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Resource-constrained re-identification in camera networks

Abstract

In multi-camera surveillance, association of people detected in different camera views over

time, known as person re-identification, is a fundamental task. Re-identification is a challenging

problem because of changes in the appearance of people under varying camera conditions. Ex-

isting approaches focus on improving the re-identification accuracy, while no specific effort has

yet been put into efficiently utilising the available resources that are normally limited in a camera

network, such as storage, computation and communication capabilities. In this thesis, we aim to

perform and improve the task of re-identification under constrained resources. More specifically,

we reduce the data needed to represent the appearance of an object through a proposed feature

selection method and a difference-vector representation method.

The proposed feature-selection method considers the computational cost of feature extraction

and the cost of storing the feature descriptor jointly with the feature’s re-identification perfor-

mance to select the most cost-effective and well-performing features. This selection allows us

to improve inter-camera re-identification while reducing storage and computation requirements

within each camera. The selected features are ranked in the order of effectiveness, which enable

a further reduction by dropping the least effective features when application constraints require

this conformity. We also reduce the communication overhead in the camera network by transfer-

ring only a difference vector, obtained from the extracted features of an object and the reference

features within a camera, as an object representation for the association.

In order to reduce the number of possible matches per association, we group the objects ap-

pearing within a defined time-interval in un-calibrated camera pairs. Such a grouping improves

the re-identification, since only those objects that appear within the same time-interval in a cam-

era pair are needed to be associated. For temporal alignment of cameras, we exploit differences

between the frame numbers of the detected objects in a camera pair. Finally, in contrast to

pairwise camera associations used in literature, we propose a many-to-one camera association

method for re-identification, where multiple cameras can be candidates for having generated the
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previous detections of an object. We obtain camera-invariant matching scores from the scores

obtained using the pairwise re-identification approaches. These scores measure the chances of a

correct match between the objects detected in a group of cameras.

Experimental results on publicly available and in-lab multi-camera image and video datasets

show that the proposed methods successfully reduce storage, computation and communication

requirements while improving the re-identification rate compared to existing re-identification

approaches.
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Chapter 1

Introduction

1.1 Motivation

Networks of cameras are deployed for the surveillance of wide areas, such as airports, train sta-

tions and shopping malls. These cameras may have disjoint Fields-of-View (FoV). Re-identification

of the same person in a camera network by human operators is a tiresome and costly job and de-

pends upon individuals’ consistent attention and experience [67]. This task is crucial for activities

like long-term tracking and forensic search. The widespread increase in large camera networks

makes automated re-identification a fundamental requirement for surveillance systems [54]. Re-

identification is typically performed by comparing the image(s) of a person from one camera to

the images of multiple persons from another camera or a set of cameras [71, 111, 136, 179].

Other sources of information, such as inter-camera relations and environmental constraints, are

also exploited for the task [89, 100, 120, 123]. In the majority of surveillance systems, cameras

are centrally connected, and both communication and processing are done by the central node.

Given that visual data processing has large computational and storage requirements, and the num-

ber of cameras is increasing, a high data transfer rate within the network and a high processing

power of the central node is required [156]. It becomes highly important to devise solutions,

which could improve the re-identification task by utilising less resources so that the task can be

completed within an acceptable time frame and remains useful for the applications.

Multiple cameras are deployed with different viewing configurations depending upon the

surveillance requirements. Cameras can have overlapping or non-overlapping FoV of the scene.
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In overlapping FoV the association process can be considered as long-term tracking, consistent

labelling or multi-view object matching [7, 32, 96]. It may be performed by estimating the

object position in the scene. Geometric properties, such as homography matrices [27], camera

projection matrices [61, 76, 141] and epipolar constraints [28], can be exploited based on inter-

camera relations and camera calibration. Cameras deployed for the surveillance of larger areas

may have blind regions in between resulting in non-overlapping FoV. In such a case, appearance

information, such as colour and texture descriptors [71, 112, 178], their relative positioning [101],

and high-dimensional feature point descriptors like SIFT and HOG [122], are extracted from

single [71, 136] or multiple images [122] of an object and communicated across the network for

association. Inter-camera transition times can also be exploited [89, 100, 123], which requires

network synchronisation to identify the time of occurrence of the same event across the network.

Network Time Protocol (NTP) can be applied for synchronisation in wired camera networks,

where the central node communicates the time information to the clients [124]. In the case of

a wireless network, Global Positioning System (GPS) based synchronisation can be applied [9].

However, it requires a GPS receiver on each wireless device and the line of site communication

with the satellite, which are not always possible. A more feasible approach is based on relative

timing i.e, to keep track of the order of occurrence of events [102]. Visual events can also

be used in such a synchronisation. Synchronisation approaches based on visual information

are mostly applied to fixed cameras [30, 120, 127] with prior knowledge of the scene under

observation. Approaches also exist for moving cameras [31], which exploit the known object-

association information.

Object association is generally performed between pairs of cameras. Learning approaches,

such as AdaBoost [71] and RankSVM [136], may be applied for object association when suf-

ficient training data is available. In the case of insufficient training data, Direct Distance Min-

imisation (DDM) approaches, such as those based on the Kullback-Leibler [92], Bhattacharyya

[135] or Euclidean distance, are applied. However, these methods are in general less robust to

illumination changes, which can be compensated for by learning inter-camera colour calibration

[89, 92, 135].

In order to improve scalability, a smart-camera network can be deployed. Smart cameras

are able to perform image processing locally and aim at transferring the minimum amount of

data over the network to accomplish collaborative tasks such as object detection, tracking and
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re-identification [3, 139, 154]. Such a network can enable a continued surveillance of the en-

vironment by using local storage and computation capabilities along with intelligent processing

of the data. However, smart cameras have limited resources, which is also common for battery-

powered devices such as smartphones and wireless smart cameras [33, 152]. We achieve the

same or improved results compared to the existing approaches for the task of re-identification

while adapting to the constraints in a smart camera network such as reducing the amount of data

to be processed and shared across the network, real-time operations and energy efficiency.

In Sec. 1.2 we present our problem formulation. Sec. 1.3 discusses the challenges involved

in the problem of re-identification. We then highlight in Sec. 1.4 the specific contribution of this

thesis.

1.2 Problem formulation

Let C = {Cn}N
n=1 be a network of N cameras. Re-identification is performed in the destination-

camera referred as Cn. A camera, Cnq , is a source-camera for Cn if an object exiting Cnq is

expected to enter Cn without passing through FoV of other cameras. Destination and source-

cameras together form a camera pair (Cn,Cnq). Source-cameras can be variable in number. Each

Cn has a set of source-cameras NNN n = {Cnq}
N̂n
q=1, where NNN n ⊆ C and N̂n ≤ N. We assume a

detection method that returns a single image of an object (person) on its first appearance in a

camera. Each detected object in Cn is represented by a single image-patch Pm
n , and Cnq has the

previous instance (image-patch) of that object. The overall set of Mn object-images extracted in

camera Cn is defined as Pn = {Pm
n }

Mn
m=1. A feature set FFFm

n = { fff mr
n }R

r=1 containing R feature types

fr is extracted from Pm
n , where r = 1 . . . R. Since all features may not have equal importance

in re-identification, we aim to perform feature selection while considering both the features’

performance and cost. The performance vector, ΠΠΠr, measures the discriminating ability of fr in

person re-identification, whereas the cost vector, ΨΨΨr, measures the extraction time and the storage

size associated with fr. Selected features are communicated over the network for association.

Re-identification is considered as an information retrieval problem, where for a given query

(object information) the most relevant matches are retrieved/ranked. Association is performed by

comparing the selected features of Pm
n with those from a generic Pk

nq
in Cnq , where k = 1 · · ·Mnq

and Mnq objects are detected in Cnq . The inter-camera space, time and appearance relations

between camera pairs can also be exploited, which requires cross-camera calibration. In the case



Chapter 1: Introduction 17
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Figure 1.1: Categorisation of challenges involved in person re-identification.

of multiple source-cameras, for each Pm
n we aim to identify its other instance , Pk

nq
, detected in an

unspecified source-camera Cnq in Nn by performing a many-to-one camera association.

1.3 Challenges

Person re-identification is a challenging problem. Challenges can be broadly categorised based

on: environment, camera view, and object (Fig. 1.1). Since visual data processing also involves

large computation, communication and storage resources, we discuss these as challenges under

resource constraints.

1.3.1 Re-identification challenges

Challenges because of the environment/surroundings in which an object is observed include: oc-

clusions, illumination changes and variations in travelling time. Occlusion is the partial/complete

obstruction between camera and the object. It occurs when multiple objects are not sufficiently

far apart from each other, or when stationary or other moving objects in the environment are

between the camera and the observed object. For example, in a crowd an object’s full body is

often not visible because of occlusions. Occlusion modifies how an object is viewed across cam-

eras [72]. Illumination changes are due to variations in the lighting conditions across camera

FoV. Indoor or outdoor settings, or partially reflective areas and objects in a camera view can

cause changes in illumination [118]. Moreover, people exiting a camera may enter the next cam-

era in different regions of its view so the time needed to travel across cameras and the area of

re-appearance are variable and hence difficult to model [89].

Camera colour response may be inconsistent across cameras because of variations in aper-

ture size, electrical noise and camera model even under the same illumination conditions [85].

Camera movements result in jitter and blurring in the recordings, and a continuous cross-camera

spatio-temporal re-calibration may be required [138].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Appearance of people across cameras. Column 1: camera 1, full frame; Column 2: corresponding crop of a person of interest; Column
3: camera 2; Column 4: corresponding crop of a person of interest. People appear under different illumination conditions, as shown in (b) and (d),
and under different poses and levels of occlusion, as shown in (f) and (h).
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Figure 2: General block diagram for person re-identification approaches.

Existing person re-identification methods are validated on snapshot-based or video-based datasets. VIPeR (Faren-
zena et al., 2010; Prosser et al., 2010) and i-LIDS-static (Farenzena et al., 2010; Bak et al., 2010; Prosser et al., 2010)
are the most common snapshot-based datasets used to validate appearance based methods mostly containing people
with full body visibility. The Terrascope dataset (Jeong and Jaynes, 2008) is a video-based dataset with nine indoor
cameras where eight people walk and act in an office environment. (Javed et al., 2008) presents a video-based dataset
with three sequences composed by up to three cameras from indoor and outdoor scenarios with large illumination
changes and up to four fully visible people. Finally, a more challenging dataset in terms of occlusions is presented in
(Kuo et al., 2010) composed of three outdoor cameras where up to ten people walk alone or in small groups.

In this paper we present a unifying overall structure and an in-depth survey of the state-of-the-art for person
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Figure 1.2: Appearance of people across cameras. Column 1: camera 1, full frame; Column 2:
corresponding crop of a person of interest; Column 3: camera 2; Column 4: corresponding crop
of a person of interest. People appearance under different illumination conditions, as shown in
(b) and (d), and under different poses and levels of occlusion, as shown in (f) and (h).

The pose of the object can vary across cameras, since an object can be moving and de-

formable as in the case of people. Depending on where an object enters a camera, the viewing

angle and the distance of the object from the camera may result in variation in the object’s scale

and orientation [100]. Fig. 1.2 shows typical challenges of re-identification in a surveillance

system.

Finally, the challenges related to the acquired data include heterogeneity, inconsistency and

limits on the amount acquired [174]. Incorrect data is more frequent when a re-identification

approach is applied to real-world environments where there is no control on the way an object

moves. In order to overcome this challenge large numbers of features are extracted [71, 112, 136,

178]. A large feature set may not always compensate for the data errors; however, the perfor-

mance of discriminating features can be suppressed because of redundant features in the feature

set. Noise because of sensor or transmission channel can cause distortion in an image, which

degrades the quality of the image itself. Noise makes the re-identification a more challenging

task, since a good feature representation becomes difficult to extract from a degraded image.
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1.3.2 Resource constraints

Real-time, continuous and reliable re-identification, along with scalability, as the number of cam-

eras increases, are the main goals of a re-identification system, while processing of visual data

inherently involves large amount of computational time and storage requirements [156]. In a

typical RGB, VGA-resolution surveillance setting, a single detection results in an object image

of size 128× 48× 3 pixels and requires 18 KB for storage, which becomes nearly 2 KB after

compression [67]. The extraction of information in the form of the most commonly used 2784-

dimensional feature set, containing histograms of colour and texture [71, 112, 136, 179], requires

1 KB for storage, while its extraction time is nearly 2 sec on a 3.0 GHz desktop computer. If we

also include the object detection time, it will be 0.2 sec per person per frame [172]. Given these

resource requirements per object, nearly 1 MB of storage and 8 min of processing time of the

central node is required to perform re-identification in 2-min surveillance videos from a pair of

cameras in a moderately crowded scene (with ~100 objects). These storage and computational

requirements can drastically increase as the duration of the videos and the number of cameras

increase. Smart cameras can be useful in achieving scalability, where most of the processing can

be performed locally in a distributed fashion [139]. However, an additional overhead of commu-

nicating the locally stored data to a central server is involved, which can be typically in the order

of ~30 MB per camera per hour.

Furthermore, the resources, such as computation, storage and communication, are limited -

especially in the case of smart cameras. A typical smart camera1 has 1.6 GHz of processor,

30 GBs of storage capacity, and 2 GB of memory (RAM). In order to achieve a real-time per-

formance, computation and storage requirements need to be reduced. If object-images could

be discarded after the extraction of required information (feature sets), half of the storage and

communication requirements can be reduced. However, the extracted information still needs to

be stored and communicated. This demands the development of efficient and resource-aware

information extraction/representation algorithms for re-identification.

1.4 Contributions

The main contributions of this thesis are the following:

1. A cost-effective feature selection approach for re-identification is proposed by taking into

1Smart-camera information obtained from SLR engineering, http://www.slr-engineering.
at/smart-camera/
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account the performance of a feature jointly with its cost. The performance is measured by

the ability of a feature to discriminate an object from others. Cost combines storage size

and the computation time required to extract a feature. We select each feature based on its

individual importance and rank them based on their contribution to the task. This makes

the approach adaptable for resource-constrained environments [J1].

2. An object representation approach for association is proposed that minimises the inter-

camera information sharing for the re-identification in a smart-camera network. Each object

is represented as a difference vector between the extracted features and the locally stored set

of reference features. In the association phase, instead of transferring the extracted features,

only the obtained difference vectors are communicated over the network, which minimises

the inter-camera information sharing for re-identification [C2].

3. A multi-camera object association approach for re-identification is proposed that extends

the existing appearance based re-identification approaches to the case when multiple source-

cameras can exist. We analyse variations in the matching distances between objects in

each camera pair in order to estimate the probability of a correct match when multiple

source-cameras exist. These probabilities generate camera-invariant matching scores for

re-identification [C1].

1.5 Organisation of the thesis

This thesis is organised as follows:

Chapter 1: Introduction to person re-identification and its applications in surveillance and cam-

era networks are discussed in Sec. 1.1. We formulate the re-identification problem in Sec. 1.2,

and define the challenges that can be encountered in real-world scenarios (Sec. 1.3). The contri-

butions of this thesis are listed in Sec. 1.4.

Chapter 2: Existing related work on person re-identification is organised based on object acqui-

sition (Sec. 2.2), feature descriptors (Sec. 2.3), dimensionality reduction (Sec. 2.4), data compres-

sion (Sec. 2.5), cross-camera calibration (Sec. 2.6) and object association (Sec. 2.7). A summary

of the datasets used for validating the state of the art is presented in Sec. 2.8. A brief discussion

on the existing approaches is also provided along with their limitations (Sec. 2.9).
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Chapter 3: The proposed feature selection method for re-identification that combines both the

performance (Sec. 3.4) and cost (Sec. 3.5) of a feature in the selection (Sec. 3.6) is presented in

this chapter.

Chapter 4: This chapter discusses the two proposed association approaches for re-identification.

The first approach minimises the information required to be communicated over the network for

both camera calibration and re-identification (Sec. 4.2). The second approach extends the re-

identification from pairwise association to multiple source-cameras (Sec. 4.3).

Chapter 5: Experimental evaluation of the proposed feature selection method (Sec. 5.2) and

association methods (Sec. 5.3 and Sec. 5.4) for re-identification using challenging publicly avail-

able and in-lab people datasets is presented, followed by a summary of the results (Sec. 5.5).

Chapter 6: This chapter presents a summary of the achievements of this thesis (Sec. 6.1) and

the possible future directions (Sec. 6.2).



Chapter 2

Related work

2.1 Introduction

Person re-identification has been the focus of interest in multi-camera surveillance for the last

fifteen years [162]. In this chapter, we present a unifying overall structure and an in-depth survey

of the state-of-the-art for person re-identification methods and the datasets used for evaluation.

We can identify four main phases of re-identification, namely object acquisition, feature ex-

traction, cross-camera calibration and object association (Fig. 2.1). The first phase, object ac-

quisition, identifies the image regions corresponding to the object [57]. The second phase is the

acquisition of information from the acquired object-images. The information includes feature

extraction and feature selection. Appearance features include colour, texture and shape. More-

over, temporal concatenations of appearance features can also be used [71]. The third phase is

the cross-camera calibration, namely the establishment of the colour and spatio-temporal rela-

tionship across cameras that allows to account for the variability of observations of the same

object across different FoV [89]. Finally, the fourth phase is the association of candidates across

cameras to match different instances of the same object using the information extracted in the pre-

vious phases. Existing re-identification methods are validated on snapshot-based or video-based

datasets [48, 70, 122, 148].

This chapter is organised to group the concepts according to the main contributions of the

thesis (Sec.1.4). First we discuss, in Sec. 2.2, how an object can be acquired from a video

frame. The existing research related to the first contribution, cost effective feature selection,

22
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Figure 2.1: General block diagram of existing re-identification approaches.

is grouped into Feature descriptors (Sec. 2.3) and Dimensionality reduction (Sec. 2.4). For the

second contribution, minimisation of information sharing and improvement of association, the

related work is grouped into Data compression (Sec. 2.5) and Cross-camera colour calibration

(Sec. 2.6.1). Finally, Spatio-temporal calibration (Sec. 2.6.2) and object association (Sec. 2.7)

discuss the existing approaches to support the third contribution, multi-camera object association.

We then give an overview of the available and proposed datasets in Sec. 2.8. The conclusions

about the described approaches are drawn in Sec. 2.9.

2.2 Object acquisition

Object acquisition is the extraction of image parts that correspond to the object of interest (people

or moving objects) in video frames [57]. Object acquisition can yield a single cropped image

of an object in the case of detections only – single-shots [71, 111, 136, 179], and it can also

yield multiple images in a camera when intra-camera tracking information is available – multi-

shots [12, 19, 41, 64, 112, 145]. In order to acquire the object information, object detection can

be applied.

Object detection provides the position of the object in an image or video frame [57, 68, 86].

The position can be the head location [172], the feet location [123] or a point in (the centre of)

the object [57]. The detection is solved using a trained classifier [45], a motion detector [60] or

a combination of both [57]. From the detections we extract a cropped image or a bounding box
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around the object. Obtained images using object detection also contain background along with

the object, which can be removed by applying background subtraction.

The pixels with minimum change in their values for a range of frames can be considered as

the background, while pixels with varying values over time represent the foreground or objects

of interest [142]. Background subtraction is applied to extract regions corresponding to moving

objects in an image [40, 87, 142]. Background subtraction can be done by considering an empty

frame with minimum to no foreground clutter as the background and then applying frame differ-

encing [87]. The background can also be estimated by taking the median of a set of video frames

where the foreground exists; however, the background pixels must be visible in at least half of the

frames [40]. Background subtraction is not suitable in crowded scenes with frequent foreground

clutter, since multiple objects are grouped into a single moving region [116]. Constantly moving

backgrounds like billboards, leaves of trees, and shadows also become moving objects, which are

non-trivial to segment [72, 142]. In such cases object detection without background subtraction

can be used to improve the results.

