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In various dimensions, we can sometimes compute observables of interacting conformal field theo-
ries (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing
protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to
algebraically construct observables of interacting CFTs using free fields without the need to explic-
itly construct an underlying RG flow. In this note, we begin to extend this idea to higher dimensions
by showing that one can compute certain observables of an infinite set of unitary strongly interacting
four-dimensional N = 2 superconformal field theories (SCFTs) by performing simple calculations
involving sets of non-unitary free four-dimensional hypermultiplets. These free fields are distant
cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously
connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives
us Lagrangians for particular observables in certain subsectors of many “non-Lagrangian” SCFTs
by sacrificing unitarity while preserving the full N = 2 superconformal algebra. As a byproduct,
we find relations between characters in unitary and non-unitary affine Kac-Moody algebras. We
conclude by commenting on possible generalizations of our construction.

Introduction

Free fields in two spacetime dimensions are versatile:
operators, correlation functions, and partition functions
of interacting conformal field theories (CFTs) can of-
ten be constructed algebraically from free bosons via
the Coulomb gas formalism, and the simplest unitary
minimal model—the Ising model—has a free Majorana
fermion underlying it (see [1] for a review). Free fields in
higher dimensions seem less powerful: in order to have
something useful to say about an interacting CFT, one
must usually labor to connect such free fields to the
CFT in question through a suitably “smooth” path in
the space of couplings [54].

However, one may hope to overcome these obstacles in
d > 2 spacetime dimensions whenever there are relations
between quantum field theories (QFTs) in d dimensions
and QFTs in 2D. In the case of 4D superconformal field
theories (SCFTs) with at least N = 2 supersymmetry
(SUSY), one such relation was given in [2]: the sector
of so-called “Schur” operators of the 4D SCFT (briefly
reviewed in the supplementary material) is isomorphic to
a 2D chiral algebra living on a plane, P ⊂ R4. On the
chiral algebra side of this relation, one of the most basic
quantities we can compute is the torus partition function

Z(x, q) ≡ q−
c2d
24 Tr xM

⊥
qL0 , (1)

where the trace is over the Hilbert space of states asso-
ciated with the chiral algebra, c2d is the chiral algebra
central charge, M⊥ = j1 − j2 is the spin transverse to P
(j1,2 are Cartans of SO(4)), q ∈ C is a fugacity, and L0

gives the holomorphic scaling dimension, h. On the 4D
side of the relation, (1) is mapped to a particular refined

Witten index, called the Schur index [3] (see the sup-
plementary material for further details), that counts the
Schur operators weighted by certain quantum numbers

IS(q) ≡ q
c4d
2 TrH(−1)F qE−R = Z(−1, q) , (2)

where c4d is the 4D c central charge, F is fermion num-
ber, E is the scaling dimension, and R is the su(2)R
weight (clearly, the holomorphic scaling dimension satis-
fies h = E − R while c2d = −12c4d [2]). Note that both
(1) and (2) can be refined by additional flavor fugacities
(i.e., fugacities for symmetries that commute with N = 2
SUSY in 4D), but such modifications will not play a role
in our discussion below.

While we believe that many of the ideas we will present
are quite broadly applicable (with suitable modifica-
tions), in this note we specialize to a particular infinite
set of strongly coupled SCFTs whose simplest member
is the so-called (A1, D4) theory [55]. In this class, the
manipulations we use are particularly simple.

The Schur index for the (A1, D4) theory was computed
in [6–9] and was shown to equal the vacuum character

of ŝu(3)− 3
2

(as conjectured in [10]). More recently, the

authors of [11] proposed that this unflavored Schur index
takes the following simple form

I
(A1,D4)
S (q) = q

1
3 P.E.

(
8

q

1− q2

)
≡ q 1

3 Exp

(
8

∞∑
n=1

1

n

qn

1− q2n

)
,

(3)
and this formula was proven in [12] (see also the discus-
sion in [13]) to be equivalent to the vacuum character of

ŝu(3)− 3
2

[56]. Interestingly, under the rescaling q → q
1
2 ,
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(3) reduces to

I
(A1,D4)
S (q

1
2 ) = q

1
6 P.E.

(
8
q

1
2

1− q

)
=
(
Ihalf−hyper
S

)8

,

(4)
where the righthand side (RHS) is just the index of eight
free half-hypermultiplets (i.e., the T2 theory [16]) or,
equivalently in 2D, the vacuum character of four sym-
plectic bosons.

