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Abstract. It is known that connected translation invariant n-dimensional
noncommutative differentials dxi on the algebra k[x1,⋯, xn] of polynomials

in n-variables over a field k are classified by commutative algebras V on the

vector space spanned by the coordinates. This data also applies to construct
differentials on the Heisenberg algebra ‘spacetime’ with relations [xµ, xν] =

λΘµν where Θ is an antisymmetric matrix as well as to Lie algebras with
pre-Lie algebra structures. We specialise the general theory to the field k =

F2 of two elements, in which case translation invariant metrics (i.e. with

constant coefficients) are equivalent to making V a Frobenius algebras. We
classify all of these and their quantum Levi-Civita bimodule connections for

n = 2,3, with partial results for n = 4. For n = 2 we find 3 inequivalent

differential structures admitting 1,2 and 3 invariant metrics respectively. For
n = 3 we find 6 differential structures admitting 0,1,2,3,4,7 invariant metrics

respectively. We give some examples for n = 4 and general n. Surprisingly, not

all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum
gravity is normally seen as a weighted ‘sum’ over all possible metrics but our

results are a step towards a deeper approach in which we must also ‘sum’

over differential structures. Over F2 we construct some of our algebras and
associated structures by digital gates, opening up the possibility of ‘digital

geometry’.

1. Introduction

A standard technique in physics and engineering is to replace geometric back-
grounds by discrete approximations such as a lattice or graph, thereby rendering
systems more calculable. In recent years it has become clear that this can be
handled by noncommutative geometry not because the ‘coordinate algebras’ A are
noncommutative (they remain commutative) but because differentials and functions
do not commute, see [10] and references therein. The formalism of noncommuta-
tive differential geometry does not require functions and differentials to commute,
so is more general even when the algebra is classical. In the present work we use
such noncommutative differential geometry to explore a different and complemen-
tary kind of ‘discretisation scheme’ in which the field C or R that we work over is
replaced by the field F2 of two elements 0,1 and which we call digital geometry.

We use a ‘bottom up’ constructive approach to noncommutative differential geom-
etry that grew in the 1990s out of (but not limited to) the differential geometry
of quantum groups, rather than one of the powerful operator algebra approach to
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noncommtutative geometry as in [5]. This is more explicit (albeit mathematically
less deep) and has the merit that one can work over any field k. Often charac-
teristic 2 (which includes F2) is excluded for simplicity so one must be a little
careful (notably tensors cannot be decomposed into symmetric and antisymmetric
parts) but most of the theory including differential forms (as differential graded
algebras Ω(A)), vector bundles, principal bundles, connections and Riemannian
metrics work over any field. We refer to our LTCC lectures [7] for a recent in-
troduction. A small part of the formalism is recapped in Section 2 along with a
recent classification theorem [13] for translation invariant differentials on Hopf al-
gebras with linear (additive) coproduct, which will be our starting point. To keep
a lid on the classification problem we insist that our metrics are invertible, which is
known [4] to require that the metric is central (commutes with functions) and we
assume that our connections ∇ ∶ Ω1 → Ω1 ⊗A Ω1 are bimodule connections [15, 6].
This means that their right handed derivation rule is expressed in a ‘generalised
braiding’ σ ∶ Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1 and we require this to be invertible. The ‘quan-
tum groups’ approach to noncommutative differential geometry was particularly
developed using bimodule connections in recent works such as [3, 4, 10, 2].

The present paper follows on from [2] where we studied the de Rham cohomology
of F2[x] (polynomials in one variable) with noncommutative differential structures,
which turned out to be surprisingly rich. This led to nice family of ‘finite’ geometries
over F2 as finite dimensional commutative Hopf algebras Ad for every d ∈ N (and
over Fp for any prime p). By contrast, we will now be interested in affine or ‘flat
space’ A = F2[x1,⋯, xn] but it turns out that the classification of its differential
structures of dimension n already amounts to the classification of finite geometries
in the form of n-dimensional commutative algebras V over F2, so our results now
include the classification of all of these up to dimension n = 4 (we find that there are
16 of these up to isomorphism if we ask for them to be unital, see Section 5), along
with more complete results for n = 2,3 for metrics and connections on A for each of
the respectively 3 and 6 possible choices of V in these dimensions, see Sections 3,
4. These bimodule noncommutative geometries are explored under the restriction
that the metric and Christoffel symbol coefficients are constants in keeping with our
view of A = F2[x1,⋯, xn] as ‘flat space’, i.e. we are looking at translation invariant
geometries over F2. It is interesting that for n ≥ 3 some of the possible geometries
nevertheless have quantum curvature R∇ ≠ 0, which we regard as a purely quantum
phenomenon.

We envisage many applications throughout mathematical physics and engineering
wherever classical differential geometry plays a role. It is not our goal to develop
these here but we conclude with an extended discussion in Section 6 of some that
we have in mind. Our own motivation for noncommutative geometry has come from
quantum gravity in which the proposal of quantum spacetime and concrete models
[8, 12, 1] emerged out of quantum groups (and was the origin of one of the two
main classes of quantum groups, namely the bicrossproduct ones). In this context
one could in principle ‘sum over all geometries’ so our classification is a peek into a
restricted part of this. More generally our classification is a tool for model building
and one can explore each of our geometries much further, for example solving wave
equations. Clearly we would like to go further and explore all geometries not just
the translation invariant ones in the present work. Also embedded in our above
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explanation and surprisingly forced on us by translation invariance of the differ-
entials dxi is the set up of classical and quantum field theory in which we work
with the space of functions on a linear space V which is itself the space of func-
tions on an underlying geometry. This suggests a different envisaged application in
which spacetime would be the coordinate algebra V and A = k[x1,⋯, xn] or more
abstractly k[V ] would be the algebra of functionals on V as the vector space of
functions. Differentials also automatically extend to A the Heisenberg algebra, so
the first steps of quantum field theory also arise out of the natural possibilities for
the noncommutative geometry of affine spaces. In this case our spacetime geometry
is built on differentials and Riemannian structures on Ω(V ) as in [2] and as will
be classified in a sequel [11] in preparation. The discussion ends with a translation
of algebra over F2 into digital electronics, thereby justifying our terminology and
opening up a new front of applications in which geometric ideas can be translated
into electronics.

We made extensive use of the numerical package R to enumerate all possible val-
ues of our structure constants, preceded and followed by symbolic calculations on
Mathematica.

2. Calculi on k[x1,⋯, xn] and Heisenberg algebras

If A is a possibly noncommutative ‘coordinate’ algebra, by differential calculus on
A we mean an A-bimodule Ω1 and a map d ∶ A → Ω1 obeying the Leibniz rule
d(ab) = (da)b+adb with the map A⊗A→ Ω1 given by a⊗ b↦ adb surjective. Here
a bimodule means we can associatively multiply such 1-forms by elements of A from
the left and the right. The calculus is called connected if kerd = k.1 where we work
over the field k. If A is a Hopf algebra or ‘quantum group’ the coproduct expresses
‘group translation’ and there is a standard notion of the differential calculus being
left and right covariant under this. We refer to [7] for an introduction.

We build on the Majid-Tao theorem [13] which states that connected translation
invariant differential structures of classical dimension on ‘quantum spaces’ consist-
ing of enveloping algebras U(g) where g is a Lie algebra, are classified by pre-Lie
structures ○ on g. A pre-Lie algebra structure is a ‘product’ ○ on g such that

(2.1) v ○w −w ○ v = [v,w]
(i.e. we recover the given Lie bracket) and

(2.2) (v ○w) ○ z = (v ○ z) ○w + v ○ (w ○ z − z ○w), ∀v,w, z ∈ g.
The differential calculus has generators dxµ where {xµ} is a basis of g and bimodule
relations

[dxµ, xν] = λd(xµ ○ xν)
where λ ≠ 0 is the deformation parameter. Clearly the Jacobi identity

[[dxµ, xν], xρ] = [[dxµ, xρ], xν] + [dxµ, [xν , xρ]]
for the bimodule relations translates immediately in this context to (2.2). The
Leibniz rule d[xµ, xν] = [dxµ, xν] + [xµ,dxν] is the other part (2.1). If the pre-Lie
algebra is unital with the left unit e then clearly the calculus is inner in the sense of
existence of element θ ∈ Ω1 such that d = [θ, ] on A (and on forms if we use graded
commutator), with θ = λ−1de. Note that the calculus could be inner in some other
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way with θ not the differential of an element of the pre-Lie algebra. Isomorphisms
of the pre-Lie algebra are induced by linear coordinate transformations that do not
change the differential structure.

In the commutative case of A = k[x1,⋯, xn] regarded as the enveloping algebra of
an Abelian Lie algebra, we need ○ commutative and in this case (2.2) says that ○
is associative, so the data is that of an n-dimensional commutative algebra. Since
d1 = 0 and 1 is central, a quick look at the proof above tells us that this works just
as well for the Heisenberg algebra regarded as noncommutative space,

[xµ, xν] = λΘµν

which includes the commutative case with Θ = 0 (this can also be seen as a Lie
algebra with a central generator on the right hand side to which we apply the
pre-Lie theory and then set the central generator to 1).

There is in fact no need for g to be finite dimensional. It can be an infinite di-
mensional vector space V with an antisymmetric bilinear form Θ ∶ V × V → k and
the data for a calculus of the above form on the associated algebra with relations
[v,w] = λΘ(v,w) is precisely products ○ ∶ V × V → V making (V, ○) an associative
commutative algebra. In the unital case this will be inner as before. An example is
V = C∞(M) on a manifold M in which case the above is a canonical noncommu-
tative differential calculus or ‘noncommutative variational calculus’ on the space of
functionals on V , or more precisely on the symmetric algebra S(V ) or its Heisenberg
‘quantum field theory’ version.

Next we consider quantum metrics. In the constructive approach to noncommu-
tative geometry this means a nondegenerate element g ∈ Ω1 ⊗A Ω1 which com-
mutes with elements of A. The latter is known [4] to be necessary for the exis-
tence of a bimodule inner product ( , ) ∶ Ω1 ⊗A Ω1 → A inverse to g in the sense
(ω, g1)g2 = ω = g1(g2, ω) for all ω ∈ Ω1, where g = g1 ⊗ g2 with sums of such terms
understood. We can also construct the latter directly as a bimodule inner product,
which in our case has the form (dv,dw) = B(v,w) for some bilinear map V ×V → A
obeying

(2.3) B(v ○w, z) +B(v,w ○ z) = λ−1[B(v, z),w]
for all v,w, z ∈ V . Here we require

((dv)w,dz) = wB(v, z) + λB(v ○w, z) = B(v, z)w − λB(v, z ○w) = (dv,wdz)
using the commutation relations of differentials and functions, which in the middle is

the condition stated. For the inner product to be ‘real’ we need B(v,w) = B(w∗, v∗)
which in a self-adjoint basis with B symmetric requires its coefficients to be real.

However, if ○ has an identity e (so that the calculus is inner by a coordinate differ-
ential) and the field has characteristic not 2 then there is no such map other than
B = 0 at the algebra level. So see this we set w = e so that B(v, z) = 1

2λ
[B(v, z), e]

from our condition, which has no solution at an algebraic level since the second
expression has strictly lower degree when B(v, z) is written in a standard normal-
ordered form. There could still be non-algebraic examples and there could still be
non-unital inner and non-inner examples or we could be in characteristic 2.

In this paper we will focus on this latter possibility for invariant metrics on unital
inner calculi by taking k = F2 the field of two elements 0,1. We take λ = 1 and
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trivial ∗-structure as the only choices that make sense when there are only two
elements. In the commutative polynomial algebra case condition (2.3) becomes

B(v ○w, z) = B(v,w ○ z)
and we can keep this also in the Heisenberg case if B has its values in the constants,
which means the coefficients of the metric (given by B−1 ) are constants (an ’in-
variant metric’). In this case the condition on B means that the data is precisely
that of a commutative Frobenius algebra over F2. So for each of these we obtain
a differential calculus and metric on the symmetric algebra on the vector space of
the algebra.

We close our generalities with a few general classes of examples:

(i) Let X be a finite set of order n and V = k(X) the algebra of functions on X
with pointwise product ○. We let xµ = δµ the delta function at point µ ∈ X and
since xµ ○ xν = δµνxµ we have

[dxµ, xν] = δµνdxµ

with inner element θ = ∑µ dxµ. For a quantum metric g = ∑ gµνdxµ ⊗ dxν we
require

[g, xρ] = ∑
µ

gµρdx
µ ⊗ dxρ +∑

µ

gρµdxρ ⊗ dxµ = 0

for all ρ which implies gρρ = 0 unless we are in characteristic 2, and gµρ = 0 for all
µ ≠ ρ. So there is no metric unless we work in characteristic 2 but in this case

g = ∑
µ

dxµ ⊗ dxµ

is the unique quantum metric (the Euclidean metric), for example over F2.

