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seeds for two dimensional problems. The first order partial differential matrices of boundary
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1. Introduction

Due to the complexity of the irregular boundary configurations and the material properties
in general engineering problems, it is very difficult to obtain the analytical solutions. Very few
analytical solutions are available in the literature books and publications which can be used as
benchmarks. There are many numerical techniques available for solving differential equations.
These include the Finite Difference Method (FDM), Finite Element Method (FEM), Boundary
Element Method (BEM) [1]. In spite of the great success of the FEM and BEM as effective
numerical tools for the solution of boundary value problems in piezoelectric solids, there is still
a growing interest in the development of new advanced numerical methods. In recent years,
meshless formulations are becoming popular due to their high adaptively and low cost to
prepare input and output data for numerical analysis. These meshless approaches provide a new
way to deal with complicated problems in engineering [2,3]. The meshless algorithms include
MFS (Method of Fundamental Solution) [4,5,6,7], SPH (Smooth Particle Hydrodynamics
Method) [8,9,10], DEM (Diffuse Element Method) [11], EFG (Element Free Galerkin Method)
[12,13,14] and MLPG (Meshless Local Petrov-Galerkin Method) [15-19] etc. In methods based
on local weak-form no background cells are required and therefore they yield the possibility to
develop truly meshless methods. The meshless local Petrov-Galerkin (MLPG) method is a
fundamental base for the derivation of many meshless formulations, since trial and test
functions can be chosen from different functional spaces [20,21].

The main advantage of the boundary element method is that the mesh can be applied on the
boundary only so that the dimension of the problem is reduced by introducing the fundamental
solutions. For linear elasticity with isotropic and homogenous materials, we have the

displacements on the boundary in terms of the boundary integrals without body forces as [1]

C, 0u; () = [U; 06 x)t, ()T () = [T, (x, X )u (x')d (x') (2)

where Uj; (x,x") and T; (x,x") are fundamental solutions, u;(x') is the displacement, x and x'
are source and field points, t;(x")and u;(x') are traction and displacement on the boundary, C;

is boundary parameter. The linear system equations can be obtained by introducing boundary
element with shape functions in the matrix form as
Hu =Gt )
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However, the fundamental solutions for general problems such as non homogenous material
and functionally graded materials are not valid. Even for non-zero body forces, there are two or
three domain integrals to be determined and therefore the characteristic of boundary element is
disappeared. The boundary node Petrov-Galerkin method is formulated based on Lagrange
interpolation and the Finite Block Method (FBM) which was proposed to solve the heat
conduction problem in the functionally graded media and anisotropic materials by Wen et al
[22] and Li and Wen [23] with high degree of accuracy. The physical domain is divided into
several blocks (like elements in the FEM) and the continuities of the displacement and traction
on the interfaces are satisfied. It has been proved that all components of stress are continuous
along the interface. With the quadratic type of element (block) being transformed from physical
domain to normalized domain with 8 seeds, any order of partial differential matrices is
calculated by the first order differential matrices in the transformed normalized domain with
the uniformly distributed collocation points. By introducing test function for all collocation
points in the domain, all nodal displacements can be written in a matrix form in terms of the
displacements on the boundary. Thereafter the first partial differential matrices can be obtained
in terms of boundary values of displacement too. Finally one can obtain traction equations with
boundary displacements similar to that of BEM in Eq.(2). The boundary node Petrov-Galerkin
method in weak form is proposed to deal with engineering problems of functionally graded
materials in this paper. It is apparent that the boundary node Petrov-Galerkin method is of the
characteristics of the boundary element method. However, BEPGM does not need fundamental
solutions to establish the relationship between the traction and displacement on the boundary.
To demonstrate the accuracy and efficiency of the BNPGM, several numerical examples are

given for two dimensional problems.