While the derivation in [12] proved (3) [57] along with
various generalizations we will encounter below, we would
like to give a physical argument for why this index is so
closely related to the index of free fields. One hint comes
from the study in [17] (building on [18]) that shows the
(A1, D4) theory plays a role in a particular S-duality that
is reminiscent of the role played by free hypermultiplets
in the S-duality of [19]. Moreover, by thinking of (4)
as a manifestation of a weak-strong “duality” [58] we,
in collaboration with T. Nishinaka, speculated that this
connection might be related to modularity [17].

As we will see below, this intuition is morally correct,
although the free fields that are more closely related to
modularity are actually non-unitary (wrong statistics)
rather than the unitary fields appearing on the RHS of
(4). A strong indication that this idea is correct comes
from noting that (3) satisfies the modular differential
equation [20](
D(2)
q − 40E4

)
I

(A1,D4)
S =

(
D(2)
q − 40E4

)
χ
ŝu(3)− 3

2
0 = 0 ,

(5)

where D
(2)
q is a modular differential operator, and E4

is an Eisenstein series (we refer the interested reader

to [20] for more details). The characters of ŝo(8)1 sat-
isfy the same modular differential equation [21]. Since

ŝo(8)1 is unitary and has a representation in terms of
eight free Majorana fermions, it is reasonable to imagine
that the 4D ancestor of this theory is a non-unitary free
theory (recall that, as discussed above, c4d = − 1

12c2d, so
c4d < 0 in this case). Clearly, these free fields then repro-
duce some of the observables in the Schur sector of the
(A1, D4) SCFT.

I. MODULAR S-TRANSFORMATIONS AND
AN AKM RELATION

In order to understand the modular properties of (3),
it is useful to re-write it as follows

I
(A1,D4)
S = 2−4 θ2(τ)4

η(τ)4
, (6)

where q = e2πiτ , η(τ) is the Dedekind eta function, and
θi(τ) are the Jacobi theta functions (see the supplemen-

tary material). Under a modular S-transformation, we
have

θ2

(
−1

τ

)
=
√
−iτθ4(τ) , η

(
−1

τ

)
=
√
−iτη(τ) . (7)

In particular, we see that applying a modular S-
transformation to (6) yields

S
(
I

(A1,D4)
S

)
= 2−4 θ4(τ)4

η(τ)4
= 2−4q−

1
6 P.E.

(
− 8q

1
2

1− q

)
.

(8)
We immediately recognize the expression on the RHS as

also counting (with a (−1)F weighting) the ŝo(8)1 fields

generated by acting on the ŝo(8)1 vacuum with the h = 1
2

Majorana fermions in the 8v representation, ψI (where
I = 1, · · · , 8) [1] [59] (hence, this theory is related to eight
decoupled Ising models). These fields have the following
singular OPE

ψI(z)ψJ(w) ∼ δIJ

z − w
. (9)

At the level of characters, we have the relation

S
(
χ
ŝu(3)− 3

2
0

)
= −1

2

(
χ
ŝu(3)− 3

2
0 + χ

ŝu(3)− 3
2

− 1
2 ,1

+ χ
ŝu(3)− 3

2

− 1
2 ,2

− χ
ŝu(3)− 3

2

− 1
2 ,3

)
= 2−4

(
χ
ŝo(8)1
0 − χŝo(8)1

1
2 ,v

)
, (10)

where, in the second equality, we have used our obser-
vation above and, in the first equality, we have used the
modular S matrix acting on the characters of the four

admissible representations of ŝu(3)− 3
2

S
ŝu(3)− 3

2

= −1

2

 1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

 . (11)

There are four admissible representations of ŝu(3)− 3
2

(the

vacuum and three h = − 1
2 representations) and four rep-

resentations of ŝo(8)1 (the vacuum and three h = 1
2 rep-

resentations), but in the latter case all four corresponding
unrefined characters are finite, while in the former case
only two linear combinations of unrefined characters are
finite (the vacuum and the linear combination of h = − 1

2

characters, χ
′ ̂su(3)− 3

2

− 1
2

, appearing in (10)). However, all

the unrefined h = 1
2 characters of ŝo(8)1 are equal (we

denote the corresponding character χ
′ŝo(8)1
1
2

), and we find

the bijection of finite unrefined characters [60]