(ii) V = kZn = k[x]/⟨xn − e⟩ with basis xµ the different powers of x with respect to
○ and e = x0. We have commutation relations

[dxµ, xν] = dxµ+ν

with indices treated mod n. At least n quantum metrics exist over F2, namely the
n metrics

g = ∑
µ

dxµ ⊗ dxm−µ; m = 0,1,⋯n − 1.

We check that [g, xρ] ∶= ∑dxµ+ρ ⊗ dxm−µ + dxµ ⊗ dxm−µ+ρ = 0 after a relabelling
µ + ρ→ µ in the first sum to get 2 copies. In addition the elements c = ∑µ dxµ and
hence c ⊗ c are central and adding the latter gives a complementary metric where
all the coefficients are reversed 0↔ 1. We will see that for n = 2 this gives no new
metrics and indeed find just the above two, and for n = 3 complementary metrics
are degenerate so again give no more nondegenerate metrics and we find just the
above 3 (this will not be the case for n = 4 where we obtain 8 metrics).

(iii) With n = pd and working over Fp where p is prime, there is a natural algebra V =
Ad = k[x]/⟨xp

d −x⟩ which plays an important role in the theory of field extensions.
We have xµ the powers under ○ with e = x0 and µ = 0,⋯, n − 1. We focus on p = 2.

A1 is 2-dimensional with e a unit and x ○ x = x. The calculus is [de, e] = de,
[de, x] = [dx, e] = [dx,x] = dx. This is case B among the algebras for n = 2
in the next section and we find there that there is exactly one quantum metric
g = de ⊗ de + de ⊗ dx + dx ⊗ de. In fact this is isomorphic to (i) for 2 points. A2
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is 4-dimensional with e a unit, xµ ○ xν = xµ+ν if µ + ν < 4 and reduced by x4 = x
otherwise. Its own NCG was studied in [2] but now we are not studying its NCG
but rather that of k[x0, x1, x2, x3] as a 4-dimensional noncommutative spacetime.
We will find 3 metrics for this calculus in Section 5.

Returning to the general theory over a field k, after we have found a calculus
and metric the next step is to try to find a quantum torsion free metric compati-
ble or ‘quantum Levi-Civita’ bimodule connecton (QLC for short). By ’bimodule
connection’ on Ω1 we mean a left connection, i.e. ∇ ∶ Ω1 → Ω1 ⊗A Ω1 such that
∇(aω) = a(∇ω)+da⊗ω for all a ∈ A,ω ∈ Ω1 and in addition there exists a bimodule
map σ so that

∇(ωa) = (∇ω)a + σ(ω ⊗ da), σ ∶ Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1.

Here σ if it exists is uniquely determined. In [10] it is shown that in the inner case
(with θ) the construction of a bimodule connection is equivalent to the construction
of bimodule maps σ and α ∶ Ω1 → Ω1 ⊗A Ω1. Then

(2.4) ∇ω = θ ⊗ ω − σ (ω ⊗ θ) + αω.
Such a bimodule connection is metric compatible if

(2.5) θ ⊗ g + (α⊗ id) g + σ12 (id⊗ (α − σθ)) g = 0

where σθ = σ(( )⊗θ). This condition results in quadratic relations for the coefficients
of σ. Finally, the curvature and torsion of a connection are

(2.6) R∇ = (d⊗ id − (∧ ⊗ id) (id⊗∇))∇ ∶ Ω1 → Ω2 ⊗A Ω1

T∇ = ∧∇ − d ∶ Ω1 → Ω2

where ∧ ∶ Ω1 ⊗A Ω1 → Ω2 is the exterior product. One generally requires that Ω is
generated by A and Ω1, and this will always be our case also. The construction of
a torsion free bimodule connection in the inner case is then equivalent [10] to the
bimodule maps σ and α satisfying

(2.7) ∧σ = −∧, ∧α = 0.

In order to solve these equations, we write out all our conditions in terms of struc-
ture tensors starting with the pre-Lie algebra in the form

(2.8) xµ ○ xν = V µνρxρ, V µνρ ∈ k.
For our polynomial or Heisenberg cases we need symmetry of the product so

(2.9) V µνρ = V νµρ
and from (2.2) we need

(2.10) V ρνλV
λµ
γ = V ρµλV

λν
γ

which given commutativity is associativity of the product ○ in this case. For an
inner calculus we have additionally

θ ⋅ V = id, θµV
µν
ρ = δνρ

for some 1-form θ = θµdxµ, which expresses that θ corresponds to the identity for ○.
If this exists, it is unique. The differential calculus induced by the pre-Lie algebra
structure has the commutation relations:

(2.11) [dxρ, xν] = V ρνµdxµ.
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These are the results already discussed (and work the same way over any field) to
associate an inner calculus to a unital commutative associative algebra V ).

The conditions for quantum metric g = gµνdxµ ⊗dxν ∈ Ω1 ⊗A Ω1 come down to the
metric central in the sense

(2.12) gλνV
λρ
µ + gµγV γρν = 0,

gµν = gνµ for quantum symmetry and nonzero determinant for invertibility. The
centrality here has no nonzero solution in the unital case of θ unless we are in
characteristic 2.

For a bimodule connection (for inner calculi) we require bimodule maps σ and
α ∶ Ω1 → Ω1 ⊗A Ω1 as above. For the alpha map on the basis 1-forms, taking
α (dxµ) = αµ νρdxν ⊗ dxρ and αµ νρ = αµρν , we require

(2.13) αργσV
γν
λ + α

ρ
λγV

γν
σ = V ρνµαµ λσ.

These conditions come from the compatibility of α with the differential calcu-
lus, i.e. from equality α ([dxρ, xν]) = V ρνµα (dxµ) calculating the left hand side

α ([dxρ, xν]) = [α (dxρ) , xν] = αρ γσ [dxγ ⊗ dxσ, xν] = αρ γσV γνλdxλ ⊗ dxσ+
+αρ λγV γνσdxλ⊗dxσ and from the right hand side V ρνµα (dxµ) = V ρνµαµ λσdxλ⊗
dxσ gives the above relation (2.13).

Similarly for the sigma map, we assume σ (dxµ ⊗ dxν) = σµνρλdxρ ⊗ dxλ and re-

quire compatibility: σ ([dxµ ⊗ dxν , xγ]) = [σ (dxµ ⊗ dxν) , xγ]. From the left hand
side we obtain σ ([dxµ ⊗ dxν , xγ]) = V µγ ασ (dxα ⊗ dxν) + V νγβσ (dxµ ⊗ dxβ) =
(V µγασανωσ + V νγβσµβωσ)dxω ⊗ dxσ and from the right hand side we obtain

[σ (dxµ ⊗ dxν) , xγ] = [σµνλρdxλ ⊗ dxρ, xγ] = (σµνλσV λγωdxω ⊗ dxσ + σµνωρV ργσdxω ⊗ dxσ)
which results in the condition

(2.14) V µγασ
αν
ωσ + V νγβσ

µβ
ωσ = σµνλσV

λγ
ω + σµνωρV ργσ.

Additionally, we are interested in σ invertible as an n2 × n2 k-valued matrix

σ =
⎛
⎜⎜⎜
⎝

σ11
11 σ

11
12 ... σ

11
nn

σ12
11

... ...
σnn11 σnnnn

⎞
⎟⎟⎟
⎠

with det (σ) ≠ 0.

Metric compatibility (2.5) in the unital inner case (for α = 0, which turns out to
be the case in our considerations) becomes the non-linear conditions for the sigma
coefficients,

(2.15) θρgµν = σλγβνgαλθγσαβρµ.

3. Classification and their quantum geometries for n = 2

For n = 1 there are up to isomorphism only two algebras of dimension 1 over any
field k, namely x○x = 0 which is nonunital and gives the classical calculus [dx,x] = 0
on k[x] and e ○ e = e which gives the finite difference calculus [de, e] = λde on k[e]
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for deformation parameter λ in agreement with [9] for 1-dimensional calculi. The
only candidate for a quantum metric is up to normalisation g = dx ⊗ dx which is
central as the calculus is commutative and similarly g = de⊗de which is only central
over F2. We are interested in this case, with λ = 1.

Our goal in this section is to give a full classification of the n = 2 unital (hence
inner) case. Clearly, 2-dimensional commutative unital algebras have the form e, x
as basis and e ○ e = e, e ○ x = x = x ○ e and x ○ x = αe + βx for constants α,β for free
parameters α,β. Over F2 this means four possibilities

x ○ x = 0, x ○ x = e, x ○ x = x, x ○ x = e + x
with the first two isomorphic by x ↦ x + e. Thus there are three inequivalent
unital algebras hence three calculi. We used a computer package ‘R’ to check this
explicitly (as a warm up to the next section which is best done by computer), then
also find the metrics in each case and the metric compatible quantum Levi-Civita
connections for each metric. We check every possible 0,1 value for the various
structure constants. We summarise our results in Table 1.

Relations
[de, e] = de

[de, x] = dx = [dx, e]

Orbit
order

Isotropy
group

Quantum metrics and nonzero QLCs

A
x ○ x = 0

[dx,x] = 0
2 × 3 {1}

gA.I = de⊗ dx + dx⊗ de
∇de = dx⊗ dx, ∇dx = 0

∇de = dx⊗ de + de⊗ dx, ∇dx = dx⊗ dx
∇de = dx⊗ de + de⊗ dx + dx⊗ dx, ∇dx = dx⊗ dx

∇de = 0, ∇dx = de⊗ de
∇de = de⊗ dx + dx⊗ de, ∇dx = de⊗ de + dx⊗ dx

gA.II = de⊗ dx + dx⊗ de + dx⊗ dx
∇de = dx⊗ dx, ∇dx = 0

∇de = de⊗ dx + dx⊗ de, ∇dx = dx⊗ dx
∇de = de⊗ dx + dx⊗ de + dx⊗ dx, ∇dx = dx⊗ dx

B
x ○ x = x

[dx,x] = dx
1 × 3 {1, u} = Z2

gB = de⊗ de + de⊗ dx + dx⊗ de
∇de = 0, ∇dx = de⊗ de

C
x ○ x = e + x

[dx,x] = de + dx
1 × 3 {1, v} = Z2

gC.I = de⊗ dx + dx⊗ de + dx⊗ dx
∇de = de⊗ dx + dx⊗ de + dx⊗ dx, ∇dx = dx⊗ dx

gC.II = de⊗ de + de⊗ dx + dx⊗ de
∇de = 0, ∇dx = de⊗ de

gC.III = de⊗ de + dx⊗ dx
∇de = de⊗ de + dx⊗ dx, ∇dx = de⊗ dx + dx⊗ de

Table 1. All possible unital inner noncommutative geometries on F2[e, x]. Note that

gA.II = gC.I and gB = gC.II .

We now explain how these results were obtained. A priori the noncommutative
geometry of interest is that of F2[x1, x2], defined as the universal enveloping algebra
of an Abelian Lie algebra generated by basis elements x1, x2, the commutative
algebra product (2.8) induces the differential calculus (2.11). Notice that in 2
dimensions with variables x1 and x2 we have three possibilities of inner calculi with
θ as the differential of an element of the pre-Lie algebra and they are θ = dx1 or
dx2 or dx1 + dx2. (Equivalently, the algebra has a unit e = x1, x2 or x1 + x2.)

We find all the possible solutions of the commutative pre-Lie algebra structure in 2
dimensions which induces inner differential calculus, i.e. satisfying (2.1) and (2.2).
Let S = {s1, ..., s12} be the set of all solutions and they can be grouped as follows:
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● 4 cases of inner calculus with θ = dx1, all have the following commutation relations
[dx1, x1] = dx1, [dx1, x2] = dx2 = [dx2, x1] and the remaining commutators we

order as follows: s1 ∶ [dx2, x2] = 0 , s2 ∶ [dx2, x2] = dx2 , s3 ∶ [dx2, x2] = dx1 + dx2 ,

s4 ∶ [dx2, x2] = dx1;

● 4 cases of inner calculus with θ = dx2 with [dx2, xi] = dxi = [dxi, x2] and s5 ∶
[dx1, x1] = 0 , s6 ∶ [dx1, x1] = dx2 , s7 ∶ [dx1, x1] = dx1 , s8 ∶ [dx1, x1] = dx1 + dx2;

● 4 cases of inner calculus with θ = dx1 + dx2, such that [dx1 + dx2, xi] = dxi :

s9 ∶ [dx1, x1] = 0 , [dx1, x2] = dx1 = [dx2, x1] , [dx2, x2] = dx1 + dx2,

s10 ∶ [dx1, x1] = dx2 , [dx1, x2] = dx1 + dx2 = [dx2, x1] , [dx2, x2] = dx1,

s11 ∶ [dx1, x1] = dx1 , [dx1, x2] = 0 = [dx2, x1] , [dx2, x2] = dx2 ,

s12 ∶ [dx1, x1] = dx1 + dx2 , [dx1, x2] = dx2 = [dx2, x1] , [dx2, x2] = 0.

