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Abstract

Conformal methods have proven to be very useful in the analysis global properties

and stability of vacuum spacetimes in general relativity. These methods transform

the physical spacetime into a different Lorentzian manifold known as the unphysical

spacetime where the ideal points at infinity are located at a finite position. This the-

sis makes use of conformal methods and applies them to various problems involving

trace-free matter models. In particular, it makes progress towards the understanding

of the evolution of unphysical spacetimes perturbed by trace-free matter as well as

the behaviour of the the matter itself. To this end, evolution equations (wave equa-

tions) are derived and analyzed for both the unphysical spacetime and the matter.

To investigate the relation between solutions of these wave equations to the Einstein

field equations, a suitable system of subsidiary evolution equations is also derived.

Furthermore, this thesis looks in detail at the behaviour of an unphysical spacetime

coupled to the simplest matter trace free model: the confomally invariant scalar

field. Finally, the system of conformal wave equations is used to show that the

deSitter spacetime is non-linearly stable under perturbations by trace-free matter.
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1 Introduction

1.1 General Relativity and the Einstein equations

The theory of General Relativity (GR), first developed in 1915 by Einstein, is one of

the greatest achievements in modern physics. In essence, it postulates that gravity

is not a force, but is the result of spacetime curvature [5]. A spacetime is a pair

(M, gab), where gab is the metric and M is a 4-dimensional manifold. A manifold

is an object which on a small, local scale looks different than on a global scale.

An example of this is a sphere; on a small enough scale of distance a sphere looks

like a flat plane, but if you look at it from a large enough scale of distance you

find that this is not the case. It is for this reason that the Earth appears flat from

the point of view of anyone standing on its surface. The metric is an object that

describes how things are measured on the manifold; together these two objects form

a spacetime. The universe that we live in is a 4-dimensional spacetime, since we

need four components to describe the behaviour of objects living in the spacetime

(three spatial coordinates and one time coordinate). This 4-dimensional spacetime

becomes curved in the presence of matter. This curvature is the very source of what

we perceive as the force of gravity. The metric is the main object of interest in

GR since, as mentioned beforehand, it describes the measurement of distances on

a manifold, however the measurement of distances on the manifold can be used to

quantify curvature. This means that the metric can be thought of as the relativistic

analogue of the gravitational potential, as in classical mechanics one obtains a force

by differentiating the necessary potential; likewise in GR, one obtains the curvature

(analogous to the gravitational tidal forces) by differentiating the metric. Precisely

how the curvature of spacetime is related to the presence of matter is given by the

Einstein field equations (EFEs)

Rab −
1

2
gabR + λgab =

8πG

c4
Tab, (1.1)

where Rab is the Ricci curvature tensor, which describes the curvature of the space-

time, R is the Ricci scalar curvature that is derived from Rab, λ is the cosmological

constant and Tab is the energy-momentum tensor (also known as the stress-energy

tensor), whose individual components describe the matter fields. Hence, the left

hand side of the EFEs completely describes the curvature and the right hand side

describes the distribution of matter. One can obtain the equations that describe the

7



1.1: General Relativity and the Einstein equations 8

vacuum of space simply by setting Tab in (1.1) to zero and then taking the trace of

the resulting equation, which gives

Rab = λgab. (1.2)

Despite their relatively simple appearance, the EFEs are extremely complicated

and very difficult to solve, so much that Einstein himself predicted that no one would

ever be able to find a solution to the equations. However, less than a year after the

EFEs were introduced to the scientific community, Karl Schwarzchild successfully

derived the simplest solution of the EFEs [32]. Since then a large number of exact

solutions have been found; much research has been devoted to the understanding of

these exact solutions and how they can be applied to various problems in physics.

1.1.1 Conformal methods in GR

Despite the success of GR in describing gravity and the nature of the universe, there

are noticeable limitations to the theory when one wants to extract useful information.

Two major problems were apparent when the theory was still considered new. The

first problem was related to the uniqueness of solutions. One of the main guiding

points that was used when developing the theory was that it should be invariant

under coordinate transformations. Physically, this means that any law in nature

should not depend on a particular choice of coordinates, since physical quantities do

not change based on our point of view. GR is indeed invariant under a coordinate

transformation, as a result it becomes possible to work in any system of coordinates

and produce correct results. However, this strength of the theory is at the same time

one of its biggest weaknesses. As a result of this invariance it becomes impossible to

decide whether a solution is unique i.e. to decide which solution is truly a new result

and not just an existing solution in a different coordinate system; we will return to

this problem later when we discuss the process of solving the necessary equations.

The second problem is related to the concept of infinity. An important concept

in physics is the study of objects at infinitely large distances. The inherent problem

with this idea is how does one define infinity? Let us suppose that we have a system

that is written in terms of polar coordinates (t, r, φ, θ). From this it is possible

to define infinity in a number of different ways. For example: we could set r to

be arbitrarily large and then analyse the behaviour of quantities like gravitational

radiation in this region over infinitely large regions of time, however it is not entirely

clear whether we will obtain the same result if we set first set t to be arbitrarily

large then move to the same value of r. Here is an alternative way of looking at

this problem, which is related to the so called background independence problem. In

many undergraduate physics courses, all of the equations that one studies are all

assumed to be in flat space. Additionally, when one wishes to solve these equations
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it is necessary to use boundary conditions. So in this sense, one usually analyses

some field equations with respect to the Minkowski metric as a background metric.

However, in GR the metric is no longer known a priori, since it is the very object that

one is trying to solve for. Furthermore, the metric is not a static object, it changes in

time, which means that the very arena in which one analyses the physical quantities

also changes. This means it becomes difficult to define precisely the exact location

of infinity and therefore to define the boundary conditions that one requires to solve

the problem.

In the 1960s Penrose proposed a solution to this problem. The idea was to combine

GR with a branch of mathematics called conformal geometry, which is the study

of transformations that preserve angles. The key idea of conformal geometry is a

conformal rescaling, which transforms the geometric object in question into another

shape [22, 23]. The most basic type of conformal rescaling is the multiplication of

all sides of a 2-dimensional Euclidean shape by a number. Doing this causes the size

of the shape to increase, but crucially the angles do not change. In GR however,

the objects that we analyse are not 2-dimensional; they are 4-dimensional objects

whose properties are described by the metric tensor. The conformal transformation

in this case has the form

gab = Ω2g̃ab, (1.3)

where Ω is a positive scalar function called the conformal factor, g̃ is the original

metric prior to the rescaling and is called the physical metric and g is the metric

after the rescaling and is called the unphysical metric. There is also the equivalent

contravariant metric conformal transformation

gab = Ω−2g̃ab.

Performing a conformal transformation on the metric transforms the spacetime

into a completely different spacetime known as the unphysical spacetime. In this

fully geometric point of view, there is only one single definition of infinity, namely at

the point where the conformal factor vanishes; in this sense only the conformal factor

defines infinity. In spite of the usefulness of this idea, there are some difficulties that

one encounters when using conformal methods. Firstly, it is not obvious whether or

not these conformal methods are compatible with the EFEs; we will return to this

particular challenge very shortly. Secondly, the equations that one needs to solve

and analyse increase considerably from ten (using the standard EFEs) to thirty-two;

this number increases further when working with spinors or tetrads. Additionally,

the use of conformal methods is not feasible if one wishes to discuss a theory with

higher dimensions, at least for the approach used in this thesis.



1.1: General Relativity and the Einstein equations 10

1.1.2 Global properties of solutions

Despite the complexity of the EFEs, a large number of exact solutions have been

found and studied [17, 33]. Usually, when constructing an exact solution in GR, one

has to make some simplifying assumptions. The most common type of simplification

is to consider situations with very high degrees of symmetry.

Typically, when one constructs an exact solution it is usually done in a coordi-

nate system adapted to the assumptions being made. Very often these coordinates

only cover and describe a portion of the entire spacetime. Thus, one needs to find

new coordinate systems that enable us to analyse the global properties of the space-

time. This process of attempting to identify a coordinate system that covers and

completely describes the entirety of the spacetime is referred to as trying to find a

maximal analytic extension of the spacetime [36].

Unfortunately, this process of trying to find a maximum analytic extension is not

physically feasible due to the fact that there are only certain portions of a spacetime

that can be described from an initial position in a spacetime, since the only things

that a single observer will be able to measure and influence is that which is contained

within their own light cone. In spite of this limitation, one would still like to be able

to construct global solutions and analyse global properties of spacetimes even if said

global properties might be naturally limited. A noteworthy theory that is relevant

to this point is the cosmic censorship conjecture (CCC) [24, 38]. The CCC can be

subdivided into two sub-categories: the weak CCC and the strong CCC. The weak

CCC roughly states that other than the big bang, no singularities can exist outside

of the event horizon of a black hole. The strong CCC, which is the more relevant

version of the CCC for this thesis, roughly states that it is always possible to predict

the fate of all observers, at least in the classical sense. This is relevant due to the

fact that we are trying to analyse the spacetime globally which, at least according

to the strong CCC, should be possible since the initial data enables one to predict

the worldline for observers given some initial data.

In order to properly analyse the global properties of spacetimes it is convenient

to formulate an initial value problem [4, 20, 37]. This problem involves taking

a differential equation that describes a certain system together with some initial

conditions in order to find solutions of the equation. The modelling of physical

systems frequently leads to the solving of an initial value problem, which in turn

helps us to understand how a system will evolve in time. However, in the case of GR,

this is not so easy. As mentioned previously, it is difficult to find unique solutions

in GR due to coordinate independence. This means that is is not clear whether

or not the EFEs give rise to a system of differential equations that can be solved.

Despite this, there are several principles in physics that can serve as guidelines to

the nature of the differential equations that we should obtain. One such principle is
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the causality principle, which says that the cause of something must always precede

the effect; as a result of this nothing can travel faster than the speed of light.

Amongst the various classes of partial differential equations, the only type that are

compatible with the causality principle are hyperbolic equations, since they allow

for finite propagation speed. This means that is should be possible to construct

some wave equations for the EFEs. This result was proven in 1952 by Choquet

Bruhat [6]. In essence, Choquet-Bruhat showed that it was possible to write the

EFEs as a system of wave equations by picking a particular choice of coordinates.

This procedure of extracting evolution equations from the EFEs is called hyperbolic

reduction [15, 29]. Hence, it becomes possible to formulate an initial value problem

for GR.

1.2 The initial value problem in GR

Let us elaborate on the procedure of formulating an initial value problem in more

detail. For the following analysis we will adopt a certain notation: any quantities

written with Latin indices a, b, c refer to objects that are tensorial and objects written

with Greek indices refer to any object that are evaluated with respect to a specific

coordinate system (even if the object in question happens to be a tensor). The

Ricci tensor can be written in terms of the metric tensor and its derivatives in the

following manner

Rµν = −1

2
gσρ∂σ∂ρgµν +∇(µΓν) + gσρg

αβΓσαµΓρβν + 2Γασβg
σβgα(µΓρν)β, (1.4)

where Γβαγ are the Christoffel symbols, which can be written in terms of derivatives

of the metric tensor

Γβαγ =
1

2
gβσ(∂γgσα + ∂αgγσ − ∂σgαγ), (1.5)

and we have defined Γβ as

Γβ ≡ gαγΓβαγ, (1.6)

the so called reduced Christoffel symbols. When examining equation (1.4), we notice

that the principal part (i.e. the highest order derivatives) governing the evolution

of the equations are the first two terms

− 1

2
gσρ∂σ∂ρgµν +∇(µΓν). (1.7)

The goal of this whole procedure is to recast the EFEs in a form that is hyperbolic,

but what do we mean by hyperbolic? A hyperbolic equation is one which possess the
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same basic properties as wave equations. Recall that the wave equation is written

as

�φ ≡ gab∇a∇bφ = ∇a∇aφ, (1.8)

where φ is some arbitrary variable and the differential operator � is known as the

wave operator or the d’Alembertian operator. The principal part of a hyperbolic

equation is usually this operator, though there are exceptions to this rule, most

noticeably when the physical variables described by φ are not massless; we will return

to this point when we discuss fluids. This equation has the following properties:

first, the initial value problem is well-posed, which means that given some initial

data that describes both the initial position and the initial velocity of the variable

(φ, ∂tφ) then it is possible to find a solution to (1.8) for at least a small amount

of time [29]. The next property of hyperbolic equations is that of Cauchy stability,

which, in essence, means that any solution that one obtains for some data set should

not look too different for any other solutions that are obtained from perturbations

of this same data set. It should be noted that this property of Cauchy stability is

not exclusive to hyperbolic equations. For example, it is possible to obtain stability

for parabolic equations, but crucially this is only possible for one direction in time.

For this reason, one can use parabolic equations for stability analysis of thermal

systems since thermodynamics is not time-reversible due to entropy; time flows in

one direction and parabolic equations can be used. However, since GR is a time

symmetric theory one must use other equations, which is one reason why the use of

hyperbolic equations is desirable. We will return to stability in much greater detail in

the final chapter of this thesis. Finally, there is the fact that the physical quantities

described by φ should propagate at a finite speed; this is especially important for

the causality principle since SR postulates that nothing should travel faster than

the speed of light. The important point is that any equation whose principal part

is the d’Alembertian operator is a hyperbolic equation and can be used to perform

an analysis of how a certain system will evolve.

Let us now return to (1.4) and its principal part (1.7). We can see if not for

the second term in (1.7) then (1.4) would be hyperbolic, which in turn would allow

one to formulate the EFEs as an initial value problem. The key to overcoming this

hurdle is as follows; we define introduce some quantities known as the coordinate

gauge source functions  Lµ(x) and then choose a coordinate system that satisfies the

following condition

�xµ = − Lµ(x). (1.9)

If this condition is satisfied it causes the second term of (1.7) to vanish as required.

These are the so called generalised wave coordinates [12], which enables one to
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construct a system of non-linear wave equations for gab. Given a choice of initial

data one then attempts to solve these wave equations in order to determine how a

particular spacetime will evolve.

The process of solving these equations in order to find global solutions is accom-

plished with a process known as the 3+1 decomposition [2, 3]. The 3+1 decompo-

sition is an approach to GR that involves slicing the 4-dimensional spacetime by a

large number of spacelike (meaning that the normal describing the flow of time is

always tangential to the surface) 3-dimensional surfaces called hypersurfaces. An

alternative way of thinking about the 3+1 decomposition is as follows; consider only

the spatial parts of the manifold at a specific moment in time. At this point, the

spacetime looks like a flat sheet that stretches out to infinity in the spatial direction.

We then consider this hypersurface at an infinitesimal moment later in time, and

then at another later point in time and so on. Then we build up a picture of space-

time as being a collection of spacelike hypersurfaces stacked on top of one another,

almost like leaves.

Figure 1.1: A visual representation of the 3+1 Decomposition

An important point is that this choice of 3+1 decomposition is not unique but

is based on an arbitrary choice of coordinate system. This is somewhat against

the spirit of GR since, in this sense, we are breaking the covariance and introduc-

ing a privileged time direction. There are other types of decompositions that can

be achieved with other choices of coordinates, such as the 2+2 decomposition [19].

Nonetheless, the 3+1 decomposition is a very useful method for constructing solu-

tions to the Einstein equations on a global scale. In order to form an initial value

problem using the 3+1 decomposition we follow this procedure. First, we take a

single initial hypersurface at a specific instant in time and prescribe some initial

conditions for the evolution equations; next we solve the equations in order to de-

termine exactly how the metric (and hence the entire gravitational system) evolves

over time. Unfortunately, not only is solving the equations a complex process, but

even the process of choosing initial data is highly non-trivial. It is easy to simply
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pick some initial conditions and solve the equations, however not every choice of

initial data corresponds to a solution of the EFEs. To pick initial data, one needs to

check that they satisfy the constraint equations of GR. We will consider this whole

process in more detail later on in this thesis.

1.2.1 Asymptotics

One of the biggest applications of conformal methods in GR is to the field of asymp-

totics, namely the behaviour of the gravitational field at infinity. Central to this

field is the notion of asymptotic simplicity [22, 28, 34]. Physically, an asymptotically

simple spacetime is one which, far away from the source of the gravitational field,

looks like either Minkowski space, de Sitter or anti de Sitter space depending on

whether the universe has a cosmological constant of zero, plus one or minus one,

respectively. This is intuitive, since the matter is the source of gravity. Therefore,

far away from any matter, you expect the spacetime to appear like a vacuum. A

more specific version of asymptotic simplicity is that of asymptotic flatness, where

the spacetime looks exclusively like Minkowski in the asymptotic region.

Another concept that is vitally important to the study of asymptotics is that

of an isolated system. An isolated system is an idealisation that is often used to

model physical systems. The idea is as follows: consider a single gravitating body

located in the middle of flat space, then one makes the assumption that this is the

only gravitating body in existence. Next, one proceeds to analyse the behaviour of

the gravitational field of this system as one moves farther and farther away from

the source. While this may be an idealisation, it is not an unreasonable one, since

gravity is a very weak force that decays very quickly via the inverse square law.

Also, within the fields of astrophysics and cosmology, one typically works on very

large scales of distance where gravitational interactions are negligible. Hence, it is

natural to model various systems as isolated systems. Furthermore, in this model,

we ignore the effects of the expansion of the universe. This approach enables us to

define concepts of physical interest, such as: the total energy of the system, or the

mass lost due to gravitational radiation. Spacetimes with a vanishing cosmological

constant and matter with a suitable decay rate play an important role in the analysis

of these isolated systems.

From the point of view of conformal methods asymptotic simplicity is defined as

follows. First, we consider a spacetime (M̃, g̃ab); such a spacetime is said to be

asymptotically simple if it is possible to extend said spacetime to an unphysical

spacetime (M, gab) with a transformation of the form (1.3). This unphysical space-

time (M, gab) has the following properties: firstly, it has a boundary, which we will

denote I . At all points on (M, gab) the conformal factor Ω does not vanish, except

for I where Ω = 0, but importantly its derivative, dΩ, is non-zero. Finally, all null
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like geodesics on (M̃, g̃ab) acquire a distinct endpoint on I . It should be noted that

this whole picture excludes black holes and singularities .

This is an intuitive definition, since we expect certain conditions to be satisfied

at infinity. First of all, we expect all gravitational interactions to vanish at infinity;

this turns out to be the case in the physical spacetime, however, when transforming

into the unphysical spacetime then not all of the relevant quantities vanish. Conse-

quently, this means that one can still extract useful information, furthermore, the

point where Ω = 0, which represents infinity is the simplest case, as one would ex-

pect. Finally, dΩ does not vanish because infinity is represented by a hypersurface

and this hypersurface must have a distinct direction, which is defined by the normal.

1.3 Outlook of the thesis

In chapter 2 of this thesis, we will take a look at the various mathematical tools

needed for the derivation of results in this thesis. We will look at general definitions

of curvature, tensors and connections before moving on to the conformal versions

of these quantities including: the Schouten tensor, the Weyl tensor and conformal

transformations. From there, we will combine the two in order to show that simply

applying a transformation law of the form (1.3) leads to equations that are singular;

we will then give a derivation of a conformally regular version of the EFEs.

In chapter 3, we will turn our attention to the derivation of wave equations de-

scribing the evolution of conformal spacetimes perturbed by trace-free matter. We

will include an overview of the vacuum case before giving a derivation of the wave

equations with trace-free matter. Furthermore, we will show that any solution to

the wave equations also implies a solution to the corresponding field equations.

Chapter 4 will be concerned with the derivation of evolution equations for the

trace-free matter. Essentially, this will follow a very similar procedure to chapter

3; namely, deriving wave equations describing the evolution of trace-free matter

models and then showing that any solution the wave equation implies a solution

to the corresponding field equations. We will analyse four different matter models:

the conformally invariant scalar field, electromagnetism, classical Yang Mills and

radiation fluids.

Chapter 5 will step back from wave equations and instead look at the coupling

of a simple scalar field matter model to the conformally regular field equations.

From then, we will derive the field equations for this particular spacetime and then

proceed to predict how this particular spacetime will evolve. Finally, we will look

at conformal geodesics and the conformal geodesics for this spacetime.

Chapter 6 will be concerned with initial data and the procedure for solving the

wave equations derived in chapter 4. We will take a more in depth look at the
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3+1 decomposition and how all the required equations can be reformulated in this

picture. From here, we will proceed to prove a result that tells us what variables we

need to completely determine the initial data.

Finally, in Chapter 7, we will look at stability. We will give an overview of stability

and explain how this is related to the work done in prior chapters. We will also use

this to prove the global stability of the de Sitter spacetime.



2 Mathematical prerequisites of

GR

2.1 Differential Geometry, Manifolds and Tensors

2.1.1 Manifolds and tangent spaces

The mathematical language of GR is differential geometry and differential geometry

is the study of manifolds [36, 37]. Recall that we gave a brief, non-rigorous definition

of what a manifold is in the introduction; we will now give a more detailed definition

of a manifold. A manifold is a combination of a topological space M (i.e. a collection

of objects that have some notion of distance) and a maximal atlas. An atlas is a

collection of charts; a chart is a pair (U ;φ) where U ⊂ M and φ : U → Rn (i.e.

U is a small part of the space M and φ is a coordinate system that represents the

position of any item in U as a collection of numbers). More precisely, U is what is

called an open set, namely a section of a space for which it is always possible to draw

a ball (i.e. a circular shape of any arbitrary dimension) that is contained within said

section, provided we make the radius of the ball small enough. This of course means

that we must exclude the boundaries of the section, since if we draw a ball with

its centre on the boundary itself, then it will be impossible to completely contain

this ball within U regardless of how small we make our ball. This idea of using an

open set is important since, from a classical point of view, the spacetime must be

continuous and open sets provide a natural way of defining continuous objects.

Let us put this idea of an atlas into context by doing a side-by-side comparison

with a real life example, namely a world atlas. An atlas of the world can be thought

of as an atlas in the mathematical sense. Each page of the atlas representing a

country or continent is a subspace U and the markers on the side of the page are

φ; both together are a chart. The collection of all possible charts covering every

section of the space is called a maximal atlas.

An important idea in differential geometry is the manipulation of geometric ob-

jects, such as vectors, on the surface of a manifold. Unlike in Euclidean geometry,

one cannot simply add or subtract two vectors together and get another vector.

Thus, one needs a new system for algebraically manipulating vectors on a differen-

tiable manifold; this leads to the idea of a tangent space. It is possible to recover the

17
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properties of Euclidean geometry on a differential manifold since on a small enough

distance scale, all surfaces appear flat. This property of local flatness enables us to

define at every point on the manifold a tangent space. The tangent space at an arbi-

trary point p on a manifoldM (denoted by Tp(M)), is a vector space, which contains

all possible vectors that are locally tangential to the surface. As is the case with

all vector spaces, it is crucial to define a basis, i.e. a set of unit vectors, of Tp(M).

This basis is characterized by a set of partial derivative operators ∂/∂xµ. This is

intuitive because partial derivatives mean only one variable is changed, whilst all

others remain constant (analogous to moving in one direction). Analogous to stan-

dard vectors there also exists a dual vector space T ∗p (M) such that when an element

of this dual space is multiplied with an element of the standard tangent space, then

the result is a number. T ∗p (M) has the same dimension as Tp(M) and its elements

are covectors.

2.1.2 Tensors

Using these tangents spaces as basic building blocks, we can define objects called

tensors. Tensors are higher rank extensions of scalars and vectors; they can be

expressed as a multilinear map (i.e. they map the product of several vector spaces

to a single vector space). A contravariant tensor of rank k is defined as a multilinear

map

M : T ∗(M)× T ∗(M)× ...× T ∗(M)→ R,

where there are k number of dual tangent spaces. Put in other words, if we have a

contravariant tensor of some rank and we act on it with a covariant tensor of the

same rank then the end result is just a scalar.

Conversely, the definition of a covariant tensor is one that maps contravariant

objects to real numbers. A covariant tensor of rank l is then defined as

M : T (M)× T (M)× ...× T (M)→ R,

where the total number of tangent spaces is given by l. Similarly, a mixed tensor of

rank m is defined as

M : T (M)× T (M)× ...× T (M)× T ∗(M)× T ∗(M)× ... T ∗(M)→ R,

where there are k dual tangent spaces and l tangent spaces and m = k + l. An

example that many will likely be familiar with is the scalar product. In terms of

vectors and covectors, the scalar product is defined as
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viv
i = v1v

1 + v2v
2 + ...+ vnv

n,

we can see that upon multiplying a contravariant vector vi (represented by the upper

index) with a covariant vector vi (represented by the lower index) we end up with a

scalar. So, by acting on a covector with a contravariant vector of the same rank, we

have obtained a number, as the above definition has stated. Similarly if one acts on

a contravariant tensor of rank two T ab with a covariant tensor of rank two Tab one

would once again end up with a number.

The most important property of these quantities is how they behave under a

coordinate transformation. Tensors are constructed from multiple vector spaces,

whose elements are vectors. The crucial point of vectors is that equations expressed

in terms of vector quantities do not depend on a particular choice of coordinates.

This property of vectors masks an extremely important property of physics, namely

the fact that physical quantities should be independent of an arbitrary choice of

coordinates. This is intuitive, since physical quantities should not change depending

on how you choose to measure them. For example, let us suppose that we have

some vector and we measure it in both a Cartesian coordinate system and a Polar

coordinate system. Regardless of which coordinate system we use to measure the

vector, the value of the magnitude of the vector that we measure remains the same.

Crucially, as tensors are built up from vectors, this means that the same property

carries over to tensors, meaning that tensors themselves are independent of any

coordinate transformation. This property of tensors being coordinate independent

and its connection to physics is summed up nicely in the Covariance Principle. The

covariance principle states that all physical equations should contain tensors only,

since only tensors have this property of transforming properly under a coordinate

transformation.

Let us consider the transformation of coordinates from one frame of reference

(x0, x1, x2, x3) to another (x′0, x′1, x′2, x′3). Let us now consider the functions that

express the variables of the x coordinate system in terms of the variables of the x′

coordinate system i.e. xn = f 0(x′0, x′1, x′2, x′3), then the general transformation law

for a tensor of an arbitrary rank is

Tα1α2...αNβ1β2...βM = Λα1
µ1Λα2

µ2 . . .Λ
αM
µM Λ̃ν1

β1Λ̃
ν2
β2 . . . Λ̃

νN
βNT

′µ1µ2...µN
ν1ν2...νM , (2.1)

where Λi
j and Λ̃i

j are transformation matrices, which are defined as

Λµ
ν ≡

∂xµ

∂x′ν
, Λ̃µ

ν ≡
∂x′µ

∂xν
.

Any tensor of any arbitrary rank follows this transformation law and any physical

laws are therefore invariant under an arbitrary coordinate transformation as a result.
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The metric tensor

By far the most important tensor in GR, is the metric tensor gab. As mentioned in

the introduction, the metric tensor is the very source of gravity, as it enables one

to define concepts like distance and curvature [37]. It is possible to represent the

metric tensor as a 4× 4 matrix with 16 components

gµν =


g11 g12 g13 g14

g21 g22 g23 g24

g31 g23 g33 g34

g41 g42 g43 g44

 . (2.2)

The metric tensor is a symmetric, non-degenerate, rank 2 covariant tensor, mean-

ing that gab = gba and that it is possible to construct an inverse of the metric gab.

The metric is used in calculations to transform contravariant tensors into covariant

tensors and vice versa

gabAb = Aa, Aa = gabA
b.

Therefore, using the metric we can raise and lower the indices as we please, almost

like juggling indices. Consequently, we can think of covariant, contravariant and

mixed tensors as being different representations of the same geometric quantity.

There is also an expression for the contraction of two different metric tensors

gabg
bc ≡ δca,

where δca is the Kronecker delta symbol, which is nothing more than the unit matrix

δνµ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.3)

Building on this, we can deduce the equation for when two metrics are contracted

on both their indices gabg
ab = d, where d is the dimension of the manifold that we

are working with; in our case since we are working with 4-dimensional spacetimes

d = 4. In addition to transforming vectors and tensors, the metric is also used to

measure distances in spacetime, with said spacetime distance being given by

ds2 = gµνdx
µdxν .

This equation can be used to show that all distances in spacetime are completely

invariant. Even though in SR both time and distance separately are relative to an

observer, together as a unified quantity they become an invariant quantity. Another

important characteristic of the metric is the metric signature, which is simply the
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number of positive, negative and zero eigenvalues of the matrix gab. A metric that

has three eigenvalues of one sign and one of the opposite sign is known as a Lorentzian

metric. In this thesis we will be working with the (−1, 1, 1, 1) signature, meaning

the metric has three positive eigenvalues and one negative.

These are some of the mathematical properties of the metric tensor, but just what

is the metric and why does it represent the gravitational field? The metric tensor is

a generalization of the dot product between two tangent vectors. The dot product

is used to measure the angle and lengths between two tangent vectors, which in turn

can tell us how space is curved. If we have two vectors separated by a certain angle

and we transport them along a flat surface then this angle will not change, however,

this will not be the case for a curved surface. Furthermore, how quickly the angles

change will tell us precisely how much the surface is curved. GR tells us that this

curvature is the source of gravity, hence the metric tensor is the source of gravity

itself.

This particular point also enables one to deduce a link between coordinate trans-

formations and the gravitational field. As we mentioned earlier, on a local scale

all surfaces appear flat. The metric that describes a flat surface is the Minkowski

metric

ηµν ≡ diag(−1, 1, 1, 1),

as a result of local flatness it is possible to define a coordinate system where gab → ηab

at a certain point. We may define this transformation law using (2.1)

gµν = Λµ
(0)αΛν

(0)βη
αβ.

This means that if we know the transformation law from the local inertial frame

of reference to an arbitrary frame of reference, we know the metric in this arbitrary

frame of reference and hence we know the gravitational field, which is encoded in

the metric.

2.2 Connections and curvature

2.2.1 Riemannian curvature and the Levi-Civita connection

Although we have defined the notion of a tensor and its properties, we have not yet

specified any rules or laws concerning the motion of tensors or vectors from one point

to another on a manifold. To do so, we introduce the concept of a connection [36, 37].

A connection describes the way in which vectors may be transported from one point

to another on a manifold. Just as there are many different ways of moving from one

point on the manifold to another, there exist an equal number of connections.
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The most common connection in GR and certainly the most familiar to under-

graduate students is the Levi-Civita connection. A Levi-Civita connection ∇, is a

torsion-free metric connection, meaning that it satisfies the following two properties:

∇agbc = 0, (2.4a)

∇a∇bφ−∇b∇aφ = 0. (2.4b)

If any connection satisfies (2.4a) then we say that the connection is metric com-

patible. The physical interpretation of this property is that angles between vectors

are preserved when they are transported along the paths of geodesics; since the

metric tensor is used to measure the length and angles between pairs of tangent

vectors and (2.4a) is the form of the geodesic equation applied to a rank-2 tensor.

If any connection satisfies (2.4b) then we say that the connection is torsion free.

Physically, a torsion free metric means that any vectors or physical quantities have

no tendency to twist when parallel transported along a manifold. The fundamental

result of Riemannian geometry states that there is a unique connection that satisfies

these two properties; such a connection is the Levi-Civita connection. A spacetime

manifold is a Lorentzian manifold, however the fundamental result of Riemannian

geometry works equally well in the Lorentzian case, meaning it is always possible to

specify a Levi-Civita connection for an arbitrary spacetime manifold. In the theory

of Riemannian manifolds, and in all first courses in GR, the Levi-Civita connection

is called the covariant derivative. The components of a connection with respect

to some local coordinates are called the connection coefficients ; for the Levi-Civita

connection, the connection coefficients are the Christoffel symbols, first given by

equation (1.5).

A more intuitive and in-depth explanation for the Christoffel symbols is as follows.

Recall that all laws of physics should remain invariant under a change of coordinates;

consequently all equations should contain tensors only. The main problem with sev-

eral fundamental laws in physics is that they contain partial derivatives, which do

not transform properly under a coordinate transformation. This is a problem that

is not readily apparent for equations in flat space, since most of the additional terms

that are created when one transforms from one frame to another vanish. However,

for curved space the additional terms that get created from the transformation re-

main, which spoils the tensorial nature of the equations. Hence, to ensure physical

quantities remain invariant under an arbitrary coordinate transformation, one rede-

fines the very notion of a derivative; this leads to the notion of a covariant derivative.

