot(TET2, style=point, labels=["Re(tau)", "10^5 |theta|"],
color=black):
q3:=plot(TET3, style=point, labels=["Re(tau)", "10^5 |theta|"],
color=green):
q4:=plot(TET4, style=point, labels=["Re(tau)", "10^5 |theta|"],
color=blue):
display(q1,q2,q3,q4);

Figure 1: Four one-dimensional slices of the genus-two ϑ-divisor are presented in co-moving
coordinates [x′x′′] for the Jacobian. The moduli Ω11, Ω22, and the characteristic x′′2 are chosen
“generically”: we set Ω11 = 0.4 + i, Ω22 = 0.1 + 2i, and x′′2 = 0.55. The remaining modulus
is chosen to be real Ω12 = t and in the interval [0, 1]. At t = 0, we choose x′1 = x′′1 = 1/2, a
point which is on the ϑ-divisor for any value of x′2 in view of (B.1). We plot the parametric
curves x′1(t) versus x′′1(t) as t runs from 0 to 1, for four values of x′2, namely x′2 = 0.1 (red),
x′2 = 0.2 (black), x′2 = 0.25 (green), and x′2 = 0.3 (blue), such that ϑ[x](0,Ω) = 0.

6 Issues involved in integrating ϕ over moduli space

The coefficients of the terms in the low energy expansion of the string amplitude at genus
two are the integrated invariants, ∫

M2

dµ2 B(p,q)
2 (6.1)

where dµ2 = |d3Ω|2/(det Im Ω)3 is the Sp(4,Z)-invariant measure on the Siegel upper half
space H2. This suggests that it is of interest to consider the integral of ϕ(Ω) over the genus-2
moduli space. Although we will not succeed in performing this integral explicitly we will
prove that the integral is a well-defined, convergent expression.
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To this end we recast ϕ in another alternative form,

ϕ(Ω) = ϕ0 +
1

2

∑
δ even

∫
T 4

d4x ln

∣∣∣∣ϑ[x](0,Ω)

ϑ[δ](0,Ω)

∣∣∣∣2 (6.2)

To compute the integration over M2, one would need to compute the following integral,

Λ[x] =

∫
M2

dµ2 ln

∣∣∣∣ϑ[x](0,Ω)

ϑ[0](0,Ω)

∣∣∣∣2 (6.3)

Λ[x] is periodic in each x with period 1, and diverges when x is an odd spin structure. In
terms of Λ[x], the integral of ϕ over moduli is given by,∫

M2

dµ2 ϕ = ϕ0 V2 + 5

∫
T 4

d4xΛ[x]− 1

2

∑
δ even

Λ[δ] (6.4)

In order to prove that this integral is convergent we will analyse of the asymptotic properties
of the integrand at the boundaries of moduli space where the genus-two surface degenerates,
which will be discussed next.

6.1 Asymptotics of the ϕ and δ invariants in degeneration limits

In this subsection, we shall evaluate the limits of the invariants as the surface approaches
the separating and non-separating degeneration nodes. These limits reproduce the genus-two
results of [25], where the degeneration limits of the Arakelov Green function and the Faltings
invariant on a genus h surface were considered, and the results of [15] on the asymptotic
limits of ϕ. Here we will start with the expressions for δ and ϕ in (5.5) and (5.7), rewritten
in terms of the modular form Φ which was defined in (5.9),

δ = 12 ln 2− 16 ln(2π)− 6 ln(detY )− ln |Ψ10| − 2 ln Φ , (6.5)

ϕ = 6 ln 2− 1

2
ln |Ψ10|+ 5 ln Φ . (6.6)

To describe the degenerations we use the following parametrization of the period matrix,

Ω =

(
τ1 τ
τ τ2

)
. (6.7)

The separating degeneration is obtained by sending τ → 0 while keeping τ1, τ2 fixed. The
non-separating degeneration is obtained by letting τ2 → i∞ while keeping τ1, τ fixed. Since
the behavior of Ψ10 at the degenerations is standard, we need only study the asymptotic
behavior of Φ in the appropriate limits, details of which are given in appendix B.
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• Separating degeneration node τ → 0