One can show that due to the action of the group of isomorphisms G on the set
S of these solutions we get only three inequivalent families, corresponding to the
orbits of the action of the group.

The group of isomorphisms in 2 dimensions over F2 is G = SL (2,2) = PSL (2,2) =
S3 (of order 6) with the elements

1 = (1 0
0 1

) , u = (1 0
1 1

) ,w = (0 1
1 0

) , vu = (0 1
1 1

) , uv = (1 1
1 0

) , v = (1 1
0 1

) .

Its action on the set of solutions S results in the change of variables, e.g. the action
of the element u corresponds to the change of variables

(3.1) (y
1

y2) = (1 0
1 1

)(x
1

x2) .

Note that already the set of the first 4 solutions (for inner calculi with dx1,i.e.
S1 = {s1, s2, s3, s4} splits into the three orbits under the action of the group G. It
is enough to consider the element u ∈ G and the change of variables (3.1) to obtain
that s1 ≃ s4.

Recall that if G acts on a set S the orbits of this action are the sets

Os = {s′ ∈ S ∣ g ⋅ s = s′ for g ∈ G}.

We obtain the following:

For the calculus A the orbit consist of the elements: Os1 = {s1, s4,s5, s6, s9, s12}, ∣Os1 ∣ =
6 and the isotropy group of element Hs1 = {1}.

For the calculus B: Os2 = {s2, s7,s11}, ∣Os2 ∣ = 2 and the isotropy group of the element
Hs2 = {1, u}.

For the calculus C: Os3 = {s3, s8,s10}, ∣Os3 ∣ = 2 and the isotropy group of the element
Hs3 = {1, v}.

As an example we present the explicit calculation for the orbit containing element
s2: e ⋅ s2 = s2;u ⋅ s2 = s2; w ⋅ s2 = s7;uv ⋅ s2 = s7; vu ⋅ s2 = s11; v ⋅ s2 = s11. Therefore
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the corresponding orbit is

Os2 = {s2, s7,s11}
and the isotropy groups of its elements are

Hs2 = {e, u}, Hs7 = {w,uv}, Hs11 = {vu, v}.

Other orbits are calculated analogously. These three orbits exhaust the elements of
the whole set S implying there are only three non-isomorphic families of differential
calculi as collected in the first column of Table 1, choosing s1 as case A, s2 as case B
and s3 as case C, with x1 = e the identity element for the ○ product and θ = dx1 = de,
and x2 = x.

For each of these differential calculi A, B and C we next look for the quantum
metrics g ∈ Ω1 ⊗A Ω1 with ∧(g) = 0 in the form

g = g11de⊗ de + g12 (de⊗ dx + dx⊗ de) + g22dx⊗ dx

with constant coefficients, i.e. g11, g12, g22 ∈ F2. Then we look for bimodule
connections, which take the form (2.4) including bimodule maps α and σ. Here
∇de = ∇dx = 0 and σ = flip on the generators are always torsion free metric com-
patible bimodule connections but each of the calculi has an additional QLCs which
are collected along with the possible metrics in the last column of Table 1.

We show some of the calculations behind the A case explicitly, with similar argu-
ments for the other cases. Thus, working with the A calculus, we first calculate:
[g, e] = 0 and [g, x] = g11 (dx⊗ de + de⊗ dx) = 0 ⇒ g11 = 0. The possible (non
degenerate) solutions for metric coefficients are

i) g12 = 1, g22 = 0 resulting in gA.I = de⊗ dx + dx⊗ de

ii) g12 = 1, g22 = 1 resulting in gA.II = de⊗ dx + dx⊗ de + dx⊗ dx.

Next, to find the bimodule connections, we look for the bimodule maps α and σ,
taking the former in the form α (dx) = ade⊗de+b (de⊗ dx + dx⊗ de)+cdx⊗dx and
we calculate that α ([dx, e]) = [α (dx) , e] = 0. On the other hand, for this calculus,
α ([dx, e]) = α (dx) = ade⊗de+ b (de⊗ dx + dx⊗ de)+ cdx⊗dx. Therefore we have
a, b, c = 0.

Similarly for α (de) = a′de ⊗ de + b′ (de⊗ dx + dx⊗ de) + c′dx ⊗ dx we calculate
that α ([de, e]) = [α (de) , e] = 0, while on the other hand α ([de, e]) = α (de) =
a′de⊗ de + b′ (de⊗ dx + dx⊗ de) + c′dx⊗ dx implying a′, b′, c′ = 0. Hence there are
no non-zero module maps α.

For the sigma map we assume (2.14) and the metric compatibility (with α = 0) (2.5).
We solve the relations (2.14) and (2.15) over the field F2 by computer, which gives
rise to the following torsion free metric compatible ‘quantum Levi-Civita’ bimodule
connections. This gives us

i) For gA.I = de⊗ dx + dx⊗ de we have five solutions

(A.I.1) ∇de = dx⊗ dx, ∇dx = 0;

(A.I.2) ∇de = dx⊗ de + de⊗ dx, ∇dx = dx⊗ dx;

(A.I.3) ∇de = dx⊗ de + de⊗ dx + dx⊗ dx, ∇dx = dx⊗ dx;
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(A.I.4) ∇de = 0, ∇dx = de⊗ de;

(A.I.5) ∇de = de⊗ dx + dx⊗ de, ∇dx = de⊗ de + dx⊗ dx.

ii) For gA.II = de⊗ dx + dx⊗ de + dx⊗ dx we have three solutions

(A.II.1) ∇de = dx⊗ dx, ∇dx = 0;

(A.II.2) ∇de = de⊗ dx + dx⊗ de, ∇dx = dx⊗ dx;

(A.II.3) ∇de = de⊗ dx + dx⊗ de + dx⊗ dx, ∇dx = dx⊗ dx.

We solve the B,C cases similarly, all results being collected in Table 1 above. We
have not listed the associated σ as these are uniquely determined by ∇ and the
commutation relations.

As a check we see that calculus case A corresponds to V ⋍ F2Z2 as described in
the general analysis, see example (ii), in Section 2. The metrics gA.II , gA.I recover
the two metrics there for m = 0,1 after the change of variables to x1 = e + x, x0 = e
(where the superscript on the left is a label not an exponent). The complementary
metrics in the general analysis duplicate these. The calculus case B corresponds to
V ⋍ F2(2 points) in the general analysis, example (i) in Section 2, with the metric
gB agreeing with the Euclidean metric there on change of variables x0 = e + x,
x1 = x.

Proposition 3.1. For n = 2 all quantum Levi-Civita connections as listed in Table
1 are flat.

Proof. Explicitly using (2.6) we demonstrate the calculation for the first two bimod-
ule connections compatible with the first metric gA.I in the family A. For (A.I.1)
this is

R∇de = (d⊗ id − (∧ ⊗ id) (id⊗∇))∇de = −(∧ ⊗ id) (id⊗∇)(dx⊗ dx) = 0,

R∇dx = (d⊗ id − (∧ ⊗ id) (id⊗∇))∇dx = 0,

while for (A.I.2) the calculation is

R∇de = −(∧ ⊗ id) (id⊗∇)(dx⊗ de + de⊗ dx) = dx ∧ dx ⊗ de + dx ∧ de ⊗ dx + de ∧
dx⊗ dx = 0,

R∇dx = −(∧ ⊗ id) (id⊗∇)(dx⊗ dx) = −dx ∧ dx⊗ dx = 0.

Similarly for all the other bimodule connections in Table 1 above. We refer only to
bimodule quantum Levi-Civita connections with constant coefficients and invertible
σ as listed in the table. �

4. Classification for n = 3

For the n = 3 inner case over F2 we will find six inequivalent unital algebras. In
each case we take e, x, y as basis and have e ○ e = e, e ○ x = x = x ○ e, e ○ y = y = y ○ e,
with the remaining relations as:

A: x ○ y = 0 = y ○ x, x ○ x = 0 = y ○ y,
B: x ○ y = 0 = y ○ x, x ○ x = x, y ○ y = y,
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C: x ○ y = 0 = y ○ x, x ○ x = x, y ○ y = 0,

D: x ○ y = x + y = y ○ x, x ○ x = y, y ○ y = x,

E: x ○ y = 0 = y ○ x, x ○ x = y, y ○ y = 0,

F: x ○ y = x + y = y ○ x, x ○ x = e + x + y, y ○ y = x.

These six inequivalent commutative unital algebras imply six noncommutative dif-
ferential calculi as shown in Table 2. For each of them we show the number of
quantum metrics and for each metric the number of torsion free cotorsion free
(‘quantum Levi-Civita’) bimodule connections. The metrics are listed in detail in
Table 4.

Relations
[de, e] = de

[de, x] = dx = [dx, e]
[de, y] = dy = [dy, e]

Orbit order Isotropy Group
Quantum
metrics

Nonzero
QLC

R∇ ≠ 0

A
[dx, y] = 0 = [dy, x]
[dx,x] = 0 = [dy, y]

∣Os1 ∣ = 4 × 7 {1, w̃, ũṽ, ṽ, ũ, ṽũ} = S3 0 - -

B
[dx, y] = 0 = [dy, x]

[dx,x] = dx, [dy, y] = dy
∣Os34 ∣ = 4 × 7 {1, w̃, ˜̃v ˜̃u, ˜̃u, ˜̃v, ˜̃u˜̃v} = S3 1 3 0

C
[dx, y] = 0 = [dy, x]

[dx,x] = dx, [dy, y] = 0
∣Os2 ∣ = 24 × 7 {1} 2

13
each gC

2 for gC.I
3 for gC.II

D
[dx, y] = dx + dy = [dy, x]
[dx,x] = dy, [dy, y] = dx

∣Os23 ∣ = 12 × 7 {1, w̃} = Z2 3
3

each gD

1 for gD.I
0 for gD.II
1 for gD.III

E
[dx, y] = 0 = [dy, x]

[dx,x] = dy, [dy, y] = 0
∣Os3 ∣ = 12 × 7 {1, ṽ} = Z2 4

13
each gE

2 for gE.I
3 for gE.II
5 for gE.III
4 for gE.IV

F
[dx, y] = de + dx = [dy, x]

[dx,x] = de + dx + dy
[dy, y] = dx

∣Os20 ∣ = 8 × 7 {1, ˜̃v ˜̃u, ˜̃u˜̃v} = Z3 7
3

each gF

2 for each gF
except

0 for gF.II

Table 2. All possible unital inner noncommutative geometries on F2[e, x, y].

We now outline how these results were obtained. For F2[x1, x2, x3] defined as
universal enveloping algebra of Abelian Lie algebra generated by the basis elements
x1, x2, x3, the commutative product (2.9) induces the differential calculus, as before.
In 3 dimensions there is seven possibilities for element θ (as the differential of an
element of the pre-Lie algebra) for inner calculi, namely

θ = dx1,dx2,dx3,dx1 + dx2,dx1 + dx3, dx2 + dx3 and dx1 + dx2 + dx3.

