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Abstract. In two dimensions polymer collapse has been shown to be complex with

multiple low temperature states and multi-critical points. Recently, strong numerical

evidence has been provided for a long-standing prediction of universal scaling of

winding angle distributions, where simulations of interacting self-avoiding walks show

that the winding angle distribution for N -step walks is compatible with the theoretical

prediction of a Gaussian with a variance growing asymptotically as C logN . Here we

extend this work by considering interacting self-avoiding trails which are believed to

be a model representative of some of the more complex behaviour. We provide robust

evidence that, while the high temperature swollen state of this model has a winding

angle distribution that is also Gaussian, this breaks down at the polymer collapse point

and at low temperatures. Moreover, we provide some evidence that the distributions

are well modelled by stretched/compressed exponentials, in contradistinction to the

behaviour found in interacting self-avoiding walks.

1. Introduction

Modelling the collapse of polymers in a dilute solution has advanced significantly in

recent years with a variety of models demonstrating a range of different behaviours

that mimic some of the complexity seen in experiments. The classical theory of

polymer collapse [1] has a high temperature swollen polymer becoming more compact

as temperature is decreased until a phase transition is reached at the so-called θ-point,

below which the polymer forms a liquid-like, or molten, globule. The θ-point has been

studied in both three and two dimensions where it is a critical point. The standard

lattice model (see [2] for a review) is that of interacting self-avoiding walks which

displays exactly this behaviour. For two dimensions see the extensive list of references

in [3] including the key work by Duplantier and Saleur [4]. However, it is known that

polymers can also form folded or crystalline states, and various models have seen this

type of phase with differing collapsing behaviour. One particular two-dimensional model

‡ Dedicated to Professor Stu Whittington on the occasion of his 75th birthday
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Anomalous polymer collapse winding angle distributions 2

that displays a different collapse critical behaviour is the interacting self-avoiding trail

model on a square lattice [5, 6, 7], where the phase transition is much stronger than at

the θ-point in two dimensions and the low temperature state much more dense.

One interesting geometric property of polymer models is the winding angle

distribution. A variety of models, including pure continuum Brownian motion and

random walk models, have been studied [8, 9, 10, 11]. The two-dimensional self-avoiding

walk is expected to have a winding angle distribution that is Gaussian [12, 13] with

variance proportional to logN (N being the number of steps in the walk). More precisely,

P (x = θ/
√

logN) ∼ exp(−x2/4), (1.1)

where the winding angle θ is the cumulative angle subtended by one end of the walk

relative to the first step at the other end of the walk. This form implies that the variance

of the winding angle distribution for swollen two-dimensional polymers behaves as

σ2 ∼ 2 log(N) . (1.2)

Using the theory of Coulomb gas [13] leads to additional predictions for the θ-point and

collapsed two-dimensional polymers. The winding angle distribution remains Gaussian

across the whole temperature range, with

P (x = θ/
√

logN) ∼ exp(−x2/(2C)), (1.3)

and universal values

C =


2 swollen phase,

24/7 critical state,

4 collapsed phase,

(1.4)

so that

σ2 ∼ C log(N) . (1.5)

Recently, this prediction has been supported by Monte Carlo studies of interacting

self-avoiding walks (ISAW) up to length N = 400 [14]. It should be pointed out that

earlier simulations of interacting self-avoiding walks up to length N = 300 suggest

that the results at the θ-point and in the collapsed phase are more consistent with a

stretched/compressed exponential of the type

exp(−|θ|ζ/C logN) (1.6)

with ζ ≈ 1.5 [15]. As a consequence, the scaling variable would change to x =

θ/(logN)1/ζ and the variance would scale as

σ2 ∼ (C log(N))2/ζ . (1.7)

So it is clearly important that careful interpretation of numerical results be made.
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Anomalous polymer collapse winding angle distributions 3

Here we consider interacting self-avoiding trails since, as described above, they

display different collapse behaviour. In contrast to self-avoiding walks, which are site-

avoiding lattice paths, self-avoiding trails are edge-avoiding, that is, they do not visit

the same edge of the lattice twice. As trails can visit the same site more than once,

it is natural to define interacting self-avoiding trails (ISAT) by weighting multiply

visited sites. It is well known that pure self-avoiding trails, and so interacting self-

avoiding trails, at high temperature displays the same swollen polymer behaviour as

self-avoiding walks. It is therefore of no surprise that our simulations for length up to

N = 1000 show that such trails have a Gaussian winding angle distribution with variance

growing as log(N). On the other hand our data for the collapse point of ISAT, which

is known exactly as β = βc ≡ log(3), and for low temperatures is incompatible with a

Gaussian winding angle distribution. Since we know the location of the collapse point

exactly we can do a careful analysis of the point. We surprisingly find that the data

is compatible with a compressed exponential distribution with an exponent ζ ≈ 1.45.

We also have data for this point [16] for trails of length N = 1, 000, 000 which supports

this conclusion. Given our own refutation [14] of the compressed exponential prediction

for ISAW [15] we are cautious about making a compressed exponential prediction for

ISAT. It is appropriate to note here that a different compressed exponential prediction

for ISAT was made in [17] from simulations up to length N = 300, where a value of

ζ ≈ 1.69 was found.