In single-shot approaches, the single most representative image of the object can be selected

from a group of images, such as when the object is detected for the first/last time in a camera [J2].

Methods using single-shot representation associate pairs of images obtained from two cameras.

For multi-shot approaches, images obtained from tracking are grouped over time. Gheissari et al.

[64] use spatio-temporal over-segmentation of cropped images from ten frames to create a sig-

nature for each person. In [41], ten key frames are selected. The most common approach is

to keep all the object images grouped over time and then perform association by analysing the

similarity among the features extracted from all available object images [20, 89, 100]. Another

multi-shot approach combines the relevant information from multiple instances of the same ob-

ject using image-epitome, which groups the extracted patches from multi-images with similar

properties [19]. Single-shot approaches have a wider range of applications than multi-shot ap-

proaches. However, Multi-shot images can also provide spatio-temporal information of the object

and hence remain a more invariant representation than single-shot [13]. Since multiple represen-

tative images for each object are available, the effects of illumination changes because of light

variations within the same camera and short-term occlusions, are reduced. However, multi-shot

approaches are computationally more expensive compared to single-shot approaches.

The acquired object-image is usually divided into two [129], three [5], five [13], six [179]
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or ten [22] horizontal slices, roughly separating into head, torso and legs structure. Feature

descriptors, as discussed in the next section, are extracted from each slice resulting in a large set

of features.

2.3 Feature descriptors

Features describe an object so as to allow re-identification in the next camera. Features should

be robust in identifying the same object, while able to discriminate between different objects.

Features can be extracted after identifying different parts of the object or may represent a holistic

view [145]. Various feature types have been used for appearance-based person re-identification

[54, 162]. The appearance features commonly used in the state-of-the-art methods for person

re-identification can be classified into colour, texture and shape. Multiple features are usually

combined in order to obtain a more representative descriptor of the object [70, 111, 136]. Fur-

thermore, temporal consistency of features can be exploited to merge the available information

of a person over time (multi-shot) [14]. Table 2.1 summarises different feature descriptors that

are extracted from the object images in the existing approaches.

2.3.1 Colour

The most commonly used appearance feature is the colour extracted in the form of histograms

[39, 50, 59, 64, 71, 89, 100, 115, 136, 178, 179]. Normalised histograms of colours are scale

invariant. Different colour channels and their combination are used: the Hue channel from the

HSV colour space [50]; the Hue and Saturation channels jointly [64]; or the three channels of

the HSV colour space [24, 59]. Also, the histogram of the RGB colour space is widely used [20,

39, 89, 135]. A concatenation of histograms from RGB, YCbCr, and HS (from HSV) colour

channels is adopted in [71, 136, 178]. An analysis by boosting classifier using image dataset

VIPeR shows how, for the re-identification task, the Hue channel is the most discriminative

followed by Saturation, Blue, Red, and Green channels [71]. This analysis is limited to scenes

where people are fully visible. Alternatively, the two chrominance channels from the YUV space

are used in [92], where a Gaussian Mixture Model is applied to find the most relevant colour

clusters, whose centres are adopted as descriptors. The Dominant Colour Descriptor (DCD) [13]

and the Major Colour Spectrum Histogram Representation (MCSHR) [116] compute the most

recurrent RGB colour values that are then used to represent an image. Moreover, Maximally
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Table 2.1: Object acquisition and feature extraction methods applied to datasets with different
camera settings. Key: Single - Single shot, Multi. - Multi-shot, Uncal. - Uncalibrated, Disj. -
Disjoint, LTH - Leg Torso Head, MRCG - Mean Riemaniann Co-variance Grid, BTF - Bright-
ness Transfer Function, LBP - Local Binary Pattern, SIFT - Scale Invariant Feature Transform,
ISM - Implicit Shape Model, HOG - Histogram of Oriented Gradients, SURF - Speeded Up Ro-
bust Features, GLOH - Gradient Location and Orientation Histogram, DCD - Dominant Colour
Descriptor, RHSP - Recurrent High-Structured Patches, Hist. - Histogram, P.V. - Personal video
dataset

Ref Camera settings Images Shape Features Datasets

[4] Calib. Disj. Indoor/Outdoor Single 2D-Grid Colour, Shape, Texture & Position VIPeR, P.V.
[7] Overlapping Indoor Single Bounding box Position on ground plane & colour Sports videos
[11] Uncal. Disj. Indoor Single LTH SIFT,SURF & Spin P.V.
[13] Uncal. Disj. Indoor Single 2D body parts Haar & DCD iLIDS
[14] Uncal. Disj. Indoor Multi. Bounding box MRCG iLIDS, ETHZ
[16] Uncal. Disj. Indoor/Outdoor Multi. 3D model Colour hist. ViSOR, Sarc3D
[18] Uncal. Disj. Indoor Multi. Bounding box SIFT,SURF,SC& GLOH Caviar
[19] Uncal. Disj. Indoor/Outdoor Multi. LTH Colour hist. & Epitome iLIDS,ETHZ, CAVIAR
[27] Overlapping Outdoor Single Bounding box Feet head positions & vertical axis ViSOR
[32] Overlapping Outdoor Single Bounding box Feet position PETS2001
[41] Uncal. Disj. Indoor Multi. LTH Colour hist. & Positions P.V.
[42] Uncal. Disj. Outdoor Multi. Bounding box Colour & appearance mask PETS2010
[47] Uncal. Disj. Indoor Single Bounding box Colour & Texture Feret
[51] Uncal. Disj. Indoor Multi. LTH Colour hist., height of LTH PETS2006
[59] Uncal. Disj. Indoor/Outdoor Multi. LTH Colour hist., RHSP iLIDS, VIPeR, ETHZ
[77] Uncal. Disj. Indoor/Outdoor Single 2D-Grid LBP hist. & Mean colour VIPeR, ETZH, Prid2011
[91] Calib. Disj. Outdoor Multi. Bounding box Feet position & BTF Online cameras
[94] Uncal. Disj. Indoor Multi. Bounding box SIFT & ISM Casia infrared dataset
[93] Uncal. Disj.Indoor Multi. Bounding box SIFT on infra-red images Casia infrared dataset
[100] Calib. Disj. Multi. Bounding box Colour hist., Co-variance & HOG CAVIAR, TRECVID08
[103] Uncal. Disj. Indoor/Outdoor Single Bounding box High level attributes iLIDS, ViPER, ETZH
[105] Overlapping Indoor Single Bounding box Vertical axis & homography P.V.
[106] Disj. Outdoor Single 2D Grid Colour hist., Gabor & HOG VIPeR, CAVIAR
[107] Overlapping Outdoor Single Bounding box Adaptive homographies P.V.
[112] Uncal. Disj. Indoor/Outdoor Single 6 stripes Colour hist. , Schmid & Gabor iLIDS, VIPeR
[115] Uncal. Disj. Indoor/Outdoor Single 6 stripes Colour hist. , Schmid & Gabor GRID, VIPeR
[117] Overlapping Outdoor Multi. Bounding box Colour hist. & feet position PETS2009, Caviar
[136] Uncal. Disj. Indoor/Outdoor Single 6 stripes Colour hist., Schmid & Gabor iLIDS, VIPeR
[150] Calib. Disj. Single Bounding box Colour hist. and shape CAVIAR, Video Web
[157] Disj. Indoor/Outdoor Single 2D Grid Colour hist. & LBP descriptors VIPeR, ETHZ, iLIDS
[161] Calib. Disj. Outdoor Single Bounding box Colour hist. & position ViSOR
[166] Disj. Outdoor Single 2D Grid Colour hist. & LBP descriptors CUHK, PRID, VIPeR
[167] Uncal. Disj. Indoor Single Upper Lower Colour hist. P.V.
[178] Uncal. Disj. Indoor/Outdoor Single 6 stripes Colour hist., Schmid and Gabor iLIDS, VIPeR
[179] Uncal. Disj. Indoor/Outdoor Single 6 stripes Colour hist., Schmid & Gabor iLIDS, VIPeR, ETZH

Stable Colour Regions (MSCR) [59] extract the homogeneous colour in the object image by

grouping neighbouring colour blobs. Finally, camera parameters and reflectance of the objects’

surface can be studied to obtain the main appearance characteristic of the object [89]. Camera

parameters refer to exposure time, focal length, and aperture size of each camera, which may vary

from one camera to the other, and they also depend upon camera settings. DCD, MCSHR, MSCR

and object reflectance are applicable only when an object image is obtained at medium/high

resolution (i.e. larger than 100×40 pixels) and there is a full-body visibility [89].
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2.3.2 Texture

Texture represents the spatial distribution of the intensities in an object image and can be a key

feature for person re-identification. Gabor and Schmid filters define two kernels for texture ex-

traction applied to the luminance channel [71, 115, 136, 178, 179]. Gabor filters are linear filters

used for edge detection. Frequency and orientation representations of Gabor filters are similar

to those of the human visual system. Schmid filters are rotational invariant Gabor-like filters.

HAAR-like features can be used to extract relevant textural information from the object image

with the aim to find recurrent colour distributions [13]. Furthermore, the ratios between different

regions in an image can be used as a discriminative feature. Ratios of colours, ratios of oriented

gradients and ratios of saliency maps can also be used as textural features [20]. Similarly, Re-

current High-Structured Patches (RHSP) extract the most common blobs from the image [59];

in addition to this, salient spatio-temporal edges (edgels) obtained from watershed segmentation

carry information of the dominant boundary and of ratios between RGB channels [64].

The distribution of spatial patches can be directly extracted in the frequency domain, for

example, Discrete Cosine Transform (DCT) coefficients can be used as textural features [17].

Spatial patch distribution can be extracted by computing the first and the second derivatives of the

person patch resulting in a covariance matrix [100, 165]. The symmetry within an object-image

is exploited in the extraction of local features, by weighting features based on their position with

respect to the symmetric part. In particular, Gabor and Schmid filters, and HAAR-like features

are local descriptors suitable for small patches, while the ratios, RHSP, salient edgels, DCT

coefficients, and covariance matrix can only be applied to images with medium/high resolution.

Furthermore, the Histogram of Oriented Gradients (HOG) gives information on the orientation of

the edges in an object image [100, 106, 121, 165], thus creating a feature that models the shape

of the object by its edge distribution. However, HOG features are only invariant to changes

in illumination and not to changes in pose and scale. Local Binary Patterns (LBP) are used to

describe spatial patterns using normalised colour intensities [77, 157, 166]. LBP can be combined

with HOG to extract the spatial information robust to illumination changes [157]. The Mean

Riemannian Covariance Grid [14] is used to generate a human signature from the detected objects

using LBP on the head regions [43]. Finally, interest points can be used for re-identification in the

case of variations in scale, pose and illumination [18]. Examples are SIFT [11, 14, 94, 93, 158],

SURF-like features [50, 75] and the Hessian Affine invariant operator [64].
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2.3.3 Shape

Shape can be used in the form of object representation (Sec. 2.2), and features are extracted from

the defined shape, while it can also used as a feature itself [54, 143, 162]. A bounding box can be

an essential or minimal representation of the object. The bounding box around each object is also

exploited by extracting the angle formed by the vertical edge and the diagonal of the bounding

box [39]. A more general feature is the height of the object when calibration information is

available [20]. Another method defines the principal axis as the height of the object based on the

camera spatial information [80].

A silhouette containing the pixels belonging to an object is also used to represent the shape of

the object [39, 54]. A silhouette is obtained by background subtraction and is based on the salient

edges [64]. The symmetry within the obtained silhouette can also be exploited in the extraction of

local features and weighting of features based on their position with respect to the symmetric part

[59]. These methods are robust to illumination changes but cannot deal with large pose changes.

In another approach, the silhouette is divided into decomposable triangulated graph structures

to represent more localised body parts [60]. However, silhouette segmentation requires high-

resolution frontal or back images of the full-object body and without occlusions. Alahi et al. [4]

define shape as rectangular regions starting from the centre and progressively moving outwards.

Features can be extracted from the image using a Region Covariance Descriptor (RCD) [160],

which aims to preserve shape, location and colour information. RCD is used in a multi-scale

quadtree descriptor [10].

Gait is a feature from the class of soft biometrics, which can be used along with other ap-

pearance features [17]. Gait is obtained by background subtraction and by accumulation of the

silhouette over time, which requires multiple high-resolution images containing side pose of ob-

jects. However, cameras may be located far from the objects in video surveillance, resulting in

low-resolution images. The requirements to obtain gait may not always be fulfilled because of

unavailability of full-body visibility or occlusions, Therefore gait remains an unsuitable feature

in re-identification approaches [23, 35].

2.3.4 Grouping

Multiple features are grouped with the intention to maximise the inter-object discrimination.

Appearance features are extracted from single [71, 136] or multiple images [122] in the form
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of colour, texture and shape of an object [20, 54, 59, 71, 89, 100, 136, 179]. Histograms of

colour-channels RGB [20, 39, 89], HSV [59], and YUV are used as colour features. Gabor and

Schmid filters are applied to one image channel and the histograms of convolved images are used

as texture information [71, 179]. LBP [108] and feature point descriptors like SIFT [121] are

also applied to extract textures. Features from colour spaces (RGB, YCbCr, and SV) and texture

types (Gabor and Schmid) are concatenated to increase their discriminative power [71, 136, 179].

The shape of an object can be preserved by RCD [160] and HOG [122]. HOG, SIFT and HSV

colour histograms can be used for shape, texture and chromatic content to build a discriminative

signature [121]. The mean colour values from small image regions can be combined with the

histogram of LBP to represent the image, and then pairwise sample differences are learned for

re-identification [79].

Features are also combined over time when extracted from multiple images of the same

object. Features extracted from single images can be grouped over time either by temporal ac-

cumulation [75] or by clustering [59]. Features can also be incrementally updated over time,

for example using Incremental MCSHR that updates MCSHR in order to increase robustness

to abrupt changes in illumination [116]. Features extracted from images of the same person

over time can be used as a set of positive samples for training a learning model-based method

[13]. Satta et al. [145] divide images into small components and the difference is found from

an existing bag of components, where the difference vector is represented as a descriptor of the

image.

2.4 Dimensionality reduction

Dimensionality reduction is the process of retaining the relevant information by describing most

but not all of the variance within the data. Dimensionality reduction reduces the amount of

information necessary to represent data. Two general approaches for dimensionality reduction

are: feature extraction and feature selection.

2.4.1 Feature extraction

Feature extraction is a transformation of data into a new feature space with lower dimensions.

The most well-known feature extraction method is Principal Component Analysis (PCA) [151].

PCA projects a dataset to a new coordinate system by determining the eigenvectors and eigen-
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values of a matrix. It calculates a covariance matrix of a dataset to minimise redundancy and

to maximise variance. PCA and Kernel PCA are used for feature extraction in face recognition,

where K-nearest neighbour is applied for classification [56]. PCA is suitable for data representa-

tion; however, it does not perform well in classification problems [151], such as re-identification.

Another feature extraction method, Fischer’s Linear Discriminant Analysis (LDA) is more

suitable for classification in the lower dimensional space [153]. LDA is a supervised technique

to classify samples of different classes by transforming the data to a different space. LDA tries

to find a line that best separates the two classes. A person re-identification approach combines

the parametric and non-parametric representation of colour as features followed by the feature

extraction using unsupervised PCA and supervised local LDA [130].

Moreover, Factor Analysis (FA) reduces the number of features by combining two or more

features into a single factor [171]. FA is useful in identifying groups with similar features. In

person re-identification, features are represented using local maximal occurrence, which analyses

the occurrence of local features to form a stable representation against viewpoint changes, while

a discriminant metric is learned by cross-view quadratic discriminant analysis [110]. K-means

clustering can also be considered as a feature extraction method [173]. It is an unsupervised

method, where features can be clustered and the centroid of the cluster can be considered as a

transformed feature.

Feature extraction requires the complete initial feature set for the feature transformation. The

extracted features can be altered if the initial feature set is unavailable/changed. Therefore, the

reduction in the feature cost because of less number of features, compared to the initial set, may

not be possible; however, the benefit in the performance gain can be achieved.

2.4.2 Feature selection

Feature selection aims at finding the most important features and their combinations for ef-

fectively describing and matching objects [46, 74]. Feature selection is an NP-hard problem.

Approaches based on heuristics exist, which approximate the solution by exploiting problem-

specific properties. Selection approaches produce a subset of features [97] and reduce redundan-

cies among features [62]. Feature selection is also an important pre-processing step in machine

learning that avoids over-fitting and increases the effectiveness of learning. Features can be se-

lected either based on group performance or on their individual performance [175]. The set

of individually selected features may not collectively provide good classification performance



Chapter 2: Related work 31

because of lack of information about feature correlation, while individual weak features may

provide strong discriminatory power in a group [82]. However, individually selected features

can perform well in constrained environments, for example if features need to be adaptively

discarded because of user requirements, application constraints or resource-constrained devices;

whereas in the case of feature grouping, the removal of a single feature may significantly reduce

the effectiveness of the whole feature set.

A method for ranking features according to their contribution to the task is presented by

Wei et al. [168]. The similarity between features is measured to generate a score for each

feature. The highest-scoring feature is selected and the process is repeated to choose the next

relevant feature. The feature importance and similarity between features can be exploited with

a greedy selection method [62], or boosted regression trees can be applied [128]. A hierarchical

feature selection method is developed by using RankSVM along with a quality measure to predict

the number of selected features [81]. The best-first search can be used to partition the features

into subsets that are then combined to maximise the defined information-retrieval measures [46].

The coherence between subgroups of data can also be used to rank features [82]. An approach

based on cooperative game theory evaluates the performance of each feature individually and

within groups to achieve a single collaborative goal [155]. The structural similarity between data

before and after feature selection is maintained and topological neighbourhood information is

used for computing the structural similarity [125]. An unsupervised feature-ranking algorithm

discovers Bi-clusters (subsets of data exhibiting similar behaviour for a subset of features) that

are used to evaluate feature inter-dependencies, separability of instances and feature ranking [82].

This approach inherits some characteristics from ranking and wrappers. Wrappers use learning

methods for feature selection and are classifier-dependent. A minimum-redundancy maximum-

relevance (mRMR) based approach can be combined with a wrapper method to select a compact

subset from the candidate features [131]. A kernel-based feature selection criterion incorpo-

rates the kernel trick with the class separability measures [163], where the kernel parameters

are automatically tuned by maximising kernel class separability criteria. Feature selection based

on a distance discriminant method converts the search problem of feature selection into feature

ranking. The approach achieves feature selection performance comparable to exhaustive-search

methods with a lower computational complexity [109]. The hierarchical clustering is applied to

select the optimal feature subset [175]. Features can also be selected based on improved per-
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Table 2.2: State-of-the-art feature selection methods.
[62] [125] [175] [81] [155] [82] [46] [163] [109] [131] [140] [111] CoPE

Selection

Best First Search X X X

approach

Structural Similarity X
Feature Cooperation X
Hierarchical Clustering X X
Game Theory X
Co-ordinate Ascent X
Kernel Class Separability X
Random forest X
Bi-clusters X
mRMR X
ReliefF X
Distance Discriminant X X

Dataset

Text Retrieval X
Medical Data X
UCI ML Benchmarks X X X X X X X
LETOR 4.0 X
Handwriting Images X
Carnegie Mellon Datasets X
Bio-Informatics X X
UCI regression X
Surveillance Videos X X

Evaluation Performance X X X X X X X X X X X X X
criteria Cost X

formance in sub-groups [112] of data. Recently, Ensemble of decision trees known as random

forests are used to group images of persons into sub-clusters based on similarity in the colour and

texture information, and the features relevant to each sub-clusters are selected by weighting to

improve the re-identification rate [111, 112]. Table 2.2 summarises and compares state-of-the-art

feature selection methods.