As was discussed previously, there are a multitude of different ways of defining a

derivative, however, courtesy of the fundamental result of Riemannian geometry, the

most natural choice is the Levi-Civita connection. The precise form of this deriva-
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tive depends on the rank of the tensor that it is applied to. For a covariant vector

the Levi-Civita connection is

∇αvβ = ∂αvβ − Γσαβvσ, (2.5)

when applied to a contravariant vector, the covariant derivative has the form

∇αv
β = ∂αv

β + Γαβσv
σ. (2.6)

From the above, we can see an intuitive meaning behind the Levi-Civita connec-

tion. The Levi-Civita connection is equal to the original partial derivative plus some

additional terms involving the Christoffel symbols. These symbols are essentially

corrections that cancel out the terms that are created whenever a partial derivative

is transformed, hence the tensorial nature of the equations is preserved. Although

equation (1.5) is not tensorial, when combined with quantities that are also not

tensorial, they give rise to an object which is a tensor.

This idea of there being various different connections also extends to the standard

tensors and equations used in GR. Traditionally, most of the tensors and equations

are given in terms of the Levi-Civita connection. For example, the Riemann tensor,

which is given in most standard textbooks as

Rκ
λµν = −∂λΓκµν + ∂µΓκλν − ΓιµνΓ

κ
ιλ + ΓιλνΓ

κ
ιµ, (2.7)

is derived by applying the Levi-Civita connection to the equation

∇a∇bv
c −∇b∇av

c = Rc
dabv

d. (2.8)

However, it is possible to derive an alternative equation for the curvature simply

by applying a different connection to (2.8). Let us now obtain a more general

expression for the curvature. By definition, the Levi-Civita connection is one that

is torsion free, thus one needs to specify a completely general curvature equation

that does take into account the presence of torsion. To this end, we define a new

tensor called the torsion tensor. Torsion arises as a result of the commutator of

connections acting on scalar fields. If the two connections commute, as specified by

(2.4b), then there is no torsion. If, however, the two connections do not commute,

then we can write

[∇a,∇b]f = Σa
c
b∇cf,

where f is a scalar field on the manifold and Σa
b
c is the torsion tensor which, as the

name suggests, specifies torsion; we can see that this tensor is antisymmetric with

respect to the a and b indices.

With this torsion tensor, it becomes possible to define a more general relation for
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the curvature. The general relation for the curvature is given by the difference of

the commutator and the torsion:

([∇a,∇b]− Σa
c
b∇c)u

d = Rd
cabu

c.

The equation for the curvature changes depending on what rank tensor the com-

mutator bracket is acting on. For example: acting on a covector gives the equation

[∇a,∇b]ωd = −Rc
dabωc + Σa

c
b∇cωd,

or if we apply it to a rank two tensor Aef the result is

[∇a,∇b]A
e
f = Re

dabA
d
f −Rd

fabA
e
d + Σa

c
b∇cA

e
f .

Whilst the predominant connection in GR is the Levi-Civita connection there are

certain cases where it might be more desirable to use alternative connections.

The Weyl and Schouten Tensor

Two tensors that are related to the curvature, and that are used very frequently

in conformal methods, are the Weyl and Schouten tensors [13, 36]. The Schouten

tensor is given by the equation

Lab ≡
1

2
Rab −

1

12
gabR. (2.9)

The definition of the Schouten tensor is dimension dependent; the above equation

is valid for four dimensions. It is also useful to mention the trace of the Schouten

tensor, which can be verified after contracting the above definition with the metric

to be

La
a =

1

6
R. (2.10)

Another important tensor is the Weyl tensor Cabcd; this is the fully trace-free

part of the Riemann tensor meaning gacCabcd = Cc
bcd = 0. The precise form of the

Weyl tensor depends on the dimension of the spacetime under consideration, for

four dimensions the Weyl tensor is defined as

Cabcd = Rabcd − (ga[cRd]b − gb[cRd]a) +
1

3
Rga[cgd]b. (2.11)

This tensor possesses the same symmetries as the Riemann tensor with the extra

condition of trace-freeness, in other words a metric contraction on any pair of indices

of the Weyl tensor is zero. Physically, the Weyl tensor represents the tidal forces

that a body experiences as it moves along a path in spacetime. More precisely, the

Weyl tensor conveys the information about how the shape of a body is distorted by
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tidal forces, since the Ricci curvature, which is the trace component of the Riemann

tensor, contains the information of how volumes change in response to tidal forces.

This tensor has a number of interesting properties that make it a useful object of

research in GR. Firstly, it is invaluable in the study of gravitational waves, since

the Weyl curvature is the only component of the curvature that does not vanish in

vacuum spacetimes. Meaning, it is used to describe the propagation of gravitational

waves through regions devoid of matter and energy. The Weyl tensor also has a

number of properties that are very interesting from the point of view of conformal

methods. Firstly, when written as a rank (1,3) mixed tensor Ca
bcd, it is completely

invariant under any and all conformal rescalings for any arbitrary dimension greater

than or equal to four and secondly, there is a linkage between the Weyl tensor and

a property of certain manifolds called conformal flatness. Conformal flatness means

that a particular class of conformal metrics contains the Minkowski metric, conse-

quently every single metric within said class can be written as a conformal rescaling

of the Minkowski metric ηab. To understand why this is a useful property, consider

the definition of a conformal rescaling gab = Ω2g̃ab; in the case of a conformally flat

manifold gab = Ω2η̃ab. As a result of this, any derivatives that one tries to compute

involving the unphysical metric will depend only on the conformal factor, since all

derivatives of the Minkowski metric vanish. The same is true if one tries to com-

pute derivatives of various curvature quantities such the Schouten tensor, since all

objects related to curvature depend fundamentally on the metric. This helps to sim-

plify certain problems tremendously and is therefore a very useful idea in conformal

methods.

For reasons that will become apparent shortly it is convenient to express the

Riemann tensor in terms of the Weyl and Schouten tensors

Ra
bcd = Ca

bcd + 2Sd[a
cfLb]f , (2.12)

where

Sab
cd ≡ δa

cδb
d + δa

dδb
c − gabgcd. (2.13)

2.2.2 The Commutator Bracket Notation

Many of the tensorial equations that we will be dealing with in this thesis are

extremely long and complicated. A notation used for writing multiple tensor terms

that possess certain symmetries as a single term, which will be used multiple times

for this point on, is the commutator bracket notation [36, 37]. The commutator

bracket is defined as follows

T[ab] ≡
1

2
Tab −

1

2
Tba, (2.14)



2.2: Connections and curvature 26

where n is an arbitrary integer. If we notice a pair of tensorial terms with indices

akin to the RHS of (2.14) then we say that these two terms have an antisymmetric

pair of indices and we can write them in a form akin to the LHS of (2.14). This

same idea applies to any pair of tensors of any rank, provided that the two tensors

have the same factor in front of them and have opposite signs, for example

2La[bdc]def = Labdcdef − Lacdbdef .

It is also possible to make use of the commutator bracket notation when the

indices are not adjacent to each other, for example

2dab[c|d|de]fgh = dabcddefgh − dabeddcfgh,

where the |d| indicates that the d index remains in a fixed position whilst the other

are permuted in the standard fashion. In analogy to the square bracket notation

used to group terms with antisymmetric pairs of indices there is also the round

bracket notation used to denote pairs of indices that are symmetric i.e.

T(ab) =
1

2
Tab +

1

2
Tba. (2.15)

The same rules as described for the square bracket notation still apply. It is also

possible to stack multiple brackets on top of each other when more than one pair of

indices are symmetric or antisymmetric. For example, consider the tensor expression

T(a[bYc]|d|e),

as we can see, this expression has two pairs of brackets. This means that it is a

shorthand notation, not for two terms with certain symmetries, but four. The rule

for expanding terms with multiple commutator brackets is to expand from the outer

most pair of brackets, in the case of the above the expression is expanded to

T(a[bYc]|d|e) =
1

2
Ta[bYc]de +

1

2
Te[bYc]da,

which is then expanded again to give

T(a[bYc]|d|e) =
1

4
TabYcde −

1

4
TacYbde +

1

4
TebYcde −

1

4
TecYbda.

Whilst not as common for the purposes of this thesis, it is possible to have com-

mutator brackets on more than two indices, in that case the commutator bracket

gives

T[abc] ≡
1

3!
(Tabc + Tbca + Tcab − Tacb − Tbac − Tcba). (2.16)

Whilst there are expressions for four or more indices, none of them are used in
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this thesis and will therefore be omitted. There are also a couple of useful identities

involving these brackets to consider; the first one involves brackets applied to indices

that are summation indices

T[ab]Z
abc = TabZ

[ab]c.

Another identity involves contractions between symmetric and antisymmetric ten-

sors. Consider a general symmetric tensor Sab and a general antisymmetric tensor

Sab then

A[ab]S
ab = 0.

This same identity also works if one has a contraction between any symmetric

pair of indices and any antisymmetric pair of indices

2.3 Bianchi Identities

The idea of different connections yielding different equations also applies to the

Bianchi identities [27, 36]. Any first course in GR gives the Bianchi identities as

Rabcd +Racdb +Radbc = 0,

∇eRabcd +∇cRabde +∇dRabec = 0. (2.17)

However, as was the case with both the equation for the Riemann tensor (2.7)

and the equation for the Christoffel symbols (1.5), these equations only apply to

the Levi-Civita connection and again do not take into account the effects of torsion.

The first Bianchi identity in its most general form is given by

Rd
[cab] +∇[aΣb

d
c] + Σ[a

e
bΣc]

d
e = 0.

For the case when Σa
b
c = 0, i.e. when the Levi-Civita connection is valid, then we

end up with the familiar equation

Rd
[cab] = 0.

There also exists an equation for the second Bianchi identity in a more general

form, which again takes into account the presence of torsion

∇[aR
d
|e|bc] + Σ[a

h
bR

d
|e|c]f = 0.

For the often used Levi-Civita connection, one obtains yet another familiar equa-

tion
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∇[aR
d
|e|bc] = 0.

A very important relation between the derivatives of the Schouten tensor and the

Ricci scalar, which will be used frequently in later calculations, can be obtained

from the so called contracted Bianchi identities

∇aR
ab − 1

2
gab∇aR = 0.

Using (2.9) to eliminate the Ricci tensor in the above

∇a(2L
ab +

1

6
Rgab)− 1

2
gab∇aR = 0,

and contracting all the metric terms and rearranging gives the reduced Bianchi

identity in terms of the Schouten tensor

∇aL
ab =

1

6
∇bR. (2.18)

2.3.1 The Index Free Notation

An alternative method of expressing tensors is the Index Free Notation which, as

the name suggests, represents tensors without any indices [34, 36]. In geometry,

objects are naturally contravariant or naturally covariant, as such we should find a

natural representation for these two basic objects. For both an arbitrary vector va

and an arbitrary covector ωa, these are simply represented by boldface versions of

the letters without the indices

va ↔ v, ωa ↔ ω.

With these two objects represented in the index free notation, we should now

find a way to defines certain operations between them. The first one is contraction

between contravariant and covariant vectors

vaωa ≡< ω,v > . (2.19)

In the framework of GR, one introduces the metric tensor which enables one to

represent a contravariant vector as a covariant vector or vice versa. Hence, one needs

to find a way of representing metric operations in the index free notation. First, the

metric itself is represented as just a boldface letter minus the indices and the inverse

of the metric is represented by a boldface letter with a sharp symbol i.e.

gab ↔ g, gab ↔ g]. (2.20)

Next, we consider the contraction of vectors and covectors with the metric tensor.
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One of the most common operations involving the metric is the scalar product.

When two vectors are contracted with the metric then this is denoted as

gabv
avb ≡ g(v,v). (2.21)

Conversely, if two covectors are contracted with the contravariant metric then the

scalar product is denoted as

gabωaωb ≡ g](ω, ω). (2.22)

The next operation to consider is the transformation of vectors into covectors using

the metric and vice versa. First, we consider an object that is naturally a vector

being contracted with the metric; in index free notation this can be expressed as

gabv
b ↔ v[ ≡ g(v, ·). (2.23)

Here we have introduced the notation where any object that is naturally a vector,

which has been transformed into a covector, is represented with a [ symbol. Likewise,

if an object that is naturally a covector is transformed into vector, then this is

represented as

gbaωa ↔ ω] ≡ g](ω, ·). (2.24)

In the case where both a vector and a covector are involved in a contraction, then

there are a few different ways depending on what objects are involved. For example:

if a natural covector and a contracted vector are contracted with a contravariant

metric, then it is written as

gabωbva ≡ g](ω,v[), (2.25)

however, if a natural vector and a contracted covector are multiplied by a metric

then this is represented as

gabω
bva ≡ g(ω],v). (2.26)

By comparing (2.19), (2.25) and (2.26), we can deduce the following identity

g](ω,v[) ≡ < ω,v > . (2.27)

The other main type of operation in tensor calculus is the application of covariant

derivatives. A very common operation is a covariant derivative applied to a vector

and multiplied by another vector contracted with the index of a derivative; such an

object is expressed in index free notation as
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vb∇bu
a ≡ ∇vu = 0. (2.28)

A similar identity exists for a vector contracted with a derivative acting on a

scalar field

va∇af ≡< df,v >≡ ∇vf. (2.29)

There are a multitude of other identities involving both curvature or derivatives

of more complicated objects that one can look into, however for the purposes of this

thesis, these will be the only ones that we will use. This notation shall be used when

we proceed to discuss conformal geodesics.

2.3.2 Young Projectors

An identity of extreme importance and that will be used multiple times in the

derivation of results in this thesis is the Young projector [1]. In essence the Young

Projector is a relation in the same vein as the Bianchi identity, which makes full

use of the symmetries of certain tensors. The derivation of this particular relation

requires an advanced understanding of group theory. As such we will not give a full

detailed derivation of the Young Projector but will try to motivate it. To start with

we recall the standard symmetries of the Riemann tensor, firstly the anti-symmetries

of pairs of indices

Cabcd = −Cbacd = −Cabdc = Cbadc,

the symmetries of two pairs of indices

Cabcd = Ccdab,

and the first Bianchi identity

Ca[bcd] = 0.

The symmetries of the two above relations can be summed up in the following

equation

Cabcd = 2
3
Cabcd + 1

3
Cacbd − 1

3
Cadbc. (2.30)

Given (2.30) one can verify via direct computation that the tensor Cabcd satisfies

the first Bianchi identity and all the other symmetries. This means that the Young

projector encodes all the same information about the symmetries and can therefore

be used for simplification whenever we have groups of Weyl tensor terms with certain

symmetries on their indices.
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2.4 Conformal transformations of connections

Conformal geometry is the study of mathematical transformations that leave the an-

gles of geometric objects unchanged. The most basic type of conformal transforma-

tion is a rescaling of a simple 2-dimensional object; if we increase the length of each

side of a 2-dimensional shape by the same amount, the angles of the shape do not

change. However, in our case things are more complicated, since we are not working

with simple 2-dimensional Euclidean objects, but 4-dimensional spacetime mani-

folds. Recall in section 1.1.1, we defined a conformal transformation gab = Ω2g̃ab;

this is the type of transformation of greatest importance when using conformal meth-

ods in GR. In the standard convention g̃ is the original metric before any rescaling

takes place, and is called the physical metric. You can have a large collection of

metrics simply through an arbitrary choice of the conformal factor. This collection

of metrics conformally related to the physical metric g̃ab is called the conformal class

of a metric, denoted by [g̃ab]. As mentioned previously, the act of performing such

a transformation on the metric gives rise to an extension of the original spacetime,

known as the unphysical spacetime. The main advantage of using this method is

that the conformal factor Ω is completely arbitrary and is entirely dependent on the

choice of the user. However, just as the shape of the spacetime changes so does the

notion of distance on the surface. Hence, when rescaling an equation that describes

a physical system one also needs to change the notion of how objects move on the

surface; consequently one needs to transform the connections as well.

We can accomplish the task of transforming between connections using an object

known as the transition tensor. This tensor is defined as

Qa
c
b = Sab

cd(Ω−1∇dΩ), (2.31)

where Sab
cd is the same quantity defined using equation (2.13). Such a tensor enables

us to transform freely between different connections

(∇̃a −∇a)v
b = Qa

b
cv
c.

In fact the transition tensor is nothing more than a generalization of the Christoffel

symbols, which are specific to the Levi-Civita connection. The above equation is

not a general relation and depends on the exact tensor that the connection is acting

on, for example when acting on a rank two contravariant tensor the transformation

law is

(∇̃a −∇a)T
bc = Qa

b
sT

sc +Qa
c
sT

bs.

For a rank three tensor there will be a total of three transition tensors, for a

rank four tensor there will be four transition tensors and so on. The most general
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definition of the transformation law for a tensor of rank (m,n) is

(∇̃a −∇a)T
bc...m
ef...n = Qa

b
sT

sc...m
ef...n +Qa

c
sT

bs...m
ef...n + ...+Qa

m
sT

bc...s
ef...n

−Qa
s
eT

bc...m
sf...n −Qa

s
fT

bc...m
es...n − ...−Qa

s
nT

bc...m
ef...s (2.32)



3 The Conformal Einstein Field

Equations

The entirety of this chapter shall be devoted to the derivation of the regular version

of the conformal field equations. As was shown in the previous section the simplest

course of action when performing a conformal rescaling leads to terms that are

singular, until Helmut Friedrich derived a regular version of said equations. We

will go through the exact same procedure as Helmut Friedrich did in 1980; it is

especially important since several results make use of these equations, including the

results derived in this thesis.

3.1 Derivation of the Conformal Field Equations

with Matter

The idea of using conformal geometry to resolve certain issues in GR is indeed an

interesting one, the next logical step is to see if the EFEs are compatible with con-

formal rescalings. Unfortunately, at first glance, the answer seems to be no. To

understand why this is the case, consider the conformal transformation for the Ricci

curvature tensor; we will examine the derivation of the conformal transformation to

give a concrete example of the use of conformal methods and see why the result is

unsatisfactory. The starting point of the derivation of the conformal transformation

of the Ricci tensor is the definition of the curvature given by (2.8). We will obtain

the transformation law of the Ricci tensor by first obtaining the conformal transfor-

mation law of the Riemann tensor and then contracting with the metric. In order to

transform (2.8) we must transform the covariant derivatives in the expression using

the techniques first described in section 2.4. First we apply (2.32) to the innermost

derivatives of (2.8); upon doing so and re-arranging one ends up with

∇av
c = ∇̃av

c −Qa
c
dv
d. (3.1)

Substituting (3.1) into (2.8) and the result is

∇a∇̃bv
c = ∇aQb

c
dv
d −∇b∇̃av

c +∇bQa
c
dv
d. (3.2)

The next step is to transform the other covariant derivatives, to do so it becomes

33
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useful to define a substitution

∇̃bv
c = Sb

c. (3.3)

If we apply a derivative to the above and then apply (2.32) we get

∇aSb
c = ∇̃aSb

c −Qa
c
dSb

d +Qa
d
bSd

c. (3.4)

Re-expressing (3.4) in terms of vectors and derivatives through the application of

(3.3) yields

∇a∇̃bv
c = ∇̃a∇̃bv

c −Qa
c
d∇̃bv

d +Qa
d
b∇̃dv

c, (3.5)

substituting (3.5) into (3.2) and the resulting expression upon simplification is

Rc
dabv

d − R̄c
dabv

d = Qa
d
b∇̃dv

c −Qa
d
b∇̃bv

d −∇cQb
c
dv
d

+Qb
c
d∇̃cv

d −Qb
d
c∇̃dv

c +∇bQc
c
dv
d. (3.6)

This is the transformation law for the Riemann tensor; as we can see it is an

equation that contains both the physical Riemann tensor R̃a
dab and the unphysical

Riemann tensor Ra
dab, plus several terms that can be determined from the conformal

factor. Consequently, it enables us to transform freely between the curvature of both

the physical and unphysical spacetimes and to determine one from the other. A more

compact form of the transformation law of the Riemann tensor is given as follows

Rc
dab − R̃c

dab = 2(∇[aΥb]
c
d + Υ[a

c
|e|Υb]

e
d), (3.7)

where Υa
c
b and is a quantity that is derived from the quantity (2.13), previously

given in section 2.4, and is defined as

Υa
c
b ≡ Sab

cdΥd, (3.8)

where we have defined a vector quantity

Υa ≡ Ω−1∇aΩ. (3.9)

Upon substituting in (2.31) to (3.6) and contracting with the metric tensor and

after a considerably long simplification then one ends up with the transformation

law for the Ricci tensor

Rab = R̃ab − 2Ω−1∇a∇bΩ− gabgcd(Ω−1∇c∇dΩ− 3Ω−2∇cΩ∇dΩ). (3.10)



3.1: Derivation of the Conformal Field Equations with Matter 35

By contracting (3.10) with the metric tensor then one obtains the following equa-

tion for the Ricci scalar

R− 1

Ω2
R̃ = − 6

Ω
∇c∇cΩ +

12

Ω2
∇cΩ∇cΩ. (3.11)

Through a similar technique that was used to derive the Riemann tensor transfor-

mation law then one can derive the following transformation law for the Schouten

tensor

Lab − L̃ab = − 6

Ω
∇c∇cΩ +

12

Ω2
∇cΩ∇cΩ. (3.12)

A more compact form of the transformation law of the Schouten tensor exists

Lab − L̃ab = ∇aΥb +
1

2
Sab

cdΥcΥd. (3.13)

It can be verified by directly substituting (3.9) into (3.13) that (3.13) and (3.12)

are the same equation. With these transformation laws, we may now obtain the

conformal vacuum EFE. Combining (3.10) with (1.2) and one finally arrives with

the result

Rab −
1

2
Rgab = −2Ω−1(∇a∇bΩ−∇c∇cΩgab)− 3Ω−2∇cΩ∇cΩgab (3.14)

This equation is not particularly desirable from the point of view of conformal

methods since it contains Ω−1 terms that blow up where Ω = 0. The point where

Ω = 0 is the boundary of the unphysical spacetime and at this particular point

one would like to make statements about solutions to the conformal EFEs at the

conformal boundary, which is not possible. Thus, it seems that the idea of using

conformal methods in GR is a dead end, however, in 1981 Friedrich successfully

recast the EFEs in a manner that were regular at the conformal boundary [7–9].

3.1.1 The equation for the conformal factor

The starting point for the derivation of these equations is of course the EFEs which,

in the physical spacetime upon setting c = 1, take the form

R̃ab =
1

2
g̃abR̃− λg̃ab + T̃ab. (3.15)

Contracting both sides of the EFEs with the metric g̃ab and one ends up with the

following equation for the Ricci scalar

R̃ = 4λ− T̃ , (3.16)

where we have used the fact that g̃abg̃
ab = 4. The next step is to re-express the
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Schouten tensor in terms of the energy-momentum tensor. To do so one starts by

substituting (2.9) and (3.16) into (3.15). Upon doing so and rearranging we end up

with

L̃ab =
1

2
T̃ab +

1

4
g̃abR̃−

5

6
λg̃ab +

1

12
g̃abT̃ . (3.17)

The next step is again to substitute (3.16) into (3.17). After doing this and

rearranging the end result is

L̃ab =
1

2
T̃ab +

1

6
(λ− T̃ )g̃ab. (3.18)

For the next part of the calculation we consider the previously obtained conformal

transformation laws of both the Ricci scalar and Schouten tensor. Dividing (3.11)

through by twelve and rearranging and one obtains

1

Ω2
∇cΩ∇cΩ =

1

12

Ä
R− 1

Ω2
R̃
ä

+
1

2Ω
∇c∇cΩ, (3.19)

substituting (3.19) into (3.12) and the end result after multiplying out is

Lab = L̃ab −
1

Ω
∇a∇bΩ +

1

24
gabR−

1

24Ω2
R̃gab +

1

4Ω
gab∇c∇cΩ. (3.20)

Substituting (3.18) into (3.20) and using the fact that gab = Ω2g̃ab gives

Lab =
1

2
T̃ab +

1

6
(λ− T̃ )g̃ab−

1

Ω
∇a∇bΩ +

1

24
(R− 1

24Ω2
R̃)gab +

1

4Ω
∇c∇cΩgab. (3.21)

Now, for the next step in the calculation, we define a new quantity in order to

simplify our expressions. We shall call this quantity the Friedrich scalar, denoted s,

which is defined as

s ≡ 1

4
∇c∇cΩ +

1

24
RΩ, (3.22)

doing so enables us to rewrite (3.21) as

Lab =
1

2
T̃ab + (

1

6
λ− 1

6
T̃ − 1

24
R̃)g̃ab +

1

Ω
(sgab −∇a∇bΩ).

Then, using (3.16) we obtain

Lab =
1

2
T̃ab −

1

8
g̃abT̃ +

1

Ω
(sgab −∇a∇bΩ). (3.23)

As T̃ab is not a geometric object derived from the metric we are free to choose

a transformation law that best fits the analysis. It is convenient to choose, for

reasons that will be justified later, the transformation law for the unphysical energy-

momentum tensor to be
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Tab = Ω−2T̃ab. (3.24)

It then follows that

1

2
T̃ab −

1

8
g̃abT̃ = Ω−2(

1

2
Tab −

1

8
gabT ) =

1

2
Ω2T{ab}, (3.25)

where T ≡ gabTab, so that T̃ = Ω4T and T{ab} denotes the trace-free part of Tab.

Putting (3.25) into (3.23) gives

Lab =
1

2
Ω2T{ab} +

1

Ω
(sgab −∇a∇bΩ).

At first glance, this seems like a singular equation (as the conformal factor goes

to zero, the equation blows up because of the 1/Ω term), however, we can solve this

problem by viewing this equation as an equation determining the second derivative

of Ω. So, multiplying both sides by Ω and rearranging and we get

∇a∇bΩ =
1

2
Ω3T{ab} − ΩLab + sgab,

which is the first of the CFEs; we can obtain the equivalent vacuum equation simply

by setting T{ab} = 0,

∇a∇bΩ = −ΩLab + sgab.

3.1.2 The equation for the Friedrich scalar

The next equation that one needs to derive is a differential equation for the Friedrich

scalar. The starting point for this calculation is the first CFE that we just derived.

We begin by applying a derivative to (3.42a) to obtain

∇c∇a∇bΩ =
1

2
(3Ω2)∇cΩT{ab} +

1

2
Ω3∇cT{ab} − Lab∇cΩ− Ω∇cLab +∇csgab. (3.26)

Remembering (2.8) and applying it to (3.26) and we get

−Rd
bca∇dΩ +∇a∇c∇bΩ =

3

2
∇cΩT{ab}+

1

2
Ω3∇cT{ab}−Lab∇cΩ−Ω∇cLab +∇csgab.

(3.27)

Multiplying both sides of (3.27) by gbc and contracting the indices gives

Ra
c∇cΩ +∇a�Ω =

3

2
Ω2∇cΩT{ac}+

1

3
Ω3∇cT{ac}−Lac∇cΩ−Ω∇cLac +∇as. (3.28)

We would also like to express the equations in terms of the Schouten tensor only;
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to do so we make use of (2.9) with the quantities rearranged to

Rab = 2Lab +
1

6
gabR. (3.29)

There is also a second order derivative in (3.28) applied to the conformal factor,

which must be eliminated as the principal part of this differential equation must be

applied to the Friedrich scalar. We may accomplish this by making use of the equa-

tion for the Friedrich scalar, since said equation contains a second order derivative

of the conformal factor. Therefore, combining (3.29) and (3.22) with (3.28) and the

result is

1

6
R∇aΩ +

1

6
Ω∇aR+

3

2
Ω2∇cΩT{ac}+

1

2
Ω3∇cΩT{ac}−Lac∇cΩ−Ω∇cLac− 3∇as = 0.

(3.30)

Making use of (2.18) to eliminate the derivatives of the Schouten tensor in (3.30),

then one finds

∇as =
1

6
Ω3∇cΩT{ac} +

1

2
Ω2∇cΩT{ac} − Lac∇cΩ,

which is the second of the CFEs; the vacuum equation is then

∇as = −Lac∇cΩ.

3.1.3 The equations for the curvature

Previously, in section 2.2.1, we introduced both the Schouten tensor Lab, and the

Weyl tensor Ca
bcd, both of which are alternative descriptions of the curvature that

possess nice conformal properties. We should therefore proceed to construct a dif-

ferential condition of the curvature with respect to the Weyl and Schouten tensors.

It can be shown that the Weyl and Schouten tensors can be related to each other

using the second Bianchi identity, substituting (2.12) into (2.17) gives

∇̃aL̃bc − ∇̃bL̃ac = ∇̃fC
f
cab. (3.31)

However, this is not a satisfactory differential equation for Lab because it contains

the divergence of the Weyl tensor, one needs to find an equation for the latter in

terms of the undifferentiated fields. To this end, notice that the RHS of the above

can be expanded in terms of the physical energy-momentum tensor T̃ab using (3.18),

but we will not do this yet. First, we express the LHS of the above in terms of the

physical Cotton tensor

Ỹabc = ∇̃aL̃bc − ∇̃bL̃ac = 2∇̃[aL̃b]c. (3.32)
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Following the standard procedure of writing equations out in terms of objects of

the unphysical spacetime (M̃, g), one would like to express the divergence ∇̃fC
f
cab

in terms of an equivalent expression involving the unphysical connection ∇. For this

we make use of the identity

∇d(Ω
−1Cd

abc) = Ω−1∇̃dC
d
abc. (3.33)

Making use of (3.33) in (3.32) then we obtain

∇d(Ω
−1Cd

abc) = Ω−1Ỹbca. (3.34)

This seems to be a dead end because of the Ω−1 on the both sides that can be

cancelled out. However, if we define the rescaled Weyl tensor

dabcd ≡ Ω−1Ca
bcd, (3.35)

and the rescaled Cotton tensor

Tabc = Ω−1Ỹabc, (3.36)

and then combining (3.34), (3.35) and (3.36) we get the formally regular equation

∇fd
f
abc = Tabc.

This is the third CFE. Obtaining the next equation is relatively straightforward;

we simply need to write out (3.31) in terms of dabcd:

∇aLbc −∇bLac = ∇dΩd
d
cab + ΩTabc,

which is the fourth CFE; again it is regular at Ω = 0.

3.1.4 The equation for λ

The final CFE is relatively easy to obtain and follows from the transformation

equation for the Ricci curvature (3.11), multiplying said equation through by Ω2

and then rearranging with respect to R̃ gives

R̃ = Ω2R + 6Ω∇a∇aΩ− 12∇aΩ∇aΩ. (3.37)

Now, making use of both (3.16) and (3.22) then it is possible to rewrite (3.37) as

4λ− T̃ = 24Ωs− 12∇aΩ∇aΩ. (3.38)

Next, recall that the preferred transformation law for the energy momentum tensor

is given by (3.24); the trace-free part of this is obtained simply by contracting with
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the metric which gives

T̃ = Ω4T. (3.39)

So, substituting (3.39) into (3.38) and then rearranging we then obtain the fifth

and final CFE

λ = 6Ωs− 3∇aΩ∇aΩ +
1

4
Ω4T,

which is a conformally regular equation for the cosmological constant. An important

piece of information about the cosmological constant can be obtained via directly

differentiating this equation, which gives

∇bλ = 6s∇bΩ + 6Ω∇bs− 6∇aΩ∇b∇aΩ. (3.40)

If we then substitute (3.42a) and (3.42b) into (3.40) then the end result is trivial

i.e.

∇bλ = 0. (3.41)

Physically, this means that the cosmological constant is always a constant, at least

from a purely classical point of view.

Summary

So in summary, we have obtained a set of equations that are conformally regular

and that enable us to analyse the behaviour of conformally rescaled spacetimes

∇a∇bΩ =
1

2
Ω3T{ab} − ΩLab + sgab, (3.42a)

∇as =
1

6
Ω3∇cT{ac} +

1

2
Ω2∇cΩT{ac} − Lac∇cΩ, (3.42b)

∇aLbc −∇bLac = ∇dΩd
d
cab + ΩTabc, (3.42c)

∇fd
f
abc = Tabc, (3.42d)

λ = 6Ωs− 3∇aΩ∇aΩ +
1

4
Ω4T. (3.42e)

The CFEs that describe the behaviour of conformally rescaled vacuum spacetimes

are obtain simply by setting all of the energy momentum tensor components in

(3.42a)-(3.42e) to be zero, which gives

∇a∇bΩ = −ΩLab + sgab, (3.43a)

∇as = −Lac∇cΩ, (3.43b)
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∇aLbc −∇bLac = ∇dΩd
d
cab, (3.43c)

∇fd
f
abc = 0, (3.43d)

λ = 6Ωs− 3∇aΩ∇aΩ. (3.43e)

Especially appropriate for this thesis are the trace-free matter versions of (3.42a)-

(3.42e), since we will deal extensively with various trace-free matter models. These

equations are obtained simply by setting T{ab} = Tab so that T = 0. The CFEs then

have the form

∇a∇bΩ = 1
2
Ω3Tab − ΩLab + sgab, (3.44a)

∇as = 1
6
∇cTac + 1

2
Ω2∇cΩTac − Lac∇cΩ, (3.44b)

∇aLbc −∇bLac = ∇dΩd
d
cab + ΩTabc, (3.44c)

∇fd
f
abc = Tabc, (3.44d)

λ = 6Ωs− 3∇aΩ∇aΩ. (3.44e)

An important fact about the CFEs is their relationship to the EFEs. A result

first obtained by Friedrich states that whenever the conformal factor does not vanish

then a solution to the CFEs implies a solution to the EFEs [10]. This means that the

CFEs are a useful tool in research in GR as they can be used to gain more information

in physics because the result of Friedrich enables one to indirectly obtain results for

the EFEs through solving the CFEs.