2. Lagrange interpolation for two-dimensions

Consider a set of two-dimensional uniformly distributed nodes shown in Figure 1,
&=-1+2(-)/M -1 (i=12,..,M),n; =-1+2(j-D/(N-1) (j=12,..,N), (&,n;)are
defined as location of node (ijT) and ij = (j —1)M +i. Smooth function u(&,n) is approximated,

by using Lagrange series interpolation, as
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The number of total nodes L =M x N . Then, the first order partial differential is determined

easily with respects to & is

and the first order partial differential with respects to 7
S G(n.1;)
b E s |
on ;; & &) ———— o .
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For two-dimensional problems, one block with four sides can be mapped into a normalized
domain Q' by using the quadratic shape functions with 8 seeds. The coordinate transform

(mapping) can be fulfilled with
X:ZNI(é:!n)XI’ y:ZN|(§’77)y|’ (8)

where (x,,Y,) is the coordinate of seed | in real domain. The shape functions of quadratic

element are given by

Nl(i,n)=%(l+§|§)(1+77.77)(§.§+77.77—1) for 1=1234 (92)
N, (611) =2 0=+ ) for 1-57, (9b)
N, (6 =2 Q-1+ 68) for 1=68. (90)
For partial differentials of functionu(x, y), one has
ou ou | oau
11 12 ) 21 22 ) 10
oslnsmi) 55l oo
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where
0 0 OX OX
%’ﬂlz = aé ﬂ __%’ﬂzz :%’ J :ﬂZZﬂll _ﬁZlﬂlZ’ (11)

in which B8, (a,y =12) can be obtained from Eq.(11). Therefore, the first order partial

P =

differentials can be obtained, in terms of nodal values of u, as

WSS 5 T paFee)” ("’7)} ,

X J i=1 j=1| aé: (12)
o 18N R oGn.1m,)

5—j;;_ﬂ2 PY: ——==G(n, i )+ BuF (&, &) ———— on }

In addition, the nodal values of the first order partial differentials Eq.(12) can be written in

matrix form as

u,=Du,u,=Du, (13)
where
u - ou(x,) ou(x,) ou(x,) T U - ou(x;) ou(x,) ou(x,) T (14)
« o o U, N oy oy .
n
|
N
o) o @ |
i 4 7 3
1 - (\ ;-)
(1])
SRR R ?‘M;'(jii)';i" @
: - 8 6 ¢
| ¢
e Q
e S O | |
,\ 1 5 2

oJoB ®
(b)
Figure 1. Two-dimensional node distribution in normalised domain: (a) the uniform

distribution of nodes; (b) the quadratic element with 8 seeds.
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3. Static boundary node Petrov-Galerkin method
Consider 2D elasticity plate of domain  with boundary I" with functionally graded media.
It is assumed that the material properties are dependent on the spatial coordinates. The

equilibrium equations are

0
agi+&+bX =0
X
% XeQ (15)
0 0
Ty, 99, _
ox oy '

where b, and b, are body forces and the relationship between stress and strain for

continuously homogeneous composites are

u ov
o, = + = 16
Qll QlZ Q12 Q22 QGS(ay GXJ ( )
where u and v denote the displacements,
E 1% E,
Qllz—l’ Quw _L Q. =—2—, Qe =G (17)
1-vpvy 1-vipvay 1-vpvy

where E,,E,,v,,,v,, and G are the material coefficients, which are functions of coordinate x

and y for functionally graded materials. The boundary conditions can be given as
u=u(x;), v=Vv(x), X, €l

_ - (18)
o +r,n, =t (x;), 7,0, +o,n =t (), X; €,

where all variables with bar are specified boundary values, n(n_,n,) is the normal outward to

X1y

the boundary. Several algorithms can be categorized as

3.1. System equations in strong form (FBM)
By using the first order differential matrices D, and D, in Eq.(12), the equilibrium

equations become
Dx(Qlleux +Q12Dyuy)+ DyQGG(Dyux + Dxuy)+bx = 0

XeQ, k=12..L (19
D,Q(D,u, +D,u, )+ D, (Q.D,u, +Q,D,u,)+b, =0

n

where u, ={u}', u, ={v.} Q= diag[Qij (Xk)] and L, is the number of collocation points
in the domain Q. Eq.(17) can be written in matrix form as
A,u=-b (20)
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whereu =[u*,v',u?,v?,..,u" v ], b ={b},b,....b" b} are the nodal value vectors of the
displacement and forces.

3.2. Localised Petrov-Galerkin approach (PGFBM1)
In the local Petrov-Galerkin approaches, the weak form of the governing equation over a

local domain Q, centred at point x, can be written as

0 . oz,
J'(%Jrﬂmxju dQ =0, J'[ T
o\ OXx oy o\ X

where u” is a test function. By the divergence theorem, Eq.(21) can be rewritten in a weak

(21)

- |n

oo .
+—y+by]u dQ=0,Q, e, k=12,.
oy

form as

[(o,n, +7,n, ldr - j( S —bu]dgz:o,

Iy

[(eyn, +o,n, hdr- j( Xya* E_b de:O,

Iy

XeQ, (22)

where T, is the boundary of the local integral domain Q, . The simplest choice of the test

function is a unit step function in each local domain (PGFBML), as follows

N 1 atxeQ,,
u"(x) = = (23)
0 atxeg Q,.

