The dynamics of very-high Mach number shocks in space plasmas

Torbjörn Sundberg
School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, United Kingdom

David Burgess
School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, United Kingdom

Manfred Scholer
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

Adam Masters
The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.

Ali H. Sulaiman
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA.
torbjorn.sundberg@gmail.com

ABSTRACT

Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks are often in the high or very-high Mach number regime, and the structure of such shocks is crucial to the understanding of particle acceleration and plasma heating, as well of interest in its own right. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High resolution, multi-spacecraft data is available for the terrestrial bow shock, but here the very-high Mach number regime is only extremely rarely attained. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod time scale, the dominant wave growth in the foot takes place at sub-proton
length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depend strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer an insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

1. Introduction

Collisionless shocks are important in a wide range of astrophysical environments: at planetary magnetospheres in the solar system (e.g., Russell 1985), at the outer boundary of the heliosphere (e.g., Jokipii 2013), and in a variety of astrophysical contexts such as around supernova remnants (e.g., Helder et al. 2012; Bell 2013). In-situ observations have long helped to shape our understanding of the physics acting in these shocks. These investigations have typically been focused on moderate to high Alfvén Mach numbers ($M_A \sim 3 - 15$, as found at the terrestrial bow shock) whereas our knowledge and understanding of the very-high Mach number shock regime (e.g., $M_A > 25$) has mostly been restricted to numerical simulations, as these shocks are very rare in our near-space environment.

Collisionless shocks are characterised by a series of parameters, such as the Mach number (whether Alfvénic, fast or sonic), which is the ratio between the shock velocity in the upstream medium and the relevant wave velocity; the plasma β, which is the ratio between thermal and magnetic pressures; and the magnetic geometry of the shock, given as the angle between the upstream magnetic field and the shock normal, θ_{Bn}. In this context, quasi-perpendicular refers to a shock geometry with $\theta_{Bn} \geq 45^\circ$, whereas lower θ_{Bn} geometries are referred to as quasi-parallel shocks. Due to a fundamental difference in the trajectories of ion and electrons at the shock transition, these two shock configurations display very different shock dynamics, driven by ion- and electron-scale processes at the shock interface (see for example Burgess & Scholer (2015) for details).

At quasi-perpendicular shocks, the average shock structure is dominated by a foot of reflected ions, which is upstream of the shock ramp where the major thermalization and deceleration occurs. Non-stationarity in the form of rippling of the surface or steepened whistler waves (Moullard et al. 2006; Lobzin et al. 2007) is an intrinsic feature of the shock, but this is generally manifest as minor perturbations on top of an otherwise stationary shock ramp. Simulations have predicted that if the fraction of ions reflected by the shock front becomes sufficiently high, the quasi-perpendicular shock can become periodically reforming
on time scales of the ion gyroperiod. Various theories have been suggested for such non-
stationarity, including self-reformation where a new shock ramp grows at the edge of the
foot (Biskamp & Welter 1972a; Lembege & Dawson 1987), whistler induced reformation
(Biskamp & Welter 1972b; Scholer & Burgess 2007), kinetic instabilities such as the Bune-
man and modified two-stream instability (e.g., Cargill & Papadopoulos 1988; Matsukiyo &
Scholer 2003, 2006b; Scholer et al. 2003; Scholer & Burgess 2007; Matsumoto et al. 2013),
and gradient catastrophe of non-linear whistler waves due to steepening (Krasnoselskikh
et al. 2002). However, it has not been until recently that such non-stationarity has been
confirmed with in-situ spacecraft observations. In a survey of Cassini shock crossings at
Saturn, Sulaiman et al. (2015) found evidence of a periodically reforming shock, pulsating at
a period near 0.3 of the ion gyroperiod in the unperturbed upstream medium. This period
agrees with the time taken for a specularly reflected proton to gyrate across the foot and
return to the main shock ramp. Sulaiman et al. (2015) also report that these periodic non-
stationary shocks are primarily found in the very-high Mach number regime, which gives
evidence for a relation between Mach number and reformation. The main processes behind
the non-stationary behavior of these very-high Mach number shocks, such as the details of
the ion- and electron scale processes acting within the shock transition, remain elusive.