4 The Conformal Wave Equations

As mentioned previously, global properties of spacetimes can be analysed effectively

with the use of conformal methods. This is all well and good, however they do not

tell us anything about how the conformal spacetimes will evolve. Recall in section

1.1.2, we stated that in order to properly analyse the evolution of any spacetime, one

needs to formulate an initial value problem. The correct way to formulate an initial

value problem is to construct a system of wave equations for the fields that you

wish to analyse; Yvonne Choquet Bruhat showed that this was possible through

a specific choice of coordinates. With this in mind, one then asks the following

question: is it possible to formulate the CFEs as an initial value problem? Given

the connection between the EFEs and the CFEs, the logical choice is to try and

express the CFEs as a system of wave equations. This process has been done in the

case of vacuum spacetimes [21], with the vacuum conformal wave equations (CWEs)

taking the following form

�Ω = 4s− 1
6
ΩR, (4.1a)

�s = −1
6
Rs+ ΩLabL

ab − 1
6
∇aR∇aΩ, (4.1b)

�Lbd = −2ΩdbadcL
ac − gbdLacLac + 4Lb

aLda + 1
6
∇b∇dR, (4.1c)

�dfhqr = 4Ωdf
b
[r
|p|dq]phb − 2Ωdfh

bpdqbrp + 1
2
dfhqrR, (4.1d)

which is obtained via a systematic application of derivatives to the CFEs. The

question of whether one can obtain an analogous system of equations for matter

models is still an open problem. We will now show that it is possible to derive

a system of wave equations in the case where the CFEs are coupled to trace-free

matter systems.

4.1 Auxiliary results

Before beginning with the actual derivation of the wave equations, we will derive

a set of relationships that will be instrumental in virtually every single derivation

from this point on.
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4.1.1 The rescaled Cotton tensor

We previously looked at the rescaled Cotton-York tensor in section 3.1.3, now we

consider the definition of said equation in terms of the energy-momentum tensor

Tabc = 1
2
(3Tbc∇aΩ + Ω∇aTbc− 3Tac∇bΩ−Ω∇bTac−Tbdgca∇dΩ +Tadgcb∇dΩ). (4.2)

We now shall derive some relations from this equation that will be used later on

in certain derivations. Begin by contracting (4.2) with the metric tensor

Ta
b
b = −3

2
Ta

b∇bΩ− 1
2
Ω∇bTa

b + 3
2
Tad∇dΩ, (4.3)

where we have used the fact that gabT
ab = 0, and since by definition the energy-

momentum tensor is divergence free (due to conservation of energy) this means that

Ta
b
b = 0. (4.4)

The second relation is obtained by applying a contracted derivative to the third

index of (4.2). Upon doing so, and making use of the fact the the energy-momentum

tensor is divergence free, one obtains

∇cTabc = 3Tbc∇c∇aΩ + Ω∇c∇aTbc − 3Tac∇c∇bΩ− Ω∇c∇bTac + Tad∇b∇dΩ. (4.5)

Making use of (3.42a) and (2.8) then using (3.29) it can be shown that (4.5)

simplifies to

∇cTabc = 0. (4.6)

The next required relation is a direct consequence of the one that was just derived.

We begin by applying a second contracted derivative to (4.6), which gives

∇b∇cTabc = 0. (4.7)

Now using (2.8) to re-write the term on the left hand side of (4.7) then using

(3.29) and (2.12) to eliminate the curvature components them it can be shown that

(4.7) reduces to

∇c∇bTa
bc = −ΩT bcddabcd + Ta

bcLbc. (4.8)

The third relation is obtained by applying a derivative to the second index of

(4.2), upon doing so we get

∇bTa
b
c = 3

2
Tc
b∇b∇aΩ + 1

2
Ω∇b∇aTc

b − 3
2
Tac�Ω
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−1
2
Ω∇b∇bTac + 1

2
∇aTcb∇bΩ− 2∇bTac∇bΩ

+1
2
∇bΩ∇cTab + 1

2
Ta

b∇c∇bΩ− 1
2
T bdgac∇d∇bΩ. (4.9)

As before, using (3.42a), (4.1a) to eliminate the second order derivatives, commut-

ing covariant derivatives with (2.8) and eliminating the Riemann tensor components

with (2.12) and (3.29) then (4.9) becomes

∇bTa
b
c = Ω3Ta

bTcb − 4Tacs− 1
4
Ω3TbdT

bdgac − 1
2
Ω2T bddabcd + 1

3
ΩTacR

−1
2
Ω∇b∇bTac + 1

2
∇aTcb∇bΩ− 2∇bTac∇bΩ + 1

2
∇bΩ∇cTab. (4.10)

The last required relation does not involve derivatives of the rescaled Cotton-

York Tensor; it is essentially a version of the Bianchi identity involving the rescaled

Cotton-York tensor in place of the Riemann tensor

Tbcd − Tbdc + Tcdb = 0, (4.11)

which can be verified via anti-symmetrizing the Cotton-York tensor and through

direct substitution into (4.2).

4.1.2 Hodge duals

Another important quantity that is useful in dealing with antisymmetric tensorial

equations, is the Hodge dual of a tensor. For the Cotton-York tensor, which is

antisymmetric on the first and second indices, the Hodge dual is defined as

∗Tabc ≡
1

2
εab

deTdec, (4.12)

where εbqrj is the totally antisymmetric Levi-Civita alternating tensor, which is equal

√
−gεabcd, (4.13)

where εabcd is the totally antisymmetric alternating symbol, which is equal to 1, −1

or zero (depending on whether the indices are an even or odd permutation of the

first index set at the start of the calculation).

There are three important points that we should mention about both of these

quantities. With regards to the Levi-Civita alternating tensor, it has the property

that ∇fεabcd = 0, in the same manner as the metric tensor. A second important fact

about the Levi-Civita tensor is the product of two different Levi-Civita tensors; in

this case the precise form of the product depends on how many index contractions

occur. For the results we are interested in deriving, we will consider the case where

only one index is contracted, in that case the product of two different Levi-Civita

tensors is equal to
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εabcdε
pqrd = −6δa

[pδb
qδc

r]. (4.14)

Before proceeding any further, it is useful to make note of a couple of properties

of the Weyl tensor with respect to the Hodge dual. The first is that for a rank four

tensor, like the Weyl tensor, there are in fact two different versions of the Hodge

dual. The first version is the left Hodge dual of the Weyl tensor which is defined as

∗dabcd = 1
2
εab

fhdfhcd. (4.15)

The second form of the Hodge dual is the right Hodge dual, which is defined as

d∗abcd = 1
2
εcd

fhdabfh, (4.16)

The equations (4.15) and (4.16) are in fact equivalent to one another, i.e.

d∗abcd =∗ dabcd,

this property is a unique to the Weyl tensor; it is not true for a general rank 4

tensor. Using both definitions of the dual, it is possible to obtain a second dual

by performing a contraction on (4.15) and (4.16), a dual of a dual if you will. The

second duals are defined as

∗∗dabcd = 1
2
εab

fh ∗dfhcd, d∗∗abcd = 1
2
εcd

fhd∗abfh. (4.17)

It can be readily verified from (4.15) that

∗∗dabcd =∗ d∗abcd = d∗∗abcd = −dabcd, (4.18)

which enables us to write out equivalent identities using the dual rather easily. From

the above relation it follows that

∇a ∗dabcd =∗ Tcdb. (4.19)

With regards to the Hodge dual itself, it encodes the same information as the

tensor it was derived from, despite being a different object. This third point is

important as the Hodge dual shall be used several times later on to derive key

results.

4.2 Derivation of the conformal wave equations

4.2.1 Wave equation for the conformal factor

Let us now begin to derive the CWEs. First, the wave equation for the conformal

factor, which can be inferred from (3.44a). Contracting said equation with the
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metric gives

�Ω = −ΩLa
a + 4s+ 1

2
Ω3Ta

a, (4.20)

where we have used the fact that δaa = 4 due to the dimension of the spacetime.

Upon simplification using (2.10), (4.20) becomes an equation identical to (4.1a). So

the CWE of the conformal factor with trace-free matter is identical to the CWE

of conformal vacuum spacetimes. Alternatively, one could have arrived at the same

equation via simple rearrangement of (3.22).

4.2.2 Wave equation for the Friedrich scalar

The next CWE is obtained by differentiating (3.44b), so that

�s = 1
2
Ω2Tab∇a∇bΩ− Lab∇a∇bΩ + ΩTab∇aΩ∇bΩ−∇aLab∇bΩ,

where we have made note of the fact that Tab is divergence free. Then, after applying

(3.44a) and (2.18), one can verify that the above equation reduces to

�s = 1
4
Ω5TabT

ab− 1
6
sR−Ω3T abLab + ΩLabL

ab− 1
6
∇aR∇aΩ + ΩTab∇aΩ∇bΩ. (4.21)

4.2.3 Wave equation for the Schouten tensor

With this task completed we have now completed half of our objectives; the next

step is to derive a wave equation for the Schouten tensor. This derivation is a bit

trickier than the previous two as it requires slightly more sophisticated techniques.

To do so we start by applying a covariant derivative to (3.44c), which gives

�Ldb −∇a∇dLab = Tcdb∇cΩ + Ω∇cTcdb +∇aΩ∇cdabcd + dabcd∇c∇aΩ. (4.22)

Now, in order to eliminate the second order derivatives in (4.22) we make use of a

particular technique. Recall the general definition of the curvature tensor for torsion

free connections

[∇a,∇b]T
i1i2...im
j1j2...jn = Ri1

sabT
si2...im
j1j2...jn +Ri2

sabT
i1s...im
j1j2...jn + ...+Rim

sabT
i1i2...s
j1j2...jn

−Rs
j1ab

T i1i2...imsj2...jn −R
s
j2abT

i1i2...im
j1s...jn − ...−R

s
jnabT

i1i2...im
j1j2...s . (4.23)

This is the most general form of the curvature when covariant derivatives are applied

to a tensor of an arbitrary rank (m,n); through direct substitution this allows us

to eliminate the second order derivative terms, but at the expense of introducing
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several curvature tensor components into the equation. As we mentioned previously

in section 3.1, the Riemann tensor (and by extension the Ricci tensor) is not desirable

from a conformal point of view as it is creates singular terms when transformed.

However, it is possible to write out the Riemann tensor in terms of the conformally

invariant Weyl and Schouten tensors, using (2.12).

Making use of (4.23) to deal with the second term in (4.22) followed by the

application of (3.44a) and (2.10) to eliminate the second order derivatives and finally

using (2.12) and (3.29) to eliminate the Riemann and Ricci tensor components and

we get

�Lbd = 1
2
Ω3T acdbadc − 2ΩdbadcL

ac − gbdLacLac + 4Lb
aLda

−Ω∇aTd
a
b +∇cdbad

c + 1
6
∇d∇bR, (4.24)

or, equivalently by using (3.44d)

�Lbd = 1
2
Ω3T acdbadc − 2ΩdbadcL

ac − gbdLacLac + 4Lb
aLda

−Ω∇aTd
a
b − Tbad∇cΩ + 1

6
∇d∇bR. (4.25)

At first glance it appears that this is not a wave equation, as the last term in the

equation involves a second order derivative and consequently the principal part of

the differential equation is not the d’Almbertian; a necessary condition for a wave

equation. However, this second order derivative is applied to the Ricci scalar, which

is a special case from the point of view of conformal methods. When we examine

the CFEs we notice that the Ricci scalar does not appear in any of the equations,

meaning that the Ricci scalar has the form of a gauge. As a result of this the Ricci

scalar does not affect the equations in any way and (4.25) is indeed a valid wave

equation.

4.2.4 Wave equation for the rescaled Weyl tensor

We are almost done, the last equation that we need to compute is the wave equa-

tion for the Weyl tensor, which is significantly more complicated than any of the

derivations thus far. The starting point of this highly non-trivial calculation is the

second Bianchi identity written in terms of the Weyl tensor

∇bdfhpr −∇qdfhbr +∇rdfhbq = −εbqra∗Tfha. (4.26)

As in the previous derivations we start by applying a covariant derivative to (4.26),

which gives
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�dfhqr −∇b∇qdfhbr +∇b∇rdfhbq = −εbqra∇b∗Tfh
a. (4.27)

Re-arranging (4.27) and making use of (4.23) in the same manner as in the deriva-

tion of the wave equation for the Schouten tensor and one ends up with

�dfhqr = −dfhrjRq
j + dfhqjRr

j − dhbrjdfbqj + dh
b
q
j + df

b
r
jRhbrj

−df bqjRhbrj − 2dfh
bjRqbrj + εqrbj∇j∗Tfh

b +∇qTfhr −∇rTfhq, (4.28)

we then apply (2.12), which produces an equation containing several terms involving

products of the Weyl and Schouten tensor:

�dfhqr = 2Ωdf
b
r
pdhbqp − 2Ωdf

b
q
pdhbrp − 2Ωdfh

bpdqbrp + 1
3
dfhqrR− ghrdfbqpLbp

+ghqdfbrpL
bp + gfrdhbqpL

bp − gfqdhbrpLbp + dhqrbLf
b − dhrqbLf b − dfqrbLhb

+dfrqbLh
b + dfbhrLq

b − dfrhbLqb − dfbhqLrb + dfqhbLr
b +∇qTfhr −∇rTfhq. (4.29)

In the derivation of the vacuum CWEs it was possible to eliminate any terms

containing the Schouten tensor. Since any result we obtain should reduce to the

equivalent vacuum equation upon setting both the energy-momentum and rescaled

Cotton terms to zero, one should logically be able to do the same with (4.29). The

starting point of this simplification is the second Bianchi identity written in terms

of the Riemann tensor which, upon substituting (2.12) into (2.17) becomes

dbcdf∇aΩ + Ω∇adbcdf + gfc∇aLdb − gfb∇aLdc − gdc∇aLfb + gdb∇aLfc

−dacdf∇bΩ− Ω∇bdacdf − gfc∇bLda + gfa∇bLdc + gdc∇bLfa − gda∇bLfc

+dabdf∇cΩ + Ω∇cdabdf + gfb∇cLda − gfa∇cLdb − gdb∇cLfa + gda∇cLfb = 0. (4.30)

We will make use of this equation to eliminate the dependence of the Schouten

tensor in (4.29). Before that, however, we will express (4.30) in a more convenient

form. We notice that (4.30) contains derivatives of the Schouten tensor, all of

which occur in pairs that are antisymmetric. We can therefore make use of (3.44c)

to eliminate the derivatives of the Schouten tensor, at the expense of introducing

several Cotton-York and Weyl tensor terms. Upon multiple applications of (3.44c),

(4.30) becomes

ΩgcfTabd − ΩgcdTabf + ΩgafTbcd − ΩgadTbcf − Ωεabch
∗Tdf

h + gaddbcfh∇hΩ

−ΩgbfTacd + dbcdf∇aΩ− dacdf∇bΩ + dabdf∇cΩ− gcfdabdh∇hΩ + gcddabfh∇hΩ
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+ΩgbdTacf + gbfdacdh∇hΩ− gbddacfh∇hΩ− gafdbcdh∇hΩ = 0. (4.31)

At this point, we examine (4.29) and notice that it contains derivatives of the

rescaled Cotton tensor; we therefore make an educated guess and differentiate (4.31).

This gives a long and complicated expression containing several second order deriva-

tives of the conformal factor and derivatives of the Weyl tensor, which may be sim-

plified with the use of (3.44d) and (4.1a). Following this, we express the Hodge

dual of the rescaled Cotton tensor in terms of the standard rescaled Cotton Tensor.

Upon doing so and making use of (4.4) we get

gcfdbadhL
ah = −1

2
Ω2Tc

adbadf + 1
2
Ω2T ahgcfdbadh − 1

2
Ω2T ahgcddbafh − 1

2
Ω2Tf

adbcda

+1
2
Ω2Td

adbcfa + 1
2
Ω2Tb

adcadf − 1
2
Ω2T ahgbfdcadh + 1

2
Ω2T ahgbddcafh + gcddbafhL

ah

+gbfdcadhL
ah − gbddcafhLah − dcadfLba + dbadfLc

a − dbcfaLda + dbcdaLf
a − 1

6
dbcdfR.(4.32)

Substituting (4.32) into (4.29) and making use of the first Bianchi identity to

eliminate terms yields the desired wave equation for the Weyl tensor

�dfhqr = 2Ω2T bpg(r[fdh]|b|q)r + Ω2T b[rdq]bfh + Ω2T b[hdf ]bqr + 4Ωdf
b
[r
|p|dq]phb

−2Ωdfh
bpdqbrp + 1

2
dfhqrR + εgqrbp∇p ∗Tfh

b +∇qTfhr −∇rTfhq, (4.33)

or in a more compact form,

�dfhqr = ζfhqr + 2Ω2T bpg(r[fdh]|b|q)r + Ω2T b[rdq]bfh + Ω2T b[hdf ]bqr

+εgqrbp∇p ∗Tfh
b +∇qTfhr −∇rTfhq, (4.34)

where ζ is the equivalent vacuum CWE term written as a single tensor, i.e.

ζfhqr ≡ 4Ωdf
b
[r
|p|dq]phb − 2Ωdfh

bpdqbrp + 1
2
dfhqrR.

Written in the form given by (4.34) one can clearly see that this reduces to the

equivalent vacuum equation given in [21].

4.2.5 The wave equation for λ

One thing that has not been mentioned thus far is the wave equation for the cos-

mological constant in the fifth CFE. It turns out that the wave equation for the

cosmological constant is in fact trivial. This can be easily verified from section 3.1

where we showed that in fact ∇aλ = 0, hence when one applies a derivative to (3.41)

the result is
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�λ = 0. (4.35)

Summary

We have successfully derived a set of wave equations that described the evolution of

the variables of the CFEs; our analysis is completely general with the only assump-

tion being that the matter content of the spacetime is trace-free and that the CFEs

hold.

4.3 The subsidiary equations

We have derived a set of wave equations that describe the evolution of conformal

fields coupled to trace-free matter models. As mentioned beforehand, we have as-

sumed only that the matter is trace-free and that the CFEs are true. However,

this is not the end of the analysis, since it is not clear whether any solution that

one may obtain for the wave equations is also a solution to the field equations. In

order to verify that this is indeed the case, we must construct a system of subsidiary

equations. In essence, what this means is that instead of assuming that the field

equations are true and the wave equations are not, one assumes the wave equations

are true and the field equations are not true. To that end one uses (3.44a)-(3.44e)

to define

Zab ≡ ∇a∇bΩ + ΩLab − sgab −
1

2
Ω3Tab, (4.36a)

Za ≡ ∇as+ Lac∇cΩ− 1

2
Ω2∇cΩTac, (4.36b)

∆cdb ≡ ∇cLdb −∇dLcb −∇aΩd
a
bcd − ΩTcdb, (4.36c)

Λcdb ≡ ∇ad
a
bcd − Tcdb, (4.36d)

Υ ≡ 6Ωs− 3∇cΩ∇cΩ− 1

4
Ω4T − λ. (4.36e)

One then proceeds to compute a series of wave equations for the subsidiary fields

Zab, Za,∆cdb,Λcdb,Υ. In order for any solution of the wave equations to solve the

field equations, then any initial data chosen has to be special. So to see that this

is the case we make use of the subsidiary system. The main point of the wave

equations is that they have to be homogeneous in the subsidiary fields. This is due

to a well known property of wave equations that if one has a homogeneous wave

equation and one chooses the homogeneous variable to be zero initially, then that

solution vanishes at all times. In fact, not only does it vanish, but it is the only

possible solution. There is a multi-variable version of this theory that states if you

have a system that is homogeneous in a certain set of variables and one chooses all
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of these variables to be zero initially then this choice of initial conditions is valid

at all times. Let us specify what we mean by homogeneous, from our point of view

homogeneous means that each term in the RHS of the equation is a product of one

of the zero quantities defined in equations (4.36a)-(4.36e).

So let us consider the hypothetical case where one has successfully derived a set

of homogeneous wave equations for the subsidiary variables, what does this imply?

Recall the definitions of the subsidiary variables, if we say that the only possible

solution to this system of wave equations is that the subsidiary variables are zero at

all times, then we are saying that the CFEs are satisfied at all times. Furthermore,

if one makes use of the CWEs in the derivation of these wave equations, this proves

that any solution to the CWEs satisfies the CFEs; this technique is known as the

propagation of the constraints. More precisely, the constraint equations only need

to be solved initially as long as the CWEs hold. Let us now show that this is indeed

the case.

4.3.1 Wave equation for Υ

We will start with equation (4.36a) as that is the simplest case and it helps to

illustrate the techniques used in the later, less elegant derivations. We begin by

applying the d’Alembertian operator to (4.36a), recalling that the wave equation for

λ is trivial then one obtains

�Υ = 6�(Ωs)− 3�(∇cΩ∇cΩ). (4.37)

Expanding with the Leibnitz rule and (4.37) becomes

�Υ = 6s�Ω + 6Ω�s+ 12∇cs∇cΩ− 6∇cΩ�∇cΩ− 6∇h∇cΩ∇h∇cΩ (4.38)

Upon using (4.1a) and (4.21), then (4.38) becomes

�Υ =
3

2
Ω6TchT

ch + 24s2 − 2ΩsR− 6Ω4T chLch + 6Ω2LchL
ch + 12∇cs∇cΩ

−Ω∇cR∇cΩ− 6∇cΩ∇h∇h∇cΩ + 6Ω2Tch∇cΩ∇hΩ− 6∇h∇cΩ∇h∇cΩ. (4.39)

Then commuting the covariant derivatives with (4.23) as before and using (3.29)

to remove the curvature terms, then (4.39) becomes

�Υ =
3

2
Ω6TchT

ch + 24s2 − 2ΩsR− 6Ω4T chLch + 6Ω2LchL
ch −R∇cΩ∇cΩ + 12∇cs∇cΩ

−Ω∇cR∇cΩ− 6∇c∇h∇hΩ∇cΩ + 6Ω2Tch∇cΩ∇hΩ− 12Lch∇cΩ∇hΩ− 6∇h∇cΩ∇h∇cΩ.(4.40)



4.3: The subsidiary equations 52

Once again, there is the problem of second order derivatives. However, we cannot

make use of (3.44a) to eliminate these derivatives since one of our prior assumptions

was that the CFEs are not satisfied. Instead, we make use of the subsidiary system

to eliminate the higher order derivatives. Rearranging (4.36a) and (4.36b) gives

∇a∇bΩ = Zab − ΩLab + sgab +
1

2
Ω2Tab, (4.41)

∇as = Za − Lac∇cΩ +
1

2
Ω2∇cΩTac. (4.42)

Upon substituting both (4.41) and (4.42) along with (2.10) into (4.40) yields

�Υ = −6Ω3T chZch + 12ΩLchZch − 12sZc
c − 6ZchZ

ch − 12Zc∇cΩ− 6∇cZ
h
h∇cΩ.

(4.43)

A relatively straightforward calculation shows that upon contracting with the

metric, equation (4.41) becomes

Zc
c = 0. (4.44)

Making use of the above and we obtain

�Υ = −6Ω3T chZch + 12ΩLchZch − 6ZchZ
ch − 12Zc∇cΩ, (4.45)

which is homogeneous in the subsidiary fields, as required.

4.3.2 Wave equation for Zab

It can be shown through a similar, but more lengthy calculation, that the wave

equations for both Zab and Za are homogeneous in the subsidiary variables. We will

derive the wave equation for Zab first as it is the simpler of the two. Applying the

d’Alembertian operator to (4.36a) and we get

�Zab =
3

2
Ω2Tab�Ω + Lab�Ω− 1

2
Ω3�Tab − gab�s+ Ω�Lab + �∇a∇bΩ

−3ΩTab∇cΩ∇cΩ− 3Ω2∇cTab∇cΩ + 2∇cLab∇cΩ. (4.46)

To simplify this, we need to make use of some additional pieces of information.

First of all, just like in the calculation of (4.45), there are several terms that can be

eliminated by rearranging (4.36c) and (4.36d) into

∇cLdb = ∆cdb +∇dLcd +∇ad
a
bcd + ΩTcdb, (4.47)
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∇ad
a
bcd = Λcdb + Tcdb. (4.48)

Another useful identity, which is essentially an alternative form of (2.18), comes

from performing a contraction on (4.36c) with the metric tensor. Upon doing so,

one can verify, using (2.10) and (4.4), that

∇cLd
c = ∆cd

d + 1
6
∇dR. (4.49)

Making use of (4.23) to commute the covariant derivatives and using (4.1a), (2.10),

(2.12), (3.29), (4.21), (4.25), (4.41), (4.42) and (4.49) to eliminate terms accordingly

and one ends with

�Zab =
1

6
RZab + 4Lb

cZac − 2gabLcdZ
cd − 2ΩdacbdZ

d −∆a
c
c∇bΩ

+4∇bZa + ΩΛbac∇cΩ + ∆bca∇cΩ + gab∆c
d
d∇cΩ +Mab, (4.50)

where Mab represents the matter terms. Naturally Mab = 0 when working with

vacuum spacetimes, which shows that the wave equation for vacuum spacetimes

is homogeneous and the propagation of the constraints is satisfied, as one would

expect. Mab is defined as

Mab ≡ Ω2Ta
cTbc − 4Ω2Tabs−

1

4
Ω5TcdT

cdgab −
1

2
Ω4T cddabcd +

1

3
Ω3TabR− Ω2∇cTb

c
a

−1

2
Ω3�Tab + ΩTabc∇cΩ− 2ΩTbca∇cΩ + 4ΩTac∇bΩ∇cΩ + 2Ω2∇bTac∇cΩ

−3ΩTab∇cΩ∇cΩ− 3Ω2∇cTab∇cΩ− 3Ω2∇cTab∇cΩ− ΩTcdgab∇cΩ∇dΩ, (4.51)

so we need to show that Mab is homogeneous in the subsidiary variables. Imme-

diately we notice a problem, there is a term in (4.51) containing a d’Alembertian

applied to the energy-momentum tensor. In order to eliminate this we recall the

definition of the rescaled Cotton tensor. We first notice that (4.2) is written in terms

of first order derivatives of the energy-momentum tensor, and that (4.51) contains

a contracted first order of the rescaled Cotton tensor. This suggests that it might

be possible to use (4.2) to cancel out the second order derivatives of the energy-

momentum tensor, which does indeed turn out to be the case. Substituting (4.2)

into (4.51) and simplifying then one obtains

Mab = Ω5Ta
cTbc − 4ΩTabs−

1

4
Ω5TcdT

cdgab −
1

2
Ω4T cddacbd +

1

3
Ω3TabR

−1

2
Ω2Tb

c∇c∇bΩ−
1

2
Ω3∇c∇bTa

c +
1

2
Ω2T cdgab∇d∇cΩ +

3

2
Ω2Tab�Ω. (4.52)
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Using both (4.1a) and (4.41), commuting the covariant derivatives as before then

eliminating the Ricci and Riemann tensor components and the matter terms simplify

to

Mab = −1

2
Ω2Tb

cZac −
3

2
Ω2Ta

cZbc. (4.53)

Combining (4.50) and (4.53) and one obtains

2Zab =
1

6
RZab −

1

2
Ω2T cbZac + 4LcbZac +

1

2
Ω2T cdgabZcd − 2gabLcdZ

cd − 2ΩdacbdZ
cd

−∆a
c
c∇bΩ + 4∇bZa + ΩΛbac∇cΩ + 2∆abc∇cΩ−∆acb∇cΩ + gab∆c

d
d∇dΩ,(4.54)

and the wave equation for Zab with trace-free matter is homogeneous.

4.3.3 Wave Equation for Za

Next, we derive the wave equation for Za, so start by applying the d’Alembertian

to (4.36b), which gives

�Za = �∇as− 2ΩTa
c∇bΩ∇c∇bΩ− ΩTab∇b�Ω− 1

2
Ω2∇b�Tab

+∇bΩ�Lab −
1

2
Ω2Ta

b�∇bΩ + La
b�∇bΩ− Tac∇bΩ∇bΩ∇cΩ

−2Ω∇b∇cTab∇cΩ− Ω2∇cTab∇c∇bΩ + 2∇cLab∇c∇bΩ, (4.55)

and using exactly the same method as in the derivation of (4.54) to simplify (4.55)

then one obtains

�Za = −2Ω2TabZ
b + 6LabZ

b − Ω3T bc∆abc + 2ΩLbc∆abc − 2s∆a
b
b +

1

2
Ω2TbcZ

bc∇aΩ

+
3

2
ΩTb

cZac∇bΩ− 7

2
ΩTa

cZbc∇bΩ− 1

6
Zab∇bR− Ω2Zbc∇cTab + 2Zbc∇cLab.

(4.56)

So the wave equation for Za turns out to be homogeneous as required.

4.3.4 Wave Equation for Λbcd

The next wave equation is the the one for Λbcd; this is considerably more difficult to

derive. We begin by differentiating (4.36d)

�Λbcd = −�Tcbd + �∇ad
a
bcd, (4.57)
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then upon commuting the covariant derivatives with (4.23), one can verify that

(4.57) becomes

�Λbcd = dbjcd∇aR
aj −�Tcdb −∇a�db

a
cd + 2Rd

ajf∇fdbjca − 2Rc
ajf∇fdbjda

+2Rb
ajf∇fdcdaj + dcd

aj∇fRbaj
f − dbadj∇fRcja

f + db
a
c
j∇fRdja

f +Raj∇jdbacd.(4.58)

In order to proceed further one needs to make use of several relationships that were

derived in section 4.1.1; specifically the equations relating derivatives of the rescaled

Cotton tensor. If one substitutes (2.12), (3.29), (4.33), (4.49), along with (4.47) to

eliminate the derivatives of the Schouten tensor along with (2.30) to eliminate terms

quadratic in the Weyl tensor, then one obtains

�Λbcd = 2Lb
aΛacd + ΩdcdahΛ

a
b
h − ΩdbadhΛ

a
c
h + ΩdbachΛ

a
d
h − 2ΩdcadhΛb

ah

+1
3
RΛbcd − 2Ld

aΛcba + 2Lc
aΛdba − 2εcdhfL

ah ∗Λf
ba − dbcdh∆ah

a + dbdch∆
ah
a

+dbhcd∆
ah
a − dcdah∆b

ah + dbhda∆c
ah − dbhca∆d

ah +Mbcd, (4.59)

where Mbcd is shorthand for the matter terms in the equation. Naturally, this tensor

is zero in the vacuum case, which means (4.59) reduces to

�Λbcd = Vbcd, (4.60)

where Vbcd is a tensor that is a shorthand notation for the all vacuum terms of the

equation which, as we can see from (4.59), is equal to

Vbcd ≡ 2Lb
aΛacd + ΩdcdahΛ

a
b
h − ΩdbadhΛ

a
c
h + ΩdbachΛ

a
d
h

−2ΩdcadhΛb
ah + 1

3
RΛbcd + 4L[c

|a|Λd]ba − 2εcdhfL
ah ∗Λf

ba

+2dbhcd∆
ah
a − dcdah∆b

ah + dbhda∆c
ah − dbhca∆d

ah. (4.61)

We can see that for vacuum spacetimes the wave equation for Λbcd is homogeneous.