Then the governing equation in the local weak form (15) is written as

[0, +7,n, Hr(x) + [bd(X) =0,

Ty Q

[l sy B) 5 [5,6000) -0

Iy

From Eqgs (16) and (12), one has

M N _ M N G N
R L R O A

i=1 j=1 i=1 j=1 5

XeQ, k=12,.,L, (24)

le SR i oG TL %M S ﬁ an ij
o, ()=~ ZZ{ﬂn —2 G+ AR, nj += Zz[ﬂﬂ Gy +PaFi Jv,(25)

i=1 j=1 'f i=1 j=1 55
! Q66 bV | 6G 1j Q66 SR aFl J ij
Txy(x):TZZ ﬁ21 G ﬁzz i u +TZZ ﬂllEGj 1812F| \
i=1 j=1 i=1l j=1
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In order to evaluate the local boundary integrals in Eq.(24), a local integral domain is

selected as a circle of radius r centred at (&,,7,) in the normalized domain (o7) which
corresponds to the point X, in the real Cartesian coordinate (xoy). Therefore, the coordinate
of local integral boundary S'(&,,7,) in the mapping domain shown in Figure 2 is

& =& +rcosd, n,=n, +rsind (26)

and in the practical domain, the coordinate S(x,Y)

8 8
XSZZNI(gs’ns)XU ys:ZNI(‘fs’ns)yl (27)
=1 -1
The components of the line segment are

rdez< '(gg 77)3 n0+wcos6’>x, = f(&,,n,)rdo
n

(28)
dy = rdez<—ﬂsin H+Mcosﬁ>y. =g(&,,n,)rdo
I=1 0s on
Thus the relationship between these two segments of length shown in Figure 4 is
ds=Jdx? +dy? = f2+g%rdo = f2+gds'. (29)
Therefore, the tangential at point S(x,y,) in the practical domain is obtained by
a=tan YT (30)
dx ¢
and the components of normal outward to the boundary in Eq.(24) are
n,=cosp, n =sing, f=a-rxl2. (31)
The weak form of governing equation (19) can be written approximately as
2z
J.r(crxnX +7,n, Nf?+9°do+b,Q, =0,
. XeQ, k=12,..,L, (32)
Ir(rxynx +o,n, N2 +g?do+b,Q, =0.
0
Eq.(24) can be arranged in matrix form as
Au=-Qb (33)

whereu =[u*,v',u®,v®,..,u",v"']", @ =diag[Q,,Q,,...Q_,Q, ] are the nodal value vectors

of the displacement and matrix of the local domain area.
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(a) (b)
Figure 2. Local integral domain and its boundary: (a) circle in normalized coordinate

(on); (b) real local integral domain (xoy).

3.3. Domain Petrov-Galerkin approache (PGFBM2)
The second choice of the test function is a shape function using Lagrange series N, (&,7)
(X € Q) in the field (PGFBM2) as
u'(X) = N (&) = F(&,8)G0mn;), k=M(j-D+i, X,eQ (34)
Consider the shape functions are zero on the boundary for X, € Q, i.e.

[(o,n, + 2,0, N;dr(x) = [ (), + 0,0, N;dr(x') =0 (35)
r r
Then the governing equation in weak form Eq.(21) is written as

I(O'X aN—k+rxy Ny _ bXN:]dQ(X') =0,
al X oy

X, eQ (36)

*

j(rxy al;—k +o, 82;" —b,N :JdQ(X') =0,
X

Q

Substituting Eq.(25) into EQq.(29) produces a set of linear equations as

A,u=-w (37)
where w are the nodal value vectors of the domain integrals of body forces with shape functions.
From Egs (20), (33) and (37) for different algorithms, the governing equations in the field can

be written as
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Au=-w. (38)
If the vector of displacement is re-arranged as
u=(,,uz)", w=(w, wy)", (39)

where u, (=[u*,v*,u®,v?,...,ut v" 1) is the vector of displacements at internal nodes,
Ug (=[u™ v u*P v*P1T) s the vector of displacement on the boundary in global