χ
ŝu(3)− 3

2
0 ∼ χ′ŝo(8)1

1
2

, χ
′ ̂su(3)− 3

2

− 1
2

∼ χŝo(8)1
0 , (12)

where the relations hold up to overall constants (see [22]
for character relations between other pairs of unitary and
non-unitary theories).
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II. A 4D INTERPRETATION

We would like to give a 4D interpretation for the uni-

tary ŝo(8)1 theory described in the previous section by
using the relation discovered in [2] (although, apriori, it
is not clear such an interpretation must exist). As dis-
cussed above, this theory should be non-unitary since

c
ŝo(8)1

= 4 ⇒ c4d = −1

3
. (13)

Moreover, from the results in (2) and (8), we see that an
obvious candidate for our 4D theory is a collection of 8
half-hypermultiplets with wrong statistics (i.e., a “ghost”
T2 theory) [61]. Indeed, the a and c anomalies for such a
theory are just minus the corresponding anomalies for the
T2 theory since the wrong statistics leads to an insertion
of a factor of −1 in any quantum loop. In particular, we
have

c4d = −8×chalf−hyper = −1

3
, a4d = −8×ahalf−hyper = −1

6
.

(14)
Note that a4d − c4d is then consistent with the q → 1
“Cardy” limit of the index [6, 20, 23, 24], and the full
(unrefined) Schur index is precisely what we want (see
the previous footnote).

To get a map of operators, the correspondence in [2]
requires us to take 4D Schur operators, fix them in a
plane (with coordinates z, z̄), and then twist the global z̄
conformal transformations with su(2)R. Working in the
cohomology of a particular supercharge, Q, then gives
a map to 2D chiral algebra operators. This procedure is
naturally implemented in the operator product expansion
(OPE).

For the case at hand, we can build all Schur opera-
tors as arbitrary (non-vanishing) products of the su(2)R
highest weight anti-commuting scalars of the non-unitary
free hypermultiplets, qI , and their derivatives. These
fields are organized as qi = Qi and qi+4 = Q̃i (with
i = 1, · · · , 4) and live in the following su(2)R doublets(

Qi

Q̃i†

)
,

(
Q̃i

−Qi†
)
. (15)

We can write a simple Lagrangian for this non-unitary
theory (note that the spinors in the hypermultiplets com-
mute while the scalars anti-commute)

L = −
∫
d4θ

(
qI†ΩIJq

J
)

=

∫
d4θ

(
Q̃i†δijQ

j −Qi†δijQ̃j
)
,

(16)
where we have defined

Ω ≡
(

04×4 14×4

−14×4 04×4

)
. (17)

Related Lagrangians have been considered in different
contexts in [25, 26].

The non-vanishing singular OPEs are then (in an ap-
propriate normalization to eliminate a common overall
constant factor)

Q̃i†(x)Qj(0) ∼ δij

x2
, Qi†(x)Q̃j(0) ∼ −δ

ij

x2
. (18)

According to the discussion in [2], we should twist the
hypermultiplets with vectors ui = (1, z̄) having su(2)R
indices i = 1, 2. In particular, we have twisted fields

Q′i(z, z̄) = Qi(z, z̄) + z̄Q̃i†(z, z̄) ,

Q̃′i(z, z̄) = Q̃i(z, z̄)− z̄Qi†(z, z̄) , (19)

with the following singular OPEs

Q′i(z, z̄)Q′j(0, 0) ∼ δij

z
, Q̃′i(z, z̄)Q̃′j(0, 0) ∼ δij

z
.

(20)
Passing to Q cohomology gives the same OPEs as above
(the identity operator is Q-closed but clearly cannot be
Q-exact). In particular, we reproduce the free Majorana
OPEs of (9).

The theory also has conserved currents sitting as level-
two descendants in multiplets with Schur operators of the
form

µij = iQiQj , µ̃ij = iQ̃iQ̃j , µ′ij = iQiQ̃j , (21)

where i, j = 1, · · · , 4. More covariantly, we can define
these operators to form part of a 28-dimensional adjoint
representation with µIJ = iqIqJ and I, J = 1, · · · , 8 (this
operator is anti-symmetric in I and J). The charges aris-
ing from real currents sitting as descendants of linear
combinations of the above satisfy an so∗(8) ' so(6, 2)
Lie algebra, which is a real form of so(8,C). On the
other hand, the operators in (21) are related to currents
that are not real. However, these currents give rise to
charges that act in accordance with the reality condition
in two dimensions

µij : δQi ∼ −Qj , δQj ∼ Qi , δQ̃i† ∼ −Q̃j† , δQ̃j† ∼ Q̃i† ,
µ̃ij : δQ̃i ∼ Q̃j , δQ̃j ∼ −Q̃i , δQi† ∼ Qj† , δQj† ∼ −Qi† ,
µ′ij : δQ̃j ∼ Qi , δQi ∼ −Q̃j , δQ̃i† ∼ Qj† , δQj† ∼ −Q̃i† .