With this part of the job done, we now need to check if the matter tensor Mbcd is

homogeneous in the subsidiary variables. To start we notice that Mbcd contains

derivatives of the rescaled Cotton tensor, however these cannot be simplified using

(4.8) and (4.6) since both of those relations were derived using the CFEs and one

of our prior assumptions for this analysis is that the CFEs are not automatically

satisfied. Hence, we need to derive an alternative form of all the equations in section

4.1.1. Essentially, we need to repeat the derivations of these equations using (4.41)

in place of (3.42a) to simplify the equations where necessary. Upon doing so we
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obtain

∇cTabc = Tb
cZac − TacZbc, (4.62a)

∇c∇bTa
bc = −ΩT bcddabcd + Ta

bcLbc

−Zbc∇cTab + T bc∇cZab − Tab∇cZb
c, (4.62b)

∇bTa
b
c = Ω3Ta

bTcb − 4Tacs− 1
4
Ω3TbdT

bdgac − 1
2
Ω2T bddabcd

+1
3
ΩTacR + 3

2
Tc
bZab − 1

2
T bdgacZbd + 1

2
Ta

bZcb

−1
2
Ω�Tac + 1

2
∇aTcb∇bΩ− 2∇bTac∇bΩ + 1

2
∇bΩ∇cTab. (4.62c)

We then apply (4.62c) and (4.62a) to the derivatives of the rescaled Cotton tensor

in Mbcd; (4.14), to eliminate the dual terms of the rescaled Cotton Tensor; (4.11),

to eliminate products of terms that are created as a result removing the dual terms;

and the second Bianchi identity, to eliminate derivatives of the Weyl tensor. Upon

doing so, one ends up with

Mbcd = ΩT[d
|h|dc]hba∇aΩ + ΩT[a

|h|db]hcd∇aΩ + ΩT hfgb[ddc]haf∇aΩ + ΩT ahdba[d|h|∇c]Ω,

(4.63)

where we have ignored any terms containing the subsidiary variables. We next

notice that all terms in (4.63) are antisymmetric on two of the indices, which we can

take advantage of by using the Hodge duals. Multiplying (4.63) by a Levi-Civita

alternating tensor with a contraction on the second and third free indices of the

matter tensor, using (4.18) to re-express the Weyl tensor in terms of the duals,

expanding said dual terms and simplifying using (2.30) and it can be verified that

the matter terms are homogeneous in the subsidiary variables. Combining these

terms with (4.61) and the full wave equation for Λbjl with trace-free matter can be

verified to be

�Λbjl = Vbcd + 1
2
Ω2T acεjlcd

∗Λd
ba + 6T[l|a|gj]bZ

a + 2ΩT[l
|a|gj]b∆a

c
c + 2Z[l

|a|∇|b|Tj]a
+2T[j

|a|∇|b|Zl]a + 2Zacgb[j∇|c|Tl]a + 2T acgb[l∇|c|Zj]a + 2Z[l
|a|∇|j|Tb]a + 2T[b

|a|∇|j|Zl]a
+2Z[b

|a|∇|l|Tj]a + 2T[j
|a|∇|l|Zb]a. (4.64)

We can see that every single term whose commutator brackets are expanded will

be multiplied by one of the subsidiary variables and hence the wave equation is

homogeneous as required.
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4.3.5 Wave Equation for ∆bcd

The last thing that we need to do is the propagation of the constraints for the third

subsidiary variable ∆bcd, which is the most difficult calculation to do by far. Begin,

by differentiating (4.36c), which yields

�∆cdb = −Tcdb�Ω− Ω�Tcdb −∇aΩ�dabcd − dabcd�∇aΩ + �∇cLdb

−�∇dLcb −∇jTcdb∇jΩ−∇jΩ∇jTcdb −∇j∇aΩ∇jdabcd −∇jd
a
bcd∇j∇aΩ. (4.65)

From here we proceed in a similar manner to the derivation for the wave equation

for the fourth Subsidiary variable, with the main difference being a much larger

number of terms to deal with plus one additional relation that is required to eliminate

some very specific terms. First, applying (4.23), (2.12), (3.29), (4.1a), (4.25), (4.33),

(4.41), (4.47), (4.42), (4.49), (4.26), (2.10) to start with, then dealing with all the

matter terms by using (4.14) to expand the Hodge dual terms, (4.4), (4.62c), (4.2)

and using (4.23) to deal with terms that have multiple derivatives applied to the

energy-momentum tensor (which causes the cancellation of several derivatives at

the expense of introducing several curvature components that must be eliminated

with (2.12)) and finally both the Bianchi identities to cancel out several groups of

terms, then one ends up with an equation that, whilst still relatively unappealing,

is significantly less complex than the sum of its parts as several cancellations occur.

This suggests that we are on the correct path of this derivation. When examining

the remaining terms, we notice that there are terms that contain products of the

metric tensor, the Weyl tensor and derivatives of the conformal factor, which we

can eliminate by rearranging (4.30) and direct substitution. This action decreases

the number of terms even further, ignoring the subsidiary variable terms we are left

with

2Ω2Ta
jd[c|bj|d]∇aΩ + 6Ω2Tb

jdc[a|d|j]∇aΩ− 2Ωdbajfdc
j
d
f∇aΩ

+1
3
(dbacd + dbcda − dbdca)R∇aΩ + 2La

j(dbdcj − dbcdj − dbjcd)∇aΩ

+3Lb
j(dcdaj − dcadj + dcjda)∇aΩ + 2Ω3dc[j|d|a]∇jTb

a + 4Ωdc[a|d|j]∇jLb
a. (4.66)

We can immediately see that there are several terms that can be eliminated using

the Bianchi identity; upon doing so (4.66) becomes

Ω2Ta
jdbcdj∇aΩ− Ω2Ta

jdbdcj∇aΩ + 3Ω2Tb
jdcadj∇aΩ− 3Ω2Tb

jdcjda∇aΩ

+Ω3dcjda∇jTb
a − 2Ωdbajfdc

j
d
f∇aΩ− Ω3dcadj∇jTb

a + 4Ωdc[a|d|j]∇jLb
a. (4.67)
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Finally, by substituting (4.47) into the derivatives of the Schouten tensor and then

substituting (4.2) into the single rescaled Cotton tensor term that follows from the

previous action and those remaining terms in (4.67) vanish. Hence, the only terms

left are those containing the subsidiary variables and the equation is homogeneous

as required.

Summary

We have successfully derived a system of quasilinear wave equations that describe

the evolution of conformal fields of 4-dimensional conformally rescaled spacetimes.

Our analysis is completely general with the only assumptions being of the nature

of the matter content, namely that the matter content is trace-free. Furthermore,

we have shown that assuming that the wave equations are satisfied leads to the

conclusion that the field equations are true. As the field equations are already a

known result, this proves that the CWEs and the CFES are not independent of

one another. Consequently, this means that any solution of the CWEs must be a

solution to the CFEs and, by extension, the EFEs as well.

4.3.6 The Bach Tensor

Alternative form of the Third CFE

An alternative way of looking at the third CWE is to make use of a tensor called

the Bach tensor. The Bach tensor is a trace-free, conformally invariant (in four

dimensions), rank 2 tensor, whose form is given by

Bab = −LcdCabcd +∇c∇aLbc −�Lab. (4.68)

A property of the Bach tensor is that when Bab = 0 one has a solution to the

vacuum EFEs, where Rab = λgab. Additionally, it can be verified that the Bach

tensor is divergence free. Since the definition of the Bach tensor contains a wave

operator applied to the Schouten tensor, it is relatively straightforward to derive a

wave equation for the Schouten tensor in terms of the Bach tensor

�Lab = 2LcdCacbd + gabLcdL
cd + 1

6
∇b∇aR− 4La

cLbc −Bab. (4.69)

We have just shown that for trace-free matter it is possible to formulate the

CFEs as a system of wave equations. We also just derived a wave equation for the

Schouten tensor. We will now show the equivalence between the wave equation of

the Schouten tensor as given by (4.25) and the wave equation written in terms of the

Bach tensor given by (4.69). First, we recall the third CFE, differentiating (3.42c)

and one obtains
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∇c∇aLcb −�Lab = Tacb∇cΩ + Ω∇cTacb + df bac∇c∇fΩ +∇cdf bac∇fΩ. (4.70)

We notice that it is possible rearrange the definition of the Bach tensor such that

the LHS of the Bach tensor definition is equal to the LHS of (4.70). Equating the

RHS of (4.68) and the RHS of (4.70) gives

Bab − LcdCacbd = Tacb∇cΩ + Ω∇cTacb + df bac∇c∇fΩ +∇cdf bac∇fΩ. (4.71)

The goal is to simplify this equation. First, applying both (3.42a) and (3.42d) to

(4.71) gives

Bab−LcdCacbd = −1
2
Ω3T cddacbd+ ΩdacbdL

cd+ Ω∇cTa
c
b+Tacb∇cΩ +Tbca∇cΩ. (4.72)

Then applying (4.68) and rearranging all terms on the LHS of (4.72) yields

− 1
2
Ω3T cddacbd+ΩdacbdL

cd+Ω∇cTa
c
b+Tacb∇cΩ+Tbca∇cΩ−∇c∇aLbc+∇c∇cLab = 0.

(4.73)

Substituting in (4.25) into (4.73) gives

4La
cLbc−gbaLcdLcd−LcdCacbd+

∇b∇aR

6
+Ω∇cTa

c
b−Ω∇cTb

c
a−∇c∇aLbc = 0, (4.74)

then making use of (4.23) to reorder the covariant derivatives as usual, and applying

both (2.12) and (3.29) transforms (4.74) to

− 1
6
RLab + LabLc

c −∇a∇cLb
c + 1

6
∇b∇aR + Ω∇cTa

c
b − Ω∇cTb

c
a = 0. (4.75)

Making use of (2.18) to get rid of the second order derivatives of the Schouten

tensor and (2.10) then one ends up with

Ω∇cTa
c
b − Ω∇cTb

c
a = 0. (4.76)

Applying (4.2) to (4.76) and one obtains

ΩTb
c∇c∇aΩ + 1

2
Ω2∇c∇aTb

c − ΩTa
c∇c∇bΩ− 1

2
Ω2∇c∇bTa

c = 0. (4.77)

Making use of (4.23) and one gets
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1
2
Ω2Tb

cRac − 1
2
Ω2Ta

cRbc + ΩTb
c∇c∇aΩ− ΩTa

c∇c∇bΩ = 0. (4.78)

Then using both (3.29) and (3.42a) and it can be verified that the LHS of (4.78)

vanishes and hence the two equations are equivalent. This is a very good thing,

because the two wave equations of the Schouten tensor are equivalent, this means

that it is possible to use either equation depending on the situation. Furthermore,

because propagation of the constraints has already been performed for the wave

equation for the Schouten tensor (not written in terms of Bach), this means that

any solution to (4.69) is a solution to the EFEs.

Conformal properties of the Bach tensor

Despite the success of showing the equivalence of the two different wave equations

for the Schouten tensor, there is one final check that needs to be performed. It must

be shown that the Bach tensor is regular under a conformal rescaling. If that turns

out to be the case then it is possible to apply the techniques of wave equations to

cases wherever the Bach tensor is involved. Showing that the Bach tensor is indeed

regular under such a transformation is a lengthy task. We begin first by considering

the exact conformal transformation of the Bach tensor

Bab = Ω−2B̃ab. (4.79)

As we are working with trace-free matter, it becomes necessary to express B̃ab in

terms of the physical energy-momentum tensor T̃ab. In terms of trace-free matter,

the Schouten tensor can be expressed in terms of the energy-momentum tensor as

Lab = 1
2
(Tab + λgab). (4.80)

We begin with the definition of the physical Bach tensor. Commuting the covari-

ant derivatives and substituting in the definition of the Schouten tensor in terms of

the energy-momentum tensor and one obtains

B̃ab = λT̃ab + T̃a
cT̃bc − 1

4
T̃cdT̃

cdg̃ab + 1
12
T̃abR̃− 1

2
∇̃c∇̃cT̃ab. (4.81)

We must now check to see if this equation transforms properly under a confor-

mal transformation. To start with, we consider the conformal transformation of

the energy-momentum tensor given in (3.24), the conformal transformation law of

the metric given by (1.3) and the conformal transformation law of the Ricci scalar

given by (3.11). Because of these laws, the first four terms are satisfactory from

the unphysical point of view since they do not create terms that are singular at the

boundary. The only difficult term to deal with is the last term that involves deriva-

tives of the energy-momentum tensor. We need to make use of the law for trans-
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forming derivatives (2.32); applying this to a derivative of the energy-momentum

tensor gives

∇̃cT̃ab = ∇aT̃bc +Qa
s
bT̃sc +Qa

s
cT̃bs. (4.82)

Applying, (2.13) to (4.82) and expanding gives

∇̃cT̃ab = ∇aT̃b
c + 2ΥaT̃b

c + ΥcT̃ba + ΥbT̃a
c −ΥsT̃bsδa

c −ΥsT̃s
cgab, (4.83)

where Υa is a vector quantity first defined in (3.9). The next step is to see how

a second order derivative of the energy-momentum tensor transforms under a con-

formal rescaling. To make this job easier we redefine the derivatives of the energy-

momentum tensor in (4.83) as

σ̃cab ≡ ∇̃cT̃ab. (4.84)

We then apply (2.32) to (4.84), which gives

∇̃aσ̃
c
bd = ∇aσ̃

c
bd +Qa

c
sσ̃

s
bd −Qa

s
bσ̃

c
sd −Qa

s
dσ̃

c
bs, (4.85)

then expanding as before using (2.13) and then (4.85) becomes

∇̃cσ̃
c
bd = ∇cσ̃

c
bd + 4Υcσ̃

c
bd + Υcσ̃

c
bd −Υcσ̃cbd −Υbσ̃

c
cd

−Υcσ̃
c
bd −Υcσ̃bcd −Υdσ̃

c
bc + Υcσ̃

c
bd −Υcσ̃dbc. (4.86)

So, we can make a decision about whether or not the Bach tensor transforms

properly by closely examining (4.86), upon doing so we notice that virtually every

single term is of the form Υaσ̃bcd. So we simply need to take note of the fact that

each term in (4.83) is comprised of terms that do not contain singular terms at the

boundary; to see that this is indeed the case let us see what form this equation has

when all the necessary substitutions have been made

σ̃cab = 2Ω∇aΩT̃b
c + 2Ω∇aΩTb

c + Ω∇cΩTba + Ω∇bΩTa
c−Ω∇sΩTbsδa

c−Ω∇sΩTs
cgab.

(4.87)

We can see that there are no terms in (4.87) that are irregular as the conformal

factor tends to zero. If we examine the individual terms we notice that the majority

of them are products of the vector Υ and the tensor σ̃abc. However, if we look at

the full version of the tensor σ̃abc given by (4.83) it can be inferred that multiplying

each individual term of this equation by the vector Υa only increases the power

of the conformal factor by one. This means that every such term is regular at the
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boundary, since any term containing a positive value of the conformal factor vanishes

at the boundary. The only other term of concern is the derivative of σ̃abc, however

if we differentiate (4.83) then this only reduces the power of the conformal factor

by one, however this does not create any terms that are singular where Ω = 0.

Combining all this information means that every term contained in (4.86) is regular

at the boundary, hence the Bach tensor is also regular at the boundary. This means

that we can use the version of the third CFE given by (4.69) when using conformal

methods.

4.3.7 The reduced wave operator

We have derived a system of wave equations for conformal spacetimes containing

trace-free matter, however, there is something else that needs to be mentioned when

one proceeds to solve these equations. Whilst (3.42a) and (4.21) provide satisfactory

wave equations that are independent of any arbitrary choice of coordinates, this is

not the case for (4.25) and (4.33). The reason for this is that the d’Alembertian

operator � acts on tensors (as opposed to the first two CWEs where the operator is

applied to scalars), meaning that they involve derivatives of the Christoffel symbols,

which ruins the hyperbolic nature of the equations. Thankfully, there is a proce-

dure which enables us to convert the d’Alembertian operator to an alternative form

that when acting on any tensor in any arbitrary coordinate system preserves the

hyperbolic nature of the terms.

Recall the condition for a system of wave equations (1.9), we will now show how

this procedure enables us to preserve the hyperbolic nature of the equations. Let

us illustrate this procedure with an example: consider an arbitrary covector ωa

with components (ωλ) that satisfy (1.9) with respect to some coordinate system

x = (xµ) and for some choice of coordinate gauge source functions  Lµ(x). A direct

computation using (2.5) yields

�ωλ = gµν∂µ∂νωλ − gµν∂µΓσµλωσ + fλ(g, ∂g, ω, ∂ω), (4.88)

where fλ(g, ∂g, ω, ∂ω) denotes an expression depending on the components gµν , ωµ

and their first order partial derivatives. Now, recall the equation for the Riemann

tensor written in terms of the Levi-Civita connection (2.7); if we contract this equa-

tion with the metric then we end up with

Rσ
λ = gµν∂λΓ

σ
νµ − gµν∂νΓσλµ + gµνΓσλτΓ

τ
νµ − gµνΓσντΓτ λµ. (4.89)

If we rearrange (4.89), then we notice that one of the terms is equal to the second

term in (4.88), so making a substitution yields

�ωλ = gµν∂µ∂νωλ + (Rσλ− gµν∂λΓσ)ωσ + fλ(g, ∂g, ω, ∂ω). (4.90)
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Then, applying (1.6) and using some terms contained within the function fλ to

transform the partial derivative in (4.90) into a covariant derivative, one obtains

�ωλ = gµν∂µ∂νωλ + (Rτλ − gστ∇λΓ
σ)ωτ + fλ(g, ∂g, ω, ∂ω). (4.91)

Now, if we apply (3.29) along with the replacement Γµ 7→  Lµ(x) then this allows

us to define the reduced wave operator � acting on the components ωµ as

�ωλ ≡ gµν∂µ∂νωλ +
Ä
2Lτλ + 1

6
R(x)gτλ − gστ∇λ  Lσ(x)

ä
ωτ + fλ(g, ∂g, ω, ∂ω), (4.92)

where we have chosen to write out the Ricci scalar R as R(x) to emphasize that

this is a form of the equations that depends on the coordinate system x = (xµ).

The more general form of this operator, which acts on a tensor of arbitrary rank, is

given as

�Tλ...ρ ≡ �Tλ...ρ +
Ä
(2Lτλ + 1

6
R(x)gτλ −Rτλ)− gστ∇λ( Lσ(x)− Γσ)

ä
T τ ...ρ + . . .

. . .+
Ä
(2Lτρ + 1

6
R(x)gτρ −Rτρ −Rτρ)− gστ∇ρ( Lσ(x)− Γσ)

ä
Tλ...

τ . (4.93)

Applying this operator to a tensor of arbitrary rank cancels out all the terms that

ruin the hyperbolic nature of the equations and enables one to formulate an initial

value problem for the equations as per usual.

Summary

We have shown that it is possible to write out the conformal metric and the con-

formal fields as a system of wave equations. Furthermore, we have shown that

any solution of these wave equations implies a solution to the corresponding field

equations.



5 Analysis of Trace-Free Matter

Models

In the previous chapter we successfully showed, through the propagation of the

constraints, that any solution to the CWEs is also a solution to the CFEs. These

equations describe the behaviour of conformal fields sourced by trace-free matter.

It is a fundamental fact of GR that the very structure of spacetime is influenced by

the presence of matter. Matter curves the spacetime, but the spacetime itself then

effects how the matter behaves. Whilst the equations that we have derived thus

far describe the spacetime, they do not say anything about how the matter evolves.

We would therefore like to understand how the matter content of the conformal

spacetimes changes over time. All the work that we have done so far suggests that

in trying to describe how any system evolves in the framework of GR that we should

always proceed to construct equations that are hyperbolic. However, it is not always

obvious if it is possible to construct hyperbolic equations for any matter model. This

means that when combining a certain matter model with the CWEs, one needs to

check that the matter itself is ”well behaved”. This means doing a similar analysis to

the previous section for the equations describing the evolution of the matter fields.

We will now proceed to derive a set of wave equations that describe the evolution

of certain trace-free matter fields. We will then proceed to construct subsidiary

equations for each of the equations describing the matter content in order to show

that the evolution equations propagate in the correct manner.

5.1 Conformally coupled scalar field

As mentioned in the introduction, the EFEs are notoriously difficult to solve unless

one makes some simplifying assumptions about the nature of the problem that you

wish to solve. However, one would still like to solve more complicated problems,

analytically if possible. To this end one takes an Occum’s razor approach to the sit-

uation, namely we start with the simplest possible solution then gradually make our

solution more complex until we get the correct result. The simplest possible solu-

tion from the point of view of GR is the Minkowski metric, which describes vacuum

spacetimes. The next solution in order of increasing difficulty is the Schwarzchild

metric, which describes vacuum spacetimes containing a single spherically symmet-
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ric mass. When trying to introduce matter into this picture ideally we would like

to preserve spherical symmetry while having a dynamic situation; one of the sim-

plest matter models that allows us to do this is a scalar field φ. Given all that we

know about how one obtains solutions of evolving systems in GR suggests that one

construct a wave equation for the scalar field. The simplest possible wave equation

that one can construct is

∇̃a∇̃aφ̃ = 0. (5.1)

This provides a very convenient way of incorporating degrees of freedom into ex-

isting solutions of the EFEs whilst simultaneously preserving spherical symmetry.

However, from the point of view of conformal methods, this is not very appealing

since it is not invariant under conformal transformations. A useful model for explor-

ing the properties of scalar fields and conformal invariance is given by a conformally

invariant wave equation, which arises from the addition of a Ricci scalar curvature

term to (5.1):

�̃φ̃− 1
6
R̃φ̃ = 0. (5.2)

Indeed if gab = Ω2g̃ab and we choose the transformation law of the scalar field to

be φ = Ω−1φ̃, then (5.2) implies that

�φ− 1
6
Rφ = 0. (5.3)

It is possible to derive this equation from the following Lagrangian

L = 1
2κ
R− 1

2
gab∇aφ∇bφ− 1

12
Rφ2, (5.4)

the action for this Lagrangian is given by

S =
∫

(
1

2κ
R− 1

2
gab∇aφ∇bφ−

1

12
Rφ2)

√
gd4x. (5.5)

Varying the action with respect to the scalar field gives

δS

δφ
=

∫
(−gab∇aφ∇b(δφ)− 1

6
Rφδφ)

√
−gd4x, (5.6)

then integrating (5.6) by parts gives

δS

δφ
=

∫
(gab∇a∇bφδφ−

1

6
Rφδφ)

√
−gd4x. (5.7)

Applying Lagrange’s lemma to (5.7) gives the equation of motion (5.3). The

energy-momentum tensor for such a scalar field can also be derived by varying (5.5)

with respect to the metric, which yields the result



5.1: Conformally coupled scalar field 66

Tab = ∇aφ∇bφ− 1
4
gab∇cφ∇cφ− 1

2
∇a∇bφ+ 1

2
φ2Lab. (5.8)

It can be verified that this matter tensor is both trace and divergence free (i.e.

gabTab = 0 and ∇aTab = 0). Despite the relative simplicity of (5.2), one runs into

a problem when trying to couple this matter model with the CWEs, namely that

the act of substituting (5.8) into (4.2) creates second and third order derivatives of

the scalar field, which ruins the hyperbolic nature of the equations. To resolve this

difficultly we construct field equations for derivatives of the scalar field,

∇aφ ≡ φa, ∇a∇bφ ≡ φab. (5.9)

However, in order to see whether or not it is possible to use these definitions to

simplify calculations, we must check that the above definitions possess the correct

evolution properties. To this end, one proceeds to compute evolution equations for

these variables, which can be done by direct differentiation and making use of (4.23).

Doing so gives

�φb = 1
3
φbR + 2φaLba + 1

6
φ∇bR, (5.10a)

�φcd = ΩφaTdac − 2Ωφabdcadb + 1
2
φcdR− 2φabgcdLab + 4φd

aLca

−1
3
φRLcd + 4φc

aLda − 1
6
φagcd∇aR− φa∇aLcd − φadcbda∇bΩ

+1
3
φd∇cR + 2φa∇cLda + 1

3
φc∇dR + φa∇dLca + 1

6
φ∇d∇cR. (5.10b)

The introduction of these equations allows one to construct an initial value prob-

lem for the CFEs coupled with a conformally invariant scalar field since it enables

one to simplify derivative terms.

5.1.1 Subsidiary equations for the scalar field system

Again, to verify that these evolution equations are valid one must proceed with

the propagation of the constraints. To this end we define the following subsidiary

variables

Qa = φa −∇aφ, (5.11a)

Qab = φab −∇a∇bφ, (5.11b)

and check if the wave equations that one can construct from these variables are

homogeneous. Differentiating (5.11a) to start with, we obtain

�Qa = �φa −�∇aφ, (5.12)
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then applying (4.23) gives

�Qa = ∇a�φ−�φa +Rab∇bφ. (5.13)

Using (5.2) and (5.10a) to eliminate the derivatives and we are left with

�Qa = −φbRab − 1
6
φaR + 1

6
R∇aφ+Rab∇bφ. (5.14)

Finally, using (5.11a), (5.11b) and (3.29), then we get

�Qa = 1
3
QaR + 2QbLab, (5.15)

which is a homogeneous wave equation as required. Next, we proceed to do the

same with the Qab variable. Begin by differentiating (5.11b) and one ends up with

�Qab = −�φab + �∇b∇aφ. (5.16)

Applying (4.23) to (5.16) then gives

�Qab = ∇b∇a�φ+Rac∇b∇cφ−�φab +∇bRac∇cφ

+Rbc∇c∇aφ−Rd
acb∇c∇dφ−∇cR

d
a
c
b∇dφ−Rd

a
c
b∇d∇cφ. (5.17)

Using (2.12), (3.29), (5.11a), (5.11b), (4.48), (4.47), (5.10b), (2.30), (4.49) and

(4.11) to simplify and one can verify that

�Qab = −2ΩQcddacbd + 1
2
QabR− 2Qc

cLab + 4Qb
cLac + 4Qa

cLbc

−2gabQ
cdLcd + ΩφcΛbac − φc∆abc − φb∆a

c
c + φcgab∆c

d
d. (5.18)

5.1.2 Summary

Hence, the wave equations for the subsidiary equations for the scalar field system

are homogeneous and the relations in (5.9) are valid.

5.2 Electromagnetic field

The electromagnetic (EM) or Maxwell field is the model that is used to describe

the properties of electromagnetic matter and radiation. In the classical sense the

EM field is described mathematically by the Maxwell equations, however, it is not

apparent if the Maxwell equations transform correctly under a coordinate transfor-

mation. To perform a coordinate invariant analysis of gravitational systems coupled
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with EM sources one needs to write out the Maxwell equations in tensorial form

∇̃aF̃ab = 0, (5.19a)

∇̃[aF̃bc] = 0, (5.19b)

where F̃ab is an antisymmetric tensor called the Faraday tensor, the energy-momentum

tensor of the Maxwell field is given by

T̃ab = F̃acF̃b
c − 1

4
g̃abF̃cdF̃

cd, (5.20)

which can be verified to be trace and divergence free. The Maxwell equations are

extremely appealing from the point of view of conformal transformations, since they

are conformally invariant [27, 36], i.e.

∇aFab = 0, Fab ≡ F̃ab, ∇[aFbc] = 0.

In order to see if the Maxwell field propagates in the correct way, one needs to show

that it is possible to construct a homogeneous wave equation for the Faraday tensor.

To accomplish this task we expand and differentiate (5.19b), which gives

�Fbc −∇a∇bFac +∇a∇cFab = 0. (5.21)

Then, upon applying (4.23) to (5.21), one obtains

Fc
aRba − FbaRca + 2F adRbacd + �Fbc +∇b∇aFc

a −∇c∇aFab = 0, (5.22)

which, upon applying (5.19a), simplifies to

Fc
aRba − FbaRca + 2F adRbacd + �Fbc = 0. (5.23)

Then, making use of (2.12) and (3.29), one obtains

�Fbc = 1
3
FbcR− 2ΩF addbacd, (5.24)

which is the wave equation for the Faraday tensor. Now, in order to show that any

solution to the Faraday wave equation also solves the Maxwell equations and that

the Maxwell fields behave correctly when coupled to the CFEs, one again needs to

make use of the propagation of the constraints. So to that end, one constructs a

system of subsidiary equations for the Maxwell equations

∇aFab ≡Mb, (5.25a)



5.2: Electromagnetic field 69

∇[aFbc] ≡Mabc. (5.25b)

It can be verified that the propagation of the constraints is indeed valid for vacuum

spacetimes. We will now show that this result is valid for spacetimes perturbed with

trace-free matter. Begin by applying a d’Almbertian to (5.25a)

�Ma = �∇bFba. (5.26)

Commuting the covariant derivatives with (4.23), then applying (5.24), (3.29),

(2.12), (4.47), (4.48), (4.49) and (5.25a) gives

�Ma = −ΩF bfΛbaf + 1
6
RMa + 2La

bMb − F bf∆abf − Fab∆b
f
f . (5.27)

The next step is to show that the wave equation for Mabc is homogeneous, this can

be done, albeit rather cumbersomely, by directly differentiating (5.25b), however it

is far simpler to make use of the Hodge dual. Multiplying both sides of (5.27) by

Levi-Civita alternating tensor whilst contracting on the three free indices of Mabc

and multiplying out and differentiating then one obtains,

εdabc�M
abc = εdabc�∇cF ab. (5.28)

Commuting the covariant derivatives and using (5.24), (3.29), (2.12), (4.49) to

simplify, then rewriting the Weyl tensor terms using (4.15) and making use of both

(5.25a) and (5.25b) to deal with the derivatives of the Faraday, along with the fact

that the dual of the Weyl tensor is trace-free then one obtains

εdabc�M
abc = 2ΩεdbcfF

abTa
cf + 2ΩF ab ∗Tabd + 2ΩFd

a ∗Ta
b
b + 2ΩFd

a ∗Λb
ab
∗Tdab

−6Ω ∗ddabcM
abc + 2F ab(εdbcf∆a

cf − εdabf∆cf
c)− 2εdbcfL

ab∇aF
cf + 1

2
εdabcR∇cF ab

+2ΩF ab( ∗Λdab − ∗Λadb)− 2F bc∇aΩ(εdcefda
e
b
f + 2 ∗d[b|dc|a])− 4εdbcfL

ab∇fFa
c. (5.29)

It is at this point that we rewrite this equation in terms of the original variables

as opposed to the Hodge duals. Multiplying both sides of (5.29) by a second Levi-

Civita tensor with contractions on the one remaining free index, expanding the dual

terms and eliminating the derivatives of the Faraday tensor with (5.25b) and the

equation transforms to

�Mhlm = 2ΩdlmabMh
ab − 2Lm

aMhla + 2Ll
aMhma − 2ΩdhmabMl

ab + 2ΩdhlabMm
ab

+1
3
Fm

b(dhalb − dhamb − dhmab)∇aΩ + 1
3
Fl
b(dhbma − dhamb + dhmab)∇aΩ

−2Lh
aMlma + 1

2
RMhlm + 1

3
Fh

b(dlamb + dlbma − dlmab)∇aΩ, (5.30)
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where we have ignored all the other subsidiary variables except for the Maxwell

variables for convenience. Finally, making use of the Bianchi identity to eliminate

all the remaining terms containing the Weyl tensor and we are left with, including

all the subsidiary variables

�Mhlm = 1
3
ΩεhlmcF

ab ∗Λab
c + 1

3
ΩεhlmcF

ab ∗Λc
ab − 1

3
ΩεhlmbF

ab ∗Λc
ac + 2

3
Fm

a∆[h|a|l]

−1
3
Fl
a∆ham + 2

3
Flm∆h

a
a + 2ΩdlmabMh

ab + 1
2
RMhlm − 2ΩdhmabMl

ab − 2Lh
aMlma

+4L[l
aM|h|m]a + 2ΩdhlabMm

ab + 1
3
Fh

a∆lam − 2
3
Fhm∆l

a
a + 2

3
F[l

a∆|ma|h] + 2
3
Fhl∆m

a
a.(5.31)

Therefore, the wave equation is homogeneous as required. Despite the propagation

of the constraints being satisfied for the Einstein-Maxwell system, one runs into a

similar problem when trying to combine the matter model with the CWEs, namely

that doing so creates second order derivatives that ruins the hyperbolicity of the

equations. In order to solve this problem we use the same method that was used to

resolve the scalar field system. Namely, we create a new field,

Fabc = ∇aFbc, (5.32)

and proceed to see if this variable propagates correctly. We begin by differentiating

(5.32) twice and using both (4.23) and (5.24), which gives

�Fabc = −2F jddbjcd∇aΩ + 1
3
R∇aFbc − 2Ωdbjcd∇aF

fd − 2ΩF fd∇adbfcd +Ra
f∇fFbc

+1
3
Fbc∇aR + Fc

f∇dRa
d
bf − Fbf∇dRa

d
cf − 2Radcf∇dFb

f + 2Radbf∇dFc
f , (5.33)

then using (2.12), (3.29), (4.47), (4.48) and (5.19b), then one obtains,

�Fabc = 4ΩF f
[cTb]fa + 4ΩF fd

[bdc]daf + 4F f
a[cLb]f + 2ΩFa

fddbfcd

+4ga[bF
|f |
c]
dLfd − 2F fddbfcd∇aΩ + 4F f

bcLaf + 1
2
FabcR− 2ΩF fd∇adbfcd

+4F f
a[cLb]j + 1

3
Fbc∇aR + 1

3
Fa[c∇b]R + 4F d

[bdc]daf∇fΩ + 1
3
Fj[bgc]a∇jR. (5.34)

With the derivation of the wave equation completed, one now needs to do the

propagation of the constraints. First we start by defining a new subsidiary variable

Qabc = Fabc −∇aFbc. (5.35)

Both this and (5.19b) imply the identity

Fabc = Fbac − Fcab +Qabc −Qbac +Qcab. (5.36)
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As we have done many times before, we now need to show that the wave equation

that is computed from (5.35), is homogeneous. Differentiating (5.35) twice then

applying both (4.23) and (5.24) gives

�Qabc = 2F fddbfcd∇aΩ− 1
3
R∇aFbc + 2Ωdbfcd∇aF

fd + 2ΩF fd∇adbfcd − 1
3
Fbc∇aR

−Fcf∇dRa
d
bf + Fb

f∇dRa
d
cf + 2Radcf∇dFb

f − 2Radbf∇dFc
f −Ra

f∇fFbc + �Fabc.(5.37)

Then, using (2.12) and (3.29) followed by (4.48), (4.49), (4.47), (5.35) and (5.36)

to simplify and we end up with

�Qabc = ΩFc
fΛabf − ΩFb

fΛacf − 2ΩdbfcdQa
fd + 1

2
RQbac − 1

2
RQcab − 2Lc

fQfab

+2Lb
fQfac + 4La

fQfbc − 2gacL
fdQfbd + 2gabL

fdQfcd − 2ΩdafcdQ
f
b
d + 2ΩdafbdQ

f
c
d

+Fc
f∆bfa + Fac∆b

f
f − Fbf∆cfa − Fab∆c

f
f + Fc

fgab∆f
d
d − Fbfgac∆f

d
d. (5.38)

Thus the wave equation for Qabc is homogeneous and (5.32) is indeed a valid

relation.

