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Abstract

A d-dimensional (bar-and-joint) framework is a pair (G, p) where G =

(V,E) is a graph and p : V → Rd is a function which is called the

realisation of the framework (G, p). A motion of a framework (G, p)

is a continuous function P : [0, 1] × V → Rd which preserves the edge

lengths for all t ∈ [0, 1]. A motion is rigid if it also preserves the distances

between non-adjacent pairs of vertices of G. A framework is rigid if all

of its motions are rigid motions.

An infinitesimal motion of a d-dimensional framework (G, p) is a func-

tion q : V → Rd such that [p(u) − p(v)] · [q(u) − q(v)] = 0 for all

uv ∈ E. An infinitesimal motion of the framework (G, p) is rigid if

we have [p(u) − p(v)] · [q(u) − q(v)] = 0 also for non-adjacent pairs of

vertices. A framework (G, p) is infinitesimally rigid if all of its infinitesi-

mal motions are rigid infinitesimal motions. A d-dimensional framework

(G, p) is generic if the coordinates of the positions of vertices assigned

by p are algebraically independent. For generic frameworks rigidity and

infinitesimal rigidity are equivalent.

We construct a matrix of size |E|×d|V | for a given d-dimensional frame-

work (G, p) as follows. The rows are indexed by the edges of G and the

set of d consecutive columns corresponds to a vertex of G. The entries

of a row indexed by uv ∈ E contain the d coordinates of p(u) − p(v)

and p(v)− p(u) in the d consecutive columns corresponding to u and v,

respectively, and the remaining entries are all zeros. This matrix is the

rigidity matrix of the framework (G, p) and denoted by R(G, p). Trans-

lations and rotations of a given framework (G, p) give rise to a subspace

of dimension
(
d+1

2

)
of the null space of R(G, p) when p(v) affinely spans

Rd. Therefore we have rankR(G, p) ≤ d|V | −
(
d+1

2

)
if p(v) affinely spans

Rd, and the framework is infinitesimally rigid if equality holds.
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We construct a matroid corresponding to the framework (G, p) from the

rigidity matrix R(G, p) in which F ⊆ E is independent if and only if the

rows of R(G, p) indexed by F are linearly independent. This matroid is

called the rigidity matroid of the framework (G, p). It is clear that any

two generic realisations of G give rise to the same rigidity matroid.

In this thesis we will investigate rigidity properties of some families of

frameworks.

We first investigate rigidity of linearly constrained frameworks i.e., 3-

dimensional bar-and-joint frameworks for which each vertex has an as-

signed plane to move on. Next we characterise rigidity of 2-dimensional

bar-and-joint frameworks (G, p) for which three distinct vertices u, v, w ∈
V (G) are mapped to the same point, that is p(u) = p(v) = p(w), and

this is the only algebraic dependency of p. Then we characterise rigidity

of a family of non-generic body-bar frameworks in 3-dimensions. Fi-

nally, we give an upper bound on the rank function of a d-dimensional

bar-and-joint framework for 1 ≤ d ≤ 11.
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Chapter 0

Introduction

0.1 Graphs, Frameworks and Rigidity

Definition 0.1.1. A (simple) graph G is an ordered pair (V,E) consisting of a

finite set V of vertices, and a set E of edges consisting of unordered pairs of distinct

vertices.

Let G = (V,E) be a graph. To denote a member of E we use the form xy rather

than {x, y}. For an edge e = xy, the vertices x, y are called endpoints of e and we

say x and y are adjacent. We also say that the vertices x and y are incident with

the edge e. The neighbourhood, NG(v) (or N(v) when it is clear), of a vertex v ∈ V
is the set of all vertices that are adjacent to v in G. The closed neighbourhood of v

is the set NG(v)∪{v}, and denoted by NG[v] (or N[v]). The degree of v is the size of

NG(v) and denoted by dG(v) (or d(v)). We use δ(G), respectively ∆(G) to denote

the minimum, respectively the maximum value of dG(v) over all vertices.

A graph H = (S, F ) is called a subgraph of G = (V,E), if S ⊆ V and F ⊆ E.

A subgraph H of G is called an induced subgraph of G, if for every x, y ∈ S with

xy ∈ E, we have xy ∈ F . If H is an induced subgraph of G with vertex set S, we

say the set S induces H in G, and denote H as G[S]. The set and the number of

edges of G[S] are denoted by EG(S) and iG(S), respectively.

Definition 0.1.2. A d-dimensional bar-and-joint framework is a pair (G, p) where

G = (V,E) is a graph and p : V → Rd is a map. We say that p is a realisation (or

configuration) of the framework (G, p).
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We consider the framework to be a straight line realisation of G in Rd and the

length of an edge uv ∈ E given by Euclidean distance between p(u) and p(v).

Definition 0.1.3. Two given frameworks (G, p0) and (G, p1) are

• equivalent if ‖p0(u)− p0(v)‖ = ‖p1(u)− p1(v)‖, ∀uv ∈ E, and

• congruent if ‖p0(u)− p0(v)‖ = ‖p1(u)− p1(v)‖, ∀u, v ∈ V .

Definition 0.1.4. A motion of a d-dimensional framework (G, p) is a function

P : [0, 1]× V → Rd such that P (0, v) = p(v) for all v ∈ V and

(M1): ‖P (t, u)− P (t, v)‖ = ‖P (0, u)− P (0, v)‖, ∀t ∈ [0, 1] and ∀uv ∈ E;

(M2): P (t, v) is a continuous function of t, ∀v ∈ V .

We say that a motion P is from (G, p0) to (G, p1) if P (0, v) = p0(v) and

P (1, v) = p1(v), ∀v ∈ V .

We can imagine a motion as a continuous path in the algebraic variety W = {q ∈
Rdn|(G, q) is equivalent to (G, p0)} which goes from p0 to p1, where q is regarded as

a dn-tuple (d entries for each vertex) for each framework (G, q).

Definition 0.1.5. A motion is a rigid motion if ∀u, v ∈ V and ∀t ∈ [0, 1] we have

‖P (t, u)− P (t, v)‖ = ‖P (0, u)− P (0, v)‖.

Example 0.1.1. Let (G, p) be the framework in Figure 1.

u v
p(v)=(0,0)

z p(z)=(0,− 1)

p(u)=(−1,0)

Figure 1: A framework in R2.

Now consider three different functions.

• P (t, x) =

{
p(x), x = u, v

p(x) + (0,−t), , x = z
This function is not a motion of the framework, since it increases the length of the

edge vz.
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• P (t, x) =

{
p(x), x = u, v

p(x) + (−t, 1−
√

1− t2), x = z
This function defines a motion but not a rigid one, since the distance between u and

z is decreasing as illustrated in Figure 2.

u v

z

t = 0

u v

z

t = 1
2

Figure 2: The function does not deform the edges but it changes the distance between
u and z.

• P (t, x) = p(x) + (t, 0), ∀x ∈ V .

This function corresponds to a translation and hence a rigid motion, since transla-

tions preserve the distance between any two points.

Definition 0.1.6. A framework (G, p) is rigid if all of its motions are rigid motions.

Equivalently, a framework (G, p) is rigid if and only if every motion of (G, p) results

in a framework which is congruent to (G, p). If a framework is not rigid then we say

it is flexible.

A framework (G, p) has combinatorial properties arising from the graph G as well

as geometric properties arising from the realisation p. It is natural to ask whether

considering the graph G is enough to determine the rigidity of the framework (G, p)

or not. It is clear that any framework whose underlying graph is a complete graph is

rigid, since a complete graph has no non-adjacent pairs of vertices. Let us consider

some other examples in Figure 3.

The framework on the left is not rigid, since it can be continuously deformed to

the framework in the middle without changing edge lengths. However, if we add a

diagonal edge, then the resulting framework is rigid.

The two frameworks in Figure 4 have the same underlying graph with different

realisations. The framework on the left is not rigid, we can move the vertices e and

f without moving the others or changing the edge lengths. Such a motion changes

14



Figure 3: Rigid and flexible frameworks.

a b

c

d

e
f

a b

c

d

e f

Figure 4: A graph with a non-rigid and rigid realization.

the distance between e or f and c or d. The framework on the right is rigid. Since a

triangle is a complete graph hence rigid, we cannot deform the edges of triangles adc

and bcd. Therefore, we just need to consider about the line on which the vertices a,

e, f , b lie. If we try to move e and f as we did for the framework on the left, then

we need to decrease the distance between a and b. If the distance between a and b

decreases, then d must go up and this results in a deformation of the edge cd. Thus

moving e and f which is the only candidate for a non-rigid motion is not a motion.

Hence, the framework on the right is rigid. The key thing here is the fact that a, e,

f and b are collinear, and this is not a generic realisation. We first need to define

when a realisation is considered as generic.

Definition 0.1.7. A set A = {a1, a2, . . . , am} of distinct real numbers is said to

be algebraically dependent if there exists a non-zero polynomial f(x1, x2, . . . , xm)

with rational coefficients satisfying f(a1, a2, . . . , am) = 0. If A is not algebraically

dependent, it is called algebraically independent or generic.

A realisation p of a d-dimensional framework (G, p) with V (G) = {v1, v2, . . . , vn}
is generic if the dn-tuple (p(v1), p(v2), . . . , p(vn)) is generic. We can now see that for

the framework on the right in the previous example there are four vertices on the

15



same line causing this realisation not to be generic.

Asimov and Roth [2] showed an equivalent statement for the definition of rigidity

which is the following.

Theorem 0.1.1. [2] A framework (G, p0) is rigid if and only if there exist an ε > 0

such that every framework (G, p1) which is equivalent to (G, p0) and satisfies ‖p0(v)−
p1(v)‖ < ε, ∀v ∈ V , is congruent to (G, p0).

Figure 5: An ε neighbourhood of a framework. All the dashed circles have radius ε.

Since the existence of a continuous path between two points of an algebraic

variety implies the existence of a differentiable path between those points, see [2]

for details, the existence of a motion between two frameworks implies the existence

of a differentiable motion between them. Therefore, we can consider motions as

differentiable motions, and write

‖P (t, u)− P (t, v)‖2 = ‖p0(u)− p0(v)‖2.

Then we get the following by differentiating with respect to t.

[P (t, u)− P (t, v)] · [P ′(t, u)− P ′(t, v)] = 0.

Note that P ′(t, v) is the instantaneous velocity of the vertex v at time t. If we let

t = 0 and P ′(0, v) = q(v) for all v ∈ V we get

[p0(u)− p0(v)] · [q(u)− q(v)] = 0, ∀uv ∈ E. (1)

With these in mind we can define infinitesimal motions.

Definition 0.1.8. An infinitesimal motion of a d-dimensional framework (G, p) is

a function q : V → Rd such that [p0(u)− p0(v)] · [q(u)− q(v)] = 0 for all uv ∈ E.

16



q(u)
q(v)

q(x)

p0(u)p0(v)

p0(x)

Figure 6: A motion (dashed blue arcs) of a framework and corresponding instanta-
neous velocity vectors (red vectors).

Definition 0.1.9. An infinitesimal motion of a framework (G, p) is an infinitesimal

rigid motion if [p0(u)− p0(v)] · [q(u)− q(v)] = 0 for all u, v ∈ V .

Definition 0.1.10. A framework (G, p) is infinitesimally rigid if all of its infinites-

imal motions are infinitesimal rigid motions.

Definition 0.1.11. The rigidity matrix R(G, p) of a d-dimensional framework (G, p)

is the matrix of the system of equations (1). It is a |E| × d|V | matrix whose rows

are indexed by the edges of G and the set of d consecutive columns corresponds to

a vertex of G. The entries in the row corresponding to an edge e ∈ E and columns

corresponding to a vertex u ∈ V are given by the vector p(u) − p(v) if e = uv and

is the zero vector if e is not incident with u.

Definition 0.1.12. A d-dimensional framework (G, p) is called independent (or

dependent) if the rows of R(G, p) are linearly independent (or dependent).

Example 0.1.2. Let (G, p) be the framework shown below, and let p(vi) = (xi, yi).

v1 v2

v4

v3

Figure 7: A framework in R2.
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Then the rigidity matrix R(G, p) is the following.


v1v2 x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0

v1v3 x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0

v2v3 0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0

v3v4 0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3


The space of infinitesimal motions of a d-dimensional framework (G, p) is equal

to the null space (kernel) of R(G, p). We know that infinitesimal translations and

rotations are trivially in the null space of R(G, p). Therefore we get the dimension

of the null space of R(G, p) is at least(
d

1

)
+

(
d

d− 2

)
=

(
d

1

)
+

(
d

2

)
=

(
d+ 1

2

)
when p(v) affinely spans Rd, since infinitesimal translations along each vector in

the standard basis (
(
d
1

)
vectors) together with infinitesimal rotations about each

(d−2)-dimensional subspace spanned by (d−2) vectors in the standard basis (
(

d
d−2

)
such subspaces) are linearly independent. Thus we get rankR(G, p) ≤ d|V | −

(
d+1

2

)
.

Asimov and Roth [2] showed that the equality holds if and only if (G, p) is infinites-

imally rigid when G has at least d + 2 vertices. Note that as
(|V |

2

)
≤ d|V | −

(
d+1

2

)
when |V | ≤ d+ 1, we have a different condition for this case.

Theorem 0.1.2. [2] A d-dimensional framework (G, p) is infinitesimally rigid if

and only if

rankR(G, p) =

{
d|V | −

(
d+1

2

)
, |V | ≥ d+ 2(|V |

2

)
, |V | ≤ d+ 1

We see from Theorem 0.1.2 that a d-dimensional generic framework (G, p) with

fewer than d+ 2 vertices is infinitesimally rigid if and only if G is a complete graph.

Theorem 0.1.3. [2] Let (G, p) be an infinitesimally rigid framework. Then (G, p)

is rigid.

The converse of Theorem 0.1.3 does not hold. To see this let (G, p) the framework

in Figure 8, q(v5) be the red vector and q(vi) be the zero vector, for i 6= 5. This
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framework is rigid since we cannot deform the triangles, and to deform the line

on which v1, v2, v5 lie we need to deform the triangles. For infinitesimal rigidity,

first our assignment of velocity vectors corresponds to an infinitesimal motion i.e.,

[p(u)−p(v)]·[q(u)−q(v)] = 0 for all uv ∈ E. However, this is not an infinitesimal rigid

motion since q(v5) − q(v3) is not perpendicular to the line through p(v3) and p(v5)

which implies [p(v5)− p(v3)] · [q(v5)− q(v3)] 6= 0. Thus (G, p) is not infinitesimally

rigid. The following theorem shows that the converse of Theorem 0.1.3 holds for

generic frameworks.

v1 v2

v4

v3

v5

q(v5)

Figure 8: A non-infinitesimally rigid but rigid framework in R2.

Theorem 0.1.4. [2] Let (G, p) be a d-dimensional generic framework. Then (G, p)

is rigid if and only if (G, p) is infinitesimally rigid.

Theorem 0.1.4 implies that the rigidity is a generic property.

Theorem 0.1.5. [2] Let (G, p) and (G, p′) be d-dimensional generic frameworks.

Then (G, p) is rigid if and only if (G, p′) is rigid.

Theorem 0.1.5 implies that being rigid or infinitesimally rigid is a generic prop-

erty. This allows us to talk about rigidity of a graph instead of a framework by

restricting the realisations to generic ones. Therefore we can define the rigidity of a

graph as follows.

Definition 0.1.13. A graph G is rigid, respectively independent, or dependent in Rd

if there exists a generic realisation p of G in Rd such that (G, p) is rigid, respectively

independent, or dependent.

19



Since rank R(G, p) is maximised when (G, p) is generic let us denote rank R(G, p)

when p is a generic realisation of G in Rd by rd(G) or r(G) if the dimension is obvious.

Then a d-dimensional generic framework (G, p) with at least d + 2 vertices is rigid

if and only if r(G) = d|V | −
(
d+1

2

)
. It is clear that if we have a rigid framework and

we add more edges then the resulting framework will still be rigid. However, if we

delete an edge from a rigid framework it may not be rigid anymore. This motivates

us to define minimal rigidity.

Definition 0.1.14. A framework (G, p) is minimally rigid if (G, p) is rigid and

(G− e, p) is not rigid for all e ∈ E(G). Similarly, a graph G is minimally rigid if G

is rigid and G− e is not rigid for all e ∈ E(G).

0.1.1 Rigidity Matroid

Definition 0.1.15. A matroid M is an ordered pair (E, I) consisting of a finite set

E and a collection I of subsets of E having the following properties:

• (I1) ∅ ∈ I
• (I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I
• (I3) If I1, I2 ∈ I and |I1| < |I2|, then there is an element e ∈ I2 \ I1 such that

I1 ∪ {e} ∈ I.

Let M = (E, I) be a matroid. The set E is called the ground set of M and each

member of I is called an independent set. We say a set E ′ ⊆ E with E ′ /∈ I is a

dependent set. We see that all maximal independent sets have the same size by (I3).

The rank of a set E ′ ⊆ E in M is the maximum size of a subset in I and denoted by

rM(E ′) or r(E ′) if the matroid M is clear from the context. A minimally dependent

set of M is called a circuit. A maximal independent set of M is said to be a base of

M .

There are several other equivalent definitions of a matroid and Definition 0.1.15

is the most common. Let us give another definition of a matroid that we will use in

this thesis.

Definition 0.1.16. A matroid M is an ordered pair (E, I) of a finite set E and a

collection of independent subsets I of E satisfying the following three conditions:

• (I1) ∅ ∈ I
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• (I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I
• (I3′) For every E ′ ⊆ E, all maximal independent subsets of E ′ have the same

cardinality.

We can construct the rigidity matroid, R(G, p), of a d-dimensional framework

(G, p) on E(G), by using the rigidity matrix R(G, p). A set of edges F ⊆ E is

independent, respectively dependent in R(G, p) if the corresponding rows of R(G, p)

are linearly independent, respectively dependent. A minimally dependent set of

edges F ⊆ E in R(G, p) is called a circuit in R(G, p); that is F is a circuit, if F

is dependent and F − e is independent in R(G, p) for all e ∈ F . We also say that

a subgraph H of G is independent, respectively dependent, or a circuit in R(G, p),

if E(H) is independent, respectively dependent or a circuit in R(G, p). Since all

generic realisations, in d-dimensions, of a graph G give rise to the same independence

relations between the rows of the corresponding rigidity matrix, we obtain the same

matroid from all d-dimensional generic realisations of G. This allows us to talk about

the generic rigidity matroid of a graph instead of that of a framework. Let Rd(G)

denote the d-dimensional generic rigidity matroid of G. We say G is independent in

Rd if |E| = rd(G) = r(Rd(G)) (similarly, if |E| = r(R(G, p)), we say that (G, p) is

independent in Rd). A graph G is called dependent in Rd if G is not independent

in Rd. A graph G is called a circuit ∈ Rd, if G is dependent in Rd and G − e

is independent in Rd for all e ∈ E(G). Using these we can have an equivalent

definition of minimal rigidity as follows: a generic d-dimensional framework (G, p)

with at least d + 2 vertices is minimally rigid in Rd if rd(G) = |E| = d|V | −
(
d+1

2

)
.

Here the condition rd(G) = d|V | −
(
d+1

2

)
ensures the rigidity of G and the condition

rd(G) = |E| prevents G from having unnecessary edges to guarantee the rigidity of

G. The rank, rd(F ), of a set of edges F ⊆ E in Rd(G) is the maximum number of

independent rows corresponding to the edges in F in any generic rigidity matrix.

Example 0.1.3. Let (G, p) be the framework below.

G = (V,E) is not minimally rigid since G is K4 and we have seen K4−e is rigid for

any generic realisation in R2. We can easily see that K4− e is minimally rigid since

d|V |−
(
d+1

2

)
= 2 ·4−

(
3
2

)
= 5 is the minimum number of edges necessary to construct

a 2-dimensional generically rigid framework on four vertices. Therefore F ⊆ E is

independent in the rigidity matroid, R2(G), if |F | ≤ 5. The only dependent set is
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e1

e2 e3

e5e6

e4

Figure 9: A generic framework in R2.

E.

For X ⊆ V let EG(X) denote the set and iG(X) the number of edges in the

subgraph of G induced by X. If it is clear from the context we will simply use E(X)

and i(X) for EG(X) and iG(X), respectively. A graph G = (V,E) is (k, l)-sparse if

i(X) ≤ k|X| − l for all X ⊆ V with |X| ≥ k.

Lemma 0.1.6. [18] Let (G, p) be a d-dimensional framework. Suppose (G, p) is

independent in Rd. Then G is (d,
(
d+1

2

)
)-sparse.

Proof. Suppose i(X) > d|X|−
(
d+1

2

)
for some X ⊆ V with |X| ≥ d. Then EG(X) ⊆

E is dependent in R(G, p) since

|EG(X)| = i(X) > d|X| −
(
d+ 1

2

)
≥ rank R(G[X], p|X) = r(G,p)(EG(X))

where r(G,p)(EG(X)) is the rank of EG(X) in R(G, p). Then we must have E to be

dependent in R(G, p) since it has a dependent subset, namely EG(X).

0.1.2 Graph Operations

In this section we shall discuss some graph operations which preserve the rigidity

of a framework. These operations are also called Henneberg operations since they

were introduced by L. Henneberg [9].

Definition 0.1.17. Let G and H be graphs. If H = G−v for some vertex v of degree

at most d we say that G is a (d-dimensional) 0-extension of H. If H = G− v + uω
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for some vertex v of degree d + 1 and non-adjacent neighbours u, ω of v, then we

say that G is a (d-dimensional) 1-extension of H.

H

u

x ω

G

u

x ω

v

Figure 10: G is a 2-dimensional 1-extension of H.

Lemma 0.1.7. Let (G, p) and (H, p|H) be two d-dimensional frameworks. Suppose

G is a 0-extension of H, and the rows of R(H, p|H) are linearly independent. Suppose

further that H = G − v, d(v) = d and u1, u2, . . . , ud are neighbours of v in G, and

p(v), p(u1), . . ., p(ud) do not lie on a (d − 1)-dimensional affine subspace of Rd.

Then the rows of R(G, p) are linearly independent.

Proof. Let first d rows ofR(G, p) be the rows corresponding to the edges u1v, u2v, . . .,

udv respectively; and first d + 1 d-tuples of columns correspond to the vertices v,

u1, . . ., ud respectively. Then R(G, p) is

p(v)− p(u1) p(u1)− p(v) 0 · · · 0 · · · 0 · · · 0 · · · 0 · · · 0
p(v)− p(u2) 0 · · · 0 p(u2)− p(v) · · · 0 · · · 0 · · · 0 · · · 0

...
...

...
...

...
...

...

p(v)− p(ud) 0 · · · 0 0 · · · 0 · · · p(ud)− p(v) · · · 0 · · · 0
0 · · · 0

... R(H, p|H)

0 · · · 0


Then rank R(G, p)=rank R(H, p|H)+rank A, where A is the d-by-d matrix obtained

from the first d rows and the first d columns of R(G, p). Since p(v), p(u1), . . ., p(ud)

do not lie on a d− 1-dimensional affine subspace we have rank A = d which means

the rows of R(G, p) are linearly independent.
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Lemma 0.1.8. Let (H, q) be a d-dimensional framework and G be a 1-extension

of H with H = G − v + u1u2 where u1, u2 are non-adjacent neighbours of v in G.

Let (G, p) be a d-dimensional framework such that p|H = q and that every algebraic

dependency of p arises from p|H = q. Suppose the rows of R(H, p|H) = R(H, q) are

linearly independent. Then the rows of R(G, p) are linearly independent.

Proof. First note that since G is a d-dimensional 1-extension of H we have dG(v) =

d + 1. Let u1, u2, . . . , ud+1 be neighbours of v. Let (G + u1u2, p̃) be a non-generic

realisation of G+ u1u2 obtained by putting p̃(z) = p(z), ∀z 6= v and p̃(v) equal to a

point on the line through p(u1) and p(u2) such that p(u1) 6= p̃(v) 6= p(u2), see Figure

11. Note that this implies p̃|H = p|H = q.

(H,p|H)

u2...
ud+1u1

(G,p)

u2...
ud+1u1

v

(G+ u1u2,p̃)

ud+1

...
u2

u1

v

(G+ u1u2 − vu1,p̃)

ud+1

...
u2

u1

v

Figure 11: Generic (p) and non-generic (p̃) realizations of G and H.

Since the rows of R(H, p|H) are linearly independent the rows of R(G + u1u2 −
vu1, p̃) are linearly independent by Lemma 0.1.7 (since p̃(u2), . . . , p̃(ud+1), p̃(v) do

not lie on a d − 1-dimensional affine subspace). Now consider the submatrix of

R(G+ u1u2, p̃) with the rows corresponding to vu1, vu2, u1u2. Then this submatrix

looks like p̃(v)− p̃(u1) p̃(u1)− p̃(v) 0 · · · 0 0 · · · 0 · · · 0 · · · 0
p̃(v)− p̃(u2) 0 · · · 0 p̃(u2)− p̃(v) 0 · · · 0 · · · 0 . . . 0

0 · · · 0 p̃(u1)− p̃(u2) p̃(u2)− p̃(u1) 0 · · · 0 · · · 0 · · · 0


Since p̃(v), p̃(u1), p̃(u2) are collinear we have

p̃(v)− p̃(u1) = a
(
p̃(v)− p̃(u1)

)
= b
(
p̃(u1)− p̃(u2)

)
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for some non-negative scalars a and b. This gives us a dependence of the rows of

this submatrix. That is, the rows of R(G + u1u2p̃) indexed by vu1, vu2, u1u2 are

linearly dependent. Therefore if we delete one of these rows (one of corresponding

edges from the graph) the rank of the matrix will remain the same. Note that if we

delete vu1 the resulting framework will be (G+ u1u2− vu1, p̃) and if we delete u1u2

the resulting framework will be (G, p̃). Therefore we have

rank R(G, p̃) = rank R(G+ u1u2 − vu1, p̃) = |E(G+ u1u2 − vu1)| = |E(G)|

where the second equality follows from the fact that the rows of R(G+u1u2−vu1, p̃)

are linearly independent. Then rank R(G, p) ≥rank R(G, p̃) = |E(G)| since every

algebraic dependency of p arises from q = p|H = p̃|H . Hence, rank R(G, p) = |E(G)|
implying that the rows of R(G, p) are linearly independent.

0.2 Some Known Results

A (k, l)-sparse graph G = (V,E) is called (k, l)-tight if |E| = k|V |−l holds. Similarly,

we say a set X ⊆ V is (k, l)-tight if iG(X) = k|X|− l. The 0- and 1-extension moves

can be used to characterise rigidity in R1 and R2.

Theorem 0.2.1. A graph G is minimally rigid in R1 if and only if G is (1, 1)-tight.

Laman [16] in 1970 gave a characterisation for the rigidity of graphs in R2.

Theorem 0.2.2. [16] A graph G is minimally rigid in R2 if and only if G is (2, 3)-

tight.

Given a graph G = (V,E), a cover of G is a family X = {X1, X2, . . . , Xt} of

subsets of V with |Xi| ≥ 2 for all i such that
⋃t

i=1 E(Xi) = E. The cover X is k-thin

if |Xi ∩Xj| ≤ k for all i 6= j.

Lovász and Yemini [17] gave the following min-max identity for the rank function

in R2.

Theorem 0.2.3. [17] Let G = (V,E) be a graph. Then

r2(G) = min
X

∑
X∈X

(2|X| − 3)
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where the minimum is taken over all 1-thin covers X of G.

For the case when d ≥ 3, the characterisation of rigidity in Rd remains open.

By Theorems 0.2.1 and 0.2.2, when d = 1, 2, a graph G is minimally rigid in Rd if

and only if G is (d,
(
d+1

2

)
)-tight. However, being (3, 6)-tight does not guarantee the

rigidity of a graph in R3. To see this consider the graph B3 in Figure 12. The graph

B3 is (3, 6)-tight but it is not rigid. Let us take a generic realisation (B3, p). We

can rotate one of the two copies of K5 − uv about the line defined by p(u) and p(v)

and keep other vertices fixed. Since this is a non-rigid motion, the graph B3 is not

rigid in R3.

u

v

Figure 12: The 3-dimensional double banana graph (B3).

By Theorems 0.2.1 and 0.2.2, for d = 1, 2, a graph G = (V,E) is a circuit in Rd

if and only if |E| = d|V | −
(
d+1

2

)
+ 1 and i(X) ≤ d|X| −

(
d+1

2

)
for all X ( V with

|X| ≥ d. Hence, for d = 1, 2, if G is a circuit in Rd, then G is rigid in Rd. However,

this does not hold in higher dimensions. The graph B3 is dependent in R3, as it

has |E(B3)| = 3|V (B3)| − 6 edges and it is not rigid in R3. It can be shown that,

for all e ∈ E(B3), we can obtain B3 − e from a single vertex by 0- and 1-extension

operations. Therefore B3 − e is independent in R3 for all e ∈ E(B3) by Lemmas

0.1.7 and 0.1.8. Hence B3 is a circuit. Since it is not rigid in R3, it is a non-rigid

circuit in R3.

A non-rigid circuit in Rd is (d,
(
d+1

2

)
)-sparse. To see this let G = (V,E) be a non-

rigid circuit in Rd. Suppose a set X ⊆ V with |X| ≥ d satisfies i(X) > d|X|−
(
d+1

2

)
.

Since G is a non-rigid circuit, we have |E| − 1 = rd(G) < d|V | −
(
d+1

2

)
. This implies

that X 6= V . The fact that G is a circuit implies that G − e is independent for all

e ∈ E. Combining this with Lemma 0.1.6, we obtain a contradiction to the existence
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of X. Since a rigid circuit in Rd is not (d,
(
d+1

2

)
)-sparse, we can say a circuit in Rd

is non-rigid if and only if it is (d,
(
d+1

2

)
)-sparse.
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Chapter 1

Rigidity of Linearly Constrained

Frameworks

1.1 Introduction

In this chapter we will give a combinatorial characterisation for the generic rigidity

of frameworks in 3 dimensions each of whose vertices are allowed to move only on

a specific plane. We call such a framework a linearly constrained framework. We

say a linearly constrained framework is rigid if it has no motion. That is, the only

continuous motion of the vertices which satisfies the plane constraints for the vertices

and the length constraints for the edges is the trivial motion which keeps each vertex

fixed. We also say that a linearly constrained framework is infinitesimally rigid if

it has only the infinitesimal motion which assigns zero velocity to each vertex. We

will give precise definitions for these terms later.

We can generalise this problem to d dimensions for all d ≥ 1. That is, a linearly

constrained framework in d-dimensions is a d-dimensional bar-and-joint framework

such that each vertex is allowed to move on a specific hyperplane. We denote linearly

constrained frameworks by a triple (G, p, q) where G = (V,E) is a graph p : V → Rd

is the realisation map for the vertices and q : V → Rd is the map that assigns

unit vectors to the vertices that are normal to the associated hyperplanes. We say

(G, p, q) is generic if (p, q) is algebraicly independent over the rationals.

In 1-dimension the characterisation of the rigidity of linearly constrained frame-
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works is straightforward as the only hyperplane contains only the zero vector. This

means every linearly constrained framework in 1-dimension is infinitesimally rigid.

In 2 dimensions Streinu and Theran [25] characterised a more general version

of the problem. The frameworks they consider may have vertices that are allowed

to move along a specific line and vertices that are allowed to move freely in R2. If

we specify that each vertex has exactly one assigned line to move along, then their

result implies the following theorem.

Theorem 1.1.1. [25] A generic linearly constrained framework (G, p, q) in R2 is

rigid if and only if G contains a spanning (1, 0)-tight subgraph.

In 3-dimensions some non-generic cases were studied by Nixon, Owen and Power

[20, 21]. They worked on frameworks (G, p, q) whose vertices are realised on a surface

and the associated plane for each vertex v is the tangent plane of this surface at

the point p(v). They classify the surfaces with respect to the number of continuous

isometries they have. In this chapter, we will reserve the term ellipsoid for an

ellipsoid whose principal axes have different lengths. Similarly, an elliptical cylinder

will refer to an elliptical cylinder such that the principal axes of the corresponding

ellipse have different lengths. A surface M is said to be of type k, if the dimension

of the space of continuous isometries of M is k. For example, an ellipsoid is of type

0, an elliptical cylinder is of type 1, a circular cylinder is of type 2, a sphere is of

type 3.

Definition 1.1.1. A framework on a surface M is rigid on M if the continuous

isometries of M are the only motions of the framework.

Note that in Theorem 1.1.2 below, we use (G, p) instead of (G, p, q). By having

the map p and the surface M, we do not need to specify the map q that assigns the

tangent planes to the vertices of the graphs. Also the term generic in this theorem

means the every algebraic dependence of p can be obtained from the formula of the

surface.

Theorem 1.1.2. [20, 21] Let G = (V,E) be a simple graph and M be an irreducible

surface of type k = 1, 2. Then a generic framework (G, p) on M is rigid on M if

and only if G has a spanning (2, k)-tight subgraph.
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Before stating the main result of this chapter we need to give a definition.

Definition 1.1.2. A graph G is (2, 0)∗-sparse, respectively (2, 0)∗-tight, if G is K5-

free, and (2, 0)-sparse, respectively (2, 0)-tight.

The theorem below is the main result of this chapter.

Theorem 1.1.3. Let G = (V,E) be a simple graph. Then a generic linearly con-

strained framework (G, p, q) in R3 is rigid if and only if G has a spanning subgraph

which is (2, 0)∗-tight.

The proof of one direction of this theorem is straightforward, that is, if (G, p, q)

in R3 is generic and rigid, then G has a spanning subgraph which is (2, 0)∗-tight. To

prove this we will use the rigidity matrix R(G, p, q) (which will be defined later) of

(G, p, q) and some basic properties of matrices.

The proof of the other direction has two parts, one is combinatorial and the other

is geometric. For the combinatorial part, we will use some extension, respectively

reduction moves that increase, respectively decrease the number of vertices and

edges of the graph in consideration and preserve (2, 0)∗-tightness. We will then give

a recursive characterisation of the (2, 0)∗-tight simple graphs by using these moves

starting from a set of base graphs. For the geometric part, we use some results

from Nixon, Owen and Power [21] that tell us most of our extension moves preserve

independence and infinitesimal rigidity of the linearly constrained framework. We

will show the extension moves that are not considered in [21] also preserve the

infinitesimal rigidity and independence of the linearly constrained framework.