Relabeling the moment maps with an adjoint index of
so(8), we obtain the following twisted OPE

µA(z, z̄)µB(0) ∼ δAB

z2
+ ifABC

µC(0, 0)

z
+{Q, · · · } , (22)

where fABC are the structure constants of so(8). Drop-

ping the Q-exact terms then leads to the standard ŝo(8)1
current-current OPE. As a result, we see that a general-
ization of the procedure of [2] applied to our non-unitary
4D theory yields the desired unitary theory in 2D.
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III. INFINITELY MANY GENERALIZATIONS

One can imagine generalizing our discussion above in
many directions. Here we choose the simplest direc-
tion: the (A1, D4) theory is part of an infinite family
of SCFTs called the D2[SU(2N + 1)] theories [27, 28]
(where D2[SU(3)] ≡ (A1, D4)). The corresponding chi-
ral algebras were found in [11] and were argued to be

̂su(2N + 1)− 2N+1
2

. The generalization of (3) is

I
D2[SU(2N+1)]
S (q) = q

N(N+1)
6 P.E.

(
4N(N + 1)

q

1− q2

)
,

(23)

and one finds that, upon taking q → q
1
2 , the in-

dex (23) reduces to the index of 4N(N + 1) free half-
hypermultiplets.

For N > 1, the modular properties of the theory are
somewhat different. For example, the modular differen-
tial equation in (5) for the N = 1 case becomes third
order for all N > 1. However, we can proceed as before
and write

I
D2[SU(2N+1)]
S = 2−2N(N+1) θ2(τ)2N(N+1)

η(τ)2N(N+1)
. (24)

Then, performing a modular S-transformation yields

S
(
I
D2[SU(2N+1)]
S

)
= 2−2N(N+1) θ4(τ)2N(N+1)

η(τ)2N(N+1)

= 2−2N(N+1)q−
N(N+1)

12 P.E.

(
−4N(N + 1)q

1
2

1− q

)
. (25)

This result generalizes the N = 1 result discussed above,
since we recognize (25) as also counting (with a (−1)F

weighting) the ̂so(4N(N + 1))1 fields generated by act-

ing on the ̂so(4N(N + 1))1 vacuum with the h = 1
2 Ma-

jorana fermion in the vector representation, ψI (its sin-
gular self-OPE is the obvious generalization of (9) with
I = 1, · · · , 4N(N + 1)).

The ̂so(4N(N + 1))1 algebra has four representations
for all N : the vacuum, the h = 1/2 representation dis-
cussed above, and two h = N(N + 1)/4 representations.
The latter two representations have identitcal unrefined

characters which we denote as χ
′ ̂so(4N(N+1))1
N(N+1)

4

(for N = 1,

the last three unrefined characters are identical). On the

other hand, the ̂su(2N + 1)− 2N+1
2

algebra has three finite

(linear combinations of) unrefined characters that trans-
form into each other under modular transformations: one
starting with h = 0 (the vacuum), one starting with

h = 2−N(N+1)
4 , and one starting with h = −N(N+1)

4 .
It is straightforward to check that

χ
̂su(2N+1)

− 2N+1
2

0 ∼ χ
′ ̂so(4N(N+1))1
N(N+1)

4

,

χ
′ ̂su(2N+1)

− 2N+1
2

2−N(N+1)
4

∼ χ
̂so(4N(N+1))1

1
2

,

χ
′ ̂su(2N+1)

− 2N+1
2

−N(N+1)
4

∼ χ
̂so(4N(N+1))1

0 . (26)

These results are simple consequences of the fact that our
two chiral algebras satisfy the same modular differential
equation for all N .