5.3 Yang-Mills fields

Another trace-free matter model is the Yang-Mills field [4, 11]. From the classical

point of view, this matter model is a more complex version of the the electromagnetic

theory. Upon quantizing this particular theory, one obtains the theory of Quantum

Chromodynamics responsible for the description of the strong nuclear force.

The classical Yang-Mills equations are as follows

F c
ab +∇fF a

fb = 0, (5.39a)

Ab
aA

c
bC

a
bc +∇aA

a
b −∇bA

a
a − F a

ab = 0, (5.39b)

where F a
bc is the Yang-Mills version of the Faraday tensor, Aa

a is analogous to the

gauge potential in electromagnetism and Ca
bc are a set of constants known as the

structure constants that take into account the non-linearity of Yang-Mills and allow

one to fix the particular Yang-Mills field under consideration. Also the indices a, b, c

are a set of indices that obey the standard summation convention, but which can

have a different total number of terms as the spacetime indices when expanded. The

structure constants satisfy the following identities,

Ca
bcC

d
ae + Ca

ecC
d
ab + Ca

ebC
d
ac = 0, (5.40)
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which is the Jacobi identity, as well as an identity analogous to the Young Projector

Ca
cdC

b
ae = 1

3
(Ca

edC
b
ac − Ca

ecC
b
ad + Ca

cdC
b
ae − Ca

dcC
b
ae). (5.41)

Another important quantity is the gauge source function analogous to the elec-

tromagnetic 4-potential in classical electromagnetism. Recall that the 4-potential in

electromagnetism is a vector that combines the electric potential and the magnetic

potential into a single 4-vector; naturally, the gauge source function is a non-linear

version of the this 4-potential. Specifically this function is defined as

f a = ∇aA
aa. (5.42)

An important fact about this function is that, like the corresponding 4-potential,

it is Lorentz covariant, which means that it is completely invariant in all frames

of reference, rather much like the spacetime interval. Furthermore, this particular

quantity possesses what is known as a gauge invariance. In the case of the 4-potential

this means that the Faraday tensor does not change when one performs a transfor-

mation of the form Aµ → Aµ−∂µΛ, where Λ is some arbitrary function. This means

that there are infinitely many choices of the 4-potential that give identical results

when measuring physical quantities. The gauge source function (5.42) inherits these

properties and therefore it is a quantity that is dependent on the choice of the user.

5.3.1 Wave equations for the Yang-Mills fields

We will now proceed to derive the evolution equations for the Yang-Mills variables.

We will start by deriving a wave equation for the gauge potential. Differentiating

(5.39b) once and one ends up with

Ac
bC

a
bc∇aAb

a + Ab
aC

a
bc∇aAc

b −∇aF a
ab + �Aa

b −∇a∇bA
a
a = 0. (5.43)

Using (4.23), (2.12), (3.29) and (5.42) and we obtain from

�Aa
b+AbaCa

bc∇aA
c
b− 1

6
Aa

bR−2AaaLba−Ab
bf

cCa
bc +∇aF

a
b
a−∇af

a = 0. (5.44)

Finally, applying (5.39a), rearranging terms and it can be verified that (5.44)

reduces to

�Aa
b = 1

6
Aa

bR+2AaaLba+F c
abA

baCa
bc+A

b
bf

cCa
bc−AbaCa

bc∇aA
c
b+∇bf

a. (5.45)

Now we turn our attention to the Faraday tensor. The wave equation for the
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Faraday tensor is unique in the sense that there are two different wave equations

that one can derive. The first comes applying derivatives to an identity that is

obtained from anti-symmetrising a derivative of the Faraday tensor and the other

via directly differentiating the second Yang-Mills equation.

F b
bcA

b
aC

a
bc−F c

acA
b
bC

a
bc +F c

abA
b
cC

a
bc +∇aF

a
bc−∇bF

a
ac +∇cF

a
ab = 0. (5.46)

Crucially, since we have obtained (5.46) via anti-symmetrising (5.39a), these two

equations are not independent, which means that any wave equation that we obtain

from (5.46) will be equivalent to (5.45). This means that we have obtained two

equations that we can use to best fit the problem that suits us; it will also be

invaluable when constructing a subsidiary system for the Yang Mills fields. Now, let

us return to the process of deriving a wave equation from (5.46). Differentiating said

equation and applying (4.23), (5.39a), (2.12), (3.29) and (5.42) then (5.46) becomes,

�F a
bc = −2ΩF aaddbacd + 1

3
F a

bcR− F c
bcf

bCa
bc − F d

baA
b
cA

caCa
bcC

e
cd

−AbaCa
bc∇aF

c
bc − F c

caC
a
bc∇aAb

b + F d
caA

b
bA

caCa
beC

e
cd + F c

baC
a
bc∇aAb

c

+AbaCa
bc∇bF

c
ca + F c

caC
a
bc∇bA

ba − AbaCa
bc∇cF

c
ba − F c

baC
a
bc∇cA

ba. (5.47)

It is possible to simplify the above even further, first by applying (5.46) to the

derivatives of the Faraday tensor, then applying (5.39a) to the derivatives of the

gauge potential and (5.41) to the terms that are produced as a result of these

substitutions and (5.53) can be re-written as

�F a
bc = −2ΩF aaddbacd + 1

3
F a

bcR + 2F b
b
aF c

caC
a
bc − F c

bcf
bCa

bc

−F d
dcA

baAc
aC

a
beC

e
cd − 2AbaCa

bc∇aF
c
bc. (5.48)

The second equation for the Faraday tensor is obtained by differentiating (5.39b),

albeit simplifying this equation is a much lengthier and more complicated pro-

cess. Commuting the covariant derivatives with (4.23), then applying (3.29), (2.12),

(5.45), (2.18), (4.48), (4.47), (4.11), (2.30) and (5.39b) to eliminate certain terms and

then using (5.41) to eliminate groups of terms containing two structure constants

and one obtains

�F a
ab = −F b

a
cF c

bcC
a
bc − F d

bcA
b
aA

ccCa
deC

e
bc − 2F c

bcC
a
bc∇cAb

a + F c
acC

a
bc∇cAb

b

+1
3
F a

abR− 2ΩAbcAcddacbdC
a
bc − F d

bcA
b
aA

ccCa
beC

e
cd + F d

acA
b
bA

ccCa
beC

e
cd

−3AbcCa
bc∇[aF

|c|
bc] + F c

acC
a
bc∇bA

bc + 2Ωdacbd∇dAac − 2Ωdadbc∇dAac.(5.49)
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The next step to simplifying the above is to isolate and re-write the derivatives of

the Faraday tensor. Isolating the three terms containing the derivatives of interest

and applying (5.39b) to the derivatives and we end up with

AbcAc
cC

a
beC

e
cd∇aA

d
b − AccAc

bC
a
ceC

e
bd∇aA

d
c + 2AbcCa

bc∇a∇[cA
|c|
b]

−AbcAc
cC

a
beC

e
cd∇bA

d
a + AccAb

aC
a
ceC

e
bd∇bA

d
c + 2AbcCa

bc∇b∇[aA
|c|
c]

+AccAb
bC

a
ceC

e
bd∇cA

d
a − AccAb

aC
a
ceC

e
bd∇cA

d
b + 2AbcCa

bc∇c∇[bA
|b|
a]. (5.50)

Applying (4.23) to remove the second order derivatives of the gauge potential,

followed by (2.12) to eliminate the Riemann curvature terms and the result is

−ΩAbcAcddabcdC
a
bc + 2ΩAbcAcddacbdC

a
bc + AbcAc

cC
a
beC

e
cd∇aA

d
b

−AccAb
bC

a
ceC

e
bd∇aA

d
c − AbcAc

cC
a
beC

e
cd∇bA

d
a + AccAb

aC
a
ceC

e
bd∇bA

d
c

+AccAb
bC

a
ceC

e
bd∇cA

d
a − AccAb

aC
a
ceC

e
bd∇cA

d
b. (5.51)

Then making use of (2.30) to get rid of the Weyl tensor terms and then (5.39b)

to remove the derivatives of the gauge potential and (5.51) becomes

F d
bcA

b
bA

ccCa
ceC

e
bd − F d

acA
b
bA

ccCa
ceC

e
bd

+F d
abA

c
cA

bcCa
beC

e
cd − Ab

aA
c
bA

dcAe
eC

a
dfC

f
egC

g
bc

+Ab
aA

c
bA

dcAe
eC

a
dfC

f
cgC

g
be − Ab

aA
c
bA

dcAe
eC

a
dfC

f
bgC

g
ce. (5.52)

If we replace the terms in (5.49) containing derivatives of the Faraday tensor with

the terms in (5.52) and we notice that multiple terms can be cancelled out using

(5.41). Upon doing so the equation simplifies to

�F a
ab = −2ΩF acddacbd + 1

3
F a

abR− 2F b
a
cF c

bcC
a
bc − F c

abf
bCa

bc

+F d
abA

bcAc
cC

a
beC

e
cd − 2F c

bcC
a
bc∇cAb

a + 2F c
acC

a
bc∇cAb

b. (5.53)

We see that both of these wave equations are appealing from a purely theoretical

point of view since, upon setting the structure constants to zero, they both reduce

to the equivalent wave equation for the Faraday tensor in electromagnetism. This

is intuitive since the only thing that separates Yang-Mills from electromagnetism is

the addition of non-linear terms that are represented by the inclusion of structure

constants.
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5.3.2 Subsidiary equations for Yang-Mills fields

As with the previous results we must check that the propagation of the constraints is

satisfied. To this end we define some subsidiary variables for the Yang-Mills system.

Πa = −f a +∇aA
aa, (5.54a)

Ϙ
a
b = F c

abA
baCa

bc +∇fF a
fb, (5.54b)

Fa
ab = −F a

ab + Ab
aA

c
bC

a
bc +∇aA

a
b −∇bA

a
a. (5.54c)

The subsidiary equation for the gauge source function

We will start by constructing a wave equation for the subsidiary variable for the

gauge source function. Applying the d’Alambertian to (5.54a) and making use of

(4.23) followed by (3.29) and (5.42) then the end result is

�Πa = −f aCa
bcΠ

c − AbaCa
bc∇aΠ

c + AbaCa
bc∇bF

c
a
b + F a

abC
a
bc∇bAba. (5.55)

Now, an alternate form of (5.54c) is

∇aA
a
b = 1

2
(F a

ab − AbaAc
bC

a
bc) + 1

2
(∇aA

a
b +∇bA

a
a), (5.56)

which is obtained by taking into account the antisymmetry of (5.54c). Substituting

(5.56) into (5.55) and making use of (5.54b) to remove the derivative of the Faraday

tensor and one obtains

�Πa = −1
2
F d

abA
baAcbCa

deC
e
bc − F d

abA
baAcbCa

beC
e
cd

−f bCa
bcΠ

c − AbaCa
bcϘ

c
a − 1

2
F c

abC
a
bcFbab − AbaCa

bc∇aΠ
c. (5.57)

The first two terms of (5.57) can be eliminated using the Young projector of the

Jacobi identity. Upon substituting (5.41) into said terms and the end result can be

verified to be

�Π = −f bCa
bcΠ

c − AbaCa
bcϘ

c
a − 1

2
F c

abC
a
bcFbab − AbaCa

bc∇aΠ
c, (5.58)

which is a homogeneous wave equation in the subsidiary variables as required.

The subsidiary equation for the second Yang-Mills equation

Next we will proceed to show that the wave equation for (5.54c) is homogeneous

in the subsidiary variables. Beginning by applying the d’Alembertian operator to
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(5.54c), then using (4.23) followed by (2.12), (3.29), (4.47), (4.48), (5.54c), (4.11),

(2.30) and (5.53) then one ends up with

�Fa
ab = Fa

ab + Aa
ab + ΩAacΛabc − ΩAacΛbac + Aac∆abc

−2ΩdacbdFacd + 1
3
RFa

ab − F c
bcC

a
bc∇aFb

a
c + f bCa

bcF c
bc

−AbcCa
bc∇aF c

cb + AbcCa
bc∇bF c

ca + 1
3
RFa

ab − 2ΩdacbdFacd, (5.59)

where, for the sake of making the analysis more manageable and clear, we have

chosen to define the quantities

Fa
ab ≡ F b

a
cF c

bcC
a
bc − F d

bcA
b
aA

ccCa
deC

e
bc − F d

abA
bcf dCa

beC
e
cd

+F d
acA

b
bA

ccCa
beC

e
cd + Ab

aA
c
bf

d(Ca
deC

e
bc − Ca

deC
e
bc + Ca

beC
e
cd), (5.60)

Aa
ba ≡ 2AbcAc

cC
a
beC

e
cd∇[aA

d
b] + 2Ab

bA
ccCa

ceC
e
bd∇[cA

d
a]

+2AbbAccCa
ceC

e
bd∇[bA

d
c] + F c

bcC
a
bc∇cAb

a + F c
acC

a
bc∇bA

bc

−Ca
bc∇bA

c
c∇cAb

a + 2Ca
bc∇cA

c
b∇cAb

a + Ca
bc∇aA

c
c∇cAb

b. (5.61)

Let us now proceed to re-express the remaining variables in a more symmetric

manner. First, we notice that the final terms in (5.60) cancel out due to the Jacobi

identity. Next, we notice that it is possible to rewrite the last three terms in (5.61)

such that all the derivatives of the gauge potential have the same indices by a careful

application of (5.54c). When we do this, we find that all of the aforementioned terms

are equal to

Ca
bcFb

b
c∇cA

c
a − Ca

bc∇cFb
a
cAc

b + Ab
bA

ccCa
deC

e
bc∇cA

d
a

−Ab
aA

ccCa
deC

e
bc∇cA

d
b − F c

bcC
a
bc∇cAb

a + F c
acC

a
bc∇cAb

b. (5.62)

Rewriting (5.61) using (5.62) and then combining all these obtained relations with

(5.59) then making use of (5.54c) to again ensure that all the derivatives of the gauge

potential have the same indices, then it can be verified that all the obtained terms

form groups that can be cancelled out using the Jacobi identity. Grouping all said

terms and applying (5.41) accordingly then the end result is

�Fa
ab = ΩAacΛabc − ΩAacΛbac + Aac∆abc + 1

3
RFa

ab − 2ΩdacbdFacd − F c
bcC

a
bcFb

a
c

−F c
acC

a
bcFbc

b + f bCa
bcF c

ba − Ab
bA

ccCa
ceC

e
bdFd

ac − AbcAc
cC

a
beC

e
cdFd

ba
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+Ab
aA

ccCa
ceC

e
bdFd

bc − AbcCa
bc∇aF c

cb + AbcCa
bc∇bF c

ca + 2Ca
bcFb

[b
|c|∇|c|A|c|a],(5.63)

which is a homogeneous wave equation as required.

The subsidiary equation for the first Yang-Mills equation

Finally, we proceed to construct a homogeneous wave equation for (5.54b), which

is the most challenging of all the Yang-Mills subsidiary equations to construct. It

should be expressed that the derivation of this wave equation relies on a subtlety,

which was mentioned at the start of this section. In the derivation of the wave

equation for (5.54c) we made use of the wave equation for the Faraday tensor that

was constructed from the first Yang-Mills equation i.e. (5.53). However, for the

construction of the wave equation for (5.54b), it is much more convenient to use

the wave equation for the Faraday tensor that is constructed from the Yang-Mills

Bianchi identity to eliminate certain terms. Furthermore, rather non-intuitively, the

form of the equation that is used in the analysis is in fact (5.47), not the simpler

version of the equation (5.48). As mentioned beforehand, the equations that the

two wave equations are derived from are not independent of each other, meaning

that the two wave equations are equivalent to each other. This means that using

(5.47) in the analysis is a perfectly acceptable course of action. Begin by applying

the d’Alembertian to (5.54b), which gives

�Ϙab = AbaCa
bc�F

c
ab + F c

abC
a
bc�A

ba + �∇fF a
fb + Ca

bc∇cA
ba∇cF c

ab∇cAba,

(5.64)

then using (4.23) followed by (2.12), (3.29) and (2.18) to remove certain curvature

relations and (5.64) becomes

�Ϙab = 1
6
R∇aF

a
b
a + 1

6
F a

b
a∇aR−∇a�F

a
b
a − F acddbcad∇aΩ + 1

6
F a

ba∇aR

−2Lb
a∇cF

a
a
c − F aac∇cLba − AbaCa

bc�F
c
ba − F c

baC
a
bc�A

ba

−2Ca
bc∇cF

a
ba∇cAba + ΩF aac∇ddbac

d + 2Ωdbacd∇dF aac. (5.65)

Next, we make use of (5.24) and (5.45) in order to remove the d’Alembertian

operators in (5.65), followed by (4.23) to arrange the second order derivatives that

get produced, then (5.54b), (5.54c) and (5.54a) to introduce the subsidiary variables

into the equation. After doing all this (5.65) becomes

�Ϙab = Sa
b − F e

acA
b
bA

caAdcCa
bfC

f
cgC

g
de + F acddbcad∇aΩ− ΩF aac∇ddbac

d

−AbaAccCa
bdC

d
ce∇bF

e
ac + 2F d

acA
baCa

[c|e|C
e
b]d∇bA

cc + Ca
bc∇bF

c
ac∇cAba



5.3: Yang-Mills fields 78

−F aac∇cLba + F d
acA

b
bC

a
beC

e
cd∇cAca − F c

acC
a
bc∇c∇aAb

b + F c
acC

a
bc∇c∇bA

ba,(5.66)

where Sa
b is a shorthand notation for all the subsidiary symbols that have been

created as a result of all the substitutions, which is specifically equal to

Sa
b ≡ F d

baA
baCa

ceC
e
bdΠ

c + 2LbaϘ
aa + 1

6
RϘab − f bCa

bcϘ
c
b

−Ab
bA

caCa
beC

e
cdϘ

d
a + 2Ca

bc∇[bA
|c|
a]Ϙ

ba − AbaCa
bc(∇aϘ

c
b +∇bϘ

c
a). (5.67)

Now, we may eliminate the derivative of the Schouten tensor in (5.66) using (4.47),

due to the fact that the Schouten tensor is symmetric and the Faraday tensor is

antisymmetric and hence a contraction of the two is zero. The derivative of the

Weyl tensor is eliminated using (4.48) and the second order derivatives of the gauge

potential can be eliminated using (5.54c), which gives

�Ϙab = Ša
b − F e

acA
b
bA

caAdcCa
bfC

f
cgC

g
de − AbaAccCa

bdC
d
ce∇bF

e
ac − F bacCa

bc∇cF
c
ba

+F d
acA

baCa
ceC

e
bd∇bA

cc − F d
acA

baCa
beC

e
cd∇bA

cc + Ca
bc∇bF

c
ac∇cAba

+F d
acA

b
bC

a
deC

e
bc∇cAca + F d

acA
b
bC

a
beC

e
cd∇cAca − F d

acA
baCa

deC
e
bc∇cAc

b. (5.68)

Where Ša
b is simply (5.67) plus any additional subsidiary variables that have

been created as a result of our substitutions, specifically

Ša
b ≡ Sa

b − ΩF aacΛabc − F aac∆bac − F c
bcC

a
bc∇aΠb + F c

acC
a
bc∇cFb

b
c. (5.69)

As before we proceed to systematically eliminate the remaining troublesome terms

in a methodical step-by-step process. The key to solving this problem is to rewrite

the first two terms of the last line of (5.68) in a more appropriate form. Once again,

we make use of (5.56) in order to express the terms in a more symmetric fashion,

applying this equation to the terms of interest and we find that said terms are equal

to

F d
acA

b
bC

a
deC

e
bc∇cAca + F d

acA
b
bC

a
beC

e
cd∇cAca = −1

2
F cacF d

acA
b
bC

a
ceC

e
bd

+1
2
F e

acA
b
bA

caAdcCa
efC

f
bgC

g
cd − 1

2
F d

acA
b
bC

a
beC

e
cdF cac

−1
2
F e

acA
b
bA

caAdcCa
bfC

f
egC

g
cd − 1

2
F d

acA
b
bC

a
deC

e
bcF cac. (5.70)

Substituting (5.70) into (5.68) and we can see that multiple terms can be cancelled

out with the Jacobi identity. So, grouping together the necessary terms and applying

(5.41) and the wave equation for the subsidiary variable reduces to
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�Ϙab = Ša
b + F c

b
cF d

acA
baCa

deC
e
bd − 1

2
F cacF d

acA
b
bC

a
ceC

e
bd

−AbaAccCa
bdC

d
ce∇bF

e
ac − F bacCa

bc∇cF
c
ba + Ca

bc∇bF
c
ac∇cAba

−1
2
F d

acA
b
bC

a
beC

e
cdF cac − 1

2
F d

acA
b
bC

a
deC

e
bcF cac. (5.71)

As we can see, the wave equation has simplified greatly, all that is left to do is to

deal with the remaining terms that involve derivatives of the Faraday tensor. Let

us isolate the terms involving derivatives of the Faraday tensor to show that they

indeed cancel out. First, we start by removing the derivative of the gauge potential

by applying (5.56), then the derivatives of the Faraday tensor using (5.54c), and

cancelling out multiple terms with (5.41) and (5.71) becomes

�Ϙab = Ŝa
b + F c

b
cF d

acA
baCa

deC
e
bd − 1

2
F cacF d

acA
b
bC

a
ceC

e
bd

−F d
acA

baCa
deC

e
bc∇bA

cc − F c
acC

a
bc∇b∇cAba − F d

acA
b
bC

a
deC

e
bc∇cAca

+F d
acA

baCa
deC

e
bc∇cAc

b − F c
acC

a
bc∇c∇aAb

b + F c
acC

a
bc∇c∇bA

ba, (5.72)

where, as before we have defined

Ŝa
b ≡ 1

2
AbaAccCa

deC
e
bc∇bFd

ac − 1
2
Ca

bcFbac∇bF
c
ac − 1

2
F c

acC
a
bc∇bFbac

+AbaAccCa
beC

e
cd∇bFd

ac − F c
acC

a
bc∇cFb

b
a − 1

2
F d

acA
b
bC

a
beC

e
cdF cac

+Ša
b − 1

2
F d

acA
b
bC

a
deC

e
bcF cac, (5.73)

i.e. we have chosen to collect all the subsidiary variables into a single term to make

our equation easier to analyse. Now, returning to (5.72), we first eliminate two of

the second order derivatives using (4.23); the third is eliminated using an equation

which, like (5.56), is based on symmetry

∇a∇bA
a
c = 1

2
AadRabcd + 1

2
∇a∇bA

a
c + 1

2
∇b∇aA

a
c, (5.74)

it can be verified by applying (4.23) that (5.74) is indeed true. Upon performing all

of these tasks, it can be verified that (5.72) reduces to

�Ϙab = Ŝa
b + 1

2
F ccdAbaRbacdC

a
bc − F ccdAbaRbcadC

a
bc − 1

2
F cacF d

acA
b
bC

a
ceC

e
bd

+F e
acA

b
bA

caAdcCa
efC

f
cgC

g
bd − F d

acA
b
bC

a
deC

e
bc∇cAca + F d

acA
baCa

deC
e
bcF cc

b.(5.75)

The two terms in (5.75) containing the Riemann tensor can be eliminated using

the Young projector, then using (5.56) to remove the term containing a derivative
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of the gauge potential and (5.75) becomes

�Ϙab = Ŝa
b + F e

acA
b
bA

caAdcCa
efC

f
cgC

g
bd − 1

2
F c

acC
a
bc∇bFbac

−1
2
F a

acA
b
bA

caAdcCa
efC

f
bgC

g
cd + F d

acA
baCa

deC
e
bcF cc

b. (5.76)

Finally, the only remaining two non-subsidiary terms can be cancelled out with

(5.41). So, replacing all the terms that we started out with in (5.71) with (5.76) and

finally one obtains

�Ϙab = Ŝa
b − 1

2
F c

acC
a
bc∇bFbac + F d

acA
baCa

deC
e
bcF cc

b, (5.77)

or, equivalently by ”unwrapping” the Sa
b terms using (5.73), (5.69), (5.67) then

(5.77) can be written as

�Ϙab = F d
baA

baCa
ceC

e
bdΠ

c − ΩF aacΛabc − f bCa
bcϘ

c
b − 1

2
F d

acAbC
a
beC

e
cdF cac

−F aac∆bac + 2LbaϘ
aa − Ab

bA
caCa

beC
e
cdϘ

d
a + 2Ca

bc∇[bA
|c|
a] − AbaCa

bc(∇aϘ
c
b +∇bϘ

c
a)

+1
6
RϘab − F c

bcC
a
bc∇aΠb + 1

2
F c

acC
a
bc∇bFbac + AbaAcc(1

2
Ca

deC
e
bc + Ca

beC
e
cd)∇bFd

ac,(5.78)

which is a homogeneous wave equation in the subsidiary variables, as required.

Summary

We have derived a set of evolution equations for the classical Yang-Mills fields cou-

pled to 4-dimensional conformal spacetimes. Furthermore, we have shown through

the propagation of the constraints that any solution to the evolution equations im-

plies a solution to the Yang-Mills equations.

5.4 Perfect Fluids

5.4.1 The Euler equations

The last type of trace-free matter that we will analyse is that of a perfect, irrota-

tional, pure radiation fluid [4]. In the context of GR this fluid satisfies the relativistic

Euler equations. The relativistic Euler equations follow from the physical energy-

momentum tensor of a fluid

T̃ab = (ρ̃+ p̃)ũaũb − p̃g̃ab, (5.79)

where p̃ is the physical pressure of the fluid, ρ̃ is the physical density of the fluid and

ũa is the physical 4-velocity of the fluid. An important property of the 4-velocity,
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which is dependent on both the metric signature and the pressure, is that when we

contract a 4-velocity vector with itself the end result is unity, i.e.

ũaũ
a = 1. (5.80)

Additionally, even though the energy-momentum tensor is written in terms of

the pressure, density and the 4-velocity, the Euler equations are expressed only in

terms of the density and the 4-velocity. To this end one needs an equation that

relates the variables of the Euler equations to the pressure, which is the equation of

state. The precise form of the equation of state depends on the specific fluid under

consideration; for a perfect radiation fluid, the equation of state is

p̃ = 1
3
ρ̃. (5.81)

Now, using the fact that the energy-momentum tensor is divergence free (due to

energy conservation), we can deduce the Euler equations by differentiating (5.80),

which gives

ũa∇̃aρ̃ũb + ũa∇̃ap̃ũb + (p̃+ ρ̃)ũb∇̃aũa + (ρ̃+ p̃)ũa∇̃aũb − ∇̃bp̃ = 0. (5.82)

Contracting (5.82) with ub gives

ũb∇̃aT̃ab = ũa∇̃aρ̃+ (p̃+ ρ̃)∇̃aũa + (p̃+ ρ̃)ũaũb∇̃aũb − ũb = 0. (5.83)

However, using (5.80) we can infer that

∇̃b(ũaũ
a) = 2ũa∇̃bũa = 0,

so we can clearly see that

ũa∇̃bũa = 0. (5.84)

Therefore, making use of (5.84) and (5.83) becomes

ũa∇̃aρ̃+ (p̃+ ρ̃)∇̃aũa = 0, (5.85)

which is the first relativistic Euler equation. To obtain the next relativistic Euler

equation we need to make use of the following tensor, which decomposes a tensor

into its spatial part and its timelike part

h̃a
b = δa

b − ũaũb. (5.86)

If we contract (5.86) with a 4-velocity vector then the end result is trivial i.e.
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h̃a
bũb = 0. (5.87)

We are now in a position to obtain the second Euler equation; multiplying (5.82)

by hc
b yields

h̃c
b(ρ̃+ p̃)ũa∇̃aũb − h̃cb∇̃bp̃ = 0. (5.88)

Finally, substituting (5.86) into (5.88), then multiplying out and using (5.84) to

simplify gives the result

(ρ̃+ p̃)ũa∇̃aũc + ũcũ
b∇̃bp̃− ∇̃cp̃ = 0, (5.89)

which is the second physical Euler equation. As it turns out, both (5.85) and (5.89)

are invariant under a specific conformal transformation. Thanks to the freedom

offered by the use of conformal transformations, we are able to choose the forms of

the unphysical variables. The transformations required to preserve the forms of the

Euler equations are

Tab ≡ Ω−2T̃ab, ua ≡ Ωũa, ρ ≡ Ω−4ρ̃, p ≡ Ω−4p̃, (5.90)

upon substituting (5.90) into (5.85) and (5.89) it can be verified that the unphysical

Euler equations have the form

ua∇aρ+ 4
3
ρ∇au

a = 0, (5.91a)

4
3
ρuc∇cua + 1

3
uau

c∇cρ− 1
3
∇aρ = 0, (5.91b)

where ua, p and ρ are the unphysical four velocity, unphysical pressure and the

unphysical density of the fluid, respectively. As we can see the unphysical Euler

equations have precisely the same form as the physical Euler equations and are

conformally invariant as a result.

5.4.2 Alternative form of the Euler Equations

Up until this point we have been deriving wave equations via the act of directly

differentiating the respective field equations. However, trying to obtain evolution

equations by direct differentiation of (5.91a) and (5.91b) is more difficult since doing

so produces second order derivatives of both ρ and ua and, unlike the previous cases,

we do not have any means of simplifying these second order derivatives. However,

there is a way that one can construct evolution equations for fluids. It turns out that

one can construct wave equations for fluids if one re-expresses the Euler equations

in terms of a quantity known as the fluid index. The fluid index is defined as
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f(p) ≡ exp
∫ p

0

ds

ρ(s) + s
, (5.92)

where ρ(s) is the density of the fluid written in terms of the equation of state.

Physically, this fluid index provides a way of characterising the density of the fluid.

