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Vps34 PI 3-kinase inactivation enhances insulin
sensitivity through reprogramming of
mitochondrial metabolism
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Vps34 PI3K is thought to be the main producer of phosphatidylinositol-3-monophosphate, a

lipid that controls intracellular vesicular trafficking. The organismal impact of systemic

inhibition of Vps34 kinase activity is not completely understood. Here we show that het-

erozygous Vps34 kinase-dead mice are healthy and display a robustly enhanced insulin

sensitivity and glucose tolerance, phenotypes mimicked by a selective Vps34 inhibitor in

wild-type mice. The underlying mechanism of insulin sensitization is multifactorial and not

through the canonical insulin/Akt pathway. Vps34 inhibition alters cellular energy metabo-

lism, activating the AMPK pathway in liver and muscle. In liver, Vps34 inactivation mildly

dampens autophagy, limiting substrate availability for mitochondrial respiration and reducing

gluconeogenesis. In muscle, Vps34 inactivation triggers a metabolic switch from oxidative

phosphorylation towards glycolysis and enhanced glucose uptake. Our study identifies Vps34

as a new drug target for insulin resistance in Type-2 diabetes, in which the unmet therapeutic

need remains substantial.
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The three classes of PI3K phosphorylate phosphoinositides,
a group of lipids that modulate multiple cellular processes1.
In contrast to the class I PI3K isoforms, which have been

implicated in signaling and disease2, the physiological roles of the
class II/III PI3K family members remain enigmatic. The class III
PI3K, Vps34, is the primordial isoform of PI3K that is conserved
from yeast to human. Vps34 converts the phosphatidylinositol
(PI) membrane lipid to PI3P, which coordinates the localization
and function of effector proteins containing PI3P-binding
domains such as FYVE, PX, or the FRRG domain found in
PROPPINS, thereby controlling PI3P-mediated intracellular
vesicular trafficking3. This includes (1) the earliest steps in the
autophagy process where PI3P generation is a key event in
autophagosome biogenesis, as well as later steps in autophago-
some maturation, (2) endosomal maturation, and (3) phagocy-
tosis3. Vps34 is present in multiple protein complexes. Whereas
complex I functions in autophagy and contains Vps34, Vps15,
Beclin-1, and Atg14, complex II takes part in endocytic sorting
and contains the same components as complex I, except that
Atg14 is replaced by UVRAG3.

Homozygous Vps34 gene knockout (KO) in mice reveals that
this PI3K is indispensable for embryogenesis, organ function and
cell survival4–14. However, in addition to its catalytic activity,
Vps34 also has a scaffolding function in the assembly of the
different Vps34 complexes. This has confounded the interpreta-
tion of the phenotypes observed in Vps34 KO mice, as the
expression of most of the proteins that form the distinct Vps34
complexes are severely reduced upon loss of Vps34 expression. In
this study, we set out to uncover the role of the catalytic activity of
Vps34 in organismal metabolism, with a view to genetically
model the impact of pharmacological inactivation of this kinase.

Gene KO approaches, either ubiquitous or tissue-specific, are
unlikely to mirror the effects of systemic administration of a
pharmaceutical inhibitor because a drug almost invariably inhi-
bits the kinase without affecting its expression. We thus created
mice in which the kinase activity of Vps34 was disabled in the
germline, by the introduction of a kinase-inactivating point
mutation in the DFG motif of the kinase domain, as we pre-
viously reported for other isoforms of PI3K15–20. To further
model the pharmacological effect of kinase inhibition, which is
most often incomplete in vivo, we focused on the study of mice
with heterozygous inactivation of Vps34.

Results
Generation of Vps34 kinase-dead knockin mice. Vps34 occurs
in distinct multi-protein complexes that exert specific biological
functions3. Abrogation of Vps34 protein expression, as observed
in Vps34 KO mice5, reduces the expression of multiple compo-
nents of these Vps34 complexes, resulting in complex biological
“knock-on” phenotypes. Vps34 gene deletion studies thus assess
both the scaffolding and kinase-dependent functions of Vps34.

To specifically uncover the role of the catalytic activity of
Vps34, we introduced a germline kinase-inactivating knockin
(KI) mutation into the Vps34-encoding Pik3c3 gene, resulting in
conversion of the critical DFG sequence in the ATP-binding site
of the Vps34 protein to AFG (called hereafter D761A), giving rise
to the Vps34D761A protein (Supplementary Fig. 1a). This is
expected to constitutively inactivate the kinase activity of Vps34,
without disrupting Vps34 protein expression. This strategy,
which we previously applied to other PI3K isoforms15–20, better
mimics the impact of a systemically administered small molecule
ATP-competitive kinase inhibitor than a gene KO strategy.
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Fig. 1 Characterization of Vps34D761A/+ mice. a Expression of the Vps34 protein in WT and Vps34D761A/+ mouse tissues. 100 µg of protein was loaded per
lane. Representative data from three independent experiments. b Lipid kinase activity associated with Vps34 in WT and Vps34D761A/+ mouse tissues.
Tissue and cell homogenates were immunoprecipitated with an anti-Vps34 antibody, and an in vitro lipid kinase assay was performed using PI as substrate.
Data represent mean± SEM (non-parametric Mann–Whitney t-test) *p< 0.05, **p≤ 0.01, ***p≤ 0.001. 4 mice/genotype. c Expression levels of Vps34
and its binding partners in liver and brain tissues of 12-week-old mice. Tissue/cell lysates were immunoblotted using the indicated antibodies. 60 µg of
protein was loaded per lane. Composite images are derived from experiments whereby equal amounts of the same cell/tissue extract were loaded on
separate gels and developed with the same indicated antibodies. This was done to quantify proteins with a similar molecular weight
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Consistent with previous studies21, we found Vps34 to be
ubiquitously expressed in adult mouse tissues, with the highest
expression in the brain (Fig. 1a). In heterozygous Vps34D761A/+

mice, which were viable and fertile, Vps34 lipid kinase activity
was reduced by ~50% (Fig. 1b), without changes in the expression
levels of Vps34 and that of its binding partners, in primary tissues
(Fig. 1a, c) and in isolated Vps34D761A/+ cells, such as mouse
embryonic fibroblasts (MEFs) and primary hepatocytes (Supple-
mentary Fig. 1b, c).

