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Formalising recall by genotype as an efficient
approach to detailed phenotyping and causal
inference
Laura J. Corbin et al.#

Detailed phenotyping is required to deepen our understanding of the biological mechanisms

behind genetic associations. In addition, the impact of potentially modifiable risk factors on

disease requires analytical frameworks that allow causal inference. Here, we discuss the

characteristics of Recall-by-Genotype (RbG) as a study design aimed at addressing both

these needs. We describe two broad scenarios for the application of RbG: studies using single

variants and those using multiple variants. We consider the efficacy and practicality of the

RbG approach, provide a catalogue of UK-based resources for such studies and present an

online RbG study planner.

Genome-wide association studies (GWAS) have identified thousands of common genetic
variants related to complex traits and diseases1. To deepen the understanding of the
biological mechanisms underlying specific genetic association results or the impact of

potentially modifiable risk factors, new research ideally requires detailed phenotyping and
analytical frameworks allowing causal inference. Exhaustive phenotyping in the same discovery
collections can be impractical or prohibitively expensive2 and leads to situations in which
measurement precision and quality or proximity to underlying biology is compromised by the
use of cheaper pragmatic approaches. There has been substantial growth in the availability of
bioinformatic resources able to help break down association results, but less often seen is the
explicit use of genetic data to design new studies that could contribute to the understanding of
specific association signals, or the impact of potentially modifiable risk factors. Recall-by-
Genotype (RbG) studies recall participants, patients or their samples for extensive investigation
based on informative genetic variation. These are not standard human genetic association stu-
dies, but rather studies that explicitly use existing genetic data as a basis for the design of efficient
investigations of mechanism and causality.

In this article, we describe the motivation for and characteristics of RbG studies and why they
can be useful for both the examination of specific association results and the efficient extension
of applied genetic epidemiology. We discuss the practicalities of incorporating genotypic data
into population-based study designs and provide a catalogue of UK-based study resources and
an online tool to aid the design of new RbG experiments. Overall, we conclude that RbG studies
can help dissect existing genetic associations and make efficient use of the genetic prediction of
risk factor exposure through the execution of novel and genotype-informed studies. However,
the efficacy of the RbG design depends on a number of study-specific factors and therefore
careful consideration should be given as to whether RbG is the optimal design for any given
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research question. There is further work to be done by the
community in developing protocols and procedures to support
RbG studies, in particular to address the potential ethical chal-
lenges associated with recruitment by genotype.

Rationale for genotype-based sampling strategies. By sampling
in an informed manner, targeted studies can be undertaken that
allow the examination of dense phenotypic information in sample
sizes that are both financially and practically feasible and have the
potential to optimise analytical power. Studies that recruit sub-
groups of participants from the extremes of phenotype distribu-
tions (such as lean and obese individuals) have been used in
epidemiological investigations for many years; however, these
studies suffer well-known limitations of observational epide-
miology3. In contrast to these, RbG studies use naturally occur-
ring genetic variants robustly associated with specific traits and
diseases to stratify individuals into groups for comparison and are
novel and beneficial for two reasons. Firstly, by exploiting the key
properties of genetic variants that arise from the random allo-
cation of alleles at conception (Mendelian randomization (MR))
3–5, RbG studies enhance the ability to draw causal inferences in
population-based studies and minimise problems faced by
observational studies (Fig. 1)6. Indeed, the often-used comparison
of MR to randomised controlled trials (RCTs) is structurally
closer for RbG than more conventional applications of this ana-
lytical approach7–9. Secondly, focusing phenotypic assessments
on carefully selected population subgroups can improve insight
into mechanism and the aetiology of health outcomes in a cost-
efficient manner through targeted deployment of more precise
and informative phenotyping across already known biological
gradients.

These key features ensure results from RbG studies can be
useful in a variety of settings, including in the realm of drug
development. For example, data from both GlaxoSmithKline10

and AstraZeneca11 show that genetic target linkage to disease
increases the rate at which drugs are approved. Currently, one of
the main sources of genetic support are results from GWAS (for
example, those in GWASdb12) and these seem to be particularly
useful in earlier stages of the drug development process10.
However, the influence of genetic support appears to be less
strong in progression from Phase III trials to approval10,
suggesting that there is still progress to be made in refining
molecular targets. Furthermore, RbG studies may be able to
realise the concept of dose−response curves derived from
‘experiments of nature’ described by Plenge et al. 13, where
naturally occurring mutations can be utilised to estimate the
efficacy and toxicity of a drug.

