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Bayesian networks help us model and understand the many variables that inform 
our decision-making processes. Anthony C. Constantinou and Norman Fenton 
explain how they work, how they are built and the pitfalls to avoid along the way

Things to know about 
Bayesian networks
Decisions under uncertainty, part 2

We constantly make decisions – some routine, 
such as what to wear, some more complex and 
important, such as choosing where to live and 
work. The more complex a decision, the less 

likely we are to have all the information we need to make the 
best possible choice. Because incomplete information requires 
us to reason with probabilities and risk, people (even experts) 
often arrive at non-optimal decisions.

More complex decisions are usually based on a host of 
factors or variables. For example, imagine you are the owner 
of a top-flight football (soccer) team and you must decide 
before the start of each season how much money to invest 
in new players. There are many factors to consider: the likely 
income from sales of unwanted players; the relative net 
spending of other teams; and the possible negative impact on 
team performance of making too many personnel changes 
at once. We can map the decision the team owner needs to 
make, and all the different variables, using a Bayesian network 
(BN). This is a graphical model that captures the relationship 
between variables under causal or influential assumptions. 

In this article, we provide an overview of BNs and the kind 
of assumptions required to build useful networks for complex 
decision-making. We highlight the need to fuse data with expert 
knowledge, and we describe the challenges in doing so. Finally, 
we explain why, for fully optimised decision-making, extended 
versions of BNs, called Bayesian decision networks, are required.

The basics
A BN is a diagram which uses arrows (“directed arcs”) to 
show how various factors – represented by elliptical nodes 
– influence one another. Each node comes with its own 
probability table, known as a conditional probability table 
(CPT), reflecting the chances of various outcomes resulting 
from the different influences directly affecting it. Figure 1 

FIGURE 1 A fragment of a Bayesian network model for a 
football team owner, showing the variables related to team 
performance.1 Elliptical nodes are the factors or variables; 
arrows are the directed arcs showing how factors influence 
one another.
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guides for action. This means they require models more like 
(b) than (a). Although the distinction between association and 
causation is nowadays well understood, what has changed 
is mostly the way the results are stated, rather than the way 
the results are generated. Consequently, too often, important 
conclusions and recommendations are based on models 
similar to (a), and we believe this is a problem.

Building a Bayesian network
Constructing a BN involves determining both its structure and 
CPTs. We can do this by eliciting knowledge from domain 
experts (the knowledge-based approach), learning from 
data (the data-driven approach), or a combination of the two 
(information fusion). For the football model, we used both data 
and knowledge. Specifically, knowledge was used to construct 
the influential structure of the model, whereas data were used 
to learn the CPTs of the variables that make up the model. 

In general, algorithms that deduce BNs from data (called 
“machine learning algorithms”) can be classified as either 
“search-and-score” or “constraint-based” (or “hybrid”, which 
is simply a combination of the two). In the search-and-score 
approach, we search for different structures and score them, 
using one or more scoring functions, based on how well the 
fitting distributions agree with the empirical distributions. 

illustrates part of a BN model which provided long-term 
predictions for football team performance.1

Once the graphical structure and CPTs of a network have been 
defined, there are standard algorithms that compute the states 
of the unknown variables based on the states of the known 
variables in the model. We can enter as many or as few actual 
observations as we have available, and the algorithm will update 
the probability distribution of each of the unobserved variables. 

A reason why BNs are so powerful is that they can perform 
both predictive and diagnostic inference. For example, we can 
predict a team’s league position for a given value (observation) 
of team performance, but we can also enter a required state 
of league position as an observation to examine what level 
of team performance could explain that observation. These 
standard algorithms are called “Bayesian propagation” 
algorithms because they rely on Bayes’ theorem, in which the 
probability of an unknown variable is updated after evidence 
relevant to that variable is observed. In a BN, Bayesian 
probability inference is driven by the three causal classes 
illustrated in Figure 2. Specifically: 

1.	 Causal chain: This describes variables that have a knock-
on effect on each other. For example, changes in players’ 
quality impacts team performance which impacts league 
position. This means that league position is independent 
of changes in players’ quality once we know team 
performance.

2.	 Common effect: This is where two different variables, 
such as transfers in and transfers out, both impact a third 
variable, such as net transfer spending. This means that 
transfers out is dependent on transfers in once we know 
net transfer spending.

3.	 Common cause: This is where two different variables, such 
as league position and attendance, are impacted by the 
same variable, such as team performance. This means 
that attendance is independent of league position once we 
know team performance.

These causal assumptions are also vital if we wish to 
reason about an intervention. Figure 3 shows two different 
representations of the relationships between four of the variables 
used in the BN model of Figure 1. If we rely on data alone to 
determine associations between variables, we would arrive at 
the model shown in (a), which is not a BN because it does not 
capture the direction of influence between factors. In contrast to 
model (a), model (b) indicates that an intervention on attendance 
will have no effect on other parts of the model, whereas an 
intervention on changes in players’ quality will have an effect on 
all of the model variables. In model (a), the association between 
league position and attendance comes via the common cause, 
team performance. The causal assumptions established by 
model (b) allow us to simulate the effect of interventions, actions, 
or decisions and hence, in contrast to model (a), enable us to 
move from mere prediction to risk management.