Homozygous Vps34D761A/D761A mice died between embryonic
day (E) 6.5 and 8.5 (Supplementary Table 1; Supplementary
Fig. 2a), confirming a critical role of Vps34 in embryogenesis13.
Vps34D761A/D761A blastocysts appeared morphologically normal
at E3.5 + 1, but showed defective in vitro outgrowth of both inner
cell mass and trophoblast cells at later time points (Supplemen-
tary Fig. 2b). At present, the underlying molecular mechanism of
this early embryonic lethality is unknown.

Metabolic improvement upon Vps34 inactivation in vivo.
Heterozygous Vps34D761A/+ mice were born at expected Men-
delian ratios (Supplementary Table 1), and had no behavioral
defects or abnormalities in overall histopathology in 37 tissues
investigated at the age of 3 month (Supplementary Table 2). No
apparent behavioral abnormalities were detected in aged
Vps34D761A/+ mice as compared with the littermate WT controls,
tested up to 54 months.

Previous cell-based studies22, 23 suggested that Vps34 positively
controls insulin-stimulated activation of the protein kinase S6K1,
which is activated in response to nutritional status and hormonal
stimulation to regulate organismal glucose metabolism24. We
thus set out to investigate whether glucose metabolism was
affected in Vps34D761A/+ mice. Under normal chow-fed diet
(NCD), WT, and Vps34D761A/+ mice showed no differences in
body weight (Supplementary Fig. 3a), food intake (Supplementary
Fig. 3b), fat to lean mass ratio (Supplementary Fig. 3c), and blood
glucose levels (Fig. 2a). However, partial Vps34 inactivation
reduced fasted glycaemia (~16% decrease) (Fig. 2a), with plasma
insulin levels remaining unchanged in both fed and fasted mice
(Fig. 2b). These data suggested that glucose metabolism might be
affected. We therefore performed insulin and glucose tolerance
tests (ITTs and GTTs). Surprisingly, Vps34D761A/+ mice showed
improved glucose clearance compared with the WT mice (Fig. 2c)
and a higher insulin sensitivity (Fig. 2d).

Vps34 inactivation protects against HFD-induced steatosis. To
investigate the role of Vps34 kinase activity in a more patho-
physiological context, we subjected WT and Vps34D761A/+ mice
to 16 weeks of high-fat diet (HFD; 45% fat). Under these con-
ditions, WT and Vps34D761A/+ mice showed a similar gain in
body weight, although Vps34D761A/+ mice had a tendency to be
leaner (difference in the area under the curve between WT and
Vps34D761A/+ mice: p< 0.0577; non-parametric Mann–Whitney
t-test) (Supplementary Fig. 3d). Compared to WT mice,
Vps34D761A/+ mice showed no differences in fed glycaemia but,
as for NCD conditions, displayed a significant reduction in fasting
glycaemia (Fig. 3a), with unaltered insulin levels in both fed and
fasting states (Fig. 3b). HFD-fed Vps34D761A/+ mice had
improved glucose tolerance (Fig. 3c) and better insulin sensitivity
(Fig. 3d) than HFD-fed WT mice.

Compared to control mice, Vps34D761A/+ mice also showed a
marked reduction in HFD-induced hepatic steatosis, a condition
strongly associated with insulin resistance and Type-2 diabetes25,
as well as a reduction of neutral lipids (as assessed by Oil Red O
staining) (Fig. 3e, f). This correlated with a significant decrease in
the weight of the liver (Fig. 3g), but not that of other tissues

(Supplementary Fig. 3e), as well as decreased levels of
triglycerides in the liver and plasma (Fig. 3h, i) and of plasma
cholesterol (Supplementary Fig. 3f) in HFD-fed Vps34D761A/+

mice. The levels of serum adiponectin, an adipokine that reduces
hepatic and serum triglyceride levels and protects from hepatic
steatosis26, were significantly increased in HFD-fed Vps34D761A/+

mice (Supplementary Fig. 3g), whereas the levels of leptin,
another adipokine that controls energy balance and body weight,
were unchanged (Supplementary Fig. 3h). Taken together, these
data reveal that Vps34 kinase activity negatively regulates insulin
sensitivity and glucose metabolism in vivo.

Vps34 inactivation reduces hepatic glucose production. To
identify the tissues responsible for the glucose-lowering effect
observed in Vps34D761A/+ mice, we performed
hyperinsulinaemic-euglycaemic clamp and in vivo glucose uptake
experiments. Hepatic glucose production was lower in
Vps34D761A/+ mice under both normal chow and HFD condi-
tions (Fig. 4a).

Vps34 inactivation increases glucose uptake in muscle. In
addition, glucose uptake was increased in skeletal muscle of
Vps34D761A/+ mice, reaching statistical significance in HFD-fed
mice (Fig. 4b), with a similar tendency seen in brown (but not
white) adipose tissue under both diets (Supplementary Fig. 3i, j).
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Taken together, these findings show that heterozygous inactiva-
tion of Vps34 enhances glucose tolerance and insulin sensitivity
by reducing glucose production in the liver and stimulating
glucose uptake in muscle.

Vps34 inactivation mildly reduces autophagy in the liver. We
next sought to uncover the cellular processes that Vps34 activity
regulates to control organismal glucose metabolism. Vps34 is
considered to be the main producer of cellular PI3P to regulate
autophagy and contributes to the PI3P pool for endocytic traffic3.
Surprisingly, the total cellular levels of PI3P, as measured by mass
assay27, were not significantly altered in tissues of NCD-fed or
starved Vps34D761A/+ mice (Fig. 5a, b) and in primary
Vps34D761A/+ hepatocytes cultured in absence of insulin (here-
after called insulin-starved condition) (Fig. 5c).

Confocal microscopy using the GST-2XFYVEHRS PI3P-
binding probe28, a more sensitive approach to quantitatively
and qualitatively monitor the levels and distribution of PI3P than
the PI3P mass assay, revealed an impact of heterozygous Vps34
inactivation on subcellular PI3P pools. The FYVE puncta were
reduced (~26%) in number (Fig. 5d) and mildly increased (~10%)
in size (Supplementary Fig. 4a) in insulin-starved Vps34D761A/+

hepatocytes compared to WT cells. A similar decrease (~21%)

was found in the number of puncta of the endosomal PI3P-
binding effector EEA1 (Fig. 5d), without an effect on EEA1
puncta size (Supplementary Fig. 4a).