We will prove the sufficiency direction of Theorem 1.1.3 by induction. The base

case of the induction will be a set of minimal (2, 0)∗-tight simple graphs, for which we

will give specific infinitesimally rigid realisations that are calculated by a computer

program. We will show that when G is not 4-regular, we can obtain G from a

disjoint union of the base graphs by a sequence of extension moves that preserve

independence of a linearly constrained framework. When G is 4-regular, we do not

know whether the move we use in the recursive construction preserves independence

of a linearly constrained framework, so we will use an ad hoc argument based on

Theorem 1.1.2.
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1.2 Some Properties of (2, 0)∗-Sparse Graphs

In this section we will derive some basic properties of (2, 0)∗-tight graphs. Let

G = (V,E) be a (2, 0)∗-sparse graph. We say a set X ⊆ V is (2, 0)∗-sparse (-tight),

if the graph G[X] is (2, 0)∗-sparse (-tight).

Lemma 1.2.1. Let G = (V,E) be a (2, 0)∗-sparse graph. Suppose X, Y ⊆ V are

(2, 0)∗-tight sets. Then X ∩ Y and X ∪ Y are also (2, 0)∗-tight.

Proof: As the graphs G[X ∩Y ] and G[X ∪Y ] are subgraphs of G and G is K5-free,

we obtain that G[X ∩Y ] and G[X ∪Y ] are K5-free. Therefore we only need to show

that the sets X ∩ Y and X ∪ Y are (2, 0)-tight. Since X and Y are (2, 0)-tight we

have i(X) = 2|X| and i(Y ) = 2|Y |. Using the fact that i : 2V → N is supermodular

we obtain

2|X|+ 2|Y | =i(X) + i(Y )

≤i(X ∩ Y ) + i(X ∪ Y )

≤2|X ∩ Y |+ 2|X ∪ Y |

=2|X ∩ Y |+ 2(|X|+ |Y | − |X ∩ Y |)

=2|X|+ 2|Y |,

implying equality holds throughout. In particular, the second and the third lines

are equal and this completes the proof. �

Lemma 1.2.2. Let G = (V,E) be a (2, 0)∗-sparse graph and choose X, Y ⊆ V with

i(X) = 2|X| − p and i(Y ) = 2|Y | − q. Suppose i(X ∪ Y ) ≤ 2|X ∪ Y | − 1. Then

i(X ∩ Y ) ≥ 2|X ∩ Y | − p− q + 1.

Proof: The supermodularity of i : 2V → N gives

2|X| − p+ 2|Y | − q =i(X) + i(Y )

≤i(X ∩ Y ) + i(X ∪ Y )

≤i(X ∩ Y ) + 2|X ∪ Y | − 1.
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Hence 2|X| − p+ 2|Y | − q ≤ i(X ∩ Y ) + 2|X ∪ Y | − 1. This together with the fact

that |X ∪ Y | = |X|+ |Y | − |X ∩ Y | gives the desired result. �

Lemma 1.2.1 implies that in a (2, 0)∗-sparse graph, there is at most one maximal

(2, 0)∗-tight set.

Lemma 1.2.3. Let G = (V,E) be the union of two (2, 0)∗-sparse graphs G1 =

(V1, E1), G2 = (V2, E2) with V1 ∩ V2 = {u}. Suppose |E1| = 2|V1| − 1 and |E2| =

2|V2| − 1 and there are no (2, 0)∗-tight sets in G1 and G2 that contain u. Then G is

(2, 0)∗-tight.

Proof: First note that as G1 and G2 are K5-free and EG(V1 \ {u}, V2 \ {u}) = ∅,
the graph G is K5-free. Therefore we only need to show that G is (2, 0)-tight.

For a contradiction let us assume G is not (2, 0)-tight. Since |E| = |E1|+ |E2| =
2|V1| + 2|V2| − 2 = 2|V |, there must be a set X ⊆ V with 2|X| < iG(X). Let

X1 = V1 ∩X and X2 = V2 ∩X. First suppose u ∈ X. Then

2|X1|+ 2|X2| = 2|X|+ 2 < iG(X) + 2 = iG1(X1) + iG2(X2) + 2.

Hence either 2|X1| < iG1(X1) + 1 or 2|X2| < iG2(X2) + 1. Then either X1 is (2, 0)-

tight in G1 or X2 is (2, 0)-tight in G2. Since u ∈ X1 and u ∈ X2, this gives a

contradiction. Now suppose u /∈ X. Then

2|X1|+ 2|X2| = 2|X| < iG(X) = iG1(X1) + iG1(X2).

Therefore either 2|X1| < iG1(X1) or 2|X2| < iG2(X2), contradicting the fact that G1

and G2 are (2, 0)-sparse. �

Lemma 1.2.4. Suppose G = (V,E) is a (2, 0)∗-tight graph. Then δ(G) ≥ 2.

Proof: Suppose the contrary. Let v ∈ V be with d(v) ≤ 1. Then we have

2|V \ {v}| = 2|V | − 2 = i(V )− 2 < i(V \ {v}), a contradiction. �
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1.3 Graph Operations

In this section we will introduce some extension moves that preserve (2, 0)∗-tightness.

We will also describe some special cases for which the inverse moves preserve (2, 0)∗-

sparsity.

1.3.1 Henneberg Moves

Figure 1.1 illustrates (2-dimensional) 0- and 1-extensions which are defined in Chap-

ter 0. Note that we normally use a d-dimensional 0- or 1-extension for bar-and-joint

frameworks in Rd. In this chapter we will use 2-dimensional version of these moves

even though we are working in R3. This is because of the fact that each vertex has

two degrees of freedom in a linearly constrained framework in R3 whereas a vertex

in a bar-and-joint framework has three degrees of freedom in R3.

We refer to the inverse operation of the 0-extension as a 0-reduction. Namely,

the 0-reduction operation removes a vertex of degree two and its incident edges

from the original graph. We call the inverse operation of a 1-extension a 1-reduction

operation. A 1-reduction deletes a vertex of degree three that has a pair of non-

adjacent neighbours x, y and then adds the edge xy.

x
y

x
y

Figure 1.1: 0- and 1-extensions.

Lemma 1.3.1. Let G = (V,E) be a graph. Suppose H = (V ∪ {v}, F ) can be

obtained from G by a 0-extension. Then G is (2, 0)∗-tight if and only if H is (2, 0)∗-

tight.

Proof: Since G is a subgraph of H and dH(v) = 2, it is straightforward that

(2, 0)∗-tightness of H implies (2, 0)∗-tightness of G.
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Now suppose G is (2, 0)∗-tight but H is not. Since G is K5-free and the only

vertex v ∈ V (H) \ V (G) has degree 2 in H, the graph H is K5-free. Therefore we

only need to show that H is (2, 0)-tight. Moreover since |E(H)| = 2|V (H)|, it is

enough to show that H is (2, 0)-sparse.

Suppose the contrary and let X ⊂ V (H) be a set with v ∈ X and 2|X| < iH(X).

Then we have

2|X \ {v}| = 2|X| − 2 < iH(X)− 2 = iH(X \ {v}) = iG(X \ {v}),

contradicting the fact that G is (2, 0)-sparse. �

Lemma 1.3.2. Let G = (V,E) be a (2, 0)∗-tight graph. Suppose H = (V ∪ {v}, F )

can be obtained from G by a 1-extension. Then H is (2, 0)∗-tight.

Proof: First note that as dH(v) = 3 and G is K5-free, the graph H is K5-free.

Therefore we only need to show that H is (2, 0)-tight. Moreover, since |E(H)| =

2|V (H)|, it is enough to show that H is (2, 0)-sparse.

Suppose the contrary. We may assume xy is the deleted edge under the 1-

extension operation. Then there exists a set X with v ∈ X and 2|X| < iH(X), as

H − v is a subgraph of G. If |X ∩ NH(v)| ≤ 2, then we would have 2|X \ {v}| <
iG(X \ {v}), contradicting the fact that G is (2, 0)-sparse. Hence we may assume

N(v) ⊆ X. This implies x, y ∈ X and so

2|X \ {v}| = 2|X| − 2 < iH(X)− 2 = iH(X \ {v}) + 1 = iG(X \ {v}),

contradicting the fact that G is (2, 0)-sparse. �

Lemma 1.3.3. Let H = (V ∪ {v}, F ) be a (2, 0)-sparse graph. Suppose dH(v) = 3

and the closed neighbourhood of v, NH [v], does not induce a copy of K4. Then

there exists a (2, 0)-sparse graph G = (V,E) which can be obtained from H by a

1-reduction operation at v.

Proof: Suppose none of the possible reductions at v gives a (2, 0)-sparse graph. Let

x, y, z be neighbours of v in H. Since NH [v] does not induce a copy of K4, at least

one of the edges xy, xz, yz is missing in H.
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Suppose exactly one of these edges, say xy, is missing. Then there must be a

(2, 0)-tight set X in H − v with x, y ∈ X, as otherwise, applying a 1-reduction at v

which adds the edge xy would give a (2, 0)-sparse graph. If z ∈ X, then adding v

and its three incident edges to H−v the set X ∪{v} breaks the (2, 0)-sparsity of H.

Therefore we may assume z /∈ X. Then we have iH(X ∪ {z, v}) = iH(X) + 2 + 3 =

2|X| + 2 + 3 = 2|X ∪ {z, v}| + 1. In particular, 2|X ∪ {z, v}| < iH(X ∪ {z, v}),
contradicting the (2, 0)-sparsity of H.

Suppose at least two of xy, xz, yz are missing. Then as above there must be

(2, 0)-tight sets X and Y in H for each missing edge. Using Lemma 1.2.1, we have

X ∪ Y is (2, 0)-tight. Clearly x, y, z ∈ X ∪ Y . Then

iH(X ∪ Y ∪ {v}) = iH(X ∪ Y ) + 3 = 2|X ∪ Y |+ 3 = 2|X ∪ Y ∪ {v}|+ 1.

In particular, 2|X ∪ Y ∪ {v}| < iH(X ∪ Y ∪ {v}), contradicting (2, 0)-sparsity of H.

�

We use K−5 to denote a copy of the graph on five vertices with nine edges.

Lemma 1.3.4. Let H be a (2, 0)∗-tight graph and v ∈ V with d(v) = 3. Suppose

i(N(v)) ≤ 1. Then there exists a 1-reduction at v resulting in a (2, 0)∗-tight graph

G.

Proof: Suppose the contrary and and let N(v) = {a, b, c}. We may assume ab, ac /∈
E(H). Then we see that the pairs of vertices a, b and a, c are contained in either a

copy of K−5 or a (2, 0)∗-tight set in H − v.

First assume both pairs a, b and a, c are contained in (2, 0)∗-tight sets X and Y

in H, respectively. Then by Lemma 1.2.1, X ∪ Y is (2, 0)∗-tight. This implies that

for the set Z := X ∪ Y ∪ {v}, iH(Z) = 2|Z|+ 1, a contraction as H is (2, 0)-sparse.

Next assume both pairs a, b and a, c are contained in copies of K−5 in H with

vertex sets X and Y , respectively. As there is only one missing edge in a K−5 and

ab, ac /∈ E(H), X 6= Y holds. If X ∪ Y is (2, 0)∗-tight, we would get a contradiction

to the (2, 0)-sparsity of H as in the previous paragraph. Hence we may assume

X ∪Y is not (2, 0)∗-tight, and so iH(X ∪Y ) ≤ 2|X ∪Y | − 1 holds. Then by Lemma

1.2.2, iH(X ∩ Y ) ≥ 2|X ∩ Y | − 1. As |X ∩ Y | ≤ 4 and the only graph K on at

most four vertices that satisfies i(K) ≥ 2|V (K)| − 1 is the empty graph, we have

|X ∩ Y | = 0, contradicting the fact that a ∈ X ∩ Y .
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Finally assume one of the pairs of vertices, say a, b, belongs to a K−5 with vertex

set X and the other pair a, c belongs to a (2, 0)∗-tight set Y in H − v. As in the

previous paragraphs, X ∪ Y cannot be (2, 0)-tight due to (2, 0)-sparsity of H and

hence i(X ∪ Y ) ≤ 2|X ∪ Y | − 1. Then by Lemma 1.2.2, i(X ∩ Y ) = 2|X ∩ Y |. How-

ever, this is a contradiction as a ∈ X ∩Y , X induces a K−5 which has no (2, 0)-tight

subgraph other than the empty graph. �

1.3.2 P3-to-C4 and K2-to-K3 Moves

Let G = (V,E) be a graph and v be a vertex with incident edges vu0, vu1, . . . , vuk,

vw0, vw1, . . . , vwm. The P3-to-C4 move at v removes the edges vw1, . . . , vwk and

adds a new vertex v′ with incident edges v′u0, v
′w0, v

′w1, . . . , v
′wk.

The K2-to-K3 move removes the edges vw1, . . . , vwk and adds a new vertex v′

with incident edges v′u0, v
′w1, . . . , v

′wk.

Figure 1.2 illustrates these moves. Both moves are also referred to as vertex split

moves in the literature, see [31].

Figure 1.2: P3-to-C4 on the left and K2-to-K3 on the right. The edges whose second
endpoint is undefined may or may not exist. Also the number of such edges is
arbitrary.

Lemma 1.3.5. Let G = (V,E) be a (2, 0)∗-tight graph. Suppose H = (V ∪ {v′}, F )

is obtained from G by a P3-to-C4 move or a K2-to-K3 move. Then H is also (2, 0)∗-

tight.

Proof: It is easy to see that H is K5-free. We will show that H is (2, 0)-tight

and this will complete the proof. Let v be the vertex we split in G. Suppose

H is not (2, 0)-tight. Then as |E(H)| = 2|V (H)|, H is not (2, 0)-sparse and

there exists a set X ⊆ V (H) with 2|X| < iH(X). If v, v′ ∈ X then we have

2|X \ {v′}| = 2|X| − 2 < iH(X)− 2 = iG(X \ {v′}), contradicting the (2, 0)-sparsity
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of G. If v, v′ /∈ X, then 2|X| < iH(X) = iG(X), contradicting the (2, 0)-sparsity of

G. Hence we may assume exactly one of v and v′ is contained in X. Let x denote

this vertex. Then we have 2|X| < iH(X) ≤ iG(X \ {x} ∪ {v}), a contradiction. �

We refer to the inverse operations of the P3-to-C4 and the K2-to-K3 moves as

C4-to-P3 and K3-to-K2, respectively. We can sometimes use the C4-to-P3 move as

an alternative to 1-reduction when there are no possible 1-reductions at a degree

three vertex.

Lemma 1.3.6. Let H be a (2, 0)∗-tight graph and v ∈ V (H) with d(v) = 3. Suppose

NH [v] induces a copy of K4 that is not contained in a K−5 in H and there exists a

vertex x with vx /∈ E(H) and |N(x) ∩ N(v)| = 2. Then applying a C4-to-P3 move

which identifies x and v results in a (2, 0)∗-tight graph G.

Proof: Let N(v) = {a, b, c} and see Figure 1.3 for an illustration.

v

a

b

c

x

H
a

b

c

zvx

G

Figure 1.3: A C4-to-P3 move on the C4 whose vertices are v, a, x, b.

If G is (2, 0)-sparse, then by the edge count G is (2, 0)-tight. Hence we may

assume that G is either not (2, 0)-sparse or G contains a copy of K5.

Then there exists a set X ⊆ V (G) such that either 2|X| < iG(X) holds or X

induces a copy of K5. Let zvx denote the vertex obtained from contracting x and v.

Since G− zvx and G− c are isomorphic to subgraphs of H and H is (2, 0)∗-sparse,

we have zvx, c ∈ X. Let us set X ′ := X \ {zvx} ∪ {x}.
First suppose a, b ∈ X. If 2|X| < iG(X) holds, then we have

2|X ′ ∪ {v}| = 2|X|+ 2 < iG(X) + 2 = iH(X ′ ∪ {v}).

In particular, 2|X ′ ∪ {v}| < iH(X ′ ∪ {v}), a contradiction to the (2, 0)-sparsity of

H. If X induces a copy of K5 in G, then the set X ′ induces a copy of K−5 in H.
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The facts that a, b, c, x ∈ X ′ and cx is the missing edge of this K−5 imply that N [v]

is contained in a K−5 , a contradiction.

For the remaining cases we will consider the possibilities 2|X| < iG(X) and

X induces a copy of K5 together. As i(K5) = 2|V (K5)|, we can combine these

possibilities and obtain 2|X| ≤ iG(X).

Suppose one of a, b say a ∈ X. Then we have

2|X ′ ∪ {v, b}| = 2|X|+ 4 ≤ iG(X) + 4 = iH(X ′ ∪ {v, b})− 1.

In particular 2|X ′ ∪ {v, b}| < iH(X ′ ∪ {v, b}), a contradiction.

Finally suppose a, b /∈ X. Then we have

2|X ′ ∪ {v, a, b}| = 2|X|+ 6 ≤ iG(X) + 6 = iH(X ′ ∪ {v, a, b})− 1.

In particular, 2|X ′ ∪ {v, a, b}| < iH(X ′ ∪ {v, a, b}), a contradiction. Hence we con-

clude that G is (2, 0)∗-tight. �

Let G = (V,E) be a graph and F ⊂ E. We say a subgraph H of G is generated

by F , if the set of endpoints of the edges in F induce H in G.

Lemma 1.3.7. Let H be a (2, 0)∗-tight graph obtained from the disjoint union of

K−5 and some arbitrary graph H ′ by adding two edges e, f between K−5 and H ′ that

generate a copy of K3 or C4 in H, see Figure 1.4. If {e, f} generates a C3, then

there exists a K3-to-K2 move on this K3 that results in a (2, 0)∗-tight graph G. If

{e, f} generates a C4, then there exists a C4-to-P3 move on this C4 that results in a

(2, 0)∗-tight graph G.

v

u

H ′

(a)

x

y

v

H ′

(b)

x

y

v

u

H ′

(c)

x

Figure 1.4: The edges joining K−5 to H ′ are arbitrary as long as they induce a K3

or a C4 in H.
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Proof: First note that since H is (2, 0)∗-tight, the facts that E(K−5 ) = 2|V (K−5 )|−1

and there are two edges joining K−5 to H ′ imply E(H ′) = 2|V (H ′)|−1. First consider

the case illustrated in Figure 1.4 (c). We will contract the edge vx (contracting ux

works as well). Let zvx denote the modified vertex. If there is a (2, 0)∗-tight set X

in H ′ with x ∈ X, then we have

2|X ∪ V (K−5 )| = 2|X|+ 10 = iH′(X) + 10 = iH(X ∪ V (K−5 ))− 1.

In particular, we have 2|X ∪ V (K−5 )| < iH(X ∪ V (K−5 )), a contradiction. Hence we

may assume that there are no (2, 0)∗-tight sets in H ′ containing x. Now if we set

G1 = G[V (K−5 ) \ {v} ∪ {zvx}] and G2 = G[V (H ′) \ {x} ∪ {zvx}], and apply Lemma

1.2.3, we deduce that G is (2, 0)∗-tight.

Now consider the cases (a) and (b) illustrated in Figure 1.4. First note that for

case (a), there are two possible C4-to-P3 moves that contract vertices u and x or v

and y. Similarly, for case (b), there are two possible K3-to-K2 moves that contract

the edges vx or vy.

Note also that, for both (a) and (b), there cannot be a (2, 0)∗-tight set X in H ′

with both x, y ∈ X, as adding V (K−5 ) to X would give

2|X ∪ V (K−5 )| = 2|X|+ 10 < iH′(X) + 10 = iH(X ∪ V (K−5 ))− 1.

In particular, we would have 2|X ∪ V (K−5 )| < iH(X ∪ V (K−5 )), a contradiction.

Combining this with the fact that the union of any two (2, 0)∗-tight sets is (2, 0)∗-

tight in a (2, 0)∗-sparse graph (Lemma 1.2.1), we deduce that either x or y, say

y, is not contained in a (2, 0)∗-tight set in H ′. Let zvy denote the modified vertex

for the C4-to-P3 move which contracts v and y in case (a), and for the K3-to-K2

move which contracts vy in case (b). Then if we set G1 = G[V (K−5 ) \ {v} ∪ {zvy}]
and G2 = G[V (H ′) \ {y} ∪ {zvy}], and apply Lemma 1.2.3, we deduce that G is

(2, 0)∗-tight. �

Lemma 1.3.8. Let H be a (2, 0)∗-tight graph obtained from the disjoint union of

two graphs K and H ′ by adding two edges e = vx, f = vy between K and H ′ where

v ∈ V (K) and x, y ∈ V (H ′). Suppose xy /∈ E(H ′) and x and y are contained in a
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subgraph K ′ of H and that K and K ′ are both isomorphic to K−5 . Then there exists

a C4-to-P3 move that identifies v and t that results in a (2, 0)∗-tight graph G where

t ∈ V (K ′) \ {x, y}.

v

H ′

x

y

Figure 1.5: The vertex v in the K−5 on the left is arbitrary as long as it is adjacent
to both x and y in H ′.

Proof: Let zvt denote the modified vertex and H ′z denote the graph obtained from

H ′ by relabelling t as zvt. We also let S denote the vertex set of K.

First assume that zvt is contained in a (2, 0)∗-tight set Xz in H ′z. Then the set

X ′ := Xz \ {zvt} ∪ {t} is (2, 0)∗-tight in H ′. Since t ∈ V (K ′) and K ′ ∼= K−5 , the

set X ′ must contain every vertex of K ′, as otherwise, adding the remaining vertices

of this K ′ to X ′ would break (2, 0)-sparsity of H ′. In particular, x, y ∈ X ′. Then

adding S to X ′, we obtain

2|S ∪X ′| = 2|S|+ 2|X ′| = 2 · 5 + iH′(X
′) = 10 + iH(X ′) = iH(S ∪X ′)− 1.

In particular 2|S ∪X ′| < iH(S ∪X ′), contradicting the (2, 0)-sparsity of H.

We next assume that zvt is not contained in a (2, 0)∗-tight set in H ′z. The graph

H ′z is (2, 0)∗-sparse as it is isomorphic to H ′. Let Sz := S \ {v} ∪ {zvt}. We also

know that G[Sz] is (2, 0)∗-sparse and satisfies |E(G[Sz])| = 2|V (G[Sz])| − 1 as it is

isomorphic to K−5 . We now set G1 := H ′z and G2 := G[Sz] and apply Lemma 1.2.3

to complete the proof. �

Let G1
6, . . . , G

4
6 denote the (2, 0)∗-tight graphs on six vertices: see the graphs on

the top row in Figure 1.13 for an illustration. These are the (2, 0)∗-tight graphs with

the minimum number of vertices. We will use G∗6 to denote an arbitrary graph from

this family.
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Lemma 1.3.9. Let H be a (2, 0)∗-tight graph and v ∈ V with d(v) = 3. Suppose v

is not contained in a G∗6, i(N(v)) = 2, and the missing edge in H[N(v)] belongs to

a K−5 . Then there exists a C4-to-P3 move in H resulting in a (2, 0)∗-tight graph G.

Proof: We may assume N(v) = {a, b, c} and some set X ⊂ V (H) containing a, b

induces a K−5 with the property that ab is the missing edge. Then as i(N(v)) = 2,

we have ac, bc ∈ E(H). Since v is not contained in a G∗6, we have c /∈ X, see Figure

1.6 for an illustration.

a

x

b

v c

Figure 1.6: The subgraph H[X ∪N [v]].

Let x ∈ X \ {a, b} be a vertex. We will show that performing the C4-to-P3 move

on the vertices x, a, b, v by identifying x and v will result in a (2, 0)∗-tight graph G.

First note that as v, c /∈ X, X induces a K−5 , v has two neighbours in X, and c and

v are adjacent, the vertex c has at most two neighbours in X. Otherwise, the set

X ∪ {c, v} would break (2, 0)-sparsity. Combining this with the fact that a, b ∈ X
are two neighbours of c, we obtain xc /∈ E(H).

Suppose performing the C4-to-P3 move on the vertices x, a, b, v by identifying

x and v does not result in a (2, 0)∗-tight graph G. Let zxv denote the vertex in

G we obtain after identifying x and v. Since G − zxvc is a subgraph of H, x and

c must be contained in either a copy of K−5 or a (2, 0)-tight set in H − v. First

assume there exists a copy of K−5 containing both x and c. Let Y be the vertex set

of this K−5 . We may assume that X ∪ Y is not (2, 0)-tight, as otherwise, adding

v to this set with three incident edges would break (2, 0)-sparsity of H. Hence

i(X ∪ Y ) ≤ 2|X ∪ Y | − 1. Then by Lemma 1.2.2 we have i(X ∩ Y ) ≥ 2|X ∩ Y | − 1.

However, this is a contradiction as X ∩Y is non-empty and the only graph K on at

most four vertices with i(K) ≥ 2|V (K)| − 1 is the empty graph.

Now assume there exists a (2, 0)-tight set Y with x, c ∈ Y . Again due to (2, 0)-

sparsity of H, we must have i(X ∪ Y ) ≤ 2|X ∪ Y | − 1. Then by Lemma 1.2.2, we

have i(X ∩ Y ) = 2|X ∩ Y |. However, since X ∩ Y is non-empty, has size at most
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five and H is K5-free, this is a contraction. �

1.3.3 Vertex-to-K4 Move

Let G = (V,E) be a graph and v ∈ V . A vertex-to-K4 move at v replaces v by a

copy of K4 and replaces each edge vu by an edge xu where x is an arbitrary vertex

of the K4 we just created, see Figure 1.7.

Figure 1.7: Vertex-to-K4 move. Note that for each edge incident with the vertex we
replace by a K4, we are free to choose any vertex of the K4 as its second endpoint
after replacing the vertex by the K4.

Lemma 1.3.10. Let G = (V,E) be a (2, 0)∗-tight graph and v ∈ V . Suppose

H = (V \ {v}∪ {v1, v2, v3, v4}, F ) is obtained from G by a vertex-to-K4 move. Then

H is (2, 0)∗-tight.

Proof: Suppose H is not (2, 0)-tight. Then since |E(H)| = 2|V (H)|, there exists

a set X ⊆ V (H) with 2|X| < iH(X). Let k = |X ∩ {v1, v2, v3, v4}|. If k = 0,

then 2|X| < iH(X) = iG(X), a contradiction. Hence k ≥ 1. Set S = X \ (X ∩
{v1, v2, v3, v4})∪{v}. Then 2|S| = 2|X|− 2k+ 2 < iH(X)− 2k+ 2 ≤ iH(X)−

(
k
2

)
=

iG(S) holds, since 2k + 2 ≥
(
k
2

)
for 1 ≤ k ≤ 4. In particular, 2|S| < iG(S), a

contradiction. Hence H is (2, 0)-tight.

It remains to show that H is K5-free. Suppose there is a copy of K5 in H with

vertex set X. Since the graph H[V \ {v} ∪ {vi}] is isomorphic to a subgraph of G

for all 1 ≤ i ≤ k and G is K5-free, we obtain |X ∩ {v1, v2, v3, v4}| ≥ 2. However, as

vi, vj, for all 1 ≤ i < j ≤ 4, do not have a common neighbour in V \ {v}, the set X

cannot induce a copy of K5, a contradiction. Hence H is K5-free and so (2, 0)∗-tight.

�

We refer to the inverse operation of the vertex-to-K4 move as a K4-contraction. We

will denote the graphs in Figure 1.8 by K4 ◦K4. These are the graphs obtained from
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a K5 by a vertex-to-K4 move that do not contain a K5. One can see that for each

graph in Figure 1.8, contracting the K4 on the left results in a K5.

Figure 1.8: The graphs K4 ◦K4.

Lemma 1.3.11. Let H be a (2, 0)∗-tight graph and T ⊂ V induce a K4 in H.

Suppose that |NH(x)∩T | ≤ 1, for all x ∈ V (H)\T and that T is not contained in a

K4 ◦K4 in H. Then contracting the K4 induced by T gives a (2, 0)∗-tight graph G.

Proof: First note that the fact that T is not contained in a K4 ◦ K4 in H imply

that G is K5-free. Therefore we only need to show that G is (2, 0)-tight.

Suppose G is not (2, 0)-tight. Since |E(G)| = 2|V (G)| we may assume that G

is not (2, 0)-sparse. Thus there exists a set X ⊆ V (G) with 2|X| < iG(X). Then

z ∈ X where z represents the vertex arising from contracting the K4 spanned by T ,

as otherwise G[X] would be a subgraph of H. This gives

2|X \ {z} ∪ T | = 2|X|+ 6 < iG(X) + 6 = iH(X \ {z} ∪ T ),

since |E(H[T ])| = 6. In particular, 2|X \ {z} ∪ T | < iH(X \ {z} ∪ T ), contradicting

the fact that H is (2, 0)-sparse.

Hence we conclude that G is (2, 0)-tight, and so (2, 0)∗-tight. �
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1.3.4 2-Extension Move

Let G = (V,E) be a graph and xy, zt ∈ E be two non-adjacent edges. A 2-extension

move also known as X-replacement in the literature, see [31], is an operation that

removes xy and zt and adds a new vertex v with incident edges vx, vy, vz, vt, see

Figure 1.9. The inverse operation of a 2-extension move is called a 2-reduction.

Namely, the 2-reduction operation in a graph G at a vertex v of degree four with

neighbours x, y, z, t and missing edges xy, zt, removes v and adds xy and zt to the

edge set.

Figure 1.9: A 2-extension move.

Lemma 1.3.12. Let G = (V,E) be a (2, 0)∗-tight graph with non-adjacent edges

xy, zt ∈ E. Suppose H = (V ∪{v}, F ) is obtained from G by a 2-extension move on

xy and zt. Then H is also (2, 0)∗-tight.

Proof: First note that as H − v is a subgraph of G and there are at least two

missing edges in H[N [v]], the graph H is K5-free. Thus we only need to show that

H is (2, 0)-tight. Since |E(H)| = 2|V (H)| holds it is enough to show that H is

(2, 0)-sparse.

Suppose H is not (2, 0)-sparse. Therefore there exists a set X ⊆ V (H) with

2|X| < iH(X). If v /∈ X, then X ⊆ V (G) and we have 2|X| < iH(X) ≤ iG(X), a

contradiction.

Hence we may assume v ∈ X. If at most two neighbours of v are in X, then

2|X \ {v}| = 2|X| − 2 < iH(X) − 2 ≤ iG(X \ {v}) holds. In particular we have

2|X \ {v}| < iG(X \ {v}), contradicting the (2, 0)-sparsity of G. If three neighbours

of v are in X, then H[X] can be obtained from G[X \ {v}] by a 1-extension move.

By Lemma 1.3.2 this gives a contradiction to the fact that G is (2, 0)-sparse. If all

four neighbours x, y, z, t of v are in X, then 2|X \ {v}| = 2|X| − 2 < iH(X) − 2 =

iG(X \ {v}) holds. In particular, 2|X \ {v}| < iG(X \ {v}), a contradiction.
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Hence we conclude that H is (2, 0)-tight and so (2, 0)∗-tight. �

Lemma 1.3.13. Let G = (V,E) be a 4-regular graph. Then G is (2, 0)-tight.

Proof: Since G is 4-regular, we have |E| = 2|V |. Hence showing that G is (2, 0)-

sparse is enough.

For a contradiction suppose G is not (2, 0)-sparse and let X ⊂ V be a set with

i(X) > 2|X|. This implies that the graph G[X] has average degree strictly bigger

than four. Therefore there exists a vertex x ∈ X with dG[X](x) > 4. Since G is

4-regular and G[X] is a subgraph of G, this gives a contraction. �

Lemma 1.3.14. Let H be a connected (2, 0)∗-tight 4-regular graph and v ∈ V (H).

Suppose H is K4-free. Then either H is the unique 4-regular graph on six vertices or

there exists a 2-reduction move at a vertex x ∈ NH [v] that results in a (2, 0)∗-tight

graph G.

Proof: Let NH(v) = {a, b, c, d} be the neighbourhood of v. First note that the

2-reduction move preserves 4-regularity. Note also that since H is K4-free, if a 2-

reduction move creates a copy of K5, then this K5 must contain the two edges added

after the 2-reduction. Combining these with 4-regularity and the connectivity of H,

we deduce that H is the unique 4-regular graph on six vertices.

Therefore we may assume that if there is a 2-reduction move at x ∈ NH [v], then

the resulting graph G is K5-free. Combining this with Lemma 1.3.13 and the fact

that 2-reduction move preserves 4-regularity, we obtain that if we can find a vertex

at which we can apply a 2-reduction move, then this must result in a (2, 0)∗-tight

graph G. Hence we may assume that we cannot apply a 2-reduction move at v. This

is possible only when, for every pair of distinct missing edges e1, e2 ∈ E(NH(v)),

the edges e1 and e2 have a common endpoint. This together with the fact that H

is K4-free implies that up to isomorphism there is only one possibility for H[N [v]]

which is shown in Figure 1.10.

Now consider vertex b in Figure 1.10. Let N(b) = {y, z, v, d}. Since H is 4-

regular and v, d have four neighbours in NH [v], we see that EH({y, z}, {v, d}) = ∅.
Thus we can apply a 2-reduction move at b which removes b and adds the edges yv
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d

v

a

b c

Figure 1.10: The only case when we cannot apply 2-reduction at v up to isomor-
phism.

and zd to obtain a (2, 0)∗-tight graph G. �

Lemma 1.3.15. Let H be a connected (2, 0)∗-tight 4-regular graph. Suppose that

there is a K4 with vertex set T in H that is not contained in a K−5 and that there

is a vertex x with |NH(x) ∩ T | = 2. Then there exists a 2-reduction move at x that

results in a (2, 0)∗-tight graph G.

Proof: Let a, b denote the two neighbours of x in T and y, z denote the two neigh-

bours of x in V \ T . As each of a, b has three incident edges in H[T ] and there is

no K−5 containing the vertices in T , we see that there is no K−5 containing a or b.

Then since NH(x) = {a, b, y, z} and there are no edges from {a, b} to {y, z}, we can

apply a 2-reduction move at x that removes x, and adds edges ay and bz to obtain

a graph G. Since this operation preserves 4-regularity G is (2, 0)-tight by Lemma

1.3.13. Note that since there is no K−5 containing a or b, and there are no edges in

H from {a, b} to {y, z}, we cannot obtain a copy of K5 in G after the 2-reduction

at x. Therefore G is indeed (2, 0)∗-tight. �

Lemma 1.3.16. Let H be a 4-regular (2, 0)∗-tight graph. Suppose the set X ⊂ V (H)

induces a K−5 in H with uv being the missing edge of this K−5 . Suppose further that

there exists a vertex x ∈ V (H) \ X that is adjacent to both u and v. Then there

exists a 2-reduction move at x that results in a (2, 0)∗-tight graph G.

Proof: Let NH(x) = {u, v, z, t}. Since H is 4-regular, the copy of K−5 induced by

X is the only copy of K−5 that contains u or v and EH({u, v}, {z, t}) = ∅. Then

we can apply a 2-reduction move at x which removes the vertex x and adds the
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edges uz, vt to obtain a graph G. Since this operation preserves 4-regularity G is

(2, 0)-tight by Lemma 1.3.13. The facts that u and v are contained only in one K−5 ,

and E({u, v}, {z, t}) = ∅ imply this operation does not create a copy of K5. Thus

G is indeed (2, 0)∗-tight. �

Lemma 1.3.17. Let H be a 4-regular (2, 0)∗-tight graph that contains the graph in

Figure 1.11 as a subgraph. Suppose the set {x, y, z, t} does not induce a K4. Then

there exists a 2-reduction move at x resulting in a (2, 0)∗-tight graph G.