The 4D generalization of the N = 1 case is straight-
forward. For example, we have that

c ̂so(4N(N+1))1
= 2N(N + 1)⇒ c4d = −N(N + 1)

6
. (27)

This anomaly is precisely what we expect for 4N(N +
1) half-hypers with wrong statistics (i.e., N(N + 1)/2
“ghost” T2 theories). Similarly, a4d and the supercon-
formal index are compatible with this interpretation. In
particular, our 4D Lagrangian is just the obvious gener-
alization of (16)

L = −
∫
d4θ

(
qI†ΩIJq

J
)

=

∫
d4θ

(
Q̃i†δijQ

j −Qi†δijQ̃j
)
,

(28)
where now I = 1, · · · , 4N(N + 1). Note that the real fla-
vor currents in 4D generate an so∗(4N(N + 1)) algebra,
but the N(2N − 1) Schur operators that are the gener-

alizations of (21) give rise to the ̂so(4N(N + 1))1 AKM
algebra in 2D [62].

IV. DISCUSSION AND CONCLUSIONS

We have seen that the simple non-unitary 4D La-
grangian (28) allows us (through manipulations in two
dimensions) to exactly compute the unrefined Schur in-
dices for the D2[SU(2N + 1)] SCFTs. Clearly, we are
also able to compute other (linear combinations of) char-
acters of the associated chiral algebras via the, to our
knowledge, novel mathematical identities in (26). Based
on known relations between chiral algebras in 2D and
3D QFT, it is reasonable to expect that aspects of the
physics of the non-vacuum modules of the chiral algebras
are captured by (worldvolumes of) 4D objects that have
non-trivial braiding statistics as in [29]. Indeed, there is
considerable evidence that this intuition holds [30, 31],
and we hope to return to a detailed discussion of sur-
face and line defects in our setup soon. In particular,
the Lagrangian in (28) seems to compute the Schur in-
dices of the D2[SU(2N + 1)] SCFTs in the presence of
certain surface defects [63], while we presumably need to
introduce defects in our non-unitary theory in order to
compute—directly in 4D—the other Schur indices of the
D2[SU(2N + 1)] theories.

As another future direction, we may hope to find infor-
mation about new observables that are closely related to
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the chiral algebra as in [32–35]. Moreover, since we have
a Lagrangian description of certain Schur observables, it
is tempting to see what (if anything) the corresponding
correlation functions / OPE coefficients compute in the
original strongly interacting theory. Even more simply,
it would be interesting to understand if it is possible to
map flavor symmetries between our two sets of theories.

Moreover, we expect that our procedure of starting
with a unitary 4D theory, mapping to 2D using [2], con-
jugating / permuting the characters, reinterpreting the
characters as objects in a unitary 2D theory, and then
lifting to a non-unitary theory in 4D will generalize (with
certain modifications) to many (and perhaps all) N = 2
theories. While we know that the non-unitary 4D the-
ories will not always have a completely free description
in terms of hypermultiplets, we expect gauge fields and
perhaps the constructions in [36] to play a role (possibly
when the original 4D theory has a conformal manifold
[37–41]). Indeed, we expect non-unitary Lagrangians to
be a more diverse and flexible group of objects than their
unitary counterparts, and so we expect them to describe
“more” theories.

Still, we should point out that our non-unitary 4D the-
ories described above have an avatar of 2D unitarity: a
modified notion of reflection positivity exists in our the-
ories. Related 2D constructions have played a role in re-
cent work on non-unitary extensions of Zamolodchikov’s
c-theorem [42]. Such structures, involving “hidden” uni-
tarity, may also shed more light on the question of which
non-unitary theories in 2D are able to encode the unitary
4D physics in the original construction of [2]. We hope
to return to this question soon.

It would also be interesting to understand any relation
between our construction and the Lagrangians appearing
in [43–50]. While our Lagrangians govern only a partic-
ular sector of the theories we study (and perhaps only
a particular set of observables in such a sector), they
are considerably simpler than the “full” Lagrangians in
these latter works [64]. Also, our approach is different:
we sacrifice unitarity instead of the N = 2 superconfor-
mal algebra. More generally, it would be interesting to
find connections between our discussion and other effec-
tive Lagrangian descriptions of sectors of QFTs (e.g., as
in [51]).