Substituting the expression for Ψ10 near the separating degeneration,

Ψ10(Ω) = −212(2πτ)2η(τ1)24η(τ2)24 +O(τ 4) , (6.8)

together with the expression for Φ of (B.8), into (6.6) gives the following limit for the Zhang–
Kawazumi invariant ϕ,

ϕ(Ω) = − ln
∣∣∣2πτη(τ1)2η(τ2)2

∣∣∣+O(τ 2) (6.9)

The Faltings invariant δ may now be derived from (5.1), and we find,

δ(Ω) = δ1(τ1) + δ2(τ2)− ln
∣∣∣2πτη(τ1)2η(τ2)2

∣∣∣2 +O(τ 2) (6.10)

where the genus-one Faltings invariant on the degeneration component I has been denoted
by δI , and is given by (see for example [24] after Proposition 4.6),

δI(τI) = −8 ln(2π)− 6 ln
(

(Im τI)|η(τI)|4
)
, (6.11)

a combination which is manifestly modular invariant. The combination 2πτη(τ1)2η(τ2)2,
which is invariant under the Sp(4,Z) transformations (5.12) to leading order in τ , was
identified in [25] as the intrinsic degeneration parameter (and referred to as τ in that paper).
With this identification, our final result (6.10) for the separating degeneration precisely agrees
with part (a) of the Main Theorem of [25], specialized to genus h = 2 and h1 = h2 = 1.

• Non-separating degeneration node τ2 → i∞
Using the non-separating degeneration limit of Ψ10,

Ψ10(Ω) = −212e2πiτ2η(τ1)18ϑ1(τ, τ1)2 (6.12)

and the asymptotics for Φ of (B.14), we find,

ϕ(Ω) =
π

6
(Im τ2) +

5π

6

(Im τ)2

Im τ1

− ln

∣∣∣∣ϑ1(τ, τ1)

η(τ1)

∣∣∣∣ (6.13)

δ(Ω) = δ1(τ1)− 8 ln(2π) +
7π

3
Im τ2 − 6 ln(Im τ2)− π

3

(Im τ)2

Im τ1

− 2 ln

∣∣∣∣ϑ1(τ, τ1)

η(τ1)

∣∣∣∣
Throughout this subsection we shall neglect contributions which vanish as τ2 → i∞. Ex-
pressed in terms of the Arakelov Green function ln g(z) = ln g(z|τ1) for modulus τ1 presented
in (B.17), these invariants become,

ϕ(Ω) =
π

6

(
Im τ2 −

(Im τ)2

Im τ1

)
− ln g(τ |τ1) (6.14)

δ(Ω) = δ1(τ1)− 8 ln(2π) +
7π

3

(
Im τ2 −

(Im τ)2

Im τ1

)
− 6 ln(Im τ2)− 2 ln g(τ |τ1)
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In terms of the modular invariant degeneration parameter |t| which was introduced in [25],
and is defined by,

Im τ2 −
(Im τ)2

Im τ1

= − 1

2π
ln |t|+ 1

π
ln g(τ |τ1) (6.15)

the invariants take the following form,

ϕ(Ω) = − 1

12
ln |t| − 5

6
ln g(τ |τ1) (6.16)

δ(Ω) = δ1(τ1)− 7

6
ln |t| − 6 ln(− ln |t|) +

1

3
ln g(τ |τ1)− 2 ln(2π)

This expression agrees precisely with part (b) of the Main Theorem of [25] for genus two.

6.2 Convergence of the integral over moduli space

The preceding analysis of asymptotic behavior enables us to prove the convergence of the
integral of ϕ over the genus-two moduli spaceM2 with the measure dµ2, encountered in (6.4).
The function ϕ(Ω) is well-defined everywhere in the interior of M2, but has singularities as
one approaches the boundary of M2. To deal with the boundary behavior in a systematic
way, it will be convenient to replace M2 by its Deligne-Mumford [26] compactification M2,
which is obtained from M2 by adjoining the divisors (a divisor is a subvariety of complex
co-dimension 1) corresponding to the separating node and to the non-separating node. The
integration measure dµ2 extends to a finite measure on M2 with finite volume.