system, L, [=(M —2)(N —2)] is number of internal nodes and P (=2M +2N —4) is number
of boundary as shown in Figure 3(b). By considering the governing Eq.(39), we have
(A, A, )u,,uy)" =-w,, (40)
and solving these equations gives
u, =-A''w, —A,'A U,. (41)
It means that the displacementsu, , which are unknowns at internal collocation points in the
domainQ, can be represented in terms of the displacement ugon the boundary. Substituting
Eq.(41) into Eq.(13) results
=(D®-D'A;'A, , -D!Aj'w, =D’u, +D'b,, (42a)
- (D® -D!A*Ag i, D! A'w, = Dlu, +D°b,. (42b)
Obviously the first order partial differential at each node both on the boundary and in the

domain can be obtained by boundary nodal values of displacements. It is worth to notice that
even for zero boundary displacements, the partial differentials with respect to both x and y are
not zero due to body forces. So far, all unknowns of the system are boundary displacementsu,
only with number P in total, which can be determined by considering traction boundary
conditions.

As we have derived the first partial differentials in terms of the boundary nodal values of
displacement in Eq.(42), the stresses are obtained sequentially

. . P * . Lin . P * . L|n .
o, (X)) = QU +QpV), = Qn(z D,;Us +Z Dfijblj j + ng(Z D,;Va "‘Z D;)ijbll }
= = =y 1

P Lin

. . * . . p * . LI" .
o, (X)) = Quu, + szV,ly = Q21[Z Dxijué +Z D)?ijblj ] +Qy, (Z Dyijvé "‘Z D;)ijblj } (43)
j=t j=1 j=1

j=1

-10 -
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A ) P . ) I-in ) P . A Lin )
T:y (Xi) = Qeeu,ly + Q66V,Iy = Qse [Z DyijuEJ; +Z D)l/)ijblj J + Qse [Z DxijVEJ; "’Z D:ijblj j'
j=l j=l j=1 j=1

n
|
(MN) P+2M+N-2 P+M+N PEMENAL
O O o) [ 4 @ @ @ \ 4 @  J
) C ) e P+2M+N-1 @ | O o o o o, @
| (M-2)><(IN-2)
1
¢ @ ¢ 0 o o o o i s
- !
(i.j) ! !
1 1
) ) ¢ - ¢ 'O o o o o! e
£ | |
1 1
1
o ¢ .0 o o o o1 @ P+M+2
1
M1 M !
1 1
¢ P+2M+2N-4 @ | O o e} o o, ¢ P+tM+1
=MXN 1T 2 T M-2
o & & & ¢ o [ ° ° ° ° 'y 'y
®® OO
@) (b)

Figure 3. Numbering system in normalised domain: (a) Global numbering system; (b)

collocation points in the domain and on the boundary.

for i =1,2,..., P and written in matrix form
Gj( :a’xbl +BXUB'
6,=ab, +p,u;, (44)
T, =a,b, +B,Us.
Therefore, the tractions can be arranged in matrix form, with zero body forces, as
t, =H'u,, (45)
where Hy ;= BNy + BNy Ha = BNy + By;N. There are following kinds of boundary

conditions in solid structures:

(1) Displacement boundary

u=a,v =v' x, e[, (N,). (46)

-11 -
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(2) Traction boundary

t><i = O-:inx +T:yiny’ tyi = T:yinx +O—;iny Xi € 1—‘t (Nt) (47)
where o, a;i and r:yi are given in Eq.(44), N,and N, are numbers of nodes located on the

displacement and traction boundaries respectively.

(3) Free corners

Hf(a; c0s6+17,, sin6)RAO+F! =0, T(z':yi c0s6+ o7 sin@)RAO + F) =0 (48)

o o
where F and F are resultants of applied force acting on the boundary (two edges). Due to

the stresses in the local area with unit radius (small) are constants as shown in Figure 4,

EQ.(48) becomes

*

o (sin 0, —sin 491‘)—7 (00502‘ —cosej)+ F, =0,

K (49)
Ty (sin ) —siné, )—a; (cosezi —cosal‘)+ F, =0.
(4) Simply supported
o (sin6} —sin 6} )- 7, (cos 6} —cos6! )+ F =0, v' =0, (50a)
or
Ty (sin g} —sin 9;)— o, (cosezi —cosHj)+ F, =0, u'=0. (50D)
(5) Interface between two blocks
(@) If x' =x"
u| X| :ull X|| , V| X| :V” XII ,
|(|) I (II ) (| )| ||( ||) X; € Ly (51)
L(x")+t (x")=0, t,(x")+t,;(x")=0.
(b) If x" = x"
u| X| =u|| X| ’ V| XI =V|| X| , XI Eri:.'
(x) (x) (x) (x) t 2

t'(x")+t!'(x")=0, t; (x") +t;' (x")=0. x"er

This algorithm can be use to combine BNPGM with any other methods such as FE and
BEM to deal with large scale problems in engineering. It does mean that for the local study
such as fracture and damage analysis, we can ABAQUS subroutine function to study “more

complicated practical problems.

