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Abstract


The finite block method (FBM) is developed to determine stress intensity factors with orthotropic functionally graded materials under static and dynamic loads in this paper. By employing the Lagrange series, the first order partial differential matrix for one block is derived with arbitrary distribution of nodes. The higher order derivative matrix for two dimensional problems can be constructed directly. For linear elastic fracture mechanics, the COD and J-integral techniques to determine the stress intensity factors are formulated. For the dynamic problems, the Laplace transform method and Durbin's inverse technique are employed. Several examples are given and comparisons have been made with both the finite element method and analytical solutions in order to demonstrate the accuracy and convergence of the finite block method. 

Key words:  finite block method, mapping technique and differential matrix, Lagrange series interpolation, mixed-mode stress intensity factors, functionally graded material, anisotropy.

[image: image351.wmf]i

j

N

+

-

´

)

1

(

1


*Corresponding author: Email: hnhyls@126.com, p.h.wen@qmul.ac.uk; Tel:0044 2078825371
1. Introduction

In 1980s, the concept of functionally graded material was firstly proposed. Because of the variation in composition and structure gradually over volume, it results in corresponding changes in the properties of the material. The first characteristic of FGM is that the variation of material properties in FGM can be pre-determined by controlling the spatial distribution of the composition and the volume fraction of their constituents. Therefore, these materials benefit from the performance of its constituents, such as the high temperature and corrosion resistance of ceramics on one side, and large mechanical strength and toughness of metals on the other side [1-2]. For the realistic problems, such as the transient heat conduction in anisotropic and non-homogeneous media, it becomes a complex task and the mathematical modeling due to their complexity for both analytical and numerical analysis. 
There are two categories in numerical engineering, i.e. the domain-type and boundary-type methods. Domain-type methods including the finite element method (FEM) and the boundary-type methods include boundary element method (BEM) can be found in the references (see Kim and Paulino [3], Aliabadi [4] and Atlur [5]). Although the BEM is one of the most accurate and efficient methods, the fundamental solutions or Green's functions are required. For 2D and 3D dynamic problems in homogeneous and anisotropic solids, the fundamental solutions are very rarer in closed forms. Even in the static cases, there are very few applications to problems in anisotropic materials. In addition, the governing equations for FGM composites contain many coordinates and directions dependent coefficients, see Sladek et al [6]. 
For exponentially graded non-homogeneous, isotropic and linear elastic solids, the fundamental solutions have been derived by Martin et al [7] for three dimensions statics and Chan et al [8] for two dimensions statics with the analytical solutions expressed in some complicated finite integrals. The Fourier-integral representations of the elastodynamic fundamental solutions have been recently derived by Zhang et al. [9,10] for fracture analysis in FGMs. Due to the mathematical complexities for the non-homogeneous nature of FGMs, only a few investigations on the transient dynamic responses of cracked FGMs can be found in journals including the dynamic responses under impact loading investigated by Babaei and Lukasiwicz [11], Li and Zou [12]. In addition, FGMs exhibits isotropic or anisotropic material properties which depend on the processing technique and the engineering requirements. In recent years, meshless formulations are more and more popular due to their high adaptive and low cost to prepare input and output data in numerical analysis [13,14,15]. Sladek et al [16] extended the meshless method of the local Petrov-Galerkin approach to the stress analysis in two-dimensional anisotropic and linear elastic/viscoelastic solids with continuously varying material properties. Jin and Paulino [17] investigated a crack in a viscoelastic strip of FGM under tensile load. The stress intensity factors with mixed-mode are obtained in viscoelastic FGMs with correspondence principle. Kim and Paulino [18] presented a general purpose FEM formulation and implementation for linear FGMs and fracture of FGMs for mixed-mode cracks by using COD and J-integral techniques. 
The finite block method based on the point collocation method was developed firstly to solve the heat conduction problem in the functionally graded media and anisotropic materials by Li and Wen [19]. This method has been applied to nonlinear elasticity including contact and fracture mechanics successfully by Wen et al [20] and Li et al [21,22]. The essential feature of the FBM is that the physical domain is divided into few blocks only and the partial differential matrices are applied for each block which is similar to FEM, i.e. the domain is divided into several blocks with continuity conditions of stress and displacement on the interfaces. It is easy to prove that all stress components are continuous along the interface along the interfaces between two blocks. With the first order derivative matrices, the higher orders of partial differential matrices can be obtained in a straight forward manner. The quadratic type of block is transformed to normalised domain with 8 seeds for 2D and then the partial differential matrices in physical domain are obtained using the differential matrices in the normalised domain. A set of algebraic equation from equilibrium equations in strong form is formulated in term of the nodal values of displacement. For linear elastic fracture mechanics, the static and dynamic stress intensity factors are evaluated by crack opening displacement (COD) and J-integral technique for both isotropic and orthotropic FGMs. To demonstrate the accuracy and efficiency of the FBM, several numerical examples are given with comparisons made with the finite element method and the local Petrov-Galerkin approach.
2. Two dimension differential matrices  
Consider a set of nodes shown in Figure 1 (normalised domain) with the nodes collocated at 
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and the superscript in Eq.(1) 