To show convergence of the integral of ϕ on the compact space M2, it will suffice to
show that the integral converges near each one of the compactification divisors. The divisors
intersect, but the convergence of the integral near the intersection will be shown to follow
from the convergence near each divisor separately.

• The asymptotic behavior of the measure near the separating divisor τ → 0 is given by,

dµ2 → |d2τ | |d
2τ1|

(Im τ1)3

|d2τ2|
(Im τ2)3

(
1 +O(|τ |2)

)
. (6.17)

Since the most singular term as τ → 0 is given from (6.9) by ϕ ∼ − ln |τ |+ . . . the τ integral
converges near τ → 0, in view of the integration range of (2.12).

• The asymptotic behavior of the measure near the non-separating divisor τ2 → i∞ is
similarly given by the following formula,

dµ2 → |d2τ | |d
2τ1|

(Im τ1)3

|d2τ2|
(Im τ2)3

(
1 +O(Im τ−1

2 )
)
. (6.18)
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From (6.13) we see that ϕ ∼ π Im τ2/6 +O(τ 0
2 ) so that the τ2 integral converges, in view of

the integration range of (2.12).

• The asymptotic behavior near the intersection of the separating and non-separating
divisors is given by either formula (6.17) or (6.18) for the measure. The asymptotic behavior
of ϕ near the intersection of the divisors may be obtained either as the τ2 → i∞ asymptotics
of (6.9), or as the τ → 0 asymptotics of (6.14). Happily, these two limits are interchangeable,
and give rise to the following uniform asymptotics near the intersection of divisors,

ϕ(Ω) = − ln(2π) +
π

6
Im τ2 − ln |τ | − ln |η(τ1)|2 (6.19)

up to terms that vanish as τ → 0 and τ2 → i∞. It is readily seen that the convergence near
the intersection is automatic once the convergence near each divisor has been checked.

We conclude that the integral with the measure dµ2 of ϕ over the compactified moduli
space M2, and thus over the moduli space M2, is convergent.

7 Value of integrated invariant from SL(2,Z)-duality

Although we have not evaluated the integrated invariant directly, we will now determine the
relationship of its value to the coefficient of the genus-two D6R4 term in the low energy
expansion of the four-string amplitude in Type IIB string theory..

As we described in the introduction, the Type IIB theory is invariant under the duality
group SL(2,Z), which acts on the complex coupling T = T1+iT2 by Möbius transformations.
The SL(2,Z) transformation properties of the other fields will not concern us here.

Symmetry of the amplitude under the interchange of external states again implies that
the low energy expansion of the analytic part of the amplitude is a symmetric function of
powers of the Mandelstam variables and has an expansion in powers of σ2 and σ3 in which
each term is invariant under SL(2,Z). These conditions imply that the analytic part of the
full (i.e., non-perturbative) amplitude has a low energy expansion of the form,

A(4)(εi, ki, T )
∣∣∣
an.

= κ2
10R4

(
T 2

2

3

σ3

+ T
1
2

2 E(0,0)(T ) + T
− 1

2
2 E(1,0)(T )σ2

+T−1
2 E(0,1)(T )σ3 + . . .

)
, (7.1)

where the explicit powers of T2 disappear after transforming from the string frame to the
Einstein frame (in which the curvature, R is inert under SL(2,Z)). The coefficients E(p,q)(T )
are SL(2,Z)-invariant functions. The prefactor of R4, which arose in the perturbative exam-
ples discussed earlier, in fact multiplies the full amplitude as can be deduced from maximal
supersymmetry. The first term in the above expansion is the lowest order term in the tree-
level expansion, which is equal to the tree-level supergravity amplitude. The challenge is to
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determine the modular invariant coefficient functions of the higher order terms. These are
functions of T and their expansions in the weak-coupling limit T2 → ∞ should start with
power-behaved terms that correspond to terms in string perturbation theory.