Importantly, analysis of autophagy in Vps34D761A/+ hepato-
cytes revealed a reduction in the puncta number of WIPI-2, a
PI3P-binding protein involved in the initiation of autophagy29,
both under non-starved and amino acid-starved conditions (30
and 40% reduction, respectively; Fig. 5e). In agreement with this,
we also observed mild but statistically significant reductions in
LC3 lipidation and p62 levels under non-starved and amino acid-
starved conditions in Vps34D761A/+ primary hepatocytes (Fig. 5f;
Supplementary Fig. 4b) and reductions in p62 levels in vivo in
liver tissue of Vps34D761A/+ mice (Fig. 5g, Supplementary Fig. 4c).
Despite an effect on LC3 lipidation and p62 levels, we did not
observe a difference in the number of LC3 puncta between WT
and Vps34D761A/+ hepatocytes under non-starved and amino
acid-starved conditions (Supplementary Fig. 4d). These observa-
tions show that inactivation of 50% of Vps34 kinase activity
results in a reduction in endosomal (EEA1-associated) and
autophagic (WIPI-2-associated) pools of PI3P-containing vesi-
cles, with partially dampening overall autophagy. Qualitative and
quantitative electron microscopy analysis did not reveal any
robust quantitative differences between WT and Vps34D761A/+

primary hepatocytes under starved conditions, confirming our
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data (Fig. 5e–g; Supplementary Figs. 4b–d and 5) that 50%
inactivation of Vps34 kinase activity does not fully abolish the
formation of autophagosomes and autophagolysosomes under
starvation (Supplementary Fig. 5).

Taken together, these data confirm that Vps34 kinase activity
drives and coordinates endosomal and autophagy trafficking
pathways.

Reduced mitochondrial respiration upon vps34 inactivation.
We next investigated the impact of reduced Vps34 activity on
cellular metabolism. As systemic glucose and lipid metabolism
converge on mitochondria to generate the majority of cellular
ATP, we focused on the impact of Vps34 inactivation on this
organelle. Compared to WT cells, Vps34D761A/+ hepatocytes had
increased mitochondrial content, as assessed by visualization
using the Tom20 mitochondrial marker (Fig. 6a), quantitative
FACS analysis using mitotracker FM dye, which stains mito-
chondria regardless of mitochondrial membrane potential (Sup-
plementary Fig. 6a) and the levels of mitochondrial proteins
involved in oxidative phosphorylation (Supplementary Fig. 6b).

To assess mitochondrial function, we first measured mitochon-
drial respiration in intact cells (see Supplementary Fig. 6c for
schematic). The oxygen consumption rate (OCR) was signifi-
cantly reduced in Vps34D761A/+ hepatocytes and myotubes,
compared to WT cells (Fig. 6b, c). This was also observed in
the Hepa1.6 hepatoma cell line upon treatment with Vps34-IN1,
a highly selective inhibitor of Vps3430, 31,] (Supplementary
Fig. 6d). In addition to reduced mitochondrial respiration,
Vps34D761A/+ myotubes showed a clear increase in glycolysis
compared to WT cells (Fig. 6d). Correlating with these findings,
we found that total in vivo ATP levels were significantly reduced
in the liver (Fig. 6e) but unchanged, or even mildly increased, in
skeletal muscle of Vps34D761A/+ mice (Fig. 6e). This could be due
to the fact that muscle, unlike the liver, can produce ATP from

sources other than mitochondria (glycolysis and possibly
phosphocreatinine) to cope with its high energy demands,
potentially masking the reduction in mitochondrial ATP
production observed in Vps34D761A/+ myotubes in vitro (Fig. 6d).
To circumvent compensatory mechanisms that could be induced
by long-term inactivation of Vps34, we next tested whether acute
pharmacological inhibition of Vps34 altered ATP levels in the
murine C2C12 myoblast and Hepa1.6 hepatoma cell lines. As
shown in Supplementary Fig. 6e, inhibition of Vps34 markedly
reduced the ATP levels in these cells, further indicating that
Vps34 activity can control ATP levels in cells of muscle origin.

To assess whether the impaired mitochondrial respiration
observed in Vps34D761A/+ hepatocytes was due to deficient
electron transport, we measured oxygen consumption in freshly
isolated mitochondria from the liver. As shown in Fig. 7, ATP
synthase-coupled respiration (state 3), driven either by respira-
tory complex I (glutamate/pyruvate/malate) or complex II
(succinate + rotenone), did not differ between isolated hepatic
mitochondria from WT and Vps34D761A/+ mice. This suggests
that in isolated mitochondria (as compared to mitochondria in
intact cells), mitochondrial oxygen consumption and substrate-
dependent respiration were not compromised by Vps34 inactiva-
tion. This suggests that intrinsic mitochondrial function is not
impaired, but that intracellular factor(s), or lack of these due to
Vps34 inactivation, alter mitochondrial respiration in intact cells.

Altogether, these data indicate that inhibition of
Vps34 switches off mitochondrial respiration, leading to the
activation of ATP-producing pathways such as glycolysis, which
depend on glucose uptake.

Vps34 blockade reduces substrate availability for respiration.
On the basis of the observations above, we hypothesized that
Vps34 inactivation might alter the intracellular availability of
substrates important for the TCA cycle to function properly.
Amino acids are the major products released by starvation-
induced autophagy and can be catabolized in mitochondria for
ATP production via the TCA cycle or, alternatively, be used to
synthesize glucose. NMR studies on liver extracts of WT and
Vps34D761A/+ mice subjected to 20 h starvation revealed a sig-
nificant reduction in the levels of specific amino acids (threonine
and alanine) as well as reductions in the levels of glucose and
lactate upon Vps34 inactivation (Fig. 8a, b; Supplementary
Fig. 6f). The reduced levels of threonine and alanine, anaplerotic
metabolites that replenish the TCA cycle, are likely to explain the
reduced mitochondrial respiration observed in Vps34D761A/+

cells. Importantly, threonine. alanine and lactate are also
important glucogenic metabolites, and their reduced levels are
likely responsible for the attenuated hepatic gluconeogenesis in
Vps34D761A/+ mice upon starvation.

Improved AMPK signaling upon Vps34 inhibition. We next
investigated the impact of Vps34 inactivation on signaling path-
ways involved in insulin (PI3K/Akt/mTORC1) and energy
(AMPK) sensing.