-12-
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(6) Joint with X blocks (shown in Figure 4)
ut(x) =u" (%) =..=ul(x), V() =vI(x) == v (X)), (53a)

[a;” (X )(sin & —sing™ )— T (xi)(cos o —coso," )]+ F! =0, (53b)

Mx

T
1l

[r*H (xi)(sin gy —sing;" )—a;” (xi)(cos@ziH —cosé," )]+ F, =0. (53c)

Xyi

LM~
i

The last two equations are equilibriums for infinitesimal region centered at the joint X; .
Obviously in the case of one block, there are 2x N, linear algebraic equations only from
EQq.(45) to be used to determine the displacements uon the traction boundary T, . It means that

for the displacement boundary condition, there are no any unknowns need to be solved, as u,
are given by boundary conditions (N, =0) . One of the advantages of the boundary node

Petrov-Galerkin method is that the number of unknowns is reduced from 2x L (two-dimension)

to 2x N, (one-dimension). In general case, the equations of stresses in Eq.(45) on the boundary

nodes are considered. For more than one block problem, we always have two equations for
each node on the boundary either from the traction boundary condition or connect conditions
on the interfaces. Recall the system equations of BEM in Eq.(2), the BNPGM possesses the
same characteristics, i.e. the relationship between tractions and displacements on the boundary
in Eq.(45). However, there are no requirements of the fundamental solutions in the BNPGM.
Therefore, for functionally graded materials and non homogenous materials, the BNPGM can

be utilized straightaway. For fully bounded interface, it is easy to prove that all stress

1
X )

components are continuous on the interface between two blocks, i.e. oy =0, o, =0, and

7, =7,. Therefore, the higher accuracy of the numerical solutions are expected by using

BNPGM than other methods. Compared with MLPG method , the differences are
summarized as: (1) The distribution of collocation nodes is control by eight seeds of quadratic
block which characteristics can be used to study stress concentrations [22]; (2) There are no
free parameters in the interpolation of variables such as free parameters used in radial basis
function and moving least square methods; (3) The first partial differential matrices are only

needed for higher order partial differential matrices; (4) Stability is excellent for selection of

-13 -
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local integral domain; (5) Behaviors of the boundary element method character is maintained;
(6) The stress components are continuous along the interfaces between blocks.

Block H
HiH
2

eiH
Node i

Block H-1

Figure 4. Joint with more than two blocks.

4. Dynamic boundary node Petrov-Galerkin method

In this chapter we consider 2D elastodynamic problems. The equilibrium equations for two
dimensional problems are given as

oo, 0T, o%u
Ty TP
XeQ (54)
6rxy 80'y 62V
+t——+b, =p—,
OX oy ot
where p indicates the mass density of the plate and the boundary conditions
u(xk ’t) = U(Xk ’t)’ V(Xk ’t) = v(xk !t)v Xk < Fu (55)
t (X, 1) =t (X, 1), t.(x,, 1) =t,(x,,1), X, €I}
for t > Owith following initial conditions
u(x,,0)=U°(x.), u(x,,0)=u’(x,),
(X,0) (%), U(x,,0) =u"(x,) e (56)
V(x,,0) =V °(x,), V(x,,0)=V°(x,).

Appling Laplace transformation over both sides of Eq.(54) gives

-14 -
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5. 0T, ~ ~
a(;i+wxy+bX :p(szu —su’® —UO)
X
- ~ X, €Q, (57)
az-xy ao-y N 25 0 0
y =p(s V-sv -V )
OX oy
where s is Laplace transform parameter and the Laplace transform of function f (t) is defined
as
f(s) = f(t)edt. (58)
0
The transformed displacements and tractions satisfy the following boundary conditions:
0(X,,5) =T(X,,5), V(X,,S)=V(X,,S) x, eTl,,
- ~ - ~ (59)
t, (X,,8) =t (X,8), t,(X,,8) =1 (X,,S) X, €T;.