The first term in the α′ expansion (7.1) beyond the supergravity amplitude is of order
R4, and corresponds to an interaction which preserves 16 supersymmetries in an effective
action, that may be expressed as an integral over 16 Grassmann coordinates. The next
term is of order D4R4, which is associated with an effective interaction which preserves
8 supersymmetries, that may be expressed as an integral over 24 superspace Grassmann
coordinates. These have T -dependent coefficients [5, 6, 7]

E(0,0)(T ) = 2ζ(3)E 3
2
(T ) , E(1,0)(T ) = ζ(5) E 5

2
(T ) , (7.2)

where Es(T ) is an SL(2,Z) non-holomorphic Eisenstein series, which was encountered earlier
in a different context and was defined in (2.30). Although these solutions were initially
discovered by indirect means they were subsequently determined by supersymmetry, which
constrains the coefficients to satisfy Laplace eigenvalue equations of the form (2.32) with
s = 3/2 (in the R4) case or 5/2 (in the D4R4 case) [6, 7].

The perturbative and non-perturbative content of these coefficients can easily be ex-
tracted by considering the Fourier modes of Es(T ), defined by

2ζ(2s)Es(T ) =
∑
N 6=0

FN(T2) e2iπNT1 . (7.3)

The non-zero modes FN 6=0(T2) contain the effects of D-instantons, with exponentially sup-
pressed asymptotic behavior, FN(T2) ∼ e−2π|N |T2 , at weak coupling (T2 → ∞). The zero
mode, on the other hand, is a sum of two power behaved terms T s2 and T 1−s

2 which correspond
to particular terms in string perturbation theory,

F0(T2) = 2ζ(2s)T s2 +
2π1/2Γ(s− 1/2)

Γ(s)
ζ(2s− 1)T 1−s

2 , (7.4)

Substituting the zero mode parts of the coefficients E(0,0)(T ) and E(1,0)(T ), as defined in (7.2),
into (7.1) gives the contributions that are power-behaved in the coupling constant, Thus,
the perturbative contribution to the R4 term is obtained by setting s = 3/2,

T
1
2

2

∫ 1
2

− 1
2

E(0,0)(T ) dT1 = 2ζ(3)T
1
2

2

∫ 1
2

− 1
2

E 3
2
(T ) dT1 = 2ζ(3)T 2

2 + 4ζ(2) , (7.5)

which contains the sum of tree-level and one-loop contributions. Similarly, the perturbative
contribution to the coefficient of σ2R4 is

T
− 1

2
2

∫ 1
2

− 1
2

E(1,0)(T ) dT1 = ζ(5)T
− 1

2
2

∫ 1
2

− 1
2

E 5
2
(T ) dT1 = ζ(5)T 2

2 +
4

3
ζ(4)T−2

2 , (7.6)
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which contains the sum of tree-level and two-loop contributions. The precise coefficients of
the perturbative terms in (7.5) and (7.6) match those determined directly from perturbative
string calculations reviewed in section 2.3. The tree-level terms were shown in (2.23) while the

genus-one term in (7.5) is given (up to a normalization factor) by
∫
dµ1 B(0,0)

1 . Similarly, the

genus-two term in (7.6) is given (up to a normalization factor) by
∫
dµ2 B(1,0)

2 [14]. This also
accounts for the absence of a one-loop contribution to σ2R4 in the ten-dimensional theory.
Generalizations of these results to lower dimensional theories with maximal supersymmetry
obtained by toroidal compactification involve combinations of Eisenstein series for higher-
rank duality groups, which are functions of more moduli [27, 28, 29] (see also [30]).

The coefficient of the term D6R4 in the low energy expansion which preserves 4 supersym-
metries, E0,1, is not an Eisenstein series but is expected to be a solution of the inhomogeneous
Laplace equation

(∆T − 12) E(0,1)(T ) = −(2ζ(3)E 3
2
)2 (7.7)

This equation was motivated by M-theory considerations in [8] based on considering the
compactification of Feynman diagrams of eleven-dimensional supergravity on a torus. The
solution to this equation has an asymptotic expansion for large T2 that gives a contribution
to the coefficient of the σ3R4 term in (7.1) of the form

1

T2

∫ 1
2

− 1
2

E(0,1)(T ) dT1 =
2

3
ζ(3)2T 2

2 +
4

3
ζ(2)ζ(3) +

8

5
ζ(2)2T−2

2 +
4

27
ζ(6)T−4

2 +O(e−2πT2) (7.8)

which contains four perturbative terms that are power-behaved in T2 that correspond to tree-
level, one-loop, two-loop and three-loop string theory contributions, together with an infinite
sum of D-instanton contributions. The ratio of the tree-level and one-loop contributions
agrees with the explicit string perturbation theory calculations and the overall normalization
has been chosen to be consistent with a tree-level amplitude normalized to 3/σ3.