Finally, we hope to understand if our work is related
in any way to supersymmetric localization (see [31] for
some interesting work in this direction from a chiral alge-
bra perspective), to understand if our work is related to
the free fermion description of the Schur index for quiver
gauge theories [52], to see how our procedure might work
in 6D, to understand if the theories we have studied here
contain some sectors that play a role in the dS/CFT cor-
respondence, and to understand the role our Lagrangians
might play in the physics of 3D SCFTs as in [48, 49, 53].
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Supplementary Material

In this appendix, we briefly remind the reader of vari-
ous formulae and constructions used in the main text:

• Schur Operators: For a more comprehensive re-
view, we refer the reader to [2, 3]. Here we sim-
ply recall that a Schur operator, O, sits in a short
multiplet of the 4D N = 2 superconformal algebra
(SCA) and is annihilated by the following Poincaré
supercharges{

Q̃2−̇,O
]

=
{
Q1
−,O

]
= 0 , (29)

where the numerical indices are spin-half indices of
the su(2)R ⊂ u(1)R × su(2)R part of the SCA and
the sign indices are for the Lorentz group (note that
we have dropped su(2)R and Lorentz indices from
O for simplicity).

The constraints in (??) guarantee that the Schur
operators have scaling dimensions and u(1)R
charges that are fixed in terms of the su(2)R and
Lorentz weights. Moreover, these operators con-
tribute to the Schur limit of the 4D superconformal
index

Is(q, xi) = q
c4d
2 TrH(−1)F e−β∆qE−R

∏
i

xfii . (30)

In this expression, the trace is over the Hilbert

space of local operators, ∆ =

{
Q̃2−̇,

(
Q̃2−̇

)†}
, fi

are flavor charges, xi are corresponding flavor fu-
gacities, and the remaining quantities have been
described in the main text. In this note, we have
simply set xi = 1 so that the flavor dependence
drops out, and we obtain the unrefined Schur index.
Moreover, by the usual arguments of index theory,

only states annihilated by Q̃2−̇ and
(
Q̃2−̇

)†
con-

tribute to the index (in particular, ∆ = 0 for these
operators).
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We will not review the detailed taxonomy of Schur
operators here, but we note that any local theory in
4D has a Schur operator: the su(2)R and Lorentz
highest-weight component of the su(2)R current
(this current sits in the same multiplet with the 4D
stress tensor). Moreover, any theory in 4D with
a local continuous flavor symmetry (in the sense of
having a corresponding Noether current) has an ad-
ditional set of Schur operators: the su(2)R highest
weight components of the corresponding moment
maps. This universality of the Schur sector is one
of the origins of its power.

Finally, we note that under the chiral algebra map-
ping alluded to in the main text and explained fur-
ther in [2], we have the following relation between
4D Schur operators and chiral algebra generators

χ
[
J11

++̇

]
= − 1

2π2
T , χ[µI ] =

1

2
√

2π
JI ,

χ
[
∂++̇

]
= ∂z ≡ ∂ , (31)

where J11
++̇

is the component of the su(2)R current

described above, T is the 2D holomorphic stress
tensor, µI is a moment map of the type we have
discussed in the previous paragraph, JI is an AKM
current, ∂++̇ is a derivative in the z direction of the
chiral algebra plane, and ∂ is the 2D holomorphic
derivative.

• Modular Quantities: In the main text we have used
several quantities that have nice modular proper-
ties. These include the Dedekind η function

η(τ) = q
1
24

∞∏
i=1

(1− qi) , (32)

where q = e2πiτ , and the Jacobi theta functions

θ1(z, τ) =

∞∑
n=−∞

(−1)n−
1
2 q

1
2 (n+ 1

2 )2e
1
2 (2n+1)iz ,

θ2(z, τ) =

∞∑
n=−∞

q
1
2 (n+ 1

2 )2e
1
2 (2n+1)iz ,

θ3(z, τ) =

∞∑
n=−∞

q
n2

2 e2niz ,

θ4(z, τ) =

∞∑
n=−∞

(−1)nq
n2

2 e2niz . (33)

In the main text, we have set z = 0 and defined
θi(0, τ) ≡ θi(τ).

• ŝo(2n)1 Characters: The characters of ŝo(2n)1 are
given by [1]:

χ
ŝo(2n)1
0 =

1

2

(
θn3 + θn4
ηn

)
,

χ
ŝo(2n)1
1
2

=
1

2

(
θn3 − θn4
ηn

)
,

χ
ŝo(2n)1
N(N+1)

4 ,1
= χ

ŝo(2n)1
N(N+1)

4 ,2
= χ

′ŝo(2n)1
N(N+1)

4

=
1

2

θn2
ηn

. (34)

As mentioned in the main text, when n = 4 the
last three characters are all equal to each other.
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