Exemplars of RbG design in population health studies. Forms
of RbG have appeared in designs looking to optimise RCT and
investigate pharmacogenetic relationships14–18, but have not been
fully described for population-based resources. RbG study designs
are likely to develop further, but here we present design con-
siderations for RbG in simple form. We split the RbG approach
into two categories for the purpose of description; RbG using a
single variant (RbGsv) and RbG using multiple variants (RbGmv).
The former can be viewed as a focus on the use of specific
(potentially rare and large-effect) loci to understand biological
pathways of interest; in contrast, the latter uses polygenic con-
tributions to exposures of interest in study designs more effi-
ciently than conventional MR analyses. These approaches have
the same inferential properties based on the properties of genetic
data; however, they describe differing analytical scenarios and
illustrate the potential variety in this application of human
genetics.

RbGsv studies are the most intuitive type of RbG, where strata
defined by a single genetic variant are used as the basis for the
recall of samples or participants for further phenotypic examina-
tion. This type of RbG study may focus on functional variants
known to induce a direct biological change; however, genetic
variants may also be chosen if they have uncharacterised or
predicted effects (i.e., loss-of-function variants, cis-regulatory
variants or intronic variants that alter DNA-protein binding at
potential drug targets)19. These variants provide natural experi-
ments able to yield information about the specific role of
biological pathways as well as gradients within them and
potentially inform on both the safety and the efficacy of
medicines. For RbGsv studies, participants or patients or their
samples are recruited and phenotypes measured based on
genotypic groups in a manner not dissimilar to the arms of a
clinical trial. Recall in this way yields groups in which detailed
phenotyping can be undertaken to assess the specific impact of a
genetic change or the aetiology of an outcome. An early example
of this approach was an investigation of the effects of the
peroxisome proliferator-activated receptor-γ Pro12Ala poly-
morphism on adipose tissue non-essential fatty acid metabo-
lism20. Further examples of RbGsv are included in Box 1.
Additional studies currently underway have had protocols
reported in advance of their completion21, 22.

A form of RbGsv, which has received attention in the literature
recently, relates to the concept of ‘human genetic knockouts’, that
is, individuals carrying rare homozygous predicted loss-of-
function (pLoF) mutations. These are useful in supporting
understanding of biological pathways because they come close
to simulating the ablation of protein function23. By sequencing
relatively large numbers of individuals from populations in which
homozygous genotypes might be enriched (e.g., founder popula-
tions and those with high consanguinity rates), researchers have
successfully identified hundreds of pLoF mutations23. In their
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Fig. 1 Properties of RbG strata compared to randomised control trials. a For
randomised controlled trials (RCTs), participants are randomly allocated to
intervention or control groups. Randomisation should equally distribute any
confounding variables between the two groups. b For Recall-by-Genotype
(RbG) studies, strata are defined by genotype and, analogous to RCTs,
potential confounding factors are equally distributed between groups.
Hence, RbG studies are not subject to reverse causality or confounding
factors with respect to the phenotype under study
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study of over 10,000 individuals living in Pakistan, Saleheen
et al.24 identified four participants homozygous for a pLoF variant
in the apolipoprotein C3 (APOC3) gene, associated with lipid
metabolism. By re-contacting one homozygous proband,
researchers were able to identify and recruit six pLoF carriers
and seven non-carriers from the same family for detailed
physiologic examination. Participants underwent an oral fat load
followed by serial blood testing for 6 h, which showed pLoF
homozygotes had lower post-prandial triglyceride excursions.
Features from this work that are more broadly applicable within
the RbGsv framework include the exploitation of founder
populations due to the potential enrichment for highly penetrant
large effect variants and the potential to expand recruitment to
family members of those identified for recall25–28.

RbGmv designs differ in the formation of their strata. Rather
than employing specific loci of known or hypothetical effect,
RbGmv uses multiple genetic variants to design studies focused on
the impact of an exposure of interest (e.g., variable body
composition, glycaemic profile or complex disease predisposi-
tion). The gains afforded in this type of RbG are not through the
balanced recruitment of rare mutations of large effect, but the
generation of comparison groups small enough for extremely
detailed investigation, but where the risk factor exposure gradient
is as marked and powerful as in the analyses of the entire
population sample.