Scientific research is heavily driven by interest in discovering, 
assessing, and modelling cause-and-effect relationships as 

FIGURE 2 The three causal classes that produce Bayesian networks.

FIGURE 3 Models (a) and (b), under respective representations of association and causation.
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This approach typically aims to maximise predictive accuracy 
associated with targeted variables of interest. In the 
constraint-based approach, we check for causal conditions 
between variables in sets of triples in order to discover causal 
relationships by performing what are called “conditional 
independence” tests. For example, we can reconstruct the 
BN fragment of Figure 3 by discovering that while changes 
in players’ quality and league position are predictive of 
each other, the association is eliminated conditional on 
team performance.

Issues with structure learning
Many of the proposed structure learning algorithms are 
assessed with simulated data, which are generated using 
hypothetical models that are assumed to represent reality, or 
“ground truth”. Simulated data are then taken as input by an 
algorithm in an attempt to reconstruct the hypothetical model 
that was initially used to generate the input data. Figure 4 
illustrates this process. Each algorithm is then judged both on 
its speed and accuracy in terms of how well the learnt model 
resembles the hypothetical model. 

While structure learning algorithms tend to perform well 
when tested with simulated data, this level of performance is 
not repeated when the input data set represents observations 
from the real world. This is because of four main challenges:

1.	 Missing data points: Real-world data sets are often 
incomplete, yet many of the proposed structure learning 
algorithms require, and are assessed with, complete data 
sets. While some algorithms accept incomplete data sets 
as input, they tend to produce inadequate models. 

2.	 The need for really big data: The accuracy of the learnt 
model depends on the available data. The number of 
possible models that can be discovered increases with the 
states and the number of variables that form the input data 
set. High-dimensional data sets, and resulting complex 
models, require extremely large volumes of data to learn 
a reasonably accurate BN. However, for many critical real-
world problems we often have data for a large number 
of variables, but with (relatively) insufficient sample size. 
For example, the BN model in Figure 1 is based on just 
20 samples (teams) for each of the 15 Premier League 
seasons between 2000 and 2015. Moreover, even when 
there are plenty of data, there is still the issue of that data 
potentially being biased, and thus likely to be precise but 
occasionally inaccurate.

3.	 Latent confounders: These are variables which are missing 
and which may have a major impact in explaining observed 
data. In our football model, the squad stability factor was 
missing from the data and, had it not been incorporated 
by expert judgement, as we later illustrate in Figure 5, it 
would have been a latent confounder. Structure learning 
algorithms rarely account for such variables and their 
resulting impact on what can and cannot be discovered. In 
the real world, latent confounders are impossible to avoid, 
simply because they are often unknown unknowns. 

4.	 Data quality: To be able to learn the “correct” causal 
network, we require the “correct” data. Simulated data 
satisfy this requirement, since they are generated based 
on clearly defined models that are assumed to represent 
the ground truth. However, real-world observations rarely 
adhere to causal representation in the same way simulated 
data do. Because of this, results from simulated data tell us 
very little about the extent to which modelling assumptions 
hold true for real-world applications.

In addition, there is no agreed evaluation process to determine 
which algorithm is “best”. Different evaluation methods often 
lead to inconsistencies, whereby one evaluator determines 
algorithm A to be superior to algorithm B, and vice versa. 
Moreover, there is a risk of erroneously rejecting a good 
algorithm while accepting a poor one. In practice, we never 
know what the ground-truth model really is and so require 
different evaluation procedures when applying structure 
learning to a problem in the real world. 

In domains such as bioinformatics, applying structure 
learning algorithms to large data sets can reveal new insights 
that would otherwise remain unknown. But structure learning 
algorithms are less effective in areas where domain experts 
have knowledge about the underlying mechanisms of the 
problem. Incorporating knowledge into the structure learning 
process inevitably leads to better-quality models. Such 
knowledge comes in the form of constraints in terms of what 
can and cannot be discovered. 

One constraint is temporal order, whereby event B occurs 
after A, and hence B cannot influence A (for example, changes 
in players’ quality occurs first, so cannot be influenced by 
future team performance). We may also specify constraints 
about direct relation (for example, indicating that there is an arc 
between attendance and earnings, with or without specifying 
the direction of the arc). It is also possible to constrain the 
graph structure by specifying a simplified “best-guess” model 
with a metric that forces the algorithm to assign higher scores 
to models closer to the best guess. For example, since the 
structure of the BN model in Figure 1 is based on knowledge, 
it can serve as an initial best-guess model for a structure 
learning algorithm. An important benefit of such constraints is 
that they help to reduce the search space significantly, which 
relaxes some of the structure learning issues discussed earlier. 

Information fusion 
When the historical data fail to capture all of the key factors 
of interest, there are two options: either ignore the missing 
factors, or incorporate them as knowledge-based factors. 