Proof: First note that combining the fact that 2-reduction move preserves 4-

regularity and Lemma 1.3.13 we only need to find a 2-reduction move at x that

does not create a K5. Note also that as H is 4-regular a vertex in H belongs to at

most one K−5 .

u

v

x

y
t

z

Figure 1.11: The vertices x, y, z, t do not induce a K4.

We claim that y cannot be contained in a K−5 . To see this suppose the contrary.

Then this K−5 must contain x, y and must not contain u, v due to 4-regularity. Since

the edge xy is present in H, xy would not be the missing edge of this K−5 . Hence x

or y, say y, must have four neighbours in this K−5 . Since the K−5 that contains x, y

does not contain v, this forces y to have degree at least five in H, a contraction as

H is 4-regular.

Since H[{x, y, z, t}] 6∼= K4, at least one of the edges yz, yt, zt is missing. First

assume yt or yz, say yt is missing. Then as y does not belong to a K−5 we can now

apply a 2-reduction move at x which removes the vertex x and adds the edges yt

and uz and obtain a K5-free graph G.

Now assume zt is missing. Due to 4-regularity we have EH({u}, {y, z, t}) = ∅.
If there is no K−5 containing both z and t in H, then we can apply a 2-reduction

at x which removes the vertex x, and adds the edges zt, uy to obtain a graph G. If
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there is a K−5 containing z, t induced by a set T ⊂ V (H), then we have x, y /∈ T ,

since H is 4-regular and zt /∈ E(H). As otherwise, x, y must have four neighbours

in T , since the missing edge of this K−5 is zt. Then this implies x and y have degree

at least five, since ux, vy ∈ E(H) and u, v /∈ T . This and 4-regularity of H imply

that also the edges yz and yt are missing, since t and z have three neighbours in T

and xt, xz ∈ E(H). Then as u and z, t already belong to some copies of K−5 that

do not contain x, the 2-reduction move at x which removes the vertex x and adds

the edges uz and yt gives a K5-free graph G. �

1.3.5 K−5 Moves

Let G = (V,E) be a graph. A (K−5 , 0)-extension is an operation that adds a copy

of K−5 and connects this K−5 and G with an edge, see (A) and (B) in Figure 1.12.

Similarly, a (K−5 , 1)-extension on xy ∈ E is an operation that removes an edge xy

from G, adds a copy of K−5 and connects x and y to this K−5 by two edges, see

(C,D,E,F,G) in Figure 1.12.

(A) (B)

(C) (D)

(E) (F)

(G)

Figure 1.12: K−5 Moves.
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Lemma 1.3.18. Let G = (V,E) be a graph. Suppose H is a graph obtained from G

by a (K−5 , 0)-extension. Then G is (2, 0)∗-tight if and only if H is (2, 0)∗-tight.

Proof: First note that if H is (2, 0)∗-tight, then so is G, since G is a subgraph of

H and |E| = 2|V | holds.

For the other direction let e = uv denote the edge that connects G and K−5

where v ∈ V and u ∈ V (K−5 ). We now set G1 := G + u + uv and G2 := K−5 , and

apply Lemma 1.2.3 to complete the proof. �

Lemma 1.3.19. Let G = (V,E) be a graph. Suppose H is a graph obtained from G

by a (K−5 , 1)-extension on an edge xy ∈ E that does not belong to a K5 in G. Then

G is (2, 0)∗-tight if and only if H is (2, 0)∗-tight.

Proof: First note that the condition that xy does not belong to a copy of K5 in

G implies that G is K5-free if and only if H is K5-free. Therefore by using this

and the edge counts we only need to show that G is (2, 0)-sparse if and only if H is

(2, 0)-sparse.

Let v1, . . . , v5 denote the vertices of the copy of K−5 , e, f denote the edges that

connect G and K−5 , and x, y be the endpoints of these edges in G. It is easy to check

that we have iH(Y ) < 2|Y | for all Y ⊆ {x, y, v1, . . . , v5}.
Suppose G is (2, 0)-sparse but H is not. Then there exists a set X ⊆ V (H)

such that 2|X| < iH(X). Since G is (2, 0)-sparse and iH(Y ) < 2|Y | for all Y ⊆
{v1, . . . , v5}, X∩V and T := X∩{v1, . . . , v5} are non-empty. If |{e, f}∩E(X)| ≤ 1,

then we would have

2|X \ T | = 2|X| − 2|T | < iH(X)− iH(T )− 1 ≤ iG(X \ T ).

In particular, 2|X \ T | < iG(X \ T ), a contradiction. Hence we may assume e, f ∈
E(X). This implies x, y ∈ X. Then we have

2|X \ T | = 2|X| − 2|T | < iH(X)− iH(T )− 2 + 1 = iG(X \ T ),

where the −2 term corresponds to the edges e, f and the +1 term corresponds to

the edge xy. In particular we have 2|X \ T | < iG(X \ T ), a contradiction.
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Now suppose H is (2, 0)-sparse but G is not. Then there exists a set X ⊆ V

with 2|X| < iG(X). We see that x, y ∈ X, as otherwise, G[X] would be a subgraph

of H, and so would be (2, 0)-sparse. Let S = X ∪ {v1, . . . , v5}. Then

2|S| = 2|X|+ 10 < iG(X) + 10 = iH(X) + 11 = iH(S).

In particular 2|S| < iH(S), a contradiction. �

1.4 Recursive Construction for (2, 0)∗-Tight Graphs

In this section we will give a recursive construction for (2, 0)∗-tight simple graphs.

We will give an inductive construction for such graphs by using the moves in Section

1.3.

The graphs in Figure 1.13 are the base graphs in our recursive construction. We

will show that every (2, 0)∗-tight graph can be obtained from these graphs by the

extension moves described in Section 1.3. We will sometimes need to consider a base

graph with respect to the number of vertices it has. When this is the case we will

use G∗6 for a base graph on six vertices, K−5 ·K−5 for a base graph on nine vertices,

and K−5 |K−5 for a base graph on ten vertices. It is easy to see that a K−5 · K−5
can be obtained from two copies of K−5 by letting them intersect at a single vertex.

Similarly, a K−5 |K−5 is obtained from the disjoint union of two copies of K−5 by

adding two edges e, f that connect these copies of K−5 such that there is no C4 or

K3 that contains both e and f .

Lemma 1.4.1. Let G = (V,E) be a (2, 0)∗-sparse graph. Suppose X1, X2, . . . , Xk ⊂
V are sets that induce a K−5 , a G∗6, a K−5 |K−5 , or a K4 ◦ K4 in G. Then the set

X =
⋃k

i=1Xk, can be partitioned in such a way that each part induces K−5 , K−5 ·K−5 ,

K−5 |K−5 , G∗6 or K4 ◦K4 in G.

Proof: Consider distinct Xi and Xj with Xi ∩ Xj 6= ∅ for some 1 ≤ i < j ≤ k.

Assume both Xi and Xj induce a copy of K−5 . First note that as 1 ≤ |Xi ∩Xj| ≤ 4,

we have i(Xi ∩Xj) ≤ 2|Xi ∩Xj| − 2. Then

2|Xi|+ 2|Xj| = 20 = 18 + 2 = i(Xi) + i(Xj) + 2
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G1
6 G2

6 G3
6 G4

6

G1
9 G2

9 G3
9

G1
10 G2

10

G3
10

Figure 1.13: Base graphs for (2, 0)∗-tightness.

≤ i(Xi ∩Xj) + i(Xi ∪Xj) + 2

≤ 2|Xi ∩Xj|+ 2|Xi ∪Xj| − 2 + 2

= 2|Xi|+ 2|Xj|.

Hence equality holds throughout. In particular, we have i(Xi∩Xj) = 2|Xi∩Xj|−2.

This is only possible when |Xi ∩Xj| = 1 or |Xi ∩Xj| = 4. The former case implies

Xi ∪ Xj induces a K−5 · K−5 and the latter case implies Xi ∪ Xj induces a G∗6.

Therefore we conclude that in a (2, 0)∗-sparse graph two distinct copies of K−5 , are

either disjoint, or form a K−5 ·K−5 or G∗6.

Now consider a (2, 0)∗-tight set Y and a set Xi that induces aK−5 withXi∩Y 6= ∅.
Then i(Xi ∩ Y ) ≤ 2|Xi ∩ Y | − 1 holds as |X ∩ Y | ≤ 5 and G is (2, 0)∗-sparse. This

implies

2|Xi|+ 2|Y | = i(Xi) + i(Y ) + 1

≤ i(Xi ∩ Y ) + i(Xi ∪ Y ) + 1

≤ 2|Xi ∩ Y | − 1 + 2|Xi ∪ Y |+ 1
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= 2|Xi|+ 2|Y |.

Hence equality holds throughout. In particular, i(Xi ∩ Y ) = 2|Xi ∩ Y | − 1. Since

Xi induces a K−5 and Xi ∩ Y 6= ∅, this is only possible when Xi ⊆ Y .

Finally consider two (2, 0)∗-tight sets Y, Z that have no proper non-empty (2, 0)-

tight subsets. By Lemma 1.2.1, Y ∩ Z must be (2, 0)-tight. Hence Y ∩ Z = ∅.
We can combine these deductions with the fact that K−5 ·K−5 , K−5 |K−5 , G∗6 and

K4 ◦ K4 are (2, 0)∗-tight and have no proper non-empty (2, 0)∗-tight subgraph to

complete the proof. �

When we apply one of the reduction moves defined in Section 1.3 on a (2, 0)∗-

tight graph it may not result in a (2, 0)∗-tight graph. We say a reduction move is

admissible if it preserves (2, 0)∗-tightness.

Lemma 1.4.2. Let G = (V,E) be a (2, 0)∗-tight graph that is not a disjoint union

of the base graphs drawn in Figure 1.13. Then

(a) If G is not 4-regular, then there exists at least one admissible 0-, 1-reduction,

K3-to-K2, C4-to-P3, K4-contraction, (K−5 , 0)- or (K−5 , 1)-reduction move on G.

(b) If G is 4-regular, then there exists at least one admissible 2-reduction, C4-to-P3,

K4-contraction, (K−5 , 0)- or (K−5 , 1)-reduction move on G.

Proof: We may assume that G is connected and not isomorphic to any of the base

graphs drawn in Figure 1.13, as otherwise, we can take a connected component of

G that is not isomorphic to any of the base graphs and proceed in the same way.

The fact that |E| = 2|V | implies that the average degree of G is 4. Hence either G

contains a degree 2 or 3 vertex, or G is 4-regular.

Proof of (a): We will split the proof into two cases.

Case 1. There exists a vertex v with d(v) = 2.

Then the 0-reduction move at v is admissible by Lemma 1.3.1.

Case 2. δ(G) = 3.

Case 2.1. There exists a vertex v with d(v) = 3 that does not belong to a K−5 , G∗6

or a K4 ◦K4.

We split this case into three sub-cases depending on N(v).

Case 2.1.1. i(N(v)) ≤ 1.
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Then there exists an admissible 1-reduction at v by Lemma 1.3.4.

Case 2.1.2. i(N(v)) = 2.

By Lemma 1.3.3, we can assume that the only possible 1-reduction at v creates a

copy of K5. Then combining this with the main assumption of Case 2.1 and Lemma

1.3.9, we see that there exists an admissible C4-to-P3 move.

Case 2.1.3. i(N(v)) = 3.

Then N [v] induces a copy of K4. Let N(v) = {a, b, c}. Since v does not belong

to a K−5 , every vertex x ∈ V \N(v) can be adjacent to at most two vertices in N(v).

First assume there exists a vertex x ∈ V \ N(v) that has two neighbours in

N(v), say a and b. Then there exists an admissible C4-to-P3 move that identifies

the vertices x and v on the C4 whose vertices are v, a, x, b by Lemma 1.3.6.

Next assume every vertex x ∈ V \N(v) has at most one neighbour in N(v). Then

as the K4 that is induced by N [v] is not contained in a K4 ◦K4 (main assumption

of Case 2.1), there exists an admissible K4-contraction move by Lemma 1.3.11.

Case 2.2 Every vertex of degree three in G belongs to a K−5 , G∗6, or a K4 ◦K4.

First note that by Lemma 1.4.1, we can obtain a family Q = {Q1, . . . , Ql} of

pairwise disjoint subsets of V such that Qi induces a K−5 , K−5 · K−5 , K−5 |K−5 , G∗6

or a K4 ◦ K4 and the vertex set of every copy of a K−5 , G∗6 and K4 ◦ K4 in G is

contained in a Qi, for some 1 ≤ i ≤ l. Next consider Q′ ⊂ Q, where Qi ∈ Q′

if Qi has a vertex of degree three in G, 1 ≤ i ≤ l. Note that every degree three

vertex is contained in some Qi ∈ Q′, 1 ≤ i ≤ l. Figure 1.14 shows all possibilities

of how a set X ∈ Q′ may connect to other vertices of G classified by the number

of edges from X to V \X. We will consider each of the cases (a) to (k) illustrated

in Figure 1.14 in turn. For case (a), by Lemma 1.3.18, there exists an admissible

(K−5 , 0)-reduction. For case (b), if there is a K−5 that contains both vertices drawn

in G−K−5 , then by Lemma 1.3.8 there exists an admissible C4-to-P3 move. If there

is no K−5 that contains both vertices drawn in G−K−5 for case (b), then by Lemma

1.3.19, there exists an admissible (K−5 , 1)-reduction. For case (c) we may assume

there is no K−5 that contains both vertices drawn in G−K−5 , as the case when there

is such a K−5 corresponds to case (j). Therefore by Lemma 1.3.19, there exists an

admissible (K−5 , 1)-reduction for the case (c), since the (K−5 , 1)-reduction move does

not create a copy of K5, as those two vertices drawn in G−K−5 do not belong to a

K−5 . For the cases (d,e), by Lemma 1.3.7, there exists an admissible K3-to-K2 move.
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For the case (f), by Lemma 1.3.7, there exists an admissible C4-to-P3 move. When

k = 0 for cases (h,i,j) we obtain a base graph since G is connected. When k = 0

for case (k), G is isomorphic to one of the graphs denoted by K4 ◦K4. Referring to

Figure 1.15 one can check that the K3-to-K2 moves for the graphs on top and the

C4-to-P3 moves for the graph on the bottom left that identify the blue vertices are

admissible. Note that as G is not 4-regular G cannot be the graph drawn on the

bottom right in Figure 1.15.

Hence we may assume that only case (g) and cases (h,i,j,k) with k ≥ 1 can

occur. It is straightforward to calculate that the average degree in G of the vertices

in X ∈ Q′ is strictly bigger than four, for the cases (g) and (h,i,j,k) when k ≥ 1.

Combining this with the fact that every vertex of degree three belongs to an X ∈ Q′,
and that Q′ consists of pairwise disjoint sets, we may deduce that the average degree

of G is strictly bigger than four. This contradicts the fact that |E| = 2|V |.
This completes the proof of (a)

Proof of (b). We split the proof into three cases.

Case 1. G is K4-free.

Then there exists an admissible 2-reduction by Lemma 1.3.14.

Case 2. There exists a K4 that is not contained in a K−5 in G.

Take such a copy of K4. Let T be the vertex set of this K4. Consider F :=

E(T, V \ T ). Since this K4 is not contained in a copy of K−5 , for all x ∈ V \ T , we

have |NG(x) ∩ T | ≤ 2.

First suppose there exists x ∈ V \ T with |NG(x) ∩ T | = 2. Then by Lemma

1.3.15, there exists an admissible 2-reduction.

Hence we may assume that |NG(x) ∩ T | ≤ 1 for all x ∈ V \ T . Let S denote

the set of vertices in V \ T that has a neighbour in T . As G is 4-regular and every

vertex in T has a distinct neighbour in V \T , we have |S| = 4. If S does not induce

a copy of K4, then by Lemma 1.3.11, there exists an admissible K4-contraction. If

S induces a copy of K4, then due to 4-regularity and connectivity of G, G must be

the 4-regular graph drawn in Figure 1.15 on the bottom right. In this case, one can

check that the C4-to-P3 move that identifies the blue vertices is admissible.

Case 3. Every K4 is contained in a K−5 and there exists a K4 in G.

Then G contains a copy of K−5 . Let X denote the vertex set of this K−5 and uv

be the missing edge. Since G is 4-regular, and u and v have three neighbours in this
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K−5 , each of u and v has another neighbour outside this K−5 . Let x and y be these

neighbours of u and v, respectively.

Case 3.1. x = y.

Then by Lemma 1.3.16, there exists an admissible 2-reduction.

Case 3.2. x 6= y.

Then there are two possibilities depending on whether the edge xy exists or not.

Case 3.2.1. xy /∈ E.

If there exists a K−5 containing both x and y in G, then due to 4-regularity, G

must be one of the base graphs, namely G1
10. If there is no K−5 containing both x

and y, then by Lemma 1.3.19, there exists an admissible (K−5 , 1)-reduction.

Case 3.2.2. xy ∈ E.

LetN [x] = {x, u, y, z, t}. First suppose that there exists aK4 inG[N [x]]. SinceG

is 4-regular and u is contained in a K−5 that is induced by X, we have G[{x, y, z, t}] =

K4. Also the fact that every K4 is contained in a K−5 and G is 4-regular imply that

Y := {x, y, z, t, s} induces a K−5 for some s ∈ V \X. As xy ∈ E, at least one of x

and y, say x, has four neighbours in Y . Combining this with the fact that x is also

adjacent to u, we obtain d(x) ≥ 5, contradicting the fact that G is 4-regular.

Therefore we may assume N [x] is K4-free, hence G[{x, y, z, t}] 6= K4. Then by

Lemma 1.3.17, there exists an admissible 2-reduction. �

Theorem 1.4.3. Let G = (V,E) be a simple graph. Then G is (2, 0)∗-tight if and

only if G can be obtained from a disjoint union of the base graphs in Figure 1.13 by a

sequence (possibly empty) of 0-, 1-, 2-extensions, K2-to-K3, P3-to-C4, vertex-to-K4

moves and (K−5 , 0)- and (K−5 , 1)-extensions.

Proof: The facts that the base graphs are (2, 0)∗-tight and the moves listed in

the statement preserve being (2, 0)∗-tight imply that G is (2, 0)∗-tight if it can be

constructed as in the theorem.

For the other direction suppose G is (2, 0)∗-tight and cannot be obtained from

a disjoint union of the base graphs by a sequence of 0-, 1-, 2-extensions, K2-to-K3,

P3-to-C4, vertex-to-K4 moves and (K−5 , 0)- and (K−5 , 1)-extensions and that G has

the minimum number of vertices over all such graphs.
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By Lemma 1.4.2, there exists at least one admissible 0-, 1-, 2-reduction, K3-to-

K2, C4-to-P3, K4-contraction, (K−5 , 0)- or (K−5 , 1)-reduction for G. Let H denote

the graph that is obtained by G by an admissible reduction. By the minimality of

|V |, H satisfies the statement of the theorem. The fact that we can obtain G, from

H by one of the 0-, 1-, 2-extensions, K2-to-K3, P3-to-C4, vertex-to-K4 moves and

(K−5 , 0)- and (K−5 , 1)-extensions now gives a contradiction. �
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(b)
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(c)
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K−5
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(e)

K−5

G−K−5

(f)

K−5

G−K−5

(g)

e1· · · ek

k ≥ 3

G∗6

G−G∗6

(h)

e1· · · ek

k ≥ 0

K−5 ·K
−
5

G−K−5 ·K
−
5

(i)

e1· · · ek

k ≥ 0

K−5 |K
−
5

G−K−5 |K
−
5

(j)

e1· · · ek

k ≥ 0

K4 ◦K4

G−K4 ◦K4

(k)

e1· · · ek

k ≥ 0

Figure 1.14: Possibilities of how a member of Q′ connects to other vertices of G.
The edges whose endpoints are undefined can be incident with any vertex as long
as there is a vertex of degree three in the part drawn on top for each case.
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Figure 1.15: The K3-to-K2 moves for the graphs on top and the C4-to-P3 moves for
the graphs on the bottom that identify the blue vertices are admissible.
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1.5 Geometric Matroid

In this section we will give a characterisation for the rigidity of generic linearly

constrained frameworks in R3. In order to do this we will need some extension moves

that preserve independence and rigidity of generic linearly constrained frameworks.

Definition 1.5.1. A linearly constrained framework in R3 is a triple (G, p, q) where

G = (V,E) is a graph, p : V → R3 and q : V → R3. It is generic if (p, q) is

algebraically independent over Q.

In this definition the map p assigns positions in R3, and the map q assigns

planes in R3 (q(v) is the normal vector of a plane that contains the point p(v)) to

the vertices.

Definition 1.5.2. A motion of (G, p, q) is a continuous map P : V × [0, 1] → R3,

such that

• P (v, 0) = p(v) for all v ∈ V ,

• |P (v, t)− P (u, t)| = |p(v)− p(u)| for all uv ∈ E, and

• (P (v, t)− p(v)) · q(v) = 0 for all t ∈ [0, 1] and for all v ∈ V .

Definition 1.5.3. A linearly constrained framework (G, p, q) is rigid if its only

motion is the zero motion, that is, P (v, t) = p(v) for all v ∈ V and for all t ∈ [0, 1].

Definition 1.5.4. An infinitesimal motion of (G, p, q) is a map m : V → R3 satis-

fying the system of linear equations

(p(u)− p(v)) · (m(u)−m(v)) = 0 for all uv ∈ E (1.1)

q(v) ·m(v) = 0 for all v ∈ V . (1.2)

Definition 1.5.5. The rigidity matrix R(G, p, q) of the framework (G, p, q) is the

matrix of coefficients of this system of equations in (1.1) and (1.2) for the unknowns

m(v) for all v ∈ V .

Definition 1.5.6. A framework (G, p, q) is infinitesimally rigid if its only infinitesi-

mal motion is m = 0, or equivalently if rankR(G, p, q) = 3|V |. We say that a graph

G is rigid (as a linearly constrained framework) if rankR(G, p, q) = 3|V | for some

(p, q), or equivalently if rankR(G, p, q) = 3|V | for all generic (p, q).

59



The rigidity matrix R(G, p, q) of a linearly constrained framework (G, p, q) can

be obtained from the rigidity matrix of the 3-dimensional bar-and-joint framework

(G, p) by adding a new row for each v ∈ V whose entries are q(v) in the columns

corresponding to the vertex v and zeros elsewhere. We say (G, p, q) is independent,

respectively dependent if the rows of R(G, p, q) are independent, respectively de-

pendent. Therefore, if the 3-dimensional framework (G, p) is dependent, then the

linearly constrained framework (G, p, q) will be dependent for every choice of q.

Let G = (V,E) be a simple graph. The generic linearly constrained rigidity

matroid R(G) of G is the matroid on E obtained from the rigidity matrix R(G, p, q)

of a generic linearly constrained framework (G, p, q). A set of edges F ⊆ E is

independent, respectively dependent in R(G) if the rows corresponding to the edges

in F and the rows corresponding to q(v) for all v ∈ V are linearly independent,

respectively dependent in R(G, p, q). A set of edges F ⊆ E is a circuit in R(G) if F

is dependent and F −e is independent for all e ∈ F . We also say a subgraph H of G

is independent (dependent, a circuit), if E(H) is independent (dependent, a circuit)

in R(G).

By using the same argument for bar-and-joint frameworks Asimow and Roth

used in [2] (i.e., changing the entries of the rigidity matrix into generic values), we

can deduce the following result.

Lemma 1.5.1. Let (G, p, q) be an independent linearly constrained framework. Sup-

pose (G, p′, q′) is a generic linearly constrained framework. Then (G, p′, q′) is inde-

pendent.

We say a framework (G, p) on a surface M is independent on M, if the rigidity

matrix R(G, p, q) of the linearly constrained framework (G, p, q) has linearly inde-

pendent rows, where q(v) is the unit normal vector to M at the point p(v) for all

v ∈ V . We say a graph G = (V,E) is independent on M, if there exists a framework

(G, p) which is independent on M. Since a framework on an algebraic surface M can

be regarded as a linearly constrained framework, we see that Lemma 1.5.1 implies

our next result.

Lemma 1.5.2. Let M be an irreducible surface of type k, 0 ≤ k ≤ 2. Suppose (G, p)

is an independent framework on M and (G, p′, q) is a generic linearly constrained

framework. Then (G, p′, q) is independent.

60



The lemma below implies an important step in the proof of our main result and

is due to Nixon, Owen and Power [21].

Lemma 1.5.3. [21] Let M be an irreducible surface of type k, 0 ≤ k ≤ 2. Let H be

an independent graph on M. Suppose G is a graph obtained from H by a move one of

the following types: 0-extension, 1-extension, K2-to-K3, P3-to-C4 or vertex-to-K4.

Then G is independent on M.

We can now combine Lemma 1.5.2 and Lemma 1.5.3 to obtain the following

useful result. Note that we only need the case k = 0 in Lemmas 1.5.2 and 1.5.3 in

order to deduce this result.

Lemma 1.5.4. Let H be a rigid graph (as a linearly constrained framework). Sup-

pose G is a graph obtained from H by one of 0-, 1-extensions, K2-to-K3, P3-to-C4

or vertex-to-K4 moves. Then G is rigid (as a linearly constrained framework).

We will now show that (K−5 , 0)- and (K−5 , 1)-extension moves preserve generic

independence of linearly constrained frameworks.

Lemma 1.5.5. Let (H, p, q) be a minimally infinitesimally rigid linearly constrained

framework with x ∈ V (H). Let s 6= p(x) be a point in R3. Suppose G is a graph

obtained from H by a (K−5 , 0)-extension move for which ux is the edge that connects

H and K−5 . Then there exists a minimally infinitesimally rigid linearly constrained

framework (G, p′, q′) such that p′|V (H) = p, q′|V (H) = q, and p′(v), p′(u), p′(x) and s

are collinear for some arbitrary vertex v ∈ V (K−5 ) with u 6= v.

Proof: We first fix v 6= u ∈ V (K−5 ) and take a generic realisation of (K−5 , p̂)

on an elliptical cylinder Y. We can translate and rotate Y in R3 and obtain a

framework (K−5 , p̄) on an elliptical cylinder Y′ such that the points p(x), s, p̄(u), p̄(v)

are collinear. By genericity of p̂, the axis of Y′ is not orthogonal to the line through

the points p(x) and p̄(u). Therefore the tangent plane Tu at p̄(u) to Y′ is not

orthogonal to p̄(u)− p(x).

Now let (G, p′, q′) be the linearly constrained framework for which p′|V (H) = p,

q′|V (H) = q, p′|V (K−5 ) = p̄ and q′(w) is the normal to the tangent plane of Y′ at p′(w)

for all w ∈ V (K−5 ).
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Now consider an infinitesimal motion m of the framework (G, p′, q′). Since

(H, p, q) is infinitesimally rigid, m(t) = 0 for all t ∈ V (H). This and the fact that

[m(u) −m(x)] · [p′(u) − p′(x)] = 0 imply that m(u) is orthogonal to p′(u) − p′(x).

However, since m(u) ∈ Tu and Tu is not orthogonal to p′(u) − p′(x) (as Tu is not

orthogonal to p̄(u)−p(x)), we see that m(u) = 0. Combining this with the fact that

the only infinitesimal motion of (K−5 , p
′|V (K−5 ), q

′|V (K−5 )) is the translation along the

axis of Y′ (by Theorem 1.1.2), we obtain that m(t) = 0 for all t ∈ V (K−5 ). Hence

m(t) = 0 for all t ∈ V (G). Therefore (G, p′, q′) is infinitesimally rigid. The fact that

G has 2|V (G)| edges tells us (G, p′, q′) is minimally infinitesimally rigid. �

Lemma 1.5.6. Let H be a minimally rigid graph (as a linearly constrained frame-

work) and let G be obtained from H by a (K−5 , 1)-extension move. Then G is mini-

mally rigid (as a linearly constrained framework).

Proof: Let (H, p, q) be a generic realisation of H. Let e = xy ∈ E(H) be the edge

on which (K−5 , 1)-extension move is applied. Let e1 and e2 be the edges in G that

connect V (H) and V (K−5 ). Let u and v be the endpoints of the edges e1 = xu and

e2 = yv in V (K−5 ), respectively. Note that we may have u = v.

We first perform a (K−5 , 0)-extension on (H, p, q) by applying Lemma 1.5.5 with

s = p(y) to obtain a minimally infinitesimally rigid linearly constrained framework

(G− e2 + xy, p′, q′) with p′(u), p′(v), p′(x), p′(y) collinear. We will show that for the

framework (G− e2 + xy, p′, q′), replacing the edge xy by the edge e2 = yv preserves

independence. In order to do this let us consider the linearly constrained framework

(G+ xy, p′, q′) and its rigidity matrix R(G+ xy, p′, q′). We have two cases.

Case 1. u = v.

Since (G − e2 + xy, p′, q′) is minimally infinitesimally rigid, e1 = xu and xy ∈
E(G− e2 +xy) and p′(x), p′(y), p′(u) are collinear, the rows of R(G+xy, p′, q′) have

a unique linear dependence which is obtained from the rows corresponding to the

edges e1, e2, xy. Therefore deleting any of these rows makes the matrix have linearly

independent rows. Hence, we delete the row corresponding to the edge xy and de-

duce that the linearly constrained framework (G, p′, q′) is minimally infinitesimally

rigid.
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Case 2. u 6= v.

We split this case into two sub-cases depending on whether uv is an edge in

G− e2 + xy or not.

Case 2.1. uv ∈ E(G− e2 + xy).

Since (G − e2 + xy, p′, q′) is minimally infinitesimally rigid, e1 = xu, xy, uv ∈
E(G−e2 +xy) and p′(x), p′(y), p′(u), p′(v) are collinear, the rows of R(G+xy, p′, q′)

have a unique linear dependence which is obtained from the rows corresponding to

the edges e1, e2, xy, uv. Therefore deleting any of these rows makes the matrix

have linearly independent rows. Hence, we delete the row corresponding to the

edge xy and deduce that the linearly constrained framework (G, p′, q′) is minimally

infinitesimally rigid.

Case 2.2. uv /∈ E(G− e2 + xy).

Since the vertices u, v are contained in the K−5 ⊂ G − e2 + xy and uv /∈
E(G − e2 + xy), we see that uv is the missing edge of the K−5 . Let X denote

the vertex set of the K−5 . We first add the edge uv to the K−5 and remove another

edge f instead so that the K−5 remains as another K−5 . Then for this K−5 + uv − f ,

we proceed as in Case 2.1 to deduce that the framework (G+ uv − f, p′, q′) is mini-

mally infinitesimally rigid. We next add the edge f back and consider the framework

(G+uv, p′, q′) and its rigidity matrix R(G+uv, p′, q′). Since the set X induces a K5

in G+uv and (G+uv−f, p′, q′) is independent, the rows corresponding to the edges

in EG+uv(X) of R(G+ uv, p′, q′) form a minimally linearly dependent set. Now the

fact that uv ∈ EG+uv(X) implies R(G, p′, q′) has linearly independent rows. Hence

the linearly constrained framework (G, p′, q′) is minimally infinitesimally rigid. �

The following lemma is due to Jackson and Jordán [12] and will be a useful tool

in the proof of our main result. Note that the lemma is stated for independence of

a graph in the 3-dimensional bar-and-joint rigidity matroid R3. Since the rigidity

matrix R(G, p, q) of a linearly constrained framework (G, p, q) in R3 contains the

rigidity matrix R(G, p) of the bar-and-joint framework (G, p) in R3 as a |E(G)| ×
3|V (G)| submatrix, this result will allow us to deduce that the rows corresponding

to the edges in R(G, p, q) are linearly independent for some cases.

Lemma 1.5.7. [12] Let G be a connected graph with ∆(G) ≤ 5 and δ(G) ≤ 4.

Then G is independent in R3 (as a bar-and-joint framework) if and only if G is
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(3, 6)-sparse.

We will use the lemma below in the proof of the main theorem for the case when

the graph G is 4-regular. (We do not know whether the 2-extension move preserves

independence of linearly constrained frameworks, so we cannot use 2-extension to

solve this case as in the proof of Theorem 1.4.3.)

Lemma 1.5.8. Let G = (V,E) be a simple graph and (G, p) be a generic (bar-and-

joint) realisation of G in R3. Let (G, p, q) be the linearly constrained framework we

get by choosing a family of concentric elliptical cylinders Z, defined by the equations

x2 + 2y2 = ri and choosing the ri such that each vertex v ∈ V lies on a unique

elliptical cylinder in Z and q(v) to be the unit normal vector at the point p(v) to

the cylinder that contains v. Suppose G is connected and (2, 1)-tight. Then the rows

of R(G, p, q) are linearly independent and the only infinitesimal motions of (G, p, q)

are translations in the direction of the z-axis.

Proof: We first consider an elliptical cylinder Y ∈ Z and a generic framework

(G, p′) on Y. By Theorem 1.1.2 with k = 1, (G, p′) is rigid on Y and so the only

infinitesimal motions of (G, p′) on Y are translations in the direction of the z-axis.

Now consider the linearly constrained framework (G, p′, q). Since every algebraic

dependency of (p, q) is an algebraic dependency of (p′, q) but not vice versa, we

have dim kerR(G, p, q) ≤ dim kerR(G, p′, q). This gives 1 ≤ dim kerR(G, p, q) ≤
dim kerR(G, p′, q) = 1. Therefore equality holds throughout. In particular, we have

dim kerR(G, p, q) = 1. Hence the only infinitesimal motions of (G, p, q) are trans-

lations in the direction of the z-axis. As G is (2, 1)-tight this also implies that the

rows of R(G, p, q) are linearly independent. �

The following is our main result of this chapter.

Theorem 1.5.9. Let G = (V,E) be a simple graph. Then G can be realised as

an infinitesimally rigid linearly constrained framework in R3 if and only if G has a

spanning subgraph which is (2, 0)∗-tight.

Proof: We first prove necessity and suppose G can be realised as an infinitesimally

rigid linearly constrained framework (G, p, q) in R3. We may assume that |E| =

2|V | and (G, p, q) is a minimally infinitesimally rigid linearly constrained framework
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(by deleting some edges). Then R(G, p, q) has linearly independent rows. For a

contradiction, suppose G is not (2, 0)∗-tight. Then there exists a set X ⊆ V such

that either X induces a copy of K5 in G or i(X) > 2|X|. As K5 is dependent in R3 as

a bar-and-joint framework, every linearly constrained framework whose underlying

graph is K5 is dependent. Therefore since R(G, p, q) has linearly independent rows,

G does not contain a copy of K5. This implies that the only possibility that breaks

(2, 0)∗-tightness of G is having a set X ⊆ V with i(X) > 2|X|. Let R(G, p, q) be the

rigidity matrix of (G, p, q). Consider the submatrix R(G[X], p|X , q|X) of R(G, p, q)

induced by the row corresponding to E(X) and the columns corresponding to X.

