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Abstract

Conformal methods have proven to be very useful in the analysis global properties
and stability of vacuum spacetimes in general relativity. These methods transform
the physical spacetime into a different Lorentzian manifold known as the unphysical
spacetime where the ideal points at infinity are located at a finite position. This the-
sis makes use of conformal methods and applies them to various problems involving
trace-free matter models. In particular, it makes progress towards the understanding
of the evolution of unphysical spacetimes perturbed by trace-free matter as well as
the behaviour of the the matter itself. To this end, evolution equations (wave equa-
tions) are derived and analyzed for both the unphysical spacetime and the matter.
To investigate the relation between solutions of these wave equations to the Einstein
field equations, a suitable system of subsidiary evolution equations is also derived.
Furthermore, this thesis looks in detail at the behaviour of an unphysical spacetime
coupled to the simplest matter trace free model: the confomally invariant scalar
field. Finally, the system of conformal wave equations is used to show that the

deSitter spacetime is non-linearly stable under perturbations by trace-free matter.
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1 Introduction

1.1 General Relativity and the Einstein equations

The theory of General Relativity (GR), first developed in 1915 by Einstein, is one of
the greatest achievements in modern physics. In essence, it postulates that gravity
is not a force, but is the result of spacetime curvature [5]. A spacetime is a pair
(M, gap), where g, is the metric and M is a 4-dimensional manifold. A manifold
is an object which on a small, local scale looks different than on a global scale.
An example of this is a sphere; on a small enough scale of distance a sphere looks
like a flat plane, but if you look at it from a large enough scale of distance you
find that this is not the case. It is for this reason that the Earth appears flat from
the point of view of anyone standing on its surface. The metric is an object that
describes how things are measured on the manifold; together these two objects form
a spacetime. The universe that we live in is a 4-dimensional spacetime, since we
need four components to describe the behaviour of objects living in the spacetime
(three spatial coordinates and one time coordinate). This 4-dimensional spacetime
becomes curved in the presence of matter. This curvature is the very source of what
we perceive as the force of gravity. The metric is the main object of interest in
GR since, as mentioned beforehand, it describes the measurement of distances on
a manifold, however the measurement of distances on the manifold can be used to
quantify curvature. This means that the metric can be thought of as the relativistic
analogue of the gravitational potential, as in classical mechanics one obtains a force
by differentiating the necessary potential; likewise in GR, one obtains the curvature
(analogous to the gravitational tidal forces) by differentiating the metric. Precisely
how the curvature of spacetime is related to the presence of matter is given by the
Einstein field equations (EFEs)

Ruy— SR+ A = 20T, (1.1)
where R, is the Ricci curvature tensor, which describes the curvature of the space-
time, R is the Ricci scalar curvature that is derived from Ry, A is the cosmological
constant and Ty, is the energy-momentum tensor (also known as the stress-energy
tensor), whose individual components describe the matter fields. Hence, the left
hand side of the EFEs completely describes the curvature and the right hand side

describes the distribution of matter. One can obtain the equations that describe the
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1.1: General Relativity and the Einstein equations 8

vacuum of space simply by setting T, in (1.1) to zero and then taking the trace of

the resulting equation, which gives

Rab = )\gab. (12)

Despite their relatively simple appearance, the EFEs are extremely complicated
and very difficult to solve, so much that Einstein himself predicted that no one would
ever be able to find a solution to the equations. However, less than a year after the
EFEs were introduced to the scientific community, Karl Schwarzchild successfully
derived the simplest solution of the EFEs [32]. Since then a large number of exact
solutions have been found; much research has been devoted to the understanding of

these exact solutions and how they can be applied to various problems in physics.

1.1.1 Conformal methods in GR

Despite the success of GR in describing gravity and the nature of the universe, there
are noticeable limitations to the theory when one wants to extract useful information.
Two major problems were apparent when the theory was still considered new. The
first problem was related to the uniqueness of solutions. One of the main guiding
points that was used when developing the theory was that it should be invariant
under coordinate transformations. Physically, this means that any law in nature
should not depend on a particular choice of coordinates, since physical quantities do
not change based on our point of view. GR is indeed invariant under a coordinate
transformation, as a result it becomes possible to work in any system of coordinates
and produce correct results. However, this strength of the theory is at the same time
one of its biggest weaknesses. As a result of this invariance it becomes impossible to
decide whether a solution is unique i.e. to decide which solution is truly a new result
and not just an existing solution in a different coordinate system; we will return to

this problem later when we discuss the process of solving the necessary equations.

The second problem is related to the concept of infinity. An important concept
in physics is the study of objects at infinitely large distances. The inherent problem
with this idea is how does one define infinity? Let us suppose that we have a system
that is written in terms of polar coordinates (t,r,¢,6). From this it is possible
to define infinity in a number of different ways. For example: we could set r to
be arbitrarily large and then analyse the behaviour of quantities like gravitational
radiation in this region over infinitely large regions of time, however it is not entirely
clear whether we will obtain the same result if we set first set ¢ to be arbitrarily
large then move to the same value of r. Here is an alternative way of looking at
this problem, which is related to the so called background independence problem. In
many undergraduate physics courses, all of the equations that one studies are all

assumed to be in flat space. Additionally, when one wishes to solve these equations
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it is necessary to use boundary conditions. So in this sense, one usually analyses
some field equations with respect to the Minkowski metric as a background metric.
However, in GR the metric is no longer known a priori, since it is the very object that
one is trying to solve for. Furthermore, the metric is not a static object, it changes in
time, which means that the very arena in which one analyses the physical quantities
also changes. This means it becomes difficult to define precisely the exact location
of infinity and therefore to define the boundary conditions that one requires to solve

the problem.

In the 1960s Penrose proposed a solution to this problem. The idea was to combine
GR with a branch of mathematics called conformal geometry, which is the study
of transformations that preserve angles. The key idea of conformal geometry is a
conformal rescaling, which transforms the geometric object in question into another
shape [22, 23]. The most basic type of conformal rescaling is the multiplication of
all sides of a 2-dimensional Euclidean shape by a number. Doing this causes the size
of the shape to increase, but crucially the angles do not change. In GR however,
the objects that we analyse are not 2-dimensional; they are 4-dimensional objects
whose properties are described by the metric tensor. The conformal transformation

in this case has the form

Gab = QQQab; (13)

where €) is a positive scalar function called the conformal factor, g is the original
metric prior to the rescaling and is called the physical metric and ¢ is the metric
after the rescaling and is called the unphysical metric. There is also the equivalent

contravariant metric conformal transformation

gab — Q_anb,

Performing a conformal transformation on the metric transforms the spacetime
into a completely different spacetime known as the unphysical spacetime. In this
fully geometric point of view, there is only one single definition of infinity, namely at
the point where the conformal factor vanishes; in this sense only the conformal factor
defines infinity. In spite of the usefulness of this idea, there are some difficulties that
one encounters when using conformal methods. Firstly, it is not obvious whether or
not these conformal methods are compatible with the EFEs; we will return to this
particular challenge very shortly. Secondly, the equations that one needs to solve
and analyse increase considerably from ten (using the standard EFEs) to thirty-two;
this number increases further when working with spinors or tetrads. Additionally,
the use of conformal methods is not feasible if one wishes to discuss a theory with

higher dimensions, at least for the approach used in this thesis.
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1.1.2 Global properties of solutions

Despite the complexity of the EFEs, a large number of exact solutions have been
found and studied [17, 33]. Usually, when constructing an exact solution in GR, one
has to make some simplifying assumptions. The most common type of simplification

is to consider situations with very high degrees of symmetry.

Typically, when one constructs an exact solution it is usually done in a coordi-
nate system adapted to the assumptions being made. Very often these coordinates
only cover and describe a portion of the entire spacetime. Thus, one needs to find
new coordinate systems that enable us to analyse the global properties of the space-
time. This process of attempting to identify a coordinate system that covers and
completely describes the entirety of the spacetime is referred to as trying to find a

mazimal analytic extension of the spacetime [30].

Unfortunately, this process of trying to find a maximum analytic extension is not
physically feasible due to the fact that there are only certain portions of a spacetime
that can be described from an initial position in a spacetime, since the only things
that a single observer will be able to measure and influence is that which is contained
within their own light cone. In spite of this limitation, one would still like to be able
to construct global solutions and analyse global properties of spacetimes even if said
global properties might be naturally limited. A noteworthy theory that is relevant
to this point is the cosmic censorship conjecture (CCC) [24, 38]. The CCC can be
subdivided into two sub-categories: the weak CCC and the strong CCC. The weak
CCC roughly states that other than the big bang, no singularities can exist outside
of the event horizon of a black hole. The strong CCC, which is the more relevant
version of the CCC for this thesis, roughly states that it is always possible to predict
the fate of all observers, at least in the classical sense. This is relevant due to the
fact that we are trying to analyse the spacetime globally which, at least according
to the strong CCC, should be possible since the initial data enables one to predict

the worldline for observers given some initial data.

In order to properly analyse the global properties of spacetimes it is convenient
to formulate an initial value problem |1, 20, 37]. This problem involves taking
a differential equation that describes a certain system together with some initial
conditions in order to find solutions of the equation. The modelling of physical
systems frequently leads to the solving of an initial value problem, which in turn
helps us to understand how a system will evolve in time. However, in the case of GR,
this is not so easy. As mentioned previously, it is difficult to find unique solutions
in GR due to coordinate independence. This means that is is not clear whether
or not the EFEs give rise to a system of differential equations that can be solved.
Despite this, there are several principles in physics that can serve as guidelines to

the nature of the differential equations that we should obtain. One such principle is
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the causality principle, which says that the cause of something must always precede
the effect; as a result of this nothing can travel faster than the speed of light.
Amongst the various classes of partial differential equations, the only type that are
compatible with the causality principle are hyperbolic equations, since they allow
for finite propagation speed. This means that is should be possible to construct
some wave equations for the EFEs. This result was proven in 1952 by Choquet
Bruhat [6]. In essence, Choquet-Bruhat showed that it was possible to write the
EFEs as a system of wave equations by picking a particular choice of coordinates.
This procedure of extracting evolution equations from the EFEs is called hyperbolic

reduction [15, 29]. Hence, it becomes possible to formulate an initial value problem
for GR.

1.2 The initial value problem in GR

Let us elaborate on the procedure of formulating an initial value problem in more
detail. For the following analysis we will adopt a certain notation: any quantities
written with Latin indices a, b, ¢ refer to objects that are tensorial and objects written
with Greek indices refer to any object that are evaluated with respect to a specific
coordinate system (even if the object in question happens to be a tensor). The
Ricci tensor can be written in terms of the metric tensor and its derivatives in the

following manner

1
R/w = _§gapaaapguy + v(MFI/) + gapgaﬂrfwrpu + QFgﬁgUﬂga(ﬂrpV)57 (1'4)

where ng are the Christoffel symbols, which can be written in terms of derivatives

of the metric tensor

1
Iy = 595"(8%%& + 0afro — Orlay), (1.5)

and we have defined I'? as
B — ,ovTB
% = T2 | (1.6)
the so called reduced Christoffel symbols. When examining equation (1.4), we notice

that the principal part (i.e. the highest order derivatives) governing the evolution

of the equations are the first two terms

1
= 597 0u0pu + Vi, (L.7)

The goal of this whole procedure is to recast the EFEs in a form that is hyperbolic,

but what do we mean by hyperbolic? A hyperbolic equation is one which possess the
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same basic properties as wave equations. Recall that the wave equation is written

as

O¢ = g°V,Vid = VOV, 0, (1.8)

where ¢ is some arbitrary variable and the differential operator [] is known as the
wave operator or the d’Alembertian operator. The principal part of a hyperbolic
equation is usually this operator, though there are exceptions to this rule, most
noticeably when the physical variables described by ¢ are not massless; we will return
to this point when we discuss fluids. This equation has the following properties:
first, the initial value problem is well-posed, which means that given some initial
data that describes both the initial position and the initial velocity of the variable
(¢, 0¢@) then it is possible to find a solution to (1.8) for at least a small amount
of time [29]. The next property of hyperbolic equations is that of Cauchy stability,
which, in essence, means that any solution that one obtains for some data set should
not look too different for any other solutions that are obtained from perturbations
of this same data set. It should be noted that this property of Cauchy stability is
not exclusive to hyperbolic equations. For example, it is possible to obtain stability
for parabolic equations, but crucially this is only possible for one direction in time.
For this reason, one can use parabolic equations for stability analysis of thermal
systems since thermodynamics is not time-reversible due to entropy; time flows in
one direction and parabolic equations can be used. However, since GR is a time
symmetric theory one must use other equations, which is one reason why the use of
hyperbolic equations is desirable. We will return to stability in much greater detail in
the final chapter of this thesis. Finally, there is the fact that the physical quantities
described by ¢ should propagate at a finite speed; this is especially important for
the causality principle since SR postulates that nothing should travel faster than
the speed of light. The important point is that any equation whose principal part
is the d’Alembertian operator is a hyperbolic equation and can be used to perform

an analysis of how a certain system will evolve.

Let us now return to (1.4) and its principal part (1.7). We can see if not for
the second term in (1.7) then (1.4) would be hyperbolic, which in turn would allow
one to formulate the EFEs as an initial value problem. The key to overcoming this
hurdle is as follows; we define introduce some quantities known as the coordinate
gauge source functions L*(x) and then choose a coordinate system that satisfies the

following condition

Ozt = —LH(x). (1.9)

If this condition is satisfied it causes the second term of (1.7) to vanish as required.

These are the so called generalised wave coordinates [12], which enables one to
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construct a system of non-linear wave equations for g,,. Given a choice of initial
data one then attempts to solve these wave equations in order to determine how a

particular spacetime will evolve.

The process of solving these equations in order to find global solutions is accom-
plished with a process known as the 3+1 decomposition [2, 3]. The 3+1 decompo-
sition is an approach to GR that involves slicing the 4-dimensional spacetime by a
large number of spacelike (meaning that the normal describing the flow of time is
always tangential to the surface) 3-dimensional surfaces called hypersurfaces. An
alternative way of thinking about the 3+1 decomposition is as follows; consider only
the spatial parts of the manifold at a specific moment in time. At this point, the
spacetime looks like a flat sheet that stretches out to infinity in the spatial direction.
We then consider this hypersurface at an infinitesimal moment later in time, and
then at another later point in time and so on. Then we build up a picture of space-
time as being a collection of spacelike hypersurfaces stacked on top of one another,

almost like leaves.

€o €o A Co €0

Figure 1.1: A visual representation of the 3+1 Decomposition

An important point is that this choice of 3+1 decomposition is not unique but
is based on an arbitrary choice of coordinate system. This is somewhat against
the spirit of GR since, in this sense, we are breaking the covariance and introduc-
ing a privileged time direction. There are other types of decompositions that can
be achieved with other choices of coordinates, such as the 242 decomposition [19].
Nonetheless, the 34+1 decomposition is a very useful method for constructing solu-
tions to the Einstein equations on a global scale. In order to form an initial value
problem using the 3+1 decomposition we follow this procedure. First, we take a
single initial hypersurface at a specific instant in time and prescribe some initial
conditions for the evolution equations; next we solve the equations in order to de-
termine exactly how the metric (and hence the entire gravitational system) evolves
over time. Unfortunately, not only is solving the equations a complex process, but

even the process of choosing initial data is highly non-trivial. It is easy to simply
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pick some initial conditions and solve the equations, however not every choice of
initial data corresponds to a solution of the EFEs. To pick initial data, one needs to
check that they satisfy the constraint equations of GR. We will consider this whole

process in more detail later on in this thesis.

1.2.1 Asymptotics

One of the biggest applications of conformal methods in GR is to the field of asymp-
totics, namely the behaviour of the gravitational field at infinity. Central to this
field is the notion of asymptotic simplicity [22, 28, 34]. Physically, an asymptotically
simple spacetime is one which, far away from the source of the gravitational field,
looks like either Minkowski space, de Sitter or anti de Sitter space depending on
whether the universe has a cosmological constant of zero, plus one or minus one,
respectively. This is intuitive, since the matter is the source of gravity. Therefore,
far away from any matter, you expect the spacetime to appear like a vacuum. A
more specific version of asymptotic simplicity is that of asymptotic flatness, where

the spacetime looks exclusively like Minkowski in the asymptotic region.

Another concept that is vitally important to the study of asymptotics is that
of an isolated system. An isolated system is an idealisation that is often used to
model physical systems. The idea is as follows: consider a single gravitating body
located in the middle of flat space, then one makes the assumption that this is the
only gravitating body in existence. Next, one proceeds to analyse the behaviour of
the gravitational field of this system as one moves farther and farther away from
the source. While this may be an idealisation, it is not an unreasonable one, since
gravity is a very weak force that decays very quickly via the inverse square law.
Also, within the fields of astrophysics and cosmology, one typically works on very
large scales of distance where gravitational interactions are negligible. Hence, it is
natural to model various systems as isolated systems. Furthermore, in this model,
we ignore the effects of the expansion of the universe. This approach enables us to
define concepts of physical interest, such as: the total energy of the system, or the
mass lost due to gravitational radiation. Spacetimes with a vanishing cosmological
constant and matter with a suitable decay rate play an important role in the analysis

of these isolated systems.

From the point of view of conformal methods asymptotic simplicity is defined as
follows. First, we consider a spacetime (/\;l, Jap); such a spacetime is said to be
asymptotically simple if it is possible to extend said spacetime to an unphysical
spacetime (M, gqp) with a transformation of the form (1.3). This unphysical space-
time (M, gqp) has the following properties: firstly, it has a boundary, which we will
denote .#. At all points on (M, g,) the conformal factor 2 does not vanish, except

for .# where ) = 0, but importantly its derivative, df2, is non-zero. Finally, all null
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like geodesics on (M, Jap) acquire a distinct endpoint on #. It should be noted that

this whole picture excludes black holes and singularities .

This is an intuitive definition, since we expect certain conditions to be satisfied
at infinity. First of all, we expect all gravitational interactions to vanish at infinity;
this turns out to be the case in the physical spacetime, however, when transforming
into the unphysical spacetime then not all of the relevant quantities vanish. Conse-
quently, this means that one can still extract useful information, furthermore, the
point where (2 = 0, which represents infinity is the simplest case, as one would ex-
pect. Finally, d€) does not vanish because infinity is represented by a hypersurface

and this hypersurface must have a distinct direction, which is defined by the normal.

1.3 Outlook of the thesis

In chapter 2 of this thesis, we will take a look at the various mathematical tools
needed for the derivation of results in this thesis. We will look at general definitions
of curvature, tensors and connections before moving on to the conformal versions
of these quantities including: the Schouten tensor, the Weyl tensor and conformal
transformations. From there, we will combine the two in order to show that simply
applying a transformation law of the form (1.3) leads to equations that are singular;

we will then give a derivation of a conformally regular version of the EFEs.

In chapter 3, we will turn our attention to the derivation of wave equations de-
scribing the evolution of conformal spacetimes perturbed by trace-free matter. We
will include an overview of the vacuum case before giving a derivation of the wave
equations with trace-free matter. Furthermore, we will show that any solution to

the wave equations also implies a solution to the corresponding field equations.

Chapter 4 will be concerned with the derivation of evolution equations for the
trace-free matter. Essentially, this will follow a very similar procedure to chapter
3; namely, deriving wave equations describing the evolution of trace-free matter
models and then showing that any solution the wave equation implies a solution
to the corresponding field equations. We will analyse four different matter models:
the conformally invariant scalar field, electromagnetism, classical Yang Mills and

radiation fluids.

Chapter 5 will step back from wave equations and instead look at the coupling
of a simple scalar field matter model to the conformally regular field equations.
From then, we will derive the field equations for this particular spacetime and then
proceed to predict how this particular spacetime will evolve. Finally, we will look

at conformal geodesics and the conformal geodesics for this spacetime.

Chapter 6 will be concerned with initial data and the procedure for solving the

wave equations derived in chapter 4. We will take a more in depth look at the
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3+1 decomposition and how all the required equations can be reformulated in this
picture. From here, we will proceed to prove a result that tells us what variables we

need to completely determine the initial data.

Finally, in Chapter 7, we will look at stability. We will give an overview of stability
and explain how this is related to the work done in prior chapters. We will also use

this to prove the global stability of the de Sitter spacetime.



2 Mathematical prerequisites of

GR

2.1 Differential Geometry, Manifolds and Tensors

2.1.1 Manifolds and tangent spaces

The mathematical language of GR is differential geometry and differential geometry
is the study of manifolds [30, 37]. Recall that we gave a brief, non-rigorous definition
of what a manifold is in the introduction; we will now give a more detailed definition
of a manifold. A manifold is a combination of a topological space M (i.e. a collection
of objects that have some notion of distance) and a mazimal atlas. An atlas is a
collection of charts; a chart is a pair (U;¢) where Y C M and ¢ : U — R™ (i.e.
U is a small part of the space M and ¢ is a coordinate system that represents the
position of any item in U as a collection of numbers). More precisely, U is what is
called an open set, namely a section of a space for which it is always possible to draw
a ball (i.e. a circular shape of any arbitrary dimension) that is contained within said
section, provided we make the radius of the ball small enough. This of course means
that we must exclude the boundaries of the section, since if we draw a ball with
its centre on the boundary itself, then it will be impossible to completely contain
this ball within U regardless of how small we make our ball. This idea of using an
open set is important since, from a classical point of view, the spacetime must be

continuous and open sets provide a natural way of defining continuous objects.

Let us put this idea of an atlas into context by doing a side-by-side comparison
with a real life example, namely a world atlas. An atlas of the world can be thought
of as an atlas in the mathematical sense. Each page of the atlas representing a
country or continent is a subspace U and the markers on the side of the page are
¢; both together are a chart. The collection of all possible charts covering every

section of the space is called a maximal atlas.

An important idea in differential geometry is the manipulation of geometric ob-
jects, such as vectors, on the surface of a manifold. Unlike in Fuclidean geometry,
one cannot simply add or subtract two vectors together and get another vector.
Thus, one needs a new system for algebraically manipulating vectors on a differen-

tiable manifold; this leads to the idea of a tangent space. It is possible to recover the

17
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properties of Euclidean geometry on a differential manifold since on a small enough
distance scale, all surfaces appear flat. This property of local flatness enables us to
define at every point on the manifold a tangent space. The tangent space at an arbi-
trary point p on a manifold M (denoted by 7,(M)), is a vector space, which contains
all possible vectors that are locally tangential to the surface. As is the case with
all vector spaces, it is crucial to define a basis, i.e. a set of unit vectors, of T,,(M).
This basis is characterized by a set of partial derivative operators 9/dx*. This is
intuitive because partial derivatives mean only one variable is changed, whilst all
others remain constant (analogous to moving in one direction). Analogous to stan-
dard vectors there also exists a dual vector space T (M) such that when an element
of this dual space is multiplied with an element of the standard tangent space, then
the result is a number. T*(M) has the same dimension as 7),(M) and its elements

are covectors.

2.1.2 Tensors

Using these tangents spaces as basic building blocks, we can define objects called
tensors. Tensors are higher rank extensions of scalars and vectors; they can be
expressed as a multilinear map (i.e. they map the product of several vector spaces
to a single vector space). A contravariant tensor of rank k is defined as a multilinear

map

M :T* (M) xT*(M) x ... x T"(M) = R,

where there are k number of dual tangent spaces. Put in other words, if we have a
contravariant tensor of some rank and we act on it with a covariant tensor of the

same rank then the end result is just a scalar.

Conversely, the definition of a covariant tensor is one that maps contravariant

objects to real numbers. A covariant tensor of rank [ is then defined as

M:TM)xT(M)x..x T(M) =R,

where the total number of tangent spaces is given by [. Similarly, a mixed tensor of

rank m is defined as

M:TM)xT(M) x..x T(M)xT*(M)xT*(M)x .. T"(M) - R,

where there are k dual tangent spaces and [ tangent spaces and m = k + 1. An
example that many will likely be familiar with is the scalar product. In terms of

vectors and covectors, the scalar product is defined as
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00" = vivt 4+ vv? + .+ V",

we can see that upon multiplying a contravariant vector v* (represented by the upper
index) with a covariant vector v; (represented by the lower index) we end up with a
scalar. So, by acting on a covector with a contravariant vector of the same rank, we
have obtained a number, as the above definition has stated. Similarly if one acts on
a contravariant tensor of rank two 7% with a covariant tensor of rank two 7, one

would once again end up with a number.

The most important property of these quantities is how they behave under a
coordinate transformation. Tensors are constructed from multiple vector spaces,
whose elements are vectors. The crucial point of vectors is that equations expressed
in terms of vector quantities do not depend on a particular choice of coordinates.
This property of vectors masks an extremely important property of physics, namely
the fact that physical quantities should be independent of an arbitrary choice of
coordinates. This is intuitive, since physical quantities should not change depending
on how you choose to measure them. For example, let us suppose that we have
some vector and we measure it in both a Cartesian coordinate system and a Polar
coordinate system. Regardless of which coordinate system we use to measure the
vector, the value of the magnitude of the vector that we measure remains the same.
Crucially, as tensors are built up from vectors, this means that the same property
carries over to tensors, meaning that tensors themselves are independent of any
coordinate transformation. This property of tensors being coordinate independent
and its connection to physics is summed up nicely in the Covariance Principle. The
covariance principle states that all physical equations should contain tensors only,
since only tensors have this property of transforming properly under a coordinate

transformation.

Let us consider the transformation of coordinates from one frame of reference

0 0 2 2 2"3). Let us now consider the functions that

(20, 2!, 22, 23) to another (x
express the variables of the x coordinate system in terms of the variables of the
coordinate system i.e. 2" = fO(2’0, 2" 2%, 23), then the general transformation law
for a tensor of an arbitrary rank is

la2..aN _ aalpa2 M vl A2 T UN iplp2.. uN
Thipa g = N Maz - M Nt Mgy - AN T )15 (2.1)

where Aj» and A; are transformation matrices, which are defined as

A= Oxt T, oz
v g’ v v

Any tensor of any arbitrary rank follows this transformation law and any physical

laws are therefore invariant under an arbitrary coordinate transformation as a result.
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The metric tensor

By far the most important tensor in GR, is the metric tensor g,. As mentioned in
the introduction, the metric tensor is the very source of gravity, as it enables one
to define concepts like distance and curvature [37]. It is possible to represent the

metric tensor as a 4 x 4 matrix with 16 components

g11 g12 913 g14
g21 922 g23 924

G = ) (2.2)
g31 923 g33 934

ga1 ga2 943 ga4

The metric tensor is a symmetric, non-degenerate, rank 2 covariant tensor, mean-
ing that g, = gre and that it is possible to construct an inverse of the metric go.
The metric is used in calculations to transform contravariant tensors into covariant

tensors and vice versa

g A, = A%, A, = g AL

Therefore, using the metric we can raise and lower the indices as we please, almost
like juggling indices. Consequently, we can think of covariant, contravariant and
mixed tensors as being different representations of the same geometric quantity.

There is also an expression for the contraction of two different metric tensors

g™ = 8,

where 0§ is the Kronecker delta symbol, which is nothing more than the unit matrix

1 0 0 0
0O 1 0 0
o = 2.3
a 0O 0 1 0 (2:3)
0o 0 0 1

Building on this, we can deduce the equation for when two metrics are contracted
on both their indices gqg?° = d, where d is the dimension of the manifold that we
are working with; in our case since we are working with 4-dimensional spacetimes
d = 4. In addition to transforming vectors and tensors, the metric is also used to

measure distances in spacetime, with said spacetime distance being given by

ds® = Gudxtdz”.

This equation can be used to show that all distances in spacetime are completely
invariant. Even though in SR both time and distance separately are relative to an
observer, together as a unified quantity they become an invariant quantity. Another

important characteristic of the metric is the metric signature, which is simply the
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number of positive, negative and zero eigenvalues of the matrix g,,. A metric that
has three eigenvalues of one sign and one of the opposite sign is known as a Lorentzian
metric. In this thesis we will be working with the (—1,1,1,1) signature, meaning

the metric has three positive eigenvalues and one negative.

These are some of the mathematical properties of the metric tensor, but just what
is the metric and why does it represent the gravitational field? The metric tensor is
a generalization of the dot product between two tangent vectors. The dot product
is used to measure the angle and lengths between two tangent vectors, which in turn
can tell us how space is curved. If we have two vectors separated by a certain angle
and we transport them along a flat surface then this angle will not change, however,
this will not be the case for a curved surface. Furthermore, how quickly the angles
change will tell us precisely how much the surface is curved. GR tells us that this
curvature is the source of gravity, hence the metric tensor is the source of gravity
itself.

This particular point also enables one to deduce a link between coordinate trans-
formations and the gravitational field. As we mentioned earlier, on a local scale
all surfaces appear flat. The metric that describes a flat surface is the Minkowski

metric

N = diag(—1,1,1,1),

as a result of local flatness it is possible to define a coordinate system where gq, — 74

at a certain point. We may define this transformation law using (2.1)

g = A?o)aAI(O) ,877&5

This means that if we know the transformation law from the local inertial frame
of reference to an arbitrary frame of reference, we know the metric in this arbitrary
frame of reference and hence we know the gravitational field, which is encoded in

the metric.