From this fluid index, we can define the dynamic 4-velocity

Ca = fua. (5.93)

Using the fact that uaua = 1 then we obtain an important relation from (5.93)

CaCa = f 2. (5.94)

We now proceed to derive an alternative form of the Euler equations. Before we

analyse the Euler equations themselves, we first need to derive some equations for

the derivative of the fluid index. Begin by differentiating (5.92), using the chain rule

and also taking into account that for our purposes the equations are expressed in

terms of pressure (meaning that s = ρ in our analysis), and one obtains

∇af =
f(p)

ρ(p) + p
∇ap. (5.95)

We may also derive an alternative equation for the derivative for the fluid index

by differentiating (5.94), which gives

∇bf = f−1Ca∇bCa. (5.96)

We are now in the position to derive an alternate form of the Euler equations,

beginning with the second equation. First we write out the second Euler equation

in a more convenient form by analysing the last two terms of said equation

ucu
b∇bp−∇cp = (ucu

b − δcb)∇bp, (5.97)

then dividing through by ρ+ p and substituting (5.97) into (5.91b) and the second

Euler equation has the form

ua∇auc =
ucu

b

ρ+ p
∇bp−

1

ρ+ p
∇cp. (5.98)

Now, we rewrite all of the terms in (5.98) in terms of the dynamic 4-velocity, using

(5.93) and the first term becomes

ua∇aub = f−2(Ca∇aCb − f−1Ca∇afCb), (5.99)

and by using (5.95) we can rewrite the last two terms of (5.98) as
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ucu
b

ρ+ p
∇bp−

1

ρ+ p
∇cp = f−3CbCc∇bf − f−1∇cf. (5.100)

So, by substituting in (5.99) and (5.100) into (5.98) and using (5.96) to eliminate

the derivative of the fluid index, it can be verified that the second Euler equation

has the form

Ca(∇aCb −∇bCa) = 0.

The first Euler equation can also be re-expressed in a form that depends on the

dynamic 4-velocity. As before we proceed to rewrite all of the individual terms in

the equation. Begin by applying (5.93) and (5.96) to the first term in (5.91a), which

gives

∇aua = −f−3CaCc∇aCc + f−1∇Ca. (5.101)

To rewrite the second term in the first Euler equation ∇aρ, we make use of the

rule for the derivative of inverse functions dρ
dp

= 1
dp/dρ

, as well as the chain rule. Upon

doing so it can be verified that the second term in (5.91a) becomes

ua∇aρ = ua
dρ

dp

(ρ+ p)

f
∇af. (5.102)

Thus, if we substitute (5.101) and (5.102) into (5.91a) and divide through by a

factor of ρ+ p, the equation takes the form

− f−3CaCc∇aCc + f−1∇aCa + f−1
dρ

dp
ua∇af = 0. (5.103)

Now letting dρ/dp = ρ′ and using (5.96) to remove the derivative of the fluid

index and (5.103) becomes

∇aCa + f−2CaCc(ρ′ − 1)∇aCc = 0. (5.104)

We then proceed to express everything in terms of Ca. Recall that CaCa = f 2,

so substituting into (5.104) and the end result is

∇aCa +
(ρ′ − 1)

CbCb
CaCc∇aCc = 0.

Now, in order to make future calculations more manageable we can chose to define

a new variable

P ≡ 1

CbCb
, (5.105)

we can apply this to the alternate form of the first Euler equation. So in summary

the alternate form of the Euler equations in the case where the equation of state is



5.4: Perfect Fluids 85

given by (5.81) are

∇aCa + P (ρ′ − 1)CaCc∇aCc = 0, (5.106a)

Ca(∇aCb −∇bCa) = 0. (5.106b)

Conformal properties of the alternate Euler equations

An important property of the Euler equations in this form is that they are invariant

under a conformal rescaling, which means that it is possible to analyse radiation

fluids and to derive evolution equations from a conformal point of view. First, we

define a rescaled metric

ḡ = f 2g, (5.107)

using (1.3) and then analyse the behaviour of the second Euler equation under such

a transformation. Applying (2.13) to (5.106b) yields

∇̄aCb −∇aCb = −SabcdΥcCd, (5.108)

where Υc = f−1∇cf . Then substituting in (2.13) into (5.108) and multiplying out

gives

∇̄aCb −∇aCb = −f−1∇afCb + f−1Ca∇bf + f−1gab∇cfC
c (5.109)

We then use (5.96) to remove the derivative of the fluid index in (5.109); upon

doing so and multiplying out one obtains the relation

∇aCb = ∇̄aCb + f−2Cc∇aCcCb + f−2CaC
c∇bCc − f−2gabCcCd∇cCd. (5.110)

By directly substituting (5.110) into (5.106b) and simplifying it can be verified

that

Ca(∇aCb −∇bCa) = Ca(∇̄aCb − ∇̄bCa) = 0. (5.111)

So the equation is invariant under a conformal transformation and it is perfectly

reasonable to utilize both of the Euler equations written in terms of the dynamic

4-velocity when making use of conformal methods. These particular transformation

laws also help to give an actual physical understanding of the nature of the dynamic

4-velocity; if we multiply out (5.111), then it can be verified that

Ca∇̄aCb = 0, (5.112)
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which is the same form as the geodesic equation. This means that Ca is a vector

tangent to geodesics of the metric (5.107); crucially this is true only for this specific

choice of metric.

5.4.3 Wave equations for the fluids

Now that we have obtained a more satisfactory set of equations for fluids from a con-

formal point of view, we will proceed to derive a set of wave equations that describe

the evolution of fluids. However, before we proceed to perform such a task, we must

mention some very important considerations for this particular case. Firstly, the

wave equations will not be of the same form as any of the previous results; whereas

the principal part of the previous wave equations was the d’Alembertian operator

of the metric gab, this will not be the case for evolution equations for fluids. The

reason for this is due to the fact that the d’Alembertian operator describes objects

that propagate at the speed of light (evident by the 1/c2 term that appears in the

d’Alembertian). However, in general, fluids do not propagate at light speeds, they

propagate at the speed of sound. Although the individual particles of a radiation

fluid are indeed massless, when one analyses this fluid using statistical mechanics

it can be shown that in fact that speed of said fluid is less than light speed. As a

result, the principal part of the wave equations will be a modified operator, whose

precise form shall be obtained during the actual derivations.

The next point to take into consideration is that we will only be considering a

very specific class of perfect fluid, an irrotational fluid. An irrotational fluid, as the

name implies, is one where the fluid lines have no tendency to rotate or twist. In

this case this limits the form of the dynamic 4-velocity

Ca = ∇aΦ, (5.113)

where Φ is a scalar field. For an irrotational fluid then (5.113) is a solution to

(5.106b). Physically, this scalar field may be thought of as an imaginary flux surface

that provides a way of quantifying the number of fluid lines that pass through a

certain region.

Wave equation for Φ

To derive some wave equations for the fluid variables we start by rearranging (5.106a),

then applying (5.113) to the contracted derivative of the dynamic 4-velocity and then

we apply (5.105), which gives

�Φ = P (1− ρ′)CaCc∇cCa. (5.114)

Now, using the equation of state (5.81), we can see that ρ′ = 3; therefore the wave
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equation for the scalar field is

�Φ = −2PCaCc∇c∇aΦ. (5.115)

We have not quite finished with this equation as we have yet to define the mod-

ified wave operator that was mentioned at the start of this section. The form of

the modified wave operator will become much more apparent when we derive the

equation for the vortex velocity.

Wave equation for Ca

To obtain a wave equation for the vortex velocity Ca we differentiate (5.106b) and

apply (4.23), (3.29), (5.106a) and (5.106b), doing so gives

�Cb = 2Lb
aCa + 1

6
RCb − 2PCa∇aCc∇bC

c − 2CaCc∇bP∇cCa

−2PCa∇bC
c∇cCa − 2PCaCc∇c∇aCb. (5.116)

Examining both this equation and (5.115), we can clearly see the form of the

modified wave operator, and can define the so-called modified d’Alembertian

�̌ ≡ � + 2PCaCc∇c∇a, (5.117)

this operator is still valid as a hyperbolic operator, because even though it contains

second order derivatives other than the d’Alembertian, the dynamic 4-velocity is a

small quantity compared to the speed of light and hence (5.117) is very close to the

original d’Alembertian and retains the same properties as the d’Alembertian. So

applying (5.117) to both (5.115) and (5.116) and the equations have the form

�̌Φ = 0, (5.118a)

�̌Cb = 2Lb
aCa + 1

6
RCb − 2PCa∇aCc∇bC

c

−2CaCc∇bP∇cCa − 4PCa∇bC
c∇cCa. (5.118b)

This completes the derivation of the wave equations for the fluids, since the equa-

tions are written only in terms of the dynamic 4-velocity, which helps to simplify

things considerably.

5.4.4 Subsidiary equations for the fluids

Now that we have derived some wave equations for irrotational fluids that are satis-

factory from a conformal point of view, we now need to check that a solution to the
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wave equations implies a solution to the Euler equations, which means constructing

a system of subsidiary equations for the Euler equations

H ≡ ∇cC
a + 2PCaCc∇cCa, (5.119a)

εab ≡ ∇aCb −∇bCa, (5.119b)

Na ≡ Ca −∇aΦ. (5.119c)

Wave Equation for H

As has been the case before, we will proceed to construct a system of homogeneous

wave equations for the subsidiary variables. We start with the wave equation for

(5.119a), differentiating said equation gives

�H = �∇aC
a + 4Ca∇aC

c∇bCc∇bP + 2CaCb∇bCa�P + 2PCa∇bCa�Cb

+2PCaCb�∇bCa + 4CaCb∇c∇bCa∇cP + 4Ca∇bCc∇bP∇cCa

+4P∇bCa∇cCb∇cCa + 4PCa∇c∇aCb∇cCb + 4PCa∇c∇bCa∇cCb.(5.120)

Then, applying (4.23) to reorder the covariant derivatives, (2.12), (3.29) and (2.18)

to remove the curvature components, plus (5.116) to get rid of the second order

derivatives of the Vortex velocity and we get

�H = 0. (5.121)

This is a trivially homogeneous solution, since we could easily state that a solution

to (5.121) occurs when all the variables are equal to zero, hence the propagation of

the constraints is satisfied.

Wave Equation for εab

Next we examine the wave equation for the subsidiary variable of the second Euler

equation. Differentiating (5.119b) and applying (4.23) gives

�εab = ∇a�Cb −∇b�Ca + Cd∇cR
d
b
c
a +Rd

a
c
b∇cCd

−Rd
b
c
a∇cCd −Rbc∇cCa +Rbc∇cCb +Rd

acb∇cCd −Rd
bca∇cCd. (5.122)

The next step is to use the wave equation for the dynamic 4-velocity to eliminate

the derivatives of Ca; doing so creates an equation with a very large number of

terms. In spite of this, there is a great deal of symmetry among the various terms.

We may take advantage of this symmetry by once again applying (4.23) in a very
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specific order, such that multiple second order derivative terms cancel out. Doing

so and applying both (2.12) and (3.29) to eliminate the curvature terms and we get

�εab = 1
6
Cb∇aR + Cc∇aLbc + 1

3
R∇aCb − 1

6
Ca∇bR− Cc∇bLac − 1

3
R∇bCa

−Cb∇cLb
c + ΩCc∇ddacb

d − ΩCc∇dda
d
bc + dacbdC

c∇dΩ− dadbcCc∇dΩ + 2Ωdacbd∇dCc

−2Ωdadbc∇dCc + 2ΩPdabdfC
cCd∇fCc − 2ΩPdadbfC

cCd∇fCc + 2Ωdafbd∇fCc.(5.123)

We then use both (4.47) and (2.18) to eliminate the derivatives of the Schouten

tensor as well as (4.48) to remove the contracted derivatives of the Weyl tensor,

which gives

�εab = ΩCc(Tabc − Tacb + Tbca) + ΩCcΛabc − ΩCcΛbac + Cc∆abc

+1
3
R∇aCb − 1

3
R∇bCa + (dacbd − dabcd − dadbc)Cc∇dΩ + 2Ωdacbd∇dCc

−2Ωdadbc∇dCc + 2ΩPCcCd∇fCc(dabdf − dadbf + dafbd), (5.124)

we can see that there are multiple terms that can be cancelled out and have been

factorized as a result. Applying (4.11) and (2.30) to cancel out said terms and then

using (5.119b) to eliminate the antisymmetric pair of derivatives of the dynamic

4-velocity and we are left with

�εab = 1
3
Rεab+ΩCcΛabc−ΩCcΛbac+C

c∆abc+2Ωdacbd∇dCc−2Ωdadbc∇dCc. (5.125)

The final step is to apply the Bianchi identity to the remaining two terms that

are not homogeneous in the subsidiary variables, upon doing so the result is

�εab = 1
3
Rεab + ΩCcΛabc − ΩCcΛbac + Cc∆abc + 2Ωdabcd∇dCc. (5.126)

We can see that (5.126) is nearly homogeneous, except for the last term. To get rid

of this term we will make use of the definition of the zero quantity Na, differentiating

(5.119c) and rearranging gives rise to the equation

∇dCc = ∇d∇cΦ−∇dN c. (5.127)

Applying (5.127) to (5.126) and the term containing the second order derivative

of the fluid scalar vanishes since the term ∇a∇bΦ is a symmetric quantity, which

is contracted with an antisymmetric pair of indices on the Weyl tensor and the

contraction of a symmetric object with an antisymmetric object is zero. Hence

(5.126) becomes
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�εab = 1
3
Rεab + ΩCcΛabc − ΩCcΛbac + Cc∆abc − 2Ωdabcd∇dN c, (5.128)

which is homogeneous in the subsidiary variables.

Wave equation for Na

Finally, we proceed to construct a homogeneous wave equation for the quantity

related to the fluid scalar Na. Differentiating (5.119c) and applying (4.23), then

using (5.115) and the result

�Na = 2PCbCc∇a∇c∇bΦ + 2CbCc∇aP∇c∇bΦ + �Ca −Rac∇cΦ. (5.129)

Now, for reasons that will become apparent in a very short while, it is necessary to

apply (4.23) to the third order derivative of the scalar field such that all contracted

indices do not act directly on the scalar field. Doing so and applying (5.119c),

(5.115) and (5.118b) gives

�Na = 1
6
RNa + 2PLbcC

bCcNd − 2PLacC
bCcNb − 2PLbcCaC

bN c

+2PLacCbC
bN c − 2ΩPdabcdC

bCcNd − 2PCbεbc∇aC
c − 2PCbCc∇cεab

+2LabN
b − 2CbCc∇aP∇cNb − 4PCb∇aC

c∇cNb − 2PCbCc∇c∇bNa. (5.130)

It is here that we see the reason for commuting the derivatives of the third order

derivative. In (5.130), there is a second order derivative of Na, however, when we

combine this with the d’Alembertian on the right hand side of the equation we notice

that they form a modified d’Alembertian. Hence, (5.130) upon the application of

(5.117) takes the form

�̌Na = 1
6
RNa + 2PLbcC

bCcNd − 2PLacC
bCcNb − 2PLbcCaC

bN c

+2PLacCbC
bN c − 2ΩPdabcdC

bCcNd − 2PCbεbc∇aC
c − 2PCbCc∇cεab

+2LabN
b − 2CbCc∇aP∇cNb − 4PCb∇aC

c∇cNb. (5.131)

Although this is the only one of the subsidiary equations to feature the modified

d’Alembertian, this is not a problem since this modified d’Alembertian, as mentioned

previously, possesses all the same properties as the standard d’Alembertian. Plus,

this is not unusual since we are working with objects that do not propagate at light

speed and hence one would expect some of the equations describing their behaviour

to be different.
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Summary

We have derived a set of valid wave equations for the evolution of an irrotational

fluid. Furthermore, we have seen from the propagation of the constraints that any

solution to the wave equations implies a solution to the Euler equations.



6 The Conformal Scalar Field

System

Thus far in this thesis we have been analysing spacetimes coupled to trace-free

matter purely from point of view of the CWEs, however, we will now attempt to de-

rive results for the CFEs. More specifically, we will consider spatially homogeneous

spacetimes coupled to a specific trace-free matter model. A spatially homogeneous

spacetime is one that has the property that when a spacetime is described using the

3+1 decomposition, it is possible to choose a certain coordinate system such that all

spatial derivatives of the metric are zero at a certain instant of time. It is not un-

reasonable to study spatially homogeneous spacetimes since one of the cornerstones

of modern Cosmology states that the Universe is indeed spatially homogeneous on

a large enough scale of distance.

6.1 Warped product metrics

A particularly useful way of analysing a spatially homogeneous spacetime is to ex-

press the metric of said spacetime as a warped product. Essentially, this technique

decomposes the metric into two different block matrices; each block is described

only by some of the coordinates [14]. These coordinates are written as xµ = (xA, xi)

where A = 0, ...,m, i = m + 1, ..., n and n is the dimension of the spacetime. With

this set of coordinates, the general form of the warped product metric is given by

g = hABdx
AdxB − f 2kijdx

idxj, (6.1)

where hAB is a matrix whose components depend only on the xA coordinates, kij is

a matrix whose components depend on the xi coordinates and f is a scalar that is

a function of the xA coordinates. In matrix form (6.2) is given as

gµν =

 hAB 0

0 fkij

 . (6.2)

Now, the precise form of (6.2) depends on the choice of coordinates that we

use. For example, if the coordinates were spherical angular coordinates, then the

two different matrices hAB and fkij in (6.2) would be two 2 × 2 matrices, one

containing functions of the (t, r) coordinates and one containing functions of the

92
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(θ, φ) coordinates. For our specific case, we will choose for the metric to be separated

into time indices and space indices. So, for our specific case the Latin indices a, b, c, d

refer to spacetime indices, A,B,C refer to time indices and i, j, k, l,m refer to spatial

indices. For the case of a spatially homogeneous and isotropic spacetime the metric

has the form

g = −dτ 2 + l2kijdx
idxj, (6.3)

where l is a scalar that takes the form of f and is simply denoted as such to dis-

tinguish the fact that we are working with cosmological models. It should be noted

kij is a metric of constant curvature as this is a spatially homogeneous spacetime,

meaning that the spatial derivatives of the curvature on an individual hypersurface

must be zero. Written out in the form of (6.2) and (6.3) is equal to

gµν =


g00 0 0 0

0 k11 k12 k13

0 k21 k22 k23

0 k31 k32 k33

 . (6.4)

6.2 Computation of the geometric quantities for

warped product metrics

6.2.1 Christoffel Symbols

Given the metric (6.4), one would like to compute the curvature; to do so requires

one to compute the Christoffel symbols. When one computes the Christoffel symbols

associated with this metric, it is important to keep in mind the two different types

of indices that feature in (6.2). We will now compute the various Christoffel symbols

for (6.4), starting with the symbol containing only pure timelike indices; substituting

said indices into the metric gives

ΓABC =
1

2
hAD(∂ChBD + ∂BhCD − ∂DhBC). (6.5)

Since the only time index is A = B = C = 0 this means that the only pure

timelike Christoffel symbol is Γ0
00, which is equal to

Γ0
00 =

1

2
g0ρ(∂0gρ0 + ∂0g0ρ − ∂ρg00), (6.6)

we can see from (6.4) that g0ρ = 0 when ρ 6= 0, which gives

Γ0
00 =

1

2g00
∂0g00. (6.7)

Now, we can read from the metric that the only component is g00 = −1; substi-
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tuting this value into (6.7) and we find that

Γ0
00 = 0. (6.8)

Likewise, it is possible to compute an equation for Christoffel symbols with purely

spatial indices via substitution into (6.4), which yields

Γj il =
1

2
kjm(∂lkim + ∂iklm − ∂mkil). (6.9)

Finally, there are also Christoffel symbols with mixed indices to consider. Thank-

fully, due to the form of (6.4) and also the fact that l = 1, there are only a very

small number of Christoffel symbols with mixed indices that are non-zero. We will

show a direct computation of one of the non-vanishing Christoffel symbols as an

example, namely ΓAij. Substituting a = 0, b = i, c = j into (6.4) gives

Γ0
ij = 1

2
gAµ(∂igjµ + ∂jgµi − ∂µgij), (6.10)

however, g0µ is only non-zero if 0 = µ. Using this fact and the fact that gAB =

hAB = h00 and we can show that (6.10) has the form

Γi0j = Γij0 =
1

l
l′kij, (6.11)

where l′ is a derivative of the function l with respect to time. Through an identical

method, it can be shown that the other mixed Christoffel symbols vanish

Γ0
0i = 0, Γi00 = 0. (6.12)

6.2.2 Riemann tensor components

In addition to computing Christoffel symbols of pure and mixed indices, one can

also do the same thing for the 4-dimensional curvature; by substituting (6.5), (6.9)

and (6.11) into (2.7) then it can be verified that the components of the Riemann

curvature tensor for a warped product metric are equal to

R0
000[g] = R0

000[k] = 0, (6.13a)

Ri
0j0 = −kij

1

l
D0D0l, (6.13b)

Ri
jml[g] = Ri

jkl[k] + 2(l′)2ki[jkk]l, (6.13c)

where

Rijml[k] = 2εki[mkl]j. (6.14)
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In fact (6.14) is a direct result kij being of constant curvature; one can readily

verify that DkRijml[k] = 0.

6.2.3 Ricci tensor components

Once we have computed the Riemann curvature terms, the next logical step is

compute the Ricci and Schouten tensors along with the Ricci scalar:

R00[g̃] = Ra
0a0[g̃] = R0

000[g̃] +Ri
0i0[g̃],

from which we can deduce that the purely time like Ricci tensor component is

R00[g̃] = −k00
1

l
D0D0l = −3

l
l′′. (6.15)

We now proceed to compute the purely spatial Ricci tensor component, which is

a somewhat lengthy calculation

Rij[g̃] = R0
i0j[g̃] +Rk

ikj[g̃]. (6.16)

While not immediately obvious, it can be shown that R0
i0j[g̃] = −Ri0j0[g̃]. Begin

with the equation

Ri0j0 = gi0R
0
00j + ginR

n
0j0, (6.17)

however, Ri0j0 = R0i0j due to symmetry, so (6.17) becomes

R0
i0j = g00R0i0j, (6.18)

but g00 = −1, due to the metric signature, hence (6.18) can be written as

R0
i0j = −R0i0j. (6.19)

Therefore, substituting in (6.13b) into (6.19) and we conclude that

R0
i0j = kijll

′′. (6.20)

That is half of the terms in (6.16) calculated; we also need to calculate Rk
ikj[g̃]

Rk
ikj[g̃] = 2εkm[mkj]i + 2(l′)2km[mkj]i. (6.21)

Substituting in both (6.20) and (6.21) into (6.16) gives

Rij[g̃] = kijll
′′ + 2εkm[mkj]i + 2(l′)2km[mkj]i. (6.22)

Expanding the anti-commutator brackets and we find that the spatial Ricci tensor

is given as
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Rij = (l′′l + 2ε+ 2(l′)2)kij. (6.23)

From the Ricci tensor, we can compute the Ricci scalar

R = gabRab, (6.24)

however, (6.24) is written in terms of spacetime indices, thus we need to decompose

(6.24) into both time and space indices,

R = g00R00 + gijRij. (6.25)

Taking into account that g00 = −1 and gij = l−2kij and substituting in (6.15) and

(6.23) into (6.25) then one obtains

R[g̃] =
6

l2
(ll′′ + ε+ (l′)2). (6.26)

Through a similar method, the Ricci curvature components with mixed indices

can be verified to vanish

R0i = Ri0 = 0, (6.27)

which is due to the fact that the Riemann curvature tensor components that one

contracts are zero.

6.2.4 Schouten tensor components

So we have derived the Riemann and Ricci tensors, as well as the Ricci scalar for

a spatially homogeneous spacetime. Given this it becomes natural to derive the

Schouten tensor components for such a spacetime. Begin by computing the pure

time components of the Schouten tensor by substituting time indices into (2.9)

L00[g̃] =
1

2
R00 −

1

12
Rg00. (6.28)

Now, taking into account the metric signature and substituting in (6.15) we can

see that, upon simplification, (6.28) can be written as

L00[g̃] =
1

2l2
(2ll′′ + ε+ (l′)2). (6.29)

Next, we proceed to compute Lij i.e. the spatial components of the Schouten

tensor. By substituting in (6.23) and (6.26) into (2.9) and simplifying gives,

Lij[g̃] =
1

2
kij(ε+ (l′)2). (6.30)

As for the other Schouten tensor components, again through simple substitution,
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one can easily verify that

Li0[g̃] = L0i[g̃] = 0. (6.31)

So, we have derived all the curvature components of the spacetime, however, there

is still more that we can do with the curvature terms by considering the Ricci scalar.

The remarkable thing about the Ricci scalar is that it is not a variable that appears

in the CFEs. As a result of this, one is free to choose the value of the Ricci scalar;

naturally one always chooses R in such a way that it simplifies the equation as much

as possible. In our case we will choose the value of the Ricci scalar to be R[g̃] = 6ε;

upon substituting this value back into (6.26) one obtains

6ε =
6l′′

l
+

6ε

l2
+

(l′)2

l2
.

We can clearly see one possible solution to the equation is when, l = 1 and

l′ = l′′ = 0. Furthermore, a known result from the general theory of ODEs tells us

that since this is a second order non-linear ODE this is the only possible solution.

Hence, through a specific choice of gauge it is possible to deduce a specific value for

the scalar function l and its derivatives. Substituting l = 1 and l′ = l′′ = 0 into

(6.15), (6.23), (6.30) and (6.29) enables us to rewrite the curvature terms as

Rij = 2εkij, R00 = 0, L00 =
ε

2
, Lij =

ε

2
kij. (6.32)

6.3 Evolution equations for the scalar field system

Recall in section 5.1, we first introduced the conformally invariant scalar matter

model, which obeys a wave equation first defined as (5.2), and whose energy-

momentum tensor is given by equation (5.8). Our goal will be to derive a system

of evolution equations for a spatially homogeneous solution with matter content

described by (5.8).

6.3.1 Components of the energy-momentum tensor

First, we discuss a few properties of this energy-momentum tensor. The first two

most noteworthy things are that this tensor is both trace and divergence free, i.e.

gabTab = 0 and ∇aTab = 0. Another important point that we should make is that

because the spacetime is spatially homogeneous, the scalar field φ is a function

of time only, hence ∇µφ = 0 for µ 6= 0. Armed with this piece of information and

taking into account the warped-product nature of the spacetime, we can calculate the

different components of the energy-momentum tensor. We will start by computing

the time like components of the tensor, substituting time indices into (5.8) gives
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T00 = ∇0φ∇0φ−
1

4
g00∇cφ∇cφ− 1

2
φ∇0∇0φ+

1

2
φ2L00, (6.33)

letting ∇0φ = φ′ and substituting in (6.32) and it can be verified that (6.33) can be

written as

T00 = (φ′)2 +
1

4
∇cφ∇cφ− 1

2
φφ′′ +

1

4
φ2ε. (6.34)

It is possible to simplify the above equation further, however, when analysing the

∇cφ∇cφ term one has to be careful due the metric signature

1

4
∇cφ∇cφ =

1

4
gab∇a∇bφ = g00∇0∇0φ, (6.35)

and since g00 = −1, using (6.35) and (6.34) can be written as

T00 =
1

4
(3(φ′)2 − 2φφ′′ + φ2ε). (6.36)

It is possible to simplify this equation further using (5.2), once again taking into

count that the scalar field is a function of time, meaning 2φ = φ′′ and remembering

our choice of gauge i.e. R = 6ε, means that we may write out the wave equation as

φ′′ = −εφ. (6.37)

We notice that this equation is of the same form as the harmonic oscillator equa-

tion, ẍ = −kx where k is a constant. This is quite a remarkable result, it means that

we may find some physical interpretation of this system and indeed of this scalar

field. Substituting (6.37) into (6.36) and we obtain

T00 =
3

4
((φ′)2 + εφ2). (6.38)

We can write this in a nice compact form by using the following substitution

ρ ≡ ((φ′)2 + εφ2), (6.39)

then (6.38) is equal to

T00 =
3

4
ρ. (6.40)

We can also derive an equation for Tij, i.e. the spatial components of the energy-

momentum tensor, in a similar way. Substituting the necessary spatial components

from (6.32), simplifying and writing in a compact form, again using (6.39), and the

end result is

Tij =
1

4
kijρ. (6.41)
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We notice that our quantity ρ has a form that is quite similar to the energy of the

harmonic oscillator. Hence we may interpret these components as being the energy

density of the scalar field.

6.3.2 Derivation of the evolution equations

We next need to write out the CFEs in our goal to derive a set of evolution equa-

tions for the spacetime. Consider the general form of the CFEs (3.44a)-(3.44e).

Another important fact about this spatially homogeneous spacetime is that it is

conformally flat, which we first mentioned in section 2.2.1, meaning that the Weyl

tensor vanishes. As a result of this (3.44c) and (3.44d) are trivially satisfied.

Another important point, which further helps to simplify the calculations, is to

realize that this particular spacetime when conformally extended to a global region

becomes equivalent to the de Sitter spacetime. This is due to a known result, which

says that any spacetime when globally extended has a spacelike conformal boundary.

A spacelike conformal boundary always has a positive value for the cosmological

constant, exactly like de Sitter [23, 36]. In this way we are able to choose the value

of the cosmological constant to be the same as deSitter i.e. λ = 3, which means that

(3.44e) is equal to

2Ωs+ (Ω′)2 = 1. (6.42)

We may derive some more evolution equations for this particular choice of gauge.

First, by substituting (6.32) and (6.38) into (3.44a), we get

Ω′′ = −Ωε

2
− s+

3

8
Ω3ρ. (6.43)

In the case of spatial indices (3.44a) becomes

− Ωε

2
+ s+

1

8
Ω3ρ = 0. (6.44)

And finally (3.44b), which has only non-vanishing time components, reduces to

s′ = −(Ω′)ε

2
+

3

8
Ω2Ω′ρ. (6.45)

Our intention is to derive a set of evolution equations that uniquely determine

the spacetime. To do so we must derive a set of evolution equations for the two

variables that are most important to the structure of the spacetime, the conformal

factor Ω and the scalar field φ. In this sense, only the equations for Ω′′ and φ′′ are

important; the other equations may simply be interpreted as constraints. The next

part is to write out the equations so that they do not depend on s, we may do this

by rearranging (6.44), which gives
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s =
Ωε

2
− 1

8
Ω3ρ. (6.46)

We then rewrite (6.42), by using (6.46) to eliminate s

Ω2ε− 1

4
Ω4ρ+ (Ω′)2 = 1. (6.47)

Next, we want to eliminate s from the evolution equation for Ω, which we may

do by adding (6.43) and (6.44) together; this gives the very nice result

Ω′′ =
1

2
Ω3ρ− Ωε. (6.48)

Remark: If one takes ∂t of (6.38) then one can verify that ∂tT00 = 0, so energy

density is conserved.

6.3.3 Propagation of the constraints

So, we have derived a pair of elegant evolution equations; the next step would be

to analyse its relation to the equations that have been dropped from the system

(in other words the constraint equations), to which we use the propagation of the

constraints. We write out (6.48), rearranging all terms on the LHS, however, rather

than assuming that this equation is zero, we instead let this equation be equal to

some other variable, which we will call Q

Q ≡ 1− Ω2ε+
1

4
Ω4ρ− (Ω′)2. (6.49)

The next step is to calculate the value of the differential of Q, if we can show that

this is a homogeneous equation in Q, then we will have proven that the solution of

Q = 0 is valid at all times and hence our equation is correct. Differentiating (6.49)

with respect to time gives

Q′ =
1

2
εφΩ4φ′ − 2εΩΩ′ + εφ2Ω3Ω′ + Ω3(φ′)2Ω′ +

1

2
Ω4φ′φ′′ − 2Ω′Ω′′. (6.50)

Substituting in both (6.48) and (6.37) into (6.50) and one finds that the end result

is trivial i.e.

Q′ = 0. (6.51)

This means that the wave equation for Q is also trivial since differentiating (6.51)

will give zero. As a result of this it means that the wave equation for Q is trivially

homogeneous and the propagation of the constraints is satisfied.
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6.3.4 Analysis of the evolution equations

We have successfully derived the evolution equations as well as checked their consis-

tency. The next step is to try to analyse and solve the equations. In the case of the

former we will see what we can learn about this particular spacetime model. There

are three particular cases to analyse, when ε = 0, 1,−1, where as mentioned, ε de-

notes the curvature of the spatial sections of the Universe. We shall analyse in detail

how each equation evolves in time. Before this, however, it is a good idea to discuss

a model of the universe first proposed by Penrose called Conformal cyclic cosmology

[25, 26]. This model postulates that the Universe that we live in is merely one of

many known as aeons. Each one of these aeons can be conformally rescaled and

each of these aeons is connected to each other at the conformal boundary. Whilst

the physical mechanisms of this model are shrouded in mystery, it does provide us

with a method of analysing the equations. In what follows we will proceed to solve

the equations numerically and display the results. What we find in all cases is that

the solutions to the equations and hence the behaviour of the conformal spacetimes

are highly dependent on the initial conditions.

We can deduce the form of the initial data by using the constraint equation if we

make the assumption that we start solving the equations at the conformal boundary;

this is one of the advantages of using the CFEs since we are offered some freedom in

assigning precisely where we start solving the equations. At the conformal boundary

we know that Ω = 0, so substituting into (6.47) we get the result that (Ω′)2 = 1, so

we know that the initial data is

Ω = 0, Ω′ = 1. (6.52)

Note that although we have chosen Ω′ = 1, it is possible to choose the initial

value of the derivative of the conformal boundary to be -1. The reason why we

have chosen Ω′ = 1 is because we are choosing to evolve the equations towards the

future. Depending on the type analysis that one wishes to perform it may be more

convenient to choose Ω′ to be -1 and then evolve towards the past.