2.5 Data compression

Data compression refers to the process of reducing the amount of data needed to represent the

information. The reduced information can be stored and communicated over the network; how-

ever, data compression involves the additional overhead of encoding and decoding [69]. In a

re-identification scenario, the information can refer to the object representation in the form of

images and feature descriptors. Three types of redundancy can be identified and exploited in

the compression of object representation, namely, coding redundancy, spatial and temporal re-

dundancy, and irrelevant information. Coding redundancy occurs when more bits than needed

are used for the representation. Spatial and temporal redundancy occurs when information is re-

peated, for example a pixel similar to the neighbouring pixel, or pixels similar to those in the next

frame. Irrelevant information is the information which, if removed, does not affect the original
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information.

Compression can be of two types: (i) lossy compression, where the compressed information

cannot be completely recovered after the decompression, and (ii) lossless compression, where

there is no information loss. Removal of irrelevant information results in a lossy compression, for

example in the case of quantisation. Run Length Encoding (RLE) [69] is a lossless compression

technique suitable for spatial and temporal redundancy. RLE groups the similar data values as

run-length pairs, where each pair contains the data value and the number of times it is repeated.

Huffman coding [83] is another lossless compression method. Huffman coding generates the

smallest possible number of code symbols to represent the source symbol. A code lookup table

needs to be maintained and communicated for the decoding of Huffman code. Lampel-Ziv-Welch

(LZW) coding [170], on the other hand, does not require the codebook to be communicated.

An identical code book is generated while decoding, which removes the requirement of storing

and sharing the codebook along with the compressed data. In arithmetic coding, [1] an entire

sequence of source symbols is assigned to a single arithmetic codeword. As the information

increases, the interval (arithmetic value) used to represent it becomes smaller, while its storage

requirement increases.

Compression approaches can be applied in parallel to the existing object representation and

feature selection methods to further achieve data reduction in storage and communication. The

performance of compression methods improve if the data is provided in a batch, since more

redundancy is expected.

2.6 Cross-camera calibration

Cross-camera calibration uses scene and context information to assist the feature descriptors and

improve re-identification. It includes colour-calibration and spatio-temporal calibration. Colour

calibration maps the colour information from one camera to the other [116, 132, 135]. Spatio-

temporal calibration encapsulates information about the camera deployment, the spatial relation

between cameras, the entry/exit points in the scene and the travelling time across cameras [58,

89, 120, 123].
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2.6.1 Colour calibration

Cameras are deployed at different positions relative to the light conditions in a scene, which re-

sults in variation in illumination conditions across cameras. The colour responses of individual

cameras may also differ from each other. Cross-camera colour calibration models the colour rela-

tionship between pairs of cameras to compensate for illumination variations and cameras’ colour

responses. Similar colour responses can be achieved by iteratively tuning the camera hardware

parameters [85]. Madden et al. [116] perform the intensity transformation by a cumulative

histogram equalisation of the data from each camera view. A colour mapping is obtained by

finding the minimum cost path from the correlation matrix between two colour histograms [132].

Black et al. [24] perform the colour calibration by minimising the inter-bin distances between

object histograms across cameras. Javed et al. [89, 90] perform a direct mapping of brightness

value from one view to another, while assuming that a certain percentage of an object image

in a camera view has the brightness less than or equal to Bi and this percentage is equal to the

percentage of brightness less than or equal to B j in another camera view. This approach re-

quires a learning stage, where for each camera-pair a relationship must be found, which needs

to be updated over time to cope with changes in the lighting conditions throughout the day. It is

demonstrated that all brightness transfer functions (BTF) lie in a low-dimensional space that is

discovered using PCA on RGB colour intensities [89]. Clustering on the chromaticity space can

also be used to find an affine colour calibration [92].

Colour mapping models trained for a single illumination condition need to be re-trained as the

illumination of the scene varies over time because of variations in the lighting conditions, weather

and the sun position. Gilbert et al. [65] introduce an online learning method for inter-camera

illumination changes. Objects are tracked across camera view, and RGB transformations are

obtained using singular value decomposition. However, the approach requires good inter-camera

correspondence for the training. Chen et al. [37] exploit probable matches to calculate the BTFs.

The BTF subspace is updated over time by merging the new BTFs into the already learned BTF

subspace. An improvement of this approach is the use of Cumulative BTF (CBTF), where the

contribution of less common training samples is taken into account [135]. An Adaptive-CBTF

exploits the background information to estimate changes in the illumination conditions of the

foreground over time [134]. The colour calibration can perform well in the case of large inter-

camera illumination changes; however, it can only be applied to scenes where abrupt illumination
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changes are unlikely to happen.

2.6.2 Spatio-temporal calibration

Spatio-temporal calibration exploits the knowledge of the environment in which cameras are

deployed to estimate when and where objects can reappear in the next camera, thus restrict-

ing the re-identification task within a certain time interval and certain regions of the monitored

scene [120]. Spatio-temporal calibration performs a key role in the case of multi-camera asso-

ciation. Learning the travelling time across cameras can be complemented by the learning of

probable entry/exit regions in the camera network [58]. Kuo et al. [100] combine the informa-

tion of travelling time across cameras and the expected entry/exit points in the scene, with the

appearance model to obtain a probability of matching. When the relative camera positions are

known, people location and speed can also be discriminative features for each person [39].

Kettnaker et al. [95] propose a Bayesian approach for disjoint camera views, where it is

specified that a person can be in one camera at a time. The approach requires manual input such

as expected transition time between cameras, whereas entry/exit regions are selected manually

in [135]. Javed et al. [89] learn the inter-camera transition time using known object-association

information, the exit velocity obtained from object tracking within a camera, and known en-

try/exit points. The probability density functions of transition times combined with the appear-

ance information are used in the object association. A Markov model can be applied to under-

stand the discontinuities in the tracking between cameras [52]; however the approach requires

an identifiable object to be manually traversed through the network, for example a red ball in

this case. Another approach exploits the trajectory of an object passing through different camera

views as a Markov chain model, where the position of the object is updated over time using the

velocity [137]. In this approach the object information is used to estimate the camera position in

a global space. However, the approach assumes that the image plane and the ground plane are

parallel, which is not common in surveillance settings. An extension to this approach uses the

Kalman filters to estimate the tracks between the cameras [8]; however, the approach relies on

the assumption of linear motion, and therefore cannot predict the obstacles in between, such as

walls or other objects. On the other hand, in [123], hypotheses about locations of objects in non-

observed regions are generated based on the velocity of the objects, their position in the observed

regions, and by using an area map.

The approaches that exploit the spatial information are suitable for scenarios where non-
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observed regions are easy to model and people always follow the same paths. Makris et al.

[120] instead exploit the temporal transitions to create a topological map of the network. Each

camera’s entry/exit points are clustered using expectation maximisation [25, 119]. The peak in

the time differences between disappearance of objects from exit nodes and reappearance in the

entry nodes defines a temporal link between the two nodes. Gilbert et al. [66] extend [120] by

incorporating online recursive topology learning, and combine it with the appearance model from

[88]. The approach needs a light training on good initial tracking to start with. In [120], inter-

camera transition time is considered as a simple Gaussian distribution, which is extended to a

multi-model distribution in [159] by employing Markov Chain Monte Carlo process. Moreover,

Cai et al. [26] extend the Gaussian distribution by applying k-means clustering to separate the

transition times based on slow medium and fast object movements. Another approach suitable for

busy scenes, such as tube/train stations, exploits activity correlation to estimate camera transition

times. Activities that are repeated in time, for example train arrival, are identified to develop a

temporal link between cameras.

2.7 Object association

Association is the comparison of the extracted information (Sec. 2.2 and Sec. 2.3) from objects

across cameras to identify different instances of the same object. In order to perform the associ-

ation, we can measure the feature (dis)similarity using distance minimisation, learned classifier,

or by optimisation process (Table 2.3).

2.7.1 Distance minimisation

Person association using distance minimisation estimates the point-to-point dissimilarity between

feature vectors. The Euclidean distance is applied on feature vectors representing colour values

[59], interest points, or hypotheses about the locations [64, 123]. The Euclidean distance be-

tween two colours is also included in an ad-hoc similarity measure created to compare two DCD

feature sets [13]. Alternative measures are the sum of quadratic distances [50] and the sum of ab-

solute differences [75]. Other distance measures include the Kullback-Leibler Distance [20, 92],

the Bhattacharyya Distance [59, 135] and the Mahalanobis distance [59]. An additional measure

derived from the Kolmogorov distance is introduced by Madden et al. to compare IMCSHR

features [116]. If features do not belong to the Euclidean space, the Euclidean distance cannot
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Table 2.3: State-of-the-art methods for person re-identification. Legend: Spatio-temp = Spatio-
temporal, Distance = Distance based, Learning = Learning based, Optim = Optimisation based.

Ref. Appearance features Temporal Calibration Association
Colour Texture Shape grouping Colour Spatio-temp Distance Learning Other

[13] X X X X
[17] X X
[20] X X X X X
[39] X X X X X
[50] X X X
[59] X X X X
[64] X X X X
[71] X X X
[75] X X X
[89] X X X X X
[92] X X X
[100] X X X X X X
[116] X X X
[123] X X
[132] X X X
[135] X X X X
[136] X X X
[158] X X X
[165] X X X X
[178] X X X

be used [143]. For example, a covariance distance metric is used for covariance descriptor [160].

Correlation between colour histograms and HOGs of the objects is also used in [100]. If features

do not belong to the Euclidean space, the Euclidean distance cannot be used [143]. For example

a covariance distance metric is used for covariance descriptor [160]. In distance minimisation

methods, the most challenging part is the selection of the best distance for the specific set of

features usually performed by trial and error. One common aspect of these measuring meth-

ods is non-discrimination between features. Approaches based on measuring similarity between

feature sets are not robust to illumination changes unless cross-camera colour transformation is

performed. For example, a spatio-temporal relationship is used by Chen et al. [37] to find the

probability of matching a person from one camera to another, coupled with an adaptive BTF to

handle illumination changes.

2.7.2 Learning classifiers

An alternative to direct measures and colour calibrations, a classifier can be trained to learn the

changes between cameras using pairs of features labelled for positive (same objects) or nega-

tive (different objects) classes. Support Vector Machines (SVM) can be employed with DCT

features [17] and SIFT [158]. An improvement to SVM is the Ensemble SVM, which reduces

the computational cost of RankSVM for high-dimensional feature spaces besides converting the
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re-identification problem into a ranking problem [136]. Furthermore, AdaBoost is applied for

person re-identification to learn weak classifiers based on different feature sets and to identify

the most discriminative features [13, 71]. In an unsupervised learning approach, appearance at-

tributes are used to mine Attribute Sensitive Feature Importance (ASFI), which is then combined

with global features [111, 112].

A learning approach Large Margin Nearest Neighbour (LMNN) performs a linear transfor-

mation to minimise distances between a feature point and its K-neighbours with the same label,

and maximise distances from those with different label [53]. Another approach based on LMNN,

Probabilistic Relative Distance Comparison (PRDC) [178], maximises the probability of correct

matches while minimising that of wrong matches by learning the best distance measure for the

association. Unlike direct distances, these methods are less sensitive to feature selection. How-

ever, their results can be biased by the selection of the classifier parameters, thus making the

methods less flexible in different scenarios.

2.7.3 Optimisation approaches

Other approaches use optimisation-based algorithms. The concept of belief/uncertainty assign-

ment can be exploited and the decision for the association problem can be made on specific

ad-hoc rules [39]. An alternative approach finds the maximum likelihood Probability Density

Functions (PDF) for the appearance and spatio-temporal features of different observations of the

same object. The final decision is made by split graph [89]. Re-identification can also be per-

formed by Hungarian algorithm using colour, texture, and spatio-temporal features [100], where

the ’potentially’ correct matches are selected by Multi Instance Learning boosting on the spatio-

temporal features. Finally, dynamic programming is used to fit body models across cameras [64].

The main drawback of optimisation-based approaches is that they operate in a batch mode and

cannot run on-line.

2.8 Datasets

Snapshot-based and video-based datasets are used for the evaluation of person re-identification

methods. Some of the datasets have become standard by their extensive use, such as VIPeR

and iLIDS. Some datasets are created to evaluate the specific scenarios and challenges of re-

identification. In addition, we present two self-generated datasets: iLIDS-TC dataset [J1] having
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Table 2.4: Dataset for person re-identification
Ref Name Type No. of Scenario Video FPS No of Image size

cams resolution persons

[13] iLIDS-MA Images - Indoor - - 40 21x53 to 176x326
[14] iLIDS-AA Images - Indoor - - 119 21x53 to 176x326
[15] 3DPeS Video 8 Outdoor 704x576 15 200 31x100 to 176x267
[16] Visor Images - Outdoor 704x576 - 50 54x187 to 149x306
[21] SAIVT Video 8 indoor 640x480 30 150 30x95 to 30x156
[38] CAVIAR4REID Images - Indoor 384x288 - 72 17x39 to 72x144
[48] RAiD Video 4 Outdoor 640x480 30 16 32x62 to 86x170
[70] VIPeR Images - Outdoor - - 632 128x48 to 176
[121] WARD Images 3 Outdoor - - 70 20x85 to 30x156
[126] iLIDS Video 5 Indoor 640x480 25 1000 21x53 to 176x326
[148] PETS2009 Video 8 Outdoor 768x576 7 40 26x67 to 57x112
[146] ETHZ Video 1 Outdoor 640x480 15 146 13x30 to 158x432
[149] TRECVid2008 Video 5 Indoor 640x480 25 300 21x53 to 176x326

occluded instances of objects in a camera-pair, and the Torch dataset [C2] with five cameras

that view the same objects overtime. Table 2.4 summarises the datasets used to evaluate the

state-of-the-art approaches.

Common snapshot-based datasets are: iLIDS [13, 59, 136, 177], VIPeR [71], WARD [122],

UnderGround-GRID [111, 114] and CAVIAR4REID [38] (Fig. 2.2). These datasets are used

to validate appearance-based methods mostly containing people with full-body visibility. In

iLIDS images of people taken from four cameras at London Gatwick airport represent an indoor

setting in a crowded environment. Four datasets extracted from the iLIDS are: iLIDS-MCTS

[177], iLIDS-MA [13], iLIDS-AA [14] and iLIDS-MTC [J2]. iLIDS-MCTS [177] contains 476

images of 119 people in four cameras. iLIDS-MA [13] contains multiple images of 44 people

manually extracted from video frames. iLIDS-AA [14] contains multiple images of 100 people

automatically extracted using a HOG detection algorithm. iLIDS-MTC [J2] contains manually

cropped multiple images of 60 pairs of persons in two cameras. VIPeR [71] contains 632 image-

pairs of people taken from two outdoor arbitrary viewpoints [71] and presents significant pose

changes. A more recently introduced dataset WARD [121] contains 70 persons from three non-

overlapping fixed-cameras with the challenges of illumination changes, and variations in pose

and size. UnderGround-GRID [111, 114] dataset has eight cameras with non-overlapping FoV in

an underground train station. The dataset contains 250 pairs of images between two cameras and

775 images of people in a single camera. A multi-camera tracking dataset CAVIAR4REID [38]

represents an indoor shopping mall with two partially overlapping camera views. The dataset

contains multiple images of 72 pedestrians, where 50 people appear in both cameras and 22



Chapter 2: Related work 40

people remain in one only.

(a) VIPeR [71] (b) ViSOR [16]

(c) PRID [78] (d) iLIDS(MCTS) [177]

(e) UnderGround-GRID [111] (f) ETHZ [146]

(g) Cuhk [106] (h) Caviar [19]

Figure 2.2: Datasets used in the evaluation of person re-identification approaches.



Chapter 2: Related work 41

Video-based datasets include: Terrascope [92], V-47 [164], SAIVT-SoftBio [21], ETHZ

dataset [146], and two more datasets from Javed et al. [89] and Kuo et al. [100]. The Terrascope

dataset [92] consists of nine indoor cameras where eight people walk and act in an office environ-

ment. V-47 [164] dataset contains videos of 47 pedestrians in two cameras in an indoor setting.

This dataset is not crowded and has no illumination changes. SAIVT-SoftBio [21] consists of 150

people moving through an indoor building environment, recorded through eight calibrated fixed

cameras. The challenges of illumination, appearance and pose changes exist in these datasets;

however, the objects are without occlusions. ETHZ dataset [146] was originally designed for

object detection. Dataset is gathered using moving cameras, which makes it more challenging

than the datasets obtained using fixed cameras. Javed et al. [89] present video sequences from

three cameras in indoor and outdoor scenarios with large illumination changes and up to four

fully visible people. A more challenging dataset in terms of occlusions and with three outdoor

cameras is presented by Kuo et al. [100], where up to 10 people walk alone or in small groups.

Self-generated datasets include iLIDS-TC [J1] and Torch [C2]. iLIDS-TC dataset contains

348 people that transit from camera 1 (C1) to camera 3 (C2) in iLIDS. These two cameras repre-

sent non-overlapping views with considerable illumination changes in an indoor camera setting.

Images of 124 people are manually extracted. Each person is represented by a pair of images; one

while exiting a camera, C1, when the person is completely in C1 and the other on reappearance

when (s)he is completely in C2. People can be only partially visible because of occlusions. For

the remaining 224 people, we utilise the four existing datasets iLIDS-MA [13], iLIDS-AA [14],

iLIDS-MTC [J2] and iLIDS-MCTS [178] extracted from iLIDS videos and select one image per

person per camera, such that no person is repeated. All images are normalised to 128 x 64 pixels.

The Torch dataset is recorded during the Olympics 2012 torch relay passing through Mile End

road in London, UK. The dataset represent an outdoor crowded scene. Five partially overlapping

hand-held smartphones are used thus leading to occasional jitters and blurring (Fig. 2.3) in ad-

dition to changes in illumination, size and pose of people, and occlusions. Single images of 50

people common in all cameras are manually extracted on their first appearance in each camera

and their detection frames are stored.

Challenges of illumination and view point changes are common in all datasets. The additional

challenge of occlusion can be observed in iLIDS, ETHZ and Torch datasets, where ETHZ and

Torch datasets also include the challenges related to camera-movement as discussed in Sec. 1.3.
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(a) Torch-C3 (b) Torch-C2

Figure 2.3: Two sample frames from (a) C3 and (b) C2 in the Torch dataset. These frames are
captured almost at the same time instance and represent two very different views of the same
scene.

2.9 Discussion

Re-identification approaches focus on different phases of the problem from object acquisition to

label assignment as discussed in this chapter. Re-identification algorithms solely based on ap-

pearance usually achieve an accuracy of less than 40-50% [136] for the first ranking position (the

real re-identification score) because of challenges related to changes in pose and illumination

conditions, positions of the cameras and occlusions. Re-identification algorithms that operate in

batch mode also exploit spatio-temporal features, achieving results usually over 90% [89] for the

first ranking position in scenes with full-body visibility and uninterrupted straight-line transition

of people in non-observed regions (using a self-generated dataset). Nevertheless, methods solely

based on appearance can be tested using single snapshots of people and they become very impor-

tant when cameras are located far apart, where cross-camera calibration is very challenging and

spatio-temporal relations become unreliable.