2.2 Connections and curvature

2.2.1 Riemannian curvature and the Levi-Civita connection

Although we have defined the notion of a tensor and its properties, we have not yet
specified any rules or laws concerning the motion of tensors or vectors from one point
to another on a manifold. To do so, we introduce the concept of a connection [36, 37].
A connection describes the way in which vectors may be transported from one point
to another on a manifold. Just as there are many different ways of moving from one

point on the manifold to another, there exist an equal number of connections.
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The most common connection in GR and certainly the most familiar to under-
graduate students is the Levi-Civita connection. A Levi-Civita connection V, is a

torsion-free metric connection, meaning that it satisfies the following two properties:

vagbc - 07 (24&)
Vo Vyd — VyVad = 0. (2.4D)

If any connection satisfies (2.4a) then we say that the connection is metric com-
patible. The physical interpretation of this property is that angles between vectors
are preserved when they are transported along the paths of geodesics; since the
metric tensor is used to measure the length and angles between pairs of tangent
vectors and (2.4a) is the form of the geodesic equation applied to a rank-2 tensor.
If any connection satisfies (2.4b) then we say that the connection is torsion free.
Physically, a torsion free metric means that any vectors or physical quantities have
no tendency to twist when parallel transported along a manifold. The fundamental
result of Riemannian geometry states that there is a unique connection that satisfies
these two properties; such a connection is the Levi-Civita connection. A spacetime
manifold is a Lorentzian manifold, however the fundamental result of Riemannian
geometry works equally well in the Lorentzian case, meaning it is always possible to
specify a Levi-Civita connection for an arbitrary spacetime manifold. In the theory
of Riemannian manifolds, and in all first courses in GR, the Levi-Civita connection
is called the covariant derivative. The components of a connection with respect
to some local coordinates are called the connection coefficients; for the Levi-Civita
connection, the connection coefficients are the Christoffel symbols, first given by

equation (1.5).

A more intuitive and in-depth explanation for the Christoffel symbols is as follows.
Recall that all laws of physics should remain invariant under a change of coordinates;
consequently all equations should contain tensors only. The main problem with sev-
eral fundamental laws in physics is that they contain partial derivatives, which do
not transform properly under a coordinate transformation. This is a problem that
is not readily apparent for equations in flat space, since most of the additional terms
that are created when one transforms from one frame to another vanish. However,
for curved space the additional terms that get created from the transformation re-
main, which spoils the tensorial nature of the equations. Hence, to ensure physical
quantities remain invariant under an arbitrary coordinate transformation, one rede-
fines the very notion of a derivative; this leads to the notion of a covariant derivative.
As was discussed previously, there are a multitude of different ways of defining a
derivative, however, courtesy of the fundamental result of Riemannian geometry, the

most natural choice is the Levi-Civita connection. The precise form of this deriva-
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tive depends on the rank of the tensor that it is applied to. For a covariant vector

the Levi-Civita connection is

Voﬂ)g = aavg — FZBUU, (25)

when applied to a contravariant vector, the covariant derivative has the form

Vo v? = 0,07 +T% 7. (2.6)

From the above, we can see an intuitive meaning behind the Levi-Civita connec-
tion. The Levi-Civita connection is equal to the original partial derivative plus some
additional terms involving the Christoffel symbols. These symbols are essentially
corrections that cancel out the terms that are created whenever a partial derivative
is transformed, hence the tensorial nature of the equations is preserved. Although
equation (1.5) is not tensorial, when combined with quantities that are also not

tensorial, they give rise to an object which is a tensor.

This idea of there being various different connections also extends to the standard
tensors and equations used in GR. Traditionally, most of the tensors and equations
are given in terms of the Levi-Civita connection. For example, the Riemann tensor,
which is given in most standard textbooks as

Ry = =0\, +8,I%, — TV, 5 + T4, I (2.7)

AV o

is derived by applying the Levi-Civita connection to the equation

Vo Viv© — VyVou© = R0, (2.8)

However, it is possible to derive an alternative equation for the curvature simply
by applying a different connection to (2.8). Let us now obtain a more general
expression for the curvature. By definition, the Levi-Civita connection is one that
is torsion free, thus one needs to specify a completely general curvature equation
that does take into account the presence of torsion. To this end, we define a new
tensor called the torsion tensor. Torsion arises as a result of the commutator of
connections acting on scalar fields. If the two connections commute, as specified by
(2.4b), then there is no torsion. If, however, the two connections do not commute,

then we can write

[vm Vb]f = Z(JLvacfv

where f is a scalar field on the manifold and ¥, is the torsion tensor which, as the
name suggests, specifies torsion; we can see that this tensor is antisymmetric with

respect to the a and b indices.

With this torsion tensor, it becomes possible to define a more general relation for
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the curvature. The general relation for the curvature is given by the difference of

the commutator and the torsion:

(Va Vi) = S Ve)u! = RYqpu’.

The equation for the curvature changes depending on what rank tensor the com-

mutator bracket is acting on. For example: acting on a covector gives the equation

[Va, Vilwa = — R gapwe + 20V ewa,

or if we apply it to a rank two tensor A°; the result is

[V, VA% = REgap A% — Ry A% + 2,5V A

Whilst the predominant connection in GR is the Levi-Civita connection there are

certain cases where it might be more desirable to use alternative connections.

The Weyl and Schouten Tensor

Two tensors that are related to the curvature, and that are used very frequently
in conformal methods, are the Weyl and Schouten tensors [13, 36]. The Schouten

tensor is given by the equation
Loy = ;Rab - 1129abR. (2.9)
The definition of the Schouten tensor is dimension dependent; the above equation
is valid for four dimensions. It is also useful to mention the trace of the Schouten
tensor, which can be verified after contracting the above definition with the metric

to be
L= 1R (2.10)
6

Another important tensor is the Weyl tensor Clp.q; this is the fully trace-free
part of the Riemann tensor meaning ¢*“Clpeq = C¢eq = 0. The precise form of the
Weyl tensor depends on the dimension of the spacetime under consideration, for

four dimensions the Weyl tensor is defined as

1
C(abcd = Rabcd - (ga[cRd]b - gb[cRd}a) + gRga[cgd]b- (211)

This tensor possesses the same symmetries as the Riemann tensor with the extra
condition of trace-freeness, in other words a metric contraction on any pair of indices
of the Weyl tensor is zero. Physically, the Weyl tensor represents the tidal forces
that a body experiences as it moves along a path in spacetime. More precisely, the

Weyl tensor conveys the information about how the shape of a body is distorted by
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tidal forces, since the Ricci curvature, which is the trace component of the Riemann
tensor, contains the information of how volumes change in response to tidal forces.
This tensor has a number of interesting properties that make it a useful object of
research in GR. Firstly, it is invaluable in the study of gravitational waves, since
the Weyl curvature is the only component of the curvature that does not vanish in
vacuum spacetimes. Meaning, it is used to describe the propagation of gravitational
waves through regions devoid of matter and energy. The Weyl tensor also has a
number of properties that are very interesting from the point of view of conformal
methods. Firstly, when written as a rank (1,3) mixed tensor C%,q, it is completely
invariant under any and all conformal rescalings for any arbitrary dimension greater
than or equal to four and secondly, there is a linkage between the Weyl tensor and
a property of certain manifolds called conformal flatness. Conformal flatness means
that a particular class of conformal metrics contains the Minkowski metric, conse-
quently every single metric within said class can be written as a conformal rescaling
of the Minkowski metric 7,,. To understand why this is a useful property, consider
the definition of a conformal rescaling g, = 2%gap; in the case of a conformally flat
manifold g,y = Q%7,. As a result of this, any derivatives that one tries to compute
involving the unphysical metric will depend only on the conformal factor, since all
derivatives of the Minkowski metric vanish. The same is true if one tries to com-
pute derivatives of various curvature quantities such the Schouten tensor, since all
objects related to curvature depend fundamentally on the metric. This helps to sim-
plify certain problems tremendously and is therefore a very useful idea in conformal
methods.

For reasons that will become apparent shortly it is convenient to express the

Riemann tensor in terms of the Weyl and Schouten tensors

R%eq = C%ea + 2Saa Ly, (2.12)

where
Sade = (5a655d —+ 5ad(5bc — gabng' (213)

2.2.2 The Commutator Bracket Notation

Many of the tensorial equations that we will be dealing with in this thesis are
extremely long and complicated. A notation used for writing multiple tensor terms
that possess certain symmetries as a single term, which will be used multiple times
for this point on, is the commutator bracket notation [36, 37]. The commutator
bracket is defined as follows

1 1

5L — 5Tbas (2.14)

Ty =
lab] = 5 5
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where n is an arbitrary integer. If we notice a pair of tensorial terms with indices
akin to the RHS of (2.14) then we say that these two terms have an antisymmetric
pair of indices and we can write them in a form akin to the LHS of (2.14). This
same idea applies to any pair of tensors of any rank, provided that the two tensors

have the same factor in front of them and have opposite signs, for example

2La[bdc}def = Labdcdef - Lacdbdef-

It is also possible to make use of the commutator bracket notation when the

indices are not adjacent to each other, for example

2dab[c|d|de}fgh = dabcddefgh - dabeddcfgha

where the |d| indicates that the d index remains in a fixed position whilst the other
are permuted in the standard fashion. In analogy to the square bracket notation
used to group terms with antisymmetric pairs of indices there is also the round

bracket notation used to denote pairs of indices that are symmetric i.e.

1 1
T(ab) =T+ =T (2.15)

2 2
The same rules as described for the square bracket notation still apply. It is also
possible to stack multiple brackets on top of each other when more than one pair of

indices are symmetric or antisymmetric. For example, consider the tensor expression

TiapYeljale)

as we can see, this expression has two pairs of brackets. This means that it is a
shorthand notation, not for two terms with certain symmetries, but four. The rule
for expanding terms with multiple commutator brackets is to expand from the outer

most pair of brackets, in the case of the above the expression is expanded to

1 1
TapYaide = sTapYdde + 5 TepYeldas

2 2
which is then expanded again to give
TiapY, _! Y, 1T Yode + 1T Y, 1T Y,
(albLc]|dle) — 4 abl cde 4 act bde 4 eb! cde 4 eclbda-

Whilst not as common for the purposes of this thesis, it is possible to have com-
mutator brackets on more than two indices, in that case the commutator bracket

gives

1
o1 Tabc + Tbca + Tcab - Tacb - Tbac - cha)- (216)

T[abc] = 3'(

Whilst there are expressions for four or more indices, none of them are used in
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this thesis and will therefore be omitted. There are also a couple of useful identities
involving these brackets to consider; the first one involves brackets applied to indices

that are summation indices

ﬂab} Zabc _ TabZ[ab]c-

Another identity involves contractions between symmetric and antisymmetric ten-
sors. Consider a general symmetric tensor S,;, and a general antisymmetric tensor
S,y then

Ay S® = 0.

This same identity also works if one has a contraction between any symmetric

pair of indices and any antisymmetric pair of indices

2.3 Bianchi Identities

The idea of different connections yielding different equations also applies to the

Bianchi identities [27, 36]. Any first course in GR gives the Bianchi identities as

Rabcd + Racdb + Radbc = 07

veRabcd + chabde + vdRabec = 0. (217)

However, as was the case with both the equation for the Riemann tensor (2.7)
and the equation for the Christoffel symbols (1.5), these equations only apply to
the Levi-Civita connection and again do not take into account the effects of torsion.

The first Bianchi identity in its most general form is given by

Rd[cab} + v[azbdc} + Z[aebzc}de = 0.

For the case when X,°. = 0, i.e. when the Levi-Civita connection is valid, then we

end up with the familiar equation

Rd [cab] — 0.

There also exists an equation for the second Bianchi identity in a more general

form, which again takes into account the presence of torsion

Vil b + Spa"s 2t = 0.

For the often used Levi-Civita connection, one obtains yet another familiar equa-

tion
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ViaR ejpg = 0.

A very important relation between the derivatives of the Schouten tensor and the
Ricci scalar, which will be used frequently in later calculations, can be obtained

from the so called contracted Bianchi identities

1
V. R® — 5gabvaR =0.

Using (2.9) to eliminate the Ricci tensor in the above

1 1
V(2L + 6Rgab) — 5gabvaR =0,

and contracting all the metric terms and rearranging gives the reduced Bianchi

identity in terms of the Schouten tensor
ab 1 b
V. L% = 6v R. (2.18)

2.3.1 The Index Free Notation

An alternative method of expressing tensors is the Index Free Notation which, as
the name suggests, represents tensors without any indices [34, 30]. In geometry,
objects are naturally contravariant or naturally covariant, as such we should find a
natural representation for these two basic objects. For both an arbitrary vector v*
and an arbitrary covector w,, these are simply represented by boldface versions of
the letters without the indices

vt v, Wy > w.

With these two objects represented in the index free notation, we should now
find a way to defines certain operations between them. The first one is contraction

between contravariant and covariant vectors

VW, =< w, Vv > . (2.19)

In the framework of GR, one introduces the metric tensor which enables one to
represent a contravariant vector as a covariant vector or vice versa. Hence, one needs
to find a way of representing metric operations in the index free notation. First, the
metric itself is represented as just a boldface letter minus the indices and the inverse
of the metric is represented by a boldface letter with a sharp symbol i.e.

I < 8 g o gh (2.20)

Next, we consider the contraction of vectors and covectors with the metric tensor.
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One of the most common operations involving the metric is the scalar product.
When two vectors are contracted with the metric then this is denoted as

g™’ = g(v, V). (2.21)

Conversely, if two covectors are contracted with the contravariant metric then the

scalar product is denoted as

%Wy = gf(w, w). (2.22)

The next operation to consider is the transformation of vectors into covectors using
the metric and vice versa. First, we consider an object that is naturally a vector

being contracted with the metric; in index free notation this can be expressed as

gabvb sV = g(v,-). (2.23)

Here we have introduced the notation where any object that is naturally a vector,
which has been transformed into a covector, is represented with a b symbol. Likewise,
if an object that is naturally a covector is transformed into vector, then this is

represented as

"W, > W = ghw, ). (2.24)

In the case where both a vector and a covector are involved in a contraction, then
there are a few different ways depending on what objects are involved. For example:
if a natural covector and a contracted vector are contracted with a contravariant

metric, then it is written as

9" wiva = gHw, V'), (2.25)

however, if a natural vector and a contracted covector are multiplied by a metric

then this is represented as

G0 = g(wh, v). (2.26)

By comparing (2.19), (2.25) and (2.26), we can deduce the following identity

glw, V)= <w,v>. (2.27)

The other main type of operation in tensor calculus is the application of covariant
derivatives. A very common operation is a covariant derivative applied to a vector
and multiplied by another vector contracted with the index of a derivative; such an

object is expressed in index free notation as
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v'Vyu' = Vyu = 0. (2.28)

A similar identity exists for a vector contracted with a derivative acting on a

scalar field

vV, f =< df,v >=V,f. (2.29)

There are a multitude of other identities involving both curvature or derivatives
of more complicated objects that one can look into, however for the purposes of this
thesis, these will be the only ones that we will use. This notation shall be used when

we proceed to discuss conformal geodesics.

2.3.2 Young Projectors

An identity of extreme importance and that will be used multiple times in the
derivation of results in this thesis is the Young projector [1]. In essence the Young
Projector is a relation in the same vein as the Bianchi identity, which makes full
use of the symmetries of certain tensors. The derivation of this particular relation
requires an advanced understanding of group theory. As such we will not give a full
detailed derivation of the Young Projector but will try to motivate it. To start with
we recall the standard symmetries of the Riemann tensor, firstly the anti-symmetries

of pairs of indices

C’abcd = _Cbacd = _Oabdc = C’badcy

the symmetries of two pairs of indices

C’zJLbcd = Ccdab )

and the first Bianchi identity

Ca[bcd} =0.

The symmetries of the two above relations can be summed up in the following

equation

Cabcd = %Cabcd + %Cacbd - %Cadbc' (230)

Given (2.30) one can verify via direct computation that the tensor Cyp.q satisfies
the first Bianchi identity and all the other symmetries. This means that the Young
projector encodes all the same information about the symmetries and can therefore
be used for simplification whenever we have groups of Weyl tensor terms with certain

symmetries on their indices.
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2.4 Conformal transformations of connections

Conformal geometry is the study of mathematical transformations that leave the an-
gles of geometric objects unchanged. The most basic type of conformal transforma-
tion is a rescaling of a simple 2-dimensional object; if we increase the length of each
side of a 2-dimensional shape by the same amount, the angles of the shape do not
change. However, in our case things are more complicated, since we are not working
with simple 2-dimensional Euclidean objects, but 4-dimensional spacetime mani-
folds. Recall in section 1.1.1, we defined a conformal transformation g, = Q2§up;
this is the type of transformation of greatest importance when using conformal meth-
ods in GR. In the standard convention g is the original metric before any rescaling
takes place, and is called the physical metric. You can have a large collection of
metrics simply through an arbitrary choice of the conformal factor. This collection
of metrics conformally related to the physical metric g4 is called the conformal class
of a metric, denoted by [gus]. As mentioned previously, the act of performing such
a transformation on the metric gives rise to an extension of the original spacetime,
known as the unphysical spacetime. The main advantage of using this method is
that the conformal factor €2 is completely arbitrary and is entirely dependent on the
choice of the user. However, just as the shape of the spacetime changes so does the
notion of distance on the surface. Hence, when rescaling an equation that describes
a physical system one also needs to change the notion of how objects move on the

surface; consequently one needs to transform the connections as well.

We can accomplish the task of transforming between connections using an object

known as the transition tensor. This tensor is defined as

Qa"s = Sa™ (17'V49), (2.31)

where S, is the same quantity defined using equation (2.13). Such a tensor enables

us to transform freely between different connections

(@a - va>vb = Qabcvc'

In fact the transition tensor is nothing more than a generalization of the Christoffel
symbols, which are specific to the Levi-Civita connection. The above equation is
not a general relation and depends on the exact tensor that the connection is acting
on, for example when acting on a rank two contravariant tensor the transformation

law is

(@a . va)Tbc _ QabsTsc + QacsTbs.

For a rank three tensor there will be a total of three transition tensors, for a

rank four tensor there will be four transition tensors and so on. The most general
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definition of the transformation law for a tensor of rank (m,n) is
(Vo = V)T = Qa" ST + Qu STt + o+ Qu™ T,
s be...m s be...m s be...m
_QUL €Tsf.‘.n - Qa fTes...n T T QUL nTef.‘.s (232)



3 The Conformal Einstein Field

Equations

The entirety of this chapter shall be devoted to the derivation of the regular version
of the conformal field equations. As was shown in the previous section the simplest
course of action when performing a conformal rescaling leads to terms that are
singular, until Helmut Friedrich derived a regular version of said equations. We
will go through the exact same procedure as Helmut Friedrich did in 1980; it is
especially important since several results make use of these equations, including the

results derived in this thesis.

3.1 Derivation of the Conformal Field Equations
with Matter

The idea of using conformal geometry to resolve certain issues in GR is indeed an
interesting one, the next logical step is to see if the EFEs are compatible with con-
formal rescalings. Unfortunately, at first glance, the answer seems to be no. To
understand why this is the case, consider the conformal transformation for the Ricci
curvature tensor; we will examine the derivation of the conformal transformation to
give a concrete example of the use of conformal methods and see why the result is
unsatisfactory. The starting point of the derivation of the conformal transformation
of the Ricci tensor is the definition of the curvature given by (2.8). We will obtain
the transformation law of the Ricci tensor by first obtaining the conformal transfor-
mation law of the Riemann tensor and then contracting with the metric. In order to
transform (2.8) we must transform the covariant derivatives in the expression using
the techniques first described in section 2.4. First we apply (2.32) to the innermost

derivatives of (2.8); upon doing so and re-arranging one ends up with

V¢ = @avc — Q. v (3.1)

Substituting (3.1) into (2.8) and the result is

Va@bvc = Vachdvd - V;ﬁavc + Vancdvd. (32)
The next step is to transform the other covariant derivatives, to do so it becomes

33
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useful to define a substitution

Vi = S,°. (3.3)

If we apply a derivative to the above and then apply (2.32) we get

VaS¢ = VaSy® — QuaSy® + QupSa°. (3.4)

Re-expressing (3.4) in terms of vectors and derivatives through the application of
(3.3) yields

Va@bvC = @a@bvC - Qacdﬁbvd + Qadb@d/uc? (35)

substituting (3.5) into (3.2) and the resulting expression upon simplification is

R4t — Rt = Q% Vav® — Qo Vv — V.Qpqv”
+Qu aV v — Qp Vv + ViQ: . (3.6)
This is the transformation law for the Riemann tensor; as we can see it is an
equation that contains both the physical Riemann tensor R%g,;, and the unphysical
Riemann tensor R%4,;, plus several terms that can be determined from the conformal
factor. Consequently, it enables us to transform freely between the curvature of both

the physical and unphysical spacetimes and to determine one from the other. A more

compact form of the transformation law of the Riemann tensor is given as follows

Rap — RCgap = 2(V Y% + Y% Ty a), (3.7)

where 1,6 and is a quantity that is derived from the quantity (2.13), previously

given in section 2.4, and is defined as

Tacb = SadeTda (38)

where we have defined a vector quantity

T, =Q'V,0. (3.9)

Upon substituting in (2.31) to (3.6) and contracting with the metric tensor and
after a considerably long simplification then one ends up with the transformation

law for the Ricci tensor

Ray = Rap — 207V, ViQ — gung® (V. V4 — 3072V, QV,Q). (3.10)
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By contracting (3.10) with the metric tensor then one obtains the following equa-

tion for the Ricci scalar

1 - 6 12
R=ght=—g 3

Through a similar technique that was used to derive the Riemann tensor transfor-

V. .VQ+ =V .OVveQ. (3.11)

mation law then one can derive the following transformation law for the Schouten

tensor

6 .. 12 .
q VeVt 5 Vv (3.12)

A more compact form of the transformation law of the Schouten tensor exists

Lab_zab = -

1
Loy — Loy = Vo X3 + isabcdnrd. (3.13)

It can be verified by directly substituting (3.9) into (3.13) that (3.13) and (3.12)
are the same equation. With these transformation laws, we may now obtain the
conformal vacuum EFE. Combining (3.10) with (1.2) and one finally arrives with
the result

1
Rap = 5 Rgap = —207 YV V) — V. VQga) — 302V QV Qg0 (3.14)

This equation is not particularly desirable from the point of view of conformal
methods since it contains Q7! terms that blow up where 2 = 0. The point where
2 = 0 is the boundary of the unphysical spacetime and at this particular point
one would like to make statements about solutions to the conformal EFEs at the
conformal boundary, which is not possible. Thus, it seems that the idea of using
conformal methods in GR is a dead end, however, in 1981 Friedrich successfully

recast the EFEs in a manner that were regular at the conformal boundary [7-9].

3.1.1 The equation for the conformal factor

The starting point for the derivation of these equations is of course the EFEs which,

in the physical spacetime upon setting ¢ = 1, take the form

~ 1 ~ ~
Rab = §~abR - )\gab + Tab- (315)

Contracting both sides of the EFEs with the metric §% and one ends up with the

following equation for the Ricci scalar

R=4)-T, (3.16)

where we have used the fact that G,,g% = 4. The next step is to re-express the
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Schouten tensor in terms of the energy-momentum tensor. To do so one starts by
substituting (2.9) and (3.16) into (3.15). Upon doing so and rearranging we end up
with
- 1 - 1. -~ b 1 ~
Ly ==Tw+ =gaR — =AJap + — G T . 1
b= 5T+ J9af = G AGad + 5 e (3.17)
The next step is again to substitute (3.16) into (3.17). After doing this and
rearranging the end result is
. 1 - 1 _

Loy =-=T, —(AN=T)Gup. 3.18
b= 5 b+6( )Gab (3.18)

For the next part of the calculation we consider the previously obtained conformal
transformation laws of both the Ricci scalar and Schouten tensor. Dividing (3.11)
through by twelve and rearranging and one obtains

1 1 1 - 1
—VOVQ=—(R-— = — ‘Q 1
oz V<V (B = 5 B) + 55 VeV (3.19)
substituting (3.19) into (3.12) and the end result after multiplying out is
Loy = Fop — ~VaVoD 4 — gunR — — R + — gy Vo V0 (3.20)
ab — Hab 0O aVb 24gab 240)2 YGab 4anb c . .
Substituting (3.18) into (3.20) and using the fact that g, = Q?gap gives

1~ 1 - 1 1 1 =~ 1

Ly = = —(A=T)Gup — = Q+ —(R— ——= — VNV Qg (3.21

ab 9 abt 6<>\ )gab Qvavb + 24<R 240)2 R)gab+ 4QV vc Gab (3 )

Now, for the next step in the calculation, we define a new quantity in order to

simplify our expressions. We shall call this quantity the Friedrich scalar, denoted s,
which is defined as

S =

1 1

SV.VIQ + — RO, 22
4V Ve + 24R (3.22)
doing so enables us to rewrite (3.21) as

1 -~

~ 1
R)gab + 7(Sgab - vavbQ)'

~ 1 1~
A= =T —
ab+( Q0

6" 6 24

1
Lab = 5
Then, using (3.16) we obtain

1- 1. - 1
Lab == 5 ab — ggabT + §<Sgab - VavbQ)- (323)

As Ty, is not a geometric object derived from the metric we are free to choose
a transformation law that best fits the analysis. It is convenient to choose, for
reasons that will be justified later, the transformation law for the unphysical energy-

momentum tensor to be
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T = QT (3.24)
It then follows that
1~ 1. - 1 1 1
Ty — =G T =V 2(=Thy — —guT) = =T, 3.25
5 b 89b (2 b 89b) 9 {ab}> ( )

where T = ¢™T,;, so that T = O and Tiapy denotes the trace-free part of Ty.
Putting (3.25) into (3.23) gives

1 1
Lab = §QQT{ab} + ﬁ(sgab - VQV})Q).

At first glance, this seems like a singular equation (as the conformal factor goes
to zero, the equation blows up because of the 1/Q term), however, we can solve this
problem by viewing this equation as an equation determining the second derivative

of 2. So, multiplying both sides by 2 and rearranging and we get

1
V. V2 = §Q3T{ab} — QL + SGap,
which is the first of the CFEs; we can obtain the equivalent vacuum equation simply
by setting Ty.y = 0,

VaVbQ = —QLab + SGab-

3.1.2 The equation for the Friedrich scalar

The next equation that one needs to derive is a differential equation for the Friedrich
scalar. The starting point for this calculation is the first CFE that we just derived.
We begin by applying a derivative to (3.42a) to obtain

1 1
V.V.V,Q = 5(zxz?)vcfz:r{ab} + 5ngfv;_r{ab} — Ly Ve — QV Loy + Vesgap. (3.26)

Remembering (2.8) and applying it to (3.26) and we get

3 1
— R%u Vi + VY,V .V, = 5VCQT{ab} + 5Qi“ch{ab} — Ly Ve — QV Loy + VeSGap-
(3.27)
Multiplying both sides of (3.27) by ¢% and contracting the indices gives

3 1
R,V Q+V,00 = §QQVCQT{M} + §Q3VCT{M} — LoeVQ—QV Ly + V,s. (3.28)

We would also like to express the equations in terms of the Schouten tensor only;
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to do so we make use of (2.9) with the quantities rearranged to

1
Ry = 2L + égabR. (329)

There is also a second order derivative in (3.28) applied to the conformal factor,
which must be eliminated as the principal part of this differential equation must be
applied to the Friedrich scalar. We may accomplish this by making use of the equa-
tion for the Friedrich scalar, since said equation contains a second order derivative
of the conformal factor. Therefore, combining (3.29) and (3.22) with (3.28) and the

result is

1 1 3 1

SRV OV, R+ SOV oy + 5V Qg — Loc VR = OV Lo = 3V = 0.
(3.30)

Making use of (2.18) to eliminate the derivatives of the Schouten tensor in (3.30),

then one finds

1 1
Vas = GOV Qo) + SOV o) — LoV,

which is the second of the CFEs; the vacuum equation is then
Vs = —Lu V.