2. Observations

Typically, Earth’s bow shock has a shock strength in terms of Alfvén Mach number
$M_A \sim 5 - 10$, however, in very rare cases, it can attain a very-high Mach number regime
with $M_A \geq 25$, in the range more often experienced at the outer planets, and approaching
that important for supernova remnant shocks. For these periods we can take advantage of
the high-quality multi-spacecraft measurements available at Earth to investigate the detailed
microphysics of the shock. The events in this study were selected from a data set of very-high
Alfvén Mach number intervals based on the five-minute resolution OMNI solar wind data
set in combination with a survey of shock crossings and shock dynamics using data from
the four-spacecraft Cluster mission. At Earth, conditions with Mach numbers $M_A > 25$ are
observed approximately 1% of the time, although most such intervals are short lived and do
not provide the stable conditions required to observe the ion-scale processes associated with
the shock. In over 15 years of Cluster operations, we have found three events in the very-high
Mach number regime that show clear periodic non-stationary behavior. All three events are
associated with both unusually high solar wind density and unusually weak magnetic field,
and they all remain at a high Mach number level over several hours. The main parameters
for these shocks are given in Table 1.
Figure 1 gives an overview of the magnetic field (B), velocity (v), density (N) and temperature (T) of a very-high Mach number shock observed by Cluster 1 on 19 Feb 2009. The magnetic field data in this study are provided by the Cluster Fluxgate Magnetometer (FGM) (Balogh et al. 2001), the electron spectra from the Plasma Electron And Current Experiment (PEACE) (Johnstone et al. 1997), and the ion velocity space distributions and moments from the Cluster Hot Ion Analyser (HIA) of the Cluster Ion Spectrometry (CIS) experiment (Reme et al. 1997). The ion moments (density, temperature, and bulk velocity) are calculated on board the spacecraft over the 4 s spacecraft spin period, and 3-D distributions are resolved in the 5 eV–32 keV range with 22.5° resolution in both azimuth and elevation. The xyz components are given in a geocentric solar ecliptic (GSE) coordinate system, with x directed toward the Sun, y toward dusk, and z toward the ecliptic north pole. Parallel and perpendicular quantities relate to the background magnetic field. Due to the relative motion of spacecraft and shock, the transition was observed from downstream to upstream, as marked. The foot of reflected ions is seen for more than 20 min following the shock crossing at 08:56 UT, and the ion properties change gradually as the spacecraft passes through the foot and into the pristine solar wind. The inferred stability of the shock motion and the slow motion of the spacecraft relative to the shock (from the usual scaling of the foot length with M_A) are responsible for the long-lasting traverse of the foot. There are some indications of minor movement in the overall shock position, but on the whole the foot transition in the ion moments is monotonic. In this case, therefore, the slow traverse of the foot implies that the intrinsic time variability can be observed, together with any changes due to convection/propagation. The overall time series is thus a combination of spatial profile at large scales, and temporal variability together with convection/propagation effects at smaller scales.

The slow decrease in v_x and the substantial increase in v_y and T_\perp over time indicate a strong component of ions reflected at the shock, which changes the center of mass and acts to slow down the incoming solar wind. A 16 s modulation period is evident in both the ion and magnetic field data, which is equivalent to 0.25 of the upstream proton gyroperiod. This period of modulation is consistent with the time taken for a specularly reflected ion to traverse the foot and return to the shock transition, in agreement with both predictions and previous observations (Schwartz et al. 1983; Sulaiman et al. 2015). In the ion data this modulation is strongest at the upstream edge of the foot, where there is an almost binary pulsing of the reflected component, seen clearly in T_\perp and v_y. Closer to the shock, the periodicity is not as evident, as the contribution from the background level of reflected ions becomes dominant over the solar wind (as measured). This is also evidence that the shock is not undergoing a full reformation where the reflection shuts off and the shock redevelops.