In order to improve the recognition rate, a large number of features are extracted, combined

and communicated over the network [54, 71, 89, 136, 179]. After a certain number of feature

concatenations, additional features might decrease the re-identification performance while large

feature sets demand high processing, storage and transmission capabilities [154]. The choice

of the useful information, such as via feature selection, has not been explicitly applied in re-

identification. Until very recently a feature selection approach has been proposed with the moti-

vation of improving the re-identification [111] with no constraints on the resources, such as, for

example, the computational time for extraction of information and the amount of data generated

for the storage. The cost constraint in feature selection becomes particularly important when the

cost varies significantly across features to be shared among nodes of a smart camera network.
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We argue that the cost of a feature should be considered jointly with its performance, measured

as its ability to represent and discriminate an object, for the feature selection.

Another important aspect in the existing re-identification approaches is that persons are asso-

ciated in a camera-pair, which assumes that the camera with the previous detections of the same

person (source-camera) is known [20, 59, 71, 136, 179]. Spatio-temporal calibration information

can be used for the source-camera selection if the paths to be followed can be identified/known

[120, 100, 135, 89]. In the case of surveillance of open public areas with multiple entry/exit points

and varying persons’ movements, a person detected in one camera can have for its previous in-

stance multiple candidate cameras with varying views, illumination and appearance settings. The

pairwise-associations required for re-identification need to be extended for multiple cameras tak-

ing into account both the inter-camera and inter-person variations. In such a case, a many-to-one

camera association can be performed for person re-identification.

Based on this survey, we propose a feature selection method that represents the object with a

selected set of cost-effective and well-performing features and this reduces the storage and com-

putation requirements within a camera (Chapter 3). Next, we minimise the requirement of com-

munication between cameras for temporal alignment and object association (Sec. 4.2). Finally,

we extend from pairwise to multiple source-cameras the associations for re-identification (Sec. 4.3).
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Cost-effective features

3.1 Introduction

Multiple types of feature are exploited in existing re-identification approaches (Sec. 2.3) for

improving the re-identification rate without considering constraints on resource utilisation, which

significantly vary between the features. We propose a Cost-and-Performance-Effective (CoPE)

feature selection method that selects features which are both well-performing and inexpensive

such that feature selection and object association can be performed within smart cameras.

In this chapter, we first describe the object acquisition method from the head bounding box

that minimises the number of pixels required for object representation [J2]. We also define the

type of features that are used throughout this research. Next, we discuss the proposed CoPE ap-

proach that combines the cost (computational time and storage size) of using features with their

performance in re-identification to identify the most appropriate feature subset for the task of

person re-identification in a smart camera network [J1]. Instead of optimising the combined con-

tribution of the best set of features, the most discriminative, well-performing and cost-effective

features are selected by evaluating each feature individually. Selected features are ranked in

accordance with their added contribution to the task.

In Sec. 3.2, we describe the object acquisition step. The features used in our work are

discussed in Sec. 3.3. We measure the performance of a feature for re-identification in Sec. 3.4

and in Sec. 3.5 cost of feature is estimated. Sec. 3.6 discusses the combining strategy to select a

subset of the best performing features. In Sec. 3.7, we discuss the application of the CoPE in a

44
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Figure 3.1: Selection of the support for person representation. Starting from the bounding box
resulting from head detection, a stripe whose height is twice the height (h) and half the width (w)
of the bounding box of the head is selected. The stripe is shifted downward by h/4 to reduce the
presence of background pixels in the features used for the association.

camera network. Finally, Sec. 3.8 summarises the chapter.

3.2 Upper-body image representation

We introduce a person representation model for crowded scenarios that is defined as a verti-

cal stripe around the head location (Fig. 3.1) [J2]. The head and the upper-body are the most

frequently visible and recognisable parts of a person in the case of surveillance settings with

multiple people in the scene [176]. We assume that the person detection phase is solved using

a head detector [68, 172] resulting in a bounding box bm
n = (x,y,w,h) for the head of a person,

Pm
n in Cn, where x and y are the x-y coordinates of the top left corner, w is the width and h is the

height of the bounding box. From a given bounding box bm
n , a vertical stripe of the upper-body

is generated as:

Pm
n = f (bm

n ) = [x+w/4,y+h/4,w/2,h∗2]. (3.1)

A set of features as discussed in Sec. 3.3 is extracted from the upper-body shape. We compare

the re-identification performance of the proposed upper-body shape with the existing approaches

using full-body object representation that is divided into multiple horizontal stripes (Sec. 5.2).

Full-body image representation is an image obtained in object acquisition that includes all the

body parts of an object.
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Figure 3.2: Colour and texture features extraction. Colour features are extracted from different
channels (top row). Texture features are extracted by applying Schmid (middle row) and Gabor
(bottom row) filters on the Y channel [71, 112, 136, 179].

3.3 Feature sets

We use the most commonly employed colour and texture features in re-identification1 [71, 112,

136, 179]. These features remain suitable for extraction in most surveillance settings because

they do not depend strongly on the object appearance (Fig. 3.2). Each feature is a 12-bin his-

togram of a colour channel or a filtered image. Nine colour channels (R, G, B, Y, Cb, Cr, H, S, V)

from RGB, YCbCr and HSV colour spaces are used. For texture, Gabor and Schmid filters are ap-

plied on the Y-colour channel of the image. Eight Gabor filters are applied with the following pa-

rameters: (γ,θ ,λ ,σ2) = (0.3,0,4,2), (0.3,0,8,2), (0.4,0,4,1), (0.3,π/2,4,2), (0.3,π/2,8,1),

(0.3,π/2,8,2), (0.4,π/2,4,1), (0.4,π/2,8,2), where γ is the aspect ratio, θ is the angle in ra-

dian, λ is the wavelength of sinusoidal factor and σ2 is the variance. Thirteen Schmid filters

are applied with the following parameters: (σ ,τ) = (2,1), (4,1), (4,2), (6,1), (6,2), (6,3),

(8,1), (8,2), (8,3), (10,1), (10,2), (10,3), (10,4), where σ is the standard deviation and τ is

the number of cycles.

1It is to be noted that the proposed approach to select cost effective features does not depend on the
type of features extracted.
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3.4 Feature performance

The feature performance is measured for each pair of the destination and source-cameras (Cn,Cnq).

The performance vector ΠΠΠr represents the performance of a feature fr on M persons visible in

two cameras. The training set is composed of PPPn = {Pm
n }

Mn
m=1 and PPPnq = {Pk

nq
}Mnq

k=1, where

Mn = Mnq = M in the case of two cameras, and same value of k and m represents the same per-

son. We extract the feature sets FFFm
n = { fff mr

n }R
r=1 and FFFk

nq
= { fff kr

nq
}R

r=1 from each object-image in

PPPn and PPPnq , respectively. We measure the performance of fr by analysing the similarity between

the two views of the same person as well as the similarity with the other M−1 people, using fr.

The similarity between two instances fff mr
n and fff kr

nq
of fr is obtained by a relative matching

distance function2 g(·, ·), which receives as input a feature pair and returns the feature similarity

dmkr between Pm
n and Pk

nq
as

dmkr = g( fff mr
n , fff kr

nq
). (3.2)

For each Pm
n , we have M distances, each from Pk

nq
in PPPnq . Each dmkr is normalised (0≤ d̂mkr ≤ 1)

as

d̂mkr =
dmkr−mink dmkr

maxk dmkr−mink dmkr , (3.3)

where mink dmkr and maxk dmkr are, respectively, the minimum and the maximum distances of

Pm
n from PPPnq using fr. The set of M normalised distances d̂dd

mr
= {d̂mkr}M

k=1 contains one distance

corresponding to the same person in Cn and Cnq (d̂mmr: distance for correct match) and M− 1

distances of Pm
n from the instances of other persons in Cnq (EEEmr ⊂ d̂dd

mr
: the set of distances for

incorrect matches).

In the ideal case, a feature fr is considered well-performing for Pm
n if the distance between the

correct matching pair is smaller than the minimum value of distances in EEEmr using fr. However,

the ideal condition cannot be satisfied for a real-world re-identification scenario with the cur-

rently available features in the state of the art (Sec. 2.3) and the challenges involved (Sec. 1.3).

Therefore, we need to relax the criterion, which requires an averaging method that could rep-

resent the whole mass of the data. Thus, the median of the incorrect distances, med(EEEmr), is

selected because, compared to other averaging approaches, median gives the most central ten-

dency of a set, and remains least effected by outliers and measurement errors. Although median

ensures that the selected feature performs better for the majority of the cases, i.e > 50%, it is still

2g(·, ·) refers to Bhattacharyya, L1-Norm and Chi-square distances (Table 5.1).
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an empirical choice. In the case of an easy set of data, the median should be replaced with that of

an ideal case discussed earlier, or a near ideal case (e.g. the average could be defined as greater

than 95%, or 2σ ). The performance score Πmr is measured as

Π
mr =

d̂mmr

med(EEEmr)
. (3.4)

The condition d̂mmr < med(EEEmr) leads to 0 ≤ Πmr < 1 in Eq. 3.4. The smaller Πmr, the better

the performance. The condition Πmr ≥ 1 indicates that fr performs poorly. For each fr, we define

the performance vector ΠΠΠr using M persons as

ΠΠΠ
r = [Πmr]Mm=1, (3.5)

where each element Πmr corresponds to the performance score of fr for a single person in the

training data. The feature fr with minm Πmr ≥ 1 for all M persons are discarded before performing

the feature selection thus resulting in R̂ ≤ R remaining features. We then define the M × R̂

performance matrix ∆∆∆ as

∆∆∆ =

[
Πmr

]
M×R̂

, (3.6)

where m = 1, . . . ,M and r = 1, . . . , R̂. The rth row of ∆∆∆ represents the performance vector ΠΠΠr

of fr for PPPn, while χχχm is the mth column representing the performance comparison of Pm
n for R̂

features. The performance matrix ∆∆∆ is further analysed jointly with the cost of features discussed

in the next section.

3.5 Feature cost

We define the cost vector ΨΨΨr of fr by considering two independent components: the compu-

tational time for feature extraction, Γmr
n , and the feature storage size, β mr

n . The range of cost

components can vary considerably across different fr, i.e. Γr
mn and β mr

n can have extremely large

or small values of time and size, respectively. In the case of irregular distribution of values, these

extreme cases can result in making a single feature dominate others in the feature selection pro-

cess. Since normalisation alone is not sufficient for such scenarios, we explicitly define the upper

bound of the cost components by assuming that minβ mr
n

= 1byte and minΓmr
n
= 1ms. We aim to

define and compare the basic units with useful information and least measurement errors. For

size we select the smallest unit which retains the meaningful information, i.e. byte. For time we
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select the unit millisecond (ms). While the minimum units may depend upon the measurement

system, it is observed that under the given experimental conditions and measurement tools the

ranges below ms are found to be less accurate and more sensitive to noise. The lower bound of

cost components is obtained by taking the inverse of the average of the two cost components.

Since we aim to select features with smaller cost components, the inverse average becomes use-

ful by suppressing the large values while magnifying the small ones. The cost vector ΨΨΨr is given

as

ΨΨΨ
r = (Ψr

β
,Ψr

Γ) =

 αMN
N
∑

n=1

M
∑

m=1
Γmr

n

,
(1−α)MN

N
∑

n=1

M
∑

m=1
β mr

n

 , (3.7)

where α ∈ [0,1] is a weight that accounts for the generalisation of the approach to different

scenarios, where one constraint may be more important than the other. For example, α = 0 when

a limited storage space is available with no constraints on the computational time, and α = 1 for

vice versa.

In order to combine the two cost components, we perform scaling, which standardise the

ranges of the two independent values. The scale factor may vary depending upon the system

requirements. In this research, the scale factor is defined as 1byte = 1ms. We measure the mag-

nitude of the cost vector by calculating the Euclidean norm ||ΨΨΨr||, where 0 < ||ΨΨΨr|| ≤
√

2. The

larger ||ΨΨΨr||, the cheaper the feature. Since this cost score is obtained by combining two inde-

pendent components in Eq. 3.7, new cost constraints can be included as additional independent

components of the vector.

3.6 Feature selection

We perform a competitive feature selection by exploiting ΨΨΨr and ΠΠΠr of each fr (Fig. 3.3) such

that the least costly features exhibiting the best performance are selected. We define a vector

VVV that contains the elements Πmr ≤ 1 from ∆∆∆ sorted in ascending order. We divide VVV into R̂

bins where each bin Ii contains M performance scores sorted in decreasing order such that in the

best case the feature with the best performance for all the M persons can be selected in a single

iteration. A set ΦΦΦr
i is defined which contains the performance scores Πmr within Ii for each fr.

Figure 3.4 shows an example of performance matrix ∆∆∆, and highlights the vector VVV , the bin Ii

and the set ΦΦΦr
i . We iteratively traverse each bin Ii until all performance scores in VVV are exploited

for feature selection. Cost is considered jointly with performance to select a cheaper feature
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Figure 3.3: Block diagram of the proposed Cost-and-Performance-Effective (CoPE) feature se-
lection approach.

when comparable results can be obtained by the features in the set. We calculate the combined

importance score Ar
i of each fr within Ii as

Ar
i =
|ΦΦΦr

i | ||ΨΨΨr||
med(ΠΠΠr)

, (3.8)

where ||ΨΨΨr|| is the Euclidean norm, |ΦΦΦr
i | is the cardinality of ΦΦΦr

i that represents the number of

persons for which fr has the performance scores within Ii, and med(ΠΠΠr) is the median of ΠΠΠ
r

representing the overall performance of fr in the whole data set. The importance score Ar
i gets

the maximum value for the feature fr, which has the least cost, the maximum number of Πmr

within the interval Ii (highest performance in Ii), and the highest average performance. The best

performing feature can be selected as

r̂ = argmax
r

Ar
i , (3.9)

where r̂ is the ID of the feature with the highest combined importance score Ar
i .

Let YYY nqn be the list of selected features for Cn and Cnq . If fr̂ /∈ YYY nqn then fr̂ is appended in

YYY nqn. The set ZZZ contains the list of persons from the dataset that have already taken part in

the selection of fr̂, given as ZZZ ∪Pm
n ∀ Πmr ∈ΦΦΦr̂

i . Once fr̂ is selected, we remove from VVV the

performance scores ΠΠΠr̂, and χχχm for which χχχm∩ΦΦΦr̂
i 6= ϕ . This removal avoids the selection of a

feature that has the same performance as that of an already selected feature. Each selected feature

is now representative of a unique subset of data, thus increasing the diversity in the feature set by

covering a wider range of data. We then repeat the process for selecting the next best feature.
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Figure 3.4: Example of performance matrix ∆∆∆ containing performance score values Πmr (hori-
zontal axis) obtained for R features (vertical axis) and M persons (colour coded), where r = 1 · · ·6,
m = 1 · · ·7, R = 6 and M = 7. VVV contains Πmr in the range [0,1]. The bin Ii within VVV contains
M values of Πmr. The values within Ii are spread among R features such that each feature has a
set ΦΦΦr

i containing Πmr and ∑
R
r=1 |ΦΦΦr

i | = M. The bin I1 for i = 1 is illustrated in the figure. For
each feature fr we define a set ΦΦΦr

1, e.g. when r = 5, f5 contains ΦΦΦ5
1 = {Π35,Π75,Π45}, |ΦΦΦ5

1| = 3
and ∑

6
r=1 |ΦΦΦr

1| = 7; f4 is discarded because minm Πm4 ≥ 1; person m = 6 is discarded because
minr Π6r ≥ 1.

Feature selection continues within the same bin Ii until all performance scores have been

utilised for the selection. Then we move to the next bin in VVV . The list YYY nqn is progressively

filled with fr̂ in order of importance. The algorithm stops when all persons in the training data

are exhausted (|ZZZ| = M) or when all features are selected (
〈
YYY nqn

〉
= R̂, where 〈·〉 counts the

elements in the list). In the former case we obtain a subset of features. In the latter case the

method returns the complete feature set with features ranked in order of importance.

Note that because the selected features in YYY nqn are ranked by decreasing importance, the

feature set can be further reduced by dropping the IDs of the least important features should the

constraints of the application become more restrictive. CoPE is summarised in Algorithm 1.

3.7 Discussion

Typical steps that can be performed for object re-identification in a smart camera are shown in

Fig. 3.5. Detection is performed in a video frame and the image corresponding to an object

is obtained. From the acquired object-image a set of features can be extracted. The features

are encoded for temporary storage within the camera and for communicating over the network
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Algorithm 1 CoPE feature selection
M : total number of persons;
R̂ : number of features;
Cn : Source-camera in the network;
Cnq : Destination camera;
fr : rth feature in the feature set;
Pm

n : mth person in Cn;
ΨΨΨ

r : cost vector of fr;
Π

mr : performance score value for Pm
n using fr;

ΠΠΠ
r : performance vector for fr;

∆∆∆ : performance matrix;
χχχ

m : R̂ performance scores for Pm
n ;

VVV : vector containing sorted values of Π
mr ≤ 1 from ∆∆∆ ;

Ii : ith bin with values from VVV ;
Ar

i : combined importance score of fr in Ii;
YYY nqn : list of selected features for Cn and Cnq ;
ZZZ : set of people taking part in the selection;
ΦΦΦ

r
i : set of Π

mr in VVV within Ii for fr;
〈·〉 : number of elements in the list;
| · | : cardinality of a set;

1: ZZZ = φ , YYY nqn = φ

2: while |ZZZ| ≤M or
〈
YYY nqn

〉
≤ R̂ do

3: while 1≤ i≤ R̂ do
4: for r = 1 to R̂ do
5: ΦΦΦ

r
i = Π

mr in VVV within Ii for fr

6: end for
7: for r = 1 to R̂ do
8: calculate Ar

i using Eq. 3.8
9: end for

10: get r̂ using Eq. 3.9 . ID of selected feature
11: if fr̂ /∈YYY nqn then
12: append fr̂ to YYY nqn
13: end if
14: remove χχχ

m from VVV ; ∀ Π
mr ∈ΦΦΦ

r
i

15: ZZZ = ZZZ∪Pm
n ; ∀ Π

mr ∈ΦΦΦ
r̂
i

16: remove ΠΠΠ
r̂ from VVV

17: end while
18: end while

for association. In order to perform the re-identification, association is performed between the

received and extracted features to obtain the correspondences.

Feature selection using CoPE is performed once using training data when a camera network

is set-up. Then each camera locally stores the list of selected features YYY nqn for each source-

camera Cnq . If a new camera is added to the network, the training is performed for the new

camera in pair-wise manner [96]. Note that features selected for a camera pair may not always be

appropriate for another camera pair because of differences in illumination conditions and camera

pose with respect to the objects. This approach, developed for camera pairs, is appropriate for

distributed multi-camera settings where cameras communicate with each other without a central

control unit. CoPE feature selection reduces the storage and computational requirements for re-

identification. A performance matrix ∆∆∆ is generated for each camera pair (Cn,Cnq) , while the
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Figure 3.5: Block diagram representing the processing steps of person re-identification within a
smart camera.

cost vector ΨΨΨr already takes into account N cameras and therefore remains the same. N cameras,

in the extreme case, form a complete graph, where each camera has N−1 source-cameras. The

time complexity of feature selection for such a network is N(N + 1)/2 times that of the feature

selection for a camera pair.