Both basal and insulin-stimulated activation of Akt (as assessed
by phosphorylation of Akt on S473 and T308) and its
downstream targets such as GSK3α/β (on S21 and S29), AS160
(on T642), and PRAS40 (on T246)) and mTORC1 (assessed by
phosphorylation of S6K (on T389) and S6 (on S240 and 244)),
were unaffected in Vps34D761A/+ myotubes (Fig. 9a; Supplemen-
tary Fig. 7a) and hepatocytes (Supplementary Fig. 7b–d), as well
as in muscle, liver and white adipose tissue (WAT) in vivo
(Supplementary Fig. 7e–g). Similar observations were made upon
treating WT hepatocytes with the Vps34-IN1 inhibitor (Supple-
mentary Fig. 7b). Taken together, these data demonstrate that the
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insulin sensitization observed in Vps34D761A/+ mice is indepen-
dent of insulin-mediated Akt/mTORC1 signaling. This contrasts
with previous cell-based studies using Vps34 RNAi that
concluded that Vps34 positively controls insulin-stimulated
activation of S6K122, 23.

In contrast to the unaltered Akt/mTORC1 signaling, activation
of AMPK (as measured by the activating phosphorylation of T172

in the AMPK activation loop) was enhanced in Vps34D761A/+

myotubes (Fig. 9a; Supplementary Fig. 7a) and hepatocytes
(Fig. 9b), compared to WT cells. In agreement with this, a
significant enhancement in the phosphorylation of AMPK
substrates, such as Acetyl-CoA carboxylase (ACC; on S79) and
TBC1D1 (on T660 and S237) was observed in the basal state, in
Vps34D761A/+ myotubes and muscle (Fig. 9a; Supplementary
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Fig. 7a, e, h) and hepatocytes (Fig. 9b; Supplementary Fig. 7i).
Importantly, treatment with Vps34-IN1 of WT myotubes,
primary hepatocytes or C2C12 myoblast cells, also increased
the levels of pAMPKT172 and pACCS79 (Fig. 9b; Supplementary
Fig. 7h–j), further validating our genetic model of Vps34
inactivation.

ACC is a rate-controlling enzyme in the synthesis of malonyl-
CoA, a critical precursor for fatty acid biosynthesis and a potent
inhibitor of mitochondrial fatty acid β-oxidation. Malonyl-CoA is
an intermediate in fatty acid synthesis and an allosteric inhibitor
of carnitine palmitoyltransferase 1, which regulates the transfer of
long-chain acyl-CoAs from the cytosol into the mitochondria.
AMPK-mediated phosphorylation of ACC on S79 inhibits its
activity and therefore the upregulation of pACCS79 levels
observed in Vps34D761A/+ cells might result in decreased
lipogenesis and/or increased fatty acid oxidation. In line with
this, gene expression levels of key players in β-oxidation showed
that Vps34 inactivation in cells and tissues increased gene
expression of the transcriptional activators PPARα and PGC-1α
and their target genes including Cpt1b and Cpt1c (Fig. 9e, f),
suggesting that Vps34 inactivation increases fatty acid oxidation
in liver.

TBC1D1, a Rab GTPase-activating protein (GAP), and its
homolog AS160 are critical for the translocation of the glucose
transporter GLUT4 to the plasma membrane in skeletal muscle32,
the main tissue responsible for glucose uptake. Rab GAP activity
is known to be inhibited by Akt and AMPK phosphorylation,
leading to enhanced Rab-dependent translocation of GLUT4-
containing vesicles to the plasma membrane33. In line with the
increased basal levels of pTBC1D1 on T660 (Fig. 9a) and on S237
(Supplementary Fig. 7e) in Vps34D761A/+ myotubes, these cells
showed a significant increase in basal glucose uptake as compared
to WT cells (Fig. 9c), a phenotype that could be mirrored by
pharmacological inhibition of Vps34 in WT myotubes (Fig. 9d),
with no further increases in glucose uptake seen upon insulin
stimulation (Fig. 9c). The unaltered levels of the Akt phosphor-
ylation site T642 in AS160 in Vps34D761A/+ myotubes (Fig. 9a)
suggest that Vps34 regulates GLUT4 translocation and glucose
uptake in muscle cells via a pathway that does not involve the
canonical insulin-driven Akt/AS160 pathway but instead acts
through AMPK substrates such as TBC1D1.

To assess the involvement of AMPK in the increased insulin-
independent increase in glucose disposal in Vps34-deficient
muscle cells, blood glucose was assayed after an intraperitoneal
injection of the cell-permeable AMPK activator 5-
aminoimidazole-4-carboxamide ribonucleoside (AICAR). As
shown in Fig. 9g, AICAR caused a significant reduction in blood
glucose levels in WT mice, likely due to the combined effects of

enhanced muscle glucose uptake activation and inhibition of
hepatic glucose production. Interestingly, the AICAR-induced
hypoglycaemic effect was similar between genotypes, but the
blood glucose levels recovered significantly faster in Vps34D761A/+

mice. This could be explained by a higher glucose disposal and/or
a possible better hepatic glucagon response in Vps34D761A/+ mice.

Pharmacological Vps34 inhibition improves metabolism
in vivo. Our cell-based studies above showed that pharmacolo-
gical inactivation of Vps34 by Vps34-IN1 mimicked the effect of
genetic inactivation of Vps34. To assess the potential therapeutic
relevance of our findings, we dosed HFD-fed mice with com-
pound 19, a selective Vps34 kinase inhibitor whose in vivo
pharmacology has been characterized34. Although compound 19
is a potent and selective Vps34 inhibitor and is able to inhibit
autophagy in cellular and mouse models, its pharmacokinetic
properties need to be improved for therapeutic use. Indeed, this is
a first generation Vps34 inhibitor with a very short in vivo half-
life (t1/2 ~ 1.2 h by i.v. injection). Given that our genetic model of
Vps34 inactivation leads to a sustained low level of inhibition
(50%), it is challenging to achieve a similar effect with the Vps34
inhibitors currently available in the public domain. However, we
tested compound 19 in a proof-of-concept study, with a 5-week
dosing (5 days on/2 days off drug) at a relatively low dose of 20
mg/kg (experimental design is shown in Supplementary Fig. 8a).
This treatment regimen was well-tolerated, did not induce weight
loss (Supplementary Fig. 8b) and improved glucose tolerance and
insulin sensitivity (as assessed by GTT and ITT) after 2 weeks of
drug treatment, with beneficial metabolic effects maintained after
5 weeks of treatment (Fig. 10a, b; Supplementary Fig. 8c, d).
Moreover, treatment with compound 19 in vivo mirrored the
signaling impact on pACCS79 (Fig. 10c), further validating our
observations of genetic inactivation of the kinase activity of
Vps34.