2. Results

We performed ISAT simulations up to length N = 1000 using the same method as

described in our earlier work on ISAW [14], based on the flatPERM algorithm proposed

in [18]. We also extended the ISAW simulations reported in [14] to length N = 1000.

The flatPERM algorithm [19] is a uniform sampling extension of the pruned and

enriched Rosenbluth method (PERM) [20]. A walk or trail configuration is grown up

to some maximal length, and at each step the weight of the configuration is compared

against an estimated weight. If the current configuration has relatively low weight, it

is discarded probabilistically (‘pruned’), and if the current configuration has relatively

high weight, multiple copies are generated and grown independently (‘enriched’), and the

estimated weight updated. FlatPERM enhances this method by altering the pruning and

enrichment choices such that the sample histogram is flat in the chosen microcanonical

parameters. Here, we use flatPERM to simulate the density of states CN,m,k with respect

to configuration size N , number of interactions m, and a discrete approximation k to

the continuous winding angle θ. From this density of states we then compute the needed

thermal averages.

To put our results for ISAT into context, in Figure 1 we show the agreement for

winding angle distributions for ISAW with N = 1000 steps in the swollen phase, θ-point,

and in the collapsed phase with a Gaussian distribution. Each of the distributions has

been scaled to zero mean and unit variance, and there is no discernible deviation from
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Figure 1: The scaled winding angle distribution for the ISAW model of polymer collapse

with N = 1000 steps at β = 0 (swollen phase), β = 0.6673 (θ-point), and β = 0.8

(collapsed phase), demonstrating Gaussian behaviour at all temperatures.

a Gaussian distribution over nearly six orders of magnitude.

To probe deviations of a random variable from a normally distributed one, it is

useful to consider its kurtosis. The kurtosis of a random variable X with mean µ is the

fourth standardised moment, defined as 〈(X − µ)4〉/〈(X − µ)2〉2, and the kurtosis of a

normally distributed random variable is equal to 3.

A finite-size extrapolation of the kurtosis of the winding angle distributions for

ISAW at β = 0, β = 0.6673, and β = 0.8 is shown in Figure 3, and clearly shows

that the numerical value of the kurtosis also approaches the Gaussian value of 3 in

the thermodynamic limit, assuming corrections proportional to 1/ logN , which is the

natural scaling for the variance as per Eqn. (1.7).

We now move on to our new results for ISAT. Attempting to replicate the scaled

distributions of Figure 1, we show in Figure 2 winding angle distributions for β = 0,

β = log 3, and β = 1.15, corresponding to the swollen phase of trails, critical trails,

and collapsed trails, respectively. Once again, the distributions have been scaled to zero

mean and unit variance. Only the distribution at β = 0 is consistent with a Gaussian,

and there are clear deviations from Gaussian behaviour for the two other distributions,

which appear to be distinctly leptokurtic.

This naturally leads us to consider the finite-size extrapolation of the kurtosis of the

winding angle distributions. Figure 3 shows that the kurtosis for ISAT at β = 0 tends

the Gaussian value of 3 as was the case for ISAW at any temperature. However, while

at the collapse point extrapolation against 1/ logN seems reasonable, the asymptotic

value of the kurtosis is around 3.76, clearly different from the Gaussian value. Even

more striking is the low-temperature behaviour, where the kurtosis is greater than 4 for

all N ≥ 20 and is monotonically increasing with increasing N .
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Figure 2: The scaled winding angle distribution for the ISAT model of polymer collapse

with N = 1000 steps in the swollen phase, collapse point, and in the collapsed phase.

While the swollen phase at β = 0 demonstrates the Gaussian form, the collapse point

at β = log(3) ≈ 1.0986 and the collapsed phase at low temperatures (here β = 1.15)

deviate substantially from this form.

We now turn to studying the growth of the winding angle variance in N . The

top-left panel in Figure 4 shows that while the winding angle variance grows linearly

in logN at β = 0, there clearly is a deviation from linear growth at β = log 3 and

β = 1.15. However, when the variance is plotted against suitably chosen powers of

logN , the growth appears again to be consistent with being roughly linear: against

logN for β = 0 (top-right), against (logN)4/3 for β = log 3 (bottom-left), and against

(logN)2 for β = 1.15 (bottom-right).

To summarise the results so far, we have shown that at infinite temperature (β = 0)

the scaled winding angle distribution for ISAT is a Gaussian with kurtosis 3 and

variance growing linearly in logN . On the other hand, the winding angle distribution

of critical ISAT (β = log 3) is clearly different from Gaussian with kurtosis near 3.76.