Consistent with conventional MR analyses, the choice of
genetic variants for RbGmv studies relies on the ability of
genotypic variation to act as a reliable proxy measure for the
exposure of interest. Distinct from genetic prediction, this use of
multiple genetic variants as markers for modifiable risk (as in
more conventional MR designs) requires strong evidence of
reliable association. Single genetic variants associated with
complex traits or modifiable risk factors often explain only a
small proportion of variance in that trait and a strategy employed

to try and recover some of the consequent lack of power of single
variant analyses is to generate aggregate genetic risk scores
(GRSs)29–31. The use of multiple genetic variants in this way can
increase the precision of the causal estimate compared with those
derived using separate genetic variants32. In contrast to conven-
tional MR, once a GRS is constructed within the study sample
targeted for RbG (usually as the sum of allele dosages at risk
variants weighted by their beta coefficients obtained from an
independent GWAS for the exposure of interest), individuals are
ranked based on this score, which is then used to stratify
participants for recall (Fig. 2). Actual selection of individuals from
extremes of the GRS will be dependent on the number and
frequency of the variants forming the score, their effect and the
number of participants (or samples) available. In addition, it
should be considered that while the average genetic composition
of a GRS used to recruit participants will be the same, unlike
RbGsv, the precise allocation of genotype will vary from
participant to participant. Despite this, the differences across
the genetic stratum will carry the same inferential properties as
RbGsv and allow for causal inference concerning the risk factor
being instrumented6. An example of an RbGmv study designed to
investigate the causal relationship between body mass index
(BMI) and cardiovascular health in young adults can be found in
preprint form33 (please note this article has not yet been subject
to peer-review). In this study, magnetic resonance imaging-
derived measures of cardiovascular health were collected on 418
young adults recruited based on a GRS predicting variation in
BMI. Both MR and RbGmv analyses indicated a causal role of
increased BMI on higher blood pressure and left ventricular mass
indexed to height2.7.

Statistical power and efficiency in RbG. Undertaken correctly,
power calculations illustrate the conditions in which one would
consider using an RbG experiment as an approach as opposed to

BOX 1: | Examples of RbG studies

Melatonin signalling and type 2 diabetes
Several GWASs have identified >100 genetic variants associated with type 2 diabetes (T2D), including a common variant in the melatonin receptor 1b

gene (MTNR1B). However, the mechanism of how glucose metabolism and development of T2D are affected by melatonin remains elusive. Tuomi
et al.52 demonstrated that rs10830963, an eQTL for MTNR1B in human islets, affects insulin release. To test the hypothesis that activation of MTNR1B
would result in a reduction of glucose-stimulated insulin secretion, Tuomi et al. employed an RbGsv study design. Twenty-three non-diabetic individuals
with two copies of the risk allele (GG) and 22 individuals with two copies of the non-risk allele (CC) were recruited for the study during which they

received 4mg of melatonin for 3 months. The participants underwent an oral glucose tolerance test before and after 3 months of melatonin treatment
and levels of plasma glucose, insulin, glucagon and melatonin were measured. The study found that insulin secretion was inhibited by melatonin
treatment, with higher glucose levels in risk allele carriers. Results from this RbGsv study suggest that melatonin might be protective against nocturnal

hypoglycemia.
IL2RA polymorphisms and T-cell function
In type 1 diabetes (T1D), the malfunction of CD4+ regulatory T cells (Tregs) results in T-cell-mediated autoimmune destruction of pancreatic beta cells.
The function of Tregs may be influenced by gene polymorphisms in the IL-2/IL-2 receptor alpha (IL2RA) pathway. Several interleukin-2 (IL-2) receptor
alpha-chain (IL-2RA) gene haplotypes (rs12722495, rs11594656 and rs2104286) have been shown to be associated with T1D53, 54. To investigate

whether the IL-2RA haplotypes are associated with different expression of IL2RA on the surface of peripheral blood T cells, Dendrou et al.55 employed
an RbGsv design, recruiting 50 homozygous or heterozygous individuals for each of the 3 protective haplotypes and 50 homozygous individuals for the
susceptible haplotype. Blood samples were collected and the surface expression of IL2RA on peripheral blood T cells measured. Individuals with the

protective rs12722495 haplotype in IL-2RA had increased expression of IL2RA on the surface of memory CD4+ T cells and increased IL-2 secretion
compared to individuals with the susceptible haplotypes or those with the protective rs11594656 or rs2104286 haplotype. In a second study, Garg
et al.56 employed an RbGsv design recruiting healthy individuals according to their genotype at IL2RA-rs12722495 to investigate how polymorphisms in
IL2RA alter Treg function. Blood samples were taken from 34 healthy individuals and T-cell function tested. The study found that the T1D-susceptibility

IL2RA haplotype correlated with diminished Treg function via reduced IL-2 signalling. Findings from the RbGsv studies by Dendrou et al. and Garg et al.
informed the design of a successful dose-finding, open label, adaptive clinical trial design of Aldesleukin57, a recombinant interleukin 2 (IL-2), in
participants with T1D to investigate whether Aldesleukin could be potentially used to prevent autoimmune disorders such as T1D by targeting Tregs.