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(a)                                                                              (b)
Figure 1. Two-dimensional node distribution in mapping domain: (a) the local number system of node; (b) square domain with 8 seeds for the mapping geometry.
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and 
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where 
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For a block in the real domain, the mapping technique is introduced. In general, for two-dimensional area Ω in the Cartesian coordinate 
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The coordinate transform can be written as
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where 
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where 
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Then, they can be expressed in terms of the nodal values as
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We can also evaluate the first order partial differentials at each node in the form of vector as
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where
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in which 
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is the first order differential matrix. Furthermore, the L-th order partial differentials in two dimensional problems with respect to both coordinates 
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Therefore, the vectors of the higher order partial differentials can be written, in terms of the first order partial differential matrices 
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3. Finite block method with FGMs 
  Assuming that the material properties are dependent on the spatial coordinates in a non-homogeneous material, the relationship between stress and strain anisotropic materials, in the plane stress state, gives [6]
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where 
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 are the elastic compliances of the FGMs. In the case of plane strain conditions, the coefficients 
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 The compliance coefficients can be written in terms of the engineering constants as
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where 
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For plane stress orthotropic elasticity, material mechanical constants give
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The equilibrium equations give
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where 
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are body forces. Applying the differential matrices over (16) for each block, and substituting (21) into equilibrium equation in (23) results, in matrix form, as
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where 
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in which 
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where 
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In addition, it can be proved easily that all components of stress along the bounded surface are continuous and thus the numerical accuracy can be improved as expected.  
For two-dimensional dynamic problems, the equilibrium equations yield
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where 
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 indicates the mass density of the media, 
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in which, the initial conditions are given, in the domain Ω, as
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and the Laplace transformation is defined as 
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where s is Laplace transform parameter. Considering the boundary conditions, we have
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where 
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 Following the same way as static case, we can express two equilibrium equations in matrix form by applying partial differential matrices in (16) for each block. Substituting (21) into equilibrium equation in (29) results, in matrix form, as
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where the vectors of initial conditions 
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In the case of two blocks, the number of node in total is 
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 for transformed values. Then the displacements in time domain can be obtained by the inversion technique. A simple and accurate inverse method proposed by Durbin [23] is adopted as follows
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where
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4. Stress intensity factors with FGM
4.1. Crack opening displacement method for FGM by FBM
In general case, four blocks at least are needed to model mixed mode crack problem as shown in Figure 2. Uniformly distributed or irregular distributed nodes can be used for each block. The stress intensity factors are computed from the asymptotic expansion of the displacements near the crack-tip. For non-homogeneous linear elastic solids, Eischen [24] showed that the asymptotic crack-tip stress and displacement fields have the same form as those in homogeneous linear elastic materials. Even the structure of the asymptotic crack-tip fields are not influenced by the material gradient parameters in FGMs, the stress intensity factors are dependent on the material gradation. Therefore, the simplest and most direct formulations to determine the stress intensity factors are
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where 
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, r is the distance of the evaluation point to the crack tip. The coefficients in (36) are defined
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in which 
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are the roots of the following characteristic equation
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where all material property parameters 
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 are specified at the crack tip. For orthotropic FGM, we have 
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For isotropic FGM, they become
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For dynamic problems, the mixed mode stress intensity factors are determined, in the Laplace transformed domain, as