Discussion
In this study, we report that partial in vivo inactivation of the
Vps34 isoform of PI3K enhances insulin sensitivity and glucose
tolerance, identifying this kinase as a new drug target for the
treatment of insulin resistance including Type-2 diabetes, a
condition in which the unmet therapeutic need remains sub-
stantial. The mode of insulin sensitization by Vps34 inhibition
has similarities to that of the current front-line anti-diabetic drug,
Metformin, including alteration of cellular energy homeostasis
but with a distinct primary mechanism of action. The distinct but
overlapping mechanisms of action of Vps34 inhibitors and
Metformin mean that a Vps34 inhibitor could have major clinical

Fig. 5 Impact of Vps34 inactivation on cellular PI3P and autophagy. a–c Analysis of total PI3P levels by mass assay in different cell types/tissues. Mice
were randomly fed or starved overnight. Hepatocytes were cultured overnight in insulin-free HM media. 5 mice/genotype were used for all tissues, except
for primary hepatocytes (cell cultures derived from 4 individual mice/genotype). Data represent mean± SEM (non-parametric Mann–Whitney t-test). d
Left panel, representative images of confocal analysis of endogenous PI3P pools in primary hepatocytes. Cells were cultured overnight in insulin-free HM,
digitonin-permeabilized and co-stained using a GST-2xFYVEHRS probe (red) or EEA1 antibody (green). DAPI-stained nuclei are shown in blue. Cell cultures
derived from 3–5 independent mice/genotype were used. Scale bar, 20 µm. Right panel, quantification of FYVE and EEA1 puncta number from confocal
images using Metamorph software. Cell cultures derived from 3–5 independent mice/genotype were used. Data represent mean± SEM (Student t-test). e
Left panel, representative images of confocal analysis of WIPI-2 puncta (red) of primary hepatocytes upon starvation (EBSS). Representative data from
three independent experiments. DAPI-stained nuclei are shown in blue. HM: Hepatocyte medium + insulin. Scale bar, 20 µm. Right panel, Quantification of
WIPI-2 puncta in primary hepatocytes from confocal images using Metamorph software. HM: Hepatocyte medium (with insulin). Hepatocyte cultures
derived from 3–5 independent mice/genotype were used. Data represent mean± SEM (Student t-test). f Quantification of the LC3 lipidation assay in
primary hepatocytes shown in Supplementary Fig. 4b. Cells were freshly isolated from liver and were grown overnight in HM. For autophagy induction, cells
were incubated in EBSS in absence or presence of 100 nM Bafilomycin A1 (BafA1) for the indicated times. Cell lysates were immunoblotted with the
indicated antibodies. Representative data from three independent experiments are shown. Data represent mean± SEM (Student t-test). g Quantification of
p62 levels in liver tissues shown in Supplementary Fig. 4c. Fresh livers were snap-frozen and lysed before performing immunoblotting with the indicated
antibodies. n= 4 mice/genotype. Data represent mean± SEM (non-parametric Mann–Whitney t-test) *p< 0.05, **p≤ 0.01, ***p≤ 0.001
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utility in the large population of diabetic patients where Met-
formin is contra-indicated or not tolerated, as discussed in more
detail below.

To maintain metabolic homeostasis and viability, the cell must
respond to changes in nutrient availability and ensuing energy
stress. One of the key cellular responses to nutrient withdrawal is
the upregulation of autophagy, an evolutionarily conserved pro-
cess that degrades and recycles cytoplasmic components, such as
dysfunctional proteins and organelles, in lysosomes35. The role of
autophagy in metabolic adaptation at the organismal level is
unknown, with conflicting evidence provided by mouse gene KO
studies of components of the autophagy machinery. Indeed, given
that gene KO of key autophagy-related genes (Atgs) leads to
embryonic or neonatal lethality, tissue-specific conditional KO
studies have been performed, revealing negative or positive
metabolic impacts, depending on the gene and tissue targeted36–
41. The metabolic impact of systemic autophagy deficiency
therefore remains enigmatic and only few studies have provided
insight into this question. These include mice with mosaic

deletion of Atg542 or mice with heterozygous KO of Beclin-143,
which both display increased lipid accumulation in the liver42, 43,
with no changes in insulin sensitivity, glucose clearance and body
weight in Beclin-1 heterozygous KO mice44. Here, we report that
partial inactivation of Vps34 leads to a modest dampening of
autophagy in the liver. This relatively weak impact might be due
to (i) the partial inactivation of Vps34; (ii) cells switching to
Vps34- and PI3P-independent autophagy5, 45, and/or (iii) the
increased activation of AMPK, a positive regulator of autop-
hagy46. All these phenomena could mask the effect of Vps34
inactivation on autophagy, dampening possible negative orga-
nismal impacts and providing an acceptable therapeutic window.
In general, it would be interesting to address whether hetero-
zygosity for autophagy genes (Atgs) would lead to a systemic
metabolic improvement at the organismal level. So far no phe-
notype has yet been reported in those settings.

Recent studies47, 48 reported on tissue-specific deletion in mice
of Vps15, an obligate binding partner of Vps34. Although liver-
specific Vps15 KO leads to insulin sensitization48, muscle-specific
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Vps15 KO did not affect whole-body glucose metabolism47. It is
therefore not clear at present whether systemic abrogation of
Vps15 expression would lead to metabolic improvement, and
whether the observed effects in the liver-specific Vps15 KO are
due to an impact on Vps34 itself. Indeed, in these Vps15 KO
models, the expression of the components of Vsp34 complexes,
including Vps34 itself, was severely reduced, complicating the
interpretation of the observed phenotypes. The reported
mechanism of insulin sensitization in Vps15 liver KO mice is a
reduced endocytosis and degradation of the insulin receptor,
resulting in enhanced insulin-mediated Akt signaling48. Although
we observed a modest impact of Vps34 inactivation on the
endosomal marker (EEA1) but no impact on Akt signaling, it is
unlikely that insulin receptor trafficking plays a major role in the
metabolic sensitization induced by Vps34 kinase inactivation.

Given its wide tissue distribution, the organismal impact of
Vps34 inactivation is expected to be multifactorial (schematically
summarized in Fig. 10d). The in vivo mechanism whereby the
overall levels of blood glucose are reduced upon Vps34 inacti-
vation is through a reduction in hepatic glucose production
(gluconeogenesis) and an increase in glucose uptake in the
muscle, with reduced autophagy most likely contributing to these
effects. Indeed, although autophagy is tightly controlled by amino
acid availability, amino acids produced by autophagy via its
proteolytic function can be used for energy production (gluco-
neogenesis and ATP)49, 50.