The same periodicity is seen in the magnetic field near the shock (∼ 01:56-02:03 UTC).
The magnetic pulsations are initiated as small perturbations on the background magnetic field ($\Delta B/B \leq 1$), caused by the slowing down of the incident upstream flow by the reflected ions. However, as the particle distribution becomes unstable closer to the shock, bursty pulses are formed by the growth of high-frequency waves with a characteristic frequency of 1-2 Hz. The field amplitude increase within these pulses is almost entirely due to the short period waves, so they do not indicate encounters with the main shock transition. An example from 24 Mar 2013 is shown in Figure 2. In this event, the close separation of C3 and C4 (36 km in the x-direction) allows the wave velocity to be estimated. The calculation is based on the time delay between the two spacecraft, determined by a correlation analysis, and an assumption on the wave propagation direction and the orientation of the wave front, as these cannot be fully determined with only two spacecraft. However, it is reasonable to believe that the wave propagation direction is related to the solar wind velocity, with the waves being swept back across the spacecraft with the bulk flow, or that they are roughly aligned with the shock normal in the case of outward propagating waves (or near-phase standing waves). As C3, which is farthest from the shock, always observes the wave signatures ahead of C4, the first option is the most likely interpretation and the wave velocity can thus be estimated from the x-projection of the separation vector and the time delay between the observations.

Due to the short temporal separation between the two spacecraft, the velocity resolution is restricted to $\Delta v \approx 100$ km/s, if the time shift is kept to whole samples. However, as the two wave forms are remarkably similar, we can use a sub-sampling by linear interpolation to allow more precise definitions of the time delay. This improves the velocity resolution, and it thus helps provide a better estimate of actual time delay. This analysis results in a propagation velocity of ~ 200 km/s in the -x direction, which is close to the background ion flow speed. This provides evidence that the waves are moving toward the shock roughly with the bulk flow. For a characteristic frequency of 2 Hz, the associated flow-aligned wavelength is ~ 100 km, to be compared to the 1400 km size of the foot. This means that the wavelength of the bursty pulsations are at or below the thermal ion gyroradius and the ion inertial length of the upstream plasma, thus at sub-proton scales. Examination of data from the Cluster search coil magnetometer STAFF (Cornilleau-Wehrlin et al. 2003) shows that the frequency spectrum of these waves extends far above the proton gyrofrequency to the regime where electron dynamics is important. A minimum variance analysis of the FGM magnetic field data yields a ratio of maximum to intermediate eigenvalue of ~ 5, indicating that the perturbations are nearly linearly polarized and perpendicular to the background magnetic field.

Two 2-D planar cuts through the ion velocity-space distribution function are shown in Figure 3, one within and one outside of a pulse. These velocity cuts are derived from
the 3-D data in a manner identical to that described by Sundberg et al. (2016): The angle and energy dependent sampling points are interpolated onto a Cartesian grid using nearest neighbor interpolation. This interpolation scheme conserves the bin distribution, and the interpolated data are then rotated from the spacecraft frame into the appropriate reference frame, which allows 2-D cutting planes to be taken at arbitrary velocities and orientations. Qualitatively, the two distributions shown are similar, showing characteristics that are typical for a broad population of ions reflected from and returning to the shock, in agreement with the trajectory expected from gyration in the upstream magnetic field starting from the point of initial reflection. Very near the shock transition, the ratio between the reflected and the upstream solar wind ion flux varies between 0.15–0.4.

Figure 4 shows the electron particle flux over the same period at eight different sampling points, together with reference distributions of the upstream and downstream spectra. The electron flux densities are typically at magnetosheath-like levels in the higher energy span, and at solar-wind-like levels in the lower energy span, although with the low-energy distribution shifted toward the right, consistent with effects of the shock potential (Lefebvre et al. 2007). All spectra vary within the limits of the upstream and downstream references, with no indications that the pulsations lead to any unusual electron energization. The electron heating contributes less than half the total heating at the shock, which agrees with previous statistical studies (Schwartz et al. 1988; Masters et al. 2011).

3. Discussion and Conclusions

The results presented here show that the structure of the very-high Mach number shock is modulated periodically at a fraction of the upstream ion gyroperiod. The modulation consists of bursty magnetic pulsations with waves at sub-proton scales which are convected towards the shock, growing in amplitude as they approach the shock transition. The waves are linearly polarized and appear to be close to non-propagating in the plasma flow frame. In the reflected ions the modulation is seen most strongly at the upstream edge of the foot, corresponding to ions which have been specularly reflected. However, ion reflection is never fully suppressed, and the shock does not undergo reformation, as usually understood.