Finding explicitly the solutions to (2.1), (2.2) gives 7 × 64 cases, i.e. 64 solutions
for each of the seven possible θ. The 64 cases with inner calculus with θ = dx1 are
listed in Table 3, there are similarly 64 for each of the other 6 cases.
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Coefficients for inner differential calculi [dxμ,xν]=Vμν
ρdxρ with θ=dx1

          V11
1  V

11
2V

11
3V

12
1 V

12
2V

12
3 V

13
1 V

13
2V

13
3 V

22
1V

22
2V

22
3V

23
1 V

23
2 V

23
3 V

33
1 V

33
2 V

33
3

 [1,]    1    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    0
 [2,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    0    0    0    0

 [3,]    1    0    0    0    1    0    0    0    1    0    0    1    0    0    0    0    0    0
 [4,]    1    0    0    0    1    0    0    0    1    0    1    1    0    0    0    0    0    0

 [5,]    1    0    0    0    1    0    0    0    1    1    0    0    0    0    1    0    0    0
 [6,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    1    0    0    0

 [7,]    1    0    0    0    1    0    0    0    1    1    0    1    0    0    1    0    0    0
 [8,]    1    0    0    0    1    0    0    0    1    0    1    1    0    0    1    0    0    0

 [9,]    1    0    0    0    1    0    0    0    1    0    0    0    0    1    0    1    0    0
[10,]    1    0    0    0    1    0    0    0    1    0    1    0    0    1    0    1    0    0

[11,]    1    0    0    0    1    0    0    0    1    1    0    1    0    1    0    1    0    0
[12,]    1    0    0    0    1    0    0    0    1    1    1    1    0    1    0    1    0    0

[13,]    1    0    0    0    1    0    0    0    1    1    0    0    1    1    1    1    0    0
[14,]    1    0    0    0    1    0    0    0    1    0    1    0    1    1    1    1    0    0

[15,]    1    0    0    0    1    0    0    0    1    0    0    1    1    1    1    1    0    0
[16,]    1    0    0    0    1    0    0    0    1    1    1    1    1    1    1    1    0    0

[17,]    1    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    1    0
[18,]    1    0    0    0    1    0    0    0    1    0    0    1    1    0    0    0    1    0

[19,]    1    0    0    0    1    0    0    0    1    0    1    0    0    1    0    0    1    0
[20,]    1    0    0    0    1    0    0    0    1    1    1    1    1    1    0    0    1    0

[21,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    1    0    1    0
[22,]    1    0    0    0    1    0    0    0    1    0    1    1    1    0    1    0    1    0

[23,]    1    0    0    0    1    0    0    0    1    0    0    1    0    1    1    0    1    0
[24,]    1    0    0    0    1    0    0    0    1    1    0    0    1    1    1    0    1    0

[25,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    0    1    1    0
[26,]    1    0    0    0    1    0    0    0    1    0    1    1    1    0    0    1    1    0

[27,]    1    0    0    0    1    0    0    0    1    0    0    0    0    1    0    1    1    0
[28,]    1    0    0    0    1    0    0    0    1    1    0    1    1    1    0    1    1    0

[29,]    1    0    0    0    1    0    0    0    1    1    0    0    0    0    1    1    1    0
[30,]    1    0    0    0    1    0    0    0    1    1    0    1    1    0    1    1    1    0

[31,]    1    0    0    0    1    0    0    0    1    1    1    1    0    1    1    1    1    0
[32,]    1    0    0    0    1    0    0    0    1    0    1    0    1    1    1    1    1    0

[33,]    1    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    1
[34,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    0    0    0    1

[35,]    1    0    0    0    1    0    0    0    1    1    0    1    0    0    0    0    0    1
[36,]    1    0    0    0    1    0    0    0    1    1    1    1    0    0    0    0    0    1

[37,]    1    0    0    0    1    0    0    0    1    0    0    0    0    1    0    0    0    1
[38,]    1    0    0    0    1    0    0    0    1    0    1    0    0    1    0    0    0    1

[39,]    1    0    0    0    1    0    0    0    1    0    0    1    0    1    0    0    0    1
[40,]    1    0    0    0    1    0    0    0    1    0    1    1    0    1    0    0    0    1

[41,]    1    0    0    0    1    0    0    0    1    1    0    0    0    0    1    0    0    1
[42,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    1    0    0    1

[43,]    1    0    0    0    1    0    0    0    1    0    0    1    0    0    1    0    0    1
[44,]    1    0    0    0    1    0    0    0    1    1    1    1    0    0    1    0    0    1

[45,]    1    0    0    0    1    0    0    0    1    1    0    0    1    1    1    0    0    1
[46,]    1    0    0    0    1    0    0    0    1    0    1    0    1    1    1    0    0    1

[47,]    1    0    0    0    1    0    0    0    1    1    0    1    1    1    1    0    0    1
[48,]    1    0    0    0    1    0    0    0    1    0    1    1    1    1    1    0    0    1

[49,]    1    0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    1    1
[50,]    1    0    0    0    1    0    0    0    1    1    0    1    1    0    0    0    1    1

[51,]    1    0    0    0    1    0    0    0    1    0    0    0    0    1    0    0    1    1
[52,]    1    0    0    0    1    0    0    0    1    0    0    1    1    1    0    0    1    1

[53,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    1    0    1    1
[54,]    1    0    0    0    1    0    0    0    1    1    1    1    1    0    1    0    1    1

[55,]    1    0    0    0    1    0    0    0    1    0    1    1    0    1    1    0    1    1
[56,]    1    0    0    0    1    0    0    0    1    0    1    0    1    1    1    0    1    1

[57,]    1    0    0    0    1    0    0    0    1    0    1    0    0    0    0    1    1    1
[58,]    1    0    0    0    1    0    0    0    1    1    1    1    1    0    0    1    1    1

[59,]    1    0    0    0    1    0    0    0    1    0    1    0    0    1    0    1    1    1
[60,]    1    0    0    0    1    0    0    0    1    0    1    1    1    1    0    1    1    1

[61,]    1    0    0    0    1    0    0    0    1    1    0    0    0    0    1    1    1    1
[62,]    1    0    0    0    1    0    0    0    1    0    0    1    1    0    1    1    1    1

[63,]    1    0    0    0    1    0    0    0    1    1    0    1    0    1    1    1    1    1
[64,]    1    0    0    0    1    0    0    0    1    1    0    0    1    1    1    1    1    1

Table 3. Structure coefficients for unital inner differential calculi with θ = dx1

The set of the 7×64 solutions, denoted by S = {s1, ..., s64, ......s7×64}, splits into the
six orbits under the action of a group of isomorphisms over F2: G = GL (3,F2) =
PSL (2,7). The order of the group of isomorphisms is ∣G∣ = 168 and we write only
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some of its elements (only the ones needed to list the isotropy groups explicitly in
Table 2) :

1 =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
, ũ =

⎛
⎜
⎝

1 0 0
0 1 0
0 1 1

⎞
⎟
⎠
, w̃ =

⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠
, ũṽ =

⎛
⎜
⎝

1 0 0
0 1 1
0 1 0

⎞
⎟
⎠
, ṽ =

⎛
⎜
⎝

1 0 0
0 1 1
0 0 1

⎞
⎟
⎠
,

ṽũ =
⎛
⎜
⎝

1 0 0
0 0 1
0 1 1

⎞
⎟
⎠
, ˜̃v ˜̃u =

⎛
⎜
⎝

1 0 0
1 1 1
0 1 0

⎞
⎟
⎠
, ˜̃u =

⎛
⎜
⎝

1 0 0
1 1 1
0 0 1

⎞
⎟
⎠
, ˜̃v =

⎛
⎜
⎝

1 0 0
0 1 0
1 1 1

⎞
⎟
⎠
, ˜̃u˜̃v =

⎛
⎜
⎝

1 0 0
0 0 1
1 1 1

⎞
⎟
⎠
.

One can present the sketch of a proof, by considering only the solutions for one
of the possible θ, for which we take θ = dx1. These are the first 64 solutions we
denote by S1 = {s1, ..., s64} listed in each row of Table 3, where coefficients V µνρ (as
solutions of (2.1), (2.2) are collected. The other choices of θ have similar structure
by a GL(3,F2) transformation mapping dx1 to any other θ. The space S1 of such
restricted solutions again splits into the six orbits under the action of GL (3,F2).
Thus, si corresponds to the case with coefficients V µνρ listed in the row [i] in Table
3 and falls to the orbit denoted as Osi ∩Ori (which is equivalent to the one of the
families A - F given in the Table 2 above). We write Osi ∩ Opito underline that
we list only part of the orbit (the one coming from the first 64 solutions with inner
calculus dx1 as Opi , when in fact the full size of Osi is 7 ×bigger, as indicated in
Table 2).

The first 64 solutions split into the following orbits:

Os1 ∩Op1 = {s1, s5, s9, s13};

Os34 ∩Op34 = {s34, s38, s42, s46};

Os2∩Op2 = {s2, s4, s6, s8, s10, s12, s14, s16, s19, s21, s25, s32, s33, s35, s37, s39, s41, s43, s45, s47, s49, s51, s61, s64};

Os23 ∩Op23 = {s23, s18, s28, s30, s36, s40, s44, s48, s53, s56, s57, s59};

Os3 ∩Op3 = {s3, s7, s11, s15, s17, s24, s27, s29, s54, s55, s58, s60};

Os20 ∩Op20 = {s20, s22, s26, s31, s50, s52, s62, s63}.

Already for the first 64 solutions we get the six orbits giving six (A - F) inequivalent
noncommutative differential calculi.

For the isotropy groups one can calculate that, e.g. for Hs1 : 1 ⋅ s1 = s1; w̃ ⋅ s1 =
s1; ũṽ ⋅ s1 = s1; ṽ ⋅ s1 = s1; ũ ⋅ s1 = s1; ṽũ ⋅ s1 = s1 or for Hs3 : 1 ⋅ s3, ṽ ⋅ s3 or for Hs23 :
1 ⋅s23 = s23 and w̃ ⋅s23 = s23. Similarly one can calculate the isotropy groups for the
remaining elements.

Below we also show some examples of isomorphisms of certain solutions in S1 to
the six presented above families.

One element of G namely
⎛
⎜
⎝

1 0 0
0 0 1
1 1 0

⎞
⎟
⎠

gives the change of variables

y1 = x1; y2 = x3; y3 = x1 + x2

dy1 = dx1; dy2 = dx3; dy3 = dx1 + dx2
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under which we immediately see that

[dy1, y1] = dy1; [dy1, y2] = dy2 = [dy2, y1] ; [dy1, y3] = dy3 = [dy3, y1]
i.e. the result is still an inner differential calculus with θ = dy1 = dx1.

One can check that the remaining commutators will always fall into one of the six
families above A - F:

● In case A, s1 is isomorphic to s9, with [dy2, y2] = 0; [dy2, y3] = dy2 = [dy3, y2] ; [dy3, y3] =
dy1 i.e. with the non-zero coefficients, V 23

2 = V 32
2 = 1 and V 33

1 = 1, cf. row [9] in
Table 3 above.

● In case B, s34 is isomorphic to s38, with [dy2, y2] = dy2; [dy2, y3] = dy2 =
[dy3, y2] ; [dy3, y3] = dy3.

● In case C, s2 is isomorphic to s37, with [dy2, y2] = 0; [dy2, y3] = dy2 = [dy3, y2] ; [dy3, y3] =
dy3.

● In case D, s23 is isomorphic to s30, with [dy2, y2] = dy1+dy3; [dy2, y3] = dy1+dy3 =
[dy3, y2] ; [dy3, y3] = dy1 + dy2.

● In case E, s3 is isomorphic to s27, with [dy2, y2] = 0; [dy2, y3] = dy2 = [dy3, y2] ; [dy3, y3] =
dy1 + dy2.

● In case F, s20 is isomorphic to s63, with [dy2, y2] = dy1+dy3; [dy2, y3] = dy2+dy3 =
[dy3, y2] ; [dy3, y3] = dy1 + dy2 + dy3.

4.1. Quantum metrics. For each of the differential calculi A - F in the first
column of Table 2 we next look for the quantum metrics g ∈ Ω1⊗AΩ1 with ∧(g) = 0
in the form

g = g11de⊗ de + g12 (de⊗ dx + dx⊗ de) + g13 (de⊗ dy + dy ⊗ de) + g22dx⊗ dx

+ g23 (dx⊗ dy + dy ⊗ dx) + g33dy ⊗ dy

with constant coefficients, i.e. gµν ∈ F2, similarly as outlined in the n = 2 case. The
results for the possible quantum metrics corresponding to the above differential
calculi are shown in Table 4.

As a check we see that the calculus case B corresponds to V ⋍ F2(3 points) with
the metric gB agreeing with the Euclidean metric in the general analysis (example
(i) from Section 2 after the change of variables: e = x0 + x1 + x2, x1 = x, x2 = y.
The case D corresponds to V ⋍ F2Z3 with the metrics gD.II , gD.III , gD.I recovering
the m = 0,1,2 metrics for example (ii) in Section 2 after the change of variables
x0 = e, x1 = e + x,x2 = e + y (where the superscript of x is a label not a square; this
element being (x1)2 in F2Z3). The complementary metrics are not listed in our
table as they are degenerate.