3.1.3 The equations for the curvature

Previously, in section 2.2.1, we introduced both the Schouten tensor L., and the
Weyl tensor C'%.4, both of which are alternative descriptions of the curvature that
possess nice conformal properties. We should therefore proceed to construct a dif-
ferential condition of the curvature with respect to the Weyl and Schouten tensors.
It can be shown that the Weyl and Schouten tensors can be related to each other

using the second Bianchi identity, substituting (2.12) into (2.17) gives

Valie = ViLae = VO oy (3.31)

However, this is not a satisfactory differential equation for L, because it contains
the divergence of the Weyl tensor, one needs to find an equation for the latter in
terms of the undifferentiated fields. To this end, notice that the RHS of the above
can be expanded in terms of the physical energy-momentum tensor T, using (3.18),
but we will not do this yet. First, we express the LHS of the above in terms of the
physical Cotton tensor

Yape = v11-2;17(: - @biac = 26[a[~/b]c- (332)
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Following the standard procedure of writing equations out in terms of objects of
the unphysical spacetime (M, g), one would like to express the divergence V 1CY
in terms of an equivalent expression involving the unphysical connection V. For this

we make use of the identity

Va(Q1C%) = Q7 1VC. (3.33)

Making use of (3.33) in (3.32) then we obtain

Va(Q71C%) = Q Wiea. (3.34)

This seems to be a dead end because of the Q! on the both sides that can be

cancelled out. However, if we define the rescaled Weyl tensor

d“beq = Q7 C%eq, (3.35)

and the rescaled Cotton tensor

Tabc = Q_lf/;zbcy (336)

and then combining (3.34), (3.35) and (3.36) we get the formally regular equation

Vfdfabc = Tape-
This is the third CFE. Obtaining the next equation is relatively straightforward;
we simply need to write out (3.31) in terms of d%.q:
VaLbc - vaac - deddcab + QTabcy

which is the fourth CFE; again it is regular at €2 = 0.

3.1.4 The equation for A

The final CFE is relatively easy to obtain and follows from the transformation
equation for the Ricci curvature (3.11), multiplying said equation through by Q2
and then rearranging with respect to R gives

R = Q’R + 6QV,VQ — 12V,QV°Q. (3.37)

Now, making use of both (3.16) and (3.22) then it is possible to rewrite (3.37) as

AN — T = 24Qs — 12V,QV°Q. (3.38)

Next, recall that the preferred transformation law for the energy momentum tensor

is given by (3.24); the trace-free part of this is obtained simply by contracting with
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the metric which gives

T = Q' (3.39)

So, substituting (3.39) into (3.38) and then rearranging we then obtain the fifth
and final CFE

1
A\ = 6Qs — 3V, QVQ + ZQ“T,
which is a conformally regular equation for the cosmological constant. An important
piece of information about the cosmological constant can be obtained via directly
differentiating this equation, which gives
VA = 65V + 6QVys — 6VIOQV,V, . (340)
If we then substitute (3.42a) and (3.42b) into (3.40) then the end result is trivial
ie.
VA = 0. (3.41)
Physically, this means that the cosmological constant is always a constant, at least
from a purely classical point of view.
Summary

So in summary, we have obtained a set of equations that are conformally regular

and that enable us to analyse the behaviour of conformally rescaled spacetimes

1
V.V = iﬂgT{ab} — QL + SGap, (3.42&)
1 1
Vs = EQ3VCT{M} + §Q2VCQT{M} — Lo V°Q, (3.42Db)
vaLbc - vaac = Vdedcab + QTabca (3420)
vfdfabc = Ta607 (342d)
1
A = 6Qs — 3V, QVQ + 1Q‘*T. (3.42¢)

The CFEs that describe the behaviour of conformally rescaled vacuum spacetimes
are obtain simply by setting all of the energy momentum tensor components in
(3.42a)-(3.42¢) to be zero, which gives

VoV = —QL, + SGab, (343&)
Vs = =Ly .V, (3.43b)
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Valye = VLo = deddcaln (343C)
Vid! e = 0, (3.43d)
A = 6Qs — 3V, QVQ. (3.43e)

Especially appropriate for this thesis are the trace-free matter versions of (3.42a)-
(3.42¢), since we will deal extensively with various trace-free matter models. These
equations are obtained simply by setting T, = Ty so that 1" = 0. The CFEs then

have the form

V.V = %Q?’Tab — QLu, + SYap, (3.44a)
Vas = VT + 5V, — LoV, (3.44D)
VaLie — ViLae = VaQd® cap + QT s, (3.44c)
Vid wpe = Tupe, (3.44d)
A =6Qs — 3V, QV. (3.44e)

An important fact about the CFEs is their relationship to the EFEs. A result
first obtained by Friedrich states that whenever the conformal factor does not vanish
then a solution to the CFEs implies a solution to the EFEs [10]. This means that the
CFEs are a useful tool in research in GR as they can be used to gain more information

in physics because the result of Friedrich enables one to indirectly obtain results for
the EFEs through solving the CFEs.



4 The Conformal Wave Equations

As mentioned previously, global properties of spacetimes can be analysed effectively
with the use of conformal methods. This is all well and good, however they do not
tell us anything about how the conformal spacetimes will evolve. Recall in section
1.1.2, we stated that in order to properly analyse the evolution of any spacetime, one
needs to formulate an initial value problem. The correct way to formulate an initial
value problem is to construct a system of wave equations for the fields that you
wish to analyse; Yvonne Choquet Bruhat showed that this was possible through
a specific choice of coordinates. With this in mind, one then asks the following
question: is it possible to formulate the CFEs as an initial value problem? Given
the connection between the EFEs and the CFEs, the logical choice is to try and
express the CFEs as a system of wave equations. This process has been done in the
case of vacuum spacetimes [21], with the vacuum conformal wave equations (CWEs)

taking the following form

0Q = 4s — (QR, (4.1a)
Os = —iRs + QLy L™ — tV,RVQ, (4.1Db)
OLyg = —2Qpage L — goaLac L + 4Ly Laa + § V4 V4R, (4.1c)
Od g = 4240, P d gy — 2Qd 14" d gy + Sd g R, (4.1d)

which is obtained via a systematic application of derivatives to the CFEs. The
question of whether one can obtain an analogous system of equations for matter
models is still an open problem. We will now show that it is possible to derive
a system of wave equations in the case where the CFEs are coupled to trace-free

matter systems.

4.1 Auxiliary results

Before beginning with the actual derivation of the wave equations, we will derive
a set of relationships that will be instrumental in virtually every single derivation

from this point on.

42
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4.1.1 The rescaled Cotton tensor

We previously looked at the rescaled Cotton-York tensor in section 3.1.3, now we

consider the definition of said equation in terms of the energy-momentum tensor

Tope = 2314V + OV, Ty — 3T,V — OV T — Th09ea VI + Toaga VIQ). (4.2)

We now shall derive some relations from this equation that will be used later on
in certain derivations. Begin by contracting (4.2) with the metric tensor
T,% = =3T.,'V,Q — YOV, T," + 3T,,Vv°Q, (4.3)

where we have used the fact that g,,7% = 0, and since by definition the energy-

momentum tensor is divergence free (due to conservation of energy) this means that

T,b, = 0. (4.4)

The second relation is obtained by applying a contracted derivative to the third
index of (4.2). Upon doing so, and making use of the fact the the energy-momentum

tensor is divergence free, one obtains

VT e = 3T5.VV o Q + QVV T — 3T, VV,Q — QVV, Ty + To0a Ve VIQ. (4.5)

Making use of (3.42a) and (2.8) then using (3.29) it can be shown that (4.5)
simplifies to
VT = 0. (4.6)

The next required relation is a direct consequence of the one that was just derived.
We begin by applying a second contracted derivative to (4.6), which gives
VVT e = 0. (4.7)

Now using (2.8) to re-write the term on the left hand side of (4.7) then using
(3.29) and (2.12) to eliminate the curvature components them it can be shown that
(4.7) reduces to

V VT, = —QT" gpeq + To L. (4.8)

The third relation is obtained by applying a derivative to the second index of
(4.2), upon doing so we get

i I,b. = 3T.°V,V,.Q + 10V, YV, T.) — 37,00
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—1QV,\V'T,. + iV, T, V"Q — 2V, T,.V"Q
+IVPOV. Ty + 1T,°V. V2 — 2T, .V V(L. (4.9)

As before, using (3.42a), (4.1a) to eliminate the second order derivatives, commut-
ing covariant derivatives with (2.8) and eliminating the Riemann tensor components
with (2.12) and (3.29) then (4.9) becomes

Vo T,be = T, Ty — AT s — AP T T goe — 2P T dgpea + QTR
—1QV,\V'T,. + IV T, V"0 = 2V, T,.V*Q + LVPQV . Ty, (4.10)

The last required relation does not involve derivatives of the rescaled Cotton-
York Tensor; it is essentially a version of the Bianchi identity involving the rescaled

Cotton-York tensor in place of the Riemann tensor

Tved — Toge + Teap = 0, (4.11)

which can be verified via anti-symmetrizing the Cotton-York tensor and through
direct substitution into (4.2).

4.1.2 Hodge duals

Another important quantity that is useful in dealing with antisymmetric tensorial
equations, is the Hodge dual of a tensor. For the Cotton-York tensor, which is

antisymmetric on the first and second indices, the Hodge dual is defined as

1
* abe = §6abderea (412)

where €, is the totally antisymmetric Levi-Civita alternating tensor, which is equal

V —Y9Eabcd, (413)

where €, is the totally antisymmetric alternating symbol, which is equal to 1, —1
or zero (depending on whether the indices are an even or odd permutation of the

first index set at the start of the calculation).

There are three important points that we should mention about both of these
quantities. With regards to the Levi-Civita alternating tensor, it has the property
that V s€upeq = 0, in the same manner as the metric tensor. A second important fact
about the Levi-Civita tensor is the product of two different Levi-Civita tensors; in
this case the precise form of the product depends on how many index contractions
occur. For the results we are interested in deriving, we will consider the case where
only one index is contracted, in that case the product of two different Levi-Civita

tensors is equal to
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GadeGPQTd = —65a[p5bq(5tjr]. (414)

Before proceeding any further, it is useful to make note of a couple of properties
of the Weyl tensor with respect to the Hodge dual. The first is that for a rank four
tensor, like the Weyl tensor, there are in fact two different versions of the Hodge
dual. The first version is the left Hodge dual of the Weyl tensor which is defined as

*dabcd = %Gabfhdfhcd- (4~15)

The second form of the Hodge dual is the right Hodge dual, which is defined as

dapea = %Ecdfhdabfh, (4.16)

The equations (4.15) and (4.16) are in fact equivalent to one another, i.e.

d*

*
abed — dabcd 9

this property is a unique to the Weyl tensor; it is not true for a general rank 4
tensor. Using both definitions of the dual, it is possible to obtain a second dual
by performing a contraction on (4.15) and (4.16), a dual of a dual if you will. The

second duals are defined as

“daped = Seab”" “dpned,  ipeg = €cd’ Doy (4.17)

It can be readily verified from (4.15) that

**dade =" d:;bcd = d:ch = _dade7 (418)

which enables us to write out equivalent identities using the dual rather easily. From

the above relation it follows that

ve *dabcd =" Tcdb- (419)

With regards to the Hodge dual itself, it encodes the same information as the
tensor it was derived from, despite being a different object. This third point is
important as the Hodge dual shall be used several times later on to derive key

results.

4.2 Derivation of the conformal wave equations

4.2.1 Wave equation for the conformal factor

Let us now begin to derive the CWHEs. First, the wave equation for the conformal

factor, which can be inferred from (3.44a). Contracting said equation with the
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metric gives

OQ = —QL," + 4s + 1Q°T,°%, (4.20)

where we have used the fact that 07 = 4 due to the dimension of the spacetime.
Upon simplification using (2.10), (4.20) becomes an equation identical to (4.1a). So
the CWE of the conformal factor with trace-free matter is identical to the CWE
of conformal vacuum spacetimes. Alternatively, one could have arrived at the same

equation via simple rearrangement of (3.22).

4.2.2 Wave equation for the Friedrich scalar

The next CWE is obtained by differentiating (3.44b), so that

Os = 20T, VOV'Q — L, ViVPQ + QT,, V*QV'Q — VL, V0,
where we have made note of the fact that T}, is divergence free. Then, after applying

(3.44a) and (2.18), one can verify that the above equation reduces to

Os = 1T T — 4sR— VT Loy + QLo L® — :V RV Q+ QT, V*QV'Q. (4.21)

T4

4.2.3 Wave equation for the Schouten tensor

With this task completed we have now completed half of our objectives; the next
step is to derive a wave equation for the Schouten tensor. This derivation is a bit
trickier than the previous two as it requires slightly more sophisticated techniques.

To do so we start by applying a covariant derivative to (3.44c), which gives

ULgy — VVaLap = TeanVQ + QV T gy + VOV d g + dbeaVEV S0 (4.22)

Now, in order to eliminate the second order derivatives in (4.22) we make use of a
particular technique. Recall the general definition of the curvature tensor for torsion

free connections

[Vayvb]T?lz:z...Z:m — Ri1sabT$z‘2...im + RiQSabTils...im 4o+ RimsabThizms‘

J1j2---Jn J1j2---Jn J1j2---Jn J1j2--Jn
S 1192...0m EN 1192 0m s 11%2...0m
o jlabTSjQ---jn - R J2aijlS---jn R Jnaijljz---s : (423)

This is the most general form of the curvature when covariant derivatives are applied
to a tensor of an arbitrary rank (m,n); through direct substitution this allows us

to eliminate the second order derivative terms, but at the expense of introducing
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several curvature tensor components into the equation. As we mentioned previously
in section 3.1, the Riemann tensor (and by extension the Ricci tensor) is not desirable
from a conformal point of view as it is creates singular terms when transformed.
However, it is possible to write out the Riemann tensor in terms of the conformally

invariant Weyl and Schouten tensors, using (2.12).

Making use of (4.23) to deal with the second term in (4.22) followed by the
application of (3.44a) and (2.10) to eliminate the second order derivatives and finally
using (2.12) and (3.29) to eliminate the Riemann and Ricci tensor components and

we get

OLyg = 0T dpage — 2Qpaac L — graLlacL® + 4Ly Ly
OV, % + Vdpeat + évdva, (424)

or, equivalently by using (3.44d)

OLps = ST dpage — 2Qpage L — GoaLacL® + 4Ly" Laq
OV, T4 — ThaaVed + LV, V,R. (4.25)

At first glance it appears that this is not a wave equation, as the last term in the
equation involves a second order derivative and consequently the principal part of
the differential equation is not the d’Almbertian; a necessary condition for a wave
equation. However, this second order derivative is applied to the Ricci scalar, which
is a special case from the point of view of conformal methods. When we examine
the CFEs we notice that the Ricci scalar does not appear in any of the equations,
meaning that the Ricci scalar has the form of a gauge. As a result of this the Ricci
scalar does not affect the equations in any way and (4.25) is indeed a valid wave

equation.

4.2.4 Wave equation for the rescaled Weyl tensor

We are almost done, the last equation that we need to compute is the wave equa-
tion for the Weyl tensor, which is significantly more complicated than any of the
derivations thus far. The starting point of this highly non-trivial calculation is the

second Bianchi identity written in terms of the Weyl tensor

Vil snpr — Vdgror + Vidgneg = —€pgra” Tpn"- (4.26)

As in the previous derivations we start by applying a covariant derivative to (4.26),

which gives
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DdthT - VbqufhbT + vardfhbq = —equvb*Tfh“. (427)

Re-arranging (4.27) and making use of (4.23) in the same manner as in the deriva-

tion of the wave equation for the Schouten tensor and one ends up with

Odhgr = ~dynej Ry’ + dpngi Ry’ — dn” dgugy + dn’y’ + ds"? Ry
—~ds® 7 Riprj — 2d 3" Ry + €y V2 Ty + Vo Tinr — Vo Ting, (4.28)

we then apply (2.12), which produces an equation containing several terms involving

products of the Weyl and Schouten tensor:

DdthT = QQdfbrpdhbqp — QQdqupdhbrp — QQdfhbpdqup + %dthrR — ghrdquprp
+9hqdfbrprp +9 frdhbqubp - gfqdhbrprp + dhqrbLfb - dhrqu fb - dfqrbth
+dgrgpLn” + dpone Ly" — dpennLg” — dpongLn® + dygns Le® + Y Tine — N, Thng. (4.29)

In the derivation of the vacuum CWEs it was possible to eliminate any terms
containing the Schouten tensor. Since any result we obtain should reduce to the
equivalent vacuum equation upon setting both the energy-momentum and rescaled
Cotton terms to zero, one should logically be able to do the same with (4.29). The
starting point of this simplification is the second Bianchi identity written in terms

of the Riemann tensor which, upon substituting (2.12) into (2.17) becomes

Apear VSt + QV odpcas + 91cNVaLay — 9 VaLlae — 9acValigs + ganVaLl e
~dacat Vo2 — QVidacar — 91¢VoLaa + 9raVoLlac + 9icVoLlta — 9aaVoLge
+dabdfch + chdabdf + gfbchda - gfachdb - gdecha + gdachfb = 0. (430)

We will make use of this equation to eliminate the dependence of the Schouten
tensor in (4.29). Before that, however, we will express (4.30) in a more convenient
form. We notice that (4.30) contains derivatives of the Schouten tensor, all of
which occur in pairs that are antisymmetric. We can therefore make use of (3.44c)
to eliminate the derivatives of the Schouten tensor, at the expense of introducing
several Cotton-York and Weyl tensor terms. Upon multiple applications of (3.44c),
(4.30) becomes

Qgchabd — QgedTw T Qg, fTbcd - andTbcf — Qeapen *Tdfh + gaddbcthhQ
— Q0 Toca + doear VS — dacar Vo + dapay Ve — Gepdapan V"2 + Geadapn V" Q
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+Q0dTucs + Gfdacin V"2 = Gradacsn V" Q — Gapdpean V' = 0. (4.31)

At this point, we examine (4.29) and notice that it contains derivatives of the
rescaled Cotton tensor; we therefore make an educated guess and differentiate (4.31).
This gives a long and complicated expression containing several second order deriva-
tives of the conformal factor and derivatives of the Weyl tensor, which may be sim-
plified with the use of (3.44d) and (4.1a). Following this, we express the Hodge
dual of the rescaled Cotton tensor in terms of the standard rescaled Cotton Tensor.

Upon doing so and making use of (4.4) we get

Gerdpaan L = =T dyoap + 2T g pdpgan — 2°T geadparn, — ST dpeda
1T o + 2T degay — 2T gy pdcaan + 2°T gpadeasn + Geadpayn L
+ 9o deaan L™ — Goadearn L = deaar Lo + doagt L — dpegaLa® + doeaal® — dpeqp R.(4.32)

Substituting (4.32) into (4.29) and making use of the first Bianchi identity to

eliminate terms yields the desired wave equation for the Weyl tensor

Od phgr = 22T (o pdnolgyr + LT g + QT ppgr + 4961 P dgpney
—ZQdfhbpdqbrp + %dthrR -+ qurbpvp *Tfhb -+ vqTf}”ﬂ — VTTth, (433)

or in a more compact form,

Odshgr = Crngr + 2T g pdmppigyr + LT pdgpn + LT 1d fjogr
+€Garp VP *Tin’ + Vo Tinr — Vi Ttng, (4.34)

where ( is the equivalent vacuum CWE term written as a single tensor, i.e.

Cngr = 407" P d gy — 20 1P oy + 5 pngr B-

Written in the form given by (4.34) one can clearly see that this reduces to the

equivalent vacuum equation given in [21].

4.2.5 The wave equation for \

One thing that has not been mentioned thus far is the wave equation for the cos-
mological constant in the fifth CFE. It turns out that the wave equation for the
cosmological constant is in fact trivial. This can be easily verified from section 3.1
where we showed that in fact V,A = 0, hence when one applies a derivative to (3.41)

the result is
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O\ = 0. (4.35)

Summary

We have successfully derived a set of wave equations that described the evolution of
the variables of the CFEs; our analysis is completely general with the only assump-
tion being that the matter content of the spacetime is trace-free and that the CFEs
hold.

4.3 The subsidiary equations

We have derived a set of wave equations that describe the evolution of conformal
fields coupled to trace-free matter models. As mentioned beforehand, we have as-
sumed only that the matter is trace-free and that the CFEs are true. However,
this is not the end of the analysis, since it is not clear whether any solution that
one may obtain for the wave equations is also a solution to the field equations. In
order to verify that this is indeed the case, we must construct a system of subsidiary
equations. In essence, what this means is that instead of assuming that the field
equations are true and the wave equations are not, one assumes the wave equations
are true and the field equations are not true. To that end one uses (3.44a)-(3.44¢)
to define

1
Zab = vavbQ + QLab — S59ab — iﬁgTaba (4363)
1
Zy = Va5 + LaVQ — 5QZVCQTM, (4.36b)
Acay = VeLlagy — VL, — Vo Qd®yeq — QT ap, (4.36¢)
Aeay = Vad"vea — Tean, (4.36d)
1
T = 6Qs — 3V.QVQ — ZQ“T -\ (4.36¢)

One then proceeds to compute a series of wave equations for the subsidiary fields
Zaby Loy Deap, Aeap, Y. In order for any solution of the wave equations to solve the
field equations, then any initial data chosen has to be special. So to see that this
is the case we make use of the subsidiary system. The main point of the wave
equations is that they have to be homogeneous in the subsidiary fields. This is due
to a well known property of wave equations that if one has a homogeneous wave
equation and one chooses the homogeneous variable to be zero initially, then that
solution vanishes at all times. In fact, not only does it vanish, but it is the only
possible solution. There is a multi-variable version of this theory that states if you

have a system that is homogeneous in a certain set of variables and one chooses all
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of these variables to be zero initially then this choice of initial conditions is valid
at all times. Let us specify what we mean by homogeneous, from our point of view
homogeneous means that each term in the RHS of the equation is a product of one

of the zero quantities defined in equations (4.36a)-(4.36¢).

So let us consider the hypothetical case where one has successfully derived a set
of homogeneous wave equations for the subsidiary variables, what does this imply?
Recall the definitions of the subsidiary variables, if we say that the only possible
solution to this system of wave equations is that the subsidiary variables are zero at
all times, then we are saying that the CFEs are satisfied at all times. Furthermore,
if one makes use of the CWEs in the derivation of these wave equations, this proves
that any solution to the CWEs satisfies the CFEs; this technique is known as the
propagation of the constraints. More precisely, the constraint equations only need
to be solved initially as long as the CWEs hold. Let us now show that this is indeed

the case.

4.3.1 Wave equation for T

We will start with equation (4.36a) as that is the simplest case and it helps to
illustrate the techniques used in the later, less elegant derivations. We begin by
applying the d’Alembertian operator to (4.36a), recalling that the wave equation for

A is trivial then one obtains

OY = 60(Qs) — 30(V.QVQ). (4.37)

Expanding with the Leibnitz rule and (4.37) becomes

OY = 6s0Q + 6Q0s + 12V,.sVQ — 6VQOV.Q — 6V, V.OV'VQ  (4.38)

Upon using (4.1a) and (4.21), then (4.38) becomes

3
O = 5QﬁTcthh +245% — 2QsR — 6Q T Ly, + 6Q° Loy, L™ + 12V,5VQ

—QV RVQ — 6VQV,V"V.Q + 6Q°T.,VQAV'Q — 6V, V.QV'VQ.  (4.39)

Then commuting the covariant derivatives with (4.23) as before and using (3.29)

to remove the curvature terms, then (4.39) becomes

3
OY = §QGTChTCh + 2452 — 2QsR — 6QAT" Ly, + 6Q%L,L" — RV .QVQ + 12V ,.sV°Q

—QV.RVQ — 6V .V, V"QVQ + 6Q°T,, VQOUV'Q — 121, VQOV"Q — 6V, V. QV"V. (4.40)
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Once again, there is the problem of second order derivatives. However, we cannot
make use of (3.44a) to eliminate these derivatives since one of our prior assumptions
was that the CFEs are not satisfied. Instead, we make use of the subsidiary system

to eliminate the higher order derivatives. Rearranging (4.36a) and (4.36b) gives

1
VaVbQ = Zab — QLab + SGab + §Q2Tab, (441)

Vs = Zy — Lo VQ + ;QQV"’QTM. (4.42)

Upon substituting both (4.41) and (4.42) along with (2.10) into (4.40) yields

OY = —6Q°T" Zyy, + 12QL" Z,y, — 1282°, — 624, Z" — 122°V .Q — 6V.Z",VQ.
(4.43)
A relatively straightforward calculation shows that upon contracting with the

metric, equation (4.41) becomes

7.5 =0. (4.44)

Making use of the above and we obtain

OY = —6Q3T" Z,, + 12QL" Zy, — 62, 2" — 122°V ., (4.45)

which is homogeneous in the subsidiary fields, as required.

4.3.2 Wave equation for 7,

It can be shown through a similar, but more lengthy calculation, that the wave
equations for both Z,, and Z, are homogeneous in the subsidiary variables. We will
derive the wave equation for Z,, first as it is the simpler of the two. Applying the
d’Alembertian operator to (4.36a) and we get

1
DZab = ;QzTabDQ + LabDQ - §Q3DTab — gabDS + QDLab + DVQVZ,Q
—30T V. OVQ — 302V Ty, VQ + 2V Ly V. (4.46)

To simplify this, we need to make use of some additional pieces of information.
First of all, just like in the calculation of (4.45), there are several terms that can be

eliminated by rearranging (4.36¢) and (4.36d) into

VeLay = Acay + ViLleg + Vod®peq + QU cap, (4.47)
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Vad®sea = Neay + Tean (4.48)

Another useful identity, which is essentially an alternative form of (2.18), comes
from performing a contraction on (4.36¢) with the metric tensor. Upon doing so,

one can verify, using (2.10) and (4.4), that

VL = A + LV4R. (4.49)

Making use of (4.23) to commute the covariant derivatives and using (4.1a), (2.10),
(2.12), (3.29), (4.21), (4.25), (4.41), (4.42) and (4.49) to eliminate terms accordingly

and one ends with

1
7, = éRZab + ALy Ze — 29apLeaZ — 2Qd a2 — NSV
+4V Za + QNpae VD + Apea VD + gan AlgVEeQ + My, (4.50)

where M,, represents the matter terms. Naturally M,, = 0 when working with
vacuum spacetimes, which shows that the wave equation for vacuum spacetimes
is homogeneous and the propagation of the constraints is satisfied, as one would

expect. M, is defined as

1 1 1
Mab = QZTaCTbc - 4QZTabS - EQSTchCdgab - §Q4T6ddabcd + gQSTabR - Q2V0Tbca

—;Q?’DTab + QT3 VQ — 20T50o VEQ + 40T, V,QVQ + 202V, T,V
—30T,V .QVQ — 302V, T, VQ — 30°V T, VQ — QT390 VQAVIQ, (4.51)

so we need to show that M, is homogeneous in the subsidiary variables. Imme-
diately we notice a problem, there is a term in (4.51) containing a d’Alembertian
applied to the energy-momentum tensor. In order to eliminate this we recall the
definition of the rescaled Cotton tensor. We first notice that (4.2) is written in terms
of first order derivatives of the energy-momentum tensor, and that (4.51) contains
a contracted first order of the rescaled Cotton tensor. This suggests that it might
be possible to use (4.2) to cancel out the second order derivatives of the energy-
momentum tensor, which does indeed turn out to be the case. Substituting (4.2)

into (4.51) and simplifying then one obtains

1 1 1
Mab = Q5Tachc - 4QTabS - ZQ5TchCdgab - §Q4T0ddacbd + gQ?’TabR

1 1 1 3
—§Q2TbCVCVbQ - 5gz?’v,;v,,T; + §Q2T6dgadeVCQ + 592:@,@9. (4.52)
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Using both (4.1a) and (4.41), commuting the covariant derivatives as before then
eliminating the Ricci and Riemann tensor components and the matter terms simplify

to

1 3
My, = —§Q2Tbczac - 5Q2Tacz,,c. (4.53)

Combining (4.50) and (4.53) and one obtains

1 1 1
IjZab = gRZab - §QZTI)CZac + 4LgZac + §QZTCdgachd - anchdZCd - 2QdacbdZCd

— AV + AV 2, + Qe VL + 280 VEQ — Ay VU + gap ALy V IO (4.54)

and the wave equation for Z,, with trace-free matter is homogeneous.

4.3.3 Wave Equation for Z,

Next, we derive the wave equation for Z,, so start by applying the d’Alembertian
to (4.36b), which gives

07, =0V,s — 2QT,°V°QV.V,Q — QT,, VOO — ;mvbDTab
1
+vt0OL,, — §QQTa”DVbQ + L,OV,Q — T,.V,QVPQveQ

—20VV T Ve — 2V T, VVQ + 2V . Ly VEVPQ, (4.55)

and using exactly the same method as in the derivation of (4.54) to simplify (4.55)

then one obtains

1
OZ, = —20°T Z° + 6Ly Z° — BT A e + 2QLA e — 25A,% + §QQTbCZbCVaQ

1
+‘;’QTbCZacvbQ — ;QTachchQ -5 WVPR — Q22N T + 27V . Loy

(4.56)

So the wave equation for Z, turns out to be homogeneous as required.