The trial found that a single ultra-low dose of Aldeskeukin resulted in early altered trafficking and desensitisation of Tregs, suggesting that Aldeskeukin
could be useful to prevent T1D.
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more conventional sampling methods. Again, it is useful to
consider RbG in the RbGsv and RbGmv forms. Power for RbGsv

studies can be calculated based on the proposed sample size and
the balance of major homozygotes to minor homozygotes/het-
erozygotes therein (the actual sampling ratio can be adjusted to
optimise power as in a conventional case−control design), the
phenotypic properties of the outcome measure(s) of interest and
the anticipated difference in outcome by recall group. The precise
sampling strategy for RbGsv will depend on properties of the
target variant and predictions about its mode of inheritance.
Here, we consider the implications of recruiting an equal number
of major and minor homozygotes (or carriers of the minor allele
(heterozygotes) if frequency is very low) in an effort to maximise
available biological contrast. However, if it is known, considera-
tion of the appropriate genetic model can aid design (particularly
where effects are dominant) and an alternative strategy is to
recruit equal (or optimal) numbers of all three genotype groups34.

A key property of RbGsv design is that study power is
independent of the minor allele frequency (MAF) of the target
variant; therefore, where random recall designs suffer low power
at low MAF, RbGsv does not (Fig. 3a). Consequently, there is
most power to be gained at the lower end of the MAF range,
where random sampling in relative small samples would fail to
yield sufficient numbers of rare variant participants. Despite this,
appreciable gains can still be made at moderate MAF if sample
size is restricted and/or effect sizes are predicted to be moderate;
for example, given a standardized per allele effect of 0.3, a MAF of

0.2 and a sample size of 100, the difference in power between
random recall and RbGsv can be over 40%.

Importantly, the efficiency of the RbGsv design comes at some
cost as recruiting sufficient participants or samples with low or
very low frequency genotypes requires much larger bioresources
(with genetic information) from which to recruit (Fig. 3b). For
instance, in a study recruiting individuals based on a genetic
variant with a MAF of 1% and requiring a total sample size of 50
in each group, the genotyped bioresource would need to contain
at least 500,000 individuals in order to identify 50 minor allele
homozygotes (assuming Hardy−Weinberg equilibrium). Given
that not all participants will be eligible or willing to participate in
the RbG study, the required bioresource sample size is likely to be
even larger.

Power for RbGmv studies can be considered as a two-part
process reflecting not only the properties of the outcome measure,
but of the exposure gradient being measured in proxy by the GRS
in question. This can be modelled using properties of the genetic
variants and their aggregate effects to predict (i) the distribution
of the GRS, (ii) the number of participants in the tails of the GRS
for any given sample size and (iii) the magnitude of the
association between set thresholds of the GRS and the exposure
of interest. Given a satisfactory exposure gradient for the GRS in
question, the second part of the process follows that of RbGsv

studies (i.e., the size of a recall sample to detect biologically
informative differences in the outcome phenotype). Again, the
efficiency of this approach will be governed by the distribution
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Fig. 2 Contrast between phenotype and genotype-based sampling strategies. Histograms show the distributions of a body mass index (BMI) and b the BMI
genetic risk score (GRS) in the Avon Longitudinal Study of Parents and Children (ALSPAC). For a description of the ALSPAC data, please see
Supplementary Note 2. Red bars represent the top and bottom 30% of these distributions. Mean differences in BMI, systolic blood pressure (SBP) and
confounding factors (alcohol, income and education) were compared between the top and bottom 30% of the a BMI and b BMI GRS distribution. a For
extreme-phenotype recall studies, participants at the extreme ends of the phenotypic distribution are invited to participate in the study. As an exemplar of
this, phenotype data from 1855 individuals in ALSPAC was used. While differences in BMI and SBP are observed between the top and bottom 30% of the
BMI distribution, extreme-phenotype sampling strategies are often prone to confounding and potential reverse causality (as shown by the association of
the recalled strata with confounding factors). b In contrast, RbG studies have the ability to generate reliable gradients of biological difference in
combination with essentially randomised groups. As an exemplar of this, genetic data from 1420 individuals in ALSPAC was used to generate a BMI GRS.
Differences in BMI and SBP are observed between the top and bottom 30% of the BMI GRS distribution that are not prone to confounding and reverse
causality (as shown by the lack of association of the recalled strata with confounding factors)
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and properties of the GRS in question (determining the number
of participants at any part of it and the relationship to exposure),
but also the practicalities of study-based recruitment (as for
RbGsv).