We can reorder the columns and rows of R(G, p, q) such that the rows corresponding

to edges in E(X) come before the other rows and the columns corresponding to the

vertices in X come before the other columns and obtain the matrix below.

R(G, p, q) =

[
R(G[X], p|X , q|X) 0

∗ ∗

]

Since R(G[X], p|X , q|X) has 3|X| columns and more than 3|X| rows (as i(X) >

2|X|), we see that the rows of R(G[X], p|X , q|X) are linearly dependent. Therefore

the rows of R(G, p, q) are linearly dependent. Now the fact that |E| = 2|V | implies

R(G, p, q) has rank strictly less than 3|V |, contradicting the infinitesimal rigidity of

(G, p, q).

We prove sufficiency by induction on |V | + |E|. We may assume that G is

connected and |E| = 2|V |.
Case 1. G is one of the graphs drawn in Figure 1.13.

We give infinitesimally rigid realisations for these graphs in Figure 1.16. For each

graph, the coordinates in the figure correspond to the positions of its vertices in R3.

If we set p(v) := (p1
v, p

2
v, p

3
v) and q(v) := (p1

v, 2p
2
v, 3p

3
v), then the linearly constrained

framework (G, p, q) is infinitesimally rigid for each of the graphs drawn in Figure

1.13.

Case 2. G is neither one of the graphs drawn in Figure 1.13 nor 4-regular.

Then we apply Lemma 1.4.2 (a) to G and obtain a (2, 0)∗-tight graph H with

|V (H)|+ |E(H)| < |V |+ |E|. Hence the graph H satisfies the statement of the the-

orem by the induction hypothesis. That is H can be realised as an infinitesimally
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Figure 1.16: Infinitesimally rigid realisations for base graphs.

rigid linearly constrained framework in R3. The fact that H is obtained from G by

one of 0-, 1-reduction, K3-to-K2, C4-to-P3, K4-contraction moves and (K−5 , 0)- and

(K−5 , 1)-reductions implies that G can be obtained from H by one of 0-, 1-extension,

K2-to-K3, P3-to-C4, vertex-to-K4 moves and (K−5 , 0)- and (K−5 , 1)-extensions. Lem-

mas 1.5.4, 1.5.5 and 1.5.6 now imply that G is rigid.

Case 3. G is 4-regular and not a base graph.

We first show that G is a circuit in the (2, 1)-sparsity matroid. Suppose the

contrary. Then the fact that |E| = 2|V | implies that there exists a set X ( V with

i(X) = 2|X|. Combining this with the connectivity and 4-regularity of G, we obtain

a contradiction.

Therefore G is a circuit in the (2, 1)-sparsity matroid. Let (G, p) be a generic

realisation of G in R3. Let (G, p, q) be the linearly constrained framework we get

by choosing a family of concentric elliptical cylinders Z, defined by the equations

x2+2y2 = ri and choosing the ri such that each v ∈ V lies on a unique elliptical cylin-
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der in Z and q(v) to be the unit normal vector at the point p(v) to the cylinder that

contains v. Then by Lemma 1.5.8, the only infinitesimal motions of (G− e, p, q) are

translations in the direction of z-axis and the rows of R(G−e, p, q) are linearly inde-

pendent for all e ∈ E. Since adding e back to G−e does not cancel out translations in

the direction of the z-axis, this implies that R(G, p, q) has a unique row dependence

(ω, λ) up to scalar multiplication and ωe 6= 0 for all e ∈ E, where ωe is the coefficient

of the row corresponding to e and λv is the coefficient of the row corresponding to

v for all e ∈ E and v ∈ V . Since (G, p) is independent in the 3-dimensional rigid-

ity matroid by Lemma 1.5.7 (as (2, 0)∗-sparsity implies (3, 6)-sparsity), we have

λv 6= 0 for some v ∈ V . It follows that the matrix Rv obtained from R(G, p, q)

by deleting the row indexed by v has rankRv = rankR(G, p, q) = 3|V | − 1 and

kerRv = kerR(G, p, q) = 〈(0, 0, 1, 0, 0, 1, . . . , 0, 0, 1)〉. Let (G, p, q̃) be the con-

strained framework with q̃(u) = q(u) for all u ∈ V − v and q̃(v) = (0, 0, 1).

Then kerR(G, p, q̃) ⊆ kerRv and (0, 0, 1, 0, 0, 1, . . . , 0, 0, 1) 6∈ kerR(G, p, q̃). Hence

kerR(G, p, q̃) = {0} and (G, p, q̃) is an infinitesimally rigid linearly constrained

framework. �
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Chapter 2

Rigidity of Frameworks with

Three Coincident Points in R2

2.1 Introduction

In this chapter we will give a characterisation for the rigidity of a family of non-

generic 2-dimensional bar-and-joint frameworks. The frameworks we will investigate

have three vertices mapped to the same point, and this is the only algebraic depen-

dency of the realisation. The problem where there are two vertices mapped to the

same point was solved by Fekete, Jordán and Kaszanitzky in [6].

To set up the problem let G = (V,E) be a graph and u, v, w ∈ V be distinct

vertices. As the characterisation highly depends on the three vertices mapped to

the same point, we fix these vertices u, v, w.

Definition 2.1.1. Let (G, p) be a 2-dimensional framework and let u, v, w ∈ V be

distinct vertices. We say p is a uvw-coincident realisation if p(u) = p(v) = p(w)

holds. We also say that a uvw-coincident realisation p is generic, if the framework

(G− v − w, p|V \{v,w}) is generic.

As all generic uvw-coincident realisations of a graph G give rise to the same

matroid, the generic uvw-coincident rigidity matroid, on the edge set, we can say

a graph G is uvw-rigid, if (G, p) is rigid for a generic uvw-coincident realisation p.

Let Ruvw(G) denote the generic uvw-rigidity matroid of G for some fixed distinct

vertices u, v, w ∈ V and let ruvw be the rank function of the matroid Ruvw(G). For
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T ⊆ V (G), we use GT to denote the simple graph obtained from G by contracting

the vertices in T and deleting multiple edges and loops. When T has a small size,

say for example, T = {x, y}, we also use Gxy to denote the same graph GT .

For the case when there are two coincident vertices, u and v with p(u) = p(v),

which is studied in [6], we can define uv-rigidity, Ruv(G) and ruv in the same way.

The theorems below are the main results in [6].

Theorem 2.1.1. [6] Let G = (V,E) be a graph and u, v ∈ V be distinct vertices.

Then G is uv-rigid in R2 if and only if G− uv and Guv are both rigid in R2.

Theorem 2.1.2. [6] Let G = (V,E) be a graph and u, v ∈ V be distinct vertices.

Then ruv(G) = min{r2(G− uv), r2(Guv + 2)}.

The two theorems below will be the main results of this chapter.

Theorem 2.1.3. Let G = (V,E) be a graph and let u, v, w ∈ V be distinct vertices

and G′ = G − uv − uw − vw. Then G is uvw-rigid in R2 if and only if G′ is rigid

in R2 and G′S is rigid in R2 for all S ⊆ {u, v, w} with |S| ≥ 2.

Theorem 2.1.4. Let G = (V,E) be a graph, u, v, w ∈ V be distinct vertices and

G′ = G − uv − uw − vw. Then ruvw(G) = min{r2(G′), r2(G′uv) + 2, r2(G′uw) +

2, r2(G′vw) + 2, r2(G′uvw) + 4}.

We will proceed in a similar way to [6]. We will first define a count matroid

Muvw(G) on the edge set of G in Section 2.2. We will then show that this matroid

is equal to Ruvw(G).

The independent sets of the matroid Muvw(G) will be defined to satisfy the

general sparsity condition, (2, 3)-sparsity, for all set of edges F , and some special

sparsity conditions if |V (F ) ∩ {u, v, w}| ≥ 2. The assumption that p(u) = p(v) =

p(w) implies that if there is an edge e whose both endpoints are in {u, v, w}, then

e corresponds to a zero row in the rigidity matrix of a uvw-coincident realisation

(G, p). Hence such an edge e is a circuit in Ruvw(G). This illustrates why we need

a special sparsity condition when an edge set F satisfies |V (F ) ∩ {u, v, w}| ≥ 2.

Some lemmas we use to characteriseMuvw(G) will have very similar proof tech-

niques to the lemmas Fekete, Jordán and Kaszanitzky used to characteriseMuv(G)

in [6]. For the sake of completeness we will give detailed proofs of all our lemmas.
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After characterising Muvw(G) we will focus on the matroid Ruvw(G). We will

give Henneberg type moves that preserve independence in Ruvw(G).

We will later show that Muvw(G) ∼= Ruvw(G). Showing that independence in

Ruvw(G) implies independence in Muvw(G) will be the easy direction of this state-

ment. For the other direction, we will proceed by induction and use the Henneberg

type moves starting from a set of base graphs. We will give some specific realisations

for the base graphs and the independence of these realisations were verified via a

computer program.

Finally, using the fact that Muvw(G) ∼= Ruvw(G), we will prove Theorems 2.1.3

and 2.1.4.

2.2 The Count Matroid

Let G = (V,E) be a graph. For some X ⊆ V let G[X] denote the subgraph

induced by X and let EG(X) be the set and iG(X) be the number of edges of

G[X]. For a family S = {S1, S2, . . . , Sk}, where Si ⊆ V for all i = 1, . . . , k, we

define EG(S) =
⋃k

i=1EG(Si) and put iG(S) = |EG(S)|. We also define cov(S) =

{(x, y) : {x, y} ⊆ Si, for some 1 ≤ i ≤ k}. We say that S covers F ⊆ E if

F ⊆ cov(S). A collection K = {S1, . . . ,Sk} of families of subsets of V is a cover

of F if F ⊆
⋃k

i=1 cov(Si). The degree of a vertex v is denoted by dG(v) and the

neighbourhood of v is denoted by NG(v). We may omit the subscripts referring to G

if the graph is clear from the context.

Let G be a graph and u, v, w ∈ V be three distinct vertices of G. Let H =

{H1, . . . , Hk} be a family with Hi ⊆ V , 1 ≤ i ≤ k and let S ⊆ {u, v, w} with

|S| ≥ 1. We say that H is S-compatible if S ⊆ Hi and |Hi| ≥ |S| + 1 holds for all

1 ≤ i ≤ k. The S-value of subsets H of V of size at least two is 2|H| − 3 if H 6⊆ S,

and is 0 if H ⊆ S. It is denoted by valS(H). The value of an S-compatible family

H is

valS(H) :=
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1).

Let us give some motivation for the definition of valS(H). We will use valS(H)

to characterise the rank function of Muvw, in a similar way that 1-thin covers were
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used to characterise the rank function of R2(G) in Theorem 0.2.3. If we rewrite

the function
∑

X∈X (2|X| − 3) in this theorem by replacing X by H, we obtain∑k
i=1 (2|Hi| − 3). The families X in Theorem 0.2.3 are 1-thin (|Xi ∩ Xj| ≤ 1)

whereas Hi ∩Hj = S for distinct Hi, Hj ∈ H. In some sense we want H to behave

like a 1-thin family X . We do this by regarding the set S as a single vertex. Then

applying this idea in the count
∑k

i=1 (2|Hi| − 3), we obtain that

k∑
i=1

(2|Hi| − 3)− 2(|S| − 1)(k − 1)

=
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) = valS(H)

Let G = (V,E) be a graph and u, v, w ∈ V be distinct vertices and S ⊆ {u, v, w}
be non-empty.

Definition 2.2.1. A graph G = (V,E) is S-sparse, if for all H ⊆ V with |H| ≥ 2, we

have iG(H) ≤ valS(H) and for all S-compatible familiesH we have iG(H) ≤ valS(H).

We see that if G is S-sparse, then there is no edge between any distinct pair of

vertices in S. It is easy to see that S-sparsity is just (2,3)-sparsity when |S| = 1.

Therefore will focus on the case |S| ≥ 2.

Example 2.2.1. If G is S-sparse for all S ⊆ {u, v, w} with |S| = 2, then this does

not imply that G is {u, v, w}-sparse. Let G be the graph on the left in Figure 2.1.

Then G is S-sparse for all S ⊆ {u, v, w} with |S| = 2. However, it is not {u, v, w}-
sparse as for the {u, v, w}-compatible family H = {{u, v, w, xi} : 1 ≤ i ≤ 5} we have

iG(H) = 10 > 9 = val{u,v,w}(H).

We also know that {u, v, w}-sparsity does not imply S-sparsity for all S ⊆
{u, v, w} with |S| = 2. Let G be the graph on the right in Figure 2.1. It is {u, v, w}-
sparse but not {u, v}-sparse as for the {u, v}-compatible family H = {{u, v, xi} :

1 ≤ i ≤ 3} we have iG(H) = 6 > 5 = val{u,v}(H).

2.2.1 Preliminary Results on Compatible Families

In this subsection we will give some useful tools that will help us to define and

characterise Muvw(G) for a graph G.
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Figure 2.1: Comparison of S-sparsity for S ⊆ {u, v, w} with |S| ≥ 2.

Lemma 2.2.1. Let H = {H1, . . . , Hk} be an S-compatible family for some S ⊆
{u, v, w} with |S| ≥ 2. Suppose |Hi ∩ Hj| ≥ |S| + 1 for some pair 1 ≤ i < j ≤ k.

Then there is an S-compatible family H with cov(H) ⊆ cov(H) for which valS(H) ≤
valS(H)− 1.

Proof: We may assume that i = k− 1 and j = k. Let H = {H1, . . . , Hk−2, (Hk−1 ∪
Hk)}. Then we have

valS(H) =
k∑

l=1

(2|Hl \ S| − 1) + 2(|S| − 1)

=
k−2∑
l=1

(2|Hl \ S| − 1) + 2(|S| − 1) + (2|Hk−1 \ S| − 1) + (2|Hk \ S| − 1)

=
k−2∑
l=1

(2|Hl \ S| − 1) + 2(|S| − 1) + (2|(Hk−1 ∪Hk) \ S| − 1)

+ (2|(Hk−1 ∩Hk) \ S| − 1)

≥ valS(H) + 1.

Clearly, cov(H) ⊆ cov(H) holds. �

We define a set H ⊆ V (G) with |H| ≥ 2 to be S-tight, if iG(H) = valS(H).

Note that in an S-sparse graph G, if H 6⊆ S, then H is S-tight if and only if H is

(2, 3)-tight. In this chapter we will use the terminology tight instead of (2, 3)-tight

for the sets H ⊆ V (G). Similarly an S-compatible family H is S-tight or just tight

when it is clear what S we refer to, if iG(H) = valS(H).
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Lemma 2.2.2. Let H = {H1, . . . , Hk} be an S-compatible family for some S ⊆
{u, v, w} with |S| ≥ 2 and Hi ∩ Hj = S for all 1 ≤ i < j ≤ k, and Y ⊆ V

be a set of vertices with |Y ∩ S| ≤ 1 and |Y ∩ Hi| ≥ 2 for some 1 ≤ i ≤ k.

Then there is an S-compatible family H with cov(H) ∪ cov(Y ) ⊆ cov(H) for which

valS(H) ≤ valS(H) + valS(Y ). Furthermore, if G is S-sparse and H and Y are both

S-tight, then H is also S-tight.

Proof: By renumbering the sets ofH, if necessary, we may assume that |Y ∩Hi| ≥ 2

if i ≥ j for some j ≤ k, and |Y ∩ Hi| ≤ 1 for all i ≤ j − 1. Let X = Y ∪
⋃k

i=j Hi

and H = {H1, . . . , Hj−1, X}. Then we have cov(H) ∪ cov(Y ) ⊆ cov(H), and

valS(H) + valS(Y ) =
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Y | − 3)

=

j−1∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) +
k∑

i=j

(2|Hi \ S| − 1) + (2|Y | − 3)

=

j−1∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|X \ S| − 1)

+ 2|Y ∩ S| − (k − j) + 2
k∑

i=j

|Y ∩ (Hi \ S)| − 3

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1)

+ 2|Y ∩ S| − (k − j) + 2
k∑

i=j

|Y ∩Hi| − 2
k∑

i=j

|Y ∩ S| − 3

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1)

− (k − j) + 2
k∑

i=j

|Y ∩ (Hi)| − 2|Y ∩ S|(k − j)− 3

≥
j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1) + 2
k∑

i=j

|Y ∩Hi| − 3(k − j + 1)

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1) +
k∑

i=j

(2|Y ∩Hi| − 3)
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= valS(H) +
k∑

i=j

valS(Y ∩Hi)

where for the inequality step we use |Y ∩ S| ≤ 1.

Now suppose that H and Y are S-tight. Then we have

i(H) +
k∑

i=j

i(Y ∩Hi) ≥ i(H) + i(Y ) = valS(H) + valS(Y )

≥ valS(H) +
k∑

i=j

valS(Y ∩Hi) ≥ i(H) +
k∑

i=j

i(Y ∩Hi),

where the first inequality follows since the edges spanned by H or Y are spanned

by H and if some edge is spanned by both H and Y , then it is spanned by Y ∩Hi

for some i. The first equality holds because H and Y are S-tight, and the second

inequality holds by our calculations above. The last inequality holds because G is

S-sparse. Hence equality must hold everywhere, which implies that H is also S-

tight. �

Lemma 2.2.3. Let H = {H1, . . . , Hk} be an S-compatible family for some S ⊆
{u, v, w} with |S| ≥ 2 and Hi ∩ Hj = S for all 1 ≤ i < j ≤ k, and let Y ⊆ V be

a set of vertices with Y ∩ S = ∅ and |Y ∩ Hi| ≤ 1 for all 1 ≤ i ≤ k, for which

|Y ∩Hi| = |Y ∩Hj| = 1 for some pair 1 ≤ i < j ≤ k. Then there is an S-compatible

family H with cov(H) ∪ cov(Y ) ⊆ cov(H) for which valS(H) = valS(H) + valS(Y ).

Furthermore, if G is S-sparse and H and Y are both S-tight, then H is also S-tight.

Proof: We may assume that i = k− 1 and j = k. Let H = {H1, . . . , Hk−2, (Hk−1 ∪
Hk ∪ Y )}. Then we have

valS(H) + valS(Y ) =
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Y | − 3)

=
k−2∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Hk−1 \ S| − 1) + (2|Hk \ S| − 1) + (2|Y | − 3)

74



=
k−2∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2(|Hk−1 \ S|+ |Hk \ S|+ |Y |)− 1)− 4

=
k−2∑
i=1

(2|Hi \ S| − 1) + (2|(Hk−1 ∪Hk ∪ Y ) \ S| − 1) + 2(|S| − 1)

+ 2|Y ∩ (Hk−1 \ S)|+ 2|Y ∩ (Hk \ S)| − 4

= valS(H).

Clearly, we have cov(H) ∪ cov(Y ) ⊆ cov(H). Now suppose that G is S-sparse

and H and Y are S-tight. then we have

i(H) + i(Y ) = valS(H) + valS(Y ) = valS(H) ≥ i(H) ≥ i(H) + i(Y )

where the last inequality follows since |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ k. Hence equality

must hold everywhere which implies that H is also S-tight. �

Lemma 2.2.4. Let G = (V,E) be S-sparse for some S ⊆ {u, v, w} with |S| ≥ 2 and

let X, Y ⊆ V be S-tight sets in G with |X∩Y | ≥ 2 and X, Y 6⊆ S. Then X∩Y 6⊆ S,

and X ∪ Y and X ∩ Y are S-tight.

Proof: First note that as G is S-sparse we have

2|X| − 3 + 2|Y | − 3 = valS(X) + valS(Y ) = i(X) + i(Y )

≤ i(X ∩ Y ) + i(X ∪ Y )

≤ valS(X ∩ Y ) + valS(X ∪ Y )

= valS(X ∩ Y ) + 2|X ∪ Y | − 3

Suppose X∩Y is a subset of S. Then valS(X∩Y ) = 0 and putting this in the above

equations gives 2|X| − 3 + 2|Y | − 3 ≤ 2|X ∪ Y | − 3 = 2|X|+ 2|Y | − 2|X ∩ Y | − 3 ≤
2|X|+ 2|Y | − 7, a contradiction.

Hence X ∩ Y is not a subset of S. Then we have valS(X ∩ Y ) = 2|X ∩ Y | − 3

and hence equality holds throughout. In particular, valS(X ∪ Y ) = i(X ∪ Y ) and

valS(X ∩ Y ) = i(X ∩ Y ), so X ∪ Y and X ∩ Y are S-tight. �

75



Lemma 2.2.5. Let G = (V,E) be S-sparse for all S ⊆ {u, v, w} with |S| ≥ 2.

Suppose that there is a tight U-compatible family in G for some U ⊆ {u, v, w} with

|U | ≥ 2. Then there is a unique family Hmax with the properties that Hmax is a tight

T -compatible family for some U ⊆ T ⊆ {u, v, w}, and cov(H) ⊆ cov(Hmax) for all

tight S-compatible families H of G for all S ⊆ {u, v, w} with |S| ≥ 2.

Proof: It follows from Lemma 2.2.1 that if H = {H1, . . . , Hk} is a tight S-

compatible family in G then Hi ∩ Hj = S for all 1 ≤ i ≤ k. Now consider a

pair H1 = {H1, . . . , Hk} and H2 = {H1, . . . , H l} of tight Si-compatible families

with Si ⊆ {u, v, w} and |Si| ≥ 2 for i = 1, 2.

Let G = (V , E) be the bipartite graph with bipartition (H1,H2), and edge set

E := {HiHj : |(Hi \ S1) ∩ (Hj \ S2)| ≥ 1, 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

Let (Vi,Fi), 1 ≤ i ≤ r be the connected components of G. Define Vi =
⋃

H∈Vi H,

1 ≤ i ≤ r and put

Hunion := {Vi ∪ S1 ∪ S2 : 1 ≤ i ≤ r},

Hint := {Hi ∩Hj : HiHj ∈ E},

Note that Hunion and Hint are (S1 ∪S2)- and (S1 ∩S2)-compatible, respectively. We

see that every edge in E which is covered by either H1 or H2 is covered by Hunion

and every edge covered by both H1 and H2 is covered by Hint. This implies that

i(H1) + i(H2) ≤ i(Hunion) + i(Hint). Since |V| = k + l and r is the number of

connected components of G,

r + |E| ≥ k + l. (2.1)

We also have

r∑
i=1

(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) +
∑

HiHj∈E

(|Hi ∩Hj| − |S1 ∩ S2|)

=
k∑

i=1

(|Hi| − |S1|) +
l∑

i=1

(|H i| − |S2|)

(2.2)

as a vertex x /∈ S1 ∪ S2 contributes the same amount (one or two) to both sides of

(2.2), and a vertex s ∈ S1 ∪ S2 contributes zero to both sides of (2.2).
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Then we have

k∑
i=1

(2|Hi \ S1| − 1) + 2(|S1| − 1) +
l∑

i=1

(2|H i \ S2| − 1) + 2(|S2| − 1)

= valS1(H1) + valS2(H2)

= i(H1) + i(H2)

≤ i(Hunion) + i(Hint)

≤ valS1∪S2(Hunion) + valS1∩S2(Hint)

=
r∑

i=1

(2|(Vi ∪ S1 ∪ S2) \ (S1 ∪ S2)| − 1) + 2(|S1 ∪ S2| − 1)

+
∑

HiHj∈E

(2|(Hi ∩Hj) \ (S1 ∩ S2)| − 1) + 2(|S1 ∩ S2| − 1)

=
r∑

i=1

2(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) + 2(|S1 ∪ S2| − 1)− r

+
∑

HiHj∈E

2(|Hi ∩Hj| − |S1 ∩ S2|) + 2(|S1 ∩ S2| − 1)− |E|

≤
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|)

+ 2(|S1 ∪ S2| − 1) + 2(|S1 ∩ S2| − 1)− k − l

=
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|) + 2|S1|+ 2|S2| − 2− 2− k − l

=
k∑

i=1

(2|Hi \ S1| − 1) + 2(|S1| − 1) +
l∑

i=1

2|H i \ S2| − 1 + 2(|S2| − 1),

where the third inequality follows from (2.1) and (2.2), and the second last equality

follows from the formula |S1 ∪ S2|+ |S1 ∩ S2| = |S1|+ |S2|. Therefore equality must

hold throughout. Hence we can deduce that Hunion and Hint are both tight. Clearly,

we have cov(H1) ∪ cov(H2) ⊆ cov(Hunion). The lemma now follows by choosing a

T ⊆ {u, v, w} and a tight T -compatible family Hmax of G for which cov(Hmax) is

maximal. �
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2.2.2 The Matroid and its Rank Function

Let G = (V,E) be a graph and u, v, w ∈ V be distinct vertices of G. We say G is

uvw-sparse if it is S-sparse for all S ⊆ {u, v, w} with |S| ≥ 2. In this subsection we

prove that the family

IG = {F : F ⊆ E,H = (V, F ) is uvw-sparse} (2.3)

is a family of independent sets of a matroid on E. We need the following definition.

Let H = {H1, . . . , Ht} be an S-compatible family and let X1, . . . , Xk be subsets

of V of size at least two. Recall that the collection K = {X1, . . . , Xk} is 1-thin if

(i) |Xi ∩Xj| ≤ 1 for all pairs 1 ≤ i < j ≤ k.

Definition 2.2.2. The collection L = {H, X1, . . . , Xk} where H is either the empty

set, or an S-compatible family for some S ⊆ {u, v, w} with |S| ≥ 2 is 1-thin if (i)

holds and

(ii) Hi ∩Hj = S for all pairs 1 ≤ i < j ≤ t, and

(iii) |Xi ∩
⋃t

j=1Hj| ≤ 1 for all 1 ≤ i ≤ k.

We define the value of L as

val(L) :=

{
valS(H) +

∑k
i=1 2|Xi| − 3, if H 6= ∅∑k

i=1 2|Xi| − 3, if H = ∅

It is clear that if G is uvw-sparse, then iG(L) ≤ val(L) holds for all 1-thin L =

{H, X1, . . . , Xk}. For a graph G = (V,E) with distinct vertices u, v, w ∈ V , we

can now characterise the matroid Muvw(G) = (E, IG). Note that after we prove

Muvw(G) ∼= Ruvw(G), this characterisation will be the uvw-coincident counterpart

of Theorem 0.2.3.

Theorem 2.2.6. Let G = (V,E) be a graph and u, v, w ∈ V be distinct vertices of

G. Then Muvw(G) = (E, IG) is a matroid on the ground set E, where IG is defined

by (2.3). The rank of a set E ′ ⊆ E in Muvw(G) is equal to

min{val(L) : L is a 1-thin cover of E ′ \ E({u, v, w})}.
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Proof: We will proceed by showing that IG satisfies the conditions (I1), (I2) and

(I3′) of Definition 0.1.16. As (I1) and (I2) are trivial, we will only show (I3′) holds.

Let I = IG, E ′ ⊆ E \ E({u, v, w}) and F ⊆ E ′ be a maximal subset of E ′ in I.

Since F ∈ I we have |F | ≤ val(K) for all covers K of E ′. We will show that there

is a 1-thin cover K of E ′ with |F | = val(K), from which the theorem will follow.

Let J = (V, F ) denote the subgraph induced by the edge set F . First suppose

that there is no tight S-compatible family for all S ⊆ {u, v, w} with |S| ≥ 2 in J

and consider the following 1-thin cover of F :

K1 = {X1, X2, . . . , Xk},

where X1, X2, . . . , Xk are all of the maximal tight sets in J . Since every edge f ∈
E \E({u, v, w}) induces a tight set in J , K1 is a cover of F . It is 1-thin by Lemma

2.2.4. Thus

|F | =
k∑

j=1

|EJ(Xj)| =
k∑

j=1

(2|Xj| − 3) = val(K1)

follows. We claim that K1 is a cover of E ′. To see this consider an edge ab =

e ∈ E ′ − F . Since F is a maximal subset of E ′ in I we have F + e /∈ I. By our

assumption there is no tight S-compatible family in J , and hence there must be a

tight set X in J with a, b ∈ X. Hence X ⊆ Xi for some 1 ≤ i ≤ k which implies K1

covers e, too.

Next suppose there is a tight S-compatible family for some S ⊆ {u, v, w} with

|S| ≥ 2 in J and consider the following cover of F :

K2 = {Hmax, X1, X2, . . . , Xk},

where Hmax = {H1, H2, . . . , Hl} is the tight T -compatible family of G for which

cov(Hmax) is maximal (c.f. Lemma 2.2.5) and X1, X2, . . . , Xk are maximal tight sets

of J ′ = (V, F − E(Hmax)). We see that K2 is indeed a cover of F . Lemma 2.2.4

implies |Xi ∩Xj| ≤ 1, Lemma 2.2.1 implies Hi ∩Hj = T for all i 6= j, and Lemmas

2.2.2 and 2.2.3 imply that |Xi ∩
⋃l

j=1Hj| ≤ 1 for all 1 ≤ i ≤ k. Hence the cover K2
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is 1-thin and we have

|F | =
l∑

i=1

|EJ(Hi)|+
k∑

j=1

|EJ(Xj)|

=
l∑

i=1

(2|Hi \ T | − 1) + 2(|T | − 1) +
k∑

j=1

(2|Xj| − 3) = valT (K2).

We will show that K2 is a cover of E ′. As above, let ab = e ∈ E ′−F be an edge. By

the maximality of F we have F + e /∈ I. Thus either there is a tight set X ⊆ V in

J with a, b ∈ X or there is a tight S-compatible family H = {Y1, . . . , Yt} for some

S ⊆ {u, v, w} with |S| ≥ 2 in J and a, b ∈ Yi for some 1 ≤ i ≤ t.

In the latter case Lemma 2.2.5 implies that cov(H) ⊆ cov(Hmax) and hence e is

covered by K2. In the former case, when a, b ∈ X for some tight set X in J we have

two possibilities. First suppose that |X ∩
⋃l

i=1Hi| ≥ 2. Then we can deduce that

X ⊆ Hi for some 1 ≤ i ≤ l by using Lemma 2.2.2 or 2.2.3 and the maximality of

Hmax which implies that K2 covers e. Next suppose that |X ∩
⋃l

i=1 Hi| ≤ 1. Then

E(X) ⊆ E(J ′) and hence X ⊆ Xi for some 1 ≤ i ≤ k, since every edge of J ′ induces

a tight set and every tight set is contained in a maximal tight set. Hence e is covered

by K2, as claimed. �

2.2.3 Independence in Ruvw and Muvw

Let G = (V,E) be a graph and let u, v, w ∈ V be distinct vertices and S ⊆ {u, v, w}
with |S| ≥ 2. Let GS denote the graph obtained from G by contracting the vertices

in S into a new vertex zS (and deleting the resulting loops and parallel edges).

Given a realisation (GS, pS), we obtain an S-coincident realisation (G, p) of G by

putting p(x) = pS(zS) if x ∈ S and p(x) = pS(x) if x /∈ S. Furthermore, each vector

qS in the kernel of R(GS, pS) (an infinitesimal motion qS of (GS, pS)) determines

a vector q in the kernel of R(G, p) (an infinitesimal motion q of (G, p)) by setting

q(x) = qS(zS) if x ∈ S and q(x) = qS(x) if x /∈ S. It follows that

dim kerR(G, p) ≥ dim kerR(GS, pS) (2.4)
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We can use this fact to prove that independence in Ruvw(G) implies independence

in Muvw(G).

Lemma 2.2.7. Let G = (V,E) be a graph and let u, v, w ∈ V be distinct vertices.

Suppose E is independent in Ruvw(G). Then E is independent in Muvw(G).

Proof: Let (G, p) be an independent uvw-coincident realisation of G. Independence

implies that i(H) ≤ val(H) holds for all H ⊆ V with |H| ≥ 2. Since p(x) = p(y)

when x, y ∈ S ⊆ {u, v, w}, we see that there is no edge between any two members

of S.

Let H = {H1, . . . , Hk} be an S-compatible family for some S ⊆ {u, v, w} with

|S| ≥ 2 and consider the subgraph F = (
⋃k

i=1 Hi,
⋃k

i=1E(Hi)). By contracting S

into one vertex in F we obtain the graph FS, in which X = {H1/S, . . . , Hk/S} is a

cover. Thus r2(FS) ≤
∑k

i=1

(
2(|Hi| − (|S| − 1))− 3

)
by Theorem 0.2.3. This bound

and (2.4) imply that

dim kerR(F, p) ≥ dim kerR(FS, pS)

≥2
(
|

k⋃
i=1

Hi| − (|S| − 1)
)
−

k∑
i=1

(
2|Hi| − 2(|S| − 1)− 3

)
.

Since (G, p) is an independent uvw-coincident realisation, we have

iF (H) = |E(F )| ≤ 2

∣∣∣∣ k⋃
i=1

Hi

∣∣∣∣−
(

2

(∣∣∣∣ k⋃
i=1

Hi

∣∣∣∣− (|S| − 1)

)
−

k∑
i=1

(2|Hi| − 2(|S| − 1)− 3)

)

=
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) = valS(H).

Since S ⊆ {u, v, w} with |S| ≥ 2 is arbitrary, E is independent in Muvw(G). �

We next show that independence in Muvw implies independence in Ruvw. We

will define some special operations that are based on Henneberg’s 0- and 1-extension

operations. Let G = (V,E) be a graph and S ⊆ {u, v, w} ⊆ V with |S| ≥ 2. The

0-S-extension operation is a 0-extension operation on a pair a, b with {a, b} 6⊂ S.

The 1-S-extension operation is a 1-extension operation on some edge ab and vertex
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c for which |S ∩ {a, b, c}| ≤ 1. The inverse operations are called 0-S-reduction and

1-S-reduction, respectively.

Lemma 2.2.8. Let G = (V,E) be a graph, (G, pS) be an S-coincident realisation of

G for some S ⊆ {u, v, w} with |S| ≥ 2 and suppose that G′ is obtained from G by a

0-S-extension that adds the new vertex x. Let (G′, qS) be an S-coincident realisation

with qS|V (G) = pS and qS(x) is not on the line through the positions of the neighbours

of x. Then the rows of R(G′, qS) are linearly independent if and only if the rows of

R(G, pS) are linearly independent.

Proof: Immediately follows from Lemma 0.1.7 with d = 2. �

Lemma 2.2.9. Let (G, pS) be a generic S-coincident realisation of G for some

S ⊆ {u, v, w} with |S| ≥ 2. Let G′ be a graph obtained from G by a 1-S-extension

operation and (G′, qS) be a generic S-coincident realisation with qS|V (G) = pS. Sup-

pose the rows of R(G, pS) are linearly independent. Then the rows of R(G′, qS) are

linearly independent.