4.3.4 Wave Equation for A

The next wave equation is the the one for Ay.4; this is considerably more difficult to
derive. We begin by differentiating (4.36d)

UAped = —OTepa + UV odpea, (4.57)
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then upon commuting the covariant derivatives with (4.23), one can verify that
(4.57) becomes

OAped = dpjeaVaR™ — OT gy — Vo Ody g + 2RIV ydyjea — 2RV pdyiaa
2R,V pd ey + deg™V t Roas” — dp®d'V i Rejo” 4+ dy* IV i Ryja” + RV jdpaca- (4.58)

In order to proceed further one needs to make use of several relationships that were
derived in section 4.1.1; specifically the equations relating derivatives of the rescaled
Cotton tensor. If one substitutes (2.12), (3.29), (4.33), (4.49), along with (4.47) to
eliminate the derivatives of the Schouten tensor along with (2.30) to eliminate terms

quadratic in the Weyl tensor, then one obtains

OApeq = 204" Naeg + QU eaan A" — Qdpaan A" + Qdpacn A" — 29 caan Np™
+5RAvea — 2L4" Ncva + 2L Napa — 2€can LA by — dpean A o 4 dpaen A,
A+ dpheaDA™ o — deaan D™ + dppda D™ — dpneaDd™ + Miyea, (4.59)

where Mg is shorthand for the matter terms in the equation. Naturally, this tensor

is zero in the vacuum case, which means (4.59) reduces to

UAbea = Vied, (4.60)

where Vj.4 1s a tensor that is a shorthand notation for the all vacuum terms of the

equation which, as we can see from (4.59), is equal to

Viea = 214" Mg + Qeaan A" — Qldpaan A" + Qdpaen A"
—20daanNp™ + $RApea + AL A o — 2€cans L *Ay,
+2dphed A" 0 — degan D™ + dpnaa Ae™ — dpneaNa™". (4.61)

We can see that for vacuum spacetimes the wave equation for Ay,.4 is homogeneous.
With this part of the job done, we now need to check if the matter tensor M. is
homogeneous in the subsidiary variables. To start we notice that M., contains
derivatives of the rescaled Cotton tensor, however these cannot be simplified using
(4.8) and (4.6) since both of those relations were derived using the CFEs and one
of our prior assumptions for this analysis is that the CFEs are not automatically
satisfied. Hence, we need to derive an alternative form of all the equations in section
4.1.1. Essentially, we need to repeat the derivations of these equations using (4.41)

in place of (3.42a) to simplify the equations where necessary. Upon doing so we
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obtain

chabc = TbCZac - TaCZbca (462&)
vcvbjjabC = _QTdedabcd + TabCLbc
— 7%V Ty + TV Loy — TPV 2y, (4.62b)

VoTo'e = DT, Ty — ATyes — 2P T T goe — 22T dgpeq
_’_%QTQCR + %chZa - %degachd + %Tachb
—1007T,. + V. T,V'Q — 2V, 1,.V'Q + IV'QV T, (4.62c)

We then apply (4.62¢) and (4.62a) to the derivatives of the rescaled Cotton tensor
in Mpyeq; (4.14), to eliminate the dual terms of the rescaled Cotton Tensor; (4.11),
to eliminate products of terms that are created as a result removing the dual terms;
and the second Bianchi identity, to eliminate derivatives of the Weyl tensor. Upon

doing so, one ends up with

Mpea = QT d g V2 + QT M dynea VR + QT gyjad e VO + QT dpagan Vo 2,

(4.63)
where we have ignored any terms containing the subsidiary variables. We next
notice that all terms in (4.63) are antisymmetric on two of the indices, which we can
take advantage of by using the Hodge duals. Multiplying (4.63) by a Levi-Civita
alternating tensor with a contraction on the second and third free indices of the
matter tensor, using (4.18) to re-express the Weyl tensor in terms of the duals,
expanding said dual terms and simplifying using (2.30) and it can be verified that
the matter terms are homogeneous in the subsidiary variables. Combining these
terms with (4.61) and the full wave equation for Ay;; with trace-free matter can be
verified to be

Oyt = Viea + 30T j1ca *Nyo + 6T g;pZ° + 2074 g1 A% + 22V 1y T
2051y Zga + 22 9o V1o Tiga + 2T 95aV 1 Zjja + 220V 5 Thja + 210"V 1 Zya
+275N T + 27451V Za- (4.64)

We can see that every single term whose commutator brackets are expanded will
be multiplied by one of the subsidiary variables and hence the wave equation is

homogeneous as required.
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4.3.5 Wave Equation for Ay

The last thing that we need to do is the propagation of the constraints for the third
subsidiary variable Ay.4, which is the most difficult calculation to do by far. Begin,
by differentiating (4.36¢), which yields

UAcp = —Teap0Q — Q0T g — Vo QUd"peq — d"peal0V 2+ OV Ly,
—OViLa — ViTearV?Q — VOV Togp — ViV OV d%eq — Vid*eaVI V. (4.65)

From here we proceed in a similar manner to the derivation for the wave equation
for the fourth Subsidiary variable, with the main difference being a much larger
number of terms to deal with plus one additional relation that is required to eliminate
some very specific terms. First, applying (4.23), (2.12), (3.29), (4.1a), (4.25), (4.33),
(4.41), (4.47), (4.42), (4.49), (4.26), (2.10) to start with, then dealing with all the
matter terms by using (4.14) to expand the Hodge dual terms, (4.4), (4.62¢), (4.2)
and using (4.23) to deal with terms that have multiple derivatives applied to the
energy-momentum tensor (which causes the cancellation of several derivatives at
the expense of introducing several curvature components that must be eliminated
with (2.12)) and finally both the Bianchi identities to cancel out several groups of
terms, then one ends up with an equation that, whilst still relatively unappealing,
is significantly less complex than the sum of its parts as several cancellations occur.
This suggests that we are on the correct path of this derivation. When examining
the remaining terms, we notice that there are terms that contain products of the
metric tensor, the Weyl tensor and derivatives of the conformal factor, which we
can eliminate by rearranging (4.30) and direct substitution. This action decreases
the number of terms even further, ignoring the subsidiary variable terms we are left
with

20°T, 7 diejpj ) V2 + 62T d o)) VO — 2Qdygpded o VO
+ 1 (dpaca + docda — dbaca) RV*Q + 2L0" (dbacj — dpedj — dijea) VL
+3Ly (dedaj — deadj + dejaa) VL + 29°defjiata) VI To + 40 faja V7 Ly®. (4.66)

We can immediately see that there are several terms that can be eliminated using

the Bianchi identity; upon doing so (4.66) becomes

QT dpeagj V2 — QT dpae; VO + 30T doagy VD — 37T dja VS
+03d 3o VI Ty — 2y pdi o VO — D3 oaqy VT, + 40 ooy V Lo (4.67)
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Finally, by substituting (4.47) into the derivatives of the Schouten tensor and then
substituting (4.2) into the single rescaled Cotton tensor term that follows from the
previous action and those remaining terms in (4.67) vanish. Hence, the only terms
left are those containing the subsidiary variables and the equation is homogeneous

as required.

Summary

We have successfully derived a system of quasilinear wave equations that describe
the evolution of conformal fields of 4-dimensional conformally rescaled spacetimes.
Our analysis is completely general with the only assumptions being of the nature
of the matter content, namely that the matter content is trace-free. Furthermore,
we have shown that assuming that the wave equations are satisfied leads to the
conclusion that the field equations are true. As the field equations are already a
known result, this proves that the CWEs and the CFES are not independent of
one another. Consequently, this means that any solution of the CWEs must be a
solution to the CFEs and, by extension, the EFEs as well.

4.3.6 The Bach Tensor
Alternative form of the Third CFE

An alternative way of looking at the third CWE is to make use of a tensor called
the Bach tensor. The Bach tensor is a trace-free, conformally invariant (in four

dimensions), rank 2 tensor, whose form is given by

By, = _LCdOabcd + vcvzszc — O L. (468)

A property of the Bach tensor is that when B,, = 0 one has a solution to the
vacuum EFEs, where R, = Mg, Additionally, it can be verified that the Bach
tensor is divergence free. Since the definition of the Bach tensor contains a wave
operator applied to the Schouten tensor, it is relatively straightforward to derive a

wave equation for the Schouten tensor in terms of the Bach tensor

OLab = 2L%Cocpi + GapLeal® + 1V Vo R — 4L, Ly, — Bap. (4.69)

We have just shown that for trace-free matter it is possible to formulate the
CFEs as a system of wave equations. We also just derived a wave equation for the
Schouten tensor. We will now show the equivalence between the wave equation of
the Schouten tensor as given by (4.25) and the wave equation written in terms of the
Bach tensor given by (4.69). First, we recall the third CFE, differentiating (3.42¢)

and one obtains
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VNVl — OLay = Toa VQ + QV T + d 10 VOV Q4+ Ved) 10 V Q. (4.70)
We notice that it is possible rearrange the definition of the Bach tensor such that
the LHS of the Bach tensor definition is equal to the LHS of (4.70). Equating the
RHS of (4.68) and the RHS of (4.70) gives
Bap — LCoepg = Tot VL + OV Ty + d 40V Q + Va1,V Q. (4.71)
The goal is to simplify this equation. First, applying both (3.42a) and (3.42d) to
(4.71) gives
By — LChopg = — 20T % g + Qe L+ QV T, % + Toapy Ve + Ty VQ. (4.72)
Then applying (4.68) and rearranging all terms on the LHS of (4.72) yields
- %Q3T6ddacbd+QdacdeCd+chTacb+TacchQ+TbcavCQ - chaLbc_’_vcchab =0.

(4.73)
Substituting in (4.25) into (4.73) gives

ViV R

4LaCLbc _gbaLchCd - LCdCacbd+ +chTacb - chTbCa - VCvatLbc = 07 (474)

then making use of (4.23) to reorder the covariant derivatives as usual, and applying
both (2.12) and (3.29) transforms (4.74) to

— $RLay + Lap L — VoVl + ViV R+ QV 1,5 — QV. 1,5 = 0. (4.75)

Making use of (2.18) to get rid of the second order derivatives of the Schouten
tensor and (2.10) then one ends up with

OV, T,% — QV. T3¢, = 0. (4.76)

Applying (4.2) to (4.76) and one obtains

OT,°V .V .Q + 3PV .V, 1, — QT,°V. Vi — 10°V .V, T,° = 0. (4.77)

Making use of (4.23) and one gets
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SPT Roe — 2°T, Rye + QT,°V Vo Q — QT,°V. .V, Q2 = 0. (4.78)

Then using both (3.29) and (3.42a) and it can be verified that the LHS of (4.78)
vanishes and hence the two equations are equivalent. This is a very good thing,
because the two wave equations of the Schouten tensor are equivalent, this means
that it is possible to use either equation depending on the situation. Furthermore,
because propagation of the constraints has already been performed for the wave
equation for the Schouten tensor (not written in terms of Bach), this means that

any solution to (4.69) is a solution to the EFEs.

Conformal properties of the Bach tensor

Despite the success of showing the equivalence of the two different wave equations
for the Schouten tensor, there is one final check that needs to be performed. It must
be shown that the Bach tensor is regular under a conformal rescaling. If that turns
out to be the case then it is possible to apply the techniques of wave equations to
cases wherever the Bach tensor is involved. Showing that the Bach tensor is indeed
regular under such a transformation is a lengthy task. We begin first by considering

the exact conformal transformation of the Bach tensor

Ba, = Q72By,. (4.79)

As we are working with trace-free matter, it becomes necessary to express By, in
terms of the physical energy-momentum tensor T, In terms of trace-free matter,

the Schouten tensor can be expressed in terms of the energy-momentum tensor as

Loy = %(Tab + )‘gab)' (480)

We begin with the definition of the physical Bach tensor. Commuting the covari-
ant derivatives and substituting in the definition of the Schouten tensor in terms of

the energy-momentum tensor and one obtains

Bab = /\Tab + TaCTbc - %TchCdgab + TIQTabR - %@C@CTGJ)' (481)

We must now check to see if this equation transforms properly under a confor-
mal transformation. To start with, we consider the conformal transformation of
the energy-momentum tensor given in (3.24), the conformal transformation law of
the metric given by (1.3) and the conformal transformation law of the Ricci scalar
given by (3.11). Because of these laws, the first four terms are satisfactory from
the unphysical point of view since they do not create terms that are singular at the
boundary. The only difficult term to deal with is the last term that involves deriva-

tives of the energy-momentum tensor. We need to make use of the law for trans-



4.3: The subsidiary equations 61

forming derivatives (2.32); applying this to a derivative of the energy-momentum

tensor gives

6cj:'ab = Vaj_’bc + Qastsc + QaSCTbs- (482)

Applying, (2.13) to (4.82) and expanding gives

VT = VoTio + 2 Ty + TTh + YT — T3T350,¢ — YT, Gap, (4.83)

where T, is a vector quantity first defined in (3.9). The next step is to see how
a second order derivative of the energy-momentum tensor transforms under a con-
formal rescaling. To make this job easier we redefine the derivatives of the energy-

momentum tensor in (4.83) as

Gy = VT (4.84)

We then apply (2.32) to (4.84), which gives

ﬁa&cbd = v(zé_cbd + Qacs&sbd - Qasb6csd - Qasda—cbsa (485)

then expanding as before using (2.13) and then (4.85) becomes

= ~cC ~c ~c ~c c~ ~c
Ve s = Veoa +4Y 0% + L0 — TG eha — Y60

—Y0%a — Y Oped — Ya0 e + Y0 % — L0 ape. (4.86)

So, we can make a decision about whether or not the Bach tensor transforms
properly by closely examining (4.86), upon doing so we notice that virtually every
single term is of the form Y,6p.4. So we simply need to take note of the fact that
each term in (4.83) is comprised of terms that do not contain singular terms at the
boundary; to see that this is indeed the case let us see what form this equation has

when all the necessary substitutions have been made

5% = 20V QT + 20V QT + QVQT, + QVQT,¢ — QVQT}:6,¢ — QOVEQT, Gap.
(4.87)

We can see that there are no terms in (4.87) that are irregular as the conformal
factor tends to zero. If we examine the individual terms we notice that the majority
of them are products of the vector T and the tensor %,. However, if we look at
the full version of the tensor 6%, given by (4.83) it can be inferred that multiplying
each individual term of this equation by the vector T, only increases the power

of the conformal factor by one. This means that every such term is regular at the
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boundary, since any term containing a positive value of the conformal factor vanishes
at the boundary. The only other term of concern is the derivative of ¢%,., however
if we differentiate (4.83) then this only reduces the power of the conformal factor
by one, however this does not create any terms that are singular where 2 = 0.
Combining all this information means that every term contained in (4.86) is regular
at the boundary, hence the Bach tensor is also regular at the boundary. This means
that we can use the version of the third CFE given by (4.69) when using conformal
methods.

4.3.7 The reduced wave operator

We have derived a system of wave equations for conformal spacetimes containing
trace-free matter, however, there is something else that needs to be mentioned when
one proceeds to solve these equations. Whilst (3.42a) and (4.21) provide satisfactory
wave equations that are independent of any arbitrary choice of coordinates, this is
not the case for (4.25) and (4.33). The reason for this is that the d’Alembertian
operator J acts on tensors (as opposed to the first two CWEs where the operator is
applied to scalars), meaning that they involve derivatives of the Christoffel symbols,
which ruins the hyperbolic nature of the equations. Thankfully, there is a proce-
dure which enables us to convert the d’Alembertian operator to an alternative form
that when acting on any tensor in any arbitrary coordinate system preserves the

hyperbolic nature of the terms.

Recall the condition for a system of wave equations (1.9), we will now show how
this procedure enables us to preserve the hyperbolic nature of the equations. Let
us illustrate this procedure with an example: consider an arbitrary covector w,
with components (w,) that satisfy (1.9) with respect to some coordinate system
x = (z/) and for some choice of coordinate gauge source functions L*(z). A direct

computation using (2.5) yields

Owy = ¢"0,0,w\ — ¢" 0,17 nws + fir(g,0g,w, 0w), (4.88)

where fy(g,0g,w,0w) denotes an expression depending on the components g,,,, w,
and their first order partial derivatives. Now, recall the equation for the Riemann
tensor written in terms of the Levi-Civita connection (2.7); if we contract this equa-

tion with the metric then we end up with

RU)\ — g“lla)\rozxu _ gm/ayra)\u + g/wFU/\TFTV,u _ g;wro'm_rr/\‘u' (489)

If we rearrange (4.89), then we notice that one of the terms is equal to the second

term in (4.88), so making a substitution yields

Owy = ¢"0,0,wx + (RX — " O\ )w, + fa(g, 0g,w, Ow). (4.90)
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Then, applying (1.6) and using some terms contained within the function fy to

transform the partial derivative in (4.90) into a covariant derivative, one obtains

Owy = ¢"0,0,wx + (Rex — gor VaI'7)w™ + fi(g, 09, w, Ow). (4.91)

Now, if we apply (3.29) along with the replacement I'* — L#(z) then this allows

us to define the reduced wave operator B acting on the components w,, as

B, = ¢"0,0,w\ + (2LT,\ + %R(x)gf,\ — ggTV,\L”(x))wT + falg, 09, w, Ow), (4.92)

where we have chosen to write out the Ricci scalar R as R(z) to emphasize that
this is a form of the equations that depends on the coordinate system x = (a#).
The more general form of this operator, which acts on a tensor of arbitrary rank, is

given as

mn , =07 ,+ ((QLT,\ + tR(2)grr — Rrp) — 9o VAL (2) — F"))TTWp + ..
et ((QLTP + %R('%)g‘rﬂ - RTp - pr) - gmvp(LU(l’) - FU))T)\WT. (493)

Applying this operator to a tensor of arbitrary rank cancels out all the terms that
ruin the hyperbolic nature of the equations and enables one to formulate an initial

value problem for the equations as per usual.

Summary

We have shown that it is possible to write out the conformal metric and the con-
formal fields as a system of wave equations. Furthermore, we have shown that
any solution of these wave equations implies a solution to the corresponding field

equations.



5 Analysis of Trace-Free Matter
Models

In the previous chapter we successfully showed, through the propagation of the
constraints, that any solution to the CWEs is also a solution to the CFEs. These
equations describe the behaviour of conformal fields sourced by trace-free matter.
It is a fundamental fact of GR that the very structure of spacetime is influenced by
the presence of matter. Matter curves the spacetime, but the spacetime itself then
effects how the matter behaves. Whilst the equations that we have derived thus
far describe the spacetime, they do not say anything about how the matter evolves.
We would therefore like to understand how the matter content of the conformal
spacetimes changes over time. All the work that we have done so far suggests that
in trying to describe how any system evolves in the framework of GR that we should
always proceed to construct equations that are hyperbolic. However, it is not always
obvious if it is possible to construct hyperbolic equations for any matter model. This
means that when combining a certain matter model with the CWEs, one needs to
check that the matter itself is ”well behaved”. This means doing a similar analysis to

the previous section for the equations describing the evolution of the matter fields.

We will now proceed to derive a set of wave equations that describe the evolution
of certain trace-free matter fields. We will then proceed to construct subsidiary
equations for each of the equations describing the matter content in order to show

that the evolution equations propagate in the correct manner.

5.1 Conformally coupled scalar field

As mentioned in the introduction, the EFEs are notoriously difficult to solve unless
one makes some simplifying assumptions about the nature of the problem that you
wish to solve. However, one would still like to solve more complicated problems,
analytically if possible. To this end one takes an Occum’s razor approach to the sit-
uation, namely we start with the simplest possible solution then gradually make our
solution more complex until we get the correct result. The simplest possible solu-
tion from the point of view of GR is the Minkowski metric, which describes vacuum
spacetimes. The next solution in order of increasing difficulty is the Schwarzchild

metric, which describes vacuum spacetimes containing a single spherically symmet-
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ric mass. When trying to introduce matter into this picture ideally we would like
to preserve spherical symmetry while having a dynamic situation; one of the sim-
plest matter models that allows us to do this is a scalar field ¢. Given all that we
know about how one obtains solutions of evolving systems in GR suggests that one
construct a wave equation for the scalar field. The simplest possible wave equation

that one can construct is

VeV, = 0. (5.1)

This provides a very convenient way of incorporating degrees of freedom into ex-
isting solutions of the EFEs whilst simultaneously preserving spherical symmetry.
However, from the point of view of conformal methods, this is not very appealing
since it is not invariant under conformal transformations. A useful model for explor-
ing the properties of scalar fields and conformal invariance is given by a conformally
invariant wave equation, which arises from the addition of a Ricci scalar curvature

term to (5.1):

O¢ — tRo = 0. (5.2)

Indeed if gq, = 22G4, and we choose the transformation law of the scalar field to
be ¢ = Q7 '¢, then (5.2) implies that

O¢ — LRe = 0. (5:3)

It is possible to derive this equation from the following Lagrangian

L=LR—1g"V,6V,0 — LR, (5.4)

2K

the action for this Lagrangian is given by

11 1
5 = / (57— 59"Va6Vi6 — T R9%)/gd's. (5.5)

Varying the action with respect to the scalar field gives

5S 1
56 (—9™Va0V(50) — 6R¢5¢)v —gd'z, (5.6)
then integrating (5.6) by parts gives
55 b 1 .
56 (9""VaVippdg — 6R¢5¢)v —gd'x. (5.7)

Applying Lagrange’s lemma to (5.7) gives the equation of motion (5.3). The
energy-momentum tensor for such a scalar field can also be derived by varying (5.5)

with respect to the metric, which yields the result
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Tab = va¢vb¢ - igabchbvcgb - %vaqub + %¢2Lab' (58)

It can be verified that this matter tensor is both trace and divergence free (i.e.
g®T,, = 0 and V*T,;, = 0). Despite the relative simplicity of (5.2), one runs into
a problem when trying to couple this matter model with the CWEs, namely that
the act of substituting (5.8) into (4.2) creates second and third order derivatives of
the scalar field, which ruins the hyperbolic nature of the equations. To resolve this

difficultly we construct field equations for derivatives of the scalar field,

Va(b = gzﬁa, vavb¢ = gbab' (59)

However, in order to see whether or not it is possible to use these definitions to
simplify calculations, we must check that the above definitions possess the correct
evolution properties. To this end, one proceeds to compute evolution equations for
these variables, which can be done by direct differentiation and making use of (4.23).

Doing so gives

Oy = 50 R + 20" Ly + g0V R, (5.10a)
O¢ea = Q26" Tuae — 220" deaan + %Q%dR — 20" geaLap + 4¢d" Lea
_é¢RLcd + 46 Laq — é¢agchaR — ¢*VaLea — ¢*depaa V'

+10aVeR + 20"V Lag + 10.V4R + ¢*V Lo + 10V, VR (5.10D)

The introduction of these equations allows one to construct an initial value prob-
lem for the CFEs coupled with a conformally invariant scalar field since it enables

one to simplify derivative terms.

5.1.1 Subsidiary equations for the scalar field system

Again, to verify that these evolution equations are valid one must proceed with
the propagation of the constraints. To this end we define the following subsidiary

variables

Qa = ¢a - va¢: (511&)
Qab = (bab - vavb(b; (511b)

and check if the wave equations that one can construct from these variables are

homogeneous. Differentiating (5.11a) to start with, we obtain

U@, = Up, — OV, 0, (5.12)
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then applying (4.23) gives

0Q, = V.0¢ — Oéy + Rap V0. (5.13)

Using (5.2) and (5.10a) to eliminate the derivatives and we are left with

0Qa = —¢"Ray — L6.R + LRV,6 + Ry V', (5.14)

Finally, using (5.11a), (5.11b) and (3.29), then we get

0Qq = 1QuR + 2Q Ly, (5.15)

which is a homogeneous wave equation as required. Next, we proceed to do the

same with the @, variable. Begin by differentiating (5.11b) and one ends up with

UQap = —Udar + LIV V0. (5.16)

Applying (4.23) to (5.16) then gives

|:|Qab = vaalj¢ + Racvbvc¢ - |:|¢ab + VbRacvc(b
F RNVt — Ry VoV a6 — VRV ad — R1,G Va6, (5.17)

Using (2.12), (3.29), (5.11a), (5.11b), (4.48), (4.47), (5.10b), (2.30), (4.49) and
(4.11) to simplify and one can verify that

|:|62ab = _QQQCddacbd + %QabR - 2Cgchab + 4QbCLac + 4QaCLbc
_29abQCchd + Q¢6Abac - qbcAabc - qbbAacc + ¢CgabAcdd- (518)

5.1.2 Summary

Hence, the wave equations for the subsidiary equations for the scalar field system

are homogeneous and the relations in (5.9) are valid.

5.2 Electromagnetic field

The electromagnetic (EM) or Maxwell field is the model that is used to describe
the properties of electromagnetic matter and radiation. In the classical sense the
EM field is described mathematically by the Maxwell equations, however, it is not
apparent if the Maxwell equations transform correctly under a coordinate transfor-

mation. To perform a coordinate invariant analysis of gravitational systems coupled
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with EM sources one needs to write out the Maxwell equations in tensorial form

VeE, =0, (5.19a)
ViaFhy =0, (5.19b)

where F,;, is an antisymmetric tensor called the Faraday tensor, the energy-momentum

tensor of the Maxwell field is given by

- -~ o~ 1 -~ o~
Tab = FachC - ZgachdFCdy (520)

which can be verified to be trace and divergence free. The Maxwell equations are
extremely appealing from the point of view of conformal transformations, since they

are conformally invariant [27, 30], i.e.

vaFYab = 07 Fab = Faba v[(1F1bc} = 0.

In order to see if the Maxwell field propagates in the correct way, one needs to show
that it is possible to construct a homogeneous wave equation for the Faraday tensor.

To accomplish this task we expand and differentiate (5.19b), which gives

OF,. — VOV, Fye + VOV Fyy = 0. (5.21)

Then, upon applying (4.23) to (5.21), one obtains

FcaRba - FbaRca + 2Fadeacd + |:|F’bc + vbvaFca - vCVCL}?ab = 07 (522)
which, upon applying (5.19a), simplifies to

F"Ryq — Fy"Req + 2F Rygeq + OF. = 0. (5.23)

Then, making use of (2.12) and (3.29), one obtains

OFye = $FpeR — 2QF ““dygca, (5.24)

which is the wave equation for the Faraday tensor. Now, in order to show that any
solution to the Faraday wave equation also solves the Maxwell equations and that
the Maxwell fields behave correctly when coupled to the CFEs, one again needs to
make use of the propagation of the constraints. So to that end, one constructs a

system of subsidiary equations for the Maxwell equations

VaFab = Mb, (5253)
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V[aF‘bc} = Mape- (525b)

It can be verified that the propagation of the constraints is indeed valid for vacuum
spacetimes. We will now show that this result is valid for spacetimes perturbed with

trace-free matter. Begin by applying a d’Almbertian to (5.25a)

OM, = OV F,. (5.26)

Commuting the covariant derivatives with (4.23), then applying (5.24), (3.29),
(2.12), (4.47), (4.48), (4.49) and (5.25a) gives

OM, = —QF" Aoy + §RM, + 2L My — F¥ Ay — FPA ;. (5.27)

The next step is to show that the wave equation for M. is homogeneous, this can
be done, albeit rather cumbersomely, by directly differentiating (5.25b), however it
is far simpler to make use of the Hodge dual. Multiplying both sides of (5.27) by
Levi-Civita alternating tensor whilst contracting on the three free indices of M.

and multiplying out and differentiating then one obtains,

Edabe M ™ = €404 OVEFP, (5.28)

Commuting the covariant derivatives and using (5.24), (3.29), (2.12), (4.49) to
simplify, then rewriting the Weyl tensor terms using (4.15) and making use of both
(5.25a) and (5.25b) to deal with the derivatives of the Faraday, along with the fact

that the dual of the Weyl tensor is trace-free then one obtains

€aabe IM ™ = 20 gy f T, T 4+ 20 F® * T g + 20F,* * T, by + 20F* *Ab oy * Ty
—6 *dgape M + 2F (apef Au™ — €aany A7) — 2€apef LV o F + %GdabchcFab
—I—QQFab( *Adab — *Aadb) — 2Fbcan(€dcefdaebf —|— 2 *d[b|dc\a]) — 4€dbCfL(lbvaaC. (529)

It is at this point that we rewrite this equation in terms of the original variables
as opposed to the Hodge duals. Multiplying both sides of (5.29) by a second Levi-
Civita tensor with contractions on the one remaining free index, expanding the dual
terms and eliminating the derivatives of the Faraday tensor with (5.25b) and the

equation transforms to

OMpim = 2y Mp® — 2L3,* Mpia + 2L Mpma — 29 pmas My ™ + 2Qd 0 My, ™
+%Fmb(dh(zlb — dhamb — Ahmab) V- %Eb(dhbma — dhamb + dhmas) VI
2L Myna + S RMpim + 3 F3"(diamp + dibma — diman) V8, (5.30)
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where we have ignored all the other subsidiary variables except for the Maxwell
variables for convenience. Finally, making use of the Bianchi identity to eliminate
all the remaining terms containing the Weyl tensor and we are left with, including

all the subsidiary variables

UMt = %QEhlmcFab “Aap” + %Q‘Ehlmcpab TN — %QGhlmeab "N + %FmaA[h|a|l]
— LB Npam + 2Fn A% 0 + 21y My ™ + R My — 2Qdhman My® — 2L, Mipng

HAL* Mippmja + 2 p1ae M ™ + 2 Diam — 2Fpm A% + 20 Aain) + 2Ful "0 (5.31)

Therefore, the wave equation is homogeneous as required. Despite the propagation
of the constraints being satisfied for the Einstein-Maxwell system, one runs into a
similar problem when trying to combine the matter model with the CWEs, namely
that doing so creates second order derivatives that ruins the hyperbolicity of the
equations. In order to solve this problem we use the same method that was used to

resolve the scalar field system. Namely, we create a new field,

Fope = Vo Fpe, (5.32)

and proceed to see if this variable propagates correctly. We begin by differentiating
(5.32) twice and using both (4.23) and (5.24), which gives

OF e = —2Fy;qV o Q + LRV Fye — 2Qy;eqV o 77 — 20F 7 o dyfoq + RV 1 Fe
+1FV R+ F/VR, % — B/ ViR, — 2Raacs VI + 2R,y VIFS | (5.33)

then using (2.12), (3.29), (4.47), (4.48) and (5.19b), then one obtains,

OF e = AQF7 | Ty o + 4Q0F  yd oy + AFT oo Ly + 2QF, dy peq
40 PV 0 Lyg — 2F 0 dy gV o + AFT Loy + LE e R — 2QF7V (dyfeq
+4Ffa[cLb}j + éFbCVaR + %Fa[cVHR + 4Fd[bdc]dafoQ + %Fj[bgc]anR. (5.34)

With the derivation of the wave equation completed, one now needs to do the

propagation of the constraints. First we start by defining a new subsidiary variable

Qabc - Fabc - Vano (535)

Both this and (5.19b) imply the identity

Fabc = Fbac - Fcab + Qabc - Qbac + Qcab- (536)
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As we have done many times before, we now need to show that the wave equation
that is computed from (5.35), is homogeneous. Differentiating (5.35) twice then
applying both (4.23) and (5.24) gives

OQabe = 2F/dy1egV o — SRV Fye + 2Qdy gV o F/ + 2QF /N odypea — 1 FVaR
—FJV4R yp + B VR f + 2Raaef VIFY — 2RaansVOF,! — RV i Fye + OF 40(5.37)

Then, using (2.12) and (3.29) followed by (4.48), (4.49), (4.47), (5.35) and (5.36)

to simplify and we end up with

|:|C2abc = QI;’canbf - QbeAacf - 2le)fcclc2tlfd + %RQbac - %RQcab - 2chQfab
+2Lbefac + 4Lanbe - 29achdebd + 29abLfdecd - 2Qdafchfbd + 2gldafbdecd
+FI Nppo + FoeN = B/ Ao — FuAS p + FI gD — Fyl gaeA . (5.38)

Thus the wave equation for (. is homogeneous and (5.32) is indeed a valid

relation.