Analysis of the ε = 0 case

Begin with the case where ε = 0, i.e. for a flat universe. Whilst the values of the

conformal factor and its derivative are fixed by the constraints, the values of the

scalar field and its derivative are free for us to specify. To that end we will analyse

the equations after assigning values for the initial data that should describe the

behaviour of the matter and the conformal spacetime in all situations. We begin by

choosing the initial conditions φ = 0 and φ′ = 0, in the case where ε = 0 we can see

that the evolution equation for the scalar field is trivial i.e.
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φ′′ = 0. (6.53)

Integrating (6.53) with respect to the proper time gives an equation for the deriva-

tive of the scalar field

φ′ = a0, (6.54)

where a0 is a constant to be determined by the initial conditions. Integrating (6.54)

with respect to proper time again gives a general expression for the scalar field of a

flat universe

φ = a0τ + a1. (6.55)

Substituting (6.52) into (6.48) gives an evolution equation for the conformal factor

of a flat universe

Ω′′ = 0, (6.56)

we will now proceed to analyse the behaviour of φ and Ω as given by the evolution

equations (6.56) and (6.53) given some choice of initial conditions. We begin with

a choice of data for φ and its derivative, the first choice of data will be φ = φ′ = 0.

Meanwhile, the choice for the conformal factor is always fixed and given by (6.52),

courtesy of the constraint equation. Plotting the data for this choice of initial

conditions gives the plot shown in Figure 6.1.

Figure 6.1: ε = 0 spacetime with φ = φ′ = 0.

In all the graphs that will be displayed from this point on, the vertical axis repre-

sents the magnitude of the respective fields and the horizontal axis represents very

large units of time. In the most recent figure we notice that the conformal factor

continues to grow indefinitely. As a result of this it is impossible to rescale the

spacetime such that it is compatible with conformal cyclic cosmology, since in order

for there to be multiple aeons, there must be multiple points where the conformal

factor vanishes. One has an almost identical scenario when φ = 1 and φ′ = 0, as

shown in Figure 6.2.
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Figure 6.2: ε = 0 spacetime with φ = 1 and φ′ = 0.

We see once again the conformal factor grows indefinitely, whereas the scalar field

converges to a constant value over time. The situation is vastly different when the

derivative of the scalar field is non-zero. Consider the case where φ = 0 and φ′ = 1,

then the result is shown in Figure 6.3.

Figure 6.3: ε = 0 spacetime with φ = 0 and φ′ = 1.

Here, the conformal factor does not grow indefinitely, but instead oscillates over

time. This means that it is possible for this particular spacetime, with this choice

of initial data, to be compatible with Penrose’s idea, since conformal cyclic cosmol-

ogy states that there are infinitely many aeons that are connected by the conformal

boundary. The region between two points along the time axis where the conformal

factor crosses the boundary represents one aeon. Since there are infinitely many

points where the conformal factor vanishes, this means there are infinitely many

points that can represent the end of one aeon and the beginning of another. Addi-

tionally, we see that the matter fields grow indefinitely over time. We see a similar

result if φ = 0 and φ′ = −1, as shown in Figure 6.4.

Figure 6.4: ε = 0 spacetime with φ = 0 and φ′ = −1.
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Here, we once again have a universe compatible with Penrose’s idea of infinitely

many aeons, since there are infinitely many points where the conformal factor van-

ishes. Unlike last time the fields decrease linearly over time. All the other remaining

cases are essentially variations of these previous cases. Varying the value of φ simply

affects the starting point of the matter fields and a positive or negative value of φ′

determines whether the scalar field grows or decreases with time, respectively.

Hence, we can deduce that it is only possible for a conformal spacetime coupled

with a conformally invariant trace-free scalar field with zero curvature to be compat-

ible with conformal cyclic cosmology if the derivative of the scalar field is non-zero.

Futhermore, the scalar field either grows or decreases linearly with time depending

on whether the derivative of the scalar field is positive or negative, respectively.

Analysis of the ε = 1 case

Next, we analyse the for a positively curved universe i.e. where ε = 1. In this case

(6.37) has the general solution

φ = a0 cos τ + a1 sin τ, (6.57)

and therefore the derivative of the scalar field with respect to time is

φ′ = −a0 sin τ + a1 cos τ. (6.58)

Substituting (6.57) and (6.58) values into (6.48) and we obtain the following

evolution equation for the conformal factor

Ω′′ = −Ω +
1

2
Ω3(a20 + a21). (6.59)

We now proceed to analyse (6.59) and (6.57) for different choices of initial data

for the scalar field and the same choice of initial data for the conformal factor. Let

us begin choosing φ = φ′ = 0, then the variables φ and Ω evolve as shown in Figure

6.5

Figure 6.5: ε = 1 spacetime with φ = φ′ = 0.

We can see that not only does the conformal factor tend to a constant value over

time, but also the conformal factor grows exponentially with time. Hence, it is not
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possible for a Universe with positive curvature coupled to a conformally invariant

scalar field with this choice of data. However, we notice something peculiar happens

if we change the values of the data. When φ = 1 and φ′ = 0 the variables evolve as

shown in Figure 6.6

Figure 6.6: ε = 1 spacetime with φ = 1 and φ′ = 0.

We see now that both the conformal factor and the scalar field have periodic

behaviour. An almost identical result occurs if φ = 0 and φ′ = 1, as displayed in

Figure 6.7.

Figure 6.7: ε = 1 spacetime with φ = 0 and φ′ = 1.

The only difference is that amplitude and initial value of the scalar field wave is

different. In fact this is precisely the behaviour that is exhibited for all other values

of the scalar field and its derivative.

So we can conclude that it is a conformal spacetime with positive curvature cou-

pled to a conformally invariant scalar field is always compatible with conformal

cyclic cosmology provided either the scalar field or its derivative are non-zero.

Analysis of the ε = −1 case

Finally, we analyse the ε = −1 case. When ε = −1 then (6.48) becomes

Ω′′ =
1

2
Ω3((φ′)2 − φ2) + Ω, (6.60)

likewise (6.37) becomes

φ′′ = φ,
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which has a general solution

φ = a0 cosh τ + a1 sinh τ. (6.61)

Differentiating (6.61) with respect to the proper time τ gives

φ′ = a0 sinh τ + a1 cosh τ. (6.62)

By substituting in (6.61) and (6.62) into (6.60) we conclude that

Ω′′ =
1

2
Ω3(a21 − a20) + Ω. (6.63)

Once again we make use of the initial data for the conformal factor and its deriva-

tive given by the constraints and choose the values for the scalar field.

What we find when plotting the evolution of (6.61) and (6.63) is that the situation

is the same for the case where ε = 1, i.e it is always possible to construct a spacetime

that compatible with conformal cyclic cosmology, provided that neither φ or φ′ are

non-zero.

6.4 Conformal geodesics

Before we construct the conformal geodesic equations for the spacetime that we

are analysing, it is worth reviewing some of the key ideas behind the conformal

geodesics. The starting point for this area is the standard geodesic equation in

index free notation

∇̃ẋẋ = 0. (6.64)

The first step to constructing equations for a geodesic that has been reparametrized

as a conformal geodesic is to do a conformal transformation of the derivative. We

start with a curve x(λ), which possesses a tangent vector x′ = dx/dλ. This curve is

a geodesic provided that it satisfies the standard geodesic equation ∇̃x′x
′ = 0. We

can derive a conformal geodesic equation by performing a conformal transformation

on (6.64)

(∇a − ∇̃a)x
′ = Sac

bdυdx
′c, (6.65)

then using (2.13) and (6.65) becomes

∇x′x
′ = 2 < x′,Υ > x′ − g(x′, x′)Υ] = 0. (6.66)

Now, it becomes convenient to introduce a new parameter τ = τ(t) and let ẋ =

dx/dτ ; using the chain rule enables us to write



6.4: Conformal geodesics 107

dx

dτ
=
dλ

dτ

dx

dλ
,

or equivalently ẋ = dλ/dτx′, which can be rearranged to x′ = ẋ dτ
dλ

. This last term

can be written more compactly as

x′ = ẋτ ′. (6.67)

Substituting (6.67) into (6.66) and performing some manipulations gives

(τ ′)2∇ẋẋ = (2 < x′,Υ > τ ′ − τ ′′)ẋ− g(x′, x′)Υ]. (6.68)

From (6.68), we can make a number of deductions regarding the conformal geodesics.

We know that the general form of the geodesic equation is ∇ẋẋ = 0, hence in order

for equation (6.68) to be conformally invariant we must choose our parameter τ in

such a way that τ ′′ = 2 < x′,Υ > τ ′; if this is the case then (6.68) reduces to

(τ ′)2∇ẋẋ = −g(x′, x′)Υ]. (6.69)

For null like curves i.e. where g(x′, x′) = 0, (6.69) has the same form as (6.70).

This means that although it is immediately possible to conformally rescale null-like

geodesics, the same is not true for space and time-like geodesics. Of course, following

this first step of the analysis, it becomes natural to ask if it is possible to construct a

set of conformally invariant equations for time-like and space-like geodesics. It turns

out that in order to construct a curve with conformal properties that describes either

a space-like or time-like particle, one needs an additional variable along with the

coordinates of the curve; this additional factor is a covector β(τ). What is the

motivation for introducing this additional covector? Consider the standard geodesic

equation in the unphysical spacetime

∇ẋẋ = 0. (6.70)

Physically, this tells us that geodesics do not have any acceleration; this is due

to the fact that, when expanded, the principal part of the differential equation is a

second order differential with respect to τ , i.e. an acceleration. Since this is zero,

it is just a way of saying that geodesics do not have acceleration. However, for

the conformally rescaled geodesic equation, the connection will be non-zero (with

the exception of null geodesics) and in this way we say that conformal geodesics

in general do have an acceleration. To quantify this particular acceleration we

introduce the covector β; from this covector we may define a conformal geodesic.

A conformal geodesic is a pair (x(τ), β(τ)) on a spacetime (M̃, g̃), where τ is the

proper time parameter of the curve x(τ). The curve in question possesses a tangent
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ẋ(τ) and a covector β(τ), both of which satisfy the following two equations

∇̃ẋẋ = −2 < β, ẋ > ẋ+ g̃(ẋ, ẋ)β], (6.71a)

∇̃ẋβ =< β, ẋ > β − 1

2
g](β, β)ẋ[ + L(ẋ, ·), (6.71b)

where L is the Schouten tensor in index free notation. Hence, our goal in this section

is to obtain such a pair for a spatially homogeneous and isotropic spacetime contain-

ing a conformally invariant scalar field [14, 16, 31]. How do we obtain such a pair?

Previously, we obtained an equation for the unphysical spacetime given a particular

choice of gauge g = −dτ 2 + k. We may construct the conformal geodesics for such

a spacetime in the following way, we start from the unphysical spacetime and work

our way backwards into the physical picture. The first part of this task is to con-

struct regular geodesics in the unphysical case. Any geodesic can be reparametrized

as a conformal geodesic, but the opposite is not necessarily true. So we check if

the coordinates of the unphysical spacetime satisfy the standard geodesic equation

(6.70) which, when expanded into index notation, is equal to

d2xµ

dT
+ Γµαβ

dxα

dT

dxβ

dT
= 0. (6.72)

In the case where µ = 0 (6.72) becomes

d2x0

dT
+ Γ0

αβ
dxα

dT

dxβ

dT
= 0. (6.73)

Recalling in our convention that greek indices refer to spacetime indices in a

particular coordinate system and that, for a warped product, these can expanded

into timelike and spacelike indices, then from (6.73) we obtain

d2

dT 2
T + Γ0

00 + 2Γ0
0i
dT

dT

dxi

dT
+ Γ0

ij

dxi

dT

dxj

dT
= 0. (6.74)

At this point we make use of the properties of our coordinates, namely that we

are working with coordinates for a spatially homogeneous spacetime. For such a

spacetime the coordiantes may be expressed as (xµ(τ)) = (T, x1∗, x
2
∗, x

3
∗) where x1∗, x

2
∗

and x3∗ are constants. This is simply a consequence of the spatial metric kij being of

constant curvature, hence the spatial coordinates are constant. As a result of this

all of the derivatives of the coordinates xi are zero. This, combined with the fact

that Γ0
00 = Γ0

0i = 0, means that all the left hand terms in (6.74) vanish and the

geodesic equation is satisfied. Similarly, when µ = i then we obtain

Γi00

Ådx0
dT

ã2
= 0, (6.75)

and since Γi00 = 0, (6.75) is satisfied. Now, we need to see if these geodesics in

the spacetime can be recast as conformal geodesics, to do this, we must find a new
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parameter λ = λ(τ) and a covector β, such that (6.71a) and (6.71b) are satisfied.

Due to the homogeneity of the spacetime, it is possible to deduce the form that

the covector should have. As the curve points in one direction only (the timelike

direction), this implies that the covector must also point in the same direction as

the tangent vector. This suggests an anzatz of the form

β = αẋ, (6.76)

where α is a scalar. Now, it can be shown that ∇x′x
′ = ẋτ ′′ if (6.70) is satisfied. To

show this, we substitute (6.67) into ∇x′x
′ = ẋτ ′′, then expanding with the Leibnitz

rule

∇x′x
′ = τ ′ẋa(ẋb∇aτ

′ + τ ′∇aẋ
b), (6.77)

then if (6.70) is satisfied then the second term vanishes and we obtain

∇x′x
′ = ẋτ ′′. (6.78)

With this result we can work out some useful relations. Substituting (6.78) into

equation (6.71a) and we end up with

ẋτ ′′ = −2τ < αẋ[, x′ > ẋ+ g(x′, x′)αẋ, (6.79)

which, upon substituting in (6.67), gives the ODE

τ ′′ + ατ ′2 = 0. (6.80)

Next, we need to derive another relation, this time by differentiating (6.76), which

gives

∇x′β = ∇τ ′ẋ(αẋ
[). (6.81)

Expanding the RHS of (6.81) gives

τ ′∇ẋ(αẋ
[) = τ ′(∇ẋα)ẋ[ + τ ′α∇ẋẋ

[, (6.82)

but due to the geodesic equation the second term on the RHS vanishes, dividing

through by τ ′ and (6.82) becomes

∇x′β = α′ẋ[. (6.83)

Substituting (6.83) into (6.71b) and we get

α′ẋ[ =< β, x′ > β − 1

2
g](β, β)x′[ + L(x′, ·). (6.84)
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Then, substituting in both (6.76) and (6.67)

α′ẋ[ = 1
2
α2τ ′ < ẋ, ẋ > ẋ[ + τ ′L̃(ẋ, ·),

which simplifies to

dα = dτ
Å1

2
α2 +

ε

2

ã
. (6.85)

Now, there are three different cases to analyse which, just like in the analysis of

the evolution equations depends upon whether or not the value of the curvature is

1, 0 or −1. The general equation for the proper time can be found to be

τ = − 2

α
+ 2αε+ C (6.86)

This completes the derivation of the conformal geodesics for conformal spacetimes

whose matter content is described by a conformally invariant scalar field.



7 Initial Data for the Conformal

Wave Equations

We have derived a set of wave equations that describe both the evolution of the

geometry of conformally rescaled spacetimes perturbed by trace-free matter and

how the trace-free matter itself evolves over time. Furthermore, we have shown

through the propagation of the constraints that any solution to the CWEs also

implies a solution to the CFEs, provided the initial data is suitably chosen. Given

this, the next step is to try to solve the equations, which involves suitably choosing

some initial data. This is due to the fact that the CWEs are differential equations,

which are impossible to solve exactly without initial conditions. Unfortunately, even

the process of choosing initial data is extremely complex; it not sufficient to simply

pick any choice of data since only a select few initial conditions will give rise to a

solution of the EFEs. In order for data to give an actual solution, it must satisfy a

set of equations known as the constraint equations. The primary goal of this chapter

is to highlight a particular property of initial data for the CWEs, namely, that given

a specific set of basic quantities all other quantities can be derived. In order to do

this one first needs to go through the necessary background material, relating to the

constraint equations.

7.1 The 3+1 Decomposition in General Relativity

7.1.1 Spatial hypersurfaces

Recall in section 1.1.2 we described a process known as the 3+1 decomposition, which

involves considering only the spatial components of the spacetime at an instant in

time. To do so, we make use of a hypersurface, which physically describes all events

that occur simultaneously. The visual representation of the hypersurface is like a

leaf, where all points on the leaf correspond to events that occur at precisely the

same instance in time. At an infinitesimal amount of time later simultaneous events

may be described by a different hypersurface, so in this sense the spacetime ends up

looking like a stack of leaves or a foliation of hypersurfaces. The 3+1 decomposition

process involves choosing one such hypersurface at a specific instance in time and

prescribing initial data on said surface, then solving the necessary equations to find

a unique solution; this is akin to choosing some initial conditions for an ordinary

111
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differential equation and solving to find the constant of integration.

Let us examine some of the tools we need in order to work with the 3+1 decom-

position. Since we are working with 3-dimensional hypersurfaces, we need tools that

consider the spatial and time components of the spacetime individually. First, we

need to be able to describe the direction of time with respect to the hypersurfaces.

To this end we define a what is called a global time function t. The physical explana-

tion of t is as follows: consider a certain spacetime and suppose that we are able to

define time in a consistent manner for this spacetime for all events. In that case we

can define a unit of time t to describe the progression of time for the entire space-

time. Leaves of the spacetime foliation associated to t are naturally the surfaces

where t is constant. Another important point is that the leaves of the spacetime

foliation never intersect, otherwise this would be a poor choice for the progression

of time as it would be impossible to describe simultaneous events. From this t one

defines the following covector

$a ≡ ∇at, (7.1)

this covector denotes the normal to the hypersurface and as such defines the direction

that time flows. From this covector we can define the so-called lapse function

α2 ≡ 1

$a$a

. (7.2)

The lapse function measures how much proper time elapses along neighbouring

time slices along the direction specified by the normal $a. From both (7.1) and

(7.2) we define the unit normal

na ≡ −α$a. (7.3)

Physically, this unit normal can be thought of as the 4-velocity of a normal ob-

server, which is an observer that moves through the spacetime in a direction that

is orthogonal to the hypersurface. The minus sign indicates that na points in the

direction of increasing t. Using (7.2) it can be verified that

nana = −1. (7.4)

This covers the separation of time components from the 4-dimensional space-

time; next we need to look at the curvature. The hypersurface is equipped with

a purely spatial metric hij; the ij indices are used to indicate that this metric is

a 3-dimensional object. Although hij does depend on time, as the shape of the

hypersuraces will change as t changes, for all practical purposes we mostly consider

a single hypersurace, where t is constant. In this scenario hij can be thought of

as being independent of time. The purely spatial metric is related to the original
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spacetime metric via the formula

hab ≡ gab + nanb. (7.5)

Although hij is inherently a spatial object, in the previous equation the spatial

metric has spacetime indices ab; this is due to the presence of the spacetime metric

gab on the RHS of (7.5). In this sense hab is part of the decomposition of the

spacetime metric, with hab representing the spatial parts of the metric and the unit

normals nanb as representing the timelike parts of the metric. Just as gab is used

to measure distances in spacetime, hab can be used to measure distances along a

hypersurface. We can verify that hab is a purely spatial object since it has no

component along the unit normal na which always points in the direction of time.

This can be verified by contracting hab with na and making use of (7.4)

nahab = nagab + nan
anb = nb − nb = 0.

Effectively, hab separates any vector on the hypersurface into its components par-

allel to the unit normal and components parallel to the hypersurface. An alternative

way of looking at hab is to think of it as an object analogous to the dot product;

just as the dot product defines the projection of a certain vector to a surface, hab

defines how much a certain vector is projected along a hypersurface. It is for this

reason that hab is often referred to as the projector tensor or projector for short;

we encountered a similar tensor in section 5.4.1. The inverse of the projector is

obtained simply by raising the indices in (7.5)

hab ≡ gab + nanb. (7.6)

In most calculations, however, it is more convenient to consider the mixed version

of the projector

ha
b ≡ δa

b + nan
b. (7.7)

Using the projector we can accordingly define the spatial part of a vector as being

V ⊥a ≡ ha
cVc, (7.8)

the spatial part of a rank 2 tensor is likewise

T⊥ab ≡ ha
chb

dTcd, (7.9)

with obvious extensions to higher dimensions.
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7.1.2 3 Connections and spatial curvature

Up until now we have been analysing quantities living in 4-dimensional spacetime

and as a result any derivatives of these quantities have also been 4-dimensional.

However, as we are now working with quantities living in a 3-dimensional hypersur-

face, we need to adapt the notion of a derivative. The connection in question Di

is the 3-dimensional version of the Levi-Civita connection, which is to say, it de-

scribes how objects move on the hypersurface and satisfies the metric compatibility

and torsion free conditions first defined in section 2.2.1 with the spatial metric hij in

place of the spacetime metric gab. As before, it is useful to think of this 3-connection

as being a part of the 4-dimensional spacetime connection ∇a and therefore we will

denote it using a spacetime index. The 3-connection Da is defined when acting on

a scalar φ as

Daφ ≡ ha
b∇bφ. (7.10)

Once again, the key ingredient for defining the 3-dimensional spatial analogues

of a 4-dimensional spacetime object is the projector tensor. So essentially the 3-

connection is obtained by taking the corresponding 4-dimensional connection and

applying the projector to kill off the time components of the derivative. In accor-

dance with (7.10) the 3-derivative of a covector is

DaVb ≡ ha
chb

d∇cVd. (7.11)

The 3-derivative of a mixed tensor of rank 2 is then given as

DaT
b
c ≡ ha

dhe
bhc

f∇dT
e
f , (7.12)

with obvious extensions to tensors of higher ranks. Associated to the metric hab and

the 3-derivative Da are the spatial Christoffel symbols which, in direct analogy to the

standard Christoffel symbols, describe how vectors change when they are parallel

transported across the hypersurface. The spatial Christoffel symbols are intuitively

defined as

γijk = 1
2
him(∂jhkm + ∂khmj − ∂mhjk). (7.13)

Accordingly, one can also derive a purely spatial curvature tensor rdbac, by apply-

ing a commutator of 3-derivatives to an arbitrary vector va

DaDbv
c −DbDav

c = rcdabv
d. (7.14)

One can readily verify that rcdabn
d = 0. Similarly, one can also define the spatial

Ricci tensor and scalar as
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rdb ≡ rcdcb, r ≡ gabrab. (7.15)

Likewise, one can also define the spatial Schouten tensor using (7.15)

lab ≡ rab − 1
4
habr. (7.16)

Just as the 4-dimensional spacetime curvature can be decomposed in terms of the

Weyl and Schouten tensor, so too can the 3-dimensional spatial curvature, the main

difference is that the Weyl tensor for a hypersurface does not exist. So then written

in terms of the 3-dimensional Schouten tensor given in (7.16) rabcd is equal to

rabcd = hbdlac − hbclad − hadlbc + haclbd. (7.17)

The curvature tensor given by (7.14) is also known as the intrinsic curvature

tensor because it only contains information about the hypersurface itself and not

about how the hypersurface fits into the spacetime. This missing information is

encoded in the so called extrinsic curvature, which is given as

Kab ≡ −hachbd∇cnd. (7.18)

Physically, this tensor measures how the hypersurface deforms as it is carried

along the normal; this is evident by the derivative of the normal, since the normal

changes as one moves from one hypersurface to another. A related quantity is the

acceleration of the spacetime foliation, which is defined as

aa ≡ nb∇bna. (7.19)

Now, (7.18) may be re-expressed in terms of the acceleration; making use of (7.19),

Kab is equal to

Kab = −∇anb − naab. (7.20)

This completes the background that one needs to start working in the 3 + 1

decomposition.

7.2 Decomposition of the Conformal Field

Equations

Now that we have defined all the necessary quantities we next need to apply them to

the CWEs. Regardless of whether or not we work in the physical spacetime, where

the primary tool of analysis are the EFEs, or from the unphysical spacetime where

the primary tool of analysis are the CFEs, we always start by prescribing initial data
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on some hypersurface. This means that for the process of solving the equations to

find a unique solution to the CFEs, one still needs to decompose the variables of the

CFEs into their respective spatial and timelike parts. In a manner analogous to the

previous section, we will use the projector tensor and the normal in order to derive

a decomposed version of all the CFEs.

7.2.1 The Decomposition of the CFE variables

Before proceeding to derive the constraint equations of the CFEs, let us first ob-

tain the decomposed version of the variables that make up the CFEs, as these will

naturally be used in the derivation of the constraints.

Decomposition of the derivative of the conformal factor

As the first CFE contains a derivative of the conformal factor we should obtain two

expressions for the decomposition of the derivative of the conformal factor into two

different components, one purely timelike term and a purely spatial term. To begin

with, we define a shorthand notation for the derivative of the conformal factor

∇aΩ ≡ Ωa. (7.21)

From here, we can obtain the necessary components of this vector by contracting

with either the normal or the projector; the former is used to obtain the time

components of the vector tangential to the normal and the latter is used to obtain

the components that lie in the hypersurface. With that in mind, the equations

that give the components parallel to the normal and tangential to the surface are,

respectively

ω ≡ Ωan
a, (7.22a)

ωa ≡ Ωbha
b. (7.22b)

The derivative of the conformal factor (7.21), written in terms of its time and its

spatial components is simply the sum of (7.22a) and (7.22b)

Ωa = naω + ωa. (7.23)

7.2.2 Decomposition of the energy-momentum tensor

The next variable that we will decompose is the energy-momentum tensor. This is

slightly more complex than in the previous section as the energy-momentum tensor

is a rank 2 tensor as opposed to a vector, this means that it is possible to contract
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on more than one index with either the normal or the projector. The individual

components are as follows:

µ ≡ nanbTab, (7.24a)

µa ≡ ha
bndTbd, (7.24b)

µab ≡ ha
chb

dTcd. (7.24c)

Physically, these variables may be interpreted as follows: µ is the energy density,

which measures the amount of energy at specific points, µb is the flux vector, which

measures the rate of the flow of energy along the surface and µab is the stress tensor,

which measures how the volume of a surface changes in response to the presence of

matter. The energy-momentum tensor is then the sum of all possible contractions

of the tensor with either the projector or the normal i.e.

Tab = nanbn
cndTcd + ha

chb
dTcd + hb

dnan
cTcd + ha

dnbn
cTdc. (7.25)

Applying (7.24a)-(7.24c) and (7.25) becomes

Tab = nanbµ+ 2n(aµb) + µab. (7.26)

By making note of the fact that Tab is a trace-free quantity in all our calculations,

it is possible to derive an important relation between the energy density and the

stress tensor. Begin by contracting (7.26) with the metric

gab(µab − µanb − µbna + µnanb) = 0. (7.27)

However, as we stated beforehand, hab is a purely spatial object meaning nahab =

0, hence (7.27) becomes

µ = µa
a. (7.28)

This means that a necessary condition for matter to be trace-free is that the

energy density must be equal to the trace of the stress tensor.

Decomposition of the Schouten tensor

The next variable that we will decompose is the Schouten tensor; this process is

identical to the previous decomposition for the energy-momentum tensor, since the

Schouten tensor is also a symmetric rank 2 tensor. Once again the individual com-

ponents are obtained from contractions with the normal and the projector

θ = nanbLab, (7.29a)
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θa = ha
bndLbd, (7.29b)

θab = ha
chb

dLcd. (7.29c)

The Schouten tensor is then given as

Lab = nanbn
cndLcd + ha

chb
dLcd + hb

dnan
cLcd + ha

dnbn
cLdc, (7.30)

then applying (7.29a), (7.29b) and (7.29c) causes (7.30) to become

Lab = nanbθ + 2n(aθb) + θab. (7.31)

Decomposition of the Weyl tensor

We now discuss the decomposition of the Weyl tensor, which is quite a lengthy task

due to the fact that the Weyl tensor has four indices. Analogous to the electric

and magnetic part of the Faraday tensor in electromagnetism, there are electric and

magnetic parts of the Weyl tensor describing the electric and magnetic parts of the

gravitational field, respectively. It should be noted that for a long period of time

the magnetic part of the gravitational field was a theoretical concept [35], however

the magnetic part of the gravitational field was eventually proven experimentally in

2002 to be a real physical object [30]. The electric part of the Weyl tensor is what

we perceive as the force of gravity on a day to day basis, whereas the magnetic part

is more subtle; it is responsible for such effects as the precession of a gyroscope. The

electric part of the Weyl tensor is given as

def = nanbdeafb. (7.32)

This particular tensor can be verified to be trace-free i.e.

de
e = 0. (7.33)

As is the case with the Faraday tensor, the magnetic part of the Weyl tensor is

defined using the Hodge dual of the electric part

d∗ae =
1

2
εef

cdnbnfdabcd. (7.34)

Alternatively, the magnetic part may be defined without the dual

dacd = ha
ehc

fhd
gnbdebfg, (7.35)

which is also trace-free, in other words

daba = 0. (7.36)
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The two definitions of the magnetic part of the Weyl tensor given by (7.34) and

(7.35) encode the same information and are related to each other via the relationship

dagc = εgcehd
∗
a
hne. (7.37)

Finally, the Weyl tensor written in terms of the electric and magnetic parts is

given as

dabcd = dbdhac − dbchad − dadhbc + dachbd + dbdnanc − dadnbnc
−dbcnand + dacnbnd − εcdefd∗bfnane + εcdefd

∗
a
fnbn

e − εabefd∗dfncne + εabefd
∗
c
fndn

e. (7.38)

Decomposition of the rescaled Cotton tensor

Finally we take a look at the decomposition of the rescaled Cotton tensor, which is

a more lengthy task due to the rescaled Cotton tensor being a rank 3 tensor. Let

us define all the individual components of the rescaled Cotton tensor as

τabc = ha
dhb

ehc
fTdef , (7.39a)

τab = ha
dhb

enfTdef , (7.39b)

τa = ha
dnbncdTdbc. (7.39c)

These are the only possible non-vanishing components of the rescaled Cotton

tensor, the others all vanish due to the antisymmetry of the rescaled Cotton tensor;

for example τ = nanbncTabc = 0 due to the fact that the rescaled Cotton tensor

is antisymmetric on the a and b indices, but nanb is a symmetric quantity, so any

contraction between the two is zero.

It is possible to re-express (7.39a)-(7.39c) in terms of the components of the

energy-momentum tensor (7.24a)-(7.24c); the motivation for doing so will be ex-

plained shortly. We start by substituting (4.2) into (7.39a), and applying both

(7.24b) and (7.24c) which gives

τabc = 3
2
µbcωa − 3

2
µacωb + 1

2
µbhacω − 1

2
µahbcω + 1

2
ha

ehbcω
dTde

−1
2
hachb

eσdTde + 1
2
Ωha

dhb
ehc

f∇dTef − 1
2
Ωha

dhb
ehc

f∇eTdf . (7.40)

Next, we proceed to remove the energy-momentum tensor terms; substituting in

(7.26) and using (7.20) to remove the derivatives of the normal and one ends up

with
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τabc = 1
2
ΩKbcµa − 1

2
ΩKacµb + 1

2
µbhacω − 1

2
µahbcω + 3

2
µbcωa − 3

2
µacωb

−1
2
µbdhacω

d + 1
2
µadhbcω

d + 1
2
Ωha

dhb
ehc

f∇dµef − 1
2
Ωha

dhb
ehc

f∇eµdf . (7.41)

Likewise, one can express (7.39b) in terms of the components of the energy-

momentum tensor. Substituting in (4.2) into (7.39b) and re-expressing the deriva-

tives of the conformal factor using (7.21) followed by (7.23) gives

τab = 3
2
hb
endωaTde − 3

2
ha

endσbTde + 1
2
Ωha

ehb
fnd∇eTdf − 1

2
Ωha

ehb
fnd∇fTde. (7.42)

Next, we remove the energy-momentum tensor terms using the decomposition of

the energy-momentum we defined a short while ago. Substituting (7.26) into (7.42),

then using (7.20) to remove the derivatives of the normal and the end result is

τab = 1
2
ΩKb

dµad − 1
2
ΩKa

dµbd + 3
2
µbωa − 3

2
µaωb + 1

2
Ωhaehbd∇eµd − 1

2
Ωhadhbe∇eµd.