Figure 2. Mapping strategy with crack and four blocks: (a) normalized coordinate and local integral domain Ωs' with boundary Γs'; (b) physical domain.
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4.2. J-integral method for FGM by FBM

Consider the gradient for strain energy [3]
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where W is strain energy density and defined as
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The equilibrium equations can be expressed as
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where 
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is the Kronecker delta. A closed curve 
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 in the local coordinate as shown Figure 3 is introduced along with the domain 
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where 
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                                   Figure 3. Contour integral for J-integral. 
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for traction free of crack surfaces when 
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, and by linear elastic fracture mechanics
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and 
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when 
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where 
[image: image142.wmf]0
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 is the distance between selected point and the crack tip. In a general case, the crack tip is surrounded by four blocks as shown in Figure 2. For the convenience of computation, the  integral domain is selected as a circle of radius R centred at crack tip in the normalized domain. Therefore, the coordinate of local integral boundary
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where 
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where 
[image: image148.wmf])

,

(

)

(

2

)

(

1

k

l

k

l

x

x

 denotes the coordinate of seed k  in the real for block l domain surrounding the crack tip. The components of the line segment are


[image: image149.wmf]q

x

x

q

q

x

q

x

a

a

a

Rd

f

Rd

x

N

N

dx

l

k

l

k

k

k

l

)

,

(

cos

sin

2

1

)

(

8

1

2

1

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

¶

¶

-

=

å

=









(53)

Thus the relationship between these two segments of length shown in Figure 4 is
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Therefore, the tangential at point 
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and then two components of the normal for block l
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See from Figure 2, the local integral area in normalized domain is given, for each block, by
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The J-integral can be written, in the normalized domain, as
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where 
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 is the Jacobian of transformation for block l
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at the domain integral point 
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Therefore, the mixed mode stress intensity factors can be obtained from (12). In addition, the computational procedure for plane stress isotropic case is also suitable for the plane strain state. The difference between plane-stress and plane strain is the elasticity parameters, i.e. the Young's modulu and Poisson's ratio 
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Figure 4. Selection of the local domain in the mapping domain for block l: (a) real local integral domain; (b) circle in normalized coordinate.
5. Numerical examples
Example 5.1 Rectangular plate containing a central crack


Consider a rectangular plate of width 2w and height of 2h with a central crack of 2a subjected to a uniformly distributed load 
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In the computation modelling, the ratios 
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Table 1. Normalized stress intensity factors for isotropic FGM
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Table 2. Normalized stress intensity factors with different number of node
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Figure 5. Quarter of plate containing a central crack and two blocks with mapping seeds. 
Example 5.2 Edge crack in a plate

Firstly, an isotropic FGM finite two-dimensional strip with an edge crack of length a shown in Figure 6 is considered. Tensile uniform load is applied on top of the plate and the bottom is fixed. Young's modulus is an exponential function of 
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GPa adopted by Wen et al [28]. Comparisons of the stress intensity factors between the FBM (the first row) and FEM (the second row) are shown in Table 4. Good agreements by FBM with COD approach are observed in this example.



               Figure 6. A plate with edge crack under tensile and bending loads.
Table 3. Normalized SIFs of edge cracked plate 
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Table 4. Stress intensity factors for E-glass-epoxy 
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Example 5.3 A plate with slant edge crack


An isotropic FGM plate of width w and height h with slant edge crack of length a shown in Figure 7 is subjected to tensile load on the top and fixed at the bottom. The applied load is defined as 
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are obtained by both COD and J-integral techniques. The radius of integration contour 
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 in normalized domain and standard integral method for both contour integral and domain integral is applied. Four blocks are used in this modelling as shown in Figure 7. Table 5 shows the comparison of the normalized SIFs with those obtained by Eischen [23] and Kim and Paulino [26]. The achieved results illustrate a  reasonably good agreement with other methods. 






Figure 7. Geometry of an slanted edge crack in a plate.