Proof: Immediately follows from Lemma 0.1.8 with d = 2. �

Lemma 2.2.10 below is called the vertex splitting lemma, see [31]. We give its

proof here because in [31], only the generic version is stated and no proof is given.

Lemma 2.2.10. Let G be a graph with edges zz1, zz2 . . . , zzk, . . . , zzm. Let G′ be

the graph obtained from G by deleting the edges zz3, . . . , zzk and adding a new vertex

z′ incident with new edges z′z1, z
′z2, . . . , z

′zk. Let (G, p) be a realisation of G in R2.

Suppose the rows of R(G, p) are linearly independent, and p(z), p(z1) and p(z2) are

not collinear. Define q : V (G′)→ R2 by q(x) = p(x) if x ∈ V (G) and q(z′) = p(z).

Then the rows of R(G′, q) are linearly independent.

Proof: Let us relabel the vertices z, z′ of G′ by setting z = y and z′ = x. Note that
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we did not relabel z in G. The matrix below is the rigidity matrix R(G, p).

z z1 z2



zz1 p(z)− p(z1) p(z1)− p(z) (0, 0) · · ·
zz2 p(z)− p(z2) (0, 0) p(z2)− p(z) · · ·
...

...
...

...
...

zzk p(z)− p(zk) (0, 0) (0, 0) · · ·
...

...
...

...
...

zzm p(z)− p(zm) (0, 0) (0, 0) · · ·
0 R(G− z, p)

The matrix R(G′, q) below is the rigidity matrix of (G′, q).

x y z1 z2



xz1 p(x)− p(z1) (0, 0) p(z1)− p(x) (0, 0) · · ·
yz1 (0, 0) p(y)− p(z1) p(z1)− p(y) (0, 0) · · ·
xz2 p(x)− p(z2) (0, 0) (0, 0) p(z2)− p(x) · · ·
yz2 (0, 0) p(y)− p(z2) (0, 0) p(z2)− p(y) · · ·
xz3 p(x)− p(z3) (0, 0) (0, 0) · · ·

...
...

...
...

...
...

xzk p(x)− p(zk) (0, 0) (0, 0) (0, 0) · · ·
yzk+1 p(y)− p(zk) (0, 0) (0, 0) (0, 0) · · ·

...
...

...
...

...
...

yzm p(y)− p(zm) (0, 0) (0, 0) (0, 0) · · ·
0 0 R(G− z, p)

Let [e]p and [e]q denote the row corresponding to the edge e in R(G, p) and R(G′, q),

respectively. If the rows of R(G′, q) are not linearly independent then there exists

scalars t, s, l, n, a3, . . . , ak, bk+1, . . . , bm, c1, . . . , cr not all zero such that

t[xz1]q +s[yz1]q + l[xz2]+n[yz2]q +
k∑

i=3

ai[xzi]q +
m∑

i=k+1

bi[yzi]q +
r∑

i=1

ci[ei]q = 0. (2.5)
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Moreover we see that at least one of ai, bj or ck is non-zero, since otherwise we

would have t[xz1]q + s[yz1]q + l[xz2]q + n[yz2]q = 0. This corresponds to a linear

dependence in R(G′′, q) where G′′ is the graph obtained from G by deleting the

edges zz3, . . . , zzk, . . . , zzm and adding a new vertex z′ incident with z1 and z2 by

a 0-extension. As edge deletion and 0-extension preserve independence (by Lemma

0.1.7, since q(z′), q(z1) and q(z2) are not collinear), we have a contradiction.

Now by using (2.5) we can deduce that

(s+ t)[zz1]p + (l + n)[zz2]p +
k∑

i=3

ai[zzi]p +
m∑

i=k+1

bi[zzi]p +
r∑

i=1

ci[ei]p = 0

as p(z) = p(x) = q(y). Clearly, not all of the scalars are zero. This contradicts the

fact that (G, p) is independent. �

Lemma 2.2.11. Let G = (V,E) be a graph and let u, v, w ∈ V be distinct vertices.

Suppose that E is independent in Muvw(G) and z ∈ V \ {u, v, w} is a vertex with

d(z) = 3 and |N(z) ∩ {u, v, w}| ≤ 1. Then there is a 1-uvw-reduction at z which

leads to an independent graph G′ in Muvw(G′).

Proof: Let F = {ab /∈ E : a, b ∈ N(z)}, G1 = G − z + F and G2 = G + F .

Let rM denote the rank function ofMuvw. Suppose that the statement is false and

we have rM(G1) ≤ rM(G) − 3. Take a base B1 of Muvw(G1) that contains the

triangle on N(z) and extend it to a base B2 of Muvw(G2). Since K4 is a circuit of

Muvw(G2) when E(K4) ∩ E({u, v, w}) = ∅, we have rM(G2) ≤ rM(G1) + 2. Hence

rM(G) ≤ rM(G2) ≤ rM(G)− 1, a contradiction. �

Lemma 2.2.12. Let (G, p) be a framework. Suppose that (G[U ], p|U) is infinites-

imally rigid for some U ⊆ V (G). Let Y be the set of vertices in U which are

adjacent to vertices in V (G) \ U with |Y | ≥ 2 and p|Y is generic. Let G′ be a graph

whose vertex set is Y for which (G′, p|Y ) is infinitesimally rigid. Let G′′ be the graph

((V (G) \ U) ∪ Y,EG(V (G) \ U) ∪ EG(Y, V (G) \ U) ∪ E(G′)), and q = p|(V (G)\U)∪Y .

Then (G, p) is infinitesimally rigid if and only if (G′′, q) is infinitesimally rigid.
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Proof: Note that an infinitesimal motion t of the whole R2 can be written as t =

aTx+bTy +cTr, where Tx = (1, 0) (infinitesimal translation along x-axis), Ty = (0, 1)

(infinitesimal translation along y-axis), Tr((s1, s2)) = (−s2, s1) (counterclockwise

infinitesimal rotation about the origin) for a point (s1, s2) ∈ R2, and a, b, c are

scalars.

First suppose (G′′, q) is infinitesimally rigid. Let H be the graph obtained from

G by adding the edges in E(G
′). Consider the frameworks (G′′, q) and (H[U ], p|U).

Note that as (G[U ], p|U) is infinitesimally rigid and G is a subgraph of H, we have

(H[U ], p|U) is infinitesimally rigid. We first show that (H, p) is infinitesimally rigid.

Since H = G′′ ∪ H[U ], and (G′′, q) and (H[U ], p|U) are infinitesimally rigid, every

infinitesimal motion of H must induce a trivial infinitesimal motion (an infinitesimal

motion of the whole R2) on (G′′, q) and (H[U ], p|U). Let t be an infinitesimal motion

of (H, p). Then we have t|V (G′′) = a1Tx + b1Ty + c1Tr and t|U = a2Tx + b2Ty + c2Tr

for some scalars a1, b1, c1, a2, b2, c2. Since V (G′′) ∩ U = Y has size at least two,

t|V (G′′) and t|U must agree on at least two vertices x, y ∈ Y . Applying the velocities

t|V (G′′) and t|U to p(x) and p(y) and using the fact that p|Y is generic, we obtain

a1 = a2, b1 = b2 and c1 = c2. This implies that t is a trivial infinitesimal motion.

Since t is arbitrary, we conclude that (H, p) is infinitesimally rigid. Now the fact

that (G[U ], p) is infinitesimally rigid, and (E(H) \ E(G)) ⊆ EH(U), every edge in

E(H)\E(G) is contained in a different circuit in (H, p). Hence we can remove these

edges and preserve being infinitesimally rigid, that is (G, p) is infinitesimally rigid.

Now suppose (G, p) is infinitesimally rigid, but (G′′, q) is not. Then there exists

a non-trivial infinitesimal motion t of (G′′, q). Since (G′, p|Y ) is infinitesimally rigid

and q|Y = p|Y , we see that (G′′[Y ], q|Y ) is infinitesimally rigid and hence t|Y corre-

sponds to an infinitesimal motion of the whole R2, that is, t|Y = aTx + bTy + cTr

for some scalars a, b, c. Since Y ⊆ U and (G[U ], p|U) is infinitesimally rigid, we can

extend t to an infinitesimal motion t′ of (G, p) by setting t′|U = aTx + bTy + cTr.

The fact that t is a non-trivial infinitesimal motion of (G′′, q) implies that t′ is a

non-trivial infinitesimal motion of (G, p), contradicting the fact that (G, p) is in-

finitesimally rigid. �

Lemma 2.2.13. Let G = (V,E) be a graph and u, v, w ∈ V be distinct. Let N∗ be

the set of vertices having at least two neighbours in {u, v, w}, X = N∗ ∪ {u, v, w},
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and Y = V \X. Suppose G[Y ] is minimally rigid in R2, |E| = 2|V |−3, G[X] = C6,

dG(x) = 3 for all x ∈ X, and dG(y,X) ≥ 1 for all y ∈ Y . Then E is independent

in Ruvw(G).

Proof: We proceed by induction on |Y |. First note that as dG(x) = 3 for all x ∈ X
and G[X] = C6, every vertex in X has a neighbour in Y . Therefore |E(Y,X)| = 6.

The fact that Y ∩N∗ = ∅ implies every vertex in {u, v, w} has a different neighbour

in Y . Therefore we have |Y | ≥ 3. The facts dG(y,X) ≥ 1 and |E(Y,X)| = 6 imply

that |Y | ≤ 6.

The seven base cases when |Y | = 3 are drawn with an independent uvw-

coincident realisation in Figure 2.2.

Now suppose 4 ≤ |Y | ≤ 6. As G has 2|V | − 3 edges, uvw-coincident rigidity and

uvw-coincident independence are equivalent for G. By Lemma 2.2.12 (by taking

U = Y ), we may substitute some other minimally rigid graph with vertex set Y for

G[Y ] without changing uvw-coincident rigidity of G. Since |Y | ≥ 4 and u, v, w have

different neighbours in Y , there exist distinct vertices y1, y2 ∈ Y with dG(y1, X) = 1

and dG(y2, {u, v, w}) = 0. For the minimally rigid graph with vertex set Y that

we will use instead of G[Y ], first choose an arbitrary minimally rigid graph with

vertex set Y − y1. Then add y1 by a 0-extension operation such that y1y2 is an

edge of the resulting graph. Replace G[Y ] by this graph within G and preserve the

edges E \ EG(Y ), say the resulting graph is G′. Note that dG′(y1) = 3. Apply a

1-reduction at y1 in G′ such that x1y2 is the added edge of this operation where x1

is the unique neighbour of y1 in X in G′. Say the graph we obtain after this opera-

tion is G′′. Then G′′ satisfies the induction hypotheses. As V (G′′) \X has |Y | − 1

vertices, the set E(G′′) is independent in Ruvw(G′′). We can now add y1 back by

a 1-{u, v, w}-extension to obtain G′. As this operation preserves independence by

Lemma 2.2.9, E(G′) is independent in Ruvw(G′). Since G′ is a graph obtained from

G by replacing G[Y ] by another minimally rigid graph in R2, by Lemma 2.2.12, we

have E as an independent set in Ruvw(G). �

The matroid Muv(G) of a graph G = (V,E) is the matroid whose independent

sets are the subsets E ′ ⊆ E such that there exists a {u, v}-sparse subgraph H of G

with E(H) = E ′. We will use the following result which is due to Fekete, Jordán,

Kaszanitzky [6] to show that independence inMuvw implies independence in Ruvw.
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Theorem 2.2.14. [6] Let G = (V,E) be a graph and u, v ∈ V be distinct vertices.

Then Muv(G) ∼= Ruv(G).

Theorem 2.2.15. Let G = (V,E) be a graph and u, v, w ∈ V be distinct vertices.

Suppose E is independent in Muvw(G). Then E is independent in Ruvw(G).

Proof: We proceed by induction on |V |. If |V | ≤ 4, then G is a subgraph of

the bipartite graph K1,3, where u, v, w belong to the same part. As E(K1,3) is

independent in Ruvw(K1,3), we can assume that |V | ≥ 5. Moreover, by extending E

to a base ofMuvw(G) we may assume |E| = 2|V | − 3. We split the proof into three

cases.

Case 1. There exists a vertex a ∈ V with d(a) = 2.

Suppose a /∈ {u, v, w}. If N(a) ⊆ {u, v, w}, consider H = {{a, u, v, w}, V −{a}}.
We have

2|V | − 3 = |E| = iE(H) ≤ val{u,v,w}(H) = 1 + 2|V | − 8− 1 + 4 = 2|V | − 4,

a contradiction.

On the other hand if |N(a) ∩ {u, v, w}| ≤ 1, then E(G − a) is independent in

Muvw(G). By the induction hypothesis E(G− a) is independent in Ruvw(G). Now

we apply a 0-uvw-extension to G− a and get G back. By Lemma 2.2.8, we have E

as an independent set of Ruvw(G).

Now suppose that a ∈ {u, v, w}. We may assume a = w. Consider the graph

G − w. This graph is {u, v}-sparse as it is a subgraph of G. By using Theorem

2.2.14, G − w has an independent uv-coincident realisation p, that is p(u) = p(v).

Then we can add w back at p(v) = p(u) by a 0-extension. By Lemma 2.2.8, this

preserves independence and hence E is independent in Ruvw(G).

We now consider the remaining two cases. Suppose δ(G) ≥ 3. Let N∗ be the set

of vertices having at least two neighbours in {u, v, w} and X = N∗ ∪ {u, v, w}.
Case 2. There exists a vertex a ∈ V \X of degree three.

We apply Lemma 2.2.11 on a and obtain a graph G′ that is independent in

Muvw(G′). As G′ has fewer vertices than G, the graph G′ is also independent in

Ruvw(G′), by the induction hypothesis. Then we can obtain G from G′ by a 1-

{u, v, w}-extension. Thus by Lemma 2.2.9, E is independent in Ruvw(G).

Case 3. All the vertices of degree three are in X.
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If |N∗| ≥ 5, for the {u, v, w}-compatible family H = {{a, u, v, w} : a ∈ N∗} we

would have val{u,v,w}(H) ≤ iG(H), contradicting the fact that E is independent in

Muvw(G). Hence |N∗| ≤ 4 and so |X| ≤ 7. Let U = V \X. If we count the degrees

of the vertices in U , we get

4|U | ≤
∑
u∈U

d(u) = 2|E(U)|+ |E(U,X)| (2.6)

Since E is independent inMuvw(G) we have |E(U)| ≤ 2|U | − 3. This together with

(2.6) imply |E(U,X)| ≥ 6. Since the degree sum for G is 4|V | − 6 and δ(G) ≥ 3,

G has exactly six vertices of degree three and all other vertices have degree four.

Hence

X has six vertices of degree three and |X| − 6 vertices of degree four (2.7)

by the main assumption of Case 3. Then

2|E(X)|+ |E(U,X)| =
∑
x∈X

d(x) = 6 · 3 + 4(|X| − 6)

= 18 + 4(|N∗|+ |{u, v, w}| − 6)

= 4|N∗|+ 6

(2.8)

Since every vertex in N∗ has at least two neighbours in {u, v, w}, we have |E(X)| ≥
2|N∗|. This together with (2.8) imply that |E(U,X)| ≤ 6. Therefore we have

|E(U,X)| = 6 and |E(X)| = 2|N∗|. Since

|E(U)|+ |E(U,X)|+ |E(X)| = |E| = 2|V | − 3 = 2|U | − 3 + 2|X|

= 2|U | − 3 + 2|N∗|+ 6

this gives |E(U)| = 2|U | − 3. This implies that the graph G[U ] is minimally rigid.

That is the set X is attached to a minimally rigid graph. The possibilities for G[X]

are shown in Figure 2.3.

We now split this case into two sub-cases.

Case 3.1. There is no copy of C4 in G[X].

Then G[X] is a copy of C6. By using the fact that uvw-coincident independence
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is equivalent to uvw-coincident rigidity for G as G has 2|V | − 3 edges and Lemma

2.2.12 we can take an arbitrary minimally rigid graph on Y ⊆ U , where Y is the set

of vertices that are adjacent to vertices in X. We can now apply Lemma 2.2.13 and

obtain the result.

Case 3.2. There exists a copy of C4 in G[X].

Then G[X] is one of the three graphs on the right in Figure 2.3. Pick one of

u, v, w that is on a C4 in G[X] and has degree three in G, say w. We may assume

that v is another vertex of this C4. Let the vertex set of this C4 be {v, a, w, b}.
Now contract v and w into one vertex zvw and delete the multiple edges and say the

resulting graph is G′. We will show that G′ is independent in Muzvw(G′). Suppose

not. Let C ⊆ E(G′) be a minimal dependent set, that is a circuit, in Muzvw(G′).

Then either there exists a {u, zvw}-compatible family H in G′ such that E(H) = C

and i(H) = val{u,zvw}(H)+1 or there exists a subgraph H of G′ such that E(H) = C,

u 6∈ V (H) and i(H) = 2|V (H)| − 2.

Suppose the second alternative holds. The minimality of C implies that δ(H) ≥
3, and the fact that G is Muvw-independent tells us that zvw ∈ V (H). The fact

that u 6∈ V (H) and the definition of N∗ imply that dH(y) ≤ dG(y) − 1 for all y ∈
N∗∩V (H). Since X = N∗∪{u, v, w} has size at most seven (as 3 ≤ |N∗| ≤ 4) there

is at most one y ∈ N∗ with dG(y) > 3 by (2.7). This tells us that |N∗ ∩ V (H)| ≤ 1

(as δ(H) ≥ 3).

By examining the alternatives in Figure 2.3, we see that there are at least |N∗|+2

edges in G from {v, w} to N∗. Combining this with the fact that |N∗ ∩ V (H)| ≤ 1

(with equality only if dG(y) = 4 for some y ∈ N∗), we obtain

dH(zvw) ≤ dG(v) + dG(w)− (|N∗|+ 1)

with equality only if dG(y) = 4 for some y ∈ N∗. Since dG(v) + dG(w) ≤ 7 with

equality only if |N∗| = 4 and dG(y) = 3 for all y ∈ N∗ (by (2.7)), we have dH(zvw) ≤
2. This contradicts the fact that δ(H) ≥ 3.

Hence there exists a {u, zvw}-compatible family H in G′ such that E(H) = C

and iG′(H) = val{u,zvw}(H) + 1. Note that since at most one vertex in X is of degree

four, we may assume a or b, say b, is of degree three in G. Then dG′(b) = 2 and
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hence b cannot be in a member of H. We define {u, v, w}-compatible families

H1 :={Hi − zvw + v + w : Hi ∈ H} ∪ {{a, u, v, w}, {b, u, v, w}}

and

H2 :={Hi − zvw + v + w : Hi ∈ H} ∪ {{b, u, v, w}}.

Let us consider H1 for the case a is not contained in a member of H and H2 for the

case a is contained in a member of H. Then we see that

val{u,v,w}(H1) + 1 = (val{u,zvw}(H) + 1) + 4 = iG′(H) + 4 = iG(H1)

and

val{u,v,w}(H2) + 1 = (val{u,zvw}(H) + 1) + 3 = iG′(H) + 3 = iG(H2),

contradicting the fact that G is {u, v, w}-sparse.

Therefore E(G′) is independent in Ruzvw(G′) by Theorem 2.2.14. Take an in-

dependent uzvw-coincident realisation p of G′. Then applying Lemma 2.2.10 at zvw

and relabelling gives us G with the property that p(u) = p(v) = p(w). Hence E is

independent in Ruvw(G). �
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Figure 2.2: Base cases. The realisation of the framework on the top-left gives a
uvw-rigid realisation for all seven frameworks. Their ranks were calculated by a
computer program. The vertices in Y are drawn inside the outer six-cycle which
corresponds to G[X]. To see that these are all the cases and they are all different
first note that since G[X] = C6, the outer six-cycle is fixed; and since G[Y ] is rigid,
the inner triangle is fixed. The fact that dG(x) = 3 for all x ∈ X implies each vertex
in X is adjacent to exactly one vertex in Y . Since Y ∩ N∗ = ∅, any two of u, v, w
have distinct neighbours in Y .

u v w u v w u v w u v w

Figure 2.3: Possible alternatives for G[X]. Note that as |E(X)| = 2|N∗|, there are
no edges with both endpoints in N∗.
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2.3 Main Results

Theorem 2.3.1. Let G = (V,E) be a graph and u, v, w be distinct vertices. Then

E is independent in Muvw(G) if and only if E is independent in Ruvw(G).

Proof. Immediately follows from Lemma 2.2.7 and Theorem 2.2.15. �

Theorem 2.3.2. Let G = (V,E) be a graph and let u, v, w ∈ V be distinct vertices

and G′ = G − uv − uw − vw. Then G is uvw-rigid in R2 if and only if G′ is rigid

in R2 and G′S is rigid in R2 for all S ⊆ {u, v, w} with |S| ≥ 2.

Proof: Necessity is implied by (2.4) as an infinitesimal uvw-rigid realisation of G

gives rise to infinitesimally rigid realisations of G′ and G′S for all S ⊆ {u, v, w} with

|S| ≥ 2.

For sufficiency suppose G′ and G′S are rigid in R2 for all S ⊆ {u, v, w} with

|S| ≥ 2, but G is not uvw-rigid in R2. Then by Theorems 2.2.6 and 2.3.1, there

exist either a 1-thin cover K of G for which val(K) ≤ 2|V | − 4 or a T -thin cover L
of G for some T ⊆ {u, v, w} with |T | ≥ 2 for which val(L) ≤ 2|V | − 4.

Case 1. A 1-thin cover K of G for which val(K) ≤ 2|V | − 4 exists.

Then the fact that K also covers the graph G′ implies that r2(G′) ≤ 2|V |− 4, by

Theorem 0.2.3, contradicting the fact that G′ is rigid in R2.

Case 2. A T -thin cover L of G for some T ⊆ {u, v, w} with |T | ≥ 2 for which

val(L) ≤ 2|V | − 4 exists.

Let L = {H, X1, . . . , Xl} where H = {H1, . . . , Hk} is a T -compatible family, and

X1, . . . , Xk are tight subsets of V . If we contract the vertices in T in G′ into a new

vertex zT , we have a graph G′T and a 1-thin cover L′ = {H ′1, . . . , H ′k, X1, . . . , Xl} of

G′T , where H ′i = Hi/T , 1 ≤ i ≤ k. Then we have

l∑
i=1

(2|Xi| − 3) +
k∑

i=1

(2|H ′i| − 3) =
l∑

i=1

(2|Xi| − 3) +
k∑

i=1

(2|Hi \ T | − 1)

= valT (L)− 2(|T | − 1)

≤ 2|V | − 4− 2(|T | − 1)

= 2(|V | − (|T | − 1))− 4,
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contradicting the fact that G′T is rigid in R2 by Theorem 0.2.3. �

Example 2.3.1. One may think that for Theorem 2.3.2, rigidity of G−uv−uw−vw
and Guvw would be enough. However, this is not the case and an example is given

in Figure 2.4.

u v

w

zuv

w

zuvw

Figure 2.4: The graph on the left is G. The graph in the middle is Guv and the
graph on the right is Guvw. Both G and Guvw are rigid in R2, but Guv is not. Hence
G is not uvw-rigid in R2 by Theorem 2.3.2.

Theorem 2.3.3. Let G = (V,E) be a graph, u, v, w ∈ V be distinct vertices and

G′ = G − uv − uw − vw. Then ruvw(G) = min{r2(G′), r2(G′uv) + 2, r2(G′uw) +

2, r2(G′vw) + 2, r2(G′uvw) + 4}.

Proof: Let m := min{r2(G′), r2(G′uv) + 2, r2(G′uw) + 2, r2(G′vw) + 2, r2(G′uvw) + 4}.
Inequality (2.4) and the fact that ruvw(G) ≤ r2(G′) imply that ruvw(G) ≤ m. Hence

we only need to show that m ≤ ruvw(G). By Theorems 2.2.6 and 2.3.1, there exist

either a 1-thin cover K of G for which ruvw(G) = val(K) or a T -thin cover L of G

for some T ⊆ {u, v, w} with |T | ≥ 2 for which ruvw(G) = val(L).

Case 1. There exists either a 1-thin cover K of G for which ruvw(G) = val(K).

As K also covers G′, we have m ≤ r2(G′) ≤ val(K) = ruvw(G) by Theorem 0.2.3.

Case 2. There exists a T -thin cover L of G for some T ⊆ {u, v, w} with |T | ≥ 2 for

which ruvw(G) = val(L).

Let L = {H, X1, . . . , Xl} where H = {H1, . . . , Hk} is a T -compatible family for

a T ⊆ {u, v, w} with |T | ≥ 2, and X1, . . . , Xl are tight subsets of V . If we contract

the vertices in T in G′ into a new vertex zT , we have a graph G′T and a 1-thin cover

L′ = {H ′1, . . . , H ′k, X1, . . . , Xl} of G′T , where H ′i = Hi/T , 1 ≤ i ≤ k. Since L′ is a
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1-thin cover of G′T , we have r2(G′T ) ≤ val(L′) by Theorem 0.2.3. Then

r2(G′T ) ≤ val(L′) =
l∑

i=1

(2|Xi| − 3) +
k∑

i=1

(2|H ′i| − 3)

=
l∑

i=1

(2|Xi| − 3) +
k∑

i=1

(2|Hi \ T | − 1)

= valT (L)− 2(|T | − 1) = ruvw(G)− 2(|T | − 1).

Hence m ≤ r2(G′T ) + 2(|T |+ 1) ≤ ruvw(G). �

2.4 Further Remarks

We have a characterisation for the generic uv- and uvw-coincident rigidity of a

framework in R2 by Theorems 2.1.1 and 2.3.2. It is natural to ask whether the

analogues of these results hold in R3. That is, are the statements

G is uv − rigid in R3 if and only if Guv and G− uv are rigid in R3 (S1)

and

G is uvw-rigid in R3 if and only if G′ is rigid in R3 and G′S is rigid in R3 (S2)

for all S ⊆ {u, v, w} with |S| ≥ 2

true?

We will show that these statements do not hold by giving counter-examples. Let

us first give a result of Whiteley that will help us build the counter-examples.

Lemma 2.4.1. [29] Let (Km,n, p) be a bar-and-joint framework in Rd where Km,n is

the complete bipartite graph with parts of size m and n. Then (Km,n, p) is infinites-

imally rigid if and only if each part of Km,n affinely spans Rd, and the complete set

of vertices do not lie on a quadric surface in Rd.
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It is known that any set of nine points lie on a quadric surface (satisfy a quadric

equation) in R3. We also know that K5,5 is a rigid circuit in R3. We will use these

facts to build the counter-examples. The construction of these counter-examples

below is due to Jackson and Tanigawa [14].

Example 2.4.1. Consider the graphs K5,5 and K5,5 + w in Figure 2.5. Since K5,5

is a rigid circuit, we see that K5,5 − uv is rigid. It can also be shown by Henneberg

moves and edge deletions that (K5,5)uv is rigid in R3. Therefore if statement (S1)

above was true, then we would get K5,5 is uv-rigid. Take a generic uv-coincident

realisation (K5,5, p) Since K5,5 has ten vertices and p(u) = p(v), there are nine

distinct points in R3. Thus there exists a quadric surface that contains all these

nine points. Hence, by Lemma 2.4.1, (Km,n, p) is not infinitesimally rigid. That is,

Km,n is not uv-rigid.

Now let (Km,n+w, p′) be the framework obtained from (Km,n, p) by a 0-extension

with p′(w) = p′(u) = p′(v) and p′|V (Km,n) = p. We can now use the facts that

(Km,n, p) is not infinitesimally rigid and 0-extension preserves infinitesimal flexibility

of frameworks to obtain a counter-example for statement (S2).

u

v

u

v

w

Figure 2.5: K5,5 on the left and K5,5 + w on the right.
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Chapter 3

Coincident Rigidity in R2 with

More Vertices

3.1 Introduction

One may ask whether we can characterise coincident infinitesimal rigidity with more

than three vertices being coincident in R2. Given a framework (G, p) in R2 and a set

U ⊆ V (G) with |U | ≥ 2, we say (G, p) is U -coincident if p(x) = p(y) for all x, y ∈ U .

We also say the framework (G, p) is generic U -coincident, if p|(V \U)∪{x} is generic for

some (and hence for all) x ∈ U . Let RU(G) denote the generic U -coincident rigidity

matroid of G, that is, RU(G) is the matroid obtained from the rigidity matrix of a

generic U -coincident framework (G, p). In this chapter we will prove the following

two results.

Theorem 3.1.1. Let G = (V,E) be a graph and U ⊆ V . The family

IG = {F : F ⊆ V and (V, F ) is S-sparse for all S ⊆ U with |S| ≥ 2}

is the family of independent sets of a matroid, MU(G).

Theorem 3.1.2. Let G = (V,E) be a graph and U ⊆ V . Suppose E is independent

in RU(G). Then E is independent in MU(G).

The proof methods of both theorems will be an analogue of the corresponding

theorems in the previous chapter. However, the tools to prove Theorem 3.1.1 will
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be a bit more complicated in this chapter due to the fact that we may need more

than one compatible family in the cover whose value gives the rank inMU(G). Let

us show this with an example.

Example 3.1.1. Consider the graph G = (V,E) drawn in Figure 3.1, with U =

{u1, u2, u3, u4} ⊆ V . We see that G consists of the disjoint union of two copies of

K2,3. The copy of K2,3 on the left is not {u1, u2}-sparse as for the {u1, u2}-compatible

family H1 = {{x1, u1, u2}, {x2, u1, u2}, {x3, u1, u2}}, we have val{u1,u2}(H1) = 5 <

6 = i(H1). Similarly, the copy of K2,3 on the right is not {u3, u4}-sparse as for

the {u3, u4}-compatible family H2 = {{y1, u3, u4}, {y2, u3, u4}, {y3, u3, u4}}, we have

val{u3,u4}(H2) = 5 < 6 = i(H2). These observations imply that the rank of G in

MU(G) is at most 10. However, there is no cover K of G containing at most one

S-compatible family for an S ⊆ U with |S| ≥ 2 satisfying val(K) ≤ 10. This is why

we need more than one compatible family. We will explain why this difference arises

in more detail later in the chapter.

u1 u2

x1

x2

x3

u3 u4

y1

y2

y3

Figure 3.1: Disjoint union of two copies of K2,3.

3.2 The Count Matroid

Most of the terminology we use in this chapter is from Chapter 2. We will give more

definitions later that are special to this chapter.

3.2.1 Properties of Compatible Families

Lemmas 3.2.1, 3.2.2, 3.2.3 and 3.2.4 are the same Lemmas with the same proofs as

Lemmas 2.2.1, 2.2.2, 2.2.3 and 2.2.4, respectively.
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Lemma 3.2.1. Let G = (V,E) be a graph and H = {H1, . . . , Hk} be an S-compatible

family for some S ⊆ V with |S| ≥ 2.

(i) If |Hi∩Hj| ≥ |S|+1 for some pair 1 ≤ i < j ≤ k, then there is an S-compatible

family H with cov(H) ⊆ cov(H) for which valS(H) ≤ valS(H)− 1.

(ii) If G is S-sparse and H is S-tight, then Hi ∩Hj = S for all 1 ≤ i < j ≤ k.

Proof: We may assume that i = k− 1 and j = k. Let H = {H1, . . . , Hk−2, (Hk−1 ∪
Hk)}. Then we have

valS(H) =
k∑

l=1

(2|Hl \ S| − 1) + 2(|S| − 1)

=
k−2∑
l=1

(2|Hl \ S| − 1) + 2(|S| − 1)

+ (2|Hk−1 \ S| − 1) + (2|Hk \ S| − 1)

=
k−2∑
l=1

(2|Hl \ S| − 1) + 2(|S| − 1) + (2|(Hk−1 ∪Hk) \ S| − 1)

+ (2|(Hk−1 ∩Hk) \ S| − 1)

≥ valS(H) + 1.

Clearly, cov(H) ⊆ cov(H) holds. This completes the proof of (i). It is easy to see

that (ii) immediately holds from (i). �

Lemma 3.2.2. Let H = {H1, . . . , Hk} be an S-compatible family for some S ⊆ V

with |S| ≥ 2 and Hi ∩Hj = S for all 1 ≤ i < j ≤ k. Let Y ⊆ V be a set of vertices

with |Y ∩S| ≤ 1 and |Y ∩Hi| ≥ 2 for some 1 ≤ i ≤ k. Then there is an S-compatible

family H with cov(H) ∪ cov(Y ) ⊆ cov(H) for which valS(H) ≤ valS(H) + valS(Y ).

Furthermore, if G is S-sparse and H and Y are both tight, then H is also tight.

Proof: By renumbering the sets ofH, if necessary, we may assume that |Y ∩Hi| ≥ 2

if i ≥ j for some j ≤ k, and |Y ∩ Hi| ≤ 1 for all i ≤ j − 1. Let X = Y ∪
⋃k

i=j Hi
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and H = {H1, . . . , Hj−1, X}. Then we have cov(H) ∪ cov(Y ) ⊆ cov(H), and

valS(H) + valS(Y ) =
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Y | − 3)

=

j−1∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) +
k∑

i=j

(2|Hi \ S| − 1) + (2|Y | − 3)

=

j−1∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|X \ S| − 1)

+ 2|Y ∩ S| − (k − j) + 2
k∑

i=j

|Y ∩ (Hi \ S)| − 3

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1)

+ 2|Y ∩ S| − (k − j) + 2
k∑

i=j

|Y ∩Hi| − 2
k∑

i=j

|Y ∩ S| − 3

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1)

− (k − j) + 2
k∑

i=j

|Y ∩ (Hi)| − 2|Y ∩ S|(k − j)− 3

≥
j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1) + 2
k∑

i=j

|Y ∩Hi| − 3(k − j + 1)

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1) +
k∑

i=j

(2|Y ∩Hi| − 3)

= valS(H) +
k∑

i=j

valS(Y ∩Hi)

where for the inequality step we use |Y ∩ S| ≤ 1.

Now suppose that H and Y are tight. Then we have

i(H) +
k∑

i=j

i(Y ∩Hi) ≥ i(H) + i(Y ) = valS(H) + valS(Y )
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≥ valS(H) +
k∑

i=j

valS(Y ∩Hi) ≥ i(H) +
k∑

i=j

i(Y ∩Hi),

where the first inequality follows since the edges spanned by H or Y are spanned

by H and if some edge is spanned by both H and Y , then it is spanned by Y ∩Hi

for some i. The first equality holds because H and Y are tight, and the second

inequality holds by our calculations above. The last inequality holds because G is

S-sparse. Hence equality must hold everywhere, which implies that H is also tight.