5.3 Yang-Mills fields

Another trace-free matter model is the Yang-Mills field [/, 11]. From the classical
point of view, this matter model is a more complex version of the the electromagnetic
theory. Upon quantizing this particular theory, one obtains the theory of Quantum

Chromodynamics responsible for the description of the strong nuclear force.

The classical Yang-Mills equations are as follows

Fp+ VIF, =0, (5.39a)
AP AGC e + VA% — VA% — F = 0, (5.39b)

where F'%, is the Yang-Mills version of the Faraday tensor, A%, is analogous to the
gauge potential in electromagnetism and C%, are a set of constants known as the
structure constants that take into account the non-linearity of Yang-Mills and allow
one to fix the particular Yang-Mills field under consideration. Also the indices a, b, ¢
are a set of indices that obey the standard summation convention, but which can
have a different total number of terms as the spacetime indices when expanded. The

structure constants satisfy the following identities,

Cubccaae + Caeccaub + Caebcauc = 07 (540)
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which is the Jacobi identity, as well as an identity analogous to the Young Projector

Cacbcbae = %(Caeacbac - Caeccbab + Cacbcbue - Cabccbae>~ (5.41)

Another important quantity is the gauge source function analogous to the elec-
tromagnetic 4-potential in classical electromagnetism. Recall that the 4-potential in
electromagnetism is a vector that combines the electric potential and the magnetic
potential into a single 4-vector; naturally, the gauge source function is a non-linear

version of the this 4-potential. Specifically this function is defined as

f =V, A%, (5.42)

An important fact about this function is that, like the corresponding 4-potential,
it is Lorentz covariant, which means that it is completely invariant in all frames
of reference, rather much like the spacetime interval. Furthermore, this particular
quantity possesses what is known as a gauge invariance. In the case of the 4-potential
this means that the Faraday tensor does not change when one performs a transfor-
mation of the form A, — A, —0,A, where A is some arbitrary function. This means
that there are infinitely many choices of the 4-potential that give identical results
when measuring physical quantities. The gauge source function (5.42) inherits these

properties and therefore it is a quantity that is dependent on the choice of the user.

5.3.1 Wave equations for the Yang-Mills fields

We will now proceed to derive the evolution equations for the Yang-Mills variables.
We will start by deriving a wave equation for the gauge potential. Differentiating

(5.39b) once and one ends up with

AGC% VPAL, 4 A C% VoA — VO, + A% — VOV, A%, = 0. (5.43)

Using (4.23), (2.12), (3.29) and (5.42) and we obtain from

A% + AMC% Vo Ay — LAY R — 2A4% Lyg — A% [ C%c + Vo F%* — Vo f* = 0. (5.44)

Finally, applying (5.39a), rearranging terms and it can be verified that (5.44)

reduces to

OA% = LAY R4+-2A% Ly, + FC gy A C% + A% fC% — A C% VA% + Vi £, (5.45)

6

Now we turn our attention to the Faraday tensor. The wave equation for the
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Faraday tensor is unique in the sense that there are two different wave equations
that one can derive. The first comes applying derivatives to an identity that is
obtained from anti-symmetrising a derivative of the Faraday tensor and the other

via directly differentiating the second Yang-Mills equation.

becAbaOabc - FcacAbbCabc + FcabAchabc + vaFulbc - vaaac + chaab = 0. (546)

Crucially, since we have obtained (5.46) via anti-symmetrising (5.39a), these two
equations are not independent, which means that any wave equation that we obtain
from (5.46) will be equivalent to (5.45). This means that we have obtained two
equations that we can use to best fit the problem that suits us; it will also be
invaluable when constructing a subsidiary system for the Yang Mills fields. Now, let
us return to the process of deriving a wave equation from (5.46). Differentiating said
equation and applying (4.23), (5.39a), (2.12), (3.29) and (5.42) then (5.46) becomes,

|:|F“bc = _2QFaaddbacd + %F’abcR - Fcbcfbcabc - FabaAbcAcaCabcCecD
_Abacabcvapcbc - FccacabcvaAbb + FDcaAbbAcaCabeCeca + FcbacabcvaAbc
+ AP Vi F o 4+ F0C% Vi A% — AP Y Fy — F 0 C%h VA (5.47)

It is possible to simplify the above even further, first by applying (5.46) to the
derivatives of the Faraday tensor, then applying (5.39a) to the derivatives of the
gauge potential and (5.41) to the terms that are produced as a result of these

substitutions and (5.53) can be re-written as

|:|F’abc = _2QFaaddbacd + %FubcR + 2beaFccaCabc - Fcbcfbcabc
—FP g AP A O CF o — 2A%C% Vo I (5.48)

The second equation for the Faraday tensor is obtained by differentiating (5.39b),
albeit simplifying this equation is a much lengthier and more complicated pro-
cess. Commuting the covariant derivatives with (4.23), then applying (3.29), (2.12),
(5.45), (2.18), (4.48), (4.47), (4.11), (2.30) and (5.39b) to eliminate certain terms and
then using (5.41) to eliminate groups of terms containing two structure constants

and one obtains

DFaab = _FbacFCchabc - FabcAbaAccCaDeCebc - 2Fcbccabcvc"4ba + Fcaccabcchbb
+%FaabR - 2QABCACddacdeabc - FabcAbaACCCabeCecD + FaacAbbAccCabeCecD
—3AC V1o F g + Ff0eC% VA% 4 20d,4a VA — 20d . VA, (5.49)
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The next step to simplifying the above is to isolate and re-write the derivatives of
the Faraday tensor. Isolating the three terms containing the derivatives of interest

and applying (5.39b) to the derivatives and we end up with

AbcAccCabeCecavaAab - AccAchaceCebbvaAbc + 2Abccabcvav[cA|c‘b}
— AP A C gV A + ACA® O O Vi A + 2A%C %V, V[, Al
A AT O Oy VA — ACAL,C0 Oy VA, + 240V VAl (5.50)

Applying (4.23) to remove the second order derivatives of the gauge potential,

followed by (2.12) to eliminate the Riemann curvature terms and the result is

— QA" A g C% + 2QA% A g C e + A A C%C° 0V, A%,
_ACCAbbCaceCebbvaAac - AbcAccCabeCechbAaa + ACCAbaCaceCebavbAac
+ACA O Cf iy V A%y — ACAY, 0% O VA%, (5.51)

Then making use of (2.30) to get rid of the Weyl tensor terms and then (5.39b)

to remove the derivatives of the gauge potential and (5.51) becomes

FabcAbbAcCCaceCebD - FaacAbbACCCaceOeha
F PP AT A O C p — A% AGAY AT C%CT g O
AL AT AP AT O CF (OO, — A, A A A OO CT o OO (5.52)

If we replace the terms in (5.49) containing derivatives of the Faraday tensor with
the terms in (5.52) and we notice that multiple terms can be cancelled out using

(5.41). Upon doing so the equation simplifies to

OF° 0 = —2QF *“Udgepq + 3 F R — 2F° F . C% — Flap f*C%
+FP AP A C%C oy — 2F . C%  VEA®, + 2F° . C% VA, (5.53)

We see that both of these wave equations are appealing from a purely theoretical
point of view since, upon setting the structure constants to zero, they both reduce
to the equivalent wave equation for the Faraday tensor in electromagnetism. This
is intuitive since the only thing that separates Yang-Mills from electromagnetism is
the addition of non-linear terms that are represented by the inclusion of structure

constants.
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5.3.2 Subsidiary equations for Yang-Mills fields

As with the previous results we must check that the propagation of the constraints is

satisfied. To this end we define some subsidiary variables for the Yang-Mills system.

" = —f*+ V, A", (5.54a)
Q% = FcabAbaCabc + VfFafb, (5.54Db)
Foap = —Fp + A AGC % + Vo A% — V, A%, (5.54c)

The subsidiary equation for the gauge source function

We will start by constructing a wave equation for the subsidiary variable for the
gauge source function. Applying the d’Alambertian to (5.54a) and making use of
(4.23) followed by (3.29) and (5.42) then the end result is

O = — foC%JI° — AP C% VI 4+ AC% V F,° + F°, 0% VP A, (5.55)
Now, an alternate form of (5.54c¢) is

VA% = 2(F% — AP A%C %) + 2(V, A% + VA%, (5.56)

1
2
which is obtained by taking into account the antisymmetry of (5.54¢). Substituting

(5.56) into (5.55) and making use of (5.54b) to remove the derivative of the Faraday

tensor and one obtains

OI* = _%FbabAhaACbCuaeCebc o FbabAbaAcbOabecew
— [PC% I — AP C% 9, — LF O F Y — AMC% VI (5.57)

The first two terms of (5.57) can be eliminated using the Young projector of the
Jacobi identity. Upon substituting (5.41) into said terms and the end result can be
verified to be

(I = _fbcabch _ AbaCachCa . %Fcabcabcfbab _ Abacabcvanc’ (558)
which is a homogeneous wave equation in the subsidiary variables as required.

The subsidiary equation for the second Yang-Mills equation

Next we will proceed to show that the wave equation for (5.54c¢) is homogeneous

in the subsidiary variables. Beginning by applying the d’Alembertian operator to
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(5.54c¢), then using (4.23) followed by (2.12), (3.29), (4.47), (4.48), (5.54c), (4.11),
(2.30) and (5.53) then one ends up with

Dfaab - Saab + Qlaab + QAacAabc - QAacAbac + AacAabc
—2QdaeaF " + ERF oy — FeC% Vo F 0 + PO F be
— AP C% NV Fi o+ A*C6 Vo T cq + S RF oy — 2Ql e F*, (5.59)

where, for the sake of making the analysis more manageable and clear, we have

chosen to define the quantities

3uab = Fbachchubc - becAhaAcccabeOebc - FaabAhcfaCabeOecb
+FaacAbbACCOuheCecb + AbaAcbfa(CabeCehc - CuDeCehc + Oabececb)a (560)

Ay = 24 A°C C o Vo A%y + 24% AC O VI Ay
+2AbbAccCaceCebbv[bADc] + FcbccachcAba + Fwaccmbcvbflhc
_CabcvbAccchba + QCabcchcbchba + CabcvaAccchbb' (561)

Let us now proceed to re-express the remaining variables in a more symmetric
manner. First, we notice that the final terms in (5.60) cancel out due to the Jacobi
identity. Next, we notice that it is possible to rewrite the last three terms in (5.61)
such that all the derivatives of the gauge potential have the same indices by a careful
application of (5.54¢). When we do this, we find that all of the aforementioned terms

are equal to

Cabcfbbcchca - CabcvcfbacAcb + AbbAccCaanebcchaa
— AL ACC C 0 Vo AY — FC% VA, + FC O VEA®,. (5.62)

Rewriting (5.61) using (5.62) and then combining all these obtained relations with
(5.59) then making use of (5.54¢) to again ensure that all the derivatives of the gauge
potential have the same indices, then it can be verified that all the obtained terms
form groups that can be cancelled out using the Jacobi identity. Grouping all said

terms and applying (5.41) accordingly then the end result is

D'Faab = QAacAabc - QAAC(CA/\bac + AaCAabc + %Rfaab - ZQdacbd«/—-qu - F’cbccfabc'AF'baC
_Fcaccabcfbcb + fbcabcfcba - AbbAccCaceCebDJraac - AbcAccOgeCecDJraba
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+ AL ACC CF o F e — A" C%6 Vo F oy + AC 0V F o + 206 Fo 1V Al ), (5.63)
which is a homogeneous wave equation as required.

The subsidiary equation for the first Yang-Mills equation

Finally, we proceed to construct a homogeneous wave equation for (5.54b), which
is the most challenging of all the Yang-Mills subsidiary equations to construct. It
should be expressed that the derivation of this wave equation relies on a subtlety,
which was mentioned at the start of this section. In the derivation of the wave
equation for (5.54¢) we made use of the wave equation for the Faraday tensor that
was constructed from the first Yang-Mills equation i.e. (5.53). However, for the
construction of the wave equation for (5.54b), it is much more convenient to use
the wave equation for the Faraday tensor that is constructed from the Yang-Mills
Bianchi identity to eliminate certain terms. Furthermore, rather non-intuitively, the
form of the equation that is used in the analysis is in fact (5.47), not the simpler
version of the equation (5.48). As mentioned beforehand, the equations that the
two wave equations are derived from are not independent of each other, meaning
that the two wave equations are equivalent to each other. This means that using
(5.47) in the analysis is a perfectly acceptable course of action. Begin by applying
the d’Alembertian to (5.54b), which gives

9% = A" C%OF o + F0pC% A + OV F 4y + C% VA"V, VEA™,
(5.64)
then using (4.23) followed by (2.12), (3.29) and (2.18) to remove certain curvature

relations and (5.64) becomes

09% = LRV F%" 4+ LF% VR — V,OF%" — F*UyqV*Q + 1 F%, VR
_2LbaVCFaac o FaacVCLba o Abac«abcDFcba _ FcbacabcDAba
—20°%V F*o VEAY + QFY gdpae” + 2Qdpaea VEF . (5.65)

Next, we make use of (5.24) and (5.45) in order to remove the d’Alembertian
operators in (5.65), followed by (4.23) to arrange the second order derivatives that
get produced, then (5.54b), (5.54¢) and (5.54a) to introduce the subsidiary variables

into the equation. After doing all this (5.65) becomes

|:|9ab = 6ab - FeacAbbAcaADCCabfcfchgae + Fwwddbcadan - Qmecvddbacd
_AbaAccCabDCacevaeac =+ 2FDaCAbaCa[c\e\Ceb]dvbAcc + Cabcvacacchba
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_Faacchba + FbacAthabeCechcAca - FcaccahcvcvaAbb + FcaccabcvcvbAbaa(5~66>

where &%, is a shorthand notation for all the subsidiary symbols that have been

created as a result of all the substitutions, which is specifically equal to

B = FPpa A OO Il 4 2Lpa 0% + R, — 0%
— AP AT C O 0 + 20% Vp Al @7 — AP0, (V9% + Vi 25,). (5.67)

Now, we may eliminate the derivative of the Schouten tensor in (5.66) using (4.47),
due to the fact that the Schouten tensor is symmetric and the Faraday tensor is
antisymmetric and hence a contraction of the two is zero. The derivative of the
Weyl tensor is eliminated using (4.48) and the second order derivatives of the gauge

potential can be eliminated using (5.54¢), which gives

D?ab — éab . FeacAbbAcaADCCabefchgDe _ AbaAccOubDODcevaeac o Fbacc«abcchcba
_i_FDaCAbacvawcebavbAcc - FaacAbaCabeCecbvbAw + Cabcvacacchba

HFP 0 AP C% O 6 VEA™ + P AP C % O g VEA™ — P, AP (% C*, VA, (5.68)

Where &% is simply (5.67) plus any additional subsidiary variables that have

been created as a result of our substitutions, specifically

S% = 6% — QF Ay, — FYAyge — F O VI + F O VEF S (5.69)

As before we proceed to systematically eliminate the remaining troublesome terms
in a methodical step-by-step process. The key to solving this problem is to rewrite
the first two terms of the last line of (5.68) in a more appropriate form. Once again,
we make use of (5.56) in order to express the terms in a more symmetric fashion,
applying this equation to the terms of interest and we find that said terms are equal
to

FaacAbbCaDeCebcchca + FaacAbbCabeCecbchca - _%FcacFaacAbeaceCebb
"‘%FeacAbbAcaADcCaefcfbgCgco _ %FaacAbbCabeCecDJrcac
— L FF g AP AT AT OO (T g O — S0 A% C %% CF o F¥°. (5.70)
Substituting (5.70) into (5.68) and we can see that multiple terms can be cancelled

out with the Jacobi identity. So, grouping together the necessary terms and applying

(5.41) and the wave equation for the subsidiary variable reduces to
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DQab — éab 4 FcchDacAbacaaeceba o %FcacFDacAbbcacecebD
_AhaACCCubDOacevaeac - Fbaccuhcchcba + CubcvaCacchha
— 5 FPac AP C O @ F¢ = S 4 A% C % O F (5.71)

As we can see, the wave equation has simplified greatly, all that is left to do is to
deal with the remaining terms that involve derivatives of the Faraday tensor. Let
us isolate the terms involving derivatives of the Faraday tensor to show that they
indeed cancel out. First, we start by removing the derivative of the gauge potential
by applying (5.56), then the derivatives of the Faraday tensor using (5.54c), and

cancelling out multiple terms with (5.41) and (5.71) becomes

9% = &% + F4 F° o A" C% Ol — 5FF 0 A% C%Ca
_FaacAbaCaDeCebcvbAcc _ Fcaccabcvbchba _ FaacAbbCaDeCebcchca
HFR A O O VEAY, — FF 1 Oy VEVEAY, 4 FE OOy VOV, A, (5.72)

where, as before we have defined

&y = JAACCNC 4V F ae = 5O F Vo F oo = §FC0eC V™
_'_AbaAccCabeCecDVbJraac - Fcaccabcvcfbba - %FaacAbbCabeCeca-Fcac
"‘éab - %FbacAbeaOeCebc-ch7 (573)
i.e. we have chosen to collect all the subsidiary variables into a single term to make
our equation easier to analyse. Now, returning to (5.72), we first eliminate two of

the second order derivatives using (4.23); the third is eliminated using an equation

which, like (5.56), is based on symmetry

vavbAuc = %AadRabcd + %vavbAuc + %vbvaAaca (574)

it can be verified by applying (4.23) that (5.74) is indeed true. Upon performing all
of these tasks, it can be verified that (5.72) reduces to

DQab — éab 4 %FCCdAbaRbachabc o FtchbaRbcadCabc o %FcacFaacAbbCaceCeba
FFC g AT A APC 4Oy O%) — FP e A% OO0 VEA™ + F° (AP C % C 0 F 3 (5.75)

The two terms in (5.75) containing the Riemann tensor can be eliminated using

the Young projector, then using (5.56) to remove the term containing a derivative
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of the gauge potential and (5.75) becomes

e, = éab + FeacAbbAcaAaCCaefocgCgbb - %Fcaccabcvb}—bm
— L F G AN AT AN CT 4Oy OO + FP 0o A O CF 0 F . (5.76)

Finally, the only remaining two non-subsidiary terms can be cancelled out with
(5.41). So, replacing all the terms that we started out with in (5.71) with (5.76) and

finally one obtains

9% = &% — LFC O VPP 4 F2 A O O F<, (5.77)

or, equivalently by "unwrapping” the &%, terms using (5.73), (5.69), (5.67) then

(5.77) can be written as

C09% = FPh A" % oIl — QF™ A e — FPC% 8 — L0 Ay Co O F
_FaacAbac + 2Lba9ua - AbbAcaCabeCecDQDa + 2C’abcv[l)14|cla] - Abaoabc(va&)cb + Vb(-Pca)
+éRQab - F’cbccmbcval_[b + %Fcacoabcvbfbac + AbaACC(%OaDeOebc + Cubececo)vbfaaca (578)

which is a homogeneous wave equation in the subsidiary variables, as required.

Summary

We have derived a set of evolution equations for the classical Yang-Mills fields cou-
pled to 4-dimensional conformal spacetimes. Furthermore, we have shown through
the propagation of the constraints that any solution to the evolution equations im-

plies a solution to the Yang-Mills equations.

5.4 Perfect Fluids

5.4.1 The Euler equations

The last type of trace-free matter that we will analyse is that of a perfect, irrota-
tional, pure radiation fluid [1]. In the context of GR this fluid satisfies the relativistic
Euler equations. The relativistic Euler equations follow from the physical energy-
momentum tensor of a fluid

Tap = (p + P)iatis — PJab, (5.79)
where p is the physical pressure of the fluid, p is the physical density of the fluid and
U, is the physical 4-velocity of the fluid. An important property of the 4-velocity,
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which is dependent on both the metric signature and the pressure, is that when we

contract a 4-velocity vector with itself the end result is unity, i.e.

i = 1. (5.80)

Additionally, even though the energy-momentum tensor is written in terms of
the pressure, density and the 4-velocity, the Euler equations are expressed only in
terms of the density and the 4-velocity. To this end one needs an equation that
relates the variables of the Euler equations to the pressure, which is the equation of
state. The precise form of the equation of state depends on the specific fluid under

consideration; for a perfect radiation fluid, the equation of state is

p. (5.81)

W=

D=

Now, using the fact that the energy-momentum tensor is divergence free (due to
energy conservation), we can deduce the Euler equations by differentiating (5.80),

which gives

UV o iy, + UV oy, + (P + )iV %ig + (p + P)aVaiiy — Vip = 0. (5.82)
Contracting (5.82) with u® gives
WV T, = 0N op + (P4 p) Vg + (p+ p)aub Vi, — a° = 0. (5.83)

However, using (5.80) we can infer that

vb(ua ) = 20" Vbua = 0

so we can clearly see that

1Vyiiq = 0. (5.84)

Therefore, making use of (5.84) and (5.83) becomes

UV op 4 (p+ p)V%i, = 0, (5.85)

which is the first relativistic Euler equation. To obtain the next relativistic Euler
equation we need to make use of the following tensor, which decomposes a tensor

into its spatial part and its timelike part

he’ = 6,0 — tigu. (5.86)

If we contract (5.86) with a 4-velocity vector then the end result is trivial i.e.
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hotii, = 0. (5.87)

We are now in a position to obtain the second Euler equation; multiplying (5.82)
by h.b yields

heh(p+ p)aV oty — hVip = 0. (5.88)

Finally, substituting (5.86) into (5.88), then multiplying out and using (5.84) to
simplify gives the result

(:5 + ﬁ)aa@aac + acab@bﬁ - @cﬁ = 0, (589)

which is the second physical Euler equation. As it turns out, both (5.85) and (5.89)
are invariant under a specific conformal transformation. Thanks to the freedom
offered by the use of conformal transformations, we are able to choose the forms of
the unphysical variables. The transformations required to preserve the forms of the

Euler equations are

T =0T,  ua=Qe, p=Q""5  p=Q7, (5.90)

upon substituting (5.90) into (5.85) and (5.89) it can be verified that the unphysical

Euler equations have the form

u'Vap+ 3pVau' =0, (5.91a)
%pucvcua + %uaucvcp — %Vap =0, (5.91b)

where u®, p and p are the unphysical four velocity, unphysical pressure and the
unphysical density of the fluid, respectively. As we can see the unphysical Euler
equations have precisely the same form as the physical Euler equations and are

conformally invariant as a result.

5.4.2 Alternative form of the Euler Equations

Up until this point we have been deriving wave equations via the act of directly
differentiating the respective field equations. However, trying to obtain evolution
equations by direct differentiation of (5.91a) and (5.91b) is more difficult since doing
so produces second order derivatives of both p and u® and, unlike the previous cases,
we do not have any means of simplifying these second order derivatives. However,
there is a way that one can construct evolution equations for fluids. It turns out that
one can construct wave equations for fluids if one re-expresses the Euler equations

in terms of a quantity known as the fluid index. The fluid index is defined as
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f(p) = exp /p _ds (5.92)

o p(s)+s’
where p(s) is the density of the fluid written in terms of the equation of state.
Physically, this fluid index provides a way of characterising the density of the fluid.

From this fluid index, we can define the dynamic 4-velocity

C, = fu,. (5.93)

Using the fact that u®u, = 1 then we obtain an important relation from (5.93)

c'c, = f2. (5.94)

We now proceed to derive an alternative form of the Fuler equations. Before we
analyse the Euler equations themselves, we first need to derive some equations for
the derivative of the fluid index. Begin by differentiating (5.92), using the chain rule
and also taking into account that for our purposes the equations are expressed in
terms of pressure (meaning that s = p in our analysis), and one obtains

v.f= 10 g (5.95)

p(p) +p
We may also derive an alternative equation for the derivative for the fluid index

by differentiating (5.94), which gives

Vof = f10V,C,. (5.96)

We are now in the position to derive an alternate form of the Euler equations,
beginning with the second equation. First we write out the second Euler equation

in a more convenient form by analysing the last two terms of said equation

uu’Vyp — Vep = (ueu’ — 52)Vyp, (5.97)

then dividing through by p + p and substituting (5.97) into (5.91b) and the second

Euler equation has the form

b

. 1
Yl Gp— ———Vop. (5.98)

u*'V e =
p+p p+p

Now, we rewrite all of the terms in (5.98) in terms of the dynamic 4-velocity, using

(5.93) and the first term becomes

u'Vauy = f2HCV,Cy — f1CV L fCy), (5.99)

and by using (5.95) we can rewrite the last two terms of (5.98) as
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upu?

\V/ ——Vc S OLOAY, v/ 5.100
pra et [~ of — V. f. ( )

So, by substituting in (5.99) and (5.100) into (5.98) and using (5.96) to eliminate
the derivative of the fluid index, it can be verified that the second Euler equation

has the form

CYV.Cp, — V,Cy) =

The first Euler equation can also be re-expressed in a form that depends on the
dynamic 4-velocity. As before we proceed to rewrite all of the individual terms in
the equation. Begin by applying (5.93) and (5.96) to the first term in (5.91a), which

gives

Viu, = —f2C°C°V,C. + f'VC,. (5.101)

To rewrite the second term in the first Euler equation Vup, we make use of the

rule for the derivative of inverse functions Z” = W as well as the chain rule. Upon

doing so it can be verified that the second term in (5.91a) becomes

LA e ORv (5.102)

dp  f
Thus, if we substitute (5.101) and (5.102) into (5.91a) and divide through by a
factor of p + p, the equation takes the form

d
— f3CUCV,C + fTIVOC, + fldguava f=o. (5.103)
Now letting dp/dp = p' and using (5.96) to remove the derivative of the fluid
index and (5.103) becomes
VC, + f2C°C(p) — 1)V,C. = 0. (5.104)

We then proceed to express everything in terms of C%. Recall that C°C, = f2,
so substituting into (5.104) and the end result is

(p —1)
C,C?