Object association can be performed by direct distance minimisation or a learning method

can be applied. When machine learning is used for object association, two training phases are in-

volved, namely the training for feature selection and the training for learning the re-identification

model. Each destination-camera stores the trained models (weights) in addition to the selected

feature IDs for each of its source-cameras. The inclusion of learning models with the CoPE fea-

ture selection is independent of the feature selection itself, and there is an increase in the storage

cost (fixed) because of the local storing of the trained models (and not because of the feature

selection).

In a surveillance system resources are mainly deployed to perform three main tasks for re-

identification, namely: object detection, feature extraction, and association. The computational
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time and storage size of a complete system can be calculated as

Timesys = 2×M(Tdetect +Tf eats +Tassoc),

Storagesys = 2×M(Bimg +B f eats)+Bmodel,

(3.10)

where M is the number of objects detected in each of Cn and Cnq , Tdetect , Tf eats and Tassoc are the

times required for detection, feature extraction and object association, respectively. In storage

requirements Bimg, B f eats and Bmodel are the bytes required for storing image, feature sets and

weights of a learning model (if any), respectively. Given that Tdetect = 0.2 sec (with 2.66 GHZ

processor on PETS dataset) [172] and Tf eats = 2 sec (Sec. 1.3.2). For associations we require

M comparisons, where M is the total number of object-images detected in a source-camera. If

time for one comparison is Tassoc = 1 ms, we require 316 comparisons in VIPeR dataset for

a single association. Thus, Timesys = 2× 316(0.2+ 2+ 0.001) = 1391 sec, where the major

contribution is due to Tf eats. In order to measure the system storage requirement we assume

that the object detection part returns an object image with Bimg = 2 KB and the feature set has

B f eats = 1 KB (Sec. 1.3.2). If we ignore Bmodel , the Storagesys = 2×316(2+1) = 1896 KB. If

object-image can be discarded after the feature extraction then B f eats has the sole contribution

in the storage requirements of the system. With the proposed CoPE features, the storage and

computation requirements can be reduced by 80% of the complete feature set. Further details are

discussed in experimental evaluation (Sec. 5.2.3).

3.8 Summary

In this chapter, we proposed a feature selection approach that identifies the most appropriate

features for person re-identification. The amount of data stored for each feature and the com-

putational time for its extraction are used jointly with their performance to generate an overall

feature score. The best features are selected in a defined range of scores to reduce the perfor-

mance overlap; a measure of similarity among features. We also discussed how the proposed

approach can be applied in a camera network of N nodes and the setup requirements.

In the next chapter we discuss our two association approaches, which require less information

sharing, and can perform the re-identification with multiple source-cameras.
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Association for re-identification

4.1 Introduction

Extracted features from the objects detected in a source-camera need to be communicated to

the destination-camera to perform re-identification. This communication can be limited by the

bandwidth constraints. The number of possible matches for association within a camera pair and

the number of source-cameras also affect the re-identification rate. In this chapter we propose two

methods of object association that improve the re-identification rate with minimum information

sharing and extends the association to multiple source-cameras.

The first association approach (Sec. 4.2) minimises the information sharing requirements

between the cameras for association [C2]. The approach exploits the well-known concept of

difference from reference features for object representation. The generated difference vectors

are communicated over the network for association. We perform temporal alignment same as

in [120] to restrain object assignments within the defined temporal boundaries. The association

is performed by the optimal assignment using the Hungarian algorithm.

In the second approach (Sec. 4.3), unlike existing appearance based association methods spe-

cific to camera pairs, we preform association in a more generalised case, where a camera detects

objects that can come from an unspecified source-camera of the network [C1]. We estimate the

distributions of matching scores obtained by association of objects (using appearance informa-

tion) in each camera pair. Using these distributions we measure probabilities of a correct match

from the objects detected in a group of source-cameras.

55
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Figure 4.1: Block diagram of the proposed object association approach using difference-vectors
(Sec. 4.2).

4.2 Association using difference-vectors

The block diagram of the proposed difference-vector based association approach is shown in

Fig. 4.1. We have a set of N smart cameras CCC = {Cn}N
n=1 with partially overlapping FoV. We

assume that the object detection and tracking have been solved [68, 86] within each camera

independently. A set of Mn objects PPPn = {Pm
n }

Mn
m=1 is detected in destination-camera Cn. Each

object is represented with a cropped image.

4.2.1 Histogram equalisation

In order to minimise the effect of illumination variations and contrast adjustment for each Pm
n ,

we perform histogram equalisation within each camera [2]:

hist(i)eq =


(

U×hist(i)c f

)
− (h×w)

(h×w)

 , (4.1)
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Figure 4.2: Example of histogram equalisation. The colour contrast between the same person
detected in two cameras can be observed. After histogram equalisation the colour of the images
are transformed into the same range.

where U is the number of intensity levels, h and w are the height and the width of the object

image Pm
n in pixels, and hist(i)c f is the cumulative sum of the histogram until the bin with intensity

value i in Pm
n . For each R, G, and B colour plane, the intensity value i of the image is replaced

with hist(i)eq and a potentially narrow band of colours is spread over the whole available intensity

range. Unlike colour-calibration approaches (Sec. 2.6), histogram equalisation neither require

training data nor any information shared from other cameras. Fig. 4.2 shows an example of his-

togram equalisation applied to each of the RGB colour channels of the extracted images of the

same person detected in two cameras. It can be qualitatively noted in the example images that

after the histogram equalisation the colour of images obtained from the cameras with low and

high contrast settings become near similar. However, since histogram equalisation does not use

cross-camera colour information for adjusting brightness, the results, in general, are less accu-

rate compared to the colour-calibration [133]. Histogram equalisation is indiscriminate between

background and the object, and spreading of intensities can lead to the loss of information.
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4.2.2 Difference-vector representation

From each histogram-equalised image, we extract R colour and texture features1 as a feature

vector FFFm
n = [ fff mr

n ]Rr=1 [71, 136, 178]. In order to reduce the cost of storage and transfer of FFFm
n ,

we generate for each Pm
n an object representation ΩΩΩm

n = [Ωm j
n ]Jj=1, which is a difference-vector

obtained by measuring differences between the extracted feature vector FFFm
n and J reference-

feature vectors {κκκ j}J
j=1 within each camera as

ΩΩΩ
m
n = [||κκκ j − FFFm

n ||]Jj=1, (4.2)

where ||.|| is the Euclidean norm. We normalise ΩΩΩm
n such that

J
∑
j=1

Ω
m j
n = 1. In order to obtain κκκ j,

we use an image dataset [71] for reference images. Unlike other methods for image retrieval and

classification [36], we have no scene dependency requirements. The only requirement is that the

features extracted from the detected object is the same as the one extracted from the reference

images. The extracted feature vectors from the reference dataset are clustered for date reduc-

tion to their centroids. We use the Lloyd’s k-mean clustering algorithm [113] because of being

the simplest, less computationally expensive, and requiring the least parameter-adjustments, in

grouping similar data elements. The clustering returns J clusters of feature vectors, where J is

fixed to the number of features, i.e. R, and the centroid of each cluster represents one reference-

feature vector κκκ j. Similarly to the bag-of-words model, each camera locally stores {κκκ j}J
j=1. We

use the obtained object representation ΩΩΩm
n (Eq. 4.2) for associating objects across cameras that

reduces the amount of data required for communication.

4.2.3 Temporal alignment

We perform the temporal alignment of cameras for object association. The concept of temporal

alignment is adapted from [120]. Temporal alignment allows us to perform the group assignment

using ΩΩΩm
n of the detected objects. Let Pm

n be detected and tracked between frames tm(s)
n and tm(e)

n

in Cn, where s and e indicate the start and the end frames of a tracked object. The number of

frames wm
n during which Pm

n is tracked are wm
n = tm(e)

n − tm(s)
n +1.

For each Pm
n , we define a temporal search window WWW m

nq
in Cnq representing the time interval

in which Pm
n is likely to be observed in source-camera Cnq . In order to select WWW m

nq
, we apply a

plesiochronous approach to perform the temporal alignment of the cameras. Let PPPnq = {Pk
nq
}Mnq

k=1

1Features are discussed in Sec. 3.3.
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Figure 4.3: Histograms of differences of the detection frame-numbers. The green bars show
all the possible differences between detection pairs across two cameras. The red bars show the
differences in detections of the same object in two cameras.

be Mnq objects in Cnq , first detected in frames {tk(s)
nq }

Mnq
k=1. For each tm(s)

n , we obtain a set ΛΛΛm
nqn of

Mnq differences from {tk(s)
nq }

Mnq
k=1 in Cnq as

ΛΛΛ
m
nqn = {ϕtm(s)

n − tk(s)
nq
}Mnq

k=1, (4.3)

where ϕ is the ratio of the frame rates of Cn and Cnq . For Mn detected objects in Cn, we obtain

an Mn×Mnq difference matrix DDDnqn = {ΛΛΛm
nqn}

Mn
m=1. By analysing the distribution of values in

DDDnqn, we can observe that the difference of frame numbers of the first frames of two different

tracked objects detected in Cn and Cnq can vary significantly, while the difference between the

first frames of the same objects detected in two cameras consistently remains within a narrow

range. In order to identify that range, we take the histogram of values in DDDnqn (Fig. 4.3). The bin

size of the histogram depends on the average number of frames during which an object remains

visible in Cn, measured as w̃n = 1
Mn

Mn

∑
m=1

wm
n . Mean of the bin with the most frequently occurring

values represented as δnqn is the time shift (in number of frames) between Cn and Cnq . Using δnqn,
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we estimate the temporal search window WWW m
nq

for Pm
n as

⌊
ϕtm(s)

n +δnqn−ϕw̃n

⌋
< WWW m

nq
≤
⌊

ϕtm(s)
n +δnqn +ϕw̃n

⌋
. (4.4)

The objects detected in Cnq within WWW m
nq

are the candidates for matching with Pm
n .

4.2.4 Object association

In order to find the association between the objects, we measure the Bhattacharyya distances

BBBm
n = {Bmk

n }
Mnq
k=1 between ΩΩΩm

n and {ΩΩΩk
nq
}Mnq

k=1,where Mnq objects are detected in Cnq . The distance

Bmk
n is given as

Bmk
n =


−ln

(
J
∑
j=1

√
Ω

m j
n .Ωk j

nq

)
for Pk

nq
within WWW m

nq

∞ otherwise.

(4.5)

In order to avoid the association with objects detected outside the temporal window WWW m
nq

, we

assign Bmk
n =∞. The assignment of Pm

n to Pk
nq

with the minimum distance Bmk
n from Pm

n results

in multiple assignments to a single object because Pk
nq

can also have minimum matching distance

from another object in PPPn (Fig. 4.4). The problem of multiple assignments can be solved by

performing group assignment in which no object is assigned more than once. We perform the

group assignment using the Hungarian algorithm [99], which takes as input an Mnq×Mn distance

matrix HHH = [BBBm
n ]

Mn
m=1 and assigns labels to the objects in two cameras without repetition.

4.3 Association using camera-invariant scores

Appearance based re-identification approaches perform association between a camera pair. In

a multi-camera system many-to-one camera associations are needed, since targets may transit

from different source-cameras to a destination-camera (Fig. 4.5). In such a scenario existing

approaches require spatio-temporal calibration information (Sec. 2.6.2), such as paths to be fol-

lowed and entry/exit regions, for camera selection. Spatio-temporal information may not always

be available and can be difficult to model. For example, open spaces such as parks and halls

without fixed paths and entry/exit points; and closed spaces with obstructions such as doors

where multiple exits may converge to a single entry point. The difference in the appearance of

an object also varies from one camera pair to the other because of variations in source-cameras’

positions and illumination conditions (Sec. 1.3). To address these challenges, we propose a per-
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P1
n 0.118 0.143 0.169

P2
n 0.139 0.154 0.178

P3
n 0.145 0.170 0.182

(a) (b) (c)

Figure 4.4: Example of object association for re-identification for (a) the three objects detected
in cameras Cn and Cnq . (b) In each row, the detected object-image Pm

n in Cn is in the left most
column, while the next three columns show PPPnq detected in Cnq sorted based on (c) the Bhat-
tacharyya distances between Pm

n and PPPnq . Red boxes show the optimal assignment using the
Hungarian algorithm [99]. The algorithm selects those matches that have the minimum distances
while avoiding multiple assignments.

Cqn 
Cn 

(a)

Cn 

Cq1 

. 

. 

. 

(b)

Figure 4.5: Person re-identification performed in camera Cn in (a) state-of-the-art and (b) the
proposed approach. Arrows represent the considered direction of movement of people.

son re-identification approach that generates camera-invariant matching scores by exploiting the

variations in the appearance of objects in camera pairs (Fig. 4.6). Each camera pair is represented

with two parametric distribution models obtained by curve fitting on intra-class and inter-class
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Figure 4.6: Block diagram of the proposed multiple source-cameras re-identification approach
(Sec. 4.3). Switch s = 1 is Training and s = 2 is Testing,NNN n is the set of source-cameras of Cn.

similarity scores. These two models are combined to generate the probability of a correct match

between a new target in the destination-camera and those in all source-cameras. Since the pro-

posed approach relies only on the appearance information to perform both the camera selection

and the object association, it can perform the re-identification even in the case when spatio-

temporal calibration information is not available/reliable.

For each object-image Pm
n in Cn we aim to identify its other instance detected in an unspecified

source-camera Cnq in NNN n. If Mnq objects are detected by each source-camera Cnq that go to Cn,

the number of objects Mn detected in Cn is given as

Mn =
N̂n

∑
q=1

Mnq . (4.6)

We extract the feature set Fm
n = {fmr

n }R
r=1 containing R features from each Pm

n in Cn . We obtain

Mnq similarity scores {Smk
nqn}

Mnq
k=1 between Fm

n and the obtained feature sets {Fk
nq
}Mnq

k=1 from Cnq .

A similarity score can be obtained by measuring distances such as Bhattacharyya distance and

L1-Norm [70]. It can also be the obtained as a probability such as PRDC [179], or as confidence

scores obtained by learning methods such as RSVM [136] and ASFI [111].

4.3.1 Training

We exploit the set of similarity scores Snqn between Mnq objects detected in a camera pair

(Cn, Cnq) given as

Snqn =

{{
Smk

nqn

}Mnq

m=1

}Mnq

k=1
. (4.7)
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The set Snqn contains Mnq × Mnq elements. We divide Snqn in two subsets S+
nqn and S−nqn, which

contain the similarity scores for the same and the different objects, respectively. Training for re-

identification suffers from under-sampling because of the availability of few object-images and

many pose and illumination changes [179]. In addition, |S+
nqn|<< |S−nqn| results in an unbalanced

class problem (|.| is the cardinality of a set). In order to compensate for the under-sampled

and unbalanced data, we include more related-samples, generated by applying the Synthetic

Minority Oversampling Technique SMOTE [34] on the scores in S+
nqn and S−nqn. SMOTE solves

the class imbalance problem by generating new samples of the minority class. In SMOTE, the

difference between the sample and its nearest neighbour(s) is measured. The difference is added

to the sample under consideration to generate similar synthetic examples. Next, we normalise

the histograms of S+
nqn and S−nqn to obtain their corresponding PDFs (Fig. 4.7). We characterise

the PDFs by fitting the existing parametric distribution models [63] (Table 4.1). For each camera

pair (Cn, Cnq), we obtain two models G+
nqn and G−nqn that best fit the PDFs of similarity scores S+

nqn

and S−nqn, respectively. Models are selected by applying Bayesian Information Criterion (BIC)

[147] given as

BIC =−2.lnL̂+d.lnU, (4.8)

where U is the sample size of the training set, and d is the number of parameters. L̂ is the

maximised value of the likelihood function of the model G, i.e. L̂ = p(x|θ ,G), where θ are

the parameter values that maximise the likelihood function. BIC avoids over-fitting through the

penalty term d.lnU that increases with the number of parameters. The lower the BIC, the better

the model. The parameters of G+
nqn and G−nqn are noted as θ+

nqn and θ−nqn, respectively.

4.3.2 Testing

In the testing phase, a new object is detected in Cn. Feature sets of the objects detected in the

set of source-cameras NNN n are also received. We measure the similarity score Smk
nqn between Fm

n

and each obtained feature set Fk
nq

from Cnq . From the given similarity score, Smk
nqn, we measure

the probability that Pm
n and Pk

nq
are instances of the same objects represented as Pr(S|Smk

nqn), and

the probability that Pm
n and Pk

nq
are instances of two different objects represented as Pr(S|Smk

nqn).

Using the two PDFs, G+
nqn and G−nqn, and their parameters, θ+

nqn and θ−nqn, (Table 4.1) from the
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Figure 4.7: An example of distributions of matching distances between objects detected in Cn

and two of its source-cameras (left-column) C1n and (right-column) C2n . Legends are sorted in
the order of the nearest distribution to the data, identified using Bayesian information criterion.
Distances are between (a,b) same and (c,d) different objects in each camera pair. (e,f) Two
selected distributions for a camera pair (blue same and red different objects).

training of corresponding camera pairs (Cn,Cnq), the probabilities can be obtained as

Pr(S|Smk
nqn) = G+

nqn(S
mk
nqn,θ

+
nqn),

Pr(S|Smk
nqn) = G−nqn(S

mk
nqn,θ

−
nqn).

(4.9)
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Table 4.1: Probability density functions of the continuous parametric distributions used in the
curve fitting. key: µ - location or mean, σ - scale or standard deviation, λ - shape, B(.) -
Beta function, Γ(.) - Gamma function, s - Non-centrality, b - positive scalar value, v - degree of
freedom.

Distributions FormulaFormulaFormula

Inverse Gaussian G(x|µ,λ ) =
√

λ

2πx3 e
− λ

2µ2x
(x−µ)2

; x > 0

Logistic G(x|µ,σ) = e−
x−µ

σ

σ

(
1+e−

x−µ

σ

)2

Log-logistic G(x|µ,σ) = σ−1x−1 e
log(x)−µ

σ(
1+e

log(x)−µ

σ

)2 ; x≥ 0

Normal G(x|µ,σ) = (σ
√

2π)−1e
−(x−µ)2

2σ2

Lognormal G(x|µ,σ) = (x
√

2πσ)−1e−
(lnx−µ)2

2σ2

Extreme value G(x|µ,σ) = σ−1e
x−µ

σ e−e
x−µ

σ

Generalised extreme value G(x|0,µ,σ) = σ−1e−e−
x−µ

σ − (x−µ)
σ

Generalised Pareto G(x|λ ,σ ,θ) = σ−1
(
1+λ

x−θ

σ

)−1− 1
λ

Beta G(x|a,b) = 1
B(a,b)x

a−1(1− x)b−1I(0,1)(x)

Exponential G(x|µ) = 1
µ

e
−x
µ

Gamma G(x|a,b) = 1
baΓ(a)x

a−1e
−x
b

Nakagami G(x|µ,σ) = 2
(

µµ

σ

)
1

Γ(µ)x
(2µ−1)e

−µ

σ
x2

; x > 0

Rician G(x|s,σ) = I0
( xs

σ2

)( x
σ2

)
e−

x2+s2

2σ2 ; x > 0

t location-scale G(x|µ,σ ,v) =
Γ( v+1

2 )
σ
√

vπΓ( v
2)

[
v+( x−µ

σ
)

2

v

]− v+1
2

Weibull G(x|σ ,λ ) = λ

σ

( x
σ

)λ−1 e−(
x
σ
)

λ

; x≥ 0

The two events S and S are independent events, since their PDFs are obtained from learning

on two different sets of data, S+
nqn and S−nqn. The problem is similar to tossing two coins and

measuring the probability that the first coin will have head and the second will be tail, referred as

compound probability. We measure the compound probability to obtain the matching score Lmk
nqn,

given as

Lmk
nqn = Pr(S|Smk

nqn) · (1−Pr(S|Smk
nqn)). (4.10)

The larger Lmk
nqn, the higher the chances for the pair to be a correct match. Since we exploit

the distributions of similarity scores in each camera pair to generate the probability of a correct
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match while taking into account the variations between camera pairs, the assignment between

Pm
n and Pk

nq
coming from any source-camera, Cnq , becomes possible. This makes Lmk

nqncamera

invariant. For each Pm
n , we get Mn matching scores from all the objects detected in the set of

source-camerasNNN n forming a matching-score matrixLLLn for the set of Pn objects given as

LLLn =

[[[
Lmk

nqn

]Mn

m=1

]Mnq

k=1

]N̂n

q=1

. (4.11)

Finally, we select the correct match from the obtained camera-invariant matching scores LLLn by

optimal assignment using the Hungarian algorithm [99] as discussed in Sec. 4.2.4.