Lysosomes are the terminal degradative compartment of both
the endocytic and autophagic pathways. Vps34 inhibition itself is
known to disrupt lysosomal function31, 51, 52, primarily through
blocking sorting and trafficking of receptors and hydrolases on
route to lysosomes6, 52. On the basis of this and on our findings
that both endosomal (EEA1) and autophagic (p62, WIPI-2)
markers were altered upon Vps34 inactivation, we speculate that
the reduction in amino acids level results from a defect in lyso-
somal function. Our observations are in line with the notion that
partial Vps34 inactivation reduces the proteolysis function of
hepatic autophagy, thereby reducing the levels of specific gluco-
neogenic amino acids and reduced gluconeogenesis in
Vps34D761A/+ hepatic cells. A limited availability of substrates for
the TCA cycle upon Vps34 inactivation could also explain the
reduced mitochondrial respiration observed in Vps34D761A/+

hepatic cells, leading to a decrease in the levels of ATP and
consequent activation of the AMPK energy sensing pathway.
Activation of AMPK is known to stimulate mitochondrial bio-
genesis through upregulation of peroxisome proliferator-activated
receptor-γ co-activator 1α (PGC-1α) activity. Such an increased
AMPK-PGC-1α-mediated response in Vps34D761A/+ hepatocytes
may explain the ~20–25% increase in mitochondria content and
increased expression of genes encoding mitochondrial proteins in
these cells.

Although the impact of Vps34 inactivation on autophagy in the
muscle remains to be determined, the increased levels of the
AMPK-dependent phosphorylation of TBC1D1, an important
regulator of glucose uptake, in Vps34D761A/+ myotubes, strongly
indicates that activation of AMPK underpins the reduced glucose
uptake in muscle. Given that mitochondrial respiration was also
reduced in Vps34D761A/+ myotubes, we speculate that AMPK
pathway activation in these cells results from a mechanism
similar to that in Vps34D761A/+ hepatocytes.

Metformin and the thiazolidinediones are the only two classes
of insulin-sensitizing drugs that are currently available. Our data
show that the mode of insulin sensitization by Vps34 inhibition
has similarities to that of Metformin, the most frequently pre-
scribed drug for Type-2 diabetes, but acts through a distinct
primary mechanism of action. Indeed, whereas Vps34 inhibition
indirectly inhibits mitochondrial respiration, via partial inacti-
vation of autophagy and limiting substrate availability for
respiration, Metformin directly disrupts mitochondrial function
by inhibiting electron transport chain complex I46. Thus, both
Vps34 inactivation and Metformin treatment alter cellular energy
homeostasis and consequently activate the AMPK pathway,
whose role in the action of Metformin still remains uncertain53,
54. Around 5% of diabetic patients do not tolerate Metformin, due
mostly to gastro-intestinal side effects, such as nausea and/or
diarrhea, whereas in many more patients where Metformin is
effective it is withdrawn in the face of declining renal or cardiac
function due to fears of lactic acidosis (see ref. 55 and http://www.
fda.gov/Drugs/DrugSafety/ucm493244.htm). Although it is not
expected that Vps34 inhibitors would replace Metformin, we
expect this class of inhibitors to be complementary. Indeed,
Vps34 inhibitors could have major clinical utility in the large
population of diabetic patients where Metformin is contra-
indicated or not tolerated, especially if Vps34 inhibitors would
have a different side effect or pharmacokinetic profile to Met-
formin. Insulin resistance is closely associated with major diseases
including Type-2 diabetes, the spectrum of fatty liver disease from
steatosis through to cirrhosis, metabolic dyslipidaemia, ovulatory
dysfunction and subfertility, and some cancers. Our data suggest
that a potent and selective Vps34 inhibitor might offer a novel
class of agent in the management of these clinical settings.

Methods
Mice. Gene targeting was carried out by Taconic Artemis 467 (Cologne, Germany)
and shown schematically in Supplementary Fig. 1a. All experiments were per-
formed on 7- to 12-week-old male C57BL/6J mice, unless otherwise specified. Mice
were kept on normal chow diet (20% protein, 75% carbohydrate, 5% fat) on a 12 h
light-dark cycle (lights on at 7 a.m.) with free access to water in individually
ventilated cages. Mice were cared for according to UK Home Office regulations,
with procedures approved by the Ethics Committees of Queen Mary University
London, UK and University College London, UK. For high-fat diet experiments,
mice were maintained on diet 824,053 from Special Diet Services Inc. (20% protein,
35% carbohydrate, and 45% fat) for 16 weeks, or on diet 58Y1 (originally manu-
factured as “D12492”) from Test Diet (18.1% protein, 20.3% carbohydrate, and
61.6% fat) for 7 weeks.

Creation of Vps34D761A mice and genotyping. Mouse gene targeting was per-
formed by Artemis (Cologne, Germany) in C57BL/6NT embryonic stem cells. Mice
were backcrossed on the C57BL/6J strain (Charles River) for >10 generations, and
mice used for experiments were on C57BL/6J background, with WT littermates
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used as controls. The sequences of the primers used for genotyping are: forward
primer (a in Supplementary Fig. 1a): 1450_33: GCTGGTAGTACTGATGTTGC;
antisense primer (b in Supplementary Fig. 1a): 1450_34: GCATGGTCC-
TACTTTCTTCC, with expected fragments of 327 bp (WT) and 444 bp (KI). PCR
conditions were as follows: 95 °C for 5 min, 34 cycles of (95 °C for 30 s, 60 °C for 30
s, 72 °C for 1 min), and 72 °C for 10 min. The presence of the D761A mutation was
verified by sequencing of a PCR fragment generated using forward primer:
1436_29: ATATGGTATCTCCTTCCTGG (c in Supplementary Fig. 1a) and anti-
sense primer 1436_30: CACTGCTTTCGGAACTCTTG (d in Supplementary
Fig. 1a) using the PCR conditions described above. PCR reactions were performed
using Titanium Taq polymerase (Clontech) on a ThermalCycler (MJ Research).