We can now compare the ratio of the two-loop perturbative contribution to E(0,1) σ3R4

with the two-loop contribution to E(1,0) σ2R4. First note that the expressions for E(1,0) and
E(0,1) in (7.6) and (7.8) have been normalized to ensure that their tree-level contributions
have the correct relative normalizations, which accords with the tree-level expansion of the
amplitude as given in (2.23),

A(0)
4

∣∣∣
σ2R4+σ3R4

= κ2
10T

2
2

(
ζ(5)σ2 +

2

3
ζ(3)2 σ3

)
R4. (7.9)

The ratio of two-loop contributions to the σ2R4 and σ3R4 terms (the T−2
2 terms in (7.6)

and (7.8)) is given by ∫
M2

dµ2 B(0,1)
2∫

M2
dµ2 B(1,0)

2

=
8
5
ζ(2)2

4
3
ζ(4)

= 3 . (7.10)
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From (3.20) with h = 2 we see that this means that the integral of the Zhang–Kawazumi
invariant should take the value∫

M2

dµ2 ϕ =
1

64

∫
M2

dµ2 B(0,1)
2 =

3

64

∫
M2

dµ2 B(1,0)
2 =

3

2
V2 =

2π3

45
, (7.11)

where V2 = 4π3/135 is the volume of M2 and we have substituted the value B(1,0)
2 = 32

obtained in (2.39). We note here that, by the construction of ϕ given in (3.14), we have
ϕ(Ω) > 0 for all Ω, which is consistent with the sign of the proposed relation (7.11).

It would be satisfying to find a method of evaluating
∫
M2

dµ2 ϕ directly, which would
provide a precise check on the SL(2,Z)-duality prediction and might point to some interesting
mathematical properties of ϕ.
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A Expressing ϕ as a single integral over Σ

For completeness, we here determine a second alternative expression for ϕ based on [12, 13]
that is given in terms of a single integral over the surface Σ. To obtain this expression, we
start from the following expression for the Faltings invariant, given in [12],

δ(Ω) = −12 ln(2π)− 2 ln detY − 2 ln |Mνpνq |+
∫

Θ+p−q
µ ln ‖ϑ‖2 (A.1)

In this formula, p, q are two distinct branch points, and νp and νq their associated odd spin
structures. The expression for δ(Ω) is independent of the choice made for p, q. The modular
object Mνpνq entered the calculations of the genus-two superstring measure in [31], and
may be expressed with the help of ϑ-constants and of the six distinct genus-two odd spin
structures νi with i = 1, · · · , 6,

M2
νiνj

= π4
∏
k 6=i,j

ϑ[νi + νj + νk](0,Ω)4 (A.2)
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Finally, Θ is the ϑ-divisor, namely the set of points ζ ∈ J(Ω) such that ϑ(ζ,Ω) = 0. Using
the Riemann vanishing theorem in genus-two, Θ may be parametrized as follows,

Θ =

{
ζI =

∫ z

z0

ωI −∆I(z0), z ∈ Σ

}
(A.3)

where ∆I(z0) is the Riemann vector defined in(3.11). Next, we proceed to reformulate the
integral over the shifted ϑ-divisor in terms of more familiar objects. To do so, we use the
relation νp = p−∆ to recast the ϑ-function into one with spin structure characteristic νp,

ln ‖ϑ(z + p− q −∆,Ω)‖2 = ln |ϑ[νp](z − q,Ω)|2 +
1

2
ln(detY )

−2π
∑
I,J

Y −1
IJ

(
Im

∫ z

q

ωI

)(
Im

∫ z

q

ωJ

)
(A.4)

We make use of the prime form expressed with respect to spin structure νp,

E(z, w) =
ϑ[νp](z − w,Ω)

hνp(z)hνp(w)
(A.5)

for w = q, where hν(z) is the normalized holomorphic 1/2 form with odd spin structure ν.
Recasting the first term in (A.4) in terms of the prime form, we find,

ln ‖ϑ(z + p− q −∆,Ω)‖2 = ln |E(z, q)|2 + ln |hνp(z)|2 + ln |hνp(q)|2

+
1

2
ln(detY )− 2πIm (z − q)tY −1Im (z − q) (A.6)