�

Lemma 3.2.3. Let H = {H1, . . . , Hk} be an S-compatible family for some S ⊆ V

with |S| ≥ 2 and Hi ∩Hj = S for all 1 ≤ i < j ≤ k. Let Y ⊆ V be a set of vertices

with Y ∩ S = ∅ and |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ k, for which |Y ∩Hi| = |Y ∩Hj| =
1 for some pair 1 ≤ i < j ≤ k. Then there is an S-compatible family H with

cov(H) ∪ cov(Y ) ⊆ cov(H) for which valS(H) = valS(H) + valS(Y ). Furthermore,

if G is S-sparse and H and Y are both tight, then H is also tight.

Proof: We may assume that i = k− 1 and j = k. Let H = {H1, . . . , Hk−2, (Hk−1 ∪
Hk ∪ Y )}. Then we have

valS(H) + valS(Y ) =
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Y | − 3)

=
k−2∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Hk−1 \ S| − 1) + (2|Hk \ S| − 1) + (2|Y | − 3)

=
k−2∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2(|Hk−1 \ S|+ |Hk \ S|+ |Y |)− 1)− 4

=
k−2∑
i=1

(2|Hi \ S| − 1) + (2|(Hk−1 ∪Hk ∪ Y ) \ S| − 1) + 2(|S| − 1)

+ 2|Y ∩ (Hk−1 \ S)|+ 2|Y ∩ (Hk \ S)| − 4

= valS(H).

Clearly, we have cov(H) ∪ cov(Y ) ⊆ cov(H). Now suppose that G is S-sparse
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and H and Y are tight. then we have

i(H) + i(Y ) = valS(H) + valS(Y ) = valS(H) ≥ i(H) ≥ i(H) + i(Y )

where the last inequality follows since |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ k. Hence equality

must hold everywhere which implies that H is also tight. �

Lemma 3.2.4. Let G = (V,E) be S-sparse for some S ⊆ V with |S| ≥ 2 and let

X, Y ⊆ V be S-tight sets in G with |X ∩ Y | ≥ 2 and X, Y 6⊆ S. Then X ∩ Y 6⊆ S,

and X ∪ Y and X ∩ Y are S-tight.

Proof: First note that as G is S-sparse we have

2|X| − 3 + 2|Y | − 3 = valS(X) + valS(Y ) = i(X) + i(Y )

≤ i(X ∩ Y ) + i(X ∪ Y )

≤ valS(X ∩ Y ) + valS(X ∪ Y )

= valS(X ∩ Y ) + 2|X ∪ Y | − 3

Suppose X∩Y is a subset of S. Then valS(X∩Y ) = 0 and putting this in the above

equations gives 2|X| − 3 + 2|Y | − 3 ≤ 2|X ∪ Y | − 3 = 2|X|+ 2|Y | − 2|X ∩ Y | − 3 ≤
2|X|+ 2|Y | − 7, a contradiction.

Hence X ∩ Y is not a subset of S. Then we have valS(X ∩ Y ) = 2|X ∩ Y | − 3

and hence equality holds throughout. In particular, valS(X ∪ Y ) = i(X ∪ Y ) and

valS(X ∩ Y ) = i(X ∩ Y ), so X ∪ Y and X ∩ Y are S-tight. �

We next choose a set U of vertices in a graph G and suppose that G is S-sparse

for all S ⊆ U .

Lemma 3.2.5. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2. Let

H = {H1, . . . , Hk} be an S-compatible family for some S ⊆ U with |S| ≥ 2 and

u ∈ Hj for some u ∈ U \ S and 1 ≤ j ≤ k. Define an (S ∪ {u})-compatible family

H := {H1 ∪ {u}, H2 ∪ {u}, H3 ∪ {u}, . . . , Hk ∪ {u}}. Then valS∪{u}(H) ≤ valS(H)

and cov(H) ⊆ cov(H). Moreover, if H is S-tight, then H is (S ∪ {u})-tight and

valS(H) = valS∪{u}(H).
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Proof: We may assume j = 1. Then we have

valS(H) =
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1)

= (2|H1 \ S| − 1)− 2 +
k∑

i=2

(2|Hi \ S| − 1) + 2(|S| − 1) + 2

≥ (2|H1 \ (S ∪ {u})| − 1) +
k∑

i=2

(2|(Hi ∪ {u}) \ (S ∪ {u})| − 1)

+ 2(|S ∪ {u}| − 1)

= valS∪{u}(H).

It is clear that cov(H) ⊆ cov(H). Now suppose H is S-tight. Then we have

i(H) ≤ valS∪{u}(H) ≤ valS(H) = i(H) ≤ i(H)

where the first inequality follows from (S ∪ {u})-sparsity and the last inequality

follows from cov(H) ⊆ cov(H). Hence we have i(H) = valS∪{u}(H) implying that H
is (S ∪ {u})-tight and valS(H) = valS∪{u}(H). �

Lemma 3.2.6. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2. Let

H = {H1, . . . , Hk} be an S-compatible family for some S ⊆ U with |S| ≥ 2. Suppose

H is S-tight. Then Hi 6⊆ U for all 1 ≤ i ≤ k.

Proof: Suppose not. We may assume H1 ⊆ U . First note that i(U) = 0 by the

sparsity conditions. If k = 1, we have H = {H1} and H1 ⊆ U . Then valS(H) =

2|H1 \S|− 1 + 2(|S|− 1) = 2|H1|− 3 > 0 holds. This implies 0 < valS(H) = i(H) =

i(H1) ≤ i(U) = 0, a contradiction.

Similarly, if k ≥ 2, consider the S-compatible family H′ = H \ {H1}. Since

H1 ⊆ U and i(U) = 0, we have i(H′) = i(H). Then we have valS(H′) < valS(H) =

i(H) = i(H′), a contradiction. �

Lemma 3.2.7. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2. Let

H = {H1, . . . , Hk} be an S-compatible family for some S ⊆ U with |S| ≥ 2. Let
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F = cov(H). Suppose the property Hi ∩Hj = S holds for all 1 ≤ i < j ≤ k. Then

H is the unique compatible family with this property whose cover set is F .

Proof: Suppose the contrary and let H = {H1, . . . , H l} 6= H be a T -compatible

family with H i ∩Hj = T , for all 1 ≤ i < j ≤ l, satisfying cov(H) = F .

Claim 3.2.7.1. We have S ⊆ H i, for all 1 ≤ i ≤ l.

Proof of Claim: Suppose not. Let us take a vertex s ∈ S \H i for some 1 ≤ i ≤ l

and another vertex x ∈ H i \ T . Since cov(H) = F = cov(H), we have x ∈ Hj for

some 1 ≤ j ≤ k. The fact that S ⊆ Hj implies (x, s) ∈ F . Hence there exists a

set H t ∈ H with x, s ∈ H t for some 1 ≤ t ≤ l and t 6= i as s /∈ H i. We also know

that x /∈ T as x ∈ H i \ T . Combining these we have H i ∩ H t = T ∪ {x} 6= T , a

contradiction. •

Claim 3.2.7.1 implies S ⊆ T as H i ∩ Hj = T for all 1 ≤ i < j ≤ l. By the

same technique, we can show T ⊆ Hi for all 1 ≤ i ≤ k, implying that T ⊆ S as

Hi ∩ Hj = S for all 1 ≤ i < j ≤ k. Therefore we have T = S. That is H is

S-compatible and H i ∩Hj = S for all 1 ≤ i < j ≤ l.

Since H 6= H, we may assume by symmetry that there exists a set Hi ∈ H with

Hi 6= Hj for all 1 ≤ j ≤ l. Choose x, y ∈ Hi with x /∈ S. Since cov(H) = F =

cov(H), there exists a set Hj ∈ H with x, y ∈ Hj for some 1 ≤ j ≤ l.

Then either Hi \Hj or Hj \Hi is non-empty. If Hi \Hj 6= ∅, we pick a vertex

z ∈ (Hi \ Hj). Since x, z ∈ Hi, we have (x, z) ∈ F . Therefore, there exists a set

H t with x, z ∈ H t for some 1 ≤ t ≤ l with t 6= j, since z /∈ Hj. This implies that

(S ∪ {x}) ⊆ Hj ∩H t, contradicting the fact that H i ∩Hj = S for all 1 ≤ i < j ≤ l.

Similarly, if Hj \ Hi 6= ∅, we pick a vertex z ∈ Hj \ Hi. Since x, z ∈ Hj, we have

(x, z) ∈ F . Therefore there exists a set Ht with x, z ∈ Ht for some 1 ≤ t ≤ k with

t 6= i, since z /∈ Hi. This implies that (S ∪ {x}) ⊆ Ht ∩ Hi, contradicting the fact

that Hi ∩Hj = S for all 1 ≤ i < j ≤ l. Hence H is the unique S-compatible family

with the property Hi ∩Hj = S, for all 1 ≤ i < j ≤ k and satisfying cov(H) = F . �

Definition 3.2.1. An S-compatible family H = {H1, . . . , Hk} for some S ⊆ U with

|S| ≥ 2 is (U, S)-compatible if Hi ∩ U = S for all 1 ≤ i ≤ k.
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If we are given a tight S-compatible family H for some S ⊆ U with |S| ≥ 2, then

we can obtain a tight (U, T )-compatible familyH′, for some U ⊇ T ⊇ S, by applying

Lemma 3.2.5 recursively. In addition we will have cov(H) ⊆ cov(H′). Since we will

be considering tight compatible families with maximal cover sets, working with H′

will be more helpful than working with H.

We need Lemmas 3.2.8 and 3.2.9 to obtain a new compatible family with a larger

cover set and smaller value from two distinct compatible families. Lemma 2.2.5 in

Chapter 2 plays the same role as the combination of Lemmas 3.2.8 and 3.2.9. When

U has size three any two subsets S1, S2 of U of size at least two have a non-empty

intersection. However, if U has more than three vertices, then this does not hold.

Therefore, we only need Lemma 2.2.5 in Chapter 2, because the only case in Chapter

2 is S1 ∩S2 6= ∅. We need Lemmas 3.2.8 and 3.2.9 in this chapter because one deals

with the case when S1 ∩S2 6= ∅ and the other deals with the case when S1 ∩S2 = ∅.

Lemma 3.2.8. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2, and suppose

that there are tight (U, S1)- and (U, S2)-compatible families H1 and H2 in G for some

S1, S2 ⊆ U with |Si| ≥ 2 and S1 ∩ S2 6= ∅. Then there is a (U, S1 ∪ S2)-compatible

family Hunion in G with the properties

(i) Hunion is (S1 ∪ S2)-tight,

(ii) cov(H1) ∪ cov(H2) ⊆ cov(Hunion), and

(iii) Either

valS1(H1) + valS2(H2) > valS1∪S2(Hunion) (3.1)

or both

valS1(H1) + valS2(H2) = valS1∪S2(Hunion) (3.2)

and

cov(H1) ∪ cov(H2) ( cov(Hunion) (3.3)

hold.

Proof: Let H1 = {H1, . . . , Hk} and H2 = {H1, . . . , H l}. Since Hi is a tight Si-

compatible family for i = 1, 2, Lemma 3.2.1 implies that Hi ∩ Hj = S1 for all

1 ≤ i < j ≤ k and H i ∩Hj = S2 for all 1 ≤ i < j ≤ l.
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Since H1 and H2 are (U, S1)- and (U, S2)-compatible, we have Hi ∩ U = S1 for

all 1 ≤ i ≤ k and Hj ∩ U = S2 for all 1 ≤ i ≤ l.

Let G = (V , E) be the bipartite graph with bipartition (H1,H2), and edge set

E := {HiHj : |(Hi \ S1) ∩ (Hj \ S2)| ≥ 1, 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

Let (Vi,Fi), 1 ≤ i ≤ r be the connected components of G. Define Vi =
⋃

H∈Vi H

and put

Hunion := {Vi ∪ S1 ∪ S2 : 1 ≤ i ≤ r},

Hint := {Hi ∩Hj : HiHj ∈ E}.

Note that Hunion and Hint are (U, S1∪S2)- and (U, S1∩S2)-compatible, respectively.

We see that every edge in E which is covered by either H1 or H2 is covered by

Hunion and every edge covered by both H1 and H2 is covered by Hint. This implies

that i(H1) + i(H2) ≤ i(Hunion) + i(Hint). Since |V| = k + l and r is the number of

connected components of G,

r + |E| ≥ k + l. (3.4)

We also have

r∑
i=1

(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) +
∑

HiHj∈E

(|Hi ∩Hj| − |S1 ∩ S2|)

=
k∑

i=1

(|Hi| − |S1|) +
l∑

i=1

(|H i| − |S2|)

(3.5)

as a vertex x /∈ S1∪S2 contributes the same amount (one or two) to both sides, and

a vertex s ∈ S1 ∪ S2 contributes zero to both sides of (3.5).

Then we have

k∑
i=1

(2|Hi \ S1| − 1) + 2(|S1| − 1) +
l∑

i=1

2|H i \ S2| − 1 + 2(|S2| − 1)

= valS1(H1) + valS2(H2)

= i(H1) + i(H2)

≤ i(Hunion) + i(Hint)
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≤ valS1∪S2(Hunion) + valS1∩S2(Hint)

=
r∑

i=1

(2|(Vi ∪ S1 ∪ S2) \ (S1 ∪ S2)| − 1) + 2(|S1 ∪ S2| − 1)

+
∑

HiHj∈E

(2|(Hi ∩Hj) \ (S1 ∩ S2)| − 1) + 2(|S1 ∩ S2| − 1)

=
r∑

i=1

2(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) + 2(|S1 ∪ S2| − 1)− r

+
∑

HiHj∈E

2(|Hi ∩Hj| − |S1 ∩ S2|) + 2(|S1 ∩ S2| − 1)− |E|

≤
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|)

+ 2(|S1 ∪ S2| − 1) + 2(|S1 ∩ S2| − 1)− k − l

=
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|) + 2|S1|+ 2|S2| − 2− 2− k − l

=
k∑

i=1

(2|Hi \ S1| − 1) + 2(|S1| − 1) +
l∑

i=1

2|H i \ S2| − 1 + 2(|S2| − 1),

where the third inequality follows from (3.4) and (3.5), and the second last equality

follows from the formula |S1 ∪ S2| + |S1 ∩ S2| = |S1| + |S2|. Hence equality must

hold throughout. In particular Hunion is (S1 ∪ S2)-tight, so (i) holds. It is clear that

cov(H1) ∪ cov(H2) ⊆ cov(Hunion), so (ii) holds.

For the proof of (iii) we will show that if Hint is non-empty, then (3.1) holds, and

if it is empty (3.2) and (3.3) hold.

We obtain valS1(H1) + valS2(H2) = valS1∪S2(Hunion) + valS1∩S2(Hint) from the

(in)equalities above. If Hint is non-empty, then valS1∩S2(Hint) > 0, implying that

valS1(H1)+valS2(H2) > valS1∪S2(Hunion). Now suppose Hint is empty. Then we have

valS1∩S2(Hint) = 0, implying that valS1(H1) + valS2(H2) = valS1∪S2(Hunion), so (3.2)

holds. It remains to show that (3.3) holds.

Claim 3.2.8.1. S1 6⊆ S2 and S2 6⊆ S1.

Proof of Claim: For a contradiction, assume S1 ⊆ S2, and hence Hunion is S2-

compatible. Since Hint is empty, the connected components of G are H1, . . . , Hk,
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H1, . . . , H l. This implies that Hunion = {H1 ∪ S2, . . . , Hk ∪ S2, H1, . . . , H l}. Note

that we already have S2 ⊆ Hj for all 1 ≤ j ≤ l. Then

valS1(H1) + valS2(H2)

=
k∑

i=1

(2|Hi \ S1| − 1) + 2(|S1| − 1) +
l∑

i=1

(2|H i \ S2| − 1) + 2(|S2| − 1)

=
k∑

i=1

(2|(Hi ∪ S2) \ (S1 ∪ S2)| − 1) + 2(|S1| − 1) +
l∑

i=1

(2|H i \ S2| − 1) + 2(|S2| − 1)

=
k∑

i=1

(2|(Hi ∪ S2) \ S2| − 1) +
l∑

i=1

(2|H i \ S2| − 1) + 2(|S2| − 1) + 2(|S1| − 1)

= valS2(Hunion) + 2(|S1| − 1)

> valS2(Hunion).

This contradicts the fact that valS1(H1) + valS2(H2) = valS2(Hunion). •

Now pick a pair of vertices (s1, s2) with s1 ∈ S1 \ S2 and s2 ∈ S2 \ S1. Since H1

and H2 are (U, S1)- and (U, S2)-compatible, respectively, no set in H1 contains s2

and no set in H2 contains s1. This implies (s1, s2) /∈ cov(H1) ∪ cov(H2). It is easy

to see that (s1, s2) ∈ cov(Hunion) as Hunion is S1 ∪ S2-compatible. Hence we have

cov(H1) ∪ (H2) ( cov(Hunion). �

Lemma 3.2.9. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2. Let

H1 = {H1, . . . , Hk} and H2 = {H1, . . . , H l} be tight (U, S1)- and (U, S2)-compatible

families in G for some S1, S2 ⊆ U with |S1|, |S2| ≥ 2 and S1 ∩ S2 = ∅. Suppose

|(
⋃k

i=1Hi) ∩ (
⋃l

j=1 Hj)| ≥ 2. Then there is a (U, S1 ∪ S2)-compatible family Hunion

in G with the properties

(i) Hunion is (S1 ∪ S2)-tight,

(ii) valS1(H1) + valS2(H2) ≥ valS1∪S2(Hunion), and

(iii) cov(H1) ∪ cov(H2) ( cov(Hunion).
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Proof: First note that since H1 and H2 are S1- and S2-tight, respectively, we have

Hi ∩Hj = S1 and Hp ∩Hq = S2 for all 1 ≤ i < j ≤ k and for all 1 ≤ p < q ≤ l, by

Lemma 3.2.1.

Note also that since H1 and H2 are (U, S1)- and (U, S2)-compatible respectively

and S1 ∩ S2 = ∅, we have Hi ∩ S2 = ∅ for all 1 ≤ i ≤ k and Hj ∩ S1 = ∅ for all

1 ≤ j ≤ l. Consider the bipartite graph G = (V , E) with vertex bipartition (H1,H2)

and edge bipartition (E1, E2) where

E1 = {HiHj : |Hi ∩Hj| = 1, 1 ≤ i ≤ k, 1 ≤ j ≤ l},

E2 = {HiHj : |Hi ∩Hj| ≥ 2, 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

Let (Vi,Fi), 1 ≤ i ≤ r be the connected components of G. Define Vi =
⋃

H∈Vi H

and put

Hunion := {Vi ∪ S1 ∪ S2 : 1 ≤ i ≤ r},

Hint := {Hi ∩Hj : HiHj ∈ E2}.

Then Hunion is (U, S1∪S2)-compatible. We see that every edge in E which is covered

by either H1 or H2 is covered by Hunion and every edge covered by both H1 and

H2 is covered by Hint. This implies that i(H1) + i(H2) ≤ i(Hunion) + i(Hint). Note

that Hint is not an (S1 ∩ S2)-compatible family as S1 ∩ S2 = ∅. It is just a family of

subsets of V . Since |(
⋃k

i=1 Hi) ∩ (
⋃l

j=1 Hj)| ≥ 2, either |E1| ≥ 2 or |E2| ≥ 1. From

this we obtain

|E1|+ 2|E2| ≥ 2. (3.6)

Note that since r is the number of connected components, |E| is the number of edges

and k + l is the number of vertices of G,

r + |E| ≥ k + l. (3.7)
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Note also that

r∑
i=1

(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) +
∑

HiHj∈E2

|Hi ∩Hj|+ |E1|

=
k∑

i=1

(|Hi| − |S1|) +
l∑

i=1

(|H i| − |S2|)

(3.8)

as for every pair of distinct edges HiHj and HtHs of G, the corresponding intersec-

tions Hi ∩Hj and Ht ∩Hs are disjoint. This fact is a consequence of the facts that

Hi ∩ Ht = S1, Hj ∩ Hs = S2 and S1 ∩ S2 = ∅ for all 1 ≤ i < t ≤ k and for all

1 ≤ j < s ≤ l. Then we have

k∑
i=1

(2|Hi \ S1| − 1) + 2(|S1| − 1) +
l∑

i=1

2|H i \ S2| − 1 + 2(|S2| − 1)

= valS1(H1) + valS2(H2)

= i(H1) + i(H2)

≤ i(Hunion) + i(Hint)

≤ valS1∪S2(Hunion) + val(Hint)

=
r∑

i=1

(2|(Vi ∪ S1 ∪ S2) \ (S1 ∪ S2)| − 1) + 2(|S1 ∪ S2| − 1) +
∑

HiHj∈E2

(2|Hi ∩Hj| − 3)

=
r∑

i=1

2(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) +
∑

HiHj∈E2

2|Hi ∩Hj|+ 2(|S1 ∪ S2| − 1)− 3|E2| − r

=
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|)− 2|E1|+ 2(|S1 ∪ S2| − 1)− 3|E2| − r

=
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|) + 2|S1|+ 2|S2| − 2− (|E1|+ 2|E2|)− (|E1|+ |E2|)− r

≤
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|) + 2|S1|+ 2|S2| − 2− 2− |E| − r

≤
k∑

i=1

2(|Hi| − |S1|) +
l∑

i=1

2(|H i| − |S2|) + 2|S1|+ 2|S2| − 2− 2− k − l
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=
k∑

i=1

(2|Hi \ S1| − 1) + 2(|S1| − 1) +
l∑

i=1

2|H i \ S2| − 1 + 2(|S2| − 1),

where: the fifth equality follows from (3.8); the sixth equality follows from the fact

that |S1 ∪ S2| = |S1| + |S2| as S1 ∩ S2 = ∅; the third inequality follows from (3.6)

and |E| = |E1|+ |E2|; the fourth inequality follows from (3.7). Hence equality holds

throughout and we can deduce that Hunion is (S1 ∪S2)-tight so (i) holds. We obtain

valS1(H1) + valS2(H2) = valS1∪S2(Hunion) + val(Hint) from the (in)equalities above.

This implies valS1(H1) + valS2(H2) ≥ valS1∪S2(Hunion), so (ii) holds. It is clear that

we have cov(H1)∪cov(H2) ⊆ cov(Hunion). Pick a pair of vertices (s1, s2) with s1 ∈ S1

and s2 ∈ S2. Since no member of H1 contains s2 and no member of H2 contains s1,

(s1, s2) /∈ cov(H1) ∪ cov(H2). It is easy to see that (s1, s2) ∈ cov(Hunion) as Hunion

is (S1 ∪ S2)-compatible. Hence, cov(H1) ∪ cov(H2) ( cov(Hunion), so (iii) holds. �

3.2.2 Systems of Compatible Families

Let G = (V,E) be a graph and U ⊆ V . Suppose that G is S-sparse for all S ⊆ U .

Definition 3.2.2. An (S1, S2, . . . , Sk)-compatible system of G is a collection K =

{H1, . . . ,Hk} such that each Hi is an (U, Si)-compatible family for some Si ⊆ U

with |Si| ≥ 2, for all 1 ≤ i ≤ k. We will also refer to K as a U -system when we do

not want to specify the sets S1, . . . , Sk.

We define the value of the U -system K as

val(K) :=
k∑

i=1

valSi
(Hi).

We say K is (S1, . . . , Sk)-tight, or just tight if it is clear what Si we are referring to,

if val(K) = iG(K) := |
⋃k

i=1EG(Hi)|. The cover set of K is defined as cov(K) :=⋃k
i=1 cov(Hi).

Definition 3.2.3. A U -system K = {H1, . . . ,Hk} of (U, Si)-compatible families for

1 ≤ i ≤ k, is 1-thin if

• (T1) H ∩H ′ = Si for all distinct H,H ′ ∈ Hi, 1 ≤ i ≤ k,
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• (T2) Si ∩ Sj = ∅ for all 1 ≤ i < j ≤ k,

• (T3) |(
⋃

H∈Hi
H) ∩ (

⋃
H′∈Hj

H ′)| ≤ 1 for all 1 ≤ i < j ≤ k.

Lemma 3.2.10. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2. Suppose

that K = {H1, . . . ,Hk} is a tight (S1, . . . , Sk)-compatible system. Then Hi is Si-tight

for all 1 ≤ i ≤ k and E(Hi) ∩ E(Hj) = ∅ for all 1 ≤ i < j ≤ k.

Proof: Since K is (S1, . . . , Sk)-tight we have val(K) = i(K). Then

k∑
j=1

valSj
(Hj) = val(K) = i(K) = |

k⋃
j=1

E(Hj)| ≤
k∑

j=1

i(Hj) ≤
k∑

j=1

valSj
(Hj),

where the last inequality follows from the fact that G is S-sparse for all S ⊆ U with

|S| ≥ 2. Hence equality holds throughout. In particular, we have valSj
(Hj) = i(Hj)

for all 1 ≤ j ≤ k, since
∑k

j=1 valSj
(Hj) =

∑k
j=1 i(Hj) and valSj

(Hj) ≥ i(Hj) for

all 1 ≤ j ≤ k. We also have E(Hi) ∩ E(Hj) = ∅ for all 1 ≤ i < j ≤ k as

|
⋃k

j=1E(Hj)| =
∑k

j=1 i(Hj). �

Lemma 3.2.11. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2. Suppose

that K = {H1, . . . ,Hk} is a 1-thin (S1, . . . , Sk)-compatible system of S1-,. . . ,Sk-tight

compatible families, respectively. Then K is (S1, . . . , Sk)-tight.

Proof: Since K is 1-thin and Hi is Si-tight for all 1 ≤ i ≤ k, we have i(K) =∑k
j=1 i(Hi) and valSi

(Hi) = i(Hi), for all 1 ≤ i ≤ k. Hence

val(K) =
k∑

i=1

valSi
(Hi) =

k∑
i=1

i(Hi) = i(K),

where the second equality follows from the fact that Hi is Si-tight and the third

inequality follows from the fact that K is 1-thin. Hence K is (S1, . . . , Sk)-tight. �

Lemma 3.2.12. Let G = (V,E) be an S-sparse graph for all S ⊆ U with |S| ≥ 2.

Let K = {H1, . . . ,Hk} be a tight (S1, . . . , Sk)-compatible system with maximal cover

set, cov(K), over all tight U-systems, and subject to this condition
∑
H∈K | cov(H)|

is maximum. Then K is 1-thin.
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Proof: Suppose K = {H1, . . . ,Hk} is a tight (S1, . . . , Sk)-compatible system such

that cov(K) is maximal, and subject to this condition,
∑
H∈K | cov(H)| is maximum.

By Lemmas 3.2.10 and 3.2.1, (T1) holds. Suppose (T2) or (T3) does not hold.

We may assume Hk−1 and Hk are the compatible families for which (T2) or (T3)

fails. Then we apply Lemma 3.2.8 (if (T2) fails) or Lemma 3.2.9 (if (T2) holds but

(T3) fails) and obtain an (Sk−1∪Sk)-tight compatible family Hunion for which either

valSk−1
(Hk−1) + valSk

(Hk) > valSk−1∪Sk
(Hunion) (3.9)

or both

valSk−1
(Hk−1) + valSk

(Hk) = valSk−1∪Sk
(Hunion) (3.10)

and

cov(Hk−1) ∪ cov(Hk) ( cov(Hunion) (3.11)

holds. Now consider K′ := K\{Hk−1,Hk}∪ {Hunion}. If (3.9) holds, then we would

have i(K′) ≤ val(K′) < val(K) = i(K) ≤ i(K′), a contradiction. Hence (3.10) and

(3.11) hold. Then we obtain i(K′) ≤ val(K′) = val(K) = i(K) ≤ i(K′), implying K′

is tight. By the maximality of cov(K′) and (3.11), we may assume cov(K′) = cov(K).

Then, for every pair in (x, y) ∈ cov(Hunion) \ (cov(Hk−1) ∪ cov(Hk)), there exists

a compatible family Hj with (x, y) ∈ cov(Hj) for some 1 ≤ j ≤ k − 2. However,

then we have
∑
H∈K | cov(H)| <

∑
H∈K′ | cov(H)|, contradicting the the fact that∑

H∈K | cov(H)| is maximum. Hence our assumption is wrong and both (T2) and

(T3) hold for K, so K is 1-thin. �

Lemma 3.2.13. Let G = (V,E) be S-sparse for all S ⊆ U with |S| ≥ 2. Suppose G

has a tight U-system. Then G has a unique tight U-system Kmax with the property

that cov(Kmax) is maximal over all tight U-systems, and subject to this condition∑
H∈K | cov(H)| is maximum.

Proof: Let K1 = {H1, . . . ,Hk} and K2 = {H1, . . . ,Hl} be two distinct tight

(S1, . . . , .Sk)- and (T1, . . . , Tl)-compatible systems which are both maximal with re-

spect to cover sets, and subject to this
∑k

i=1 | cov(Hk)| and
∑l

j=1 | cov(Hj)| are

maximum. Then by Lemma 3.2.12, K1 and K2 are 1-thin. Moreover, Hi is Si-tight

for all 1 ≤ i ≤ k, and Hj is Tj-tight for all 1 ≤ j ≤ l, by Lemma 3.2.10.
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Claim 3.2.13.1. cov(K1) 6= cov(K2).

Proof of Claim: Suppose the contrary and set F := cov(K1) = cov(K2). Then for

any two distinct vertices u, u′ ∈ U with (u, u′) ∈ F , there exists an Si with u, u′ ∈ Si

for some 1 ≤ i ≤ k as K1 consists of (U, Si)-compatible families. Since K1 is 1-thin,

the Si are disjoint by (T2). This implies there exists a unique Si for each such pair.

Similarly, there exists a unique Tj with u, u′ ∈ Tj, for some 1 ≤ j ≤ l. Let us set

FU := F ∩ U × U . Then the facts that FU =
⋃k

i=1 cov(Si) =
⋃l

j=1 cov(Tj) and that

the Si and the Tj are disjoint imply {S1, S2, . . . , Sk} = {T1, T2, . . . , Tl}.
By relabelling, if necessary, we may assume K2 = {H1, . . . ,Hk} and Hi is Si-

compatible. If cov(Hi) = cov(Hi) for all 1 ≤ i ≤ k, then by Lemma 3.2.7 we would

have Hi = Hi for all 1 ≤ i ≤ k, contradicting the fact that K1 6= K2. Hence we may

assume cov(Hi) 6= cov(Hi) for some 1 ≤ i ≤ k. Then either cov(Hi) \ cov(Hi) or

cov(Hi)\cov(Hi) is non-empty. By symmetry we may assume cov(Hi)\cov(Hi) 6= ∅
and pick a pair (x, y) ∈ (cov(Hi) \ cov(Hi)). Since (x, y) ∈ cov(Hi), there exists a

set H ∈ Hi with x, y ∈ H. The fact that Si ⊂ H implies (u, x), (u, y) ∈ F for all

u ∈ Si. Then since Si ∩ Sj = ∅ for all i 6= j, we must have (u, x), (u, y) ∈ cov(Hi).

Therefore there exist sets H1, H2 ∈ Hi with x ∈ H1 and y ∈ H2. We also know

there exists Hj with i 6= j for which (x, y) ∈ cov(Hj) as (x, y) ∈ F . Combining these

we have |(
⋃

H∈Hi
H) ∩ (

⋃
H∈Hj

H)| ≥ 2, contradicting the fact that K2 is 1-thin. •

Now Claim 3.2.13.1 implies that we have either cov(K1)\cov(K2) 6= ∅ or cov(K2)\
cov(K1) 6= ∅. We may assume cov(K2) \ cov(K1) 6= ∅ by symmetry. Pick a pair of

vertices x, y with (x, y) ∈ cov(K2) \ cov(K1). Then there exists a set in Hj ∈ K2

containing x and y for some 1 ≤ i ≤ l. Consider the U -system K′ = K1 ∪ {Hj}.
Clearly, we have cov(K1) ( cov(K′). Suppose K′ is 1-thin. Since Hi is Si-tight for

all 1 ≤ i ≤ k, and Hj is Tj-tight, K′ is (S1, . . . , Sk, Tj)-tight, by Lemma 3.2.11.

However, this contradicts the maximality of cov(K1).

Hence we may assume K′ is not 1-thin. Then either (T2) or (T3) does not

hold. Note that (T1) holds by Lemma 3.2.1 as the compatible families in K′ are

S1, . . . , Sk, Tj-tight, respectively. Then we apply Lemma 3.2.8 (if (T2) fails) or

Lemma 3.2.9 (if (T2) holds but (T3) fails) on K′, recursively and within K′, re-

place the corresponding compatible families by Hunion that we obtain after applying
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Lemma 3.2.8 or Lemma 3.2.9 at each recursion step. Since Hunion is tight for every

recursion step, we preserve the fact that every member of K′ is tight. Hence this pro-

cess turns K′ into a 1-thin U -system K′′ of tight compatible families with cov(K′) ⊆
cov(K′′). Then by Lemma 3.2.11, K′′ is tight. However, this contradicts the max-

imality of cov(K1) over tight U -systems as we have cov(K1) ( cov(K′) ⊆ cov(K′′). �

3.2.3 The Matroid MU(G) and its Rank Function

Let G = (V,E) be a graph and U ⊆ V . Let us say G is U -sparse if it is S-sparse for

all S ⊆ U with |S| ≥ 2. In this subsection we prove that the family

IG = {F : F ⊆ E,H = (V, F ) is U -sparse} (3.12)

is a family of independent sets of a matroid on E. We need the following definition.

We say a system L = K∪{X1, . . . , Xl}, where K is either empty or an (S1, . . . , Sk)-

compatible system {H1, . . . ,Hk} and X1, . . . , Xl ⊆ V are of size at least two, is a

cover of E ′ ⊆ E if E ′ ⊆ cov(K) ∪
⋃l

i=1 cov(Xi). We define cov(L) := cov(K) ∪⋃l
i=1 cov(Xi). We say that the cover L is 1-thin if

• K is 1-thin,

• (T4) |Xi ∩Xj| ≤ 1 for all 1 ≤ i < j ≤ l,

• (T5) |Xi ∩
⋃

H∈Hj
H| ≤ 1 for all 1 ≤ j ≤ k and 1 ≤ i ≤ l.

We define the value of L as

val(L) := val(K) +
l∑

j=1

(2|Xj| − 3) =
k∑

i=1

valSi
(Hi) +

l∑
j=1

(2|Xj| − 3).

Let us also define iG(L) := |E ∩ cov(L)|. It is clear that if G is U -sparse, then

iG(L) ≤ val(L) holds for all 1-thin covers L.

Theorem 3.2.14. Let G = (V,E) be a graph and U ⊆ V . ThenMU(G) := (E, IG)

is a matroid on ground set E, where IG is defined by (3.12). The rank of a set

E ′ ⊆ E in MU(G) is equal to

min{val(L) : L is a 1-thin cover of E ′ \ E(U)}.
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Proof: We will proceed by showing that IG satisfies the conditions (I1), (I2) and

(I3′) of Definition 0.1.16. As (I1) and (I2) are trivial, we will only show (I3′) holds.