For example, the data used to construct the BN model 
in Figure 1 indicates that teams which increase wages and 
net transfer spending faster than adversaries improve their 
performance in the league, on average. However, what the 
data fail to capture, but for which we have knowledge, is that 
extreme increased spending does not necessarily translate 
immediately into improved performance, partly due to some 
form of team instability caused by multiple substantial 
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changes in players. This may have been the case for 
Manchester City after it was bought by the Abu Dhabi United 
Group in 2008: the new owners purchased many high-profile 
players to improve the squad, but the team finished in a lower 
position with fewer points than the previous season. This 
missing factor – squad stability – is captured as a knowledge-
based variable in the revised football model in Figure 5, 
indicated with a dashed node and dashed arcs.

In the absence of such explanatory factors, we run the risk 
of deducing from data alone the generalised expectations, 
which may negatively influence optimal decision-making. 
However, knowledge about missing explanatory factors 
enables us to question such inferences and improve the 
structure of a BN model and improve accuracy.1

But how do we properly fuse knowledge with data? It is 
vital to acknowledge that the statistical outcomes of data-
driven variables are already influenced by the causes an 
expert might identify as variables missing from the data 
set. As a result, the incentive is to incorporate knowledge-
based variables so that they do not influence data-driven 
expectations, as long as the knowledge-based factors remain 
unobserved within the model.2

In the football example in Figure 5, this means that 
the incorporated variable, squad stability, preserves the 
expectation of team performance, as long as the knowledge-
based variable remains unobserved. Increased spending 
continues to correlate positively with team performance in the 
same way, but the augmented model explains the correlation 
in the knowledge-based variable and hence reduces the risk of 
flawed interventions.

Bayesian decision networks 
A BN model provides an effective graphical representation 
of a problem and can be used for multiple types of complex 
inference. Despite these benefits, a BN model alone is 
incapable of determining the optimal decision pathways of a 
problem. For example, we may want to determine the optimal 
net transfer spending to achieve certain improvements in team 
performance. To achieve this, a BN needs to be extended to a 
Bayesian decision network (BDN), also known as an influence 
diagram. A BDN contains additional types of nodes and arcs, as 
illustrated in Figure 6. 

In a BN, all nodes are considered uncertain “chance nodes”. 
But in a BDN, if a node corresponds to a decision to be made 
we distinguish it as a “decision node” (drawn as a rectangle). 
We also introduce “utility nodes” (drawn as diamonds), 
which are targeted for maximising or minimising a particular 
outcome of interest, and “information arcs” (drawn as dashed 
arcs) entering decision nodes, indicating that the decision 
is determined by information retrieved from parent nodes. 
In contrast to normal BN arcs, information arcs only pass 
information forward.

Specifying a BDN inevitably requires expert knowledge 
since we need to specify the decision options available to 
the decision-maker, and the utilities we seek to minimise or 
maximise. In fact, there are certain structural rules we need to 

FIGURE 4 An illustration of structure learning with simulated data. 

FIGURE 5 The Bayesian network model from Figure 1, now augmented with the knowledge-based 
missing explanatory factor, squad stability.

FIGURE 6 A Bayesian network with a (possible) corresponding Bayesian decision network.
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follow when transforming a BN into a BDN, such as ensuring 
that only informational arcs enter a decision node.3,4 Figure 6 
illustrates how a BN fragment may look when modified into a 
BDN, depending on which variables we define as decisions and 
utilities. Note that the example in Figure 6 also illustrates how 
earnings will determine next season’s decision on net transfer 
spending. This process enables temporal analysis from a past 
BN to a future BN, and models extended towards this kind of 
analysis are called dynamic Bayesian (decision) networks. 

Costs and benefits
With the wide availability of software that makes it easy to 
build and run models efficiently, there has been an explosion 
of interest in BNs for solving complex decision problems under 
uncertainty. In addition to the examples in this article, BNs have 
been used to evaluate the probative value of complex forensic 
evidence, and to provide more accurate diagnoses in medicine 
and more accurate predictions of financial risk. However, for 
fully optimised decision-making we require BDNs, which 
enable us to maximise or minimise different outcomes of 
interest – whether these involve the most cost-effective route, 
maximum impact, minimum risk, or an equilibrium between 
the two.

The benefits of BDNs, however, come at a cost of significant 
effort due to the high levels of manual model construction they 
currently require. This is because we need to establish the 
various decision support requirements and their associated 
cost and benefits, and then incorporate them into the model 
and appropriately combine them with data. For example, we 
may want to determine the optimal treatment combination in a 
particular sequence, to control unexplained symptoms or cure 
a disease, while at the same time taking care to minimise the 
risk of potential known and unknown side effects. 

While some manual knowledge-based contribution is 
inevitable when building decision models, future research 
promises improvements in the ways we establish and model 
relationships (causal or other) between real-world factors, to 
allow for faster and more accurate optimal decision-making 
solutions under uncertainty. n
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