Combining the first and the last terms, we recognize the appearance of −G(z, q), where the
scalar Green function G was defined in (2.17). Putting all together, ϕ takes the form,

ϕ(Ω) = ϕ̃0 −
1

2
ln |Ψ10| − 5 ln

∣∣∣∣hνp(q)2

Mνp,νq

∣∣∣∣+ 5

∫
Σ

µΣ(z)
{
G(z, q)− ln |hνp(z)|2

}
(A.7)

Note that the combination hνp(q)2/Mνp,νq is independent of the branch point νp. Given that
the total expression for ϕ is independent of the branch points p, q, we see that the integral
in (A.7) must be independent of the branch point p.
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B Derivation of asymptotic limits of Φ

In this appendix we derive the asymptotic limits quoted in section 6.1.

B.1 The separating degeneration

To leading order in the separating degeneration τ → 0, the genus-two ϑ-function tends to,

ϑ

[
x′1 x′′1
x′2 x′′2

]
(0,Ω) = ϑ[x′1 x

′′
1](0, τ1)ϑ[x′2 x

′′
2](0, τ2) +O(τ 2) (B.1)

where ϑ[x′I x
′′
I ](0, τI) are the genus-one ϑ-functions with real characteristics x′I x

′′
I , defined in

(2.18). They may be expressed in terms of the ϑ-function with zero characteristics by,

ϑ[x′I x
′′
I ](0, τI) = eπiτI(x′I)2+2πix′Ix

′′
I ϑ(x′IτI + x′′I , τI) (B.2)

The limit of Φ then becomes,

ln Φ =
2∏
I=1

(∫ 1

0

dx′I

∫ 1

0

dx′′I ln |ϑ[x′I x
′′
I ](0, τI)|2

)
+O(τ 2) (B.3)

To evaluate each factored integral, we first express the ϑ-function with characteristics in
terms of ϑ with zero characteristics using (B.2), and then use the infinite product represen-
tation of the latter,

lnϑ(z, τ) =
∞∑
n=1

ln
[(

1− e2πinτ
) (

1− eπi(2nτ+2z−1−τ)
) (

1− eπi(2nτ−2z−1−τ)
)]
. (B.4)

The x′ and x′′ integrals in (B.3) may be carried out by considering each of the three factors
in the square parentheses in turn, as follows. The first factor trivially gives∫ 1

0

dx′I

∫ 1

0

dx′′I

∞∑
n=1

ln
(
1− e2πinτ

)
=
∞∑
n=1

ln
(
1− e2πinτ

)
. (B.5)

The second factor contributes zero, since the logarithm has a Taylor expansion in powers
of the exponential in its argument and the modulus of the exponential is strictly less than
1. Each term in the Taylor series vanishes by virtue of the x′′ integral. In the third factor,
terms with n > 1 vanish analogously, but for the n = 1 term the expansion breaks down
when 1

2
≤ x′ ≤ 1. Thus, that region needs to be re-expanded by writing the argument of

the logarithm as (1− eπi(τ−x′τ−2x′′−1)) = −eπi(τ−2x′τ−2x′′−1)(1− e−πi(τ−2x′τ−2x′′−1)) leading to
a non-zero contribution given by∫ 1

1
2

dx′I

∫ 1

0

dx′′I iπ ((1− 2x′)τ − 2x′′ − 1) + iπ = −1

4
iπτ . (B.6)
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In addition to the above terms, in converting from lnϑ(z, τ) to log ϑ[x′, x′′](0, τ) using (B.2)
we also need to evaluate the logarithm of the prefactor

πi

∫ 1

0

dx′
∫ 1

0

dx′′ (τ(x′)2 + 2x′x′′) = πi

∫ 1

0

dx′ (τ(x′)2 + x′) =
1

3
iπτ +

1

2
iπ (B.7)