Next we look for bimodule connections, which take the form (2.4) including bi-
module maps α and σ. As for n = 2, careful analysis shows that there are no
nonzero module maps α. For the σ map we assume metric compatibility (2.5) and
impose the torsion free condition (2.7). The curvature is calculated from (2.6).
∇de = ∇dx = ∇dy = 0 and σ = flip on the generators are always torsion free metric
compatible bimodule connections but we also find additional non-zero QLCs, some
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Quantum metrics

A

B gB = de⊗ de + de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx

C
gC.I = de⊗ dy + dy ⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx

gC.II = de⊗ dy + dy ⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx + dy ⊗ dy

D
gD.I = de⊗ de + de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dx⊗ dx

gD.II = de⊗ de + de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx
gD.III = de⊗ de + de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dy ⊗ dy

E

gE.I = de⊗ dy + dy ⊗ de + dx⊗ dx
gE.II = de⊗ dy + dy ⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx

gE.III = de⊗ dy + dy ⊗ de + dx⊗ dx + dy ⊗ dy
gE.IV = de⊗ dy + dy ⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx + dy ⊗ dy

F

gF.I = de⊗ dy + dy ⊗ de + dx⊗ dx
gF.II = de⊗ de + de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx

gF.III = de⊗ de + de⊗ dx + dx⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx
gF.IV = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dy ⊗ dy

gF.V = de⊗ dx + dx⊗ de + dx⊗ dx + dy ⊗ dy
gF.V I = de⊗ de + dx⊗ dy + dy ⊗ dx + dy ⊗ dy

gF.V II = de⊗ de + de⊗ dy + dy ⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx + dy ⊗ dy
Table 4. All possible quantum metrics for each of the possible calculi in Table 2. Note

that gE.II = gC.I , gE.IV = gC.II , gF.I = gE.I and gF.II = gD.II = gB .

of which have non-zero curvature R∇ (their numbers are given in the Table 2).
This methodology is the same as for n = 2, therefore we omit the details and list
the resulting QLCs and their curvatures. The maps σ although computed in the
analysis are not listed as they are uniquely determined by ∇ and the commutation
relations. There is no case A as this did not have any quantum metrics.

Case B (for metric gB):
(B.1) ∇de = 0, ∇dx = 0, ∇dy = de⊗ dx + dx⊗ de + de⊗ de + dx⊗ dx, R∇ = 0;
(B.2) ∇de = 0, ∇dx = de⊗ dy + dy ⊗ de + de⊗ de + dy ⊗ dy, ∇dy = 0, R∇ = 0;
(B.3) ∇de = 0, ∇dx = dx⊗ dy + dy ⊗ dx + dx⊗ dx + dy ⊗ dy = ∇dy, R∇ = 0.

Case C
- for metric gC.I :
(C.I.1) ∇de = 0, ∇dx = 0, ∇dy = de⊗de+de⊗dx+dx⊗de+dx⊗dx ; R∇ = 0;

(C.I.2) ∇de = de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx, ∇dx = 0,
∇dy = de⊗ de + de⊗ dx + dx⊗ de + dx⊗ dx + dy ⊗ dy, R∇ = 0;

(C.I.3) ∇de = de⊗ dy + dy ⊗ de, ∇dx = dy ⊗ dy = ∇dy, R∇ = 0;

(C.I.4) ∇de = de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx, ∇dx = 0,
∇dy = dy ⊗ dy, R∇ = 0;

(C.I.5) ∇de = dx⊗ dy + dy ⊗ dx, ∇dx = dy ⊗ dy, ∇dy = 0, R∇ = 0;

(C.I.6) ∇de = dy ⊗ dy, ∇dx = 0, ∇dy = 0, R∇ = 0;

(C.I.7) ∇de = dy ⊗ dy + de⊗ dy + dy ⊗ de, ∇dx = dy ⊗ dy = ∇dy, R∇ = 0;

(C.I.8) ∇de = dy ⊗ dy + de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx, ∇dx = 0,
∇dy = dy ⊗ dy, R∇ = 0;
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(C.I.9) ∇de = dy ⊗ dy + dx⊗ dy + dy ⊗ dx, ∇ dx = dy ⊗ dy, ∇dy = 0, R∇ = 0;

(C.I.10) ∇de = dx⊗ dx + de⊗ dy + dy ⊗ de, ∇dx = dx⊗ dy + dy ⊗ dx,
∇dy = dy ⊗ dy, R∇ = 0;

(C.I.11) ∇de = dx⊗ dx + dx⊗ dy + dy ⊗ dx, ∇dx = dx⊗ dy + dy ⊗ dx, ∇dy = 0,

R∇de = dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0;

(C.I.12) ∇de = dx ⊗ dx + dy ⊗ dy + de ⊗ dy + dy ⊗ de, ∇dx = dx ⊗ dy + dy ⊗ dx,
∇dy = dy ⊗ dy, R∇ = 0;

(C.I.13) ∇de = dx⊗dx+dy⊗dy+dx⊗dy+dy⊗dx, ∇dx = dx⊗dy+dy⊗dx, ∇dy = 0,

R∇de = dx ∧ dy ⊗ dy + dy ∧ dx⊗ dx, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0.

- for metric gC.II :
(C.II.1) ∇de = 0, ∇dx = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de,
∇dy = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + de⊗ de, R∇ = 0;

(C.II.2) ∇de = de⊗dy +dy⊗de+dx⊗dy +dy⊗dx, ∇dx = de⊗dx+dx⊗de+de⊗
dy + dy ⊗ de, ∇dy = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + de⊗ de + dy ⊗ dy,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dy ⊗ dy + de ∧ dx⊗ dy + de ∧ dy ⊗ dx,

R∇dx = dy ∧ dx⊗ dx + dx ∧ de⊗ dy + dx ∧ dy ⊗ de + dx ∧ dy ⊗ dy,

R∇dy = de ∧ dy ⊗ dy + dx ∧ dy ⊗ dy + dy ∧ dx⊗ dx.

The remaining solutions (C.II.3) - (C.II.13) are the same as for the metric gC.I , i.e.
are equal to cases (C.I.3) - (C.I.13) respectively.

Case D
- for metric gD.I :
(D.I.1) ∇de = 0, ∇dx = de⊗ de, ∇dy = de⊗ dx + dx⊗ de, R∇ = 0;

(D.I.2) ∇de = dx ⊗ dy + dy ⊗ dx + dy ⊗ dy, ∇dx = dx ⊗ dy + dy ⊗ dx, ∇dy =
dy ⊗ dy, R∇ = 0;

(D.I.3) ∇de = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + de⊗ de + dy ⊗ dy,
∇dx = de⊗ dx + dx⊗ de + de⊗ de + dy ⊗ dy,
∇dy = de⊗ de + dx⊗ dy + dy ⊗ dx + dy ⊗ dy,

R∇de = dx ∧ de⊗ de + de ∧ dx⊗ dx + dy ∧ de⊗ de,

R∇dx = de ∧ dx⊗ dx + dx ∧ de⊗ de + dx ∧ dy ⊗ de + dx ∧ de⊗ dy,

R∇dy = de ∧ dy ⊗ dy + dy ∧ de⊗ de + dy ∧ de⊗ dx + dy ∧ dx⊗ dx + dy ∧ dx⊗ de.

- metric gD.II :
(D.II.1) ∇de = 0, ∇dx = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx,
∇dy = de⊗ dy + dy ⊗ de + de⊗ de + dy ⊗ dy, R∇ = 0;

(D.II.2) ∇de = 0, ∇dx = de⊗ dx + dx⊗ de + de⊗ de + dx⊗ dx,
∇dy = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + dx⊗ dy + dy ⊗ dx, R∇ = 0;

(D.II.3) ∇de = 0, ∇dx = dx⊗ dy + dy ⊗ dx + dx⊗ dx + dy ⊗ dy,
∇dy = dx⊗ dy + dy ⊗ dx + dx⊗ dx + dy ⊗ dy, R∇ = 0.
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- for metric gD.III
(D.III.1) ∇de = 0, ∇dx = de⊗ dy + dy ⊗ de, ∇dy = de⊗ de, R∇ = 0;

(D.III.2) ∇de = dx⊗ dx + dx⊗ dy + dy ⊗ dx, ∇dx = dx⊗ dx,
∇dy = dx⊗ dy + dy ⊗ dx, R∇ = 0;

(D.III.3) ∇de = de⊗ de + de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dx + dy ⊗ de,
∇dx = de⊗de+dx⊗dx+dx⊗dy+dy⊗dx, ∇dy = de⊗de+de⊗dy+dx⊗dx+dy⊗de,

R∇de = (dx + dy) ∧ de⊗ de + de ∧ dy ⊗ dy,

R∇dx = de ∧ dx⊗ dx + dx ∧ de⊗ de + dx ∧ dy ⊗ dy + dx ∧ de⊗ dy + dx ∧ dy ⊗ de,

R∇dy = de ∧ dy ⊗ dy + dy ∧ de⊗ de + dy ∧ dx⊗ de + dy ∧ de⊗ dx.

Case E
- for metric gE.I :
(E.I.1) ∇de = 0, ∇dx = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de,
∇dy = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + de⊗ de, R∇ = 0;

(E.I.2) ∇de = de⊗ dy + dy ⊗ de, ∇dx = dy ⊗ dy = ∇dy, R∇ = 0;

(E.I.3) ∇de = de⊗dy+dy⊗de+dx⊗dy+dy⊗dx, ∇dx = 0, ∇dy = dy⊗dy, R∇ = 0;

(E.I.4) ∇de = de⊗ dy + dy⊗ de+ dx⊗ dy + dy⊗ dx, ∇dx = de⊗ dx+ dx⊗ de+ de⊗
dy + dy ⊗ de, ∇dy = de⊗ dx + dx⊗ de + de⊗ dy + dy ⊗ de + de⊗ de + dy ⊗ dy,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dx + de ∧ dy ⊗ dy,

R∇dx = dx ∧ de⊗ dy + dx ∧ dy ⊗ de + dx ∧ dy ⊗ dy + dy ∧ dx⊗ dx,

R∇dy = de ∧ dy ⊗ dy + dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy;

(E.I.5) ∇de = dx⊗ dy + dy ⊗ dx , ∇dx = dy ⊗ dy, ∇dy = 0, R∇ = 0;

(E.I.6) ∇de = dy ⊗ dy, ∇dx = 0 , ∇dy = 0, R∇ = 0;

(E.I.7) ∇de = de⊗dy+dy⊗de+dy⊗dy, ∇dx = dy⊗dy , ∇dy = dy⊗dy, R∇ = 0;

(E.I.8) ∇de = de ⊗ dy + dx ⊗ dy + dy ⊗ de + dy ⊗ dx + dy ⊗ dy , ∇dx = 0 , ∇dy =
dy ⊗ dy, R∇ = 0;

(E.I.9) ∇de = dx⊗ dy + dy ⊗ dx + dy ⊗ dy, ∇dx = dy ⊗ dy, ∇dy = 0, R∇ = 0;

(E.I.10) ∇de = de⊗ dy + dx⊗ dx + dy ⊗ de , ∇dx = dx⊗ dy + dy ⊗ dx ,
∇dy = dy ⊗ dy, R∇ = 0;

(E.I.11) ∇de = dx ⊗ dx + dx ⊗ dy + dy ⊗ dx , ∇dx = dx ⊗ dy + dy ⊗ dx , ∇dy =
0, R∇ = 0;

(E.I.12) ∇de = de⊗ dy + dx⊗ dx + dy ⊗ de + dy ⊗ dy , ∇dx = dx⊗ dy + dy ⊗ dx,
∇dy = dy ⊗ dy, R∇ = 0;

(E.I.13) ∇de = dx ⊗ dx + dx ⊗ dy + dy ⊗ dx + dy ⊗ dy , ∇dx = dx ⊗ dy + dy ⊗ dx,
∇dy = 0,

R∇de = dx ∧ dy ⊗ dy + dy ∧ dx⊗ dx, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0.

- for metric gE.II :
(E.II.1) ∇de = 0 , ∇dx = de⊗ de + de⊗ dx + dx⊗ de + dx⊗ dx,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dy + dy ⊗ de + dy ⊗ dx, R∇ = 0;
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(E.II.2) ∇de = dx⊗ dx, ∇dx = dx⊗ dy + dy ⊗ dx + dy ⊗ dy, ∇dy = 0,

R∇de = dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0;

(E.II.3) ∇de = dx⊗dy+dy⊗dx, ∇dx = de⊗de+de⊗dx+dx⊗de+dx⊗dx+dy⊗dy,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dy + dy ⊗ de + dy ⊗ dx,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dy ⊗ dx + de ∧ dx⊗ dy,

R∇dx = dx ∧ de⊗ dy + dy ∧ dx⊗ dx + dx ∧ dy ⊗ de,

R∇dy = dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy + de ∧ dy ⊗ dy;

(E.II.4) ∇de = dx⊗ dx + dy ⊗ dy, ∇dx = dx⊗ dy + dy ⊗ dx + dy ⊗ dy, ∇dy = 0,

R∇de = dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0.