For RbGmv studies, power depends on the variance in the
exposure explained by the GRS (R2

XG), the anticipated relationship
between the exposure and the outcome that will be measured
(R2

YX) (although not likely to be known precisely) and the
threshold (percentile) that is used to recruit, as well as sample size
(Fig. 4a). The greatest gain in power occurs when the sample
groups are recruited from the most extreme part of a GRS
distribution, but one must be mindful of the need for large
genotyped bioresources from which to recruit in this case
(Fig. 4b). As an example, with R2

XG in the range 0.03 (as is
currently seen for complex traits such as BMI) and assuming
R2
YX ¼ 0:3, appreciable power gains (>25%) can be made over

random recall using thresholds of between 5 and 20% in samples
of 300 or more. Therefore, while the conservative aim for RbGmv

is to achieve equivalent exposure gradient in a smaller sample
suitable for extensive investigation, it is evident that for an
equivalent outcome power is enhanced (and of course consider-
able measurement cost savings made).

For both RbGsv and RbGmv approaches, there may be
situations where power can further be enhanced (and biological
effect clarified) when comparing genotype-driven recall groups
also group- or pair-matched for characteristics such as age, sex
and BMI. Analogous to an RCT, the overall approach in RbG is
reliant on the properties of genotype-assigned recall groups,
though in certain conditions it may be possible to enhance
analyses with appropriate matching strategies. Access to larger
sample sizes may reduce the need for matching, but even here
matching may be advantageous when there are genotype-driven
differences in the potential for ascertainment (e.g., early-onset
fatal disease or in selecting non-diabetic individuals for a study of
a diabetes risk variant) and this approach has been exercised in
existing studies19, 35. Other situations that may prompt refine-
ment of the basic RbG design include instances of
gene × environment and gene × gene interaction. Though the
evidence for consistent examples of these in the literature has
been limited to date, in the presence of a gene × environment
interaction, for example, the assumption that genotype is
orthogonal to all potential confounders may be invalidated due
to associations between socioeconomic status and geographic
ancestry. Importantly, there remains a danger that efforts to
balance or match samples can exacerbate the potential for
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particular types of study bias36 and the pros and cons of these
decisions need to be weighed carefully in study design.

To facilitate the design of RbG experiments based on the
scenarios outlined above as ‘RbGsv’ and ‘RbGmv’, we have
prepared an online tool for guiding researchers through these
steps (see Web resources). The methods used to calculate power
for RbG studies are described in more detail in Supplementary
Note 1.

Ethical considerations of RbG. RbG is a potentially powerful
research design, but it creates ethical challenges. The RbG
approach is inextricably linked to the issue of disclosing poten-
tially sensitive individual results37, 38 and places an emphasis on
transparency and communication with participants. This of
course relates to the nature of both the RbG design and the
genetic variation being used to construct the RbG stratum of
interest. This is particularly pertinent where potentially penetrant
and functional variants are employed in RbGsv designs, but has
implications for all forms of RbG. Despite this, there is little
published academic work regarding the specific ethical issues in
RbG studies.

A small body of literature suggests a need for ‘bottom-up
research’ to be monitored by an independent governance body39