Let I = IG, E ′ ⊆ E \ E(U) and F ⊆ E ′ be a maximal subset of E ′ in I. Since

F ∈ I we have |F | ≤ val(L) for all covers L of E ′. We will show that there is a

1-thin cover L of E ′ with |F | = val(L), from which the theorem will follow.

Let J = (V, F ) denote the subgraph induced by the edge set F . First suppose

that, for all S ⊆ U with |S| ≥ 2, there is no tight S-compatible family in J . Consider

the following cover of F :

L1 = {X1, X2, . . . , Xl},

where X1, X2, . . . , Xl are maximal tight sets in J . Since every edge f ∈ F induces

a tight set in J , L1 is a cover of F . It is 1-thin by Lemma 3.2.4. Thus

|F | =
k∑

j=1

|EJ(Xj)| =
l∑

j=1

(2|Xj| − 3) = val(L1)

follows. We claim that L1 is a cover of E ′. To see this consider an edge ab = e ∈
E ′−F . Since F is maximal subset of E ′ in I we have F +e /∈ I. By our assumption

that there is no tight S-compatible family in J , there must be a tight set X in J

with a, b ∈ X. Hence X ⊆ Xi for some 1 ≤ i ≤ k which implies L1 covers e, too.

Next suppose there is a tight S-compatible family H for some S ⊆ U with

|S| ≥ 2 in J . Then there must be a tight (U, T )-compatible family H for which

cov(H) ⊆ cov(H) for some T ⊇ U , by Lemma 3.2.5. Hence there exists a tight

U -system in J . Consider the following cover of F :

L2 = {H1, . . . ,Hk} ∪ {X1, X2, . . . , Xl},

where {H1, . . . ,Hk} = Kmax is the unique U -system of J for which cov(Kmax) is

maximal and subject to this
∑k

i=1 | cov(Hk)| is maximum (c.f. Lemma 3.2.13) and

X1, X2, . . . , Xk are maximal tight sets of J ′ = (V, F − E(Kmax)). We see that L2

is indeed a cover of F . Lemma 3.2.12 implies Kmax is 1-thin, Lemma 3.2.4 implies

|Xi ∩Xj| ≤ 1, and Lemmas 3.2.2 and 3.2.3 imply that |Xi ∩
⋃

H∈Hj
H| ≤ 1 for all
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1 ≤ j ≤ k and 1 ≤ i ≤ l. Hence the cover L2 is 1-thin and we have

|F | =
k∑

i=1

|EJ(Hi)|+
k∑

j=1

|EJ(Xj)|

= val(Kmax) +
k∑

j=1

(2|Xj| − 3) = val(L2).

We will show that L2 is a cover of E ′. As above, let ab = e ∈ E ′−F be an edge. By

the maximality of F we have F + e /∈ I. Thus either there is a tight set X ⊆ V in

J with a, b ∈ X or there is a tight S-compatible family H = {Y1, . . . , Yt} for some

S ⊆ U with |S| ≥ 2 in J and a, b ∈ Yi for some 1 ≤ i ≤ t.

In the latter case recursive applications of Lemma 3.2.5 imply that there exists

a tight (U, T )-compatible family H with cov(H) ⊆ cov(H) in J for some T ⊇ S.

Since {H} is a tight U -system, we see that cov(H) ⊆ cov(Kmax) by the maximality

of cov(Kmax). Combining these we have cov(H) ⊆ cov(H) ⊆ cov(Kmax) ⊆ cov(L2),

hence e is covered by L2.

In the former case, when a, b ∈ X for some tight set X in J we have two possibili-

ties. First suppose that |X∩
⋃

H∈Hi
H| ≥ 2 for some 1 ≤ i ≤ k. Then we can deduce

that X ⊆ H for some H ∈ Hi by using Lemma 3.2.2 or 3.2.3 and the maximality

of Kmax which implies that L2 covers e. Next suppose that |X ∩
⋃

H∈Hi
H| ≤ 1 for

all 1 ≤ i ≤ k. Then E(X) ⊆ E(J ′) and hence X ⊆ Xj for some 1 ≤ j ≤ l, since

every edge of J ′ induces a tight set and every tight set is contained in a maximal

tight set. Hence e is covered by L2, as claimed. �

3.3 The U-coincident Matroid RU(G)

Let G = (V,E) be a graph and U ⊆ V . Let S ⊆ U with |S| ≥ 2 and let GS denote

the graph obtained from G by contracting the vertices in S into a new vertex zS

(and deleting the resulting loops and parallel edges). Given a realisation (GS, pS), we

obtain an S-coincident realisation (G, p) of G by putting p(x) = pS(zS) if x ∈ S and

p(x) = pS(x) if x /∈ S. Furthermore, each vector qS in the kernel of R(GS, pS) (an

infinitesimal motion qS of (GS, pS)) determines a vector q in the kernel of R(G, p) (an
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infinitesimal motion q of (G, p)) by setting q(x) = qS(zS) if x ∈ S and q(x) = qS(x)

if x /∈ S. It follows that

dim kerR(G, p) ≥ dim kerR(GS, pS) (3.13)

We can use this fact to prove that independence in RUG implies independence

in MU(G).

Theorem 3.3.1. Let G = (V,E) be a graph and U ⊆ V . Suppose E is independent

in RU(G). Then E is independent in MU(G).

Proof: Let (G, p) be an independent generic U -coincident realisation of G. Inde-

pendence implies that i(H) ≤ valU(H) ≤ 2|H|−3 holds for all H ⊆ V with |H| ≥ 2.

Since p(x) = p(y) if x, y ∈ S, there is no edge between any two members of S.

Let H = {H1, . . . , Hk} be an S-compatible family for some S ⊆ U with |S| ≥ 2

and consider the subgraph F = (
⋃k

i=1Hi,
⋃k

i=1E(Hi)). By contracting S into one

vertex in F we obtain the graph FS, in which X = {H1/S, . . . , Hk/S} is a cover.

Thus r2(FS) ≤
∑k

i=1

(
2(|Hi| − (|S| − 1))− 3

)
. This bound and (3.13) imply that

dim kerR(F, p) ≥ dim kerR(FS, pS)

≥2
(
|

k⋃
i=1

Hi| − (|S| − 1)
)
−

k∑
i=1

(
2|Hi| − 2(|S| − 1)− 3

)
.

Since (G, p) is S-independent, we have

iF (H) = |F | ≤ 2

∣∣∣∣ k⋃
i=1

Hi

∣∣∣∣−
(

2

(∣∣∣∣ k⋃
i=1

Hi

∣∣∣∣− (|S| − 1)

)
−

k∑
i=1

(2|Hi| − 2(|S| − 1)− 3)

)

=
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) = valS(H).

Thus E is independent in MU(G), since S ⊆ U with |S| ≥ 2 is arbitrary. �
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3.4 Further Remarks

Let G = (V,E) be a graph. By Theorem 0.1.2, we know that |E| = 2|V | − 3 must

hold in order for G be minimally U -coincident rigid in R2. This implies that such a

graph has minimum degree at most three. It was proved that independence inMU

implies independence in RU when |U | = 2 by Fekete, Jordán and Kaszanitzky in [6],

and when |U | = 3 in Chapter 2. When U has size two, we can use 0-U - and 1-U -

reduction operations to show that independence inMU(G) implies independence in

RU(G). When U has size three, we can still use 0-U - and 1-U -reduction operations

for some cases to show that independence inMU(G) implies independence inRU(G).

For the cases we cannot use these moves we have a special property that the graph

G[V \ N [U ]] is (2, 3)-tight hence minimally rigid in R2, where N [U ] is the closed

neighbourhood of the vertices in U . This allows us to apply induction on G[V \N [U ]].

When |U | ≥ 4 we lose these properties and therefore cannot apply the same

arguments to prove that independence inMU implies independence inRU . However,

we still believe this is true and state the following conjecture.

Conjecture 3.4.1. Let G = (V,E) be a graph and U ⊆ V with |U | ≥ 4. Then

MU(G) ∼= RU(G).
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Chapter 4

Rigidity of Transitioned Body-Bar

Frameworks in R3

4.1 Introduction to Body-Bar Frameworks

In the previous chapters we studied bar-and-joint frameworks in which each vertex

of the underlying graph corresponds to a single point in the ambient space. In a

body-bar framework, each vertex will correspond to a general 3-dimensional rigid

body in R3. Since a 3-dimensional rigid body has six degrees of freedom (whereas

a point has three) in R3, we will have to modify the definitions of rigidity matrices

and infinitesimal motions.

More precisely, the rigidity matrix of a body-bar framework in R3 will have 6|V |
columns and each instantaneous velocity (assigned by infinitesimal motions) will be

a vector in R6 rather than a vector in R3.

A rotation about an axis in R3 is given by the angular velocity vector A =

(a1, a2, a3) and a point Q = (q1, q2, q3) on the axis of the rotation. The velocity

vector W = (w1, w2, w3) at a point P = (p1, p2, p3) is given by W = A × (P − Q).

We can identify such a rotation with a vector

( ∣∣∣∣∣a1 q1

a2 q2

∣∣∣∣∣ ,
∣∣∣∣∣a1 q1

a3 q3

∣∣∣∣∣ ,
∣∣∣∣∣a2 q2

a3 q3

∣∣∣∣∣ ,
∣∣∣∣∣a1 q1

0 1

∣∣∣∣∣ ,
∣∣∣∣∣a2 q2

0 1

∣∣∣∣∣ ,
∣∣∣∣∣a3 q3

0 1

∣∣∣∣∣ ) = (r1, r2, r3, r4, r5, r6) ∈ R6,
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since 
0 −r6 r5 −r3

r6 0 −r4 r2

−r5 r4 0 −r1

r3 −r2 r1 0



p1

p2

p3

1

 =


w1

w2

w3

−W · P


holds. Similarly, when we consider a translation t, the velocity vector at each point

P = (p1, p2, p3) is a constant vector W = (w1, w2, w3) = (−t3, t2,−t1). Hence we

can identify t with a vector (t1, t2, t3, 0, 0, 0) ∈ R6, since
0 0 0 −t3
0 0 0 t2

0 0 0 −t1
t3 −t2 t1 0



p1

p2

p3

1

 =


w1

w2

w3

−W · P


holds. The two 4 × 4 matrices above are called action matrices Mr and Mt of the

rotation and translation, respectively. Similarly, if we consider a rotation r and

a translation t simultaneously, then the instantaneous velocity W at a point P =

(p1, p2, p3) is given by (Mr + Mt)(P, 1) = (W,−W · P ). The resulting infinitesimal

motion is called a screw motion S. The action matrix M of S is given by Mr +Mt

and S = r + t. For two simultaneous screw motions S1 and S2, the resulting screw

motion is S = S1 + S2 and hence we can regard the space of screw motions as a

6-dimensional real vector space. For more detail on screw motions, see for example

[3].

Now take two points A = (a1, a2, a3) and B = (b1, b2, b3) on a line l in R3 and

coordinatise l as(∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣ ,
∣∣∣∣∣a1 b1

a3 b3

∣∣∣∣∣ ,
∣∣∣∣∣a2 b2

a3 b3

∣∣∣∣∣ ,
∣∣∣∣∣a1 b1

1 1

∣∣∣∣∣ ,
∣∣∣∣∣a2 b2

1 1

∣∣∣∣∣ ,
∣∣∣∣∣a3 b3

1 1

∣∣∣∣∣
)

= (l1, l2, l3, l4, l5, l6).

We call this six-tuple the Plücker coordinates of the line l. We can now formally

define body-bar frameworks in R3.

Definition 4.1.1. A body-bar framework in R3 is a pair (G, p) where G = (V,E)

is a multigraph without loops and p : E → R6 is a map such that the image of an

edge under this map is a representative of the Plücker coordinates of a line.
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We regard each edge e ∈ E as a bar on the line corresponding to Plücker coor-

dinates p(e) of e. We regard each vertex v ∈ V as an arbitrary 3-dimensional rigid

body Bv such that it intersects every bar incident to Bv (corresponding to an edge e

incident with v) at a single point. We assume that bodies Bv for v ∈ V are disjoint.

We will assign some screw motions to rigid bodies and as in the previous chapters

we want these motions to preserve bar lengths. For an infinitesimal motion q of a

bar-and-joint framework (G, p) the fact that q(u)− q(v) is orthogonal to p(u)− p(v)

for an edge uv keeps bar lengths fixed. Similarly, in order to fix the length of a bar

e incident with bodies Bv and Bu in a body-bar framework (G, p), the difference of

the velocities at points Q and T must be orthogonal to the bar e, where Q and T are

the intersection points in R3 of the bar e and the bodies Bv, and Bu, respectively.

If we assign screw motions m(u) and m(v) to bodies Bu and Bv, then the length of

the bar e is fixed if and only if [m(u)−m(v), p(e)] = 0, where [m(u)−m(v), p(e)] is

as defined in (4.1).

[Q,K] := q1k6 − q2k5 + q3k4 + q4k3 − q5k2 + q6k1, for Q,K ∈ R6. (4.1)

We can now give a formal definition of an infinitesimal motion of a body-bar frame-

work.

Definition 4.1.2. An infinitesimal motion of a body-bar framework (G, p) in R3 is

a function m : V → R6 that assigns a screw motion to each vertex (body) such that

[m(u)−m(v), p(e)] = 0 for all edges e with endpoints u and v.

The (body-bar) rigidity matrix R(G, p) of a body-bar framework (G, p) is a |E|×
6|V | matrix whose rows are indexed by E and of the form

vi vj( )
e = vivj 0 . . . 0 p(e) 0 . . . 0 −p(e) 0 . . . 0

with i < j, where p(e) is the Plücker coordinates corresponding to e, and 0 =

(0, 0, 0, 0, 0, 0).

For a vector C = (c1, c2, c3, c4, c5, c6) ∈ R6 define C∗ := (c6,−c5, c4, c3,−c2, c1).

It follows that m is an infinitesimal motion of a body-bar framework (G, p) if and
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only if

R(G, p)


m∗(v1)

m∗(v2)
...

m∗(vn)

 = 0.

Therefore the space of infinitesimal motions of (G, p) is isomorphic to the kernel

of R(G, p). Since the screw motions corresponding to infinitesimal rotations and

translations of the whole R3 generate a 6-dimensional vector space, we see that

rankR(G, p) ≤ 6|V | − 6.

Definition 4.1.3. The body-bar framework (G, p) is infinitesimally rigid if R(G, p)

has rank 6|V | − 6.

We also say a multigraph G is infinitesimally rigid (as a body-bar framework in

R3), if there exists a p such that (G, p) is an infinitesimally rigid body-bar frame-

work in R3. A minimally infinitesimally rigid body-bar framework (or graph) is an

infinitesimally rigid body-bar framework (or graph) such that removing an arbitrary

bar (or edge) results in a non-rigid body-bar framework (or graph).

A body-bar framework (G, p) in R3 is generic, if R(G, p) and its all edge induced

submatrices have maximum rank, taken over all realisations of G.

From the rigidity matrix R(G, p) of a body-bar framework we can construct a

matroid R(G, p) on E(G), the (body-bar) rigidity matroid of (G, p), by defining a

subset F of E to be independent if the set of rows of R(G, p) corresponding to F

is linearly independent. If (G, p) and (G, q) are two generic body-bar frameworks,

then they give rise to the same rigidity matroid R(G), the generic rigidity matroid

of the graph G.

The following lemma is due to Nash-Williams [19].

Lemma 4.1.1. [19] Let G = (V,E) be a multigraph such that G is the union of six

edge-disjoint spanning trees. Then we have

(a) There is a vertex v ∈ V with d(v) = 6 + k, where 0 ≤ k < 6.

(b) There are 2k distinct edges incident with a vertex v satisfying part (a) e1 =

vu1, f1 = vw1, . . . , ek = vuk, fk = vwk such that the graph H obtained from G by
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deleting v and its incident edges and inserting k new edges gi = uiwi, 1 ≤ i ≤ k, is

the union of six edge-disjoint spanning trees.

Tay gave the following characterisation for generic body-bar frameworks for

which Lemma 4.1.1 is a key step in the proof.

Theorem 4.1.2. [27] A generic body-bar framework (G, p) is minimally rigid if and

only if G is the union of six edge-disjoint spanning trees.

We will characterise the rigidity of a class of non-generic body-bar frameworks

in R3, where we allow sets of bars corresponding to two or three parallel edges of

the underlying multigraph to intersect in a common point. See Figure 4.1.

Figure 4.1: Variations of intersection points of bars we will be focusing on(ellipses
correspond to bodies).

When we have an intersection point for the bars corresponding to two edges as in

Figure 4.1 on the left, we say those edges are concurrent. When we have a common

point for the bars corresponding to three edges as in Figure 4.1 on the right, we say

those edges are a pin.

In the literature a pin refers to the unique intersection point of two distinct

objects in space. This motivates us to use this name for three bars intersecting at a

point. To be more explicit, let us consider two disjoint bodies Bu and Bv such that

there are three bars joining these bodies and these bars intersect at a point. Let

P ∈ R3 denote the intersection point of these bars and let U1, U2, U3 ∈ R3 denote

the common intersection points of the bars with the body Bu. We can think of P

being attached to Bu with three bars UiP with endpoints Ui and P for 1 ≤ i ≤ 3.

Since a point in R3 has three degrees of freedom, if U1, U2, U3, P are not coplanar,

we can regard Bu ∪ {P} with the bars UiP , 1 ≤ i ≤ 3 as a rigid body. Similarly, we

can regard Bv ∪ {P} as another rigid body and these bodies intersect at a unique

point P . This is similar to the idea we used when we showed 0-extension preserves
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rigidity for bar-and-joint frameworks in Lemma 0.1.7. In fact, we can replace each

rigid body Bv by a sufficiently large complete graph and obtain a bar-and-joint

framework whose infinitesimal rigidity is equivalent to the infinitesimal rigidity of

the body-bar framework we started with. However, in this chapter we will not use

this idea of transforming a body-bar framework to a bar-and-joint framework.

Let us formally define the frameworks we are interested in. Let G = (V,E) be

a multigraph and p be a realisation of G as a body-bar framework such that a bar

intersects parallel bars to itself at at most one point, and each intersection point can

have at most three bars going through it. Apart from these types of intersections

we assume the framework is as generic as possible. To control these intersections

we use a family X of pairs of multiple edges of G. We only allow single bars,

concurrent pairs of bars and pins. To distinguish a pair of concurrent bars e1, e2, we

add {e1, e2} to X. We distinguish a pin consisting of the edges e1, e2, e3 by adding

{e1, e2}, {e1, e3} and {e2, e3} to X. We call a set in X a transition.

A transitioned multigraph is a pair (G,X) where G is a multigraph and X is a

set of transitions of G. A transitioned framework (G,X; p) is a body-bar framework

(G, p) such that the lines assigned by p satisfy the relations given by X. We say

(G,X; p) is generic, if R(G,X; p) and its all edge induced submatrices have maxi-

mum rank, taken over all realisations of (G,X). Note that if X = ∅, then a generic

transitioned framework is a generic body-bar framework. We will say a transitioned

multigraph (G,X) is rigid if there exists a p such that (G,X; p) is infinitesimally

rigid. We use r(G,X) to denote the rank of the rigidity matrix R(G,X; p) of a

generic transitioned framework (G,X; p). In this chapter we will prove the follow-

ing result.

Theorem 4.1.3. Let (G,X) be a transitioned graph with only pairwise concurrences.

Then (G,X) is minimally rigid if and only if G is the union of six edge-disjoint

spanning trees.

4.2 Examples and Tools

First note that by the definitions of a body-bar framework and its rigidity matrix,

the actual shape and positions of the bodies are irrelevant for infinitesimal rigidity.
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The only properties we need are that the bodies are disjoint and that every body

intersects each incident bar at a single point.

Example 4.2.1. Let (G,X) be the transitioned multigraph in Figure 4.2 on the

left. The edges between v1 and v3 are e1, e2, e3, e4, the edges between v1 and v2

are f1, f2, f3, and the edges between v2 and v3 are g1, g2. Then we see that the set

X = {{e1, e2}, {e1, e3}, {e2, e3}, {f1, f2}}, that is, e1, e2, e3 (red edges) belong to a

pin and f1, f2 (blue edges) are concurrent. A realisation of (G,X) as a transitioned

framework is shown in Figure 4.2 on the right.

v1

v2

v3

Figure 4.2: A transitioned multigraph and its realisation.

Lemma 4.2.1. Let G be a multigraph and X be a set of transitions of G. If (G,X)

is (minimally) rigid, then so is (G,S), for all S ⊆ X.

Proof: The proof is straightforward as a generic realisation of (G,X) is a non-

generic realisation of (G,S). �

Let us use notations p0 = (0, 0, 0), and pi for the ith vector of the standard basis

for 1 ≤ i ≤ 3 in R3. Let (pi ∗pj) denote the Plücker coordinates of the line segment

pipj. The following result for body-bar frameworks will be crucial for our proofs.

Lemma 4.2.2. [13] Let G = (V,E) be a multigraph and F ⊆ E. Suppose that

F can be partitioned into 6 forests Fi,j, 0 ≤ i < j ≤ 3. Let (G, q) be a body-bar

realisation of G in R3 with the property that q(e) = (pi ∗ pj) when e ∈ Fi,j, for all

0 ≤ i < j ≤ 3. Then the rows of R(G, q) indexed by F are linearly independent.
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We need to define some more terminology. A multigraph G is called (2, 2)-sparse

if i(X) ≤ 2|X| − 2 for all X ⊆ V (G) with |X| ≥ 2. Nash-Williams’ characterisation

says that a graph G is (2, 2)-sparse if and only if it can be partitioned into two

forests. It is known that for an arbitrary graph G, if we put every edge set that

induces a (2, 2)-sparse graph in a family, then this family satisfies the independent

set axioms of a matroid (see for example [7]). Let us denote this matroid by M2,2(G).

Let (G,X) be a transitioned graph and suppose that G is the union of six edge-

disjoint spanning trees. We want to decompose G into three (2, 2)-sparse subgraphs

H1, H2, H3 such that Hi does not contain two parallel edges e1, e2 with {e1, e2} ∈ X.

First note that if we define a set of edges as being independent if it is (2, 2)-sparse

and does not contain a transition, then we get another matroid M̃2,2(G,X). To

see this, choose a representative edge for each concurrent pair and for each pin.

Remove the non-representative edges of all concurrent pairs and pins from the graph

and the corresponding transitions from X. We are left with a transitioned graph

(G′, ∅). Since there are no transitions in (G′, ∅), being independent in M2,2(G) and

being independent in M̃2,2(G′, ∅) are equivalent. Then add the deleted edges of the

concurrent pairs and pins and define each pair of edges in X as a circuit. This

operation is called parallel extension in matroid theory and it gives a new matroid

M̃2,2(G,X).

Lemma 4.2.3. Let (G,X) be a transitioned graph and G be the union of six edge-

disjoint spanning trees. Then the edge set of G can be partitioned into three bases

of M̃2,2(G,X).

Proof: Let (G,X) be a counter-example with X being minimal. We will apply

induction by taking a pin. If there are no pins, then one can prove it by taking a

pair of concurrent bars in the same way. Suppose e1, e2, e3 are the edges correspond-

ing to a pin in (G,X). Consider X ′ = X − {e1, e2} − {e1, e3} and the transitioned

graph (G,X ′). By the minimality of X, (G,X ′) can be partitioned into three bases

H1, H2, H3. We may assume e2 ∈ H2 and e3 ∈ H3. If e1 ∈ H1, then H1, H2, H3

would be the required decomposition of (G,X). Hence e1 ∈ H2 or e1 ∈ H3. We may

assume e1 ∈ H2. Then apply a basis exchange on e1 between H1 and H2. That is,

H1− f + e1, H2− e1 + f,H3 are three disjoint bases of M̃2,2(G,X ′) for some f ∈ H1.

Then H1 − f + e1, H2 − e1 + f,H3 are disjoint bases of M̃2,2(G,X). �
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4.3 Main Results

Theorem 4.3.1. Let (G,X) be a transitioned graph with only pairwise concurrences.

Then (G,X) is minimally rigid if and only if G is the union of six edge-disjoint

spanning trees.

Proof: If (G,X) is minimally rigid, then applying Lemma 4.2.1 (with S = ∅) and

Theorem 4.1.2 we obtain that G is the union of six edge-disjoint spanning trees.

For the other direction suppose G is the union of six edge-disjoint spanning trees.

By Lemma 4.2.3 we can decompose G into three bases H1, H2, H3 of M̃2,2(G,X).

Let Hi = Ti ∪ T ′i for 1 ≤ i ≤ 3, where Ti, T
′
i are spanning trees. We can map Ti, T

′
i

for 1 ≤ i ≤ 3 to the edge set of K4 whose vertices are labelled by p0,p1,p2,p3 as

defined above such that the image of Ti and T ′i are not incident for 1 ≤ i ≤ 3. See

Figure 4.3. The fact that the image of Ti is incident with the image of Tj and T ′j ,

1 ≤ i < j ≤ 3 under this mapping implies that all pairs of concurrent bars defined

by X have a common endpoint at p0,p1,p2 or p3. Now we apply Lemma 4.2.2 to

get the desired result. �

Consider a transitioned graph (G,X) for which G is the union of six edge-disjoint

spanning trees and a partition H1, H2, H3 of M̃2,2(G,X) into bases. Let Hi = Ti∪T ′i ,
1 ≤ i ≤ 3, where Ti and T ′i are spanning trees. Consider also the graph K4 whose

vertices are pi, 0 ≤ i ≤ 3 as defined earlier. We can map each of these 6 spanning

trees Ti and T ′i to an edge of this K4 such that Ti and T ′i are not mapped to edges

having a common endpoint. See Figure 4.3.

We would like to use Lemma 4.2.2 to obtain the required rigid realisation of

(G,X). For this to work we need the above map to map every concurrent pair to

a path of length two and every pin to a 3-star in the K4. As Hi does not contain a

transition and Ti intersects all other trees except T ′i , every pair of concurrent bars

are mapped to a path of length two. However, a pin can be mapped to either a

3-star or a triangle. Let us call a pin which is mapped to a triangle a misplaced pin.

For the rest of this chapter we will give some classes of transitioned graphs such
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p1 p2
T2

p0

T1

T ′3

p3

T3

T ′1

T ′2

Figure 4.3: A mapping of Ti and T ′i ’s to the edge set of K4.

that each pin can be mapped to a 3-star. Then we will apply Lemma 4.2.2 in order

to characterise the rigidity of such transitioned graphs.

For a multigraph G and vertices u and v the multiplicity of uv is the number

of edges e = uv in G and is denoted by µ(uv). We will use the notation P(G,X)

(or P when it is clear) as the set of all pins of (G,X). Let us denote the set of all

pins {e1, e2, e3} incident with the vertices u and v with µ(uv) = 3 by P0(G,X) (or

P0 when it is clear). Let us also denote the set of all pins {e1, e2, e3} incident with

the vertices u and v with 4 ≤ µ(uv) ≤ 6 and such that {e1, e2, e3} is the only pin

between u and v by P1(G,X) (or P1 when it is clear). Finally let us denote the set

of all pins {e1, e2, e3} incident with the vertices u and v with µ(uv) = 6 and such

that there is another pin {f1, f2, f3} incident with u and v by P2(G,X) (or P2 when

it is clear). See Figure 4.4.

Figure 4.4: The pin on the far left belongs to P0 whereas all other pins belong to
P1. Note that if there are two pins between two vertices, then neither of those pins
belongs to P0 or P1.

Theorem 4.3.2. Let (G,X) be a transitioned graph such that |P0| ≤ 1 and P2 = ∅.
Then (G,X) is minimally rigid if and only if G is the union of six edge-disjoint

spanning trees.
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Proof: If (G,X) is minimally rigid, then applying Lemma 4.2.1 (with S = ∅) and

Theorem 4.1.2 we obtain that G is the union of six edge-disjoint spanning trees.

For the other direction suppose G is the union of six edge-disjoint spanning trees.

We assume |P0| = 1 and the unique pin in P0 is {e1, e2, e3}. By Lemma 4.2.3, we

can partition M̃2,2(G,X) into three bases H1, H2, H3. Let Hi = Ti∪T ′i for 1 ≤ i ≤ 3

where Ti, T
′
i are spanning trees. Relabelling if necessary, we may assume that ei ∈ Ti

for 1 ≤ i ≤ 3. Use the mapping in Figure 4.3 to make sure that {e1, e2, e3} is not a

misplaced pin. Therefore if there is a misplaced pin consisting of the edges f1, f2, f3

with fi ∈ Hi between the vertices u and v, it must be in P1. This implies µ(uv) ≥ 4.

Take an edge f with endpoints u and v such that f 6= fi for all 1 ≤ i ≤ 3. We may

assume that f ∈ H1. Since f and f1 are multiple edges within H1, we must have

f ∈ T ′1 and f1 ∈ T1 (or f ∈ T1 and f1 ∈ T ′1). If we exchange f and f1 of T ′1 and T1

this will give us a basis exchange of spanning trees and the triangle corresponding

to the misplaced pin will become a 3-star. Then we apply Lemma 4.2.2 to get the

desired result. �

We can obtain the following result with the same method.

Theorem 4.3.3. Let (G,X) be a transitioned graph such that

• G is the union of six edge-disjoint spanning trees Ti, T
′
i , 1 ≤ i ≤ 3, and for each

pin P = {e1, e2, e3} ∈ P0 we have |P ∩ Ti| = 1, for all 1 ≤ i ≤ 3.

• If {e, f} ∈ X and e ∈ T1 ∪ T2 ∪ T3, then f ∈ T1 ∪ T2 ∪ T3

• P2 = ∅.
Then (G,X) is minimally rigid.

Proof: If we let Hi = Ti ∪ T ′i , 1 ≤ i ≤ 3, then we obtain a partition of (G,X) into

bases of M̃2,2, as every transition occurs within T1 ∪ T2 ∪ T3 or T ′1 ∪ T ′2 ∪ T ′3. If we

use the mapping in Figure 4.3, then all misplaced pins belong to P1. Now we can

proceed as in the proof of Theorem 4.3.2. �

Theorem 4.1.2 together with Lemma 4.2.1 implies that if a transitioned graph

(G,X) is rigid, then G contains the union of six edge-disjoint spanning trees. We

now give an example that shows the converse is not true.

Example 4.3.1. Consider a body-bar framework (G, p) consisting of two bodies
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and two distinct pins, see Figure 4.5. We can fix the body in the bottom and

assign an infinitesimal screw motion to the body on the top that corresponds to a

rotation about the line going through v1 and v2. Since this does not correspond to

an isometry of R3, we have dim kerR(G, p) ≥ 7, and so rankR(G, p) < 6. Hence,

even though its transitioned graph is the union of six edge-disjoint spanning trees,

the framework is not rigid in R3.

v1 v2

Figure 4.5: A framework with an underlying graph having six edge-disjoint spanning
trees that is not infinitesimally rigid.

We end this chapter by giving a conjecture for transitioned graphs due to Jackson

and Jordán. Let us first define some tools. For a transitioned graph (G,X) we define

the mixed graph H = (V ;B,C, P ) which is a graph on V with a three-partition of

its edges such that B is the set of edges that do not belong to a transition in (G,X),

C is the set of representatives for every pair of concurrent bars of (G,X) and P is

the set of representatives for every pin of (G,X).

Let H = (V ;B,C, P ) be a mixed graph and Q be a partition of V . For R ⊆ Q,

we use EH(R) and IH(R) to denote the set of edges of H which join two vertices

in different sets, respectively the same set, in R. A hinge of Q in H is a pair of

pins e, f ∈ P such that EH(X1, X2) = {e, f} for some X1, X2 ∈ Q. We denote the

number of hinges of R in H by hH(R). Let eH(R) = |EH(R) ∩ B| + 2|EH(R) ∩
C|+ 3|EH(R)∩P |. Given a mixed graph H = (V ;B,C, P ), a partition Q of V , and

R ⊆ Q, we will refer to the number 6(|R| − 1) + hH(R) + eH(R) as the deficiency

of R in H and denote it by defH(R). The deficiency of H, def(H), is the maximum

value defH(Q) taken over all partitions Q of V .

Conjecture 4.3.4. [11] Let H = (V ;B,C, P ) be a mixed graph of some transitioned

graph (G,X). Then r(G,X) = 6(|V | − 1)− def(H).
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Chapter 5

A Necessary Condition for

Generic Rigidity of Bar-and-Joint

Frameworks in d-Space

5.1 Introduction

In this chapter we will give an upper-bound on the rank function of generic d-

dimensional bar-and-joint frameworks for all d ≤ 11. Before stating the main result

of this chapter let us first give some definitions and known results.

Recall that a graph G is rigid, respectively independent, or dependent in Rd if

there exists a rigid, respectively independent, or dependent d-dimensional framework

(G, p) for some generic realisation p. The independence of a graphG is closely related

to the (d,
(
d+1

2

)
)-sparsity of G. The following which is a restatement of Lemma 0.1.6

is due to Maxwell [18].

Theorem 5.1.1. [18] If G is an independent graph in Rd, then G is (d,
(
d+1

2

)
)-

sparse.

It is known that the converse of Theorem 5.1.1 does not hold in d-dimensions

for d ≥ 3. The graph B3 is an example for this. Note that, in Chapter 0, we have

shown that B3 is a non-rigid circuit in R3.

By Theorems 0.2.1 and 0.2.2, we can deduce that, for d = 1, 2, the size of a
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maximal independent set of edges (rd(G)) in Rd(G) is equal to the number of edges

of a maximal (d,
(
d+1

2

)
)-sparse subgraph of G.

Since bases of a matroid have the same size, the maximal independent sets of

Rd(G) have the same size. However, it is not true that all maximal (d,
(
d+1

2

)
)-

sparse subgraphs of G have the same number of edges when d ≥ 3. On the other

hand Cheng and Sitharam [5] have recently shown that the number of edges in any

maximal (3, 6)-sparse subgraph of G does at least give an upper bound on r3(G).

Theorem 5.1.2. [5] Let G = (V,E) be a graph and H = (V, F ) be a maximal

(3, 6)-sparse subgraph of G. Then r3(G) ≤ |F |.

Jackson [10] extended 5.1.2 to all values d ≤ 5.

Theorem 5.1.3. [10] Let G = (V,E) be a graph, d ≤ 5 be an integer and H = (V, F )

be a maximal (d,
(
d+1

2

)
)-sparse subgraph of G. Then rd(G) ≤ |F |.

In this chapter we will extend this result to all values of d ≤ 11.

Theorem 5.1.4. Let G = (V,E) be a graph, d ≤ 11 be an integer and H = (V, F )

be a maximal (d,
(
d+1

2

)
)-sparse subgraph of G. Then rd(G) ≤ |F |.