Combining (B.5), (B.6), and (B.7), the final result is∫ 1

0

dx′I

∫ 1

0

dx′′I ln |ϑ[x′I x
′′
I ](0, τI)|2 = ln |η(τI)|2

As a result, the asymptotics of Φ is given by

Φ = |η(τ1)η(τ2)|2 +O(τ 2) . (B.8)

B.2 Non-separating degeneration

In terms of the parametrization (6.7) the non-separating degeneration is given by τ2 → i∞.
Later on, we shall be more precise in the finite part of this limit. To extract the leading
asymptotics of the genus-two ϑ-function, given by (5.3), we isolate the τ2-dependence by
recasting the double sum over n1, n2 as a simple sum over n = n2 of genus-one ϑ-functions.
For brevity, we shall use the notation xI = x′I and yI = x′′I . We find,

ϑ[x](0,Ω) =
∑
n∈Z

Cn ϑ(x1τ1 + (n+ x2)τ + y1, τ1) (B.9)

Cn = exp iπ
{
τ1x

2
1 + τ2(n+ x2)2 + 2τx1(n+ x2) + 2x1y1 + 2(n+ x2)y2

}
The leading asymptotics depends on the range chosen for the value of the characteristics. To
obtain the asymptotics in as simple a manner as possible, we choose the integration ranges
for the torus to be −1

2
≤ x′I , x

′′
I ≤ 1

2
. With this choice, it is the term n = 0 which dominates,

and we find the following asymptotics, to leading order,

ϑ[x](0,Ω) = C0 ϑ(τ1x1 + τx2 + y1, τ1) (B.10)

The term in τx2 may be decomposed by making the following change of variables,

x1 → x̃1 = x1 + x2(Im τ)/(Im τ1)

y1 → ỹ1 = y1 + x2

(
Re (τ)− (Im τ)(Re τ1)/(Im τ1)

)
(B.11)

in terms of which the leading asymptotics of ln |ϑ|2 becomes,

ln |ϑ[x](0,Ω)|2 = ln |ϑ[x̃1 ỹ1](0, τ1)|2 − 2πx2
2

detY

Im τ1

(B.12)
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where detY = det Im Ω = (Im τ1)(Im τ2) − (Im τ)2. Using translation invariance of the
integration measure over the torus T 4, we have dx1dy1 = dx̃1dỹ1 and the integration range
is unchanged by periodicity. Carrying out the integrations over x2 and y2, we find,

ln Φ =

∫ 1
2

− 1
2

dx̃1

∫ 1
2

− 1
2

dỹ1

(
ln |ϑ[x̃1 ỹ1](0, τ1)|2 − π

6

detY

Im τ1

)
(B.13)

Using the result of (B.8) and (B.8) for the remaining integral, we find,

ln Φ = ln |η(τ1)|2 − π

6

(
Im τ2 −

(Im τ)2

Im τ1

)
(B.14)

Finally, we shall work out the orders of the terms that we have omitted by retaining only the
leading order in τ2 → i∞. We use the decomposition of the genus-two ϑ-function in (B.9),
still for the characteristics −1

2
≤ xI , yI ≤ 1

2
. The suppression factors are governed by the

ratio of the correction terms, divided by the leading term, and take the form,∣∣∣∣CnC0

∣∣∣∣ = exp 2π
{
− (Im τ2)(n2 + 2nx2)− 2Im (τ)x1n

}
(B.15)

Since n2 + 2nx2 ≥ |n|(|n| − 2|x2|), the contributions with |n| ≥ 2 are suppressed by at least
positive integer powers of e−2πIm (τ2). For n = ±1, the suppression is lesser, and is given by

exp 2π
{
− (Im τ2)(1± 2x2)∓ 2(Im τ)x1

}ϑ(x1τ1 + (x2 ± 1)τ + y1, τ1)

ϑ(x1τ1 + x2τ + y1, τ1)
(B.16)

Upon integration over x2 in the range −1
2
≤ x2 ≤ 1

2
, the correction is found to be power law

suppressed by a factor (Im τ2)−1. Thus, the terms we have neglected are either exponentially
suppressed for |n| ≥ 2 and power suppressed for |n| = 1.