and that the issues presented with RbG studies are not new but

common to those faced by other approaches, such as the use of
medical records40. Qualitative data that does exist around this
topic compared the experiences of patients (those with the disease
of interest) to those of ‘healthy volunteers’ (recalled from a
biobank) following their recruitment on the basis of genotype41.
This research found that, while patients expressed ‘no concerns’
about the eligibility criteria, ‘healthy volunteers’ did not always
comprehend the study design or why they had been chosen. This
led in some cases to participants assuming a degree of
meaningfulness to the genetic data that was unwarranted but,
nevertheless, caused them to feel anxious. Seemingly in contrast
to this, a qualitative research study in which semi-structured
interviews were conducted with 53 young adult participants of the
Avon Longitudinal Study of Parents and Children, a cohort of
ostensibly ‘healthy volunteers’ reported that few expressed any
immediate concerns about being recruited by genotype42. Given
that this work has yet to be peer reviewed and is not a systematic
analysis (rather excerpts from a small number of interviews), the
results of this study must be interpreted with caution. However,
the conclusions from this work were that the main reasons for the
lack of concern were the trust that participants had developed
over their long-term relationship (more than 20 years) with the
study, plus a naturally limited knowledge of genetics and modest
interest in reported research outcomes. This complements
previous research that identified the relationship between
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Fig. 4 Comparative power: RbGmv versus random recall study design. a Top panel: A comparison of power (y-axis) achieved by an RbGmv study design
versus a random sample selection design for a given R2XG (variance in exposure explained by the genetic risk score (GRS)) and percentile. The x-axis is the
total sample size. Lower panel: A representation of the difference (y-axis) between the power within an RbGmv study design and that from the equivalent
random recall experiment. In both the top and bottom panels, solid lines represent the situation where the variance in outcome explained by exposure
(R2YX) is equal to 0.3 and dashed lines represent the situation where R2YX is equal to 0.1. b An illustration of the minimum recruitment rate needed in order to
recruit sufficient study participants for a given RbGmv study sample size (x-axis) and percentile. Solid lines represent the situation where the size of the
genotyped cohort (or biobank) is equal to 5000 people and dashed lines represent the situation where the size of the genotyped cohort (or biobank) is
equal to 10,000 people. For details of how the power calculations were carried out, see Supplementary Note 1. Here we use the analytical method and
assume a Type I error rate (alpha) of 0.05 and equal-sized genotype groups. The ‘percentile’ is the threshold used to recruit from the GRS distribution in
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researchers and participants as a factor that may influence how
much information is provided, with regular study participants
perhaps expecting more under the ethical principles of respect
and reciprocity43. Although there is clearly scope to expand the
body of evidence relating specifically to ethical considerations in
RbG, an emerging theme is the responsibility placed onto
researchers for the handling of potentially sensitive and disclosive
studies.

The very nature of RbG designs highlight a central tension
between avoiding the possibility of participant harm through
revealing unwanted or misunderstood information and being
open and clear when explaining how and why participants are
being recruited into studies37, 38. In healthy volunteers, it is
unlikely that the genetic information used for recruitment to most
RbG studies will be either immediately clinically valid or useful, as
the precise function of the genetic characteristics will presumably
be unknown. However, this does not diminish the need to clearly
communicate the study protocol to participants and why they,
specifically, have been recruited. To this end, the issue of direct or
unwanted indirect disclosure of genotype is of great importance
in this type of study. It is of course possible to envisage a situation
whereby a threshold of clinical relevance obtained through an
RbG study is not reached, but the genetic information could still
be of interest to the participant. The employment of sensible
mechanisms for assessment of data quality and routes for
appropriate feedback (as considered in detail for sequencing
studies elsewhere)44 will clearly be the accepted mode for RbG
studies with large effects. However, the issue of addressing a
specific genotype-driven effect does serve to illustrate a key
advantage of RbG studies over less hypothesis-driven genomic
research. It is potentially easier to anticipate the nature of findings
for a given recall stratum and therefore the potential relevance of
those findings to participants37, 38.

Related to the nature of the cohort is the extremely important
issue of consent and the provision for re-contact of participants
within the informed consent process of the original study41, 45.
While there are a number of ‘purpose-built’ RbG resources such
as The Oxford Biobank, the Exeter 10,000 (EXTEND), the East
London Genes & Health (ELGH) and the Extended Cohort for
E-health, Environment and DNA (EXCEED) projects whose
consent processes deal explicitly with the issue of RbG, in many
cases researchers will be looking to recruit from cohort studies
established for more general epidemiological research. Therefore,
in the event that a network approach to RbG studies is initiated
(as described below), careful consideration will need to be given
to the extent to which consent and disclosure policies can and
should be aligned across studies versus the tailoring of approaches
to account for the varied nature of the cohorts involved.