Now, in order to make future calculations more manageable we can chose to define

Vel, + c'Ccv,C, = 0.

a new variable

1
CtCy’

we can apply this to the alternate form of the first Euler equation. So in summary

P

(5.105)

the alternate form of the Euler equations in the case where the equation of state is
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given by (5.81) are

V°C, + P(p — 1)C°C°V,C, = 0, (5.106a)
C(V,Cy — V,C,) = 0. (5.106b)

Conformal properties of the alternate Euler equations

An important property of the Euler equations in this form is that they are invariant
under a conformal rescaling, which means that it is possible to analyse radiation
fluids and to derive evolution equations from a conformal point of view. First, we

define a rescaled metric

9= 1%, (5.107)

using (1.3) and then analyse the behaviour of the second Euler equation under such

a transformation. Applying (2.13) to (5.106b) yields
ViCh — VO = =S .Cy, (5.108)
where T, = f~'V.f. Then substituting in (2.13) into (5.108) and multiplying out
gives
ViCy = VaCy = —f Vo fCo + [CVf + [ g Ve fC° (5.109)

We then use (5.96) to remove the derivative of the fluid index in (5.109); upon

doing so and multiplying out one obtains the relation

ViCy = VoCiy + [2CV,C.Cy + [ 2CCV,Co — [ 29 CeCV.Cy. (5.110)

By directly substituting (5.110) into (5.106b) and simplifying it can be verified
that

C*(VuCy — VC,) = CYVCy, — V,C,) = 0. (5.111)

So the equation is invariant under a conformal transformation and it is perfectly
reasonable to utilize both of the Euler equations written in terms of the dynamic
4-velocity when making use of conformal methods. These particular transformation
laws also help to give an actual physical understanding of the nature of the dynamic

4-velocity; if we multiply out (5.111), then it can be verified that

CV,C, =0, (5.112)
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which is the same form as the geodesic equation. This means that C, is a vector
tangent to geodesics of the metric (5.107); crucially this is true only for this specific

choice of metric.

5.4.3 Wave equations for the fluids

Now that we have obtained a more satisfactory set of equations for fluids from a con-
formal point of view, we will proceed to derive a set of wave equations that describe
the evolution of fluids. However, before we proceed to perform such a task, we must
mention some very important considerations for this particular case. Firstly, the
wave equations will not be of the same form as any of the previous results; whereas
the principal part of the previous wave equations was the d’Alembertian operator
of the metric g4, this will not be the case for evolution equations for fluids. The
reason for this is due to the fact that the d’Alembertian operator describes objects
that propagate at the speed of light (evident by the 1/c? term that appears in the
d’Alembertian). However, in general, fluids do not propagate at light speeds, they
propagate at the speed of sound. Although the individual particles of a radiation
fluid are indeed massless, when one analyses this fluid using statistical mechanics
it can be shown that in fact that speed of said fluid is less than light speed. As a
result, the principal part of the wave equations will be a modified operator, whose

precise form shall be obtained during the actual derivations.

The next point to take into consideration is that we will only be considering a
very specific class of perfect fluid, an irrotational fluid. An irrotational fluid, as the
name implies, is one where the fluid lines have no tendency to rotate or twist. In

this case this limits the form of the dynamic 4-velocity

Co = V.9, (5.113)

where @ is a scalar field. For an irrotational fluid then (5.113) is a solution to
(5.106b). Physically, this scalar field may be thought of as an imaginary flux surface
that provides a way of quantifying the number of fluid lines that pass through a

certain region.

Wave equation for &

To derive some wave equations for the fluid variables we start by rearranging (5.106a),
then applying (5.113) to the contracted derivative of the dynamic 4-velocity and then
we apply (5.105), which gives

Ob = P(1—p)C*"CV.C,. (5.114)

Now, using the equation of state (5.81), we can see that p' = 3; therefore the wave
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equation for the scalar field is

06 = —2PC°C°V,V,. (5.115)

We have not quite finished with this equation as we have yet to define the mod-
ified wave operator that was mentioned at the start of this section. The form of
the modified wave operator will become much more apparent when we derive the

equation for the vortex velocity.

Wave equation for C,

To obtain a wave equation for the vortex velocity C, we differentiate (5.106b) and
apply (4.23), (3.29), (5.106a) and (5.106b), doing so gives

U, = 2L,"C, + %RC;, —2PC*V,C.V,C° = 2CC°V,PV.C,
—2PC*V,C°V . C, —2PC*C°V .V (. (5.116)

Examining both this equation and (5.115), we can clearly see the form of the

modified wave operator, and can define the so-called modified d’Alembertian

O =0+2PC*CV .V, (5.117)

this operator is still valid as a hyperbolic operator, because even though it contains
second order derivatives other than the d’Alembertian, the dynamic 4-velocity is a
small quantity compared to the speed of light and hence (5.117) is very close to the
original d’Alembertian and retains the same properties as the d’Alembertian. So
applying (5.117) to both (5.115) and (5.116) and the equations have the form

0¢ =0, (5.118a)
OCy, = 2Ly*C, + 1 RCy — 2PC*V ,C.V,C*
—2C“C°V,PV.C, — 4APC*V,C°V .C,. (5.118b)

This completes the derivation of the wave equations for the fluids, since the equa-
tions are written only in terms of the dynamic 4-velocity, which helps to simplify

things considerably.

5.4.4 Subsidiary equations for the fluids

Now that we have derived some wave equations for irrotational fluids that are satis-

factory from a conformal point of view, we now need to check that a solution to the
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wave equations implies a solution to the Euler equations, which means constructing

a system of subsidiary equations for the Euler equations

H = V.C" + 2PCC°V,C,, (5.119a)
Eab = VaCb - VbCa, (5.119b)
N,=C, — V.. (5.119¢)

Wave Equation for H

As has been the case before, we will proceed to construct a system of homogeneous
wave equations for the subsidiary variables. We start with the wave equation for

(5.119a), differentiating said equation gives

OH =0V,C* + 4C°V,C°V,C.V° P + 2C°*C*V,C, 0P + 2PC*V*C,0C,
+2PC*C’OV,C, + 4C°C°V NV, C,V°P + 4C°V,C.V°* PV°C,
+4PVPCV Oy VC, + 4PCV N ,C,VEC? + 4PC*V YV, C,VC".(5.120)

Then, applying (4.23) to reorder the covariant derivatives, (2.12), (3.29) and (2.18)
to remove the curvature components, plus (5.116) to get rid of the second order

derivatives of the Vortex velocity and we get

OH = 0. (5.121)

This is a trivially homogeneous solution, since we could easily state that a solution
to (5.121) occurs when all the variables are equal to zero, hence the propagation of

the constraints is satisfied.

Wave Equation for ¢,

Next we examine the wave equation for the subsidiary variable of the second Euler

equation. Differentiating (5.119b) and applying (4.23) gives

Dé?ab = VCLDCZ, - VbDCa + CdeRdbca + Rdacbchd
— R4,V .Cy — Ry VCy + Ry VCy + R, VCy — R0 VO, (5.122)

The next step is to use the wave equation for the dynamic 4-velocity to eliminate
the derivatives of C,; doing so creates an equation with a very large number of
terms. In spite of this, there is a great deal of symmetry among the various terms.

We may take advantage of this symmetry by once again applying (4.23) in a very
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specific order, such that multiple second order derivative terms cancel out. Doing

so and applying both (2.12) and (3.29) to eliminate the curvature terms and we get

Leg = %CbVaR + C°V, Ly + %RVaCb — %Cava — CVyLge — %RV{,CQ
_C(bchbc + Qccvddacbd - QC’Cvddadbc + dacbdcﬂjvdQ - dadbcccde + QQdacbdde’c
20 VIC + 2QPd 13y C°CNI C, — 20 Py s C°CNI O 4 20 50a V7 C... (5.123)

We then use both (4.47) and (2.18) to eliminate the derivatives of the Schouten
tensor as well as (4.48) to remove the contracted derivatives of the Weyl tensor,

which gives

Dgab = QCC(Tabc - Tacb + Tbca) + QCCAabc - QCCAbac + C'CAabc
+%Rvacb — %vaCa + (dacbd - dabcd — dadbc)ccde + 2Qdacbdvdcm
—20d o VO + 2QPCCNI Co(dupap — daavs + dappa), (5.124)

we can see that there are multiple terms that can be cancelled out and have been
factorized as a result. Applying (4.11) and (2.30) to cancel out said terms and then
using (5.119b) to eliminate the antisymmetric pair of derivatives of the dynamic

4-velocity and we are left with

Oeay = L Reay+ Q0 A gpe— QC Ao+ CA e+ 221y V10 — 20l VAC. (5.125)

The final step is to apply the Bianchi identity to the remaining two terms that

are not homogeneous in the subsidiary variables, upon doing so the result is

Ueap = %Rsab + QCAgpe — QCNpae + CAgpe + 2 pea VICE. (5.126)

We can see that (5.126) is nearly homogeneous, except for the last term. To get rid
of this term we will make use of the definition of the zero quantity NV,, differentiating

(5.119¢) and rearranging gives rise to the equation

ViCe = VIVed — VIN©. (5.127)

Applying (5.127) to (5.126) and the term containing the second order derivative
of the fluid scalar vanishes since the term V,V,® is a symmetric quantity, which
is contracted with an antisymmetric pair of indices on the Weyl tensor and the
contraction of a symmetric object with an antisymmetric object is zero. Hence
(5.126) becomes
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|:]5ab = %Rgab + QOCAabc - QccAbac + CwAabc - 2g2d¢zbcclvd]\/vc7 (5128)

which is homogeneous in the subsidiary variables.

Wave equation for N,

Finally, we proceed to construct a homogeneous wave equation for the quantity
related to the fluid scalar N,. Differentiating (5.119¢) and applying (4.23), then
using (5.115) and the result

ON, = 2PC*C°V,V .V, ® 4 20°C°V PV .V, ® + 0C, — Ry V°O. (5.129)

Now, for reasons that will become apparent in a very short while, it is necessary to
apply (4.23) to the third order derivative of the scalar field such that all contracted
indices do not act directly on the scalar field. Doing so and applying (5.119¢),
(5.115) and (5.118b) gives

ON, = :RN, + 2PLy.C*C°N? = 2P L, .C*C°Ny, — 2P Ly, C,C*N*
+2P Lo CyCP N — 2QPdpeqC*C N — 2PC .V ,C° — 2PC*C°V e
+2L N — 2C°C°V PV N, — 4PC*V ,C°V .N, — 2PC*C°V ,V,N,. (5.130)

It is here that we see the reason for commuting the derivatives of the third order
derivative. In (5.130), there is a second order derivative of N,, however, when we
combine this with the d’Alembertian on the right hand side of the equation we notice
that they form a modified d’Alembertian. Hence, (5.130) upon the application of
(5.117) takes the form

ON, = tRN, + 2PLy.C*C°N* — 2PL,.C*C°N, — 2PLy.C,C*N°
+2P L. CyCP N — 2QPd1yeqC*C N — 2PC?4 V.0 — 2PC*C°V e ap
+2L, N — 2C°C°V PV N, — 4PC*V ,C°V_.N,. (5.131)

Although this is the only one of the subsidiary equations to feature the modified
d’Alembertian, this is not a problem since this modified d’Alembertian, as mentioned
previously, possesses all the same properties as the standard d’Alembertian. Plus,
this is not unusual since we are working with objects that do not propagate at light
speed and hence one would expect some of the equations describing their behaviour
to be different.
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Summary

We have derived a set of valid wave equations for the evolution of an irrotational
fluid. Furthermore, we have seen from the propagation of the constraints that any

solution to the wave equations implies a solution to the Euler equations.



6 The Conformal Scalar Field
System

Thus far in this thesis we have been analysing spacetimes coupled to trace-free
matter purely from point of view of the CWEs, however, we will now attempt to de-
rive results for the CFEs. More specifically, we will consider spatially homogeneous
spacetimes coupled to a specific trace-free matter model. A spatially homogeneous
spacetime is one that has the property that when a spacetime is described using the
3+1 decomposition, it is possible to choose a certain coordinate system such that all
spatial derivatives of the metric are zero at a certain instant of time. It is not un-
reasonable to study spatially homogeneous spacetimes since one of the cornerstones
of modern Cosmology states that the Universe is indeed spatially homogeneous on

a large enough scale of distance.

6.1 Warped product metrics

A particularly useful way of analysing a spatially homogeneous spacetime is to ex-
press the metric of said spacetime as a warped product. Essentially, this technique
decomposes the metric into two different block matrices; each block is described
only by some of the coordinates [14]. These coordinates are written as z# = (2%, 2)
where A =0,....m,7=m+1,...,n and n is the dimension of the spacetime. With

this set of coordinates, the general form of the warped product metric is given by

g = hapde?dz® — 2k, daidat, 6.1
J

where h4p is a matrix whose components depend only on the z# coordinates, k;; is
a matrix whose components depend on the z* coordinates and f is a scalar that is

a function of the z* coordinates. In matrix form (6.2) is given as

hAB 0
G = {T‘ﬁ] . (6.2)

Now, the precise form of (6.2) depends on the choice of coordinates that we
use. For example, if the coordinates were spherical angular coordinates, then the
two different matrices hsp and fk;; in (6.2) would be two 2 x 2 matrices, one

containing functions of the (¢,r) coordinates and one containing functions of the

92
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(0, ¢) coordinates. For our specific case, we will choose for the metric to be separated
into time indices and space indices. So, for our specific case the Latin indices a, b, ¢, d
refer to spacetime indices, A, B, C refer to time indices and i, j, k, [, m refer to spatial
indices. For the case of a spatially homogeneous and isotropic spacetime the metric

has the form

g = —dr* + PPk;daz'd2? (6.3)

where [ is a scalar that takes the form of f and is simply denoted as such to dis-
tinguish the fact that we are working with cosmological models. It should be noted
k;j is a metric of constant curvature as this is a spatially homogeneous spacetime,
meaning that the spatial derivatives of the curvature on an individual hypersurface

must be zero. Written out in the form of (6.2) and (6.3) is equal to

go| 0O 0 0
0 |k ko k
G = n ki k| (6.4)
0 | ka1 koo has
k31 ksa kss

6.2 Computation of the geometric quantities for

warped product metrics

6.2.1 Christoffel Symbols

Given the metric (6.4), one would like to compute the curvature; to do so requires
one to compute the Christoffel symbols. When one computes the Christoffel symbols
associated with this metric, it is important to keep in mind the two different types
of indices that feature in (6.2). We will now compute the various Christoffel symbols
for (6.4), starting with the symbol containing only pure timelike indices; substituting

said indices into the metric gives

1
IML‘BC’ - §hAD<aChBD + thCD — 8Dth). (65)

Since the only time index is A = B = C' = 0 this means that the only pure
timelike Christoffel symbol is Iy, which is equal to

1
My = 590'0(809,00 + 0090p — 0pG00), (6.6)

we can see from (6.4) that ¢g° = 0 when p # 0, which gives

1
F000 = —0v9o00- (6-7)

Now, we can read from the metric that the only component is go9 = —1; substi-
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tuting this value into (6.7) and we find that

FOOO — 0 (68)

Likewise, it is possible to compute an equation for Christoffel symbols with purely

spatial indices via substitution into (6.4), which yields

I, = §/€jm(3lkim + Oikim — Omkir). (6.9)

Finally, there are also Christoffel symbols with mixed indices to consider. Thank-
fully, due to the form of (6.4) and also the fact that [ = 1, there are only a very
small number of Christoffel symbols with mixed indices that are non-zero. We will
show a direct computation of one of the non-vanishing Christoffel symbols as an

example, namely [';;. Substituting a = 0, b =i, ¢ = j into (6.4) gives

Foij = %QAM(@'QM + ajgm - augij)a (6.10)

however, g% is only non-zero if 0 = p. Using this fact and the fact that gap =
hapg = hgo and we can show that (6.10) has the form
i i L,
Loy =15 = fl E';, (6.11)
where [’ is a derivative of the function [ with respect to time. Through an identical

method, it can be shown that the other mixed Christoffel symbols vanish
M, =0, [ = 0. (6.12)

6.2.2 Riemann tensor components

In addition to computing Christoffel symbols of pure and mixed indices, one can
also do the same thing for the 4-dimensional curvature; by substituting (6.5), (6.9)
and (6.11) into (2.7) then it can be verified that the components of the Riemann

curvature tensor for a warped product metric are equal to

R’000[g] = R°o00[k] = 0, (6.13a)
. 1

Rojo = _k'lijoDol, (6.13Db)

R jnalg) = Rijralk] + 2(0) k], (6.13c)

where
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In fact (6.14) is a direct result k;; being of constant curvature; one can readily
verify that Dy R;jm[k] = 0.

6.2.3 Ricci tensor components

Once we have computed the Riemann curvature terms, the next logical step is

compute the Ricci and Schouten tensors along with the Ricci scalar:

Roo[g] = R%a0[g] = R%000[7] + R'oio[d),
from which we can deduce that the purely time like Ricci tensor component is

~ 1 3
Roolg] = —ko" Do Dol = 1" (6.15)

We now proceed to compute the purely spatial Ricci tensor component, which is

a somewhat lengthy calculation

Ri;[3] = R%0;[g) + RFuyldl. (6.16)

While not immediately obvious, it can be shown that R%q;[d] = —Rjjo[g]. Begin

with the equation

Rigjo = giOROOOj + gin ™00, (6.17)

however, R;ojo = Roio; due to symmetry, so (6.17) becomes

R%0; = 6" Rojo;, (6.18)
but g% = —1, due to the metric signature, hence (6.18) can be written as
Roioj = _ROin- (619)

Therefore, substituting in (6.13b) into (6.19) and we conclude that

R = kyll". (6.20)

That is half of the terms in (6.16) calculated; we also need to calculate R¥;;[d]

R i;19) = 2ekin kg + 2(1) ki K. (6.21)
Substituting in both (6.20) and (6.21) into (6.16) gives

[m

Expanding the anti-commutator brackets and we find that the spatial Ricci tensor

is given as
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Rij = ("l + 2¢ + 2(I')*) k. (6.23)

From the Ricci tensor, we can compute the Ricci scalar

R = g®Ry, (6.24)

however, (6.24) is written in terms of spacetime indices, thus we need to decompose

(6.24) into both time and space indices,

R= gOOROO + ginij. (625)

Taking into account that ¢°° = —1 and ¢ = [7?k% and substituting in (6.15) and
(6.23) into (6.25) then one obtains
~ 6 " "2
R[g] = Z—Q(ll +e+ (')7). (6.26)
Through a similar method, the Ricci curvature components with mixed indices

can be verified to vanish

Ry = Rip = 0, (6.27)

which is due to the fact that the Riemann curvature tensor components that one

contracts are zero.

6.2.4 Schouten tensor components

So we have derived the Riemann and Ricci tensors, as well as the Ricci scalar for
a spatially homogeneous spacetime. Given this it becomes natural to derive the
Schouten tensor components for such a spacetime. Begin by computing the pure

time components of the Schouten tensor by substituting time indices into (2.9)

5 1 1
Loo[g] = iRoo - ERQOO- (6-28)

Now, taking into account the metric signature and substituting in (6.15) we can

see that, upon simplification, (6.28) can be written as

Loold] = 2;(211” Lot (1)), (6.29)

Next, we proceed to compute L;; i.e. the spatial components of the Schouten
tensor. By substituting in (6.23) and (6.26) into (2.9) and simplifying gives,
~ 1 "2
Lilg) = Shii(e + ()7)- (6.30)

As for the other Schouten tensor components, again through simple substitution,
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one can easily verify that

Lio[g] = Loi[g] = 0. (6.31)

So, we have derived all the curvature components of the spacetime, however, there
is still more that we can do with the curvature terms by considering the Ricci scalar.
The remarkable thing about the Ricci scalar is that it is not a variable that appears
in the CFEs. As a result of this, one is free to choose the value of the Ricci scalar;
naturally one always chooses R in such a way that it simplifies the equation as much
as possible. In our case we will choose the value of the Ricci scalar to be R[g] = 6¢;
upon substituting this value back into (6.26) one obtains

" N2
6e = 65 ?28 + (ll2> .

We can clearly see one possible solution to the equation is when, [ = 1 and

I =1" = 0. Furthermore, a known result from the general theory of ODEs tells us
that since this is a second order non-linear ODE this is the only possible solution.
Hence, through a specific choice of gauge it is possible to deduce a specific value for
the scalar function [ and its derivatives. Substituting [ = 1 and I’ = [” = 0 into
(6.15), (6.23), (6.30) and (6.29) enables us to rewrite the curvature terms as

€ €

5 Lij = Skij. (6.32)

Rij = 2¢k;j, Roo =0, Lo = 5

6.3 Evolution equations for the scalar field system

Recall in section 5.1, we first introduced the conformally invariant scalar matter
model, which obeys a wave equation first defined as (5.2), and whose energy-
momentum tensor is given by equation (5.8). Our goal will be to derive a system
of evolution equations for a spatially homogeneous solution with matter content

described by (5.8).

6.3.1 Components of the energy-momentum tensor

First, we discuss a few properties of this energy-momentum tensor. The first two
most noteworthy things are that this tensor is both trace and divergence free, i.e.
g®T,, = 0 and V°T,, = 0. Another important point that we should make is that
because the spacetime is spatially homogeneous, the scalar field ¢ is a function
of time only, hence V,¢ = 0 for p # 0. Armed with this piece of information and
taking into account the warped-product nature of the spacetime, we can calculate the
different components of the energy-momentum tensor. We will start by computing

the time like components of the tensor, substituting time indices into (5.8) gives
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1 1 1
Too = Vo9V — Zgoochbchb - §¢V0V0¢ + §¢2Loo, (6.33)

letting V¢ = ¢’ and substituting in (6.32) and it can be verified that (6.33) can be

written as

Ty = () + 1 VedV°6 — 106" + (6% (634

It is possible to simplify the above equation further, however, when analysing the

V.pVep term one has to be careful due the metric signature

1 1
Zvébchﬁ = Zgabvavb¢ = g V'V, (6.35)
and since ggo = —1, using (6.35) and (6.34) can be written as
1
Too = 1(3@5,)2 — 209" + ¢%e). (6.36)

It is possible to simplify this equation further using (5.2), once again taking into
count that the scalar field is a function of time, meaning O¢ = ¢” and remembering

our choice of gauge i.e. R = 6¢, means that we may write out the wave equation as

"= —¢¢. (6.37)

We notice that this equation is of the same form as the harmonic oscillator equa-
tion, & = —kx where k is a constant. This is quite a remarkable result, it means that
we may find some physical interpretation of this system and indeed of this scalar
field. Substituting (6.37) into (6.36) and we obtain

Too = S((6) +26?). (6:39)

We can write this in a nice compact form by using the following substitution

p=((¢) +e9%), (6.39)
then (6.38) is equal to
3

We can also derive an equation for T;;, i.e. the spatial components of the energy-
momentum tensor, in a similar way. Substituting the necessary spatial components
from (6.32), simplifying and writing in a compact form, again using (6.39), and the
end result is

1
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We notice that our quantity p has a form that is quite similar to the energy of the
harmonic oscillator. Hence we may interpret these components as being the energy

density of the scalar field.

6.3.2 Derivation of the evolution equations

We next need to write out the CFEs in our goal to derive a set of evolution equa-
tions for the spacetime. Consider the general form of the CFEs (3.44a)-(3.44e).
Another important fact about this spatially homogeneous spacetime is that it is
conformally flat, which we first mentioned in section 2.2.1, meaning that the Weyl
tensor vanishes. As a result of this (3.44c) and (3.44d) are trivially satisfied.

Another important point, which further helps to simplify the calculations, is to
realize that this particular spacetime when conformally extended to a global region
becomes equivalent to the de Sitter spacetime. This is due to a known result, which
says that any spacetime when globally extended has a spacelike conformal boundary.
A spacelike conformal boundary always has a positive value for the cosmological
constant, exactly like de Sitter [23, 30]. In this way we are able to choose the value
of the cosmological constant to be the same as deSitter i.e. A\ = 3, which means that
(3.44e) is equal to

20s + (V)? = 1. (6.42)

We may derive some more evolution equations for this particular choice of gauge.
First, by substituting (6.32) and (6.38) into (3.44a), we get
Q 3
O =25 1203, (6.43)
2 8
In the case of spatial indices (3.44a) becomes
Qe 1
_ = 203, =0. 44
5 TS+ girp 0 (6.44)
And finally (3.44b), which has only non-vanishing time components, reduces to
94 3
s = ! 2)6 + §QQQ'p. (6.45)

Our intention is to derive a set of evolution equations that uniquely determine

the spacetime. To do so we must derive a set of evolution equations for the two
variables that are most important to the structure of the spacetime, the conformal
factor €2 and the scalar field ¢. In this sense, only the equations for " and ¢” are
important; the other equations may simply be interpreted as constraints. The next
part is to write out the equations so that they do not depend on s, we may do this

by rearranging (6.44), which gives
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Qe 1
= ——O%. 4
s=—5 — g (6.46)

We then rewrite (6.42), by using (6.46) to eliminate s

0%e — 194/) + () = 1. (6.47)

Next, we want to eliminate s from the evolution equation for €2, which we may
do by adding (6.43) and (6.44) together; this gives the very nice result

Q= ;93,0 — Qe. (6.48)

Remark: If one takes J; of (6.38) then one can verify that 0,750 = 0, so energy

density is conserved.

6.3.3 Propagation of the constraints

So, we have derived a pair of elegant evolution equations; the next step would be
to analyse its relation to the equations that have been dropped from the system
(in other words the constraint equations), to which we use the propagation of the
constraints. We write out (6.48), rearranging all terms on the LHS, however, rather
than assuming that this equation is zero, we instead let this equation be equal to

some other variable, which we will call )

1
Q=1-Q%+ 194/) — ()2 (6.49)

The next step is to calculate the value of the differential of @, if we can show that
this is a homogeneous equation in (), then we will have proven that the solution of
Q) = 0 is valid at all times and hence our equation is correct. Differentiating (6.49)

with respect to time gives

1 1
Q = §€¢Q4¢' —2eQQ 4 £¢” Q3 + Q3 (¢)*Q + §Q4¢/¢” —200¢Y". (6.50)
Substituting in both (6.48) and (6.37) into (6.50) and one finds that the end result
is trivial i.e.
Q" =0. (6.51)

This means that the wave equation for () is also trivial since differentiating (6.51)
will give zero. As a result of this it means that the wave equation for ) is trivially

homogeneous and the propagation of the constraints is satisfied.
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6.3.4 Analysis of the evolution equations

We have successfully derived the evolution equations as well as checked their consis-
tency. The next step is to try to analyse and solve the equations. In the case of the
former we will see what we can learn about this particular spacetime model. There
are three particular cases to analyse, when € = 0,1, —1, where as mentioned, £ de-
notes the curvature of the spatial sections of the Universe. We shall analyse in detail
how each equation evolves in time. Before this, however, it is a good idea to discuss
a model of the universe first proposed by Penrose called Conformal cyclic cosmology
[25, 26]. This model postulates that the Universe that we live in is merely one of
many known as aeons. Each one of these aeons can be conformally rescaled and
each of these aeons is connected to each other at the conformal boundary. Whilst
the physical mechanisms of this model are shrouded in mystery, it does provide us
with a method of analysing the equations. In what follows we will proceed to solve
the equations numerically and display the results. What we find in all cases is that
the solutions to the equations and hence the behaviour of the conformal spacetimes

are highly dependent on the initial conditions.

We can deduce the form of the initial data by using the constraint equation if we
make the assumption that we start solving the equations at the conformal boundarys;
this is one of the advantages of using the CFEs since we are offered some freedom in
assigning precisely where we start solving the equations. At the conformal boundary
we know that € = 0, so substituting into (6.47) we get the result that ()2 =1, so

we know that the initial data is

0=0, =1 (6.52)

Note that although we have chosen ' = 1, it is possible to choose the initial
value of the derivative of the conformal boundary to be -1. The reason why we
have chosen ' = 1 is because we are choosing to evolve the equations towards the
future. Depending on the type analysis that one wishes to perform it may be more

convenient to choose €2 to be -1 and then evolve towards the past.

Analysis of the ¢ = 0 case

Begin with the case where ¢ = 0, i.e. for a flat universe. Whilst the values of the
conformal factor and its derivative are fixed by the constraints, the values of the
scalar field and its derivative are free for us to specify. To that end we will analyse
the equations after assigning values for the initial data that should describe the
behaviour of the matter and the conformal spacetime in all situations. We begin by
choosing the initial conditions ¢ = 0 and ¢’ = 0, in the case where ¢ = 0 we can see

that the evolution equation for the scalar field is trivial i.e.
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¢" = 0. (6.53)

Integrating (6.53) with respect to the proper time gives an equation for the deriva-
tive of the scalar field

¢’ = ap, (6.54)

where ag is a constant to be determined by the initial conditions. Integrating (6.54)
with respect to proper time again gives a general expression for the scalar field of a

flat universe

¢ = apT + a;. (6.55)

Substituting (6.52) into (6.48) gives an evolution equation for the conformal factor

of a flat universe

Q" =0, (6.56)

we will now proceed to analyse the behaviour of ¢ and €2 as given by the evolution
equations (6.56) and (6.53) given some choice of initial conditions. We begin with
a choice of data for ¢ and its derivative, the first choice of data will be ¢ = ¢’ = 0.
Meanwhile, the choice for the conformal factor is always fixed and given by (6.52),
courtesy of the constraint equation. Plotting the data for this choice of initial

conditions gives the plot shown in Figure 6.1.
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Figure 6.1: ¢ = 0 spacetime with ¢ = ¢’ = 0.