This behavior is in conflict with previous theories of shock non-stationarity. The time evolution, which shows a causality in the modulation of the reflected ion density, the slowing down of solar wind, and the triggering of sub-proton scale instabilities, shows that the wave growth is initiated in the foot. This contradicts both whistler-induced (Biskamp & Welter 1972b; Scholer & Burgess 2007) and gradient catastrophe models (Krasnoselskikh et al. 2002), which require waves propagating away from the shock transition. The wave properties are
also inconsistent with the Buneman and the modified two-stream instabilities, with strongly linear waves, and no clear signs of electron bulk heating. In addition, the plasma conditions are Buneman stable, and as the Mach number of the shock exceeds that of the nonlinear critical whistler by an order of magnitude, it is highly unlikely that nonlinear whistlers can propagate upstream from the shock. For these reasons, the modified two-stream instability is not expected to develop as it is destabilized only when the reflected ion beam velocity is less than the maximum phase velocity of the whistler waves in the electron rest frame.

The wave properties are instead consistent with the ion Weibel instability, a streaming instability that develops between unmagnetized ions and magnetized electrons due to the cross-field current carried by the reflected ions as they gyrate in the foot. This instability has been associated with magnetic field generation in relativistic shocks (Nishikawa et al. 2005; Spitkovsky 2007), but numerical simulations also show that it can produce non-propagating, linearly polarized magnetic field waves in the foot of quasi-perpendicular shocks (Matsukiyo & Scholer 2006a; Burgess et al. 2016). The observations shown here indicate that a coupling between the growth of the ion Weibel instability and the reflection of ions can be a source of large-scale non-stationarities at very-high Mach number shocks. Whistler waves are likely to play an important role only within the main shock transition, where the bulk velocity slows.

These results are not in direct contradiction to previous simulations, as the main instabilities influencing the shock dynamics are dependent on the shock parameters, and the current proposed mechanism may primarily be important for high ion β shocks. Nevertheless, as the simulations are always subject to restrictions on the physical parameters, these findings show the importance of observational validation. Compromises on the mass ratio between the ions and electrons and the ratio between the plasma frequency and the gyrofrequency will affect the physics captured within the simulation environment (Krasnoselskiikh et al. 2013), such as for example instability growth rates. A restriction on the spatial dimensions in the simulation can likewise have an important effect. In order to adequately capture the influence of the ion Weibel instability as a minimum a 2-D simulation with sub-ion scale resolution is required (Burgess et al. 2016). This parameter range is in between the domains typically targeted by hybrid (particle ions with fluid electrons) and full-particle simulations. For these reasons, the restriction imposed by the 1-D setup used for example in the models by Scholer et al. (2003) and Matsukiyo & Scholer (2003) may thus exclude the ion Weibel instability in favor of the modified two-stream and Buneman instabilities. Hybrid simulations in 1-D at high Mach number ($M_A \sim 23$) show some, but not perfect, agreement with non-stationarity observed at the Uranian bow shock (Tiu et al. 2011). However, the maximum field compression seen in the simulations depends directly on the chosen resistivity. This, together with the results shown here, imply that any use of hybrid simulation, particularly one-dimensional simulation, for the very-high Mach number regime requires careful
validation.

Finally, consistent with earlier observations, the observed shocks have no signs of strong electron acceleration, which is likely explained by the relatively modest electron sonic Mach number of 8. When considering particle acceleration at astrophysical shocks, it may thus be crucial to select the appropriate Mach number to characterize the shock strength.

Acknowledgments

This work was supported by the UK Science and Technology Facilities Council (STFC) grants ST/J001546/1 and ST/M001202/1. The research leading to the results presented has received funding from the European Commission’s Seventh Framework Programme FP7 under the grant agreement SHOCK (project number 284515). All instrument data are publicly available at the Cluster Science Archive (http://www.cosmos.esa.int/web/csa), and thank the Cluster FGM, CIS, and PEACE instrument teams and the Cluster Science Archive for providing the data used in this study. We also thank NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service (http://spdf.gsfc.nasa.gov) for providing solar wind data.