And the remaining ones are: (E.II.5.)=(E.I.11.), (E.II.6.)=(E.I.5.), (E.II.7.)=(E.I.2.),
(E.II.8.)=(E.I.3.), (E.II.9.)=(E.I.6.), (E.II.10.)=(E.I.13.), (E.II.11.)=(E.I.9.), (E.II.12.)=(E.I.7.),
(E.II.13.)=(E.I.8.).

- for metric gE.III

(E.III.1) ∇de = dx⊗ dx, ∇dx = dx⊗ dy + dy ⊗ dx , ∇dy = 0,

R∇de = dy ∧ dx⊗ dx, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0;

(E.III.2) ∇de = 0, ∇dx = de⊗ de + de⊗ dy + dx⊗ dx + dy ⊗ de + dy ⊗ dy,
∇dy = de⊗ dx + dx⊗ de + dx⊗ dy + dy ⊗ dx, R∇ = 0;

(E.III.3) ∇de = dx ⊗ dy + dy ⊗ dx, ∇dx = de ⊗ de + de ⊗ dy + dx ⊗ dx + dy ⊗ de,
∇dy = de⊗ dx + dx⊗ de + dx⊗ dy + dy ⊗ dx,

R∇de = dy∧de⊗de+de∧dx⊗dx+de∧dy⊗dy, R∇dx = dx∧de⊗dy+dx∧dy⊗de+dx∧dy⊗dy,

R∇dy = de ∧ dy ⊗ dy + dx ∧ dy ⊗ dx;

(E.III.4) ∇de = dx ⊗ dx + dx ⊗ dy + dy ⊗ dx, ∇dx = dx ⊗ dy + dy ⊗ dx + dy ⊗ dy,
∇dy = 0,

R∇de = dy ∧ dx⊗ dx, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0;

(E.III.5) ∇de = de⊗ dy + dy ⊗ de, ∇dx = 0, ∇dy = dy ⊗ dy, R∇ = 0;

(E.III.6) ∇de = de⊗dy+dx⊗dy+dy⊗de+dy⊗dx, ∇dx = dy⊗dy = ∇dy, R∇ = 0;

(E.III.7) ∇de = dx⊗ dx + dy ⊗ dy, ∇dx = dx⊗ dy + dy ⊗ dx, ∇dy = 0,

R∇de = dy ∧ dx⊗ dx, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0;

(E.III.8) ∇de = dx⊗ dx + dx⊗ dy + dy ⊗ dx + dy ⊗ dy,
∇dx = dx⊗ dy + dy ⊗ dx + dy ⊗ dy, ∇dy = 0,

R∇de = dy ∧ dx⊗ dx, R∇dx = dx ∧ dy ⊗ dy, R∇dy = 0;

(E.III.9) ∇de = de⊗ dy + dy ⊗ de + dy ⊗ dy, ∇dx = 0 , ∇dy = dy ⊗ dy, R∇ = 0;

(E.III.10) ∇de = de ⊗ dy + dx ⊗ dy + dy ⊗ de + dy ⊗ dx + dy ⊗ dy, ∇dx = dy ⊗ dy,
∇dy = dy ⊗ dy, R∇ = 0.

The remaining ones are: (E.III.11) = (E.I.5), (E.III.12)=(E.I.6), (E.III.13)=(E.I.9).
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- for metric gE.IV :

(E.IV.1) ∇de = 0, ∇dx = de⊗ de + de⊗ dx + de⊗ dy + dx⊗ de + dy ⊗ de,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dy ⊗ de, R∇ = 0;

(E.IV.2) ∇de = dx⊗dy+dy⊗dx, ∇dx = de⊗de+de⊗dx+de⊗dy+dx⊗de+dy⊗
de + dy ⊗ dy, ∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dy ⊗ de,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dx + de ∧ dy ⊗ dy,

R∇dx = dx ∧ de⊗ dy + dx ∧ dy ⊗ dy + dy ∧ dx⊗ dx + dx ∧ dy ⊗ de,

R∇dy = de ∧ dy ⊗ dy + dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy;

And (E.IV.3)=(E.I.11), (E.IV.4)=(E.I.5),(E.IV.5)=(E.II.2), (E.IV.6)=(E.I.2), (E.IV.7)=(E.I.3),
(E.IV.8)=(E.I.6), (E.IV.9)=(E.II.4), (E.IV.10)=(E.I.13), (E.IV.11)=(E.I.9), (E.IV.12)=(E.I.7),
(E.IV.13)=(E.I.8).

Case F
- for metric gF.I

(F.I.1) ∇de = 0, ∇dx = de⊗ de, ∇dy = de⊗ de + de⊗ dx + dx⊗ de, R∇ = 0;

(F.I.2) ∇de = de⊗dx+de⊗dy+dx⊗de+dy⊗de+dy⊗dy, ∇dx = de⊗dy+dy⊗de,
∇dy = dx⊗ dy + dy ⊗ dx + dy ⊗ dy,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx, R∇dx = dx ∧ de⊗ dy + dx ∧ dy ⊗ de,

R∇dy = de ∧ dy ⊗ dy + dy ∧ dx⊗ dx;

(F.I.3) ∇de = de ⊗ de + dx ⊗ dy + dy ⊗ dx + dy ⊗ dy, ∇dx = de ⊗ de + dy ⊗ dy,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dy ⊗ de,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx, R∇dx = dx ∧ de⊗ dy + dx ∧ dy ⊗ de,

R∇dy = de ∧ dy ⊗ dy + dy ∧ dx⊗ dx.

- for metric gF.II

(F.II.1) ∇de = 0, ∇dx = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dy + dy ⊗ de + dy ⊗ dx,
∇dy = de⊗ de + de⊗ dy + dy ⊗ de + dy ⊗ dy, R∇ = 0;

(F.II.2) ∇de = 0, ∇dx = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dx + dy ⊗ de + dy ⊗ dy,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dy + dy ⊗ de + dy ⊗ dx, R∇ = 0;

(F.II.3) ∇de = 0, ∇dx = de⊗ de + de⊗ dx + dx⊗ de + dx⊗ dx,
∇dy = de⊗ de + de⊗ dy + dx⊗ dx + dx⊗ dy + dy ⊗ de + dy ⊗ dx, R∇ = 0.

- for metric gF.III

(F.III.1) ∇de = 0, ∇dx = dx⊗ dx,
∇dy = de⊗ dx + dx⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx, R∇ = 0;

(F.III.2) ∇de = de ⊗ dx + dx ⊗ de + dx ⊗ dx + dy ⊗ dy, ∇dx = de ⊗ dx + dx ⊗ de +
dx⊗ dx+ dx⊗ dy + dy ⊗ dx+ dy ⊗ dy, ∇dy = de⊗ dy + dx⊗ dx+ dy ⊗ de+ dy ⊗ dy,

R∇de = dx ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dx,

R∇dx = dx ∧ de⊗ de + de ∧ dx⊗ dx + dy ∧ dx⊗ dx,

R∇dy = dy ∧ de⊗ de + dy ∧ de⊗ dx + dy ∧ dx⊗ de + dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy;
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(F.III.3) ∇de = de⊗dx+de⊗dy +dx⊗de+dy⊗de+dy⊗dy, ∇dx = de⊗dx+de⊗
dy+dx⊗de+dx⊗dy+dy⊗de+dy⊗dx, ∇dy = de⊗dy+dx⊗dy+dy⊗de+dy⊗dx,

R∇de = dx ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dx,

R∇dx = dx ∧ de⊗ de + de ∧ dx⊗ dx + dy ∧ dx⊗ dx,

R∇dy = dy ∧ de⊗ de + dy ∧ de⊗ dx + dy ∧ dx⊗ de + dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy.

- for metric gF.IV

(F.IV.1) ∇de = 0, ∇dx = de⊗ dy + dy ⊗ de, ∇dy = de⊗ de, R∇ = 0;

(F.IV.2) ∇de = de⊗ de + de⊗ dy + dx⊗ dx + dx⊗ dy + dy ⊗ de + dy ⊗ dx + dy ⊗ dy,
∇dx = dx⊗ dy + dy ⊗ dx, ∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dy ⊗ de,

R∇de = dx ∧ de⊗ de + dy ∧ de⊗ de + de ∧ dy ⊗ dy,

R∇dx = de ∧ dx⊗ dx + dx ∧ de⊗ dy + dx ∧ dy ⊗ de + dx ∧ dy ⊗ dy,

R∇dy = dy ∧ de⊗ dx + dy ∧ dx⊗ de + de ∧ dy ⊗ dy;

(F.IV.3) ∇de = de⊗ dx + dx⊗ de + dx⊗ dx + dy ⊗ dy,
∇dx = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dy + dy ⊗ de + dy ⊗ dx,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ de + dy ⊗ dx + dy ⊗ dy,

R∇de = dx ∧ de⊗ de + dy ∧ de⊗ de + de ∧ dy ⊗ dy,

R∇dx = de ∧ dx⊗ dx + dx ∧ de⊗ dy + dx ∧ dy ⊗ de + dx ∧ dy ⊗ dy,

R∇dy = dy ∧ de⊗ dx + dy ∧ dx⊗ de + de ∧ dy ⊗ dy.

- for metric gF.V

(F.V.1) ∇de = de⊗ dy + dx⊗ dx + dy ⊗ de, ∇dx = dx⊗ dy + dy ⊗ dx,
∇dy = de⊗ dx + dx⊗ de + dx⊗ dx,

R∇de = dx ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dy ⊗ dy,

R∇dx = de ∧ dx⊗ dx + dx ∧ dy ⊗ dy,

R∇dy = dy ∧ de⊗ dx + dy ∧ dx⊗ de + dy ∧ dx⊗ dx;

(F.V.2) ∇de = de⊗de+dx⊗dy+dy⊗dx+dy⊗dy, ∇dx = de⊗de+de⊗dy+dx⊗dy+
dy⊗de+dy⊗dx+dy⊗dy, ∇dy = de⊗de+de⊗dx+de⊗dy+dx⊗de+dy⊗de+dy⊗dy,

R∇de = dx ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dy ⊗ dy,

R∇dx = de ∧ dx⊗ dx + dx ∧ dy ⊗ dy,

R∇dy = dy ∧ de⊗ dx + dy ∧ dx⊗ de + dy ∧ dx⊗ dx;

(F.V.3) ∇de = 0, ∇dx = de⊗ de + de⊗ dx + dx⊗ de + dx⊗ dx + dy ⊗ dy,
∇dy = de⊗ dy + dx⊗ dy + dy ⊗ de + dy ⊗ dx, R∇ = 0.

- for metric gF.V I

(F.VI.1) ∇de = 0, ∇dx = dx⊗ dy + dy ⊗ dx, ∇dy = dy ⊗ dy, R∇ = 0;

(F.VI.2) ∇de = de⊗de+de⊗dx+dx⊗de+dx⊗dx+dx⊗dy+dy⊗dx , ∇dx = de⊗de+
de⊗dy+dx⊗dx+dy⊗de , ∇dy = de⊗de+de⊗dx+de⊗dy+dx⊗de+dx⊗dx+dy⊗de,

R∇de = de ∧ dy ⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dy,

R∇dx = de ∧ dx⊗ de + dx ∧ dy ⊗ dx + dx ∧ dy ⊗ dy,
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R∇dy = de ∧ dy ⊗ de + dx ∧ dy ⊗ dy;

(F.VI.3) ∇de = de⊗ de + de⊗ dy + dx⊗ dx + dx⊗ dy + dy ⊗ de + dy ⊗ dx + dy ⊗ dy,
∇dx = de⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx + dy ⊗ dy,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dy + dy ⊗ de + dy ⊗ dx,

R∇de = de ∧ dy ⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dy,

R∇dx = dx ∧ de⊗ de + dx ∧ dy ⊗ dy + dy ∧ dx⊗ dx,

R∇dy = dy ∧ de⊗ de + dx ∧ dy ⊗ dy.