Table 5. Normalized SIFs for FGM slant cracked plate.
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Example 5.4 Rectangular plate under dynamic load

Firstly, consider one dimensional beam of length l and height h with functionally graded orthotropic material in horizontal direction as shown in Figure 8. In order to compare analytical solution, one dimensional problem with isotropic FGM, i.e. 
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where u is displacement along axial direction (
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where 
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in which 
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Therefore, the solution of stress yields
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By using FBM, the geometry parameter is 
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       Figure 8. Rectangular plate in functionally graded media and boundary conditions. 
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Figure 9. Displacements in a FGM bar under dynamic load when the ratio 
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Figure 10. Stresses in a FGM bar under dynamic load when the ratio 
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 Figure 11. Displacements of FGM plate under dynamic load along the middle of plate 
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Figure 12. Stresses of FGM plate under dynamic load along the middle of plate 
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Example 5.5 Edge crack in a plate under dynamic load

An orthotropic FGM plate of 
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GPa [27]. Again four blocks are used in the discretization numerical procedure. The stress intensity factors are computed from the normal crack displacements near the crack-tip (
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). Because the structure of the asymptotic crack-tip fields for non-homogeneous solids under dynamic load is the same as that for homogenous material, the dynamic stress intensity factors can be evaluated by (40). To compare with results by FEM, we present the time variations of the normalised dynamic stress intensity factors
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. With FEM, there are 26000 quadratic shell elements by ABAQUS. Excellent agreement compared with the results obtained by FEM has been achieved. In addition, Figure 14 shows the dynamic SIFs for different ratios of 
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With rotation of 900 for composite (A), the second orthotropic material E-glass-epoxy (B) is considered, i.e.
[image: image336.wmf]0

12

0

1

26

.

2

G

E

=

, 
[image: image337.wmf]0

12

0

2

26

.

8

G

E

=

,
[image: image338.wmf]062

.

0

12

=

n

 
[image: image339.wmf]227

.

0

21

=

n

and 
[image: image340.wmf]5

.

5

0

12

=

G

GPa. Again the mass density is assumed as constant. Figure 15 shows the oscillation of the normalized dynamic stress intensity factor. The same phenomenon is observed as that for composite (A). The influence on the stress intensity factors by material properties (i.e. the velocities of elasticity waves) are obvious. Firstly, the dynamic stress intensity factors start to increase at smaller time instants for composite (B) than that for composite (A) due to the speed of longitudinal wave. Secondly, it can be seen that for the lower Young's modulus parameter, the wave velocity in the x1-direction is lower. Therefore, the peak values of the dynamic stress intensity factors are reached at larger time instants. 
                                                    

                   [image: image341.png]o

— ®Jh





Figure 13. Comparisons of the normalized stress intensity factors 
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Figure 14. The normalized stress intensity factor 
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Figure 15. The normalized stress intensity factor 
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6. Conclusion


The Finite Block Method was proposed for general linear elastic fracture mechanics for two dimensional problems with anisotropic functionally graded materials. This method considered the governing equations in the strong form and all the advantages of meshless method. The system equations are formulated with partial differential matrices from the equilibrium equations, boundary conditions and continuous conditions for all blocks in functionally graded media. As the order of the partial differentials is evaluated by Lagrange series in the mapping domain, the computational effort is reduced significantly compared with RBM and MLS interpolations. The static and dynamic mixed mode stress intensity factors are obtained by COD and J-integral techniques. The essential features of the proposed numerical techniques in this paper can be summarised as:

(1) The physical domain is divided into several blocks with four edges and eight seeds for each block. From the computational experience with FBM, the ratio of two sides for each block satisfies 
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(2) The distribution of node in the normalised domain is chosen to be the Chebyshev's roots for crack problems in order to obtained higher accurate results;
(3) Anisotropic functionally graded materials with all kinds of boundary value problems can be formulated and solved easily;
(4) J-integral technique is of higher accuracy to determine the stress intensity factors;
(5) This method can be extended easily to any types of partial differential equations, including nonlinear problem etc. The presented method can also be combined with other mesh/meshless methods in a straightforward way.
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