Resources. Despite potential advantages of genotype-based
sampling strategies, they have so far been underutilised, partly
because of limited infrastructure to support them. However, at a
time where the potential value of population-based human
genetics is being realised in a clinical context10, recent develop-
ments have changed the scientific landscape. A growing number
of bioresources have been established or re-purposed to enable
RbG studies and are ready for coordinated deployment to max-
imise RbG designs. In the UK alone, there exists a collection of
RbG-ready studies that form a network of genotypic resources
and phenotypic expertise suitable for the execution of new studies
(see Table 1: UK patient and population-based studies available
for RbG studies and the extended version in Supplementary
Table 1). A second factor has been the continued fall in geno-
typing and sequencing costs, which has accelerated discovery and
enabled genetic characterisation of large cohorts consented for

RbG studies. Finally, in recent years a number of RbG studies
with important findings have been reported that highlight the
value of the approach and illustrate key variations on it.

Future directions, limitations and recommendations
We have presented RbG as a potentially valuable study design in
its simplest form within population-based studies. Recall itself is
not a novel paradigm to epidemiological studies, where
phenotype-driven selection has been a mainstay for the purposes
of maximising analytical power. The novelty with RbG comes
from the selection process being based on genetic strata, which
have the ability to recapitulate biological pathway changes or
exposure differences and do so using reliably measured, repro-
ducible and randomly allocated markers. In the correct condi-
tions, this approach has the potential to be both cost-effective and
biologically informative.

The ability to measure genetic variation reliably (including that
with low MAF) is an important asset to this approach and has
been facilitated by both the swathe of GWAS analyses and
imputation development that has occurred over the last 5–10
years. However, to take this further, the existence and maturation
of effective networks of RbG-ready collections will undoubtedly
be required. Not only will these networks allow for the look-up
and access of rare variant carriers in reasonable numbers, but
local bases of phenotypic expertise will help to develop and
exercise the real value of RbG studies in deep phenotyping and
enhanced statistical power. For the RbG approach to prove of
greatest benefit in the future, this will have to be coupled with
large-scale population and patient-based records of genotypic
variation data with appropriate consent.

Along with this, there is a series of developments that may
enhance the utility of RbG as an approach. Resources are already
available that present the possibility of searching the human
genome for genetic variants that are particularly suited for use in
RbG experiments. Most pertinent to RbGsv designs, assessment of
variant suitability would likely involve browsing genetic regions
of interest for evidence of actual or predicted functional variation
using best available data (e.g., the ExAC database46) and the
marriage of this information to outcome association results and
RbG study design parameters. In this way, researchers would be
able to conduct a pre-emptive assessment of the likely value and
performance of an RbG study. In addition to this, other devel-
opments include the formalisation of data-driven recall protocols
(where the reduction of extremely complex data for non-
hypothesis-driven association signal discovery is followed by
deep exploration of results by genotype) and the testing of
population-level opt-out strategies (i.e., that avoid disclosure of
genotype status—or likely status—with invitation alone) to
ensure ethical balance for RbG studies.

There are specific adaptations and potential limitations that are
relevant to this approach. Concerning power, current approaches
able to assess simplified RbG conditions provide conservative
estimates of the performance of RbG studies and need to be
developed to further incorporate the application of group and
pair-based matching. These techniques are used in RCTs and
have the potential to increase statistical efficiency, especially in
small sample sizes and where chance or study-specific biases may
be present. In addition to refining power calculations and study
planning, it is important to consider the potential of employing
variants of specific functional effect or sets of genetic variants47

that act together, interact or are responsible for specific pathway
effects. With increasing information about the weight of specific
and functional genetic changes and a growing collection of whole
genome sequence data available, the opportunity to explore
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predicted effects in specific clinical scenarios is also increasing10

and can be extended with RbG studies.
In line with more conventional MR analyses based on non-

selected population samples, the quality and nature of the genetic
variants used for stratum formation will directly affect the ability to
draw inference. Population stratification, genuine (or horizontal)
pleiotropy and consequent unanticipated instrument properties
have been observed elsewhere48, 49 and may affect RbG through the
invalidation or complication of genetic instruments. Horizontal
pleiotropy3, 50 specifically is a complication that should be viewed in
the context of the type of RbG being undertaken however and is an
issue that is pertinent to MR more generally4. In the case of RbGsv,
while pleiotropy may complicate the inference drawn from differ-
ences between recalled groups, one of the merits of using RbG for
single variants will be to explore the potentially diverse and com-
plicating nature of genetic associations validated for health out-
comes. For RbGmv, the situation is different and while it is
theoretically possible for directional (unbalanced) pleiotropy to
potentially bias estimates drawn from groups defined by many
genetic variants, with increasing numbers of these genetic proxies
for complex exposures or risk factors of interest, the likelihood of

this problem decreases50. This does not remove pleiotropy as a
potential complication (indeed it may be unlikely to ever have a
single genetic predictor not involved in complex regulation), but it
presents RbG as an approach to explore and account for pleiotropy.