Moreover, the distribution decays noticeably slower for large winding angles, and the

variance grows faster than linearly in logN . A simple heuristic mechanism for such a

scenario is given by changing the scaling variable to x = θ/(logN)1/ζ . This leads to the

stretched/compressed exponential distribution in Eqn. (1.6). Assuming a compressed

exponential of this form implies a variance growing as (logN)2/ζ and a value of the

kurtosis given by
Γ(5/ζ)Γ(1/ζ)

Γ(3/ζ)2
. (2.1)

For example, if ζ = 3/2 then the kurtosis is equal to 56
81
π
√

3 ≈ 3.76. This would

explain the rough linearity in the bottom-left panel of Figure 4. Also note that a pure

exponential, that is obtained by choosing ζ = 1, has a kurtosis of 6. The behaviour of
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Figure 3: The scaling of the kurtosis of the winding angle distribution of both ISAW

and ISAT models at swollen (β = 0), collapse point (β = 0.6673 and β = log(3),

respectively), and low temperatures (β = 0.8 and 1.15, respectively) plotted against

1/ log(N), for walks and trails from length N = 20 to N = 1000. As expected all the

ISAW data and the data for the swollen point of ISAT lie on top of each other and

can be extrapolated to a value near the Gaussian value of 3. However, it is very clear

that at the collapse point of ISAT the kurtosis can be extrapolated on the same scale

to around 3.76 and is undoubtedly larger than 3. At low temperatures, the kurtosis for

ISAT increases in length and is already larger than 4 for the lengths considered in this

work.

the variance at low temperatures as plotted in the bottom right panel of Figure 4, which

effectively assumes a pure exponential, is compatible with the behaviour of the kurtosis

increasing dramatically in Figure 3.

The crossings of finite-size estimates of critical exponents are often used to

determine the location of critical points. We apply this method to finite size estimates

of the compressed exponential exponent, to see if the crossings correlate with the known

critical temperature β = log 3. If these crossings correlate then we can use the value

of the compressed exponential exponent at the crossing point to confirm its existence

and estimate its critical value. To do this, we fitted the winding angle distribution

to the compressed exponential form given by Eqn. (1.6) over a range of β between 0

and 1.4 for lengths N = 250, 500, and 1000. These estimates are plotted in Figure

5. The estimates decrease from a value compatible with Gaussian behaviour at high

temperature to lower values as temperature decreases, and indeed cross near the critical
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β=0 [bottom]
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Figure 4: The four figures here show how the scaling of the variance of the winding

angle distribution is linear in log(N) only for the swollen phase. In the top left the

variance for all three temperatures at plotted on a semi-logarithm plot versus length N

for N = 10 to N = 1000. In the top right the variance is plotted against log(N) and

clearly shows a linear behaviour reflecting the underlying Gaussian distribution. In the

bottom left we plot the variance against log(N)4/3, which is a value in keeping with the

asymptotic kurtosis value of 3.76 found above. Finally, at the bottom right we plot the

variance against log(N)2, which would be the case if the distribution was a pure linear

exponential: we do not put too much credence on this but it is numerically plausible.

temperature β = log 3 ≈ 1.0986. Assuming the critical temperature, we thus obtain an

estimate of the critical value of ζc ≈ 1.45. While we do not give error bars for ζc, it

would seem from the inset in Figure 5 that a value of 3/2 is outside the probable range.

We now show in Figure 6 the scaled winding angle distribution for ISAT with

length N = 1000 at β = log 3 and the compressed exponential distribution with the

value ζc = 1.45, and find coincidence over six orders of magnitude. Additionally, we

display simulation results for length N = 1, 000, 000, albeit over a smaller range of scaled

winding angles. Increasing the length of the walks by a factor of 1000 does not seem to

markedly shift the winding angle distribution from the compressed exponential form.

Plotting the winding angle variance, raised to the estimated power ζc ≈ 1.45,

against logN up to length N = 1, 000, 000 shows strong compatibility across the full

range, as shown in Figure 7.
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Figure 5: A plot of the compressed exponential scaling exponent ζN(β) for three lengths

N = 250, 500, 1000 against inverse temperature β. The insert focuses on the critical

temperature region. The three curves crosses near the critical temperature βc = log(3)

around an exponent value of ζc ≈ 1.45.

3. Conclusions

We have studied the winding angle distribution of the interacting self-avoiding trail

model of polymer collapse on the square lattice. This model has a collapse transition

unlike the standard θ-point and may represent a higher order multi-critical point in an

enlarged parameter space [22]. The nature of the collapsed phase also appears to be

different to the standard molten globule. We provide strong evidence that while the

high temperature swollen state of this model has a Gaussian winding angle distribution,

the critical point and the low temperature phase do not. Moreover, we provide evidence

that the collapse point is well modelled by a compressed exponential with an anomalous

exponent 1.45 rather than 2 (the Gaussian value). Interestingly, this exponent value

is close to, but not identical with the one observed in a three-dimensional model of a

polymer winding around a one-dimensional bar [21], for which the anomalous exponent

was estimated to be 1.33(4) and the kurtosis was estimated as 3.74(5).
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ζ = 1.45. The triangles (red online) show previously unpublished data [16] for very long
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scale for trails from length N = 100 to N = 106. This shows that the compressed

exponential exponent of 1.45 is strongly compatible with this longer data.
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