Antibodies and reagents. All antibodies used in this study are listed in Supple-
mentary Table 4. They were all reactive with mouse proteins as follows: EEA1,
GST, pAkt (S473), pAkt (T308), pAMPK (T172), pACC (S79), pPRAS40 (T246),
pTSC2 (T1462), pS6K (T389), pS6 (S240/44), pTBC1D1 (S660), pAS160 (T642),
pGSK3 (S21/9), Vps34 (for western blot), Beclin-1 (Cell Signalling Technology);
Vps34 (rabbit polyclonal antibody for immunoprecipitation for in vitro kinase
assay; provided by J. Backer, New York); Tom20 (FL145; Santa Cruz); UVRAG
(MBL); Vps15 (Epitomics), p62 (Novus Biologicals); vinculin, α-tubulin, Atg14/
Barkor (Sigma); LC3 (2G6; Nanotools); pTBC1D1 (S237) (Millipore); total
OXPHOS cocktail (Abcam). Antibodies to WIPI-2 were provided by Sharon Tooze
(Francis Crick Institute, UK). Mitotracker FM green was from Molecular Probes.
Unless otherwise mentioned, phosphate-buffered saline (PBS; Sigma) was Ca2+-
and Mg2+-free. All culture media for primary cell culture were from Invitrogen. A
plasmid expressing GST-2xFYVEHRS28 was provided by Harald Stenmark, Norway.
Recombinant GST protein was purified from E. coli BL21(DE3) cells according to
the manufacturer’s instructions. All buffers used during purification of the GST-
fusion protein were EDTA-free and the recombinant protein was dialyzed against
HEPES buffer pH 7.4 containing 10 µM ZnCl2. FCCP, oligomycin and antimycin A
were purchased from Sigma-Aldrich. Rotenone was purchased from MP Biome-
dicals (Santa Ana, CA). Agonists used were human (Actrapid) and bovine (Sigma)
insulin for in vivo and in vitro experiments, respectively. Bafilomycin A1 was from
Sigma.

Hepatocyte isolation and culture. Cells were cultured in a humidified incubator
at 37 °C and 5% CO2. Primary mouse hepatocytes were isolated from 8- to 12-
week-old mice as described, with minor changes56. Briefly, primary hepatocytes
were isolated by a two-step perfusion protocol using collagenase I (Sigma) and
seeded on collagen-coated plates in William’s E GlutaMAX medium containing
0.1% BSA, 1% penicillin/streptomycin, 25 nM dexamethasone (Sigma) and 680 nM
insulin (further referred to as Hepatocyte Medium (HM)), further supplemented
with 10% (v/v) FBS. After 4 h incubation at 37 °C to allow cell adhesion, the
medium was replaced by HM. For insulin stimulation studies, HM was replaced by
HM without insulin overnight, followed by addition of 100 nM insulin for the
indicated times. In some experiments, the Vps34-selective inhibitor Vps34-IN130

was added 18 h before treatment. For autophagy studies, HM was removed and
cultures were washed twice with HM or with amino acid- and insulin-free medium
(EBSS; Invitrogen) and cells maintained in EBSS for 0.5 or 2 h.

Myoblast isolation, culture and myotube differentiation. Cells were cultured in
a humidified incubator at 37 °C and 5% CO2. Primary muscle cells (myoblasts)
were obtained from Gastrocnemius and Tibialis anterior muscle from 3- to 4-week-
old mice as described57. In brief, muscles were partly digested with four sequential
10 min incubations in DMEM/F12 + GlutaMAX-1 medium containing 0.14%
pronase (Sigma, P8811). The supernatants from the second, third and fourth

digestions were pooled and filtered through a 100-µm cell strainer. Cells were
centrifuged, washed twice, counted and plated at low density (100 cells/cm2) in 12-
well plates coated with gelatin (Sigma; G1393). Cells were grown in complete
medium, composed as follows: DMEM/F12 + GlutaMAX-1 (Gibco), recombinant
human FGF (2.5 ng/ml final; R&D Systems), 20% fetal bovine serum (Gibco), 50
U/ml penicillin/streptomycin. After 1 week, wells containing myoblasts without
contaminating fibroblasts were trypsinized, pooled and passaged. Complete med-
ium was changed every 2 days, and cultures were trypsinized before subconfluency
to avoid differentiation. To differentiate into myotubes, myoblasts were plated on
Matrigel-coated dishes at 3 × 104 cells/cm2 (Corning, diluted 1/10 in DMEM/F12 +
GlutaMAX-1). After 6 h, cells were switched to differentiation medium (DMEM/
F12 + GlutaMAX-1 containing 2% horse serum). The medium was changed twice
during differentiation. Cell fusion and differentiation into multinucleated myo-
tubes were monitored using phase contrast microscopy. All experiments on
myotubes were performed after 7 days of differentiation.

Lipid kinase assay. Lipid kinase assay on Vps34 immunoprecipitates using PI as a
substrate was performed as described58 with minor changes. Briefly, cells or tissues
were lysed in lysis buffer (LB) (1% Triton X-100, 150 mM NaCl, 50 mM Tris pH
7.4, 10% Glycerol, 1 mM CaCl2, 1 mM MgCl2, Protease/Phosphatase inhibitors
from Merck) and incubated for 25 min on ice. Lysates were spun at 15,000 rpm for
10 min at 4 °C. Vps34 immunoprecipitation was performed using 1 mg of total
protein and protein A Sepharose (Amersham-17-0469-01) and Vps34 antibody
(rabbit polyclonal antibody for immunoprecipitation kindly provided by J. Backer,
New York) at 4 °C for at least 2 h. Beads were resuspended in kinase buffer (20 mM
Tris, pH 7; 67 mM NaCl; 10 mM MnCl2; 0.02% (w/v) NP-40). Kinase assay was
performed using 0.1 μCi/μl radioactive labeled γ-ATP (32 P) (Hartmann Analytic
#SRP 401) per reaction for 15 min at 30 °C. Extracted lipids (using Choloroform-
Methanol extraction protocol) were separated using a Silica 60 thin layer chro-
matography (TLC) plate and PI3P spots were quantified using Typhoon Imaging
System (GE Healthcare).

Western blot analysis. Tissues were lysed in 20 mM Tris.HCl pH 8.0, 1% NP-40,
5% glycerol, 138 mM NaCl, 2.7 mM KCl, 20 mM NaF, 5 mM EDTA, and Protease/
Phosphatase inhibitors cocktail from Merck. To remove cell debris, homogenates
were spun at 13,000 rpm for 10 min at 4 °C and the supernatant fraction recovered.
Protein concentration was determined by colorimetric assay (Bradford assay,
Biorad). Protein extracts were resolved by SDS-PAGE, transferred to PVDF
membranes and incubated overnight at 4 °C with specific antibodies. Antigen-
specific binding of antibodies was visualized by ECL. Uncropped immunoblots and
larger blot areas of the main figures are shown in Supplementary Fig. 9.