4.4 Summary

We proposed two association methods, where the first one reduces the amount of information

needed to communicate for re-identification, and the second improves the re-identification rate

in the case of multiple source-cameras.

Association using difference-vectors (Sec. 4.2) is a simple yet effective object association

approach that minimises the amount of data to be shared among cameras. The approach requires

limited information for re-identification, thus permitting association during short temporal in-

tervals – typical to the videos recorded using smartphone cameras. Optimal assignment using

Hungarian algorithm improves the object association.

In the second association approach (Sec. 4.3), we are able to extend the pairwise re-identification

methods to multiple cameras. Because of the differences in camera view and environment set-

tings (Sec. 1.3), the pairwise association approaches cannot be directly applied for association

in the case of multiple source-cameras. The proposed approach estimates a compound proba-

bility of a correct match in a camera network by exploiting similarity scores in camera pairs.

Thus the approach makes it possible to perform many-to-one camera association for retrieving

the correct match from a group of source-cameras. The performance of the proposed approach

can be improved by increasing the number of objects detected in each camera pair and avail-

able for training, which needs to be performed only once during the camera network set-up.

If Mnq objects are required for the training of a camera pair (Cn,Cnq), the addition of a new

destination-camera Cn to N cameras of the network would require Mnq × N̂n objects that move

from N̂n source-cameras to the new camera. In the worst-case scenario when every destination
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camera has N− 1 source-cameras, the training required for the N cameras network is increased

by N(N−1)/2.

In the next chapter, we discuss the evaluation of the presented association approaches for

re-identification, using the initial set of all features and the proposed CoPE features, (Chapter 3).

Five publicly available and one self-generated multi-camera challenging datasets are used for the

evaluation.



Chapter 5

Experimental evaluation

5.1 Introduction

In this chapter, we evaluate the proposed object representation and association methods for per-

son re-identification. The results are compared with state-of-the-art re-identification approaches

[49, 59, 71, 73, 98, 111, 112, 136, 157, 169, 179]. We use the validation criteria based on the

cost of features and the re-identification rate. In order to measure the cost of features, the av-

erage storage size (in bytes) and computational time (in secs.) per object is calculated for each

camera. The re-identification rate is measured using the Cumulative Matching Characteristics

(CMC) curves [71]. CMC curves show the ranked matching rates i.e. the number/percentage of

persons correctly matched at each rank. Matching at first rank refers to the true re-identification

rate. The overall performance is also evaluated using the Area Under the CMC Curves (AUC).

For the evaluation of the proposed approaches, we use both publicly available datasets from

VIPeR [71], iLIDS [84] and WARD [122] and an in-house generated Torch [C2] dataset (see

Sec. 2.8 for datasets). The selected datasets present a mix of characteristics such as outdoor and

indoor settings, variations in viewing angle, occlusions and illumination changes. We assume

that the person detection problem is solved and the results generated by a person detector are

available as input to our pipeline. We apply two-fold cross validation using half of the data for

training and the remaining for testing the approaches. The experiments are carried out using

Matlab 7.11 on a 3.3 GHz dual core desktop system with 3 GB of RAM.

We group the experiments into three categories based on the proposed methods. In Sec. 5.2,

68
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we evaluate the performance of the proposed cost-effective feature selection method for re-

identification and compare the results with existing state-of-the-art approaches in terms of com-

putation and storage cost, and re-identification rate. Sec. 5.3 shows the evaluation and results

of the proposed difference-vector representation for re-identification and amount of data needed

for communication. In Sec. 5.4 the results for the proposed camera association approach for re-

identification in multiple source-cameras are compared with the existing association approaches.

Finally, Sec. 5.5 summarises the chapter.

5.2 Re-identification with cost-effective representations

We evaluate CoPE feature selection method on datasets VIPeR [71] and iLIDS-TC [J1] (Sec.

2.8), using the defined object-shape (Sec. 3.2) [J2] and initial feature set as in [71, 111, 112, 136,

179] (Sec. 5.2.1). The re-identification capabilities are measured using Direct Distance Min-

imisation (DDM) [59, 71] such that the two objects detected in a pair of cameras are assigned

the same label if they have the minimum matching distance between their features. We compare

DDM and learning approaches (RankSVM [136] and AdaBoost [71]) using CoPE and the exist-

ing feature selection methods: Fisher score [55], Information gain [44], mRMR [131], ReliefF

[140] and Bi-clusters [82]. CoPE with DDM is further compared with PRDC [179], ASFI [111],

KISSME [98], KISS-RS [157], LDML [73], LMNN [169] and ITML [49].

We consider three validation criteria, namely cost of features, re-identification rate and fea-

ture budgeting. The cost of features is calculated for the initial feature set and then for the selected

features to analyse improvements in data reduction and computational time. The data generated

by each object representation is encoded using the lossless data compression algorithm ‘deflate’

[144], which combines LZ77 and Huffman coding. T In addition, we evaluate the training time

for feature selection. The re-identification rate for the association methods is compared with

the initial feature set and then with the selected features using the CMC curves [71] and AUC.

Finally, we consider feature budgeting in constrained environments to analyse the scalability of

CoPE and the effects in terms of cost and performance of further feature reductions.

5.2.1 Feature sets

We obtain the histograms of colour and texture (discussed in Sec. 3.3). Existing approaches use

a 2784-dimensional feature vector by dividing the full-body person image into a set of stripes (6)
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Figure 5.1: Examples of proposed upper-body image representation (cropped region) extracted
based on the location of the head (green bounding box) using Eq. 3.1 in (a) VIPeR and (b) iLIDS.
Re-identification rates using Bhattacharyya distance on the initial feature set extracted from the
full-body image divided into two [129], three [5], six [179] and ten [22] horizontal slices and the
upper-body image representation, in (c) VIPeR (M = 174) and (d) iLIDS (M = 174) datasets.

and then concatenating the corresponding features from each stripe [71, 111, 112, 136, 179]. We

reduce the size of the object representation by extracting features from the defined upper-body

shape (discussed in Sec. 3.2) as a single stripe (better suited for crowded scenes). In order to

extract the colour features, the upper-body image is divided into upper and lower half. The upper

half representing the head bounding box is given double the weight1 compared to the lower half,

since that is the most visible and least occluded part of the defined image shape. The weighted

histogram of the upper half is added to that of the lower half.

Fig. 5.1 shows the re-identification results in VIPeR and iLIDS datasets for the complete

feature set extracted from the defined upper-body and the full-body images, without feature se-

1Each pixel is considered twice in the upper half of the defined shape while computing the histogram.
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Figure 5.2: Storage size and the extraction time for each feature in the initial feature set (listed
on the horizontal axis with their IDs and parameters). For Gabor (γ,θ ,λ ,σ2) and Schmid (σ ,τ)
filters, γ is the aspect ratio, θ is the angle in radians, λ the wavelength of the sinusoidal factor,
σ the standard deviation and τ the number of cycles. The vertical axes represent the storage size
(bytes) and the feature extraction time (ms) for a single person within a camera.

lection. The full-body image is also divided into two [129], three [5], six [179] and ten [22] hor-

izontal slices. In the case of occlusions and crowd, a better re-identification rate can be achieved

with the upper-body images compared to the full-body images (divided into one, two and three

stripes). The results of upper-body images are comparable to that of full-body images divided

into six and ten stripes. However, by using the upper-body image representation, we are able to

reduce the storage requirements of the extracted features by 6 and 10 times compared to six and

ten stripes representations.

5.2.2 CoPE with varying parameters

Fig. 5.2 shows the storage size β r and the extraction time Γr of the 30 features used. The total

count of bins is fixed; however, β r varies between 29 and 56 bytes because the data encoding is

applied before the feature storage. The extraction time Γr of the feature extraction varies between

16 and 60 ms. We obtain the overall computational time and the storage size required by a single

camera Cn for R̂ features by summation of individual feature’s Γmr
n and β mr

n over M persons.

Since ΨΨΨr is the cost of a single feature, where the higher the ΨΨΨr the better it is. The cost of the

selected feature set cannot be obtained by simple addition of ΨΨΨr of each feature, since it would

not be able to differentiate if the cost is high because of higher ΨΨΨr or large number of selected

features. Thus, for the comparisons, we measure the normalised cost E of the selected feature
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α Feature IDs as in Fig. 5.2

CoPE
0 7 25 9 10 8 19 3 30 4 29 21

0.5 7 3 9 8 25 11 4 19 21 29
1 7 3 9 8 11 25 4 19 21 29 16

CoPE-FC - 7 10 25 9 19 3 8 30 4 27 21 29 5

CoPE-FP
0 8 9 25 29 22 15 7 3 19

0.5 1 8 9 5 3 7 4 22 15 21 19 25 29
1 1 8 9 3 2 7 5 4 13 21 19 25 29
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Figure 5.3: Analysis of feature selection with varying selection criteria: CoPE-FC (fixed cost,
performance only), CoPE-FP (fixed performance, cost only), and CoPE (both cost and perfor-
mance), in iLIDS (M = 174) in terms of (a) selected features, (b) normalised cost E , (c) CMC
curves, and (d) AUC of CMC curves. The cost parameter α in Eq. 3.7 is varied for CoPE-FP and
CoPE as: α = 0 (black), α = 0.5 (blue) and α = 1 (magenta), while α = n/a (red) in CoPE-FC,
since the cost component is not included.

sets using the cost score ΨΨΨr (Eq. 3.7) as

E =

fr̂∈YYY nqn

∑ 1/||ΨΨΨr̂||
R̂
∑

r=1
1/||ΨΨΨr||

, (5.1)

where YYY nqn is the list of selected features. The set of 30 features has the maximum cost Emax = 1.

We consider 316 and 174 persons in VIPeR and iLIDS, respectively.

Fig. 5.3 shows the analysis of CoPE on iLIDS with three selection criteria: (i) feature se-

lection as a function of performance only keeping the cost of all features fixed (CoPE-FC); (ii)

feature selection as a function of cost only while varying α for the two components of cost in

Eq. 3.7and keeping the performance of all features fixed (CoPE-FP); and (iii) feature selection
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considering both performance and cost (with varying α) of a feature (CoPE). The cost of the

selected features is the highest for CoPE-FC [Fig. 5.3 (b)] (red), since the selection is carried out

based on performance only and the cost component is fixed for all features (thus variation in α

not required). However, CoPE-FC is also able to achieve the highest re-identification rate (using

DDM) in the absence of cost constraints [Fig. 5.3 (c)] (red). Both the cost and the re-identification

rate of the selected features are reduced with CoPE. When varying the cost parameter α in CoPE,

while the composition of the selected features remains similar, their order changes [top three rows

of the table in Fig. 5.3 (a)]. Since cost and performance are independent in the feature selection,

varying α does not affect the performance of a feature. The selected features may vary based

on the requirement of a system controlled by α , i.e. for well-performing features with a limited

extraction time α = 1, and for limited storage size α = 0. Note that a limited extraction time may

not imply a higher storage size (and vice versa). The smallest cost for CoPE is obtained when

there is an equal contribution of computational time and storage size (α = 0.5).

In CoPE-FP, although performance is not used for feature selection, in order not to obtain a

sorted list of all features based on cost, we remove the people from the training data for which

the selected minimum cost feature has good performance so that the algorithm stops when all

the people in the training data are exhausted. For α = 0 the order of selection is controlled by

the storage size, while for α = 1 the features with the shortest extraction times (colour features)

are selected first (see Fig. 5.2 for time and size). An interesting case is when the features with

IDs 8 and 9 are selected for all three values of α , since these features have both the shortest

computational time and the smallest storage size. In contrast, the feature with ID = 1 has the

shortest extraction time and a large storage size. This makes it the first feature with α = 0.5

and 1, while it is not selected with α = 0. The order of performance of the selected features

for the three criteria is as follows CoPE-FP < CoPE < CoPE-FC. The rest of the evaluation

is performed for α = 0.5 to have an equal contribution from the storage size and the extraction

time.

5.2.3 CoPE vs all-features

Table 5.1 shows the storage size and the computational time for the features extracted from each

person observed in one camera. We compare the results of the initial feature set with that of

the three non-unique sets of selected features obtained by CoPE using three similarity measures:

Bhattacharyya distance, L1-Norm and Chi-square distance in Eq. 3.2. For VIPeR, the number
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Table 5.1: Storage size, computational time and normalised cost of the initial feature set per
camera used in existing re-identification approaches compared with CoPE features obtained for
three similarity measures in Eq. 3.2.

Dataset Distance Total Feature IDs as in Fig. 5.2 Size Time Cost E
as in Eq. 3.2 features (KB) (sec) (Eq. 5.1)

- 30 1-30 466.43 314.83 1.00
VIPeR Bhattacharyya 6 4 8 9 5 7 25 82.46 38.34 0.16

(M=316) L1-Norm 6 8 9 4 7 5 12 86.46 34.56 0.16
Chi-Square 8 8 9 4 5 7 18 17 25 114.07 60.75 0.23

- 30 1-30 256.83 173.35 1.00
iLIDS Bhattacharyya 10 7 3 9 8 25 11 4 19 21 29 80.74 47.70 0.29

(M=174) L1-Norm 8 3 9 7 25 8 4 18 29 61.90 35.48 0.24
Chi-Square 9 7 9 3 8 25 6 15 29 16 70.97 41.64 0.26

of selected features are 6, 6 and 8, respectively, for the three similarity measures that reduce

the storage size per camera to 11%, 18% and 24% of the total size (466.43 KB) of the initial

30 features. In iLIDS, 10, 8 and 9 features are selected for the three similarity measures that

respectively reduce the storage size to 31%, 23% and 27% of the storage requirement for the

initial feature set (256.83 KB). Similarly, the computational time of feature extraction per camera

is reduced significantly. In the VIPeR dataset, the computational time is reduced to 12%, 10%

and 19% for the three similarity measures, respectively. In the case of iLIDS, the computational

time is reduced to 27%, 20% and 23%. It can also be observed that the normalised cost E of

the selected CoPE features is reduced more in VIPeR than in iLIDS because mostly the colour

features are selected in VIPeR. The colour features are fast to extract with less or comparable

storage size (Fig. 5.2) and perform better than texture features. In VIPeR, we reduce the cost E

of the feature set to 20%, while in iLIDS we reduce it to 33% of the initial feature set.

Fig. 5.4 compares the re-identification rate for the three DDM approaches with the state of

the art. In the DDM approach, two persons are considered correctly matched for re-identification,

if their obtained feature sets have the minimum matching distance between them. The perfor-

mance of the selected features is measured in terms of improvement of the re-identification rate

of DDM approaches compared to that of using the initial feature set. CMC curves highlight

the true target rate for the first 30% of false target rates (the most important part of CMC for

evaluation). In VIPeR, a higher re-identification rate is obtained using the selected features. For

example, at 20% false target rate in the CMC curves, the true target rate is above 65% for se-

lected features compared to the initial feature set with true target rates between 40% to 50% for

all the three measures. Because of the limited illumination changes between cameras, mostly

colour features are selected (Table 5.5). In iLIDS, both colour and texture features are selected.



Chapter 5: Experimental evaluation 75

5 10 15 20 25 30

10

20

30

40

50

60

70

80

False target rate (%)

T
ru

e 
ta

rg
et

 r
at

e 
(%

)

 

 

All features, Chi−Square
CoPE features, Chi−square
All features, L1−Norm
CoPE features, L1−Norm
All features, Bhattacharyya
CoPE features, Bhattacharyya
Random

All CoPE

A
U

C
 o

f C
M

C

0.3

0.35

0.4

0.45

0.5

0.55
Bhattacharyya
L1-Norm
Chi-Square

(a) CMC VIPeR (b) AUC VIPeR

5 10 15 20 25 30

10

20

30

40

50

60

70

80

False target rate (%)

T
ru

e 
ta

rg
et

 r
at

e 
(%

)

 

 

All features, Chi−Square
CoPE features, Chi−square
All features, L1−Norm
CoPE features, L1−Norm
All features, Bhattacharyya
CoPE features, Bhattacharyya
Random

All CoPE

A
U

C
 o

f C
M

C

0.3

0.35

0.4

0.45

0.5

0.55
Bhattacharyya
L1-Norm
Chi-Square

(c) CMC iLIDS (d) AUC iLIDS

Figure 5.4: Person re-identification comparison for CoPE features selected using three similarity
measures, namely Bhattacharyya distance (blue), L1-Norm (red) and Chi-square (green) in Eq.
3.2, compared with the initial complete feature set using DDM approaches for re-identification,
using CMC curves representing true target rate for the top 30% of false target rate, and the AUC
of the CMC curves in VIPeR (M = 316) and iLIDS (M = 174) datasets.

The re-identification results for association using the selected features are improved and in some

points are comparable to that of using all features. The AUC shows that the features selected

using all the three similarity measures have overall better performance than that of the initial

feature set. The highest re-identification rate is obtained when the features are selected using

the Bhattacharyya distance. Therefore, in the following experiments we use the Bhattacharyya

distance as a similarity measure while comparing with existing re-identification and feature se-

lection approaches.

5.2.4 CoPE vs feature selection methods

We compare CoPE with five existing feature selection and ranking methods, namely Fisher score

[55], Information gain [44], mRMR [131], ReliefF [140] and Bi-clusters [82]. Since these are

single-objective feature selection approaches, for comparison we perform feature selection using
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Table 5.2: Training times and ranking orders of features for re-identification using Fisher score
[55], Information gain [44], mRMR [131], ReliefF [140] and Bi-clusters [82] as feature selection
methods compared with CoPE and CoPE-FC using VIPeR (M = 316) and iLIDS (M = 174).