REFERENCES

Bell, A. R. 2013, Astropart. Phys., 43, 56
Biskamp, D., & Welter, H. 1972a, Nucl. Fusion, 12, 663
—. 1972b, J. Geophys. Res., 77, 6052
Burgess, D., & Scholer, M. 2015, Collisionless shocks in space plasmas: structure and accelerated particles (Cambridge University Press)

—. 2006a, J. Geophys. Res., 111

—. 2006b, Adv. Space Res., 38, 57

Russell, C. T. 1985, Planetary Bow Shocks (American Geophysical Union), 109–130

Scholer, M., & Burgess, D. 2007, Phys. Plasmas, 14, 072103

Table 1: Shock parameters of the studied events.a

<table>
<thead>
<tr>
<th>Date</th>
<th>V_{sw}</th>
<th>B_{sw}</th>
<th>n_{sw}</th>
<th>β</th>
<th>M_A</th>
<th>M_S</th>
<th>θ_{Bn}</th>
<th>θ_{Vn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Mar 2006</td>
<td>360 km/s</td>
<td>2.5 nT</td>
<td>14.8 cm$^{-3}$</td>
<td>11.9</td>
<td>24</td>
<td>8.3</td>
<td>45°</td>
<td>12°</td>
</tr>
<tr>
<td>19 Feb 2009</td>
<td>310 km/s</td>
<td>1 nT</td>
<td>8.6 cm$^{-3}$</td>
<td>33.7</td>
<td>39</td>
<td>7.9</td>
<td>85°</td>
<td>20°</td>
</tr>
<tr>
<td>24 Mar 2013</td>
<td>430 km/s</td>
<td>1.4 nT</td>
<td>10.4 cm$^{-3}$</td>
<td>22.5</td>
<td>41</td>
<td>11.1</td>
<td>45°</td>
<td>25°</td>
</tr>
</tbody>
</table>

a For each event, the date, solar wind velocity, magnetic field, density, plasma β, and Alfvénic and sonic Mach numbers are shown, along with the angle between the shock normal and the upstream magnetic field (θ_{Bn}) and upstream velocity (θ_{Vn}).
Fig. 1.— Overview of the foot of a high Mach-number shock crossing, observed on 19 Feb 2009. The first three panels show the magnetic field magnitude, the number density, and the two quantities overlaid on a reduced scale to highlight low-level variations. The fourth panel shows the x (blue), y (green) and z (red) components of the velocity, and the fifth panel the parallel (red) and perpendicular (blue) ion temperatures.
Fig. 2.— Magnetic field waves observed in the shock foot on 24 March 2013 by C3 (green) and C4 (blue). The two data sets have been offset by 30 nT to facilitate viewing, and the zero base-lines are indicated by the dotted lines. The top four panels show the maximum (B_1), intermediate (B_2), minimum (B_3) variance components, and the magnetic field magnitude. The bottom panel shows the x-component of the ion velocity, with the phase velocity estimate from C3 and C4 marked by the red circles. The dotted lines in the bottom panel indicate the boundaries of the correlation periods used for each of the velocity estimates.
Fig. 3.— The ion velocity space distribution near the shock transition. The ion velocity is shown for two 4-s sampling intervals, one within and one outside of a magnetic pulse, marked by (A) and (B) in the top panel. The figure uses a shock-normal coordinate system, where \(v_n \) is aligned with the shock normal, \(v_{\perp 1} \) is perpendicular to the upstream magnetic field, and \(v_{\perp 2} \) completes the right-handed system. For each of these two intervals, two different planar cuts are shown: the \(v_n-v_{\perp 1} \) plane at \(v_{\perp 2} = 0 \) (left column), and the \(v_{\perp 1}-v_{\perp 2} \) plane at \(v_n = -250 \) (right column), which cuts near the center of the solar wind beam. As the shock is nearly perpendicular, the magnetic field is roughly parallel to the negative \(B_{\perp 1} \)-axis, and the \(v_n-v_{\perp 1} \) cuts are representative of the gyrotral component of the velocity. In the left hand panels, the black spot marks the center of mass, and the concentric circles shows sample gyromotion trajectories in the center of mass frame for ion velocities of 300 and 600 km/s. In the magnetic field panel, E1–E8 also marks the time of the electron spectra in Figure 4.
Fig. 4.— The differential electron particle flux is shown for the eight sampling periods (E1–E8) indicated in Figure 3. The red and black dashed lines indicate the average upstream (solar wind) and downstream (magnetosheath) distributions.