- for metric gF.V II

(F.VII.1) ∇de = 0, ∇dx = de⊗ de + de⊗ dx + de⊗ dy + dx⊗ de + dy ⊗ de ,
∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dy ⊗ de, R∇ = 0;

(F.VII.2) ∇de = de⊗ dy + dx⊗ dx + dy ⊗ de, ∇dx = de⊗ dx + dx⊗ de + dx⊗ dx +
dx⊗ dy + dy ⊗ dx, ∇dy = de⊗ dy + dx⊗ dy + dy ⊗ de + dy ⊗ dx,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dx + de ∧ dy ⊗ dy,

R∇dx = dx ∧ de⊗ de + dx ∧ de⊗ dy + dx ∧ dy ⊗ de + dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy,

R∇dy = dy ∧ de⊗ de + de ∧ dy ⊗ dy + dx ∧ dy ⊗ dx + dx ∧ dy ⊗ dy;

(F.VII.3) ∇de = de⊗ de + de⊗ dx + dx⊗ de + dx⊗ dx + dx⊗ dy + dy ⊗ dx , ∇dx =
de⊗ dy + dy ⊗ de, ∇dy = de⊗ dx + de⊗ dy + dx⊗ de + dx⊗ dy + dy ⊗ de + dy ⊗ dx,

R∇de = dy ∧ de⊗ de + de ∧ dx⊗ dx + de ∧ dx⊗ dy + de ∧ dy ⊗ dx + de ∧ dy ⊗ dy,

R∇dx = dx ∧ de⊗ de + dx ∧ de⊗ dy + dx ∧ dy ⊗ de + dy ∧ dx⊗ dx + dx ∧ dy ⊗ dy,

R∇dy = dy ∧ de⊗ de + dy ∧ dx⊗ dx + de ∧ dy ⊗ dy + dx ∧ dy ⊗ dy.

5. Partial results for n = 4

For n = 4 the analysis is rather more complicated but the outlined methods work for
the classification of 4-dimensional unital algebras and we find 16 up to isomorphism,
and hence this many inner differential structures for polynomials in 4 variables over
F2. These are summarised in Table 5.

The methods are the same we have seen for n = 2,3 so we will be brief. For the
inner case with θ = dx1 by computer we get 5216 solutions to eqs. (2.1)-(2.2) for
F2[x1, x2, x3, x4]. The isomorphisms group G has the order ∣G∣ = 20160. Checking
the isomorphisms between all of the solutions of the inner case with θ = dx1 there
are only 16 inequivalent differential calculi. The remaining possibilities for θ are
isomorphic to the one with θ = dx1. We renamed θ = de and the remaining variables
as x2 = x, x3 = y, x4 = z and listed the calculi in the Table 5 along with the
corresponding number of quantum metrics.

Most of these calculi have metrics leading to too many geometries to study so
explicitly as we did for n = 2,3, so we focus on some that fit with the general
examples (i)-(iii) in Section 2.
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[de, e] = de; [de, x] = dx = [dx, e] ; [de, y] = dy = [dy, e] ; [de, z] = dz = [dz, e] Quantum
metrics

A
[dx,x] = 0; [dx, y] = 0 = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 0

B
[dx,x] = dz; [dx, y] = 0 = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 0

C
[dx,x] = dx; [dx, y] = 0 = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 0

D
[dx,x] = dx; [dx, y] = dy = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 4

E
[dx,x] = 0; [dx, y] = dz = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 8

F
[dx,x] = dz; [dx, y] = dz = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 8

G
[dx,x] = dy; [dx, y] = dz = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 8

H
[dx,x] = de + dx; [dx, y] = dy + dz = [dy, x] ; [dx, z] = dy = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = 0 = [dz, z] 12

I
[dx,x] = dy; [dx, y] = dx + dy = [dy, x] ; [dx, z] = 0 = [dz, x] ;

[dy, z] = 0 = [dz, y] ; [dy, y] = dx; [dz, z] = 0
6

J
[dx,x] = dx + dz; [dx, y] = dx + dz = [dy, x] ; [dx, z] = 0 = [dz, x] ;

[dy, z] = 0 = [dz, y] ; [dy, y] = dx; [dz, z] = 0
4

K
[dx,x] = dx; [dx, y] = 0 = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = dy; [dz, z] = 0
2

L
[dx,x] = dz; [dx, y] = 0 = [dy, x] ; [dx, z] = de + dy = [dz, x]

[dy, y] = dy; [dy, z] = 0 = [dz, y] ; [dz, z] = dx
3

M
[dx,x] = de + dx + dy + dz; [dx, y] = 0 = [dy, x] ; [dx, z] = de + dx + dy = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = dy; [dz, z] = dx
7

N
[dx,x] = dz; [dx, y] = 0 = [dy, x] ; [dy, z] = 0 = [dz, y]

[dx, z] = dx + dz = [dz, x] ; [dy, y] = de + dx + dy + dz; [dz, z] = dx
9

O
[dx,x] = de + dz; [dx, y] = dz = [dy, x] ; [dx, z] = de + dy = [dz, x]

[dy, z] = de = [dz, y] ; [dy, y] = dx + dy; [dz, z] = de
15

P
[dx,x] = dx; [dx, y] = 0 = [dy, x] ; [dx, z] = 0 = [dz, x]

[dy, z] = 0 = [dz, y] ; [dy, y] = dy; [dz, z] = dz
1

Table 5. All possible inner differential structures for on F2[e, x, y, z].

(i) V = F2(X). We carefully make the same change of variable noted for n = 2 and
n = 3 above (case B in those tables but case P in the n = 4 table) to determine
the quantum Levi-Civita connection in the general xµ coordinate system where
our basis of delta-functions on X is labelled by µ = 1,2,⋯, n = ∣X ∣ (or abstractly
by µ ∈ X as indexing set). The change of coordinate only concerns e = ∑µ xµ as
the algebra identity element. For n = 2 we let t = e + x an xµ = t, x as natural
‘space’ or ‘spacetime’ coordinates. Note that over F2 there is no difference between
Euclidean or Minkowski signature and there is no particular significance to our
choice of symbol t here. The metric and quantum Levi-Civita connection found in
Section 3 are

gB = dt⊗ dt + dx⊗ dx, ∇dt = ∇dx = (dt + dx) ⊗ (dt + dx).
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Similarly for n = 3 we let t = e+ x+ y and xµ = t, x, y as more natural ‘coordinates’.
The metric and three quantum Levi-Civita connection found in Section 4 are gB =
dt⊗ dt + dx⊗ dx + dy ⊗ dy as expected and:

(B.1) ∇dx = 0, ∇dt = ∇dx = (dt + dx) ⊗ (dt + dx);
(B.2) ∇dy = 0, ∇dt = ∇dy = (dt + dy) ⊗ (dt + dy);
(B.3) ∇dt = 0, ∇dx = ∇dy = (dx + dy) ⊗ (dx + dy).
From these formulae we can now extrapolate from n = 2,3 to a general construction
for quantum Levi-Civita connections for this case.

Proposition 5.1. For calculus defined by V = F2(X), we can partition X into a
subset T ⊆X with ∣X ∣ − ∣T ∣ even and the remainder into unordered pairs,

X = T ⊔ (⊔αXα)
where the (∣X ∣−∣T ∣)/2 subsets Xα each have two elements and are omitted if T =X.
Each such partition gives a quantum Levi-Civita connection for the Euclidean metric
in the form

g = ∑
t∈T

dxt ⊗ dxt +∑
α
∑
s∈Xα

dxs ⊗ xs,

namely
∇dxt = 0, ∀t ∈ T, ∇dxs = (dxs + dxs̄) ⊗ (dxs + dxs̄),
σ(dxs ⊗ dxs) = dxs̄ ⊗ dxs̄, σ(dxs ⊗ dxs̄) = dxs ⊗ dxs̄

where s ∈Xα for some α and s̄ denotes the other element of Xα, otherwise the flip
map on basis elements. These connections have zero curvature.

Proof. Once we obtained the formula based on our computer results for n = 2,3 it
is not hard to verify directly that this is quantum metric compatible and quantum
torsion free from the general form of the commutation relations [dxµ,dxν] = δµνdxµ.
The σ is then uniquely determined from ∇ and comes out as stated. In general
we set m = ∣T ∣, n = ∣X ∣ with ( n

m
) choices for T and then (n − m − 1)!! = (n −

m)!/(2n−m2 (n−m
2

)!) choices for the number of partitions of the remaining elements
into pairs. The latter is a well-known observation easily proven as follows. Pick
an element of X ∖ T . There are n − m − 1 choices for which other element to
pair it with. We then remove both elements from consideration and repeat the
process. The quantum metric is always the same Euclidean one regardless of the
partition of indices. Note that if we do not care at all about the labelling of indices
(geometrically these are all equivalent) then we have just the integer part of n/2
choices for m for the number of basis elements with zero connection, but in our
tables we have been distinguishing these. The zero curvature is immediate from
the formulae for ∇. �

For example, if n = 2 then we can take m = 2 (the zero connection) or m = 0 with
one choice for the connection in this case. If n = 3 then we can take m = 3 (the zero
connection) or m = 1 with three choices for which element to take for T and then a
unique connection for each choice. This agrees with the results from the previous
tables as described above. For n = 4 of interest here (case P in Table 5) we can
take m = 4 (the zero connection), m = 2 which has six choices for T and for each
of these a unique connection, or m = 0 with T empty and three choices for how to
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pair off the four indices. Here if the indices are X = {0,1,2,3}, say, then we have
three possible partitions into pairs, namely

X = {0,1} ⊔ {2,3}, X = {0,2} ⊔ {1,3}, X = {0,3} ⊔ {1,2},

giving three quantum Levi-Civita connections. If we write xµ = t, x, y, z then

g = dt⊗ dt + dx⊗ dx + dy ⊗ dy + dz ⊗ dz

and our three quantum Levi-Civita connections with all ∇dxµ nonzero are

∇dt = ∇dx = (dt + dx) ⊗ (dt + dx), ∇dy = ∇dz = (dy + dz) ⊗ (dy + dz);

∇dt = ∇dy = (dt + dy) ⊗ (dt + dy), ∇dx = ∇dz = (dx + dz) ⊗ (dx + dz);

∇dt = ∇dz = (dt + dz) ⊗ (dt + dz), ∇dx = ∇dy = (dx + dy) ⊗ (dx + dy).
We also had the zero connection and six connections with ∇dxµ = 0 for two of the
indices. As before, there is no special significance to the labelling of the generators.

(ii) V = F2Zn. For n = 4 this is case G in Table 5 after a change of variables to
x0 = e, x1 = e+x,x2 = e+y, x3 = e+x+y+x (on the left are labels not exponents, albeit
exponents with the ○ product). The same methods as above for n = 2,3 give us 8
quantum metrics for n = 4 with matrices, written in basis order dx1,dx2,dx3,dx0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
of which the first four are in the general example (ii) in Section 2 (for m = 1,0,3,2
respectively). The other four are their complementary metrics with de-Morgan
dual coefficients which for n = 4 are distinct and nondegenerate. Thus the general
construction together with duals gives all metrics at least for n ≤ 4 (and we suppose
for all n). Experience with n = 2,3 tells us to expect more than one nonzero
quantum Levi-Civita connection for each metric when n = 4.