Training time (sec) Ranking order

Feature selection VIPeR iLIDS Ratio VIPeR iLIDS

Fisher score
3.67 0.15 24.47 4 8 9 5 1 2 6 7 3 17 14 13 11 10 23 30 16 3 4 7 6 2 10 11 9 1 13 19 30 16 20 17 26

12 18 21 26 27 24 28 22 29 19 25 15 20 14 27 12 8 28 23 21 24 18 25 15 29 22 5

Information gain
14.10 4.99 2.82 4 8 9 5 6 2 1 3 7 10 11 12 13 14 15 16 17 1 7 3 6 11 10 20 13 9 16 4 17 2 14 19 12

18 19 20 21 22 23 24 25 26 27 28 29 30 30 26 27 15 18 28 21 23 8 25 24 29 22 5

mRMR
29.06 9.54 3.04 4 10 11 12 13 14 15 16 17 18 19 20 21 22 1 30 26 23 7 6 2 24 28 3 27 29 21 17 14

23 24 25 26 27 28 29 30 9 8 5 7 6 3 2 1 22 15 18 20 12 10 19 16 11 13 25 8 4 9 5

ReliefF
124.70 44.98 2.77 4 8 9 5 27 25 24 2 13 29 6 1 28 30 10 7 3 8 4 9 25 13 22 23 16 7 26 1 5 18 2 29 15

26 23 22 11 15 16 19 12 21 20 18 17 14 21 24 19 28 30 6 27 14 12 20 3 11 17 10

Bi-clusters
- 72000 - - 9 8 24 25 12 14 5 11 4 15 10 21 17 16 6 1

28 13 26 23 7 3 20 18 2 19 30 27 29 22

CoPE 0.76 0.30 2.53 4 8 9 5 7 25 7 3 9 8 25 11 4 19 21 29

CoPE-FC 0.52 0.20 2.60 4 8 9 5 7 25 7 10 25 9 19 3 8 30 4 27 21 29 5

the performance only while keeping the cost fixed (CoPE-FC). The similarities between the fea-

ture pairs obtained using Eq. 3.2 along with the assigned labels as correct/incorrect matches are

given as input to the feature selection methods. Feature selection methods return a ranked list of

features and a weight vector in the case of Fisher score, Information gain and ReliefF methods,

while mRMR and Bi-clusters return only a ranked feature list.

Table 5.2 shows the training time for feature selection and the obtained features ranked in

order of importance for re-identification. Note that the training time of feature selection does not

include the time required for other steps involved in a re-identification system, such as object

detection, image representation and feature extraction. Training time is useful to understand the

feasibility of the single time set-up off-line process and becomes crucial as the size of the network

increases. The training time is measured using 316 and 174 people in the VIPeR and iLIDS,

respectively. With VIPeR, CoPE takes 0.76 seconds, 5 times less than the next shortest training

time by the Fisher score. ReliefF requires the maximum time (124.70 seconds) for training, while

Bi-cluster could not be trained for VIPeR even after 25 days. With iLIDS, the training time of

Bi-clusters is nearly 20 hours. Therefore, in a larger camera network Bi-clusters may not be

applicable for feature selection. CoPE and CoPE-FC take 0.30 and 0.20 seconds, respectively.

The Fisher score takes 0.15 seconds. As the dataset size almost doubles from iLIDS to VIPeR,

the time requirement for Fisher Score is increased by nearly 24 times, whereas others are only 3

times longer. With the smallest ratio and minimum training time, CoPE is desirable for feature

selection in a camera network.

In Table 5.2, each selection approach returns a different ranking order of features, since
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there exists no unique feature subset to solve the same task. If two features show an identical

performance, either of the two can be selected. In performing a cost-aware feature selection,

CoPE returns a subset of well-performing cost-effective features until any further addition in

the cost of features does not improve performance. In VIPeR, most feature selection methods,

including CoPE and CoPE-FC, return similar sets with colour features in the top ranks. CoPE and

CoPE-FC returns the same set of 6 features because of the similarity in the selection procedure.

In iLIDS, 10 features are selected by CoPE, while 13 features are selected by CoPE-FC. We fix

the number of selected features for the existing methods to be equal to the number of features

selected by CoPE-FC (a comparison with varying number of selected features can be seen in

Fig. 5.11). We pick the top 13 features in iLIDS and the top 6 features in VIPeR from the ranked

features of the existing approaches.

Fig. 5.5 (a, b) shows the normalised cost E (Eq. 5.1) of the obtained selected features. Even

after fixing the number of selected features, E for CoPE features remains the smallest. mRMR

features show the highest cost in both datasets, while those of Fisher score, Information gain and

Bi-clusters have costs comparable with that of CoPE-FC. In VIPeR, the CoPE feature set contains

all colour features because of the limited illumination changes, while in iLIDS both colour and

texture features are selected. CoPE selects the colour features first and then the texture, resulting

in the lowest E of 0.15 and 0.30 in VIPeR and iLIDS, respectively.

Fig. 5.5 (c-f) shows the re-identification performance of the selected features using DDM

(Bhattacharyya) as the association method. In both VIPeR and iLIDS, the selected features

using CoPE and CoPE-FC reach the highest re-identification rate. In iLIDS, CoPE-FC reaches

the highest performance in the absence of the cost constraints. Unlike the existing approaches

based on overall performance only, CoPE selects features by iteratively relaxing the performance

score Ar
i , thus achieving cost as well as performance advantages.

Fig. 5.6 shows the cross-data robustness of selected features. Features are selected on one

dataset and tested on the other to analyse the amount of degradation in the results. We compare

CoPE with two feature selection approaches, namely Fisher score and Information gain, which

have the highest performance in the cross validation within the same dataset. In VIPeR, the

performance of CoPE is degraded less compared to the other two methods. The performance of

features selected using VIPeR deteriorates at a greater rate in iLIDS, which is a more challenging

dataset. The results are degraded at a comparable rate for all the feature selection approaches,
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Figure 5.5: (a, b) Normalised cost, (c, d) CMC curves and (e, f) AUC of CMC curves obtained
for re-identification by applying DDM to the features selected using the Fisher score [55] (cyan),
Information gain [44] (magenta), mRMR [131] (black), ReliefF [140] (yellow) and Bi-clusters
[82] (green), CoPE (blue) and CoPE-FC (red) on (left-column) VIPeR (M = 316) and (right-
column) iLIDS (M = 174).

since almost the same 6 colour features are selected by the three feature selection approaches.
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Figure 5.6: Cross Data (CD) performance comparison in re-identification for the top-two per-
forming existing feature selection approaches, namely Fisher score [55] (cyan) and Information
gain [44] (magenta); and CoPE (blue). The CMC curves are obtained by (a) feature selection
on iLIDS (M = 174) and testing on VIPeR (M = 316) and by (b) feature selection on VIPeR
(M = 316) and testing on iLIDS (M = 174).

5.2.5 CoPE with learning models

The top-ranked selected features are used as input to the two learning methods, namely RankSVM

[136] and AdaBoost [71] for re-identification, which apply implicit feature selection by weight-

ing the feature set. In these cases, feature selection may be used to remove poorly performing

features as a pre-processing step to improve the effectiveness of learning methods. Since the fea-

tures are rearranged and weighted within the specific learning method, the order of selection is

not important and only the difference in the selected features affects the performance. We com-

pare the performance of RankSVM and AdaBoost with their default settings. The comparisons

are performed with and without feature selection keeping the same settings, which may not be

optimal. However, the improvement in the results can be observed after the feature selection by

the proposed approach.

RankSVM assigns relative weights to the input features based on the combined contributions

in the feature set. Fig. 5.7 shows that RankSVM has a better re-identification rate for both VIPeR

and iLIDS using the features selected by CoPE compared to those from existing feature selection

methods. The variation in re-identification rates using the selected features from different ap-

proaches is smaller in VIPeR than in iLIDS because mostly the same colour features are selected

(Table 5.2). With iLIDS, the features selected by different methods (and the re-identification

rate) vary in their composition. The best performance of CoPE-FC in the true target rate (CMC

curves) is almost 15% higher than that of mRMR at the same false target rate, followed by CoPE
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Figure 5.7: CMC curves and AUC of CMC curves for re-identification using the learning
method RankSVM [136] applied to the features selected by CoPE (blue) and CoPE-FC (red)
and existing methods: Fisher score [55] (cyan), Information gain [44] (magenta), mRMR [131]
(black), ReliefF [140] (yellow) and Bi-clusters [82] (green), using (a, b) VIPeR (M = 316); and
(c, d) iLIDS (M = 174).

with a slightly smaller re-identification rate because of the additional cost constraints. However,

CoPE remains higher than existing feature selection approaches. Also, the obtained AUCs are

highest for CoPE and CoPE-FC.

AdaBoost combines multiple weak classifiers/features to improve the matching performance.

Fig. 5.8 shows the performance for AdaBoost. In both VIPeR and iLIDS, the features selected by

CoPE have an overall better or comparable re-identification rate than existing feature selection

methods. In VIPeR, similarly to the RankSVM, CMC curves show a smaller re-identification

rate variation among existing methods because of the limited number of selected features (i.e.

only 6). In iLIDS, the variation in performance between CoPE and existing feature selection

methods becomes high as the number of selected features is increased (up to 13). AdaBoost

has a better learning ability in iLIDS than in VIPeR. The performance on the CMC curves,

especially in the starting part, shows that CoPE and CoPE-FC are able to remove noisy features
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Figure 5.8: CMC curves and AUC of CMC curves for re-identification using the learning
method AdaBoost [71] applied to the features selected by CoPE (blue) and CoPE-FC (red)
and existing methods: Fisher score [55] (cyan), Information gain [44] (magenta), mRMR [131]
(black), ReliefF [140] (yellow) and Bi-clusters [82] (green), using (a, b) VIPeR (M = 316); and
(c, d) iLIDS (M = 174).

more effectively than existing feature selection methods thus resulting in a better re-identification

rate. In Fig. 5.8 (c), the CMC curve for ReliefF shows a marginal improvement of up to 2% in

true target rate between 20% and 25% of false target rates at the expense of more costly features

than that of CoPE (Table: 5.2). In CoPE because of the cost constraints, we may observe a drop

in the performance in a few instances in favour of cost reduction and an overall performance

improvement. Overall CoPE-FC remains the highest (AUC) followed by CoPE and ReliefF

features.

Since learning algorithms are dependent on the training data in addition to the selected fea-

tures, in challenging scenarios the performance of learning methods can be reduced. A single

person may exhibit several pose and illumination changes, while we can only extract a few

patches for re-identification thus resulting in an under sampled data representation [179]. For

example, in VIPeR [CMC curves in Fig. 5.4 (a) in comparison with Fig. 5.7 (a) and Fig. 5.8 (a)],
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Figure 5.9: Person re-identification comparison of existing re-identification approaches: PRDC
[179] (magenta) and ASFI [111] (green) using the complete feature set compared with DDM
(Bhattacharyya) [71] using CoPE features (blue) and the complete feature set (black), using
CMC curves representing true target rate for the top 30% of false target rate, and the AUC of the
CMC curves in VIPeR (M = 316) and iLIDS (M = 174) datasets.

the performance of learning methods is slightly reduced. In Fig. 5.4 (a) we can see that after

CoPE feature selection the performance is improved (almost double compared to using the ini-

tial feature set). A further improvement through a learning method will require a more robust

training set.

5.2.6 CoPE and re-identification approaches

Fig. 5.9 shows the performance comparison of DDM (Bhattacharyya) using CoPE with two re-

cent state-of-the-art re-identification approaches: PRDC [179] and ASFI[111]. The extracted

features from the upper-body patch are given as input to PRDC and ASFI. In both iLIDS and

VIPeR, a better or comparable re-identification performance is achieved by CoPE with less stor-

age and computational requirements. CMC curves show a higher re-identification rate for CoPE

especially at lower false target rates. CoPE outperforms PRDC and ASFI (AUC in the case of
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Figure 5.10: Person re-identification comparison using full-body patches and a 2784-dimensional
feature vector on VIPeR (M = 316). (a) CMC curves and (b) AUC of CMC curves obtained
by existing re-identification approaches: PRDC [179] (magenta) and ASFI [111] (green). The
results are compared with CoPE using DDM (cyan) and PRDC (blue) for association. (c) The
storage size and the computational time of the extracted features.

Table 5.3: Comparison of average training times of existing re-identification approaches com-
pared with CoPE on VIPeR (M = 316) dataset. The compared results are from [98]

Approaches KISSME [98] KISS-RS [157] LDML [73] LMNN [169] ITML [49] CoPE CoPE-FC

Training time (sec) 0.1 0.027 0.72 27.56 8.6 0.76 0.52

VIPeR [Fig. 5.9 (f)]), with a cost of 20% of the initial feature set used in these methods. In iLIDS

comparable results can be observed at 33% of the cost.

PRDC and ASFI approaches reported their results using the full-body patches and a large

2784-dimensional feature set. Therefore we also include a comparison while performing the

CoPE feature selection on the larger feature set and full-body patches. Fig. 5.10 shows the cost-

performance comparison on VIPeR, which has fewer occlusions and thus justifies the use of the

full patch for person description. It can be observed from the CMC curves and the AUC that

CoPE selected features with DDM show a better re-identification rate than ASFI with a 73%

reduction in the storage size and a 77% reduction in the extraction time. Finally, the use of the

CoPE features as input to PRDC further improves the re-identification rate at 24% of the cost

[Fig. 5.10 (c)] of feature sets of PRDC and ASFI.



Chapter 5: Experimental evaluation 84

Table 5.4: Comparison of re-identification rates of existing re-identification approaches at differ-
ent ranks compared to CoPE using VIPeR (M = 316). The compared results are from [6].

Rank→ 1 10 20 50 100

LDML [73] 5 21 30 51 71

ELF [71] 12 43 60 81 93

ITML [49] 14 52 71 90 98

LMNN [169] 18 59 75 91 97

LMNN-R [53] 20 68 80 93 99

KISSME [98] 20 62 77 92 98

KISS-RS [157] 24 66 84 93 -

SDALF [59] 20 50 65 85 98

Bhat. [59] 5 17 24 45 60

RSVM [136] 13 50 67 85 94

PRDC [178] 16 54 70 87 97

CoPE-Bhat. 19 30 40 60 79

CoPE-PRDC 29 60 70 88 98

Table 5.3 shows the initial offline training time of existing re-identification approaches:

KISSME [98], KISS-RS [157], LDML [73], LMNN [169] and ITML [49], compared to CoPE

and CoPE-FC. KISS-RS has the least training time because of incremental learning. CoPE

with 0.72 sec remains comparable with LDML, while LMNN has the highest training time

of 27.56 sec. Unlike CoPE, which includes the feature selection step, the learning based re-

identification process does not perform an explicit feature selection, while a feature weighting

for association is performed. Thus, the feature storage and extraction cost for the existing re-

identification approaches remain maximum (Fig. 5.10).

Finally Table 5.4 provides the comparision between CoPE and existing re-identification ap-

proaches: KISSME [98], KISS-RS [157], LDML [73], LMNN [169], LMNN-R [169] and

ITML [49], in the VIPeR dataset. The results are shown in terms of ranks. The table shows

the number of persons correctly re-identified till a particular rank, where rank 1 represents the

true re-identification rate. CoPE features used with Bhattacharyya distance shows comparable

re-identification rate to existing re-identification approaches. 19 people are correctly matched at

rank 1 compared to 5 in the case of only Bhattacharyya distance. CoPE features when used as

input to PRDC show the highest number of correct matches at rank 1, i.e. 29 compared to 16 of

PRDC when applied on the complete feature set.
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Figure 5.11: Cost vs performance analysis of CoPE (blue star) and existing feature selection
methods: Fisher score [55] (cyan plus), Information gain [44] (magenta triangle), mRMR [131]
(black circle), ReliefF [140] (yellow triangle) and Bi-clusters [82] (green circle) using DDM
(Bhattacharyya) for re-identification on (a) VIPeR and (b) iLIDS. Features are added in order
of decreasing performance. Solid lines show the number of selected features equal to those
generated with CoPE. Dotted lines extend the cost vs performance comparison for the feature
excluded by CoPE. The cost (horizontal axis) is measured using (Eq. 5.1) and the performance
(vertical axis) is measured as the area under the first-half of the CMC curves. At each marker
point a new feature is added.

5.2.7 CoPE and feature budgeting

In a constrained environment, a further reduction of the feature set might be necessary. In such

cases the performance needs to be reduced in a predictable manner (feature budgeting). Fig. 5.11

shows the cost vs performance comparison of feature selection methods for re-identification us-

ing DDM. The performance is measured using the area under the first half of the CMC curves

and the cost is measured using Eq. 5.1. At the beginning, all feature selection methods selected

the same feature or the one with comparable performance (Table 5.2), thus resulting in the sim-

ilar performance at the start of the selection. In CoPE, a consistent increase in performance and

cost can be observed with the addition of each new feature. The rate of improvement in the

performance is high at the beginning, since the most important features for re-identification are

selected first. The performance keeps increasing monotonically as the cost increases, the most

desirable behaviour in feature budgeting.

In VIPeR [Fig. 5.11 (a)], the performance of Fisher score and Information gain becomes

constant after selection of up to 9 features because of minimal weighting to the lower ranked

features; however, the low ranked features keep increasing the cost of the feature set. Such fea-

ture selection represents the majority of data with similar properties while neglecting the features
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with discriminating capability for small amounts of data. The mRMR feature selection produces

a monotonically decreasing performance after reaching a high performance point because of the

ranking only strategy. Since VIPeR requires up to 6 discriminant features as selected by CoPE,

the additional features result in redundant information and the performance decreases (mRMR)

or remains constant (Fisher and Information gain), while the cost increases. In the iLIDS dataset

[Fig. 5.11 (b)], the Fisher score shows a non-monotonically increasing performance at the start

and, while selecting the second feature, shows a higher performance than CoPE because of the

selection of a comparatively costly feature (with Feature ID=4). However, as new features are

added the performance starts decreasing, while CoPE preserves a balance between cost and per-

formance, which results not only in a monotonically increasing performance but also in the high-

est performance with the smallest cost when the same number of features are used. The specific

feature (with ID=4) is selected by CoPE at a later stage when its cost justifies the performance. A

non-monotonically increasing performance is observed in the Information gain and Bi-clusters;

however, their performance is lower than that of CoPE as the cost increases.

This evaluation shows how CoPE can select, in the correct order, less expensive and well-

performing features. Improved or comparable performance than the existing selection approaches

is achieved by DDM and learning methods for re-identification with cost-effective features.

5.3 Re-identification with difference-vector representation

We compare the proposed difference-vector representation and association approach with the fol-

lowing DDM, learning and probabilistic methods: the Bhattacharyya distance [71], RankSVM

[136], Attribute-Sensitive Feature Importance (ASFI) [111], Probabilistic Relative Distance Com-

parison (PRDC) [178] and Landmark Based Model (LBM) [J2]. We use the validation crite-

ria based on the amount of data (in bytes) to be communicated among cameras, and the re-

identification rate using CMC curves. The datasets used for the evaluation are Torch [C2],

iLIDS-AA [14] and iLIDS-MTC [J2] (Sec. 2.8).

Each object-image is histogram equalised (Sec. 4.2.1), and we extract colour and texture fea-

tures, where each feature is a 16-bin histogram of a colour channel or a filtered image (Fig. 3.2),

extracted from each of the 6 horizontal stripes of the person image as in [71, 136, 178]. We apply

the 2-fold cross validation for the evaluation.
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Table 5.5: Comparison of the amount of data per person needed to be stored within the camera
for object matching.

.

Dataset
Number of Number of Bytes per person

features people FFFm
n ΩΩΩmn

Torch 29 54 7539 64
iLIDS-MTC [J2] 29 60 7415 64
iLIDS-AA [14] 29 100 6422 62

5.3.1 Data reduction

Table 5.5 shows the amount of data that needs to be stored and communicated per person between

the cameras. It can be observed that the storage size per person is reduced to 1% using the

compact representation ΩΩΩmn of the proposed approach as compared to that of the initial feature

set FFFm
n , since FFFm

n for each person contains 2784 elements for 29 features extracted from 6 stripes

of the image, whereas ΩΩΩm
n contains only K = 29× 6 elements. In addition, we require 170 KB

per camera for storing the reference-feature vectors {κκκ j}J
j=1. The size of the additional storage

requirement is a constant that is not affected by the observed number of persons and can be

pre-allocated.