In the boundary node Petrov-Galerkin method (PGFBML), the weak form of the governing

equation over a local domain Q, centred at point X, can be written as

~ a~ - .
J‘[ao-x Txy +bx _pSZG‘Ju dQ(X'):O,
Sl ox oy
D X, eQ (60)
j(af %0, b, ps? Ju*dQ(X')—O
o\ X oy ’

where u” is a test function. By the divergence theorem, one has

[@,n, +7,n, Wdr - j(* L ay —bu" + ps2liu de(X')zo,

- X, eQ (61)
f Xynx+ayny)u dr — J'(* aaux +& a%—bu + ps2Uv ]dQ(X) 0.

1-5

By selecting a unit step function in each local domain, one has the governing equations from
Eq.(61)

j(&xnxﬂwny)jr(x) 05 judQ(X)+jb dQ(X") =0,

. o X, eQ, k=12..L, (62
[(Fyn, +&,n, Br(e) - ps? jde(X)+jbde(X)=o. S (62
Ty Q Q

Following the same procedure of statics, Eq.(62) can be written approximately in matrix form

as

- 15 -
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(A peili= @, ©
where W = Qb . If the vector of displacement is re-arranged as

U=(U,,0,)", Ww=(W,,wg)", (64)
Eq.(56) becomes

(A, - p5°Q,AL )T, Ty)" =W, . (65)

If the Laplace transform parameter s is chosen as real value, we can determine all internal
displacements in terms of displacements on the boundary and body forces as

U, =—(A, -2 )", —(A, - ps?) " AT . (66)
Otherwise, we need to split each equation in complex into two equations in real, i.e. consider
real part and imagine part for each equation respectively. Following the same procedure for
static case, we have tractions (along the normal and tangential directions) on a smooth

boundary for each block in the Laplace transform domain
t, =H (s)U,, (67)
where I:I*(s) can be determined from Egs (66) and (13) following the same procedure of static

approach. Same again, there are only 2x N, linear algebraic equations in Eq.(67) to determine

the displacements U on the boundary of tractionT, . In order to calculate time dependent values,

we have to select a proper Laplace inverse technique. For the real parameter s in the Laplace
space, Stehfest’s algorithm [24] is one of the most popular methods. But the number of sample
in the Laplace space is limited to 20 in the most cases. The simplest algorithm is proposed by
Durbin [25] which has many advantages such as stable and accurate for large period of time.

Suppose there are (K+1) samples in the transformation spaces,,k =0,1,...,K and the same

number of transformed values f~(sk) . Then, f (t) can be obtained by

Zeo‘t/T |: 1

0=

F(s0)+ > RelT (s, ) }} (68)

where the parameter of the Laplace transform is chosen as s, = (o +27ik)/T , (i = J-1). The

parameters T depends on the observing period in time and no dimensional parameter o =5 [25]
in general cases. In the following examples, all variables are normalized for the sake of analysis

convenience.
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5. Numerical examples
5.1. Square plate under shear load

A square plate of width a subjected to a uniformly distributed shear load 7, on the top with

fixed bottom is considered in this example shown in Figure 5. The Poisson ratio v=0.3. Three
algorithms (FBM, BNPGM1 and BNPGM2) are observed and compared in numerical analysis.
The collocation points are uniformly distributed in the domain (L =11x11) for BNPGM1 and
BNPGM2. For these two methods, it is found that when L(=M x N) is larger than 6x6, the

numerical solution is convergence rapidly. However, the maximum numbers of node for each

direction are limited by M. = N_. =21 due to the oscillation of Lagrange series with large

number of collocation point. In addition, one free parameter for BNPGML1, i.e. the size of local
domain is selected as a circle of diameter d in the normalized domain. With different choices of

the diameter in the region0 < d < 2A , where A =1/M , we found that the effects of d on the

degree of accuracy are extremely small. Therefore, the diameter of local domain is fixed to
1/M in all examples. To evaluate the local boundary integrals, a regular integration algorithm
is adopted and the number of integration point is chosen as 18 for BNPGML.