(7.43)

Finally, we proceed to express (7.39c) in terms of the components of the energy-

momentum tensor. Substituting in (4.2), then making use of (7.21), (7.23) and then

applying the definitions of the energy-momentum tensor components (7.24a)-(7.24c)

gives

τa = −µaω + 3
2
µωa − 1

2
µacω

c. (7.44)

The quantities (7.41), (7.44) and (7.43) can be used to deduce a subtle, but

important property of the rescaled Cotton tensor from the point of view of con-

structing initial data. Provided that one knows the extrinsic curvature and the

energy-momentum tensor components then it is always possible to deduce the nec-

essary information about the rescaled Cotton tensor. We will make use of this

property when proving the main result of this chapter.

7.2.3 Decomposition of the metric CFEs

Now that we defined the necessary components we will now proceed to decompose

the CFEs into components that lie along the hypersurface and that act as con-

straints. An important point is that any equation that has a contraction between

the normal and a covariant derivative gives rise to a time derivative and is therefore

an evolution equation. Hence, we will not derive any equations where a contraction

occurs between the normal and the covariant derivative as our main interest is the

constraints.
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The First CFE

We start with the first CFE which, making use of (7.21) is equal to

∇aΩb = −ΩLab + sgab + 1
2
Ω3Tab. (7.45)

To find the first constraint, we contract (7.45) using the normal and the projector,

which gives

hb
cna∇cωa = −Ωhb

cnaLac + shb
cnagac + 1

2
Ω3hb

cnaTab. (7.46)

We then decompose the various components of (7.46) using (7.31) and (7.23),

which yields

hba∇aω + hbcn
aω∇cna + hbcn

a∇cωa = −Ωθb. (7.47)

We then eliminate the derivative of the normal using (7.20). Then, transforming

the spacetime derivatives into spatial derivatives using (7.9) and (7.47) becomes

Dbω = −Ωθb +Ka
bωa + 1

2
Ω3µb. (7.48)

This is one of the two constraint equations for the first CFE, any initial data set

must satisfy this equation in order to be a solution to the EFEs.

A second constraint equation may be derived simply by repeating the same process

as above, except this time contracting with two projectors as opposed to one normal

and one projector. Doing so and following many of the same steps and it becomes

possible to derive

Dbωa = shab − Ωθab −Kabω + 1
2
Ω3µab. (7.49)

The Second CFE

For the second CFE, there is only one free index and hence we must only derive one

constraint equation. We start by applying (7.22b) to (3.44b) and contracting with

the projector

hb
a∇as = −Ωahb

cLca + 1
2
ΩaΩ2hb

cTca. (7.50)

At this point one needs to apply (7.23), (7.26) and (7.31) to (7.50); doing so along

with multiplying out and transforming the covariant derivatives into 3-derivatives

gives

Dbs = −1
2
Ω2µbω + θbω + 1

2
Ω2µbaω

a − θbaωa. (7.51)
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The Third CFE

The constraint equations of the third CFE are somewhat more difficult to derive;

we start by contracting (3.44c) with three projector tensors

ha
dhb

ehc
f∇dLef − hadhbehcf∇eLdf = Ωha

dhb
ehc

fTdef − hadhbehcgddegfΩf . (7.52)

Applying (7.23), (7.31), (7.26) and (7.38) to decompose Ωf , Lef , ddegf , transform-

ing the covariant derivatives into 3-derivatives and (7.52) becomes

Daθbc −Dbθac = Ωha
dhb

ehc
fTdef −Kbcθa +Kacθb

−εdefgd∗cehafhbgndω + dbcωa − dacωb − dbdhacωd + dadhbcω
d. (7.53)

Finally, transforming the magnetic part of the Weyl tensor using (7.37) and ap-

plying (7.39a) causes (7.53) to become

Daθbc−Dbθac = Ωτabc−Kbcθa +Kacθb + dcabω+ dbcωa− dacωb− dbdhacωd + dadhbcω
d.

(7.54)

This is the first constraint equation of the third CFE; the second is obtained by

applying two projectors and one normal to (3.44c)

ha
dhb

enc∇dLec − hadhbenc∇eLdc = Ωha
dhb

encTdec − Ωfha
dhb

encddecf . (7.55)

Repeating the same steps as in the derivation of the first constraint and it can be

verified that (7.55) reduces to

Daθb −Dbθa = Ωτab −Kb
cθac +Ka

cθbc + dcabω
c. (7.56)

There are no other constraint equations for the third CFE due to symmetry.

The Fourth CFE

The constraint equations of the fourth CFE are derived in a similar manner, once

again symmetries of certain tensors reduce the amount of effort that is required in

the derivations. The first constraint of the fourth CFE is obtained by contracting

the fourth CFE using a normal and two projectors

ha
dhb

enc∇fddec
f = −hadhbencTdec, (7.57)
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then applying (7.38) to decompose the Weyl tensor as well as using (7.20) to remove

the derivatives of the normal in terms of the extrinsic curvature and (7.37) to remove

the Hodge dual terms causes (7.57) to become

Dcd
c
ab = −dbcKac + da

cKbc − acdcab + ha
fhb

dncTfdc. (7.58)

Note, that in our case we are only considering an initial hypersurface, which means

that the acceleration is zero. With this in mind and using (7.39b) to rewrite the

last term in (7.58) and we end up with

Dcd
c
ab = da

cKbc − dbcKac + τab. (7.59)

Alternatively, one can express (7.59) in terms the Hodge dual by repeating the

same steps as above and not making use of (7.37) to rewrite the various expres-

sions; additionally, one multiplies the equation by a Levi-Civita alternating tensor.

Performing this course of action gives

Dad
∗
k
a = dbcεkacfKb

fna + 1
2
εkbfdn

bτ fd. (7.60)

The second constraint of the fourth CFE is obtained by contracting (3.44d) with

two normals and one projector

hb
dnanc∇fdadc

f = −hbdnancTadc. (7.61)

Applying the decomposition of the Weyl tensor and switching to the three index

representation of the magnetic part of the Weyl tensor, transforming the covariant

derivatives into 3-derivatives, then using (7.37) and making use of both (7.20) and

(7.39c) causes (7.61) to become

aadba −Kacdabc +Dcdb
c = −hbfnancTafc. (7.62)

Finally, setting the acceleration to zero and making use of (7.39c) transforms

(7.62) into

Dcdb
c = Kacdabc + τb. (7.63)

The Fifth CFE

Finally, we will take a look at the constraint equation for the fifth CFE. In this

case one only needs to express the equation in terms of the decomposed quantities,

since λ is a scalar and we cannot contract with the metric projector or the normal

as a result. Consequently, the constraint equation for the fifth CFE is obtained via

simple substitution. First we consider the fifth CFE written in terms of Ωa
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λ = −3ΩaΩ
a + 6Ωs, (7.64)

then substituting (7.22a) and (7.22b) into gives (7.64) gives the desired constraint

equation

λ = 6Ωs+ 3ω2 − 3ωaω
a, (7.65)

this completes the derivation of the constraint equations for the CFEs. Although we

have derived every single constraint equation, for the result that we wish to achieve,

in fact only few of them will be actually used to obtain the result that we desire,

however one still needs to know the constraint equations in order to see why this is

the case.

7.2.4 The conformal constraint equations

The conformal Gauss-Codazzi equation

Essential to both the 3+1 decomposition and the construction of initial data are the

Gauss-Codazzi and the Codazzi-Mainardi equations. These two equations describe

the relationship between the curvature of spacetime and the curvature of a hyper-

surface. To obtain these equations we need to make use of the definitions of the

curvature. Let us begin by deriving the Gauss-Codazzi equation; the starting point

are the definitions of curvature for a spacetime and a hypersurface given by (2.8)

and (7.14), respectively. Applying the definition of a 3-derivative of a vector (7.11)

to a second order covariant derivative of a vector gives

DaDbv
c = ha

phqbhr
c∇p∇qv

r −Kabhr
cnp∇pv

r −Ka
cKbpv

p. (7.66)

Substituting this equation into (7.14) and multiplying out gives

rabcd +KacKbd −KadKcd = ha
phb

qhc
rhd

sRpqrs. (7.67)

This is the Gauss-Codazzi equation; in order to make this equation compatible

with conformal methods we need to express it in terms of the conformal variables.

Substituting in (2.12), (7.17) and (7.29c) then (7.67) becomes

lac = Ωdac +Ka
dKcd −KacK

d
d − 1

4
KdbK

dbhac + 1
4
Kb

bK
d
dhac + θac, (7.68)

which is the conformal Gauss-Codazzi equation.
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The conformal Codazzi-Mainardi equation

Next we derive the Codazzi-Mainardi equation which, instead of relating the intrinsic

curvature of the surface to the spacetime curvature, relates the extrinsic curvature

to the spacetime curvature. The starting point of this derivation is to apply (7.12)

to a covariant derivative of the extrinsic curvature

DaKbc = ha
phb

qhc
r∇pKqr. (7.69)

Next we consider the commutator of the extrinsic curvature; substituting (7.69)

into the commutator gives

DbKac −DaKbc = ha
phb

qhc
rnsRpqrs, (7.70)

this is the Codazzi-Mainardi equation. We can also obtain a version of this equation

that is compatible with conformal methods by substituting in (2.12) into (7.70),

doing so and expanding gives

DcKbd −DdKbc = Ωdbcd − hbdθc + hbcθd, (7.71)

which is the conformal Codazzi-Mainardi equation.

7.3 Construction of initial data for the conformal

evolution equations

We now proceed to the primary goal of this chapter, which concerns the nature

of the initial data itself. Here is the claim: let us suppose that we have an initial

hypersurface, if we are given hij, Ω, Kij, and all the matter variables µ, µi, µij then

it is possible to obtain all the other variables for the evolution equations and the

constraints.

Let us first consider the equation for the spatial Schouten tensor (7.16), we can see

that provided we know the spatial metric hij it is possible to calculate lij since the

spatial Ricci curvaure and scalar depend on the spatial Christoffel symbols which,

as we can see from (7.13), depend on hij. The next variable that we consider is the

Friedrich scalar; it is possible to obtain this variable from the constraint equation

of the fifth CFE. Rearranging (7.65) gives

s =
λ− 3ω2 + 3ωaω

a

6Ω
, (7.72)

since the cosmological constant is a known quantity a priori and Ωa is derived from

Ω via (7.22b) this means that we know the value of the Friedrich scalar, which is

consistent with our claim.
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Next we examine the constraint equations for first CFE, starting with (7.48). We

notice that the component of the Schouten tensor θa can be obtained again via

simple rearrangement of said equation

θi = 1
2
Ω2µi −

Diω

Ω
+
Kijω

j

Ω
, (7.73)

which is dependent on the required quantities and is consistent with the claim. The

second constraint equation for the first CFE (7.49) is also used to prove our claim

as we can obtain the component of the Schouten tensor θab, rearranging gives

θij =
ωkij −Diωj + shij −Kijω + 1

2
Ω3µij

Ω
. (7.74)

Again, we can see that (7.74) depends on all of the quantities that we claimed

would be needed to completely determine all variables in the system, since we es-

tablished from (7.72) that it is possible to determine the Friedrich scalar from all

the required quantities.

In the final steps, we must make use of the conformal Gauss-Codazzi and the

conformal Codazzi-Mainardi equations. Rearranging (7.68) gives

dac =
lac −Ka

dKcd +KacK
d
d + 1

4
KdbK

dbhac − 1
4
Kb

bK
d
dhac − θac

Ω
(7.75)

and doing the same to (7.71) yields

dijk =
DjKki −DkKji + hikLj − hijLk

Ω
. (7.76)

Looking at both (7.75) and (7.76), we can see that once again the RHS of the

equations are comprised of quantities that are known. This means that once again

we are able to deduce more variables of the system based on the ones that we claim

determines the entire system. Recall in the previous section that we stated that

in fact a large number of the constraint equations that were derived are in fact

redundant with regards to proving this claim; by examining the equations we can

now see why this is the case, it is because all of these terms can be written in terms

of either the quantities that we have stated are needed to construct all the initial

data variables or terms that depend on the same variables upon close inspection. For

example, the constraint equation for the second CFE is formed from: the conformal

factor and its derivatives, which are all determined if one knows the value of Ω, the

matter terms µi and µij, which we stated are necessary for constructing all the rest

of the data and the Schouten tensor components, which are determined from (7.73)

and (7.74). For the constraints for the third CFE, (7.54) and (7.56), they depend on

the quantities that are fundamental to constructing data, quantities that are known

from (7.73), (7.74), (7.75) and (7.76) and that can therefore be determined by the
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terms in our claim or components of the Cotton tensor. However, recall that the

Cotton tensor can be expressed in terms of the energy momentum tensor, which

is one of the fundamental quantities in our claim, therefore any term containing

components of the Cotton tensor can be determined.

We have therefore shown that given the quantities hij,Ω, kij, µ, µi, µij then it is

possible to determine all other pieces of information about the initial data. Whilst

this is a known result it is by far the easiest way of showing this result to be true.

Additionally, one needs to have knowledge about the properties of the initial data

when it comes down to solving problems; one such area where information about

the initial data is necessary is in the field of stability, which will be discussed in the

next chapter.

7.3.1 The evolution equations

As mentioned beforehand, obtaining a suitable data set via the act of solving the

constraint equations is only part of the process. The next step is to substitute said

data set into the necessary evolution equations, which enables one to see how a

certain spacetime with specific initial conditions will evolve in time. As solving the

evolution equations is not relevant to any of the results obtained in this thesis, we

will not give a derivation or a list of the equations. All that we will do is mention

the method by which one obtains the evolution equations; essentially all one does is

repeat a number of the steps performed in section 7.2, except this time contracting

all the covariant derivatives with the normal as opposed to the projector. As we

mentioned beforehand contracting the covariant derivative with the normal gives

the components of the derivative that point in the time direction. Consequently,

one is able to construct time derivatives and therefore evolution equations when

contracting the covariant derivatives of the CFEs with the normal.



8 Stability of the de Sitter

spacetime under trace-free

matter perturbations

Throughout this thesis we have derived a number of general results relating to

conformal methods in GR, however we have not yet used these results for anything

in particular. This chapter shall be devoted to one such way in which the results

can be applied, namely in showing that the de Sitter spacetime is both globally and

nonlinearly stable.

8.1 Stability - basic ideas

One of the key ideas, as well as one of the primary subjects of interest in research

of GR, concerns the analysis of the stability of spacetimes. Before looking at how

the results that have been derived can be applied to stability it worth giving an

overview of the subject. This subject is quite mathematically demanding and the

results draw heavily on PDE theory, as such we will not go into full technical details

of stability. Instead we will give a non-mathematical explanation of the main results

of the theory and how this relates to GR.

To begin, we first need to answer the question: what is stability? In essence,

stability asks the question of whether or not it is possible to gain information about

how a perturbed system evolves in time based upon information about how the cor-

responding non-perturbed system evolves in time. To make this idea clearer, let us

consider an example. Suppose one has an idealised background solution, the de Sit-

ter spacetime, for example. The behaviour of this ideal, non-perturbed background

solution is governed by equations that can be solved exactly; consequently it is pos-

sible using the evolution equations of this system to predict how the background

solution evolves in time. Now, let us perturb the de Sitter background with the

presence of matter. The question that we ask ourselves now is: how does this situ-

ation evolve in time? Also, we would like to know which properties of de Sitter are

preserved, since in physics a large variety of problems in the real world are modelled

using slight perturbations of idealized models. From the point of view of conformal

methods, it is also important to ask if the conformal boundary is spacelike, since

128
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this is an indicator that any observer has existed for all eternity, meaning that the

spacetime has also existed for the same amount of time. Now, due to a know result

from PDE theory, known as ”local existence”, it is always guaranteed that for some

small interval of time ts that the perturbed version of this spacetime looks like the

original version without the matter terms. This is a form of stability known as

Cauchy stability, which we mentioned very briefly in section 1.1.2; it can only be

applied if the equations have the correct form. The other form of stability is Global

stability which, as the name implies, is the situation where a system is stable in the

same sense as in Cauchy stability, but for infinite amounts of time. Our goal will

be showing that de Sitter is stable in the global sense when perturbed specifically

by trace-free matter, since all the equations that we have derived thus far describe

trace-free matter. This idea of stability is of great interest in research in GR since

it enables us to gain a great deal of information about physical systems, purely

through knowledge of a well understood idealised model. Additionally, it enables

the theory to make contact with the real world in situations where measurements

with infinite precision are not possible.

8.1.1 Conditions for Cauchy stability

As mentioned in the previous section, our goal will be determining whether de Sitter

perturbed by trace-free matter possesses global stability. This particular property

of global stability follows from a conformal rescaling if a certain solution has Cauchy

stability. If a system has Cauchy stability then the act of performing a conformal

rescaling on said system essentially rescales and extends the finite stable region into

an infinite region. Hence, global stability follows directly from Cauchy stability; it

is therefore a good idea to review Cauchy stability and to see if the equations that

have been derived thus far possess the necessary conditions for Cauchy stability. The

key tool of determining whether a system possesses Cauchy stability is a result first

proved by Hughes, Kato and Marsden (HKM) in 1977 [18]. This result is completely

general and is therefore extremely useful. The HKM result says that any system is

stable up to a finite time period if it satisfies the following conditions:

1. The perturbation of the background solution is described by wave equations;

2. The non-principal part of the wave equations depends in a smooth manner on

the unknowns and their first order derivatives;

3. The background solution is also smooth and exists for a known amount of time;

4. The initial conditions that one starts with are small and smooth.

Provided all these conditions are met then the perturbed system will be close

to the background system for finite time intervals. Within this checklist there are

two words that deserve special attention: smooth and close. What do we mean by

this? In everyday life, close and smooth have meanings that change according to
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the situation. You and your friend might be considered close to each other if you

are sitting at the same table; similarly a building might be considered close if there

is a high speed train that can take us there is a few minutes. For our purposes, the

words close and smooth have very precise meanings that we will describe in detail.

A function is smooth if it is possible to take an infinite number of derivatives

of this function. Even though one can take an infinite number of derivatives of a

function, we only need to compute a total of four derivatives for the variables of the

CWEs. The reason for this is that the primary function that we will be considering

is the metric, since every single variable of the CWEs depends fundamentally on the

metric. The highest order derivatives of our system are second order derivatives of

the Weyl tensor. The Weyl tensor contains first order derivatives of the Christoffel

symbols, which in turn contain first order derivatives of the metric; hence the high-

est order derivative that acts on the metric is four. From this we conclude that,

in general, this particular number of derivatives needs to exist, otherwise quantities

that you would compute using the wave equations could not be evaluated; for exam-

ple it is impossible to solve a second order differential equation if the second order

derivative with respect to the required function does not exist.

By close and small, we really mean that the value computed using the Sobolev

norm is below a certain threshold. To make sense of this, let us give a definition

of the Sobolev norm. A Sobolev norm is an object that generalizes the notion of

distance to an infinite number of dimensions. Recall that the distance between two

points, ~p(x, y, z) and ~q(x′, y′, z′), in 3-dimensional space is given as

d(~p, ~q) =
»

(x− x′)2 + (y − y′)2 + (z − z′)2,

we say that these two points are close if d(~p, ~q) < ε, where ε is a small number.

This small number is a value that is chosen by us; its value depends on the level of

accuracy that one wishes to obtain. We can extend this idea to include continuous

functions as well as discrete points. We first consider the simplest case of a function

of a single parameter. Two arbitrary functions f(x) and g(x) on the real line are

said to be close if

∞∫
−∞

Ä
f(x)− g(x)

ä2
dx < ε, (8.1)

where the integral on the LHS of (8.1) is a generalisation of the distance of two points

applied to functions. If the difference between these two functions is smaller than ε,

then is it sufficient to say that f(x) and g(x) are close enough such that we obtain

very similar results for both functions if we use them in the same calculation? The

answer to this question is no, to understand why consider the following example: let

us suppose that the function f(x) is a constant value at all points and that the other
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function g(x) is a constant that is infinitesimally close to f(x) at all points except

for a single point where the value of g(x) is much bigger. In this particular situation,

if one were to compute the difference between f(x) and g(x) using (8.1) then the

result would still turn out to be less than the parameter ε, since we are integrating

over such a large range and this particular information is lost. In stability it is

absolutely critical that the functions remain close for all times, hence we need some

way of checking for cases where such discrete discontinuities occur. A method of

checking for such occurrences is to compare the differences between the derivatives

of the functions, as in our example the differences between the derivatives will be

very large. It is for this exact reason why it is not enough in HKM simply saying

that the variables of the evolutions equations are close, we also need to determine

if the derivatives are close; this leads to the concept of the Sobolev norm.

Let us suppose we are solving some equations on an initial hypersurface S, then

the norm of the two functions under consideration is given by

‖f − g‖2 ≡
∫
S

Ä
f(x)− g(x)

ä2
d3x,

from here we may define some operations that determine how close the derivatives

of functions are

‖∂f − ∂g‖2 ≡ ∑∫
S

(∂f − ∂g)d3x,

‖∂2f − ∂2g‖2 ≡ ∑∫
S

(∂2f − ∂2g)d3x,

...

‖∂αf − ∂αg‖2 ≡ ∑∫
S

(∂nf − ∂ng)d3x,

where α = (α1, α2, α3) and α1 + α2 + α3 = n. The Sobolev norm is then defined as

‖f − g‖2Hn ≡ ‖f − g‖2 + ‖∂f − ∂g‖2 + . . .+ ‖∂nf − ∂ng‖2. (8.2)

The functions f and g are stated to be close if ‖f − g‖2 < ε for some chosen value

of ε.

8.2 The de Sitter background solution

Now that we have taken a look at the basic ideas of stability, let us look at the

background solution of our choosing, namely de Sitter. Recall that de Sitter is an

exact solution to the EFEs, which models a universe with a positive cosmological

constant λ. The metric for this spacetime is given as



8.2: The de Sitter background solution 132

˜̊g = dt2 − cosh2 t }, (8.3)

where } is the metric of the 3-sphere which, in general can be written any reasonable

system of coordinates, and we have introduced the notation that anything with a

small circle above it is a variable of the de Sitter spacetime; g̊ is the metric of de

Sitter, R̊µν is the Ricci curvature of de Sitter and so on. In order to perform a

conformal rescaling of this spacetime, one needs to choose a value for the conformal

factor. In order to do so, let us first look at the exact form of the conformal

transformation from which we deduce the equation for the physical metric ˜̊g = Ω−2g̊.

With this in mind, we make an educated guess about the form of the conformal

factor, which occurs by factoring out the cosh2 t term from (8.3)

˜̊g = cosh2 t
Å dt2

cosh2 t
− }
ã
. (8.4)

From this we guess that the conformal factor should be

Ω =
1

cosh t
. (8.5)

It is also convenient to define an alternate parameter for the time component of

the metric; we can deduce from (8.4) an equation for the time parameter of the

conformal de Sitter metric

dT =
dt

cosh t
, (8.6)

integrating both sides of (8.6) gives

T = 2 arctan et. (8.7)

From this we can conclude that the physical metric of the de Sitter spacetime can

be written as

˜̊g = cosh2(−dT 2 + dφ2 + sin2 dθ2 + sin2 φ sin2 θdφ2), (8.8)

and therefore the conformal de Sitter metric is

g̊ = −dT 2 + dφ2 + sin2 dθ2 + sin2 φ sin2 θdφ2. (8.9)

An important fact to mention about this metric is that it is conformally flat,

which means that

d̊ρσδλ = 0.

The concept of conformal flatness was first mentioned in section 2.2.1; we stated

that it is an important characteristic of certain spacetime metrics. The reason for
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this is because any quantity that we choose to calculate is dependent on Ω only,

which helps to simplify things considerably.

Now that we have defined all the necessary concepts let us take an in depth look

at the stability of de Sitter. To begin with the shape of the de Sitter metric is

that of the Einstein cylinder. The Einstein cylinder is a conformal representation of

Minkowski, de Sitter and anti-de Sitter spacetimes. More precisely, different sections

of the cylinder correspond to one of these three spacetimes. All three spacetimes are

conformally flat and so is the Einstein cylinder. Because of this, all of the spacetimes

can be related to each other, however, as the Einstein cylinder is the largest it is

possible for all three metrics to be represented by a section of the cylinder. The de

Sitter metric is smooth because we can take the required number of derivatives of

the metric components g̊µν . Additionally, the quantities that describe the conformal

de Sitter spacetime, Γ̊µνλ, d̊
µ
νλρ, Ω̊, L̊µν and s̊, are smooth since they depend on

the metric g̊, which is itself a smooth quantity. Furthermore, all these quantities

are smooth for all time on the Einstein cylinder. Moreover, these quantities are also

a solution to the CWEs, since any solution to the EFEs implies a solution to the

CFEs and any solution to the CFEs implies a solution to the CWEs, at least for

the vacuum case. Naturally, we would like to extend this case to describe matter;

to perform this task we consider an Anzatz of the form

u = ů+ ǔ, (8.10)

where u is a shorthand notation for all the variables that describe the geometry of

the conformal spacetime i.e. u = (Ω, s, gµν , Lµν , d
µ
νλρ). So ů is a shorthand for all

the components that describe the evolution of the background solution and ǔ is a

shorthand for all the components that describe the perturbation of the de Sitter

spacetime that occur due to the presence of trace-free matter. Note that when we

say our perturbation is small we really mean with respect to the Sobolev norm.

With this shorthand notation our wave equations may be written in the form

�u = H(u, ∂u,Θ, ∂Θ), (8.11a)

�Θ = F (u, ∂u,Θ, ∂Θ), (8.11b)

where Θ is shorthand for all the matter fields. For example, if we were doing an

analysis of de Sitter coupled to the conformally invariant scalar field then Θ =

(φ, φa, φab). Also, both H and F are smooth functions with respect to their argu-

ments. A noticeable fact about this system is that if you choose to express any of

the variables in terms of coordinates, then the end result is still a smooth function.

So the wave equations have a smooth dependence on the unknowns, which is

a requirement of the result of HKM. If we now substitute (8.10) into (8.11a) and
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(8.11b) then the wave equations take the form

(̊gµν + ǧµν)∂µ∂ν ǔ+H ′(u, ∂ů, ǔ, ∂ǔ,Θ, ∂Θ), (8.12a)

(̊gµν + ǧµν)∂µ∂νΘ̌ + F ′(u, ∂ů, ∂2ů, ǔ, ∂ǔ,Θ, ∂Θ). (8.12b)

Note, the conformal de Sitter metric g̊µν is Lorentzian, since de Sitter is a Lorentzian

spacetime. If g̊µν is Lorentzian then gµν will also be Lorentzian, provided the per-

turbation ǧµν is small enough with respect to the Sobolev norm.

We want gµν to be a Lorentzian metric for all time as this is an important prop-

erty of GR. The spacetime is 4-dimensional and has a structure where causality

is preserved, which is described by the Lorentzian metric. We can say that gµν is

Lorentzian on the initial hypersurface, if ǧµν is small enough. If this is the case then

HKM says that the perturbed metric is Lorentzian for all times and your solution

is stable. Put in another way, the HKM result tells you that if the initial data

(ǔ, Θ̌) is small enough then ǔ and Θ̌, which solve (8.12a) and (8.12b), exist up to

a finite amount of time. If this is the case, then the conformal extension of the

spacetime causes the finite region to be rescaled into an infinite region, which guar-

antees that solution possesses global stability. As the CWEs with trace-free matter

are smooth with respect to the unknowns and the de Sitter background exists for a

known amount of time, this means that de Sitter perturbed with any of the forms

of trace-free matter that have been analysed previously - the conformally invariant

scalar field, Einstein-Maxwell fields, classical Yang-Mills and irrotational fluids - is

stable for a finite amount of time. Furthermore, the fact that de Sitter can be con-

formally extended in such a way that it remains smooth means that the de Sitter

spacetime perturbed with any of the aforementioned types of trace-free matter is

stable for all times. Additionally as the conformal factor of the perturbed solution

can be shown to vanish then the resulting conformal boundary is spacelike, just as

de Sitter is. This observation makes the result global from the point of view of the

physical metric.

Summary

We have shown that by the application of several known results that the de Sitter

spacetime perturbed by the trace-free matter models analysed in Chapter 4 is stable

in the local sense. Furthermore, the conformal nature of the evolution equations

means that the local stability can be extended into global stability. Since there have

been no linearisation carried out in any of the calculations, this means that such a

spacetime is both globally and non linearly stable.



9 Conclusions

We have obtained a multitude of results for conformal spacetimes and trace-free

matter. We have shown that it is possible for conformal spacetime perturbed by

trace-free matter to be described by a system of wave equations. We have also shown

that the trace-free matter itself can be described by a system of wave equations.

Furthermore, we have shown that any solution to the wave equations implies a

solution to the corresponding field equations. As a result of both the spacetime and

the matter being described by wave equations, this means it is possible to formulate

an initial value problem for conformal spacetimes perturbed by trace-free matter.

We have also shown that these results can be used to prove that de Sitter is stable

in the global sense when perturbed by trace-free matter.

We have also taken the time to analyse in depth the conformal field equations

coupled with a conformally invariant scalar field. We have derived equations that

describe a spacetime containing this particular spacetime. Additionally, we have

analysed this spacetime and concluded that virtually all choices of initial data lead

to a system that is compatible with Penrose’s cyclic cosmology theory, with only a

few exceptions.

There are a multitude of potential directions that this work could go in. For

starters, whilst this whole thesis has been devoted entirely to trace-free matter, the

question of non trace-free matter is still very much an open problem; if it were

indeed possible to formulate a system of equations for matter that is not trace-free

it would be an incredibly powerful tool. Even within the context of the equations

already obtained there are many paths that this work could take because whilst this

entire thesis has been almost exclusively devoted to the derivation and analysis of

the equations, virtually no work has been done in either solving or analysing the

equations to see what new information can be gathered.

From the point of view of the fifth chapter one could still do a similar analysis

for other matter models apart from the relatively simple scalar field model. The

fact that the Bach tensor has proven to couple to the field equations and the wave

equations nicely means that it could also prove to be an object of interest in the

future.

Either way, it is the hope of the author of this thesis that the usefulness and

elegance of conformal methods in relativity has been displayed. Hopefully the reader

135



9: Conclusions 136

should be convinced that conformal methods should no doubt prove to be an exciting

and interesting field of research in the future.



Bibliography

[1] R. Agacy, A note on the algebraic symmetries of the Riemann and Lanczos,
Gen. Rel. Grav. 31 (1999).

[2] M. Alcubierre, Introduction to 3 + 1 numerical Relativity, Oxford University
Press, 2008.

[3] T. W. Baumgarte & S. L. Shapiro, Numerical Relativity: solving Einstein’s
equations on the computer, Cambridge University Press, 2010.

[4] Y. Choquet-Bruhat, General Relativity and the Einstein equations, Oxford
University Press, 2008.
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[32] K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der
Einsteinschen Theorie, Sitz. Preuss. Akad. Wiss. Berlin , 189–196 (1916).

[33] H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, & E. Herlt,
Exact Solutions of Einstein’s Field Equations, Cambridge University Press,
2003, Second edition.

[34] J. Stewart, Advanced general relativity, Cambridge University Press, 1991.

[35] P. Szekeres, The gravitational compass, J. Math. Phys. 6, 1387 (1965).



Bibliography 139

[36] J. A. Valiente Kroon, Conformal Methods in General Relativity, Cambridge
University Press, 2016.

[37] R. M. Wald, General Relativity, The University of Chicago Press, 1984.

[38] R. M. Wald, Gravitational collapse and Cosmic Censorship,
arXiv:gr-qc/9710068, 1997.


	Introduction
	General Relativity and the Einstein equations
	The initial value problem in GR
	Outlook of the thesis

	Mathematical prerequisites of GR
	Differential Geometry, Manifolds and Tensors
	Connections and curvature
	Bianchi Identities
	Conformal transformations of connections

	The Conformal Einstein Field Equations
	Derivation of the Conformal Field Equations with Matter

	The Conformal Wave Equations
	Auxiliary results
	Derivation of the conformal wave equations
	The subsidiary equations

	Analysis of Trace-Free Matter Models
	Conformally coupled scalar field
	Electromagnetic field
	Yang-Mills fields
	Perfect Fluids

	The Conformal Scalar Field System
	Warped product metrics
	Computation of the geometric quantities for warped product metrics
	Evolution equations for the scalar field system
	Conformal geodesics

	Initial Data for the Conformal Wave Equations
	The 3+1 Decomposition in General Relativity
	Decomposition of the Conformal Field Equations
	Construction of initial data for the conformal evolution equations

	Stability of the de Sitter spacetime under trace-free matter perturbations
	Stability - basic ideas
	The de Sitter background solution

	Conclusions
	Bibliography