Table 5.6 shows the comparison of existing data compression methods: Run-length encoding

(RLE) [69], Lempel-Ziv-Welch coding (LZW) [170], Deflate [144], GZip and jpg, applied to the

object representations: images, feature sets and difference vectors, in three datasets. In the case of

less data available for communication, these compression methods do not perform well because

of less redundancy available to exploit (Sec. 2.5). GZip is able to reduce the data, on average,

up to 90% of the original size in the case of image representation, while up to 40% in the cases

of feature sets and difference vector representations. LZW and Deflate perform better than GZip

in the cases of feature sets and difference vector representations, while their performance is less

than GZip in the case of image representation. RLE performs the worst because repetitive data is

doubled when not placed consecutive to each other. The size of difference vector representation

remains significantly less compared to all the compression methods.

5.3.2 Re-identification rate

Fig. 5.12 shows the performance gain in re-identification with the addition of each step in the

proposed approach. Histogram equalisation improves the performance compared to applying

the Bhattacharrya distance on the initial feature sets on both Torch and iLIDS-MTC datasets,

since illumination conditions vary in the camera pairs. Improvement can be observed when
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Table 5.6: Comparison of different compression methods applied to object images, feature sets
and difference-vector representations

Datasets Information type
Original Compressed size (bytes)

size (bytes) LZW [170] RLE [69] Deflate [144] GZip jpg

Torch
Object image 156702 109502 313403 123269 9735 9855
Fature set FFFm

n 2784 1655 4445 1851 2024 -
Difference vector ΩΩΩmn 64 46 114 55 186 -

iLIDS-MTC [J2]
Object image 63201 37465 126402 42310 3260 3380
Fature set FFFm

n 2784 1553 4005 1761 1935 -
Difference 5vector ΩΩΩmn 64 45 112 54 180 -

iLIDS-AA [14]
Object image 18000 13708 36000 16449 2314 2434
Fature set FFFm

n 2784 1795 4754 1986 2159 -
Difference vector ΩΩΩmn 62 44 110 55 178 -
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(a) iLIDS-MTC, |PPPn|= 30 (b) Torch, |PPPn|= 27

Figure 5.12: CMC curves obtained for matching while adding each step of the proposed approach
in two datasets: (a) iLIDS-MTC [J2], (b) Torch [C2]. Key: Bhatt. - Bhattacharyya distance; His-
tEq. - Histogram Equalisation; Diff.Vec - Difference Vector representation; Tempo. - Temporal
alignment; Optim. - Optimal assignment.

difference-vector representation is combined with the histogram equalisation because of the se-

lection of a good set of reference features stored locally. Temporal grouping further improves the

re-identification rate, reaching above 40% of the true target rate for zero false target, since the

number of matches required for the association is reduced. With the inclusion of optimal assign-

ment in the proposed approach, results in iLIDS-MTC are further improved while no significant

improvement compared to temporal grouping is observed in the Torch dataset.

Fig. 5.13 shows the re-identification rate of objects from three camera pairs in the Torch

dataset. The proposed approach shows the highest matching results between 50% and 75% true

target rate for zero false targets, as compared to the existing approaches, which show a maximum

of 40% true target rate for zero false targets in all three pairs of camera settings. In data gatherings

using hand-held smart cameras, a sufficient data from the same scene may not always be possible

that limits the training of the learning methods and their performance is compromised. The DDM
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Figure 5.13: CMC curves obtained for matching using the existing approaches: PRDC [178],
ASFI [111] and RankSVM [136] compared with the proposed approach on the new Torch dataset
with 3 hand-held cameras. The matching is performed pairwise when an object is observed in (a)
C2 and C1, (b) C3 and C1, and (c) C3 and C2.

approach shows the minimum performance in the absence of illumination and contrast handling.

Additionally, the proposed approach effectively reduces the search space for matching by locally

estimating the inter-camera temporal shift, which results in a higher matching rate.

Fig. 5.14 shows the evaluation results of the proposed approach on two datasets obtained

from a pair of cameras in iLIDS. The proposed approach shows the higher matching rates with

60% and 45% true target rates at zero false target rate in iLIDS-MTC and iLIDS-AA respectively

as compared to the existing approaches. In iLIDS-MTC, we also compare the proposed approach

with LBM, a spatio-temporal and appearance approach requiring the actual map and the location

of people in the scene along with the appearance information. By only utilising the detection

frame numbers and without the requirement of the spatial information of the scene, our approach

outperforms LBM, thus allowing the proposed approach to be applied in devices which vary their

locations, such as in Torch dataset. The performance of the learning methods is again affected
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Figure 5.14: CMC curves obtained for matching using existing approaches: PRDC [178], ASFI
[111], RankSVM [136] and LBM [J2] compared with the proposed approach in two existing
datasets extracted from iLIDS: (a) iLIDS-MTC [J2], (b) iLIDS-AA [14].

by the amount of training data. In the iLIDS-AA dataset, since the objects are extracted after

applying the HoG detection algorithm, even in the case of true detections, the extracted image

may not have the complete representation of the object. In such scenarios the temporal grouping

of the proposed approach improves the overall performance as compared to the approaches based

only on appearance information.

This evaluation shows that the proposed approach reduces the amount of data needed to be

transferred while improving the re-identification accuracy with respect to existing approaches.

5.4 Re-identification with camera-invariant scores

We evaluate the proposed approach with learning, probabilistic and DDM based pairwise associ-

ation approaches: PRDC [179], RankSVM [136], ASFI [111] and Bhattacharyya distance, using

rank-ROC curves. Unlike CMC [71], rank-ROC curves explicitly show at each rank the false

positive rate (FPR) [1-specificity] along with the true positive rate (TPR) [sensitivity].

Single images of persons per camera are manually extracted. We extract colour and texture

features. Each feature is a 16-bin histogram of a colour channel or a filtered image, extracted

from each of the 6 horizontal stripes of the person image. We use eight colour channels (R, G,

B, H, S, Y, Cb, Cr) from RGB, HSV, and YCbCr colour spaces, and for texture, eight Gabor and

13 Schmid filters are applied on the Y channel of the image as in [179, 71, 111].

We also apply the proposed association approach with the features selected by CoPE [J1].

CoPE returns a list Ynqn of selected features for each camera pair such that Pm
n and Pk

nq
are

represented by Fm
n = {fmr̂

n }r̂∈Ynqn and Fk
nq
= {fkr̂

nq
}r̂∈Ynqn , respectively. Using each selected feature
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Table 5.7: Experimental setup used for the evaluation.

Datasets Network Persons in Source Persons in False
size (|C|) Cn (Mn) cameras (|Nn|) Cnq (Mnq) positives

WARD
2 30 1 30 -
3 30 2 15 -
3 38 2 15 8

Torch

2 24 1 24 -
3 24 2 12 -
3 30 2 12 6
4 24 3 8 -
5 24 4 6 -

fr̂, we apply DDM (Bhattacharyya) to obtain a similarity score matrix Sr̂
nqn (Eq. 4.7) and estimate

T (r̂)+
nqn and T (r̂)−

nqn , for the camera pair (Cn, Cnqn). For the new objects Pm
n and Pk

nq
, we obtain the

matching score Lmk(r̂)
nqn of a match (Eq. 4.10) using each selected feature separately, and obtain a

combined matching score Lmk
nqn for CoPE as

Lmk
nqn =

r̂∈Ynqn

∑ Lmk(r̂)
nqn

|Ynqn|
. (5.2)

Finally, we obtain the matrix Ln (Eq. 4.11) for assignments.

We use two publicly available person datasets: the WARD dataset [122] and the Torch

dataset [C2]. WARD contains 70 persons from three non-overlapping fixed-cameras with the

challenges of illumination changes, and variations in pose and size. Torch contains 50 persons

from five hand-held smartphone cameras representing an outdoor crowd scene with additional

challenges of occlusions, occasional jitters and blurring. We assume that the person detection

problem is solved [57].

We apply two-fold cross validation such that half of the dataset is used for training (Table 5.7).

The number of persons detected inNn are fixed to 30 in WARD, and 24 in the Torch dataset. We

also perform the experiments with 25% added false positives (FPs), i.e. persons detected in Cn

that do not appear in CnqNote that while we do not perform experiments with false negative

detections (i.e. persons detected in Cnq that do not appear in Cn) because of the limited size of

the dataset; using the optimal assignment used in the proposed approach, we would expect that

the influence of false negatives would be comparable to that of additional false positives in terms

of re-identification performance. Finally, we analyse the changes in re-identification rate by

increasing the number of cameras.
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Figure 5.15: Ranked ROC curves for re-identification in three-camera settings using existing
approaches: PRDC [179], ASFI [111], RankSVM [136] and CoPE [J1] compared with the pro-
posed association approach using, (left-column) WARD [122] (|Pn| = 30), and (right-column)
Torch [C2] (|Pn| = 24) datasets. Each camera detects persons that come from the other two as
source-cameras such that persons appear in (a, b) C1 from C2 and C3, (c, d) C2 from C1 and C3,
and (e, f) C3 from C1 and C2. Key: Bhatt. - Bhattacharyya distance, Prop. - Proposed approach.

5.4.1 Three-camera setting

Fig. 5.15 shows the ROC curves for re-identification in three-camera settings, i.e. persons de-

tected in Cn can be from any of the two cameras. Because of the probability estimation in
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Figure 5.16: Ranked ROC curves for re-identification in three-camera settings with 25% addi-
tional persons (FPs) using the existing approaches: PRDC [179], ASFI [111], RankSVM [136]
and CoPE [J1] compared with the proposed association approach on (a) WARD dataset [122]
and (b) Torch dataset [C2]. Key: Bhatt. - Bhattacharyya distance, Prop. - Proposed approach.

Eq. 4.10, the performances of the existing pairwise methods are improved by the proposed asso-

ciation approach in the two datasets. In WARD dataset, the less illumination changes resulting

in more inter-camera similarities make it challenging to learn differences between camera pairs.

The proposed approach increases TPR of PRDC and RSVM, from the range between 0.25 and

0.55, up to 0.75 in the start of the curves. In Torch dataset, the re-identification rate is less

compared to the WARD for all approaches because of the additional challenges of occlusions

and blur; however, compared to the existing approaches, improvement in the re-identification

rate can be observed by the proposed approach. CoPE using the proposed approach shows the

highest improvement in the performance because of the probability estimation at the feature level

(Eq. 5.2), while ASFI and DDM remain the least.

Fig. 5.16 shows the ROC curves for re-identification with added FPs in three-camera settings

(8 in WARD and 6 in Torch). In both datasets the re-identification rate is improved with the

proposed association approach. In WARD, TPRs for the proposed approach with PRDC and

RSVM remain higher starting at 0.3 and reach to 1 at 80% of the FPR. In the Torch dataset,

because of the more challenging settings, ASFI and Bhattacharyya do not perform well; however,

the learning methods RSVM and PRDC with the proposed approach remain least effected and

show improvement in TPR. CoPE with the proposed association approach shows the highest rate

of improvement in the re-identification. It is to be noted that the experiments with the False
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Figure 5.17: AUC of ROC for re-identification as the number of cameras are increased from two
to five in Torch dataset. Key: Bhatt. - Bhattacharyya distance, Prop. - Proposed approach.

Negatives (FNs) – persons detected in Cnq that do not appear in Cn – are not performed because

of the limited availability of data; however, because of the optimal assignment in the proposed

approach, we can expect that FNs will have a similar effect on the re-identification as that of

additional FPs.

5.4.2 Variable cameras setting

Finally, we analyse using the AUC of ROC how the re-identification performance varies as the

number of cameras increases (Fig. 5.17). We use five cameras from the Torch dataset. Keep-

ing the total number of persons detected in Cn fixed to 24, the experiments are performed for

all combinations containing one, two, three and four source-cameras (Table 5.7). The proposed

approach improves the re-identification performance for all combinations of cameras in the net-

work. As the number of cameras increases the performance decreases gradually; however, the

rate of decrease in performance is relatively small, especially when the proposed association ap-

proach is applied with PRDC, RankSVM and CoPE. DDM shows the highest improvement with

the proposed approach.

5.5 Summary

The experimental evaluation of the proposed feature selection and association methods shows

improved performance in terms of re-identification rate with reduced storage, computation and

communication costs compared to the existing re-identification approaches.
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Unlike existing feature selection methods based on the performance only, the proposed CoPE

feature selection approach explicitly incorporates the cost of the feature extraction in the selection

process to generate a combined importance score (Eq. 3.8). CoPE decreases both the amount of

data generated per feature set and the amount of time needed for the extraction of the selected fea-

ture set by up to 80% in VIPeR and up to 70% in the iLIDS dataset, without compromising on the

re-identification rate compared with the existing re-identification approaches. We also demon-

strated that, compared to the existing feature selection methods, CoPE improves the performance

of other learning based re-identification approaches such as those based on RankSVM [136]

and AdaBoost [71] by reducing the feature dimensions and the training time, and by improving

their effectiveness. A further reduction of the selected features is made possible to account for

additional operational constraints (e.g, limited resources). However, we see a limitation of the

proposed approach, such as in the case of multiple source-cameras it is possible that the locally

stored lists of selected features may together result in the extraction of the complete feature set.

Such a case may occur if source-cameras are located far away and reduces the benefits of feature

selection.

The proposed difference-vector representation approach exploits and combines already exist-

ing concepts such as histogram equalisation, difference from reference sets and temporal align-

ment so that most of the computation can be performed locally. Thus the approach considerably

reduces network traffic because of less inter-camera feature sharing. With the inclusion of the

temporal alignment [120], the proposed approach also achieves a higher matching rate compared

to the existing re-identification approaches – PRDC [179], ASFI [111], RankSVM [136] and

LBM [J2]. We use both outdoor and indoor datasets for the evaluation, and the results show that

the proposed method reduces up to 95% the amount of information to be communicated – less

than 100 bytes per person and a fixed local storage required for the reference-feature vectors. We

achieved up to 75% re-identification accuracy in the Torch dataset. However, the re-identification

performance is highly dependant on the selection/generation of the reference feature sets. The

task of sharing the reference feature sets with each device taking part in the re-identification can

also be seen as a limitation.

The proposed multi-camera re-identification approach extends the pairwise re-identification

methods to multiple source-cameras. Matching scores are generated by measuring the probabil-

ity of a correct match, which makes it independent of the camera pair, where the object appears.
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Results from two multi-camera datasets, WARD [122] and Torch [C2], show that the proposed

approach improves the re-identification rate by 20% on average, while the degradation in the per-

formance as the number of cameras increases is less compared to existing approaches, namely:

PRDC [179], ASFI [111]) and RankSVM [136]. The proposed approach also supplements the

CoPE feature selection [J1] by proposing a suitable association method for the individually se-

lected good performing features and results show better performance than the existing distance

minimisation approaches. However, as the number of cameras increases the availability of suffi-

cient data required for the training can become a limitation. In order to overcome this limitation,

approaches based on transfer learning for training, such as [104], can be exploited.



Chapter 6

Conclusions

6.1 Summary of achievements

In this thesis, we addressed the problem of person re-identification with the aim of reducing

computational, storage and communication resources, while maintaining or improving the re-

identification performance. The main applications for our work could be identified in video

surveillance and smart-camera networks. Changes in illumination, pose and scale of the ob-

ject, variability in inter-camera travelling times and the location of re-appearances of objects

in the next camera, make re-identification a challenging problem. In order to improve the re-

identification accuracy, multiple types of object descriptors are developed and combined [12,

18, 59, 64, 136, 179]; however, these representations may become highly computationally ex-

tensive. From the survey of the state of the art in Chapter 2, it is observed that the existing

re-identification approaches exploit these features for improving the re-identification rate with-

out considering constraints on resource utilisation thus limiting the usability and scalability of

the approaches in real-world applications. This problem can be addressed by feature selection;

however, very little work has been done to consider the cost of a feature such as, for example,

the computational time for its extraction and the amount of data that is necessary for its storage.

Existing feature selection approaches [82, 131, 140] focus on reducing the number of features.

This implicitly implies that all features belong to the same class and thus reducing the number of

features will reduce the cost. However, the cost of feature extraction and storage varies signifi-

cantly across different topology of features to be shared among cameras, and it is independent of
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the feature’s performance.

To this end, we proposed a cost-effective feature selection method that selects, the feature

set which is computationally less expensive to extract and requires less storage, while having

performance comparable or better than other features available [J1]. We evaluated the approach

on challenging person datasets to analyse the performance gain with less costly features. In par-

ticular, we extended the iLIDS dataset to get up to 348 pairs of person images in two cameras and

used the existing VIPeR dataset. Our approach reduces computation and storage requirements

within a camera by 70% of the initial feature set, while the re-identification performance is better

than the existing feature selection methods and re-identification approaches. The individually

selected features perform well in constrained environments, thus making the approach scalable

for transmitting a selection of data over the network.

In addition to this, we discussed how the association of objects can be performed with the

minimum amount of information shared between cameras in order to address bandwidth con-

straints [C2]. Our approach maximises the dependencies on information available locally within

the camera. The objects are also grouped within a defined time-interval, which further improves

the re-identification by reducing the number of candidates for matching. For evaluation, we gen-

erated a multi-camera outdoor crowded dataset of short-duration videos using hand-held smart-

phones (Torch dataset). The dataset contains 50 people seen by five cameras over time. The

communication cost is considerably reduced, while the re-identification rate is maintained better

than existing re-identification approaches.

Furthermore, the existing re-identification approaches perform re-identification in a pair of

cameras with the assumption that a source-camera with prior detections of the object is known.

However, we can have more than one source-camera in real-world scenarios. We discussed our

object association approach that relaxes the assumption of pairwise association [C1]. The ap-

proach extends the existing pairwise methods to a multiple source-camera scenario by generating

camera-invariant matching scores for association. The evaluation on two multi-camera datasets

shows a better re-identification rate, and less performance degradation as the number of cameras

is increased, compared to the existing re-identification approaches.

In summary, we have demonstrated that cost and performance effective solutions for the open

problem of person re-identification can be designed to improve the re-identification rate while

efficiently utilising the existing resources, thus improving the applicability of re-identification
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approaches to real-world environments.

6.2 Future directions

Possible directions from this research are:

1. In the re-identification task, manual annotations were used in the evaluations and detection

and tracking of people are assumed to be solved. One extension of the work could be the use

of actual detection and tracking outputs, which would involve the estimation and separation

of missed and false detections before applying the re-identification methods.

2. CoPE feature selection method in Chapter 3 uses distances from the same and different ob-

jects to measure the discriminating ability of a feature jointly with the extraction cost. This

makes the approach suitable for different classes of features having varying costs and ex-

tendible to problems other than the re-identification, such as information retrieval, medical

image analysis and diagnostics, text classification, data mining and big data analysis.

3. CoPE feature selection needs a training between each camera pair. The concept of transfer

learning can be exploited for this task, such that features learned for one scenario/camera

pair can be mapped to the others. Initial research has been done in this area [104]; however,

the variations in challenges, for re-identification, from one camera pair to another needs to

be addressed.

4. In the evaluation of our multi-camera association approach (Sec. 5.4), we explored the

concepts of an open system [29] by including False Positives FPs (new persons detected

in a camera) and False Negatives (FNs) (persons that exit a camera network) in the frame

work of re-identification. The evaluation remained limited up to five cameras because of a

limited data. This concept requires further exploration, which could include the proposal

of new or modified measures to quantitatively evaluate an open system. A larger dataset

involving a network of multiple cameras viewing a large number of objects is also required

to measure the scalability of the approach, since this is currently not available.
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