(iii) V = A2. This appears as case L in Table 5 after a change of variables to
x0 = e, x1 = x,x2 = z and x3 = e + y (on the left are labels not exponents, albeit
exponents for the ○ product) to match the basis in the general example (iii) in
Section 2. In this basis the relations for the calculus on F2[x0, x1, x2, x3] are

[dx0, x0] = x0, [dx0, xi] = [dxi, x0] = dxi, [dx1, x1] = [dx2, x3] = [dx3, x2] = dx2

[dx2, x1] = [dx1, x2] = [dx3, x3] = dx3, [dx3, x1] = [dx2, x2] = [dx1, x3] = dx1

and by computer one has three quantum metrics,

gI = dx1 ⊗ dx3 + x3 ⊗ x1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx3 ⊗ dx0 + dx0 ⊗ dx3 + dx0 ⊗ dx0

gII = dx1 ⊗ dx2 + dx2 ⊗ dx1 + dx3 ⊗ dx0 + dx0 ⊗ dx3 + de⊗ dx0

gIII = dx1⊗dx1+dx2⊗dx3+dx3⊗dx2+dx3⊗dx3+dx3⊗dx0+dx0⊗dx3+dx0⊗dx0

In both cases (ii),(iii) one can clearly go ahead and look for quantum Levi-Cita
connections but would need a more powerful computer.
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Relations Quantum metrics and QLCs

D
[de, e] = e

[dx, e] = 0 = [de, x]
[dx,x] = 0

gD = de⊗ de + dx⊗ dx
∇de = αdx⊗ de, ∇dx = βdx⊗ dx

∇de = αdx⊗ de + dx⊗ dx, ∇dx = dx⊗ de + βdx⊗ dx
∇de = de⊗ dx + αdx⊗ de, ∇dx = de⊗ de + βdx⊗ dx

E
[de, e] = x,

[dx, e] = 0 = [de, x]
[dx,x] = 0

gE.I = de⊗ dx + dx⊗ de
∇de = αdx⊗ dx, ∇dx = βde⊗ de

∇de = de⊗ dx + αdx⊗ dx, ∇dx = βde⊗ de
∇de = de⊗ de + αdx⊗ dx, ∇dx = βde⊗ de + de⊗ dx + dx⊗ de

∇de = dx⊗ de + αdx⊗ dx, ∇dx = βde⊗ de + dx⊗ dx
∇de = de⊗ dx + dx⊗ de + αdx⊗ dx, ∇dx = βde⊗ de + dx⊗ dx

∇de = de⊗ de + dx⊗ de + αdx⊗ dx, ∇dx = βde⊗ de + +de⊗ dx + dx⊗ de + dx⊗ dx

gE.II = de⊗ dx + dx⊗ de + dx⊗ dx
∇de = αdx⊗ dx, ∇dx = βde⊗ de

∇de = de⊗ dx + αdx⊗ dx, ∇dx = βde⊗ de
∇de = de⊗ de + de⊗ dx + αdx⊗ dx, ∇dx = βde⊗ de + de⊗ dx + dx⊗ de + dx⊗ dx

∇de = dx⊗ de + αdx⊗ dx, ∇dx = βde⊗ de + dx⊗ dx
∇de = de⊗ dx + dx⊗ de + αdx⊗ dx, ∇dx = βde⊗ de + dx⊗ dx

∇de = de⊗ de + de⊗ dx + dx⊗ de + αdx⊗ dx, ∇dx = βde⊗ de + de⊗ dx + dx⊗ de

Table 6. All possible non-inner noncommutative geometries on F2[e, x]. Here
α,β ∈ F2 are parameters.

6. Discussion

In this paper our main focus was on inner differential calculi and as such we classified
all noncommutative Riemannian geometries on F2[x1,⋯, xn] i.e. in n-dimensions
and with constant coefficients, for n ≤ 3 and some results for n = 4 or higher. There
are several remarks to be made.

First of all, the inner case was a useful restriction which is typical of strictly non-
commutative geometries, taking the view that classical geometry is a somewhat
special and unrepresentative limit. However, a similar analysis and classification
can be done without this requirement, it just produces many more calculi. For
example, for n = 2 we find two additional families (to the three given in Table 1)
namely D ∶ [de, e] = e and E ∶ [de, e] = dx for the non-zero commutors. For calculus
D there exists one quantum metric and for calculus E there exist two quantum met-
rics. All quantum metrics and quantum Levi-Civita connections (parametrised by
α,β ∈ F2) are shown in Table 6. These are in addition to the classical, commutative,
calculus which has the zero algebra (all products zero).

Next, we should note that while our ‘coordinate algebra’ A = F2[x1,⋯, xn] has been
classical, the same formulae for differential geometries hold identically if we have
commutation relations of Heisenberg/Clifford type (there being no difference over
F2) defined by some Θµν . For the example in n = 4 given after Proposition 5.1 with
V = F2(4 points), the structure of the connection for the calculus suggests pair-wise
grouping with relations

xt + tx = 1, yz + zy = 1

for the algebra A. The geometry is not affected by this change of relations as
explained in Section 2, since d1 = 0 and since our formulae have constant coefficients.
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This brings us to a main limitation of the paper, namely to constant coefficients
in the metric and connection in our dxµ basis. This means that our geometries
are in some sense ‘flat space’ and indeed we checked that many of them have zero
curvature. What is surprising is that even so there are so many rich possibilities
for the quantum Levi-Civita connection other than ∇dxµ = 0 and σ = flip which
is the obvious ‘flat’ connection, and indeed some of them are even curved. This
non-uniqueness of the torsion free metric compatible bimodule connection for a
given metric is also seen in some other noncommutative models, such as [4]. It is
also remarkable that we can’t take any constant coefficients for the metric, which
is a rigidity phenomenon for noncommutative geometry again seen in other models
[4, 14]. In our case the number of metrics is far less than the potentially 2n(n+1)/2

possible coefficients values and gave our rich classification.

We now consider applications of such noncommutative geometries. Our motivation
here is that they model a quantum space or spacetime, but one could also apply
them in many other contexts such as ‘digital’ models of quantum mechanics phase
spaces or other ‘geometric’ applications in engineering. Apart from enumerating
the different geometries (which would be relevant to a sector of quantum gravity
where we sum over geometries) we can generally explore particles and fields on each
noncommutative-geometric background, for example solutions of wave equations
and Maxwell equations. Here the natural scalar Laplacian in our approach to
noncommutative geometry is defined by ◻ = ( , )∇d where ( , ) ∶ Ω1 ⊗A Ω1 → A is
the inverse metric [4]. To make this concrete we take the differential calculus be
given by V = F2(X) for a finite indexing set X (so spacetime coordinates are xµ

where µ ∈ X). We are then forced to the Euclidean metric and have connections
as in Proposition 5.1. The non-commutation relations in each variable and the fact
that they mutually commute gives us

df(x1,⋯, xn) = ∑
µ

(∂µf)dxµ, ∂µf(x1,⋯, xn) = f(x1,⋯, xµ+1,⋯, xn)−f(x1,⋯, xn)

i.e. the partial derivatives are finite difference operators. Then the Leibniz proper-
ties of a connection and evaluation against the inner product give

◻f(x1,⋯, xn) = ∑
µ

∂µ∂µf

independently of the connection (this is because (dxs+dxs̄,dxs+dxs̄) = 0 over F2).
For example, we have

f = ∑
i1,⋯,in

ai1i2⋯in(x1)2i1⋯(xn)2in , ∂µf = ∑
i1,⋯,in

ai1i2⋯in(x1)2i1⋯ ̂(xµ)2iµ⋯(xn)2in

where we leave out the xµ. Hence such functions are automatically zero modes of
◻. This is probably the simplest example; other V will lead to other commutation
relations and other geometries. The properties and applications of such geometric
wave operators would be an interesting topic for further work. Our idea is that such
equations could be used to propagate information much as in a quantum computer
but here modelled with ‘digital geometry’.

A more speculative direction to be explored here is to use the above as a model of
classical and quantum field theory. Thus we have been thinking of A = F2(V ) by
which we mean polynomials in generators xµ arising as a basis of a commutative
algebra with vector space V . But what if V is actually the spacetime coordinate
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algebra? For example if V = F2(X) and X is a discrete spacetime with basis xµ = δµ
of delta-functions at µ ∈ X then A would be functionals on X (i.e. functions on
the vector space of functions on X). We can also allow these functionals to have
Heisenberg-type commutation relations as explained in Section 2 above and if we
are not interested in a metric then we do not need to work over F2 so we can get
closer to conventional classical or quantum field theory. What we see, however, is
that in this context the structure of V (the classical spacetime geometry in some
sense) determines a noncommutative differential on the algebra of functionals, i.e a
noncommutative variational calculus. It would be interesting to reformulate such
things as noncommutative Euler-Lagrange equations from this point of view now
much more tied to the classical spacetime geometry. This applies even if we keep
A classical, i.e. are studying noncommutative variations or differentials of classical
fields on X.

This brings us to a different classification problem. If we are interested in commu-
tative algebras V as ‘spacetime coordinate algebras’ with the classical or possibly
quantum field theory interpretation of A, then we should also be interested in the
differential geometry of V as our spacetime differential geometry. This will then
connect through to any variational field equations just as it does classically when
V = C∞(M) for a manifold M . We again can make things simpler by letting V
be finite-dimensional (a finite geometry) and going ‘digital’ by working over F2.
We have already done part of the classification since we classified unital algebras
over F2 up to dimension 4 (the latter being too numerous to list explicitly in the
present paper). Beyond this we should consider noncommutative differential and
Riemannian structures over each V , which is a classification problem we will ad-
dress by computer methods similar to the above, in [11]. Such a ‘finite digital
geometry’ was obtained for the 4-dimensional algebra A2 in [2, Prop. 5.7], where
it shown that there is a natural 2-dimensional differential calculus with 3 possi-
ble metrics with constant coefficients, and for each of these the paper found one
quantum Levi-Civita connection other than the zero one, with zero curvature.

For the three unital algebras V of dimension 2 identified in Section 3 we have only
the zero calculus or the universal calculus of the maximal dimension n − 1, i.e.
1-dimensional over the algebra. The relations of the latter for each algebra are
obtained by applying d to the algebra relations, giving

A: [dx,x] = 0; B: [dx,x] = dx; C: [dx,x] = dx

for the three Ω1(V ), along with e = 1 central and killed by d. In each case we
have g = dx ⊗ dx as the only metric and ∇dx = 0 or ∇dx = dx ⊗ dx as quantum
Levi-Civita connections. For n > 2 we have different differential structures form the
zero up to the universal of dimension n − 1 over the algebra with more nontrivial
geometries arising.

We can also allow our algebras to be noncommutative and look for other algebraic
structures including Hopf algebras and solutions of the Yang-Baxter or braid rela-
tions over F2. The nice thing about doing algebra over F2 is that it could in theory
be realised both in software machine code or indeed in actual silicon by means of
logic gates, as follows. Apart from the motivation given, geometric elements of
quantum computing could then be implemented digitally while possibly keeping
some of the benefits.
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Figure 1. Electronic circuit diagrams for each of the 3 unital
products A,B,C of dimension 2 over F2, (a) as V × V → V and (b)
as V ⊗ V → V . (c) shows the canonical map V × V → V ⊗ V

First, we can represent a vector space V of dimension m and fixed basis {ei}i=mi=1

by a ribbon cable of m wires. Then any v ∈ V corresponds to a pattern of 0s and
1s in the wires according to v = ∑ viei where vi is the digital signal (0 or 1) in the
i’th wire. Thus v has ei each time there is a 1 in the i-the wire. Equivalently, the
binary number v11⋯vim represents the vector v ∈ V (there are 2m states of each). If
W similarly has basis {fj} where j = 1,⋯, p then we identify V ⊗W with mp wires
by basis Ei,j = ei ⊗ fj , which we can organise as m bundles of p-wire cables (one
could imagine them stacked below each other). Direct sum V ⊕W corresponds to
a m + p-wire cable given by placing the m-wire cable for V next to that of W , as
does V ×W . Algebraic operations can then be written as digitial gates assigning to
all input truth table values an output truth table, as expressed in the state of the
wires.

To illustrate this we show the circuit diagrams for the three n = 2 unital algebras
over F2 (cases A,B,C in Section 3). Here V is 2-dimensional so has 2 wires. We
chose basis t = e+x,x for V (the labelling is arbitrary but recall that in the example
of F2(2 points) we had t and x as the natural basis of δ-functions for the two points).
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Thus the correspondence we use between vectors and digital states will be

0 = 00, x = 01, t = e + x = 10, e = 11.

The easiest representation is to define the algebra product as a map V × V → V
with two 2-wire inputs one for each element of V and a 2-wire output which give
the 3 different algebra products shown in part (a). The flat edged ‘product’ denotes
AND which is 1 exactly when both inputs are. The other curve-edged ‘product’
denotes symmetric difference or XOR (exclusive OR) which is 1 exactly when the
two inputs are different. The desired outcomes can be expressed as Boolean algebra
or more precisely as a Boolean ring (using AND as product and XOR as addition)
and then converted easily to the diagrams shown. These ‘naive products’ do define
the product of any two vectors in V but one should note that they do not define it
on nondecomposable (‘entangled’) vectors such as t⊗ t+x⊗x since these are not in
the image of the map ⊗ ∶ V × V → V ⊗ V (the image has 10 elements including 0).
We would hardly worry about this in linear algebra since the product is linear but
since we have not encoded such a property it is better to define the products more
fully as maps V ⊗V → V which we do in part (b). The products in part (a) factors
through the maps in part (b) via the canonical map π ∶ V × V → V ⊗ V which as
a diagram consists of 4 AND gates connecting up as shown in part (c). One can
check with a little Boolean algebra that following this by the maps (b) gives the
maps (a) so we can pull back to them, but the maps in (b) carry a little more
information as explained. This language is obviously more tricky and for example
associativity of the two ways to form the iterated product V ⊗ V ⊗ V → V ideally
would be drawn in 4D with the input requiring a cube of wire-ends, one dimension
for each tensor factor. In [11] we will describe some small examples of geometric
Laplacians associated to finite Riemannian geometries in this language.
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