Immunofluorescence. Hepatocytes were seeded at 2.5 × 105 per well on collagen-
coated glass coverslips in 6-well plates as described above. Cells were fixed with 4%
paraformaldehyde and permeabilized for 10 min with 0.2% Triton X-100. Per-
meabilized cells were blocked in PBS/2% BSA for 1 h and incubated in PBS/2%
BSA with the indicated antibodies at 4 °C overnight. After three washes with PBS,
cells were incubated with species-specific Cy3- or FITC-labeled secondary anti-
bodies for 1 h at room temperature. After three washes with PBS, coverslips were
mounted on glass slides using Vectashield containing DAPI (Vector Laboratories).
Staining with GST-2xFYVEHRS was performed as described28, 59 using permeabi-
lization with digitonin as described. Briefly, after treatment cells were fixed in 4%
PFA before being washed in PBS/2% BSA for 5 min, followed by permeabilization
with 20 µM digitonin in PBS/2%BSA for 5 min at room temperature, followed by
three washes in PBS/2% BSA. Cells were incubated with the GST-2xFYVEHRS

probe (0.5 µg/ml) for 30 min in PBS/2% BSA. After three washes with PBS/2% BSA,
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the cells were incubated with antibody to GST for 45 min, with further incubation
with secondary antibody reagents as described above. Immunostaining for
autophagy markers (LC3 and WIPI-2) was performed as follows: cells were washed
twice with PBS before adding cold (−20 °C) methanol for 15 min. Cells were then

washed twice with PBS and blocked in PBS/3% BSA for 1 h and incubated over-
night at 4 °C in PBS/3% BSA with the indicated antibodies. After three washes with
PBS, cells were incubated with species-specific Cy3- or FITC-labeled secondary
antibodies for 1 h at room temperature. After three washes with PBS, the coverslips
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were mounted on glass slides as described above. All coverslips were analyzed using
a ×63 objective on a 710 Zeiss confocal microscope.

MitoTracker green FM staining and flow cytometry. Hepatocytes were seeded at
a concentration of 2 × 105 cells/ml and cultured overnight in HM. Following one
wash in PBS, cells were trypsinized, pelleted and resuspended in HM containing
150 nM MitoTracker Green FM (Molecular Probes, Life Technologies) and incu-
bated in the dark at 37 °C for 30 min. Cells were washed once and resuspended in
FACS buffer (PBS + 1% FBS) containing 0.5 µg/ml DAPI before analysis on a
FACScan flow cytometer (Becton Dickinson, San Jose, CA). Data were analyzed
using FlowJo 8.6 software (Tree Star Inc., Ashland, OR).

Metabolic analysis. For glucose tolerance tests, mice were fasted overnight (16 h)
followed by an intraperitoneal injection of 2 g glucose (20% solution; Baxter)/kg
body weight. Blood glucose levels were monitored before and 15, 30, 60, 90, and
120 min after injection using blood collected from the tail vein using a Glucotrend
glucometer (Roche Diagnostics). For insulin tolerance tests, mice were fasted
overnight (16 h), followed by injection with human insulin (0.75 U/kg body
weight). Blood from tail was collected before and 15, 30, 60, 90, and 120 min after
injection and glucose levels were determined as described above. For in vivo insulin
stimulation, mice were fasted overnight (16 h) followed by intraperitoneal injection
of insulin (0.75 U/kg body weight) or vehicle (PBS). After 30 min, mice were
sacrificed and tissues snap-frozen in liquid nitrogen. Triglyceride levels in liver

tissue were determined as described60. Briefly, 50 mg of liver tissue were homo-
genized in 900 ml of a 2:1 chloroform:methanol solution. Three hundred ml of
methanol were added to the liver homogenate and vortexed followed by cen-
trifugation for 15 min at 3000 rpm. The supernatant (412.5 ml) was transferred to a
new glass tube and 200 ml of chloroform and 137.5 ml of 0.73% NaCl was added,
and vortexed for 30 s. After centrifugation at 5000 rpm for 3 min, 400 ml of a
3:48:47 solution of chloroform:methanol:NaCl (0.58%) was added to the lower
phase followed by another centrifugation at 5000 rpm for 3 min. The lower phase
was washed three times, evaporated and resuspended in 1 ml of isopropanol.
Triglyceride levels were measured using a standard assay kit (Infinity Triglycerides
Reagent TR22421) from Thermo Scientific following manufacturer’s instructions.
Liver triglycerides were normalized by liver tissue weight.Serum levels of insulin,
leptin, triglyceride, cholesterol, and adiponectin were measured using ELISA and
colorimetric kits (Crystal Chem Inc. for insulin, Millipore for leptin and adipo-
nectin; Cayman Chemical Company for triglyceride and cholesterol). Measure-
ments of food intake were obtained with a CLAMS (Columbus Instruments) open-
circuit indirect calorimetry system. Body composition was determined by magnetic
resonance spectroscopy using an ECHO MRS instrument (Echo Medical Systems).

Dosing of mice with compound 19. Mice (10 mice per group) were subjected to
60% HFD for a period of 7 weeks. Two weeks into the HFD, mice were dosed with
either vehicle or compound 19 (PO, Q.D. at 20 mg/kg of mouse weight) for five
consecutive days a week (Monday to Friday). Starting from 2 weeks later, mice
were starved overnight followed by a GTT (“T2-GTT” and “T4-GTT”) and an ITT
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(“T3-ITT” and (“T5-ITT”) every week, with a week of recuperation between the
assays while still on drug. The body weight of mice was measured every day during
the experiment. Compound 1934 was dissolved in polyethylene glycol (20% v/v)
and sonicated for 30 min until dissolved. Cremophor EL (5% v/v) was then added
and vortexed. Citrate buffer (pH 4, 75% v/v) was then added and pH adjusted to
4.5. The reformulated compound was then aliquoted and stored at 4 °C for the
whole course of the study (5 weeks). A fresh aliquot of reconstituted compound 19
was used each day. Mice were orally gavaged with vehicle or compound 19 at 20
mg/kg for 5 weeks with a cycle of five consecutive days on-drug and 2 days off-
drug.

Data availability. All relevant data are available from the authors.
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