B.3 The genus-one Arakelov Green function

The genus-one Green function is standard up to normalization choices. The canonically
normalized Green functionG was given in (2.25) while the Arakelov normalization is obtained
by fixing the arbitrary additive constant in the Green function so that the integral of the
Arakelov Green function ln g vanishes. In the notation of (3.6), we find

ln g(z) = ln

∣∣∣∣ϑ1(z, τ)

η(τ)

∣∣∣∣− π(Im z)2

Im τ
(B.17)

We recall the product formula for ϑ1(z, τ),

ϑ1(z, τ) = −2eiπτ/4 sin(πz)
∞∏
m=1

(
1− e2πimτ

) (
1− e2πimτ+2πiz

) (
1− e2πimτ−2πiz

)
(B.18)
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The Arakelov Green function satisfies,∫
Σ

d2z ln g(z − w) = 0 (B.19)

The integral is over the fundamental domain of the genus-one surface Σ generated by the
lattice with periods 1 and τ1. Note that the canonical Green function G in (2.25) and the
Arakelov Green function ln g in (B.17) are related by

G(z, w) = −2 ln g(z − w) + 2 ln(2π|η|2) , (B.20)

where we have used the fact that ϑ′(0, τ) = −2πη(τ)3.

C Direct calculation of separating degeneration of ϕ

We calculate the separating degeneration asymptotics of ϕ directly from the formula for ϕ
given in (3.21), with G defined in (2.17), and P defined in (3.4). In the parametrization of
(6.7), we seek the asymptotics as τ → 0 while keeping τI , I = 1, 2 fixed. The surface Σ
pinches off to the union of two genus 1 surfaces ΣI with one puncture pI each.

The leading asymptotics of the normalized holomorphic Abelian differentials ωtI on the

genus-two surface is given by ωtI(z) = ω
(1)
I (z) +O(t) for z ∈ ΣI and ωtI(z) = O(t) for z 6∈ ΣI ,

with τ = πit/2 + O(t2). Here, ω
(1)
I are the normalized holomorphic Abelian differentials

on the genus-one components ΣI . Representing ΣI by a flat torus with modulus τI , and
complex coordinates zI , z̄I with periods 1 and τI , we have ω

(1)
I (z) = dzI . The imaginary part

of the period matrix becomes, YIJ = δIJIm τI + O(t). Using this information, we evaluate
the degeneration limit of the form P (x, y) of (3.4) and we find to leading order,

z, w ∈ ΣI P (z, w) = −4(Im τI)
−2d2zd2w

z ∈ Σ1, w ∈ Σ2 P (z, w) = 4(Im τ1)−1(Im τ2)−1d2zd2w (C.1)

where we recall that d2z = idz ∧ dz̄/2, so that
∫

ΣI
d2zI = Im τI . The asymptotics of the

Green function G was carefully evaluated in formula (3.19) of [14], and is given by,

z, w ∈ ΣI G(z, w) = G(1)(z, w; τI) +O(τ) (C.2)

z ∈ Σ1, w ∈ Σ2 G(z, w) = ln
|τ |
2π

+G(1)(z, p1, τ1) +G(1)(w, p2; τ2) +O(τ)

To make its genus-one nature and modulus explicit, we have denoted the genus-one Green
function of (2.19) for modulus τI by G(1)(z, w; τI).
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To carry out the integrals of (3.21) in this limit, we proceed from (B.19) and (B.20), to
deduce the value of the following integral,∫

ΣI

d2zIG
(1)(zI , w; τI) = 2(Im τI) ln(2π|η(τI)|2) (C.3)

for any point w (as follows by translation invariance on the torus). Combining the limits of
P and G given above, and carrying out the integrals over z and w, we find,

ϕ = + ln(2π|η(τ1)|2) + ln(2π|η(τ2)|2)

− ln
|τ |
2π
− 2 ln(2π|η(τ1)|2)− 2 ln(2π|η(τ2)|2) (C.4)

The terms on the first line result from the integration over z, w on the same component ΣI ,
while the terms on the second line arise from z and w on opposite components ΣI . The
contribution from points in the funnel (present for non-zero t) tends to 0 as t→ 0, and may
be neglected. Minor simplification reproduces the separating degeneration asymptotics of
(6.9), which was obtained through the asymptotics from Φ in appendix B.
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