In all the graphs that will be displayed from this point on, the vertical axis repre-
sents the magnitude of the respective fields and the horizontal axis represents very
large units of time. In the most recent figure we notice that the conformal factor
continues to grow indefinitely. As a result of this it is impossible to rescale the
spacetime such that it is compatible with conformal cyclic cosmology, since in order
for there to be multiple aeons, there must be multiple points where the conformal
factor vanishes. One has an almost identical scenario when ¢ = 1 and ¢’ = 0, as

shown in Figure 6.2.
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2 4 6 8 10

Figure 6.2: ¢ = 0 spacetime with ¢ =1 and ¢’ = 0.

We see once again the conformal factor grows indefinitely, whereas the scalar field
converges to a constant value over time. The situation is vastly different when the
derivative of the scalar field is non-zero. Consider the case where ¢ = 0 and ¢’ = 1,

then the result is shown in Figure 6.3.
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Figure 6.3: ¢ = 0 spacetime with ¢ =0 and ¢' = 1.

Here, the conformal factor does not grow indefinitely, but instead oscillates over
time. This means that it is possible for this particular spacetime, with this choice
of initial data, to be compatible with Penrose’s idea, since conformal cyclic cosmol-
ogy states that there are infinitely many aeons that are connected by the conformal
boundary. The region between two points along the time axis where the conformal
factor crosses the boundary represents one aeon. Since there are infinitely many
points where the conformal factor vanishes, this means there are infinitely many
points that can represent the end of one aeon and the beginning of another. Addi-
tionally, we see that the matter fields grow indefinitely over time. We see a similar

result if = 0 and ¢’ = —1, as shown in Figure 6.4.

Figure 6.4: ¢ = 0 spacetime with ¢ =0 and ¢’ = —1.
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Here, we once again have a universe compatible with Penrose’s idea of infinitely
many aeons, since there are infinitely many points where the conformal factor van-
ishes. Unlike last time the fields decrease linearly over time. All the other remaining
cases are essentially variations of these previous cases. Varying the value of ¢ simply
affects the starting point of the matter fields and a positive or negative value of ¢’

determines whether the scalar field grows or decreases with time, respectively.

Hence, we can deduce that it is only possible for a conformal spacetime coupled
with a conformally invariant trace-free scalar field with zero curvature to be compat-
ible with conformal cyclic cosmology if the derivative of the scalar field is non-zero.
Futhermore, the scalar field either grows or decreases linearly with time depending

on whether the derivative of the scalar field is positive or negative, respectively.

Analysis of the ¢ = 1 case

Next, we analyse the for a positively curved universe i.e. where ¢ = 1. In this case

(6.37) has the general solution

¢ =agcosT + ajsinT, (6.57)

and therefore the derivative of the scalar field with respect to time is

¢ = —apsinT + a; cosT. (6.58)

Substituting (6.57) and (6.58) values into (6.48) and we obtain the following

evolution equation for the conformal factor

1
Q= -0+ 5Q3(a3 +a?). (6.59)

We now proceed to analyse (6.59) and (6.57) for different choices of initial data
for the scalar field and the same choice of initial data for the conformal factor. Let
us begin choosing ¢ = ¢’ = 0, then the variables ¢ and €2 evolve as shown in Figure
6.5
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Figure 6.5: ¢ = 1 spacetime with ¢ = ¢' = 0.

We can see that not only does the conformal factor tend to a constant value over

time, but also the conformal factor grows exponentially with time. Hence, it is not
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possible for a Universe with positive curvature coupled to a conformally invariant
scalar field with this choice of data. However, we notice something peculiar happens
if we change the values of the data. When ¢ = 1 and ¢’ = 0 the variables evolve as

shown in Figure 6.6

Figure 6.6: ¢ = 1 spacetime with ¢ =1 and ¢’ = 0.

We see now that both the conformal factor and the scalar field have periodic
behaviour. An almost identical result occurs if ¢ = 0 and ¢’ = 1, as displayed in

Figure 6.7.
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Figure 6.7: ¢ = 1 spacetime with ¢ =0 and ¢' = 1.

The only difference is that amplitude and initial value of the scalar field wave is
different. In fact this is precisely the behaviour that is exhibited for all other values

of the scalar field and its derivative.

So we can conclude that it is a conformal spacetime with positive curvature cou-
pled to a conformally invariant scalar field is always compatible with conformal

cyclic cosmology provided either the scalar field or its derivative are non-zero.

Analysis of the ¢ = —1 case

Finally, we analyse the ¢ = —1 case. When & = —1 then (6.48) becomes

Q" = JO(¢)? — %) + 9 (6.60)

likewise (6.37) becomes

¢" = ¢,
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which has a general solution

¢ = apcosh 7 + @y sinh 7. (6.61)

Differentiating (6.61) with respect to the proper time 7 gives

¢ = agsinh 7 + a; cosh 7. (6.62)

By substituting in (6.61) and (6.62) into (6.60) we conclude that

1
Q' = 5Qf*”(a% —ag) + . (6.63)

Once again we make use of the initial data for the conformal factor and its deriva-

tive given by the constraints and choose the values for the scalar field.

What we find when plotting the evolution of (6.61) and (6.63) is that the situation
is the same for the case where ¢ = 1, i.e it is always possible to construct a spacetime
that compatible with conformal cyclic cosmology, provided that neither ¢ or ¢’ are

non-zero.

6.4 Conformal geodesics

Before we construct the conformal geodesic equations for the spacetime that we
are analysing, it is worth reviewing some of the key ideas behind the conformal
geodesics. The starting point for this area is the standard geodesic equation in

index free notation

Vi = 0. (6.64)

The first step to constructing equations for a geodesic that has been reparametrized
as a conformal geodesic is to do a conformal transformation of the derivative. We
start with a curve z(\), which possesses a tangent vector ' = dx/d\. This curve is
a geodesic provided that it satisfies the standard geodesic equation V' = 0. We
can derive a conformal geodesic equation by performing a conformal transformation

on (6.64)

V,— V) = S, v 6.65
( ) :

then using (2.13) and (6.65) becomes

Vot =2<2/, T >2 —g(z/,2))T" = 0. (6.66)

Now, it becomes convenient to introduce a new parameter 7 = 7(t) and let & =

dx/dr; using the chain rule enables us to write
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de  dNdx

dr  drd\
or equivalently & = d\/dra’, which can be rearranged to ' = i’j—f\. This last term

can be written more compactly as

o =7, (6.67)

Substituting (6.67) into (6.66) and performing some manipulations gives

(7)V?Vei = (2 <2, T > 7 —7")i — g(2,2)Y*. (6.68)

From (6.68), we can make a number of deductions regarding the conformal geodesics.
We know that the general form of the geodesic equation is V;& = 0, hence in order
for equation (6.68) to be conformally invariant we must choose our parameter 7 in
such a way that 77 = 2 < 2/, T > 7/; if this is the case then (6.68) reduces to

(7')?Vii = —g(a',2') T (6.69)

For null like curves i.e. where g(z/,2") = 0, (6.69) has the same form as (6.70).
This means that although it is immediately possible to conformally rescale null-like
geodesics, the same is not true for space and time-like geodesics. Of course, following
this first step of the analysis, it becomes natural to ask if it is possible to construct a
set of conformally invariant equations for time-like and space-like geodesics. It turns
out that in order to construct a curve with conformal properties that describes either
a space-like or time-like particle, one needs an additional variable along with the
coordinates of the curve; this additional factor is a covector (7). What is the
motivation for introducing this additional covector? Consider the standard geodesic

equation in the unphysical spacetime

Vi = 0. (6.70)

Physically, this tells us that geodesics do not have any acceleration; this is due
to the fact that, when expanded, the principal part of the differential equation is a
second order differential with respect to 7, i.e. an acceleration. Since this is zero,
it is just a way of saying that geodesics do not have acceleration. However, for
the conformally rescaled geodesic equation, the connection will be non-zero (with
the exception of null geodesics) and in this way we say that conformal geodesics
in general do have an acceleration. To quantify this particular acceleration we
introduce the covector 3; from this covector we may define a conformal geodesic.
A conformal geodesic is a pair (z(7), 5(7)) on a spacetime (M, g), where 7 is the

proper time parameter of the curve (7). The curve in question possesses a tangent
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#(7) and a covector 5(7), both of which satisfy the following two equations

Vit = =2 < B,& > i+ g(&, )8, (6.71a)
Vif =< Bd > 6 - 50" (5. )i + Lii ), (6.71b)

where L is the Schouten tensor in index free notation. Hence, our goal in this section
is to obtain such a pair for a spatially homogeneous and isotropic spacetime contain-
ing a conformally invariant scalar field [11, 16, 31]. How do we obtain such a pair?
Previously, we obtained an equation for the unphysical spacetime given a particular
choice of gauge g = —dr? 4+ k. We may construct the conformal geodesics for such
a spacetime in the following way, we start from the unphysical spacetime and work
our way backwards into the physical picture. The first part of this task is to con-
struct regular geodesics in the unphysical case. Any geodesic can be reparametrized
as a conformal geodesic, but the opposite is not necessarily true. So we check if
the coordinates of the unphysical spacetime satisfy the standard geodesic equation
(6.70) which, when expanded into index notation, is equal to
2 a JB

dd;“"fb + F“aﬁcfl:;ffT ~0. (6.72)

In the case where = 0 (6.72) becomes

d*2” 410 da® da”
dT Bar ar

Recalling in our convention that greek indices refer to spacetime indices in a

(6.73)

particular coordinate system and that, for a warped product, these can expanded
into timelike and spacelike indices, then from (6.73) we obtain
d? dT dx dx® da’
——T +T% + 2%, —=— + % — — = 0. 6.74
arzt 0TS egn g T e ar (6.74)

At this point we make use of the properties of our coordinates, namely that we

are working with coordinates for a spatially homogeneous spacetime. For such a
2 2

spacetime the coordiantes may be expressed as (2#(7)) = (T, x!, 22, 23) where 21, 22
and 22 are constants. This is simply a consequence of the spatial metric k;; being of
constant curvature, hence the spatial coordinates are constant. As a result of this
all of the derivatives of the coordinates z* are zero. This, combined with the fact
that T = "%, = 0, means that all the left hand terms in (6.74) vanish and the

geodesic equation is satisfied. Similarly, when p = ¢ then we obtain
-~ rda®\2
(5 ) =0, 6.75
00\ 7 ( )

and since gy = 0, (6.75) is satisfied. Now, we need to see if these geodesics in

the spacetime can be recast as conformal geodesics, to do this, we must find a new
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parameter A = A(7) and a covector 3, such that (6.71a) and (6.71b) are satisfied.
Due to the homogeneity of the spacetime, it is possible to deduce the form that
the covector should have. As the curve points in one direction only (the timelike
direction), this implies that the covector must also point in the same direction as

the tangent vector. This suggests an anzatz of the form

b= aw, (6.76)

where « is a scalar. Now, it can be shown that V2" = &7" if (6.70) is satisfied. To
show this, we substitute (6.67) into V.2’ = &7”, then expanding with the Leibnitz

rule

Vot =713V, + 7'V,i?), (6.77)

then if (6.70) is satisfied then the second term vanishes and we obtain

Vea' =ar". (6.78)

With this result we can work out some useful relations. Substituting (6.78) into

equation (6.71a) and we end up with

" _ .

" = =21 < ad’, 2’ > i+ g(a’, )i, (6.79)

which, upon substituting in (6.67), gives the ODE

™ +ar? =0. (6.80)

Next, we need to derive another relation, this time by differentiating (6.76), which

gives

Vo = Voa(ai’). (6.81)

Expanding the RHS of (6.81) gives

T'Vi(ai’) = 7' (Via)i® +7'aVsd?, (6.82)

but due to the geodesic equation the second term on the RHS vanishes, dividing
through by 7’ and (6.82) becomes

Vo =di. (6.83)

Substituting (6.83) into (6.71b) and we get

o =< B2’ > B — ;gu(ﬂ,ﬁ)aﬁ’b + L(2',-). (6.84)
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Then, substituting in both (6.76) and (6.67)

1 1

o =L’ < ii > i+ 7' L(,-),

which simplifies to

1 €
do = dr(zo® + 7). 6.85
a=dr(za” + 3 (6.85)
Now, there are three different cases to analyse which, just like in the analysis of
the evolution equations depends upon whether or not the value of the curvature is

1,0 or —1. The general equation for the proper time can be found to be

2
T=——+42a0c+C (6.86)
«

This completes the derivation of the conformal geodesics for conformal spacetimes

whose matter content is described by a conformally invariant scalar field.



7 Initial Data for the Conformal

Wave Equations

We have derived a set of wave equations that describe both the evolution of the
geometry of conformally rescaled spacetimes perturbed by trace-free matter and
how the trace-free matter itself evolves over time. Furthermore, we have shown
through the propagation of the constraints that any solution to the CWEs also
implies a solution to the CFEs, provided the initial data is suitably chosen. Given
this, the next step is to try to solve the equations, which involves suitably choosing
some initial data. This is due to the fact that the CWHEs are differential equations,
which are impossible to solve exactly without initial conditions. Unfortunately, even
the process of choosing initial data is extremely complex; it not sufficient to simply
pick any choice of data since only a select few initial conditions will give rise to a
solution of the EFEs. In order for data to give an actual solution, it must satisfy a
set of equations known as the constraint equations. The primary goal of this chapter
is to highlight a particular property of initial data for the CWEs, namely, that given
a specific set of basic quantities all other quantities can be derived. In order to do
this one first needs to go through the necessary background material, relating to the

constraint equations.

7.1 The 3+1 Decomposition in General Relativity

7.1.1 Spatial hypersurfaces

Recall in section 1.1.2 we described a process known as the 341 decomposition, which
involves considering only the spatial components of the spacetime at an instant in
time. To do so, we make use of a hypersurface, which physically describes all events
that occur simultaneously. The visual representation of the hypersurface is like a
leaf, where all points on the leaf correspond to events that occur at precisely the
same instance in time. At an infinitesimal amount of time later simultaneous events
may be described by a different hypersurface, so in this sense the spacetime ends up
looking like a stack of leaves or a foliation of hypersurfaces. The 34+1 decomposition
process involves choosing one such hypersurface at a specific instance in time and
prescribing initial data on said surface, then solving the necessary equations to find

a unique solution; this is akin to choosing some initial conditions for an ordinary

111
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differential equation and solving to find the constant of integration.

Let us examine some of the tools we need in order to work with the 3+1 decom-
position. Since we are working with 3-dimensional hypersurfaces, we need tools that
consider the spatial and time components of the spacetime individually. First, we
need to be able to describe the direction of time with respect to the hypersurfaces.
To this end we define a what is called a global time function t. The physical explana-
tion of t is as follows: consider a certain spacetime and suppose that we are able to
define time in a consistent manner for this spacetime for all events. In that case we
can define a unit of time ¢ to describe the progression of time for the entire space-
time. Leaves of the spacetime foliation associated to ¢ are naturally the surfaces
where t is constant. Another important point is that the leaves of the spacetime
foliation never intersect, otherwise this would be a poor choice for the progression
of time as it would be impossible to describe simultaneous events. From this ¢ one

defines the following covector

w, = V,t, (7.1)

this covector denotes the normal to the hypersurface and as such defines the direction

that time flows. From this covector we can define the so-called lapse function

1
ol =

(7.2)

wit,
The lapse function measures how much proper time elapses along neighbouring
time slices along the direction specified by the normal w,. From both (7.1) and

(7.2) we define the unit normal

Ny = — Q0. (7.3)

Physically, this unit normal can be thought of as the 4-velocity of a normal ob-
server, which is an observer that moves through the spacetime in a direction that
is orthogonal to the hypersurface. The minus sign indicates that n® points in the

direction of increasing ¢. Using (7.2) it can be verified that

nn, = —1. (7.4)

This covers the separation of time components from the 4-dimensional space-
time; next we need to look at the curvature. The hypersurface is equipped with
a purely spatial metric h;;; the 75 indices are used to indicate that this metric is
a 3-dimensional object. Although h;; does depend on time, as the shape of the
hypersuraces will change as ¢ changes, for all practical purposes we mostly consider
a single hypersurace, where t is constant. In this scenario h;; can be thought of

as being independent of time. The purely spatial metric is related to the original
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spacetime metric via the formula

hab = Jdab + NgMp. (75)

Although h;; is inherently a spatial object, in the previous equation the spatial
metric has spacetime indices ab; this is due to the presence of the spacetime metric
gap on the RHS of (7.5). In this sense hy, is part of the decomposition of the
spacetime metric, with h,, representing the spatial parts of the metric and the unit
normals n,n, as representing the timelike parts of the metric. Just as g, is used
to measure distances in spacetime, h,, can be used to measure distances along a
hypersurface. We can verify that h,, is a purely spatial object since it has no
component along the unit normal n, which always points in the direction of time.

This can be verified by contracting hq, with n* and making use of (7.4)

nhep = N%Gap + ngnny = ny — ny = 0.

Effectively, hy, separates any vector on the hypersurface into its components par-
allel to the unit normal and components parallel to the hypersurface. An alternative
way of looking at h,, is to think of it as an object analogous to the dot product;
just as the dot product defines the projection of a certain vector to a surface, hgy
defines how much a certain vector is projected along a hypersurface. It is for this
reason that hy, is often referred to as the projector tensor or projector for short;
we encountered a similar tensor in section 5.4.1. The inverse of the projector is
obtained simply by raising the indices in (7.5)

R = g% + nnb. (7.6)

In most calculations, however, it is more convenient to consider the mixed version

of the projector

h,? = 6, + nn’. (7.7)

Using the projector we can accordingly define the spatial part of a vector as being

V= h, V., (7.8)

the spatial part of a rank 2 tensor is likewise

T = hh T, (7.9)

with obvious extensions to higher dimensions.
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7.1.2 3 Connections and spatial curvature

Up until now we have been analysing quantities living in 4-dimensional spacetime
and as a result any derivatives of these quantities have also been 4-dimensional.
However, as we are now working with quantities living in a 3-dimensional hypersur-
face, we need to adapt the notion of a derivative. The connection in question D;
is the 3-dimensional version of the Levi-Civita connection, which is to say, it de-
scribes how objects move on the hypersurface and satisfies the metric compatibility
and torsion free conditions first defined in section 2.2.1 with the spatial metric h;; in
place of the spacetime metric g,;. As before, it is useful to think of this 3-connection
as being a part of the 4-dimensional spacetime connection V, and therefore we will
denote it using a spacetime index. The 3-connection D, is defined when acting on

a scalar ¢ as

D,p = h,'Vyo. (7.10)

Once again, the key ingredient for defining the 3-dimensional spatial analogues
of a 4-dimensional spacetime object is the projector tensor. So essentially the 3-
connection is obtained by taking the corresponding 4-dimensional connection and
applying the projector to kill off the time components of the derivative. In accor-

dance with (7.10) the 3-derivative of a covector is

D.Vi = ho®hp?V Vy. (7.11)

The 3-derivative of a mixed tensor of rank 2 is then given as

D,T". = ho*hh SV T, (7.12)

with obvious extensions to tensors of higher ranks. Associated to the metric hy, and
the 3-derivative D, are the spatial Christoffel symbols which, in direct analogy to the
standard Christoffel symbols, describe how vectors change when they are parallel
transported across the hypersurface. The spatial Christoffel symbols are intuitively
defined as

Vijk = %him@jhkm + Okhimj — Omhiji). (7.13)

Accordingly, one can also derive a purely spatial curvature tensor r%,., by apply-

ing a commutator of 3-derivatives to an arbitrary vector v®

Do Dyv® — DyDov° = 1°gqp0”. (7.14)

One can readily verify that r¢;,,n? = 0. Similarly, one can also define the spatial

Ricei tensor and scalar as
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Tap = T deb, r= ¢%ry. (7.15)

Likewise, one can also define the spatial Schouten tensor using (7.15)

lab =Tab — ihabr. (716)

Just as the 4-dimensional spacetime curvature can be decomposed in terms of the
Weyl and Schouten tensor, so too can the 3-dimensional spatial curvature, the main
difference is that the Weyl tensor for a hypersurface does not exist. So then written

in terms of the 3-dimensional Schouten tensor given in (7.16) r%,4 is equal to

Tabed = hbdlac - hbclad - hadlbc + haclbd- (717)

The curvature tensor given by (7.14) is also known as the intrinsic curvature
tensor because it only contains information about the hypersurface itself and not
about how the hypersurface fits into the spacetime. This missing information is

encoded in the so called extrinsic curvature, which is given as

Kuy = —hohV ng. (7.18)

Physically, this tensor measures how the hypersurface deforms as it is carried
along the normal; this is evident by the derivative of the normal, since the normal
changes as one moves from one hypersurface to another. A related quantity is the

acceleration of the spacetime foliation, which is defined as

ay = n°Vyn,. (7.19)

Now, (7.18) may be re-expressed in terms of the acceleration; making use of (7.19),
K, is equal to

Kab = —Vanb — NgQp. (720)

This completes the background that one needs to start working in the 3 + 1

decomposition.

7.2 Decomposition of the Conformal Field

Equations

Now that we have defined all the necessary quantities we next need to apply them to
the CWEs. Regardless of whether or not we work in the physical spacetime, where
the primary tool of analysis are the EFEs, or from the unphysical spacetime where

the primary tool of analysis are the CFEs, we always start by prescribing initial data
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on some hypersurface. This means that for the process of solving the equations to
find a unique solution to the CFEs, one still needs to decompose the variables of the
CFEs into their respective spatial and timelike parts. In a manner analogous to the
previous section, we will use the projector tensor and the normal in order to derive

a decomposed version of all the CFEs.

7.2.1 The Decomposition of the CFE variables

Before proceeding to derive the constraint equations of the CFEs, let us first ob-
tain the decomposed version of the variables that make up the CFEs, as these will

naturally be used in the derivation of the constraints.

Decomposition of the derivative of the conformal factor

As the first CFE contains a derivative of the conformal factor we should obtain two
expressions for the decomposition of the derivative of the conformal factor into two
different components, one purely timelike term and a purely spatial term. To begin

with, we define a shorthand notation for the derivative of the conformal factor

V.0 =9, (7.21)

From here, we can obtain the necessary components of this vector by contracting
with either the normal or the projector; the former is used to obtain the time
components of the vector tangential to the normal and the latter is used to obtain
the components that lie in the hypersurface. With that in mind, the equations
that give the components parallel to the normal and tangential to the surface are,

respectively

w = Qn?, (7.22a)
Wa = Wha. (7.22b)

The derivative of the conformal factor (7.21), written in terms of its time and its

spatial components is simply the sum of (7.22a) and (7.22b)
Qu = ngw + w,. (7.23)

7.2.2 Decomposition of the energy-momentum tensor

The next variable that we will decompose is the energy-momentum tensor. This is
slightly more complex than in the previous section as the energy-momentum tensor

is a rank 2 tensor as opposed to a vector, this means that it is possible to contract
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on more than one index with either the normal or the projector. The individual

components are as follows:

1= nnTy, (7.24a)
fta = ho’nTh, (7.24b)
Hab = hachdecd. (724C)

Physically, these variables may be interpreted as follows: pu is the energy density,
which measures the amount of energy at specific points, p; is the flux vector, which
measures the rate of the flow of energy along the surface and i is the stress tensor,
which measures how the volume of a surface changes in response to the presence of
matter. The energy-momentum tensor is then the sum of all possible contractions

of the tensor with either the projector or the normal i.e.

Tab = nanbncndTCd —+ ]’Lachdecd + hbdnancTcd + hadnbnchC. (725)

Applying (7.24a)-(7.24c) and (7.25) becomes

Top = NaMpft + 20 (o) + fhab- (7.26)

By making note of the fact that T}, is a trace-free quantity in all our calculations,
it is possible to derive an important relation between the energy density and the

stress tensor. Begin by contracting (7.26) with the metric

9 (Hab — Ha — psna + pnamp) = 0. (7.27)

However, as we stated beforehand, hg;, is a purely spatial object meaning n®h,, =
0, hence (7.27) becomes

TN (7.28)

This means that a necessary condition for matter to be trace-free is that the

energy density must be equal to the trace of the stress tensor.

Decomposition of the Schouten tensor

The next variable that we will decompose is the Schouten tensor; this process is
identical to the previous decomposition for the energy-momentum tensor, since the
Schouten tensor is also a symmetric rank 2 tensor. Once again the individual com-

ponents are obtained from contractions with the normal and the projector

0 = nn’ Ly, (7.29a)
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9a = habndLbd, (729b)
eab = hachdecd- (7290)

The Schouten tensor is then given as

Lab = nanbncnchd + hachdecd + hbdnanchd + hadnande (730)

then applying (7.29a), (7.29b) and (7.29¢) causes (7.30) to become
Loy = ngnyb + QH(GQI;) + Oup. (731)

Decomposition of the Weyl tensor

We now discuss the decomposition of the Weyl tensor, which is quite a lengthy task
due to the fact that the Weyl tensor has four indices. Analogous to the electric
and magnetic part of the Faraday tensor in electromagnetism, there are electric and
magnetic parts of the Weyl tensor describing the electric and magnetic parts of the
gravitational field, respectively. It should be noted that for a long period of time
the magnetic part of the gravitational field was a theoretical concept [35], however
the magnetic part of the gravitational field was eventually proven experimentally in
2002 to be a real physical object [30]. The electric part of the Weyl tensor is what
we perceive as the force of gravity on a day to day basis, whereas the magnetic part
is more subtle; it is responsible for such effects as the precession of a gyroscope. The

electric part of the Weyl tensor is given as

deoy = nn’dea s (7.32)

This particular tensor can be verified to be trace-free i.e.

d,° = 0. (7.33)

As is the case with the Faraday tensor, the magnetic part of the Weyl tensor is
defined using the Hodge dual of the electric part

1
d* e = 5eefcdn”nf dabed- (7.34)

Alternatively, the magnetic part may be defined without the dual

dacd = haehcfhdgnbdebfg) (735)

which is also trace-free, in other words

A% = 0. (7.36)
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The two definitions of the magnetic part of the Weyl tensor given by (7.34) and

(7.35) encode the same information and are related to each other via the relationship

dagc = 6gcehd*ahne- (737)

Finally, the Weyl tensor written in terms of the electric and magnetic parts is

given as

dabcd = dbdhac - dbchad - dadhbc + dachbd + dbdnanc - dadnbnc

_dbcnand + dacnbnd - Ecdefd*bfnane + ecdefd*afnbne - 6abefd*dfncne + 6abefd*cfndne~ (738)

Decomposition of the rescaled Cotton tensor

Finally we take a look at the decomposition of the rescaled Cotton tensor, which is
a more lengthy task due to the rescaled Cotton tensor being a rank 3 tensor. Let

us define all the individual components of the rescaled Cotton tensor as

Tabe = hadhbehchdeﬁ (739&)
Tab = ha® ! Ty, (7.39b)
Ta = hadnbn“lebc- (739C)

These are the only possible non-vanishing components of the rescaled Cotton

tensor, the others all vanish due to the antisymmetry of the rescaled Cotton tensor;

bneThe. = 0 due to the fact that the rescaled Cotton tensor

b

for example 7 = nn
is antisymmetric on the a and b indices, but nn’ is a symmetric quantity, so any

contraction between the two is zero.

It is possible to re-express (7.39a)-(7.39¢) in terms of the components of the
energy-momentum tensor (7.24a)-(7.24¢); the motivation for doing so will be ex-
plained shortly. We start by substituting (4.2) into (7.39a), and applying both
(7.24b) and (7.24c¢) which gives

3 3 1 1 17 e d
Tabe = 5HbcWa — 5 HacWb + ilubhacw - iluahbcw + §ha hbcw Tde

—Lhachy 0 Tye + QR MRSV Ty — 2R RSV Ty (7.40)

Next, we proceed to remove the energy-momentum tensor terms; substituting in
(7.26) and using (7.20) to remove the derivatives of the normal and one ends up
with
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Tabe = %QKbc,ua - %QKach + %thacw - %,uahbcw + %/flbcwa - %,U/acwb
— L pahaew® + Lpgahsew® + QR RS Ve — 2O RS Veptgp.  (7.41)

Likewise, one can express (7.39b) in terms of the components of the energy-
momentum tensor. Substituting in (4.2) into (7.39b) and re-expressing the deriva-

tives of the conformal factor using (7.21) followed by (7.23) gives

Tab = %hbendwaTde - %haendO'dee + %Qhaehbfndverf - %QhaehbfndeTde. (742)

Next, we remove the energy-momentum tensor terms using the decomposition of
the energy-momentum we defined a short while ago. Substituting (7.26) into (7.42),

then using (7.20) to remove the derivatives of the normal and the end result is

Tab = 500 pad — 5K wa + §puwa — 3 p1aws + 5 Qhaehpa Vo — §Qhaahue Vop.
(7.43)
Finally, we proceed to express (7.39¢) in terms of the components of the energy-
momentum tensor. Substituting in (4.2), then making use of (7.21), (7.23) and then
applying the definitions of the energy-momentum tensor components (7.24a)-(7.24¢)

gives

Ta = — oW + %uwa — %uacwc. (7.44)

The quantities (7.41), (7.44) and (7.43) can be used to deduce a subtle, but
important property of the rescaled Cotton tensor from the point of view of con-
structing initial data. Provided that one knows the extrinsic curvature and the
energy-momentum tensor components then it is always possible to deduce the nec-
essary information about the rescaled Cotton tensor. We will make use of this

property when proving the main result of this chapter.