To illustrate the accuracy of these three methods, the solutions by the BEM [1] (64
quadratic boundary elements) are plotted for comparison in the same figures. As the fixed
boundary condition on the bottom, the stresses are singular at the corners of the plate which can
be seen from the results in Figures 6 and 7. It is clear that the numerical results by FBM [1] and
BNPGM1 are in good agreement with the BEM results even with small number of boundary
nodes (P =40). For BNPGMZ2, in order to fulfill domain integrals, a back ground grid is
introduced (400x400) and it is found that the numerical results are sensitive with the selection
of the node number M and N. It is because the characteristics of oscillation for Lagrange

interpolation with a bigger number of node such asM >7 . The results of BNPGM2 with
L(6x6) are shown in Figures 5 and 6. In addition, it is obvious that the accuracy of BNPGML1 is

higher than FBM in the same conditions.
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—_—— — —

(@) (b)
Figure 5. Square plate with one block subjected to uniform shear load on the top: (a)

geometry and boundary condition; (b) boundary nodes.
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Figure 6. Distribution of normalized shear stress z, (x)/ z,0n the bottom.
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—O— FBM
—— BNPGM1
—— BNPGM2

BEM

-15

Figure 7. Distribution of normalized normal stress o, (X) / 7, on the bottom.

5.2. Beam of functionally graded media under bending load

To demonstrate BNPGM with different numbers of collocation point on the interface
between two blocks, we consider a 2D beam of length 2L and height h with functionally graded
material as shown in Figure 8(a)(b) subjected to the shear load at the end. It is clamped at the
left hand side. In the numerical solution, the mechanical properties of material are normalised

and given:E, =E, =E,e’"*", A=E, /E,, E, and E, are Young’s modulus on the bottom

and top surfaces of the beam. In this case, the analytical solution by using beam theory can be
obtained. With plane assumption of classical beam theory, the normal strain and normal stress

on the cross-section are assumed as
£ =a()(y = Yo), 00" = Bl = a(X)Eq (y — yo)e’ ™" (69)
where y, is the location of neutral axis and « is function of horizontal axis x. Considering the

equilibrium conditions of the cross section leads to
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X

h
=M dy =0, j o= ydy = —M (X) (70)
0

Oy

where M (x) is bending moment at cross section x. Therefore we have

i1 M (x)(In 1)
Yo = h(———} a =_L3) (71)
A-1 InA E,h’C
where
_ 2 Yo Yo
C =(In2) —2In/1+2)—T/1(In/1—1)ln/1—2—rlnﬂ (72)

and the shear stress can be deduced as

2
poem = %[ﬂ(m ~1)—e"™"(yInA/h—-1)—alnA/h(1—e’"")] (73)
n
Consider the shear stress at the end, we have M (x) = —z,h(2L — x) and S(x) = z,h. Then the
deflection of the beam is derived, for cantilever beam shown in Figure 8(a), as

(In2)°z,

Vbeam X) =
) 6,h’C

(3L —x)x>. (74)

In the numerical simulation by using BNPGM, the ratio of length and height is specified as

L/h=4 and 2D dimension (Lx0.25L) for each block. There are L'(=M'xN"') and
L"(=M" xN") nodes uniformly distributed in each block shown in Figure 5(b), here
M"=M'—-1and N" =N'—1in this example for simplicity. Poisson ratios are assumed
v, =V, =0, G=E;/2(1+v,;,) in Eq.(16) and 4 =10. To observe the convergence of the
algorithms, different densities of nodes are considered, i.e. L' (=16x8 and 19x11). Figures 9
and 10 show the variations of the normal stress o, (y) and shear stress z, (y) on the interface
between two blocks at x =L . The normalized deflection v(x) on the top surface y=h is

shown in Figure 11. The analytical solutions of the classical beam are shown in these figures
for comparison. The convergence by BNPGM is clear for all numerical solutions and the

agreements between them are excellent.
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7x7 ) 6x6

@D OPOL—

(b)

Figure 8. Cantilever beam with two blocks: (a) mapping seeds; (b) uniformly
distributed boundary nodes with different node densities for each block.
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Figure 9. Normal stress distribution at middle section of beam o, /7, when
X=L.
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Figure 10 Shear stress distribution at middle section of beam 7, /7, when x=L.
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Figure 11. Deflection of cantilever beam of top surface —v(x)E, /(z,L) wheny =h.
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5.3. Square plate with a hole under tension
A square plate of width a containing a square hole of width a/2 is subjected to a uniform

tension o, both on top and bottom of the plate. Due to the symmetry of geometry and the

loading condition, only a quarter of the plate is analysed shown in Figure 12. Poisson’s ratio
v=0.3. Three blocks are used in this case and the node density is chosen as 11x11 for each
block. Then there are 363 nodes in total, two interfaces and two joints. Normalized stress

distributions of o, /o, on the bottomy =0and on the interface y=a/2 are plotted in the