5.2 Non-rigid Circuits

Jackson [10] used the minimum number of edges a circuit can have in order to obtain

the result for d ≤ 5. The minimum number of edges a circuit has in Rd is
(
d+2

2

)
and

the corresponding circuit is Kd+2. It is known that Kd+2 is a rigid circuit. Instead of

considering the minimum number of edges a circuit can have in Rd, we will consider

the minimum number of edges a non-rigid circuit can have in Rd. We will show that

the minimum number of edges necessary for a non-rigid circuit in Rd is d2+9d
2

when

d ≤ 12 (Lemma 5.2.7). We will then proceed as Jackson did in [10].

We know a rigid circuit on n vertices has dn−
(
d+1

2

)
+ 1 edges in Rd. However,

we do not even know a lower bound for the number of edges in a non-rigid circuit

on n vertices in Rd.

In this section we will introduce some basic results about non-rigid circuits. Let

us first define some graph operations. Let H and G be graphs satisfying H =

G− v+uw for some vertex v of degree d+ 1 and non-adjacent neighbours u,w of v.
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Recall that we say H is a (d-dimensional) 1-reduction of G. Now suppose we have

H = G−v+u1u2 +w1w2 for some vertex v of degree d+2 and disjoint non-adjacent

pairs of neighbours u1, u2 and w1, w2 of v. Then we say H is a (d-dimensional)

2-reduction of G, see Figure 5.1.

The two lemmas below will be useful tools for proving our results.

H

u

w

G

u

w

v

G

w1

w2

u1

u2

v

H

w1

w2

u1

u2

Figure 5.1: On the left hand side H is a 2-dimensional 1-reduction of G and on the
right hand side H is a 5-dimensional 2-reduction of G. Missing edges are denoted
by dotted red lines. The edges which are not drawn may or may not exist.

Lemma 5.2.1. The 1-reduction operation preserves dependence in Rd. For the 2-

reduction operation defined above, if H also has disjoint copies of cliques Km and

Kn with u1u2 ∈ Km, w1w2 ∈ Kn and V (Km) ∪ V (Kn) = NG(v), then this operation

preserves dependence in Rd.

Proof: Lemma 0.1.8 implies the proof of the 1-reduction part of the statement as

1-reduction is the inverse operation of 1-extension. We will prove the contrapositive

of the 2-reduction part of the lemma. Suppose (H, p) is independent for a generic

p. Consider the two cliques Km and Kn with V (Km) = U = {u1, . . . , um}, V (Kn) =

W = {w1, . . . , wn} and m + n = d + 2 in H. Then p(ui), 1 ≤ i ≤ m, and p(wj),

1 ≤ j ≤ n, span (m−1)- and (n−1)-dimensional affine subspaces of Rd, respectively.

Since m− 1 + n− 1 = d, these subspaces have an intersection point Q.

Let (G, p′) be a non-generic framework with p′(v) = Q and p′|H = p in Rd. The

framework (G + u1u2 + w1w2 − vu1 − vw1, p
′) is independent, since it is obtained

from H, which is independent, by adding a d-valent vertex whose neighbours do

not lie on a (d − 1)-dimensional affine subspace of Rd, by Lemma 0.1.7. Consider

the framework (G + u1u2 + w1w2 − vw1, p
′). Since {u1, . . . , um, v} induces a copy

of Km+1 and p′(ui), 1 ≤ i ≤ m, together with p′(v) span an (m − 1)-dimensional

affine subspace of Rd, we see that the sub-framework (Km+1, p
′|U∪{v}) of (G+u1u2 +
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w1w2 − vw1, p
′) is dependent. Hence (G + u1u2 + w1w2 − vw1, p

′) is dependent.

The fact that (G + u1u2 + w1w2 − vu1 − vw1, p
′) independent now implies that

(G+u1u2+w1w2−vw1, p
′) has a unique circuit. Since Km+1 is a circuit in Rm−1, this

unique circuit must be E(Km+1). Therefore we can delete an edge from the Km+1

and obtain an independent framework, that is (G+w1w2 − vw1, p
′) is independent.

Now consider the framework (G+w1w2, p
′). Since {w1, . . . , wn, v} induces a copy

of Kn+1 and p′(wj), 1 ≤ j ≤ n, together with p′(v) span an (n−1)-dimensional affine

subspace of Rd, by similar arguments as in the previous paragraph there exists a

unique circuit in (G+ w1w2, p
′) that contains the edge w1w2. Hence (G, p′) is inde-

pendent in Rd, and so G is independent in Rd. �

Let G = (V,E) be a graph. Let H be the graph obtained from G by adding a

new vertex z, and an edge vz for each v ∈ V . We say H is the cone of G. The

following lemma is due to Schulze and Whiteley [24], and will be useful to construct

non-rigid circuits in Rd, d ≥ 4, by using the fact that B3 is a non-rigid circuit in R3.

Lemma 5.2.2. [24] Let G be a graph and G∗ its cone. Then G is independent

(dependent, rigid, a circuit) in Rd if and only if G∗ is independent (dependent,

rigid, a circuit) in Rd+1.

We will prove that the minimum number of vertices on which there exists a

non-rigid circuit in Rd is d + 5. Let us first introduce a non-rigid circuit on d + 5

vertices in Rd. Let Bd = G1 ∪ G2 where G1 and G2 are distinct copies of Kd+2 − e
and G1 ∩G2 = Kd−1− e. Then G is flexible in Rd since we can rotate G1 about the

(d− 2)-dimensional affine subspace spanned by the vertices of G1 ∩G2 = Kd−1 − e
while fixing G2 in any generic realization of Bd in Rd. The graph Bd is the cone of

the graph Bd−1. The facts that the cone of a circuit in Rd is a circuit in Rd+1 by

Lemma 5.2.2 and that the graph B3 in Figure 12 is a circuit in R3 imply the graph

Bd is a circuit in Rd for d ≥ 3. The graph Bd has d2+9d
2

edges.

We can decompose a graph into rigid subgraphs, since an edge is rigid in Rd for

all d.

Definition 5.2.1. We say that a rigid subgraph H of a graph G is a rigid component

of G if there is no rigid subgraph of G properly containing H.
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Lemma 5.2.3. The minimum number of vertices on which there exists a non-rigid

circuit in Rd is d+ 5, for all d ≥ 3.

Proof: Since Bd is a non-rigid circuit on d+ 5 vertices, we only need to show that

such a circuit on less than d + 5 vertices cannot exist. Let G be a non-rigid circuit

with the minimum number of vertices in Rd and suppose that |V (G)| ≤ d+ 4.

First consider the case when δ(G) = d + 1. Take a vertex v with d(v) = d + 1.

Since G is a non-rigid circuit in Rd it is (d,
(
d+1

2

)
)-sparse which implies that we must

have a missing edge u1u2 between two neighbours of v. Otherwise we would have

a copy of Kd+2 whose vertices are v and the neighbours of v. Since Kd+2 is a rigid

circuit in Rd, this would be a contradiction. We can perform a 1-reduction on the

missing edge u1u2 and v. Let H be the resulting graph, that is H = G− v + u1u2.

Since 1-reduction preserves dependence in Rd by Lemma 5.2.1, H is dependent in

Rd and so it contains a circuit H ′ with u1u2 ∈ E(H ′). Since G is a non-rigid circuit

on the minimum number of vertices, H ′ must be a rigid circuit implying that there

is a rigid component H ′′ containing H ′ − u1u2 with at least d+ 2 vertices in G. We

have at most 2 vertices outside H ′′ each with at least d neighbours in H ′′. Thus

if we add them one by one to H ′′ we preserve the rigidity in each step by Lemma

0.1.7. This implies G is rigid, a contradiction.

Now, suppose δ(G) = d+ 2. Since G is (d,
(
d+1

2

)
)-sparse we have |V (G)| = d+ 4.

Let v be a vertex with d(v) = δ(G). Then there exist at least two non-incident

missing edges in G[N(v)] since G is a non-rigid circuit. We will try to perform a

2-reduction on these edges with the vertex v. Note the facts δ(G) = d + 2 and

|V (G)| = d+ 4 imply that every induced subgraph of G is a copy of Kr − F where

F is a set of pairwise non-adjacent edges. In particular N(v) induces a copy of

Kd+2 − F ′ where F ′ is a set of pairwise non-adjacent edges. It is now straightfor-

ward to find two disjoint subgraphs isomorphic to K d+2
2
− e in G[N(v)] if d is even.

Otherwise d is odd and we can find two disjoint copies of K d+1
2
− e and K d+3

2
− e in

G[N(v)]. By Lemma 5.2.1 we can perform a 2-reduction on the missing edges e and

the vertex v without changing the dependency. Then there must be a rigid circuit

in the resulting graph H. Since |E(H) \ E(G)| = 2, we see that adding an edge to

G gives a rigid subgraph H with at least d + 2 vertices. If H has d + 2 vertices,

then G has at least d2+3d
2
− 1 + 1 + 2(d + 1) = d2+7d

2
+ 2 edges where the first two
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terms come from the deleting the added edge from H. The third term corresponds

to the edge between the two vertices outside H and the last term is the number of

edges between the vertices in H and the vertices outside H. By a similar counting

we can show if H has d+ 3 vertices then G has at least d2+7d
2

+ 1 edges. Since G is

(d,
(
d+1

2

)
)-sparse, both cases give a contradiction. �

The following lemma, which is referred to as the glueing lemma, tells us we can

obtain a larger rigid graph in Rd from two rigid graphs in Rd when they have at

least d common vertices, and can be proven by a simple observation, see for example

[31].

Lemma 5.2.4. Let G be a graph that is obtained by glueing together two subgraphs

H1 = (V1, E1) and H2(V2, E2). Suppose H1 and H2 are both rigid in Rd and that

|V1 ∩ V2| ≥ d. Then G is rigid in Rd.

Lemma 5.2.5. The only non-rigid circuit on d+5 vertices with a vertex v of degree

d+ 1 in Rd is Bd.

Proof: We will prove this by showing there are two distinct rigid components with

d + 2 vertices in G, implying that G = Bd. Perform a 1-reduction on non-adjacent

neighbours u1, u2 of v. Then, by Lemmas 5.2.1 and 5.2.3, in the resulting graph H

we must have a rigid circuit C1. This implies that there exists a rigid component

H ′ ⊇ C1 with at least d+ 2 vertices in G. Since G is non-rigid, H ′ has exactly d+ 2

vertices and C1 − u1u2 = H ′ = Kd+2 − e. Otherwise we can sequentially add the

vertices which are not in H ′ to H ′ to obtain G and preserve rigidity. Therefore H ′

has
(
d+2

2

)
− 1 = d2+3d

2
edges. Since G is (d,

(
d+1

2

)
)-sparse it can have at most d2+9d

2

edges implying that there are at most 3d edges incident to the three vertices v, v1, v2

outside H ′. The maximality of H ′ implies that v, v1, v2 are adjacent to each other

and each has d− 1 neighbours in H ′. See Figure 5.2 for an illustration in R5.

Suppose we do not have N [v] = N [v1] = N [v2]. Say N [v1] 6= N [v] and let

y ∈ N [v1], y /∈ N [v]. We have such a vertex, since d(v) = δ(G) = d + 1. Then

we can do another 1-reduction on the missing edge vy and the vertex v1 and obtain

a rigid circuit in G − v1 + vy and a corresponding rigid subgraph H ′′ in with at

least d + 2 vertices in G − v1. However, since v1 /∈ H ′′ and there are two vertices

other than v1 outside H ′ (as |V (G)| = d + 5), we must have |V (H ′′) ∩ V (H ′)| ≥ d,
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implying that their union H ′ ∪H ′′ is rigid by Lemma 5.2.4. The fact that |V (G)| =
d + 5 and |V (H ′′) ∪ V (H ′)| ≥ d + 3 implies there are at most two vertices left

in V (G) \ (V (H ′) ∪ V (H ′′)). Since each such vertex has at least d neighbours in

V (H ′)∪V (H ′′) (as δ(G) = d+1), we can add these vertices toH ′∪H ′′ by 0-extensions

and preserve rigidity. This implies that G is rigid, a contradiction.

If we have N [v] = N [v1] = N [v2], then clearly we have G = Bd. �

N(v)

H ′=K7 − u1u2

u1

u2

u4

u3
x y

t

v

v1

v2

Figure 5.2: If we have y ∈ N(v1), y /∈ N(v), then we can perform a 1-reduction on
v1 and the missing edge vy to obtain a rigid subgraph H ′′ with at least d+2 vertices
of G− v1.

Lemma 5.2.6. Bd is the unique non-rigid circuit on d+ 5 vertices in Rd, d ≥ 3.

Proof: We will proceed by induction on d. The base case is d = 3. Since a non-rigid

circuit in 3-dimensions is (3, 6)-sparse, it can have at most 18 edges and hence we

always have a vertex of degree 4. Then by Lemma 5.2.5 G = B3. Suppose the

statement holds for all dimensions less than d and let G be a non-rigid circuit on

d + 5 vertices in Rd. By Lemma 5.2.5, we may assume that δ(G) ≥ d + 2. Pick a

vertex v ∈ V (G) and add all the missing edges adjacent to v to obtain the cone, G′,

of G− v. First note that |E(G′) \E(G)| ≤ 2 since |V (G)| = d+ 5, δ(G) ≥ d+ 2 and

G′ is obtained from G by adding all missing edges incident with a vertex v. Since

G′ is dependent in Rd, G − v is dependent in Rd−1 by Lemma 5.2.2. Then there is

a circuit C within G− v in Rd−1. We also have δ(G− v) ≥ d+ 1.

Suppose C is a non-rigid circuit. Then C = Bd−1 by the induction hypothesis.

The facts that δ(G − v) ≥ d + 1, δ(Bd−1) = d and there are six vertices in Bd−1 of
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degree d imply that |E(G−v)\E(Bd−1)| ≥ 3. Since Bd is the cone of Bd−1 and G′ is

the cone of G−v, we see that there is a copy of Bd within G′ and |E(G′)\E(Bd)| ≥ 3.

However, we know that |E(G′)\E(G)| ≤ 2. This implies that |E(G)| ≥ |E(Bd)|+1.

This is a contradiction, since G is (d,
(
d+1

2

)
)-sparse.

Thus we can assume that C is a rigid circuit in Rd−1. Then |V (C)| ≥ d+1 imply-

ing that |V (G− v) \V (C)| ≤ 3. Combining this and the fact that δ(G− v) ≥ d+ 1,

we can sequentially add the vertices in V (G− v) \ V (C) to C and preserve rigidity

in Rd−1. Therefore we get G − v is rigid in Rd−1. Since taking the cone preserves

generic rigidity and dependency of a graph by Lemma 5.2.2, G′ is rigid and contains

a rigid circuit in Rd. Let us keep the fact |E(G′) \ E(G)| ≤ 2 in mind and consider

G and G′. The fact that G is a non-rigid circuit and G′ is rigid and contains a rigid

circuit implies that when we delete edges from G′ to obtain G we must decrease

the rank and destroy the rigid circuit. Since deletion of an edge either decreases

the rank or destroys a circuit (not both), we have |E(G′) \ E(G)| = 2 and hence

G′ = G+ u1v + u2v for some vertices u1, u2 ∈ V . We also have that deletion of one

of u1v and u2v, say u1v, destroys rigidity (decreases the rank) and deletion of u2v

destroys all rigid circuits. Then G + u2v still has some rigid circuits implying that

G has a rigid component H with at least d+ 2 vertices. Since δ(G) ≥ d+ 2 and we

have at most three vertices outside H, such vertices have at least d neighbours in

H. Thus we can add those vertices to H and preserve rigidity, a contradiction. �

Lemma 5.2.7. The minimum number of edges necessary for a non-rigid circuit in

Rd is d2+9d
2

when d ≤ 12.

Proof: Let G be a non-rigid circuit with the minimum number of edges in Rd. If G

has a vertex v with d(v) = d + 1 we can perform a 1-reduction on v and two of its

neighbours without changing the dependency of G. This implies that G has a rigid

component H with at least d+2 vertices and there are at least 3 vertices outside this

component since G is non-rigid. Then we have at least
(
d+2

2

)
−1+3+3(d−1) = d2+9d

2

edges in G where the first two terms are the number of edges in H. The third term

is the number of edges which do not have an endpoint in H and the last term is the

number of edges having exactly one endpoint in H.

Hence we may suppose that δ(G) ≥ d+2. Then the result holds for d+6 ≤ |V (G)|
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when d ≤ 12, since such a graph has at least (d+2)(d+6)
2

= d2+8d+12
2

edges. Therefore

we only need to consider the case when |V (G)| = d + 5 by Lemma 5.2.3. However,

this case is not possible, since Bd is the unique non-rigid circuit on d+ 5 vertices by

Lemma 5.2.6 and δ(Bd) = d+ 1. �

It may be feasible to characterise non-rigid circuits with at most 2d+ 3 vertices.

However, there exist some strange non-rigid circuits on at least 2d+ 4 vertices, e.g.

Kd+2,d+2 which is a circuit for all d ≥ 3 and non-rigid for all d ≥ 4.

5.3 Sparse subgraphs

A subgraph H = (U, F ) of a (d,
(
d+1

2

)
)-sparse graph G is d-critical if either |U | = 2

and |F | = 1, or |U | ≥ d and H is (d,
(
d+1

2

)
)-tight. The assumption that G is

(d,
(
d+1

2

)
)-sparse implies that every d-critical subgraph of G is an induced subgraph.

A d-critical component of G is a d-critical subgraph which is not properly contained

in any other d-critical subgraph of G. The following results are due to Jackson [10].

Lemma 5.3.1. [10] Let G = (V,E) be a (d,
(
d+1

2

)
)-sparse graph and H1 = (U1, F1),

H2 = (U2, F2) be distinct critical components of G. Then |U1 ∩ U2| ≤ d − 1 and, if

equality holds, then iG(U1 ∩ U2) =
(
d−1

2

)
.

Proof: Suppose that |U1 ∩ U2| ≥ d− 1. When |U1 ∩ U2| ≥ d we have i(U1 ∩ U2) ≤
d|U1 ∩ U2| −

(
d+1

2

)
since G is (d,

(
d+1

2

)
)-sparse. When |U1 ∩ U2| = d − 1, we

have i(U1 ∩ U2) ≤
(
d−1

2

)
= d|U1 ∩ U2| −

(
d+1

2

)
+ 1 trivially. The maximality

of H1, H2 and the definition of a d-critical component imply that |U1|, |U2| ≥ d,

and d(|U1| + |U2|) − 2
(
d+1

2

)
= iG(U1) + iG(U2) ≤ iG(U1 ∪ U2) + iG(U1 ∩ U2) ≤

d|U1 ∪ U2| −
(
d+1

2

)
− 1 + d|U1 ∩ U2| −

(
d+1

2

)
+ 1 = d(|U1| + |U2|) − 2

(
d+1

2

)
. Equality

must hold throughout. In particular we have iG(U1 ∩ U2) = d|U1 ∩ U2| −
(
d+1

2

)
+ 1.

This implies that |U1 ∩ U2| = d− 1 and iG(U1 ∩ U2) =
(
d−1

2

)
. �

Let k, t be non-negative integers, G = (V,E) be a graph and X be a family of

subsets of V . Recall that X is t-thin if every pair of sets in X intersect in at most t

vertices. A k-hinge of X is set of k vertices which lie in the intersection of at least

two sets in X . A k-hinge U of X is closed in G if G[U ] is a complete graph. We use
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Θk(X ) to denote the set of all k-hinges of X . For U ∈ Θk(X ), let dX (U) denote the

number of sets in X which contain U . Note that if G is t-thin then Θk(X ) = ∅ for

all k ≥ t+ 1. Note also that Θ0(X ) = {∅} and dX (∅) = |X |.

Lemma 5.3.2. [10] Let H = (V,E) be a (d,
(
d+1

2

)
)-sparse graph, X be a family of

subsets of V such that H[Vi] is d-critical for all Vi ∈ X , and let W ∈ Θk(X ) for

some 0 ≤ k ≤ d− 1. Suppose that |Vi| ≥ d for all Vi ∈ X with W ⊆ Vi. Then

(d− k)
∑

U∈Θk+1(X )

W⊂U

(dX (U)− 1)−
∑

U∈Θk+2(X )

W⊂U

(dX (U)− 1) ≤
(
d+ 1− k

2

)
(dX (W )− 1) .

Proof: Let dX (W ) = t and let V1, V2, . . . , Vt be the sets in X which contain W . Let

Hi = (Vi, Ei) = H[Vi] for 1 ≤ i ≤ t. Let H ′ =
⋃t

i=1 Hi and put H ′ = (V ′, E ′). Then

|V ′| =
t∑

i=1

|Vi| − k(t− 1)−
∑

U∈Θk+1(X )

W⊂U

(dX (U)− 1) (5.1)

since, for v ∈ V ′, if v ∈ W then v is counted t times in
∑t

i=1 |Vi|, if v ∈ U \W for

some U ∈ Θk+1 with W ⊂ U then v is counted dX (U) times in
∑t

i=1 |Vi|, and all

other vertices of V ′ are counted exactly once in
∑t

i=1 |Vi|.
Similarly,

|E ′| ≥
t∑

i=1

|Ei|−
(
k

2

)
(t− 1)− k

∑
U∈Θk+1(X )

W⊂U

(dX (U)− 1)−
∑

U∈Θk+2(X )

W⊂U

(dX (U)− 1) (5.2)

since, for e = uv ∈ E ′, if u, v ∈ W then e is counted t times in
∑t

i=1 |Ei| and there

are at most
(
k
2

)
such edges, if u ∈ W and v ∈ U \ W for some U ∈ Θk+1 with

W ⊂ U then e is counted dX (U) times in
∑t

i=1 |Ei| and for each such v there are

at most k choices for u, if u, v ∈ U \W for some U ∈ Θk+2 with W ⊂ U then e

is counted dX (U) times in
∑t

i=1 |Ei|, and all other edges of E ′ are counted exactly

once in
∑t

i=1 |Ei|.
Since H ′ ⊆ H, H ′ is (d,

(
d+1

2

)
)-sparse. Hence |E ′| ≤ d|V ′| −

(
d+1

2

)
. We may

substitute equations (5.1) and (5.2) into this inequality and use the fact that |Ei| =
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d|Vi| −
(
d+1

2

)
for all 1 ≤ i ≤ t to obtain

(d− k)
∑

U∈Θk+1(X )

W⊂U

(dX (U)− 1)−
∑

U∈Θk+2(X )

W⊂U

(dX (U)− 1)

≤
[(
d+ 1

2

)
+

(
k

2

)
− dk

]
(t− 1)

=

(
d+ 1− k

2

)
(t− 1).

�

Lemma 5.3.3. [10] Let H = (V,E) be a (d,
(
d+1

2

)
)-sparse graph, X be a family

of subsets of V such that H[Vi] is d-critical and |Vi| ≥ d for all Vi ∈ X . Put

ak =
∑

U∈Θk(X )(dX (U)− 1) for 0 ≤ k ≤ d. Then for all 0 ≤ k ≤ d− 2 we have:

(i) (d− k)(k + 1)ak+1 −
(
k+2

2

)
ak+2 ≤

(
d+1−k

2

)
ak;

(ii) (d− k)ak+1 − (k + 1)ak+2 ≤
(
d+1
k+2

)
(|X | − 1);

(iii) if X is (d− 1)-thin, d(d− k)ak+1 ≤ (k + 2)(d− k − 1)
(
d+1
k+2

)
(|X | − 1).

Proof: Part (i) follows by summing the inequality in Lemma 5.3.2 over all W ∈ Θk,

and using the facts that∑
W∈Θk(X )

∑
U∈Θk+1(X )

W⊂U

(dX (U)− 1) = (k + 1)
∑

U∈Θk+1(X )

(dX (U)− 1) = (k + 1)ak+1

and∑
W∈Θk(X )

∑
U∈Θk+2(X )

W⊂U

(dX (U)− 1) =

(
k + 2

2

) ∑
U∈Θk+2(X )

(dX (U)− 1) =

(
k + 2

2

)
ak+2 .

We prove (ii) by induction on k. When k = 0, (ii) follows by putting k = 0 in

(i), and using the fact that a0 = |X | − 1. Hence suppose that k ≥ 1. Then (i) gives

2(d− k)ak+1 − 2(k + 1)ak+2 ≤
(d− k + 1)(d− k)

k + 1
ak − kak+2 . (5.3)

141



We may also use (i) to obtain

kak+2 ≥
k(d− k)

k + 2

(
2ak+1 −

d− k + 1

k + 1
ak

)
. (5.4)

Substituting (5.4) into (5.3) and using induction we obtain

(d− k)ak+1 − (k + 1)ak+2 ≤ d−k
k+2

[(d− k + 1)ak − kak+1]

≤ d−k
k+2

(
d+1
k+1

)
(|X | − 1)

=
(
d+1
k+2

)
(|X | − 1) .

We prove (iii) by induction on d − k. When d − k = 2, (iii) follows by putting

k = d − 2 in (ii) and using the fact that ad = 0 since X is (d − 1)-thin. Hence

suppose that d− k ≥ 3. Then (ii) gives

d(d− k)ak+1 ≤ d
(
d+1
k+2

)
(|X | − 1) + d(k + 1)ak+2 .

We may now apply induction to ak+2 to obtain

d(d− k)ak+1 ≤ [d
(
d+1
k+2

)
+ (k+1)(k+3)(d−k−2)

d−k−1

(
d+1
k+3

)
] (|X | − 1)

= (k + 2)(d− k − 1)
(
d+1
k+2

)
(|X | − 1) .

�

Theorem 5.3.4. [10] Let H = (V,E) be a (d,
(
d+1

2

)
)-sparse graph, X be a (d− 1)-

thin family of subsets of V such that H[Vi] is d-critical and |Vi| ≥ d for all Vi ∈ X .

For each Vi ∈ X let θk(Hi) be the number of k-hinges of X contained in Vi. Then:

(i) θ1(V1) ≤ 2d− 1 for some V1 ∈ X ;

(ii) θ2(V2) ≤ (d− 2)(d+ 1)− 1 for some V2 ∈ X ;

(iii) θd−1(V3) ≤ d for some V3 ∈ X .

Proof:
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We first prove (i). Putting k = 0 in Lemma 5.3.3(iii) we obtain

d
∑

U∈Θ1(X )

(dX (U)− 1) ≤ (d− 1)(d+ 1)(|X | − 1) . (5.5)

Since dX (U) ≥ 2 for all U ∈ Θ1(X ) we have dX (U)− 1 ≥ dX (U)/2 and hence (5.5)

gives ∑
U∈Θ1(X )

dX (U) < 2d |X | .

This tells us that the average number of 1-hinges in a set in X is strictly less that

2d.

We next prove (ii). Putting k = 1 in Lemma 5.3.3(iii) we obtain∑
U∈Θ2(X )

(dX (U)− 1) ≤ (d− 2)(d+ 1)(|X | − 1)/2 . (5.6)

We can now proceed as in (i).

Finally we prove (iii). Putting k = d− 2 in Lemma 5.3.3(iii) gives

2
∑

U∈Θd−1(X )

(dX (U)− 1) ≤ (d+ 1)(|X | − 1) . (5.7)

We can now proceed as in (i).

5.4 An upper bound on the rank

Let G = (V,E) be a graph and X be a family of subsets of V . Recall that X is a

cover of G if every set in X contains at least two vertices, and every edge of G is

induced by at least one set in X .

Lemma 5.4.1. [10] Let G = (V,E) be a graph, H = (V, F ) be a maximal (d,
(
d+1

2

)
)-

sparse subgraph of G, and H1, H2, . . . , Hm be the d-critical components of H. Let Xi

be the vertex set of Hi for 1 ≤ i ≤ m. Then X = {X1, X2, . . . , Xm} is a (d− 1)-thin

cover of G and each (d− 1)-hinge of X is closed in H.

Proof: The definition of a d-critical subgraph implies that each Hi has at least two
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vertices and that every edge of H belongs to at least one Hi. Thus X is a cover

of H. To see that X also covers G we choose e = uv ∈ E \ F . The maximality

of H implies that H + e is not (d,
(
d+1

2

)
)-sparse. Hence {u, v} is contained in some

d-critical subgraph of H. Thus X also covers G. The facts that X is (d − 1)-thin

and that each (d− 1)-hinge of X is closed follow from Lemma 5.3.1. �

We refer to the closed (d − 1)-thin cover of G described in Lemma 5.4.1 as the

H-critical cover of G. Note that the definition of a d-critical set implies that each

set in a d-critical cover has size two or has size at least d.

Theorem 5.4.2. Let G = (V,E) be a graph, d ≤ 11 be an integer and H = (V, F )

be a maximal (d,
(
d+1

2

)
)-sparse subgraph of G. Then rd(G) ≤ |F |.

Proof: We proceed by contradiction. Suppose the theorem is false and choose a

counterexample (G,H) such that |E| is as small as possible. Let H1, H2, . . . , Hm

be the d-critical components of H where Hi = (Vi, Fi) for 1 ≤ i ≤ m. Then

X0 = {V1, V2, . . . , Vm} is the H-critical cover of G.

Choose a cover X of G such that X ⊆ X0 and |X | is as small as possible. Note

that X0, and hence also X , are (d − 1)-thin. For each Vi ∈ X , let F ∗i be the set of

all edges uv ∈ Fi such that {u, v} is a 2-hinge of X , and let Ei be the set of edges

of G induced by Vi.

Claim 5.4.2.1. If e = uv ∈ E satisfies rd(G) = rd(G− e), then {u, v} is a 2-hinge

of X .

Proof: First suppose that e ∈ E \ F . Then since H is a maximal (d,
(
d+1

2

)
)-sparse

subgraph of G− e, by using the minimality of |E| and rd(G) = rd(G− e) we get a

contradiction.

Thus we can assume that e ∈ F . Let h(e) be the number of Vi ∈ X such

that e ∈ Fi. We know that H − e is a (d,
(
d+1

2

)
)-sparse subgraph of G − e. Let

H ′ = (V, F ′) ⊇ H − e be a maximal (d,
(
d+1

2

)
)-sparse subgraph of G − e. If e /∈ Fi,

then no edge of Ei \ Fi can be in F ′, since Fi is d-critical and if e ∈ Fi, then at

most one edge of Ei \ Fi can be in F ′, since |Fi − e| = d|Vi| −
(
d+1

2

)
− 1. Then we

see that |F ′| ≤ |F | − 1 + h(e). By the minimality of |E| we have rd(G− e) ≤ |F ′|,
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and hence rd(G) ≤ |F |−1+h(e). Combining this and rd(G) > |F | we get h(e) ≥ 2.•

Note that this claim implies that F ∗i is dependent for all i. Suppose this is not

the case. Then we have Ei as an independent edge set by Claim 5.4.2.1. Since Ei can

have at most d|Vi| −
(
d+1

2

)
edges and Fi ⊆ Ei is d-critical, we have Ei = Fi. Either

Ei = Fi = F ∗i or Ei = Fi 6= F ∗i holds. The former case contradicts the minimality

of X . The latter case contradicts the minimality of |E|. To see this consider H − e
and G − e for an edge e ∈ Fi \ F ∗i . Since Fi = Ei all edges of G − e which are

induced by Vi are in H − e, and those Vj with j 6= i, are already d-critical in H − e,
we conclude H − e is a maximal (d,

(
d+1

2

)
)-sparse subgraph of G− e. Then we have

rd(G − e) = rd(G) − 1 > |F | − 1 = |F − e|, contradicting the minimality of |E|,
where the first equality is by Claim 5.4.2.1.

Since F ∗i is dependent it contains a circuit of Rd(G). This circuit cannot be

rigid, since it is (d,
(
d+1

2

)
)-sparse. By Lemma 5.2.7, |F ∗i | ≥ d2+9d

2
for all Vi ∈ X . This

contradicts Theorem 5.3.4 (ii) when d ≤ 11. �

5.5 Closing remarks

An improved upper bound on the rank

Given a graph G, let sd(G) be the minimum number of edges in a maximal (d,
(
d+1

2

)
)-

sparse subgraph of G. Theorem 5.4.2 tells us that rd(G) ≤ sd(G) when d ≤ 11. It

is not difficult to construct graphs for which strict inequality holds.

Example 5.5.1. Consider the graph B3 in Figure 12. We see that s3(B3) =

|E(B3)| = 18 > 17 = r3(B3). On the other hand we may improve the upper

bound on r3(B3) in this example by considering the graph B∗3 = B3 + uv. A max-

imal (3, 6)-sparse subgraph of B∗3 which contains uv has 17 edges. Thus we have

17 = r3(B3) ≤ r3(B∗3) ≤ s3(B∗3) = 17 by Theorem 5.4.2.

More generally, for any graph G we have the improved upper bound

rd(G) ≤ min{sd(G∗) : G ⊆ G∗} =: s∗d(G) (5.8)
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for all d ≤ 11.

The following example shows that strict inequality can also hold in (5.8).

Example 5.5.2. Let G be obtained from K5 by taking parallel connections with

10 different K5 along each of the edges of the original K5. We will first show that

r3(G) = 89. We remove an edge from the original K5 and an edge e for each of

other copies of K5 such that e is not an edge of the original K5. Let us say the

resulting graph is G′. Then we have |E(G′)| = |E(G)| − 11 = 100− 11 = 89. Since

each of the edges we removed sequentially cancels a distinct copy of K5 in G and

K5 is dependent in R3, we see that r3(G′) = r3(G). Since the edges we removed

from the copies of non-original K5 leaves a vertex of degree three in G′, we can

now sequentially remove the vertices of degree at most three in G′ and obtain the

empty graph. As this operation corresponds to a 0-reduction, and 0-reduction and 0-

extension preserve independence, we conclude that r3(G) = r3(G′) = |E(G′)| = 89.

On the other hand, s3(G) = 90 (obtained by taking a maximal (3, 6)-sparse subgraph

which contains 9 of the edges of the original K5). Note that the non-trivial motions

of G are the ones corresponding to the rotation of a copy of non-original K5 about its

common edge with the original K5. Hence adding an edge to G, which must connect

two distinct copies of non-original K5, will make the motions of the copies these K5

dependent on each other. This implies that adding an edge to G will increase the

rank. Therefore we have s3(G∗) ≥ r3(G∗) > r3(G) for all graphs G∗ which properly

contain G. Thus s∗3(G) = 90 > r3(G).

Algorithmic considerations

For fixed d, we can use network flow algorithms to test whether a graph is (d,
(
d+1

2

)
)-

sparse in polynomial time, see for example Berg and Jordán [4]. This means we can

greedily construct a maximal d-sparse subgraph H of a graph G in polynomial time

and hence obtain an upper bound on rd(G) via Theorem 5.4.2. We do not know

whether sd(G) or s∗d(G) can be determined in polynomial time.
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