7.2.3 Decomposition of the metric CFEs

Now that we defined the necessary components we will now proceed to decompose
the CFEs into components that lie along the hypersurface and that act as con-
straints. An important point is that any equation that has a contraction between
the normal and a covariant derivative gives rise to a time derivative and is therefore
an evolution equation. Hence, we will not derive any equations where a contraction
occurs between the normal and the covariant derivative as our main interest is the

constraints.



7.2: Decomposition of the Conformal Field Equations 121

The First CFE

We start with the first CFE which, making use of (7.21) is equal to

Vol = —QLay + $gap + 30T (7.45)

To find the first constraint, we contract (7.45) using the normal and the projector,
which gives

hyn®V w, = —Qhyn® Lee + shyn®goe + %Q?’hbcn“ b (7.46)

We then decompose the various components of (7.46) using (7.31) and (7.23),
which yields

hyo VO + hpen®wVeng + hpen®Vew, = —Q0,. (7.47)

We then eliminate the derivative of the normal using (7.20). Then, transforming

the spacetime derivatives into spatial derivatives using (7.9) and (7.47) becomes

wa = —er + K“bwa + %QSMb. (748)

This is one of the two constraint equations for the first CFE, any initial data set

must satisfy this equation in order to be a solution to the EFEs.

A second constraint equation may be derived simply by repeating the same process
as above, except this time contracting with two projectors as opposed to one normal
and one projector. Doing so and following many of the same steps and it becomes

possible to derive
waa = Shab - QQab - Kabw + %Qg,uab- (749)

The Second CFE

For the second CFE, there is only one free index and hence we must only derive one
constraint equation. We start by applying (7.22b) to (3.44b) and contracting with

the projector

My Vs = —Qh Lo + Q00 T, (7.50)

At this point one needs to apply (7.23), (7.26) and (7.31) to (7.50); doing so along
with multiplying out and transforming the covariant derivatives into 3-derivatives

gives

Dys = =102 + Oy + 0% 1p® — Gt (7.51)
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The Third CFE

The constraint equations of the third CFE are somewhat more difficult to derive;

we start by contracting (3.44¢) with three projector tensors

ha®hyhe! VaLer — ha®hyhe! VoL = QR hyhe! Taep — ha®hyhddae, 1 Q. (7.52)

Applying (7.23), (7.31), (7.26) and (7.38) to decompose Q, Ly, dgegy, transform-

ing the covariant derivatives into 3-derivatives and (7.52) becomes

Daebc - Dbeac = Qhadhbehch’def - Kbcea + Kaceb
—€defgd “ha’ MpInw + dpewy — daewy, — dpghacw® + daghpew®. (7.53)

Finally, transforming the magnetic part of the Weyl tensor using (7.37) and ap-
plying (7.39a) causes (7.53) to become

Dagbc - Db‘gac - QTabc - Kbcea + Kaceb + dcobb(*u + dbcwa - dacwb - dbdhacwd + dadhbcwd'
(7.54)
This is the first constraint equation of the third CFE; the second is obtained by

applying two projectors and one normal to (3.44c¢)

ha® MV g Lee — ha®hyn°V e Lae = Qha hynTyee — QU ho*hyndgecs.  (7.55)

Repeating the same steps as in the derivation of the first constraint and it can be

verified that (7.55) reduces to

Da9b — Dbga = QTab - Kbcé’ac + Kacebc + dcabwc. (756)

There are no other constraint equations for the third CFE due to symmetry.

The Fourth CFE

The constraint equations of the fourth CFE are derived in a similar manner, once
again symmetries of certain tensors reduce the amount of effort that is required in
the derivations. The first constraint of the fourth CFE is obtained by contracting

the fourth CFE using a normal and two projectors

ha® MY pdgee’ = —ha P Tyee, (7.57)
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then applying (7.38) to decompose the Weyl tensor as well as using (7.20) to remove
the derivatives of the normal in terms of the extrinsic curvature and (7.37) to remove

the Hodge dual terms causes (7.57) to become

Dcdcab = —dbc ac T+ dachc — acdcab + hafhbd’I’LCdec. (758)

Note, that in our case we are only considering an initial hypersurface, which means
that the acceleration is zero. With this in mind and using (7.39b) to rewrite the

last term in (7.58) and we end up with

Dcdcab = daCKbC — dchac —|— Tab- (759)

Alternatively, one can express (7.59) in terms the Hodge dual by repeating the
same steps as above and not making use of (7.37) to rewrite the various expres-
sions; additionally, one multiplies the equation by a Levi-Civita alternating tensor.

Performing this course of action gives

D,d." = dbc€kachbfna + %Ekbfdanfd- (7.60)

The second constraint of the fourth CFE is obtained by contracting (3.44d) with

two normals and one projector

hbdn“ncvfdadcf = —hbdnanc adc- (761)

Applying the decomposition of the Weyl tensor and switching to the three index
representation of the magnetic part of the Weyl tensor, transforming the covariant
derivatives into 3-derivatives, then using (7.37) and making use of both (7.20) and
(7.39¢) causes (7.61) to become

adpg — K®dope + Dedy® = —hy'nnT, 4. (7.62)

Finally, setting the acceleration to zero and making use of (7.39¢) transforms
(7.62) into

Dcdbc = Kacdabc + Tp. (763)

The Fifth CFE

Finally, we will take a look at the constraint equation for the fifth CFE. In this
case one only needs to express the equation in terms of the decomposed quantities,
since A is a scalar and we cannot contract with the metric projector or the normal
as a result. Consequently, the constraint equation for the fifth CFE is obtained via

simple substitution. First we consider the fifth CFE written in terms of €2,
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A = —30,0° + 6Qs, (7.64)

then substituting (7.22a) and (7.22b) into gives (7.64) gives the desired constraint

equation

A = 6Qs + 3w? — 3wew?, (7.65)

this completes the derivation of the constraint equations for the CFEs. Although we
have derived every single constraint equation, for the result that we wish to achieve,
in fact only few of them will be actually used to obtain the result that we desire,
however one still needs to know the constraint equations in order to see why this is

the case.

7.2.4 The conformal constraint equations
The conformal Gauss-Codazzi equation

Essential to both the 3+1 decomposition and the construction of initial data are the
Gauss-Codazzi and the Codazzi-Mainardi equations. These two equations describe
the relationship between the curvature of spacetime and the curvature of a hyper-
surface. To obtain these equations we need to make use of the definitions of the
curvature. Let us begin by deriving the Gauss-Codazzi equation; the starting point
are the definitions of curvature for a spacetime and a hypersurface given by (2.8)
and (7.14), respectively. Applying the definition of a 3-derivative of a vector (7.11)

to a second order covariant derivative of a vector gives

DDy = h"hih,V,V 0" — Koph 0PV 0" — K, KpoP. (7.66)

Substituting this equation into (7.14) and multiplying out gives

Tabed T Kachd - Kachd = haphbthrhdstqTS‘ (767)

This is the Gauss-Codazzi equation; in order to make this equation compatible

with conformal methods we need to express it in terms of the conformal variables.
Substituting in (2.12), (7.17) and (7.29¢) then (7.67) becomes

lac - Qda,c + Kachd - Kach - inbdehac + iKbbKddhac + 9&07 (768)

which is the conformal Gauss-Codazzi equation.
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The conformal Codazzi-Mainardi equation

Next we derive the Codazzi-Mainardi equation which, instead of relating the intrinsic
curvature of the surface to the spacetime curvature, relates the extrinsic curvature
to the spacetime curvature. The starting point of this derivation is to apply (7.12)

to a covariant derivative of the extrinsic curvature

DoKye = ha? by h V) K. (7.69)

Next we consider the commutator of the extrinsic curvature; substituting (7.69)

into the commutator gives

DbKac - DaKbc - haphbthTnstqrm (770)

this is the Codazzi-Mainardi equation. We can also obtain a version of this equation
that is compatible with conformal methods by substituting in (2.12) into (7.70),

doing so and expanding gives

D Kyg — DgKpe = Qdpeq — hpale + hocba, (7.71)

which is the conformal Codazzi-Mainardi equation.

7.3 Construction of initial data for the conformal

evolution equations

We now proceed to the primary goal of this chapter, which concerns the nature
of the initial data itself. Here is the claim: let us suppose that we have an initial
hypersurface, if we are given h;;, 2, K;;, and all the matter variables p, p;, jt;; then
it is possible to obtain all the other variables for the evolution equations and the

constraints.

Let us first consider the equation for the spatial Schouten tensor (7.16), we can see
that provided we know the spatial metric h;; it is possible to calculate [;; since the
spatial Ricci curvaure and scalar depend on the spatial Christoffel symbols which,
as we can see from (7.13), depend on h;;. The next variable that we consider is the
Friedrich scalar; it is possible to obtain this variable from the constraint equation
of the fiftth CFE. Rearranging (7.65) gives

A 3w? + 3wew®
B 692 ’

since the cosmological constant is a known quantity a priori and €2, is derived from

(7.72)

S

Q2 via (7.22b) this means that we know the value of the Friedrich scalar, which is

consistent with our claim.
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Next we examine the constraint equations for first CFE, starting with (7.48). We
notice that the component of the Schouten tensor 6, can be obtained again via

simple rearrangement of said equation

Diw 4 Kijwj
Q Q7

which is dependent on the required quantities and is consistent with the claim. The

0; = s Vp; — (7.73)

second constraint equation for the first CFE (7.49) is also used to prove our claim

as we can obtain the component of the Schouten tensor 6,,, rearranging gives

0. — (.Ukij — Diwj + Shij — Kijw + %QSMU
) Q .
Again, we can see that (7.74) depends on all of the quantities that we claimed

(7.74)

would be needed to completely determine all variables in the system, since we es-
tablished from (7.72) that it is possible to determine the Friedrich scalar from all

the required quantities.

In the final steps, we must make use of the conformal Gauss-Codazzi and the

conformal Codazzi-Mainardi equations. Rearranging (7.68) gives

loe — KoUK oy + Kuo K% + YK K®hyy — YK Y K hee — O
dyo = d 471 é‘" a7 b d (7.75)

and doing the same to (7.71) yields

Diji — DkKﬂ + hiij — hszk
Q .
Looking at both (7.75) and (7.76), we can see that once again the RHS of the

equations are comprised of quantities that are known. This means that once again

we are able to deduce more variables of the system based on the ones that we claim
determines the entire system. Recall in the previous section that we stated that
in fact a large number of the constraint equations that were derived are in fact
redundant with regards to proving this claim; by examining the equations we can
now see why this is the case, it is because all of these terms can be written in terms
of either the quantities that we have stated are needed to construct all the initial
data variables or terms that depend on the same variables upon close inspection. For
example, the constraint equation for the second CFE is formed from: the conformal
factor and its derivatives, which are all determined if one knows the value of €2, the
matter terms p; and p;;, which we stated are necessary for constructing all the rest
of the data and the Schouten tensor components, which are determined from (7.73)
and (7.74). For the constraints for the third CFE, (7.54) and (7.56), they depend on
the quantities that are fundamental to constructing data, quantities that are known
from (7.73), (7.74), (7.75) and (7.76) and that can therefore be determined by the
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terms in our claim or components of the Cotton tensor. However, recall that the
Cotton tensor can be expressed in terms of the energy momentum tensor, which
is one of the fundamental quantities in our claim, therefore any term containing

components of the Cotton tensor can be determined.

We have therefore shown that given the quantities h;j;, €2, kij, i, i, 1 then it is
possible to determine all other pieces of information about the initial data. Whilst
this is a known result it is by far the easiest way of showing this result to be true.
Additionally, one needs to have knowledge about the properties of the initial data
when it comes down to solving problems; one such area where information about
the initial data is necessary is in the field of stability, which will be discussed in the

next chapter.

7.3.1 The evolution equations

As mentioned beforehand, obtaining a suitable data set via the act of solving the
constraint equations is only part of the process. The next step is to substitute said
data set into the necessary evolution equations, which enables one to see how a
certain spacetime with specific initial conditions will evolve in time. As solving the
evolution equations is not relevant to any of the results obtained in this thesis, we
will not give a derivation or a list of the equations. All that we will do is mention
the method by which one obtains the evolution equations; essentially all one does is
repeat a number of the steps performed in section 7.2, except this time contracting
all the covariant derivatives with the normal as opposed to the projector. As we
mentioned beforehand contracting the covariant derivative with the normal gives
the components of the derivative that point in the time direction. Consequently,
one is able to construct time derivatives and therefore evolution equations when

contracting the covariant derivatives of the CFEs with the normal.



8 Stability of the de Sitter
spacetime under trace-free

matter perturbations

Throughout this thesis we have derived a number of general results relating to
conformal methods in GR, however we have not yet used these results for anything
in particular. This chapter shall be devoted to one such way in which the results
can be applied, namely in showing that the de Sitter spacetime is both globally and

nonlinearly stable.

8.1 Stability - basic ideas

One of the key ideas, as well as one of the primary subjects of interest in research
of GR, concerns the analysis of the stability of spacetimes. Before looking at how
the results that have been derived can be applied to stability it worth giving an
overview of the subject. This subject is quite mathematically demanding and the
results draw heavily on PDE theory, as such we will not go into full technical details
of stability. Instead we will give a non-mathematical explanation of the main results
of the theory and how this relates to GR.

To begin, we first need to answer the question: what is stability? In essence,
stability asks the question of whether or not it is possible to gain information about
how a perturbed system evolves in time based upon information about how the cor-
responding non-perturbed system evolves in time. To make this idea clearer, let us
consider an example. Suppose one has an idealised background solution, the de Sit-
ter spacetime, for example. The behaviour of this ideal, non-perturbed background
solution is governed by equations that can be solved exactly; consequently it is pos-
sible using the evolution equations of this system to predict how the background
solution evolves in time. Now, let us perturb the de Sitter background with the
presence of matter. The question that we ask ourselves now is: how does this situ-
ation evolve in time? Also, we would like to know which properties of de Sitter are
preserved, since in physics a large variety of problems in the real world are modelled
using slight perturbations of idealized models. From the point of view of conformal

methods, it is also important to ask if the conformal boundary is spacelike, since

128
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this is an indicator that any observer has existed for all eternity, meaning that the
spacetime has also existed for the same amount of time. Now, due to a know result
from PDE theory, known as ”local existence”, it is always guaranteed that for some
small interval of time t, that the perturbed version of this spacetime looks like the
original version without the matter terms. This is a form of stability known as
Cauchy stability, which we mentioned very briefly in section 1.1.2; it can only be
applied if the equations have the correct form. The other form of stability is Global
stability which, as the name implies, is the situation where a system is stable in the
same sense as in Cauchy stability, but for infinite amounts of time. Our goal will
be showing that de Sitter is stable in the global sense when perturbed specifically
by trace-free matter, since all the equations that we have derived thus far describe
trace-free matter. This idea of stability is of great interest in research in GR since
it enables us to gain a great deal of information about physical systems, purely
through knowledge of a well understood idealised model. Additionally, it enables
the theory to make contact with the real world in situations where measurements

with infinite precision are not possible.

8.1.1 Conditions for Cauchy stability

As mentioned in the previous section, our goal will be determining whether de Sitter
perturbed by trace-free matter possesses global stability. This particular property
of global stability follows from a conformal rescaling if a certain solution has Cauchy
stability. If a system has Cauchy stability then the act of performing a conformal
rescaling on said system essentially rescales and extends the finite stable region into
an infinite region. Hence, global stability follows directly from Cauchy stability; it
is therefore a good idea to review Cauchy stability and to see if the equations that
have been derived thus far possess the necessary conditions for Cauchy stability. The
key tool of determining whether a system possesses Cauchy stability is a result first
proved by Hughes, Kato and Marsden (HKM) in 1977 [1&]. This result is completely
general and is therefore extremely useful. The HKM result says that any system is

stable up to a finite time period if it satisfies the following conditions:
1. The perturbation of the background solution is described by wave equations;

2. The non-principal part of the wave equations depends in a smooth manner on

the unknowns and their first order derivatives;
3. The background solution is also smooth and exists for a known amount of time;
4. The initial conditions that one starts with are small and smooth.

Provided all these conditions are met then the perturbed system will be close
to the background system for finite time intervals. Within this checklist there are
two words that deserve special attention: smooth and close. What do we mean by

this? In everyday life, close and smooth have meanings that change according to
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the situation. You and your friend might be considered close to each other if you
are sitting at the same table; similarly a building might be considered close if there
is a high speed train that can take us there is a few minutes. For our purposes, the

words close and smooth have very precise meanings that we will describe in detail.

A function is smooth if it is possible to take an infinite number of derivatives
of this function. Even though one can take an infinite number of derivatives of a
function, we only need to compute a total of four derivatives for the variables of the
CWESs. The reason for this is that the primary function that we will be considering
is the metric, since every single variable of the CWEs depends fundamentally on the
metric. The highest order derivatives of our system are second order derivatives of
the Weyl tensor. The Weyl tensor contains first order derivatives of the Christoffel
symbols, which in turn contain first order derivatives of the metric; hence the high-
est order derivative that acts on the metric is four. From this we conclude that,
in general, this particular number of derivatives needs to exist, otherwise quantities
that you would compute using the wave equations could not be evaluated; for exam-
ple it is impossible to solve a second order differential equation if the second order

derivative with respect to the required function does not exist.

By close and small, we really mean that the value computed using the Sobolev
norm is below a certain threshold. To make sense of this, let us give a definition
of the Sobolev norm. A Sobolev norm is an object that generalizes the notion of
distance to an infinite number of dimensions. Recall that the distance between two

points, p(x,y, z) and ¢(z’,y/, 2’), in 3-dimensional space is given as

d(p, @) = V(x =22+ (y —y)* + (z = 2)?,

we say that these two points are close if d(p,q) < e, where € is a small number.
This small number is a value that is chosen by us; its value depends on the level of
accuracy that one wishes to obtain. We can extend this idea to include continuous
functions as well as discrete points. We first consider the simplest case of a function
of a single parameter. Two arbitrary functions f(x) and g(z) on the real line are

said to be close if

[e.e]

/ (f(2) = g(x)) dz <&, (8.1)

“
where the integral on the LHS of (8.1) is a generalisation of the distance of two points
applied to functions. If the difference between these two functions is smaller than e,
then is it sufficient to say that f(z) and g(z) are close enough such that we obtain
very similar results for both functions if we use them in the same calculation? The
answer to this question is no, to understand why consider the following example: let

us suppose that the function f(z) is a constant value at all points and that the other
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function g(z) is a constant that is infinitesimally close to f(x) at all points except
for a single point where the value of g(x) is much bigger. In this particular situation,
if one were to compute the difference between f(z) and g(z) using (8.1) then the
result would still turn out to be less than the parameter ¢, since we are integrating
over such a large range and this particular information is lost. In stability it is
absolutely critical that the functions remain close for all times, hence we need some
way of checking for cases where such discrete discontinuities occur. A method of
checking for such occurrences is to compare the differences between the derivatives
of the functions, as in our example the differences between the derivatives will be
very large. It is for this exact reason why it is not enough in HKM simply saying
that the variables of the evolutions equations are close, we also need to determine

if the derivatives are close; this leads to the concept of the Sobolev norm.

Let us suppose we are solving some equations on an initial hypersurface S, then

the norm of the two functions under consideration is given by

1f = gl* = [ (f(z) - () "z,

S
from here we may define some operations that determine how close the derivatives

of functions are

|0f —ag|* = Zg(ﬁf — dg)d*x,
|02f — &%g|*> = 3 J(0*f — D%g)d’x,
S

[0%f — 0% = Eg((‘?"f — J"g)d’x,
where o = (o, g, v3) and a1 + oy + a3 = n. The Sobolev norm is then defined as

1f = gllzm = IIf —gl* +|0f — 0g|]*> + ...+ [|0" f — 0"g]*. (8.2)

The functions f and g are stated to be close if || f — g||* < € for some chosen value

of €.

8.2 The de Sitter background solution

Now that we have taken a look at the basic ideas of stability, let us look at the
background solution of our choosing, namely de Sitter. Recall that de Sitter is an
exact solution to the EFEs, which models a universe with a positive cosmological

constant A. The metric for this spacetime is given as
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g = dt* — cosh®t A, (8.3)

where £ is the metric of the 3-sphere which, in general can be written any reasonable
system of coordinates, and we have introduced the notation that anything with a
small circle above it is a variable of the de Sitter spacetime; g is the metric of de
Sitter, }DBW is the Ricci curvature of de Sitter and so on. In order to perform a
conformal rescaling of this spacetime, one needs to choose a value for the conformal
factor. In order to do so, let us first look at the exact form of the conformal
transformation from which we deduce the equation for the physical metric § = Q2.
With this in mind, we make an educated guess about the form of the conformal

factor, which occurs by factoring out the cosh®t term from (8.3)

5 dt?
j = cosh®t —h). 8.4
9= (cosh2t ) (8.4)
From this we guess that the conformal factor should be
1
Q= . 8.5
cosh t (8:5)

It is also convenient to define an alternate parameter for the time component of
the metric; we can deduce from (8.4) an equation for the time parameter of the

conformal de Sitter metric

dt
- 8.6
cosh t’ (8.6)
integrating both sides of (8.6) gives
T = 2arctan e’ (8.7)

From this we can conclude that the physical metric of the de Sitter spacetime can

be written as

g = cosh?(—dT? 4 d¢?* + sin? df? + sin? ¢ sin® 0dp?), (8.8)

and therefore the conformal de Sitter metric is

G = —dT?* + d¢* + sin® db* + sin? ¢ sin® Adp°. (8.9)

An important fact to mention about this metric is that it is conformally flat,

which means that

o

dpa&)\ =0.

The concept of conformal flatness was first mentioned in section 2.2.1; we stated

that it is an important characteristic of certain spacetime metrics. The reason for
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this is because any quantity that we choose to calculate is dependent on €2 only,

which helps to simplify things considerably.

Now that we have defined all the necessary concepts let us take an in depth look
at the stability of de Sitter. To begin with the shape of the de Sitter metric is
that of the Einstein cylinder. The Einstein cylinder is a conformal representation of
Minkowski, de Sitter and anti-de Sitter spacetimes. More precisely, different sections
of the cylinder correspond to one of these three spacetimes. All three spacetimes are
conformally flat and so is the Einstein cylinder. Because of this, all of the spacetimes
can be related to each other, however, as the Einstein cylinder is the largest it is
possible for all three metrics to be represented by a section of the cylinder. The de
Sitter metric is smooth because we can take the required number of derivatives of
the metric components g,,,. Additionally, the quantities that describe the conformal
de Sitter spacetime, [x 2o d" VA Q LW and §, are smooth since they depend on
the metric g, which is itself a smooth quantity. Furthermore, all these quantities
are smooth for all time on the Einstein cylinder. Moreover, these quantities are also
a solution to the CWEs, since any solution to the EFEs implies a solution to the
CFEs and any solution to the CFEs implies a solution to the CWEs, at least for
the vacuum case. Naturally, we would like to extend this case to describe matter;

to perform this task we consider an Anzatz of the form

u=u+u, (8.10)

where u is a shorthand notation for all the variables that describe the geometry of
the conformal spacetime i.e. u = (£, s, gy, L, d",5,). So u is a shorthand for all
the components that describe the evolution of the background solution and % is a
shorthand for all the components that describe the perturbation of the de Sitter
spacetime that occur due to the presence of trace-free matter. Note that when we
say our perturbation is small we really mean with respect to the Sobolev norm.

With this shorthand notation our wave equations may be written in the form

Ou = H(u, 0u, ©,00), (8.11a)
00 = F(u,du,0,00), (8.11b)

where © is shorthand for all the matter fields. For example, if we were doing an
analysis of de Sitter coupled to the conformally invariant scalar field then © =
(¢, ba, Pap). Also, both H and F' are smooth functions with respect to their argu-
ments. A noticeable fact about this system is that if you choose to express any of

the variables in terms of coordinates, then the end result is still a smooth function.

So the wave equations have a smooth dependence on the unknowns, which is
a requirement of the result of HKM. If we now substitute (8.10) into (8.11a) and
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(8.11b) then the wave equations take the form

(4" + §")0,0,u + H'(u,du, 1, 0u, ©,00), (8.12a)
(6" +§")0,0,0 + F'(u, 0, 0%, 0, 01, ©, 0O). (8.12b)

Note, the conformal de Sitter metric g, is Lorentzian, since de Sitter is a Lorentzian
spacetime. If g,, is Lorentzian then g,, will also be Lorentzian, provided the per-

turbation g,, is small enough with respect to the Sobolev norm.

We want g,,, to be a Lorentzian metric for all time as this is an important prop-
erty of GR. The spacetime is 4-dimensional and has a structure where causality
is preserved, which is described by the Lorentzian metric. We can say that g,, is
Lorentzian on the initial hypersurface, if §,, is small enough. If this is the case then
HKM says that the perturbed metric is Lorentzian for all times and your solution
is stable. Put in another way, the HKM result tells you that if the initial data
(,0) is small enough then % and ©, which solve (8.12a) and (8.12b), exist up to
a finite amount of time. If this is the case, then the conformal extension of the
spacetime causes the finite region to be rescaled into an infinite region, which guar-
antees that solution possesses global stability. As the CWEs with trace-free matter
are smooth with respect to the unknowns and the de Sitter background exists for a
known amount of time, this means that de Sitter perturbed with any of the forms
of trace-free matter that have been analysed previously - the conformally invariant
scalar field, Einstein-Maxwell fields, classical Yang-Mills and irrotational fluids - is
stable for a finite amount of time. Furthermore, the fact that de Sitter can be con-
formally extended in such a way that it remains smooth means that the de Sitter
spacetime perturbed with any of the aforementioned types of trace-free matter is
stable for all times. Additionally as the conformal factor of the perturbed solution
can be shown to vanish then the resulting conformal boundary is spacelike, just as
de Sitter is. This observation makes the result global from the point of view of the

physical metric.

Summary

We have shown that by the application of several known results that the de Sitter
spacetime perturbed by the trace-free matter models analysed in Chapter 4 is stable
in the local sense. Furthermore, the conformal nature of the evolution equations
means that the local stability can be extended into global stability. Since there have
been no linearisation carried out in any of the calculations, this means that such a

spacetime is both globally and non linearly stable.



9 Conclusions

We have obtained a multitude of results for conformal spacetimes and trace-free
matter. We have shown that it is possible for conformal spacetime perturbed by
trace-free matter to be described by a system of wave equations. We have also shown
that the trace-free matter itself can be described by a system of wave equations.
Furthermore, we have shown that any solution to the wave equations implies a
solution to the corresponding field equations. As a result of both the spacetime and
the matter being described by wave equations, this means it is possible to formulate
an initial value problem for conformal spacetimes perturbed by trace-free matter.
We have also shown that these results can be used to prove that de Sitter is stable

in the global sense when perturbed by trace-free matter.

We have also taken the time to analyse in depth the conformal field equations
coupled with a conformally invariant scalar field. We have derived equations that
describe a spacetime containing this particular spacetime. Additionally, we have
analysed this spacetime and concluded that virtually all choices of initial data lead
to a system that is compatible with Penrose’s cyclic cosmology theory, with only a

few exceptions.

There are a multitude of potential directions that this work could go in. For
starters, whilst this whole thesis has been devoted entirely to trace-free matter, the
question of non trace-free matter is still very much an open problem; if it were
indeed possible to formulate a system of equations for matter that is not trace-free
it would be an incredibly powerful tool. Even within the context of the equations
already obtained there are many paths that this work could take because whilst this
entire thesis has been almost exclusively devoted to the derivation and analysis of
the equations, virtually no work has been done in either solving or analysing the

equations to see what new information can be gathered.

From the point of view of the fifth chapter one could still do a similar analysis
for other matter models apart from the relatively simple scalar field model. The
fact that the Bach tensor has proven to couple to the field equations and the wave
equations nicely means that it could also prove to be an object of interest in the

future.

Either way, it is the hope of the author of this thesis that the usefulness and

elegance of conformal methods in relativity has been displayed. Hopefully the reader

135
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should be convinced that conformal methods should no doubt prove to be an exciting

and interesting field of research in the future.
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