Figure 13. In addition, Figure 14 shows the normalized displacements uE/c,a and vE/o,a

on the top of the plate. The results given by BEM (128 quadratic elements) and meshless
method [26] with radial basis functions interpolation (RBF) (768 nodes) are plotted in the same
figure for comparison. Good agreement with the BEM results has been achieved both for the
stress and displacement. The accuracy of BNPGM is found to be much higher with less nodes

than meshless method (RBF) seeing from the stress concentration at the corner of the inner hole.

X

oo R S S e e S
w

(@)
(@) (b)

Figurel2. A square plate with a hole: (a) geometry and working condition; (b) blocks with

boundary nodes.
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Figure 13. Normalized stresses on different sections.
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Figure 14. Normalized displacements on the top of the plate.
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5.4. Square plate containing a circular hole under static and dynamic loads

Consider a quarter of a square plate of width a containing a circular hole of radius R
subjected to the uniformly distributed load o, on the top as shown in Figure 15. In order to
consider the degree of accuracy with finite element method, the isotropic material is assumed
with assumptions R=a/2, Young's modulus E, =E, =E and Poisson ratiov =0.3. Two
blocks are employed with node density 11x11 and the distribution of collocation point with 13
mapping seeds is shown in Figure 15(b). On the interface between these two blocks (7' = +1
and " =-1), both continuous conditions for displacement and traction on the interface have

to be satisfied for each node, i.e. u' =u", v' =v" t; +t! =0 and t,+t; =0. To compare

with other numerical method, the solutions given by FEM(ABAQUS) with 30047 nodes are

compared. Figures 16 and 17 show the stresses o, and o, respectively from A to B and from

C to D respectively. The stress concentration can be seen clearly along the circular hole.
Apparently, excellent agreements between these two methods have been achieved under static
load.

Finally we consider dynamic case with a uniformly load o,H (t) acting on the top, where

H (t) is Heaviside function. Free parameter T in Durbin inversion formula Eq.(68) is chosen as

60t,, wheret, =al/c, c:\/m. Same working conditions including material properties,
geometry and node distribution in the static case are kept here. The normalized time dependent
stresses, o, (t)/ o, at point Aand B and o, (t)/ o, at point C and D, versus the normalised time
ct/a are plotted in Figures 18 and 19 respectively. We can see that all stresses in Figure 18
should maintain to zero before the longitudinal elastic wave arrival travelling from the top of
the plate to points A and B, i.e. t" =a/c,, here ¢, = (E(L—v)/L+v)1-2v)p)"*. In addition,
the horizontal dash lines in the figures indicate the values of stress under static load. Obviously
the dynamic stresses oscillate about their levels of static value respectively for each location.

One can observe a good accuracy in the whole time interval under dynamic load with the

Laplace transform technique and Durbin inversion algorithm.
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Figure 15. Blocks of a quarter square plate and their mapping seeds: (a) geometry and
constrain conditions; (b) distributions of node for two blocks.
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Figure 17. Normalized stresses along axis y.

Figure 18. Normalized stresses o (t)/ o, at locations A and B.
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0,(C,D)/og

-12

Figure 19. Normalized stresses o, (t)/ o, at locations C and D.

6. Conclusion

The boundary node Petrov-Galerkin method was developed to investigate two-dimensional
elastic problems with functionally graded materials. The displacement of internal points can be
obtained in terms of the outer boundary displacements from the governing equations in weak
form. Therefore, stresses can be represented by the boundary displacements. The essential

features of the proposed numerical techniques in this paper can be summarized as:
(1) The physical domain is divided into few blocks with quadratic elements (blocks);

(2) First order partial differential matrices D, and D, are easily obtained by the Lagrange

series interpolation in terms of boundary displacements;

(3) BNPGM has characteristics of the boundary element method as the tractions can be
expressed with boundary displacements;

(4) Functionally graded materials anisotropic media or all kind of boundary value problems of
partial differential equations with variable coefficients can be analyzed easily;
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In addition, the BNPGM can be extended easily to any types of partial differential,
including Ressiener/Midllin plate bending, large deformation of plate bending and other

nonlinear problems in engineering.
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