Lastly, unbalanced loss to follow-up by genotype (due to death
or behaviour) and the practicalities of study-specific recruitment
are potentially limiting factors that need to be considered when
undertaking RbG. These limitations can have an impact on the
outcomes of this type of design and will benefit from the study of
recruitment dynamics in large-scale prospective studies51. Over-
all, as is the case for other forms of MR, these limitations high-
light the role of RbG as only part of a required triangulation and
replication of evidence when asserting causality or mechanism.

Considering RbG as a vehicle for undertaking detailed and
causal dissection of genetic effects and the efficient exploration of
potentially causal risk factors, there are recommendations that
come from early experiences with studies of this design. These
recommendations are presented in Box 2. Overall, RbG study
designs have the potential to offer independent and informative
biological gradients over which specifically designed studies can
interrogate the detailed architecture of confirmed associations. In

Table 1 UK patient and population-based studies available for RbG studies

Study Sample size Local phenotypic expertise Patient group/ population
sample

The Avon Longitudinal
Study of Parents and
Children (ALSPAC)

~9000 (mother child duos) & ~2000
trios. Smaller number of children of
index participants (third gen)

Lifecourse epidemiology—birth cohort
(‘complete’ phenotyping)

Population-based cohort

East London Genes &
Health (ELGH)

26,476 (at Nov. 2017, actively
recruiting, total sample size 100 k)

Human knockouts, primary care e-health
records, diabetes and cardiovascular

Population-based cohort
(Bangladeshi and Pakistani
ethnicity, age> 16)

EXtended Cohort for E-
health, Environment and
DNA (EXCEED)

Over 9300 recruits to date;
recruitment planned to continue to
10,000

Cardiovascular, respiratory, renal, metabolic,
infectious disease and cancer

Population-based cohort (aged
30–69)

Exeter 10,000 (EXTEND) 10,000 Type 2 diabetes, ischaemic heart disease,
vascular function and healthy ageing

Population-based sample
(based in Exeter; enriched for
patients with diabetes; aged>
18)

Genetics of Diabetes and
Audit Research Tayside
Study (GoDARTS)

9439 cases and 8187 controls Complete EMR linkage, type 2 diabetes, heart
disease, asthma and cancer

Case−control cohort

INTERVAL 50,000 >6000 molecular phenotypes, including
serum NMR metabolomics, plasma MS
lipidomics and metabolomics, plasma
proteomics, Sysmex FBC, hepcidin and others

Population-based sample of
healthy blood donors

National Centre for Mental
Health

Over 10,000 Mental health conditions Population-based cohort
(variety of mental health
conditions; all ages; primarily
Wales-based)

The Oxford Biobank 7900 Metabolic and anthropometric, obesity Random, population-based
sample of healthy 30–50-year-
old men and women
(Oxfordshire)

Scottish Health Research
Register (SHARE)

50,000 samples obtained. 155,000
consented for spare blood
interception

Complete EMR linkage. Type 2 diabetes, heart
disease, asthma and cancer. Mobile App
Patient Reported Outcomes.

Population-based cohort

Generation Scotland:
Scottish Family Health
Study (GS:SFHS)

20,032 Complete EHR linkage, urinary traits and
kidney disease, eye phenotypes, family based
data analysis

Family-based population cohort

NMR, nuclear magnetic resonance; MS, mass spectrometry; EHR, electronic health record; EMR, electronic medical records; FBC, full blood count. An expanded version of this table with additional
information can be found in Supplementary Table 1

REVIEW ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03109-y

8 NATURE COMMUNICATIONS |  (2018) 9:711 |DOI: 10.1038/s41467-018-03109-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


tandem with the driving forces of larger hypothesis-free asso-
ciation studies, the presence of directed follow-up and causal
investigation may provide the opportunity to convert some of
these outputs into targets for clinical use and future development.

Web resources
To facilitate the design of RbG experiments based on the sce-
narios outlined in this paper, we have prepared an online tool for
guiding researchers through these steps that is available on the
MRC IEU Software Page at: http://www.bristol.ac.uk/integrative-
epidemiology/faciliitiesresources/software/ (under ‘RbG Study
Planner’). The methods used to calculate power for RbG studies
are described in more detail in Supplementary Note 1.
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