Anti-plane fundamental solutions of FGMs and applications to fracture mechanics

J. Li1, T. Huang2*, J.H. Yue3, C. Shi4, P.H. Wen4*

1School of Mathematics and Statistics, Changsha University of Science and Technology, China
2School of Communication and Transportation Engineering, Changsha University of Science and Technology, China
3College of Mathematics, Taiyuan University of Technology, Taiyuan, China
4School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK

Abstract

In this paper, the fundamental solutions for anti-plane elasticity are derived by using the Fourier transform and the Laplace transform techniques, with the shear modulus and the mass density varying exponentially for functionally graded materials. It has been shown that the transformed fundamental solutions both in the Laplace space and in the time domain have the same order of singularities as that in the static case. The time-dependent variables including the displacement and the shear stresses for anti-plane elasticity are obtained with the Durbin’s inversion method for the Laplace transform. The Discontinuity Displacement Method is formulated from the fundamental solutions and applied to the mode III fracture problems.

Key words: Fundamental solutions, functionally graded material, anti-plane elasticity, discontinuity displacement method, stress intensity factor.

*Corresponding author: huangtuomao@163.com (T. Huang), p.h.wen@qmul.ac.uk (P.H. Wen)
1. Introduction

In Functionally Graded Materials (FGMs), the variation of the material properties can be pre-determined by controlling the spatial distribution of the composition and the volume fraction of their constituents, which means that the uniform properties are in all directions. These materials have been introduced in recent years to benefit from the ideal performance of its constituents e.g. the high temperature and the corrosion resistance of the ceramics on one side and the large mechanical strength and toughness of the metals on the other by Suresh.1 For FGMs, we need to solve the differential equations with variable coefficients, because the material properties are dependent on the coordinates. Although the Finite Element Method and Finite Difference Method are well-developed to solve complicated problems, the degree of accuracy needs to be considered. It is well-known that the fundamental solutions for a partial differential equation are essential for numerical analysis in engineering with the Boundary Element Method (BEM), see Brebbia,2 Aliabadi,3,4 Chen & Hong,5 Cheng, & Cheng,6 Clements & Budhi.7 The spatial variations of the material parameters of FGMs are described by an exponential law for the convenience of analysis. In the family of the BEM, the Method of Fundamental Solution (MFS) is getting more attraction, due to its unique characteristics, see Burgess & Mahajerin,8 Wen,9,10 Fairweather & Karageorghis,11 Golberg & Chen,12 Marin & Lesnic.13 The main idea of the MFS consists of approximating the solution of the problem by a linear combination of fundamental solutions with some source points located outside the domain, because of the singularity of the fundamental solution. The general problem is transformed to determine the coefficients of the fundamental solutions (known as the density of source), by considering the boundary conditions. In other words, if the source points located outside of the domain are fixed, then the coefficients of the MFS approximation are determined by considering the boundary conditions. To avoid the boundary integration, the MFS has gradually evolved as an effective boundary free method for solving homogeneous partial differential equation (PDE). In addition, if the number of source points tends to infinite and the collocation of source points is on the boundary, the MFS becomes the indirect BEM. Therefore, the MFS retains the same advantage of discretizing only on the boundary but requires no numerical integration. The Discontinuity Displacement Method (DDM) is very similar to the MFS from the super-position principle point of view. However, the DDM can be applied to solve crack problems efficiently, with high degree of accuracy, see Crouch,14 Crouch and
Starfield15, Dong & Pater16, Liu17, Shi et al18. The introduction for the DDM under static and dynamic loads both for 2D and 3D problems can be found in a book by Wen19.

Due to the mathematical complexities for the non-homogeneous nature of FGMs, there are only a few investigations on the transient dynamic responses of cracked FGMs. Jin and Batra20,21 investigated the interface cracking between the ceramic and/or FGM coatings and a substrate under the anti-plane shear with four coating models by the Boundary Integral Equation Method (BIEM). Reports on their dynamic fracture mechanics are still very few including a numerical treatment of fracture occurring in an FGM under dynamic load by Nakagaki et al22, the dynamic fracture investigation in FGMs with discrete property variations using dynamic photoelasticity by Parameswaran and Shukla23, the dynamic fracture mechanics analysis for a composite material with a material inhomogeneity in the thickness direction by Wang et al24. Dynamic responses under impact loading have been investigated by Babaei and Lukasiwicz25. Li and Zou26 reported the torsional impact response of an FGM with a penny-shaped crack by using dual integral equations. Li et al27,28 investigated a functionally graded material with mode III crack under dynamic load using integral equation method. A crack at an arbitrary angle to the graded interfacial zone in bounded media was studied with the shear modulus and the mass density varying in the form of power functions by Choi29. The applications of the BEM to FGMs are very limited, as the corresponding time-domain fundamental solutions for general FGMs are either not available or mathematically too complex. Zhang et al30,31 presented a transient dynamic crack analysis for FGMs by using the BIEM with hyper-singularity in time-domain.

In this paper, the fundamental solutions with point concentrated force and dislocation both in the Laplace domain and the time domain for anti-plane elasticity are derived by using the Fourier and the Laplace transform techniques. These fundamental solutions can be used to obtain the direct/indirect boundary element formulations for static and dynamic anti-plane problems. However, the applications of these fundamental solutions in this paper are demonstrated with the DDM for static and dynamic fracture problems. For FGMs, the boundary integral formulation with dislocation distribution is derived to determine the stress intensity factors. As the fundamental solutions are of hyper-singularity, the Chebyshev polynomial of the second kind is employed. The static and the dynamic stress intensity factors are determined from the coefficients of the Chebyshev polynomials with high accuracy. Comparisons are made with the available exact and the numerical solutions to show the degrees of accuracy and convergence.
2. Fundamental solutions of concentrated force in anti-plane

For the mode III fracture statics with orthotropic FGMs, there are two material coefficients including the shear modulus μ_x and μ_y which are functions of coordinate. It is necessary to make assumptions for these material parameters for mathematical analysis. In static problems, several models have been proposed, such as power function, exponential function and linear function etc (see Li et al.27). In order to derive the fundamental solution in closed-form, the shear modulus are assumed to vary continuously as $\mu_x = \mu_x^0 e^{2\alpha x} + \mu_y^0 e^{2\beta y}$, $\mu_y = \mu_y^0 e^{2\alpha x} + \mu_y^0 e^{2\beta y}$ in this paper, where μ_x^0 and μ_y^0 are the shear modulus at the origin along the horizontal and vertical directions, α and β are two gradient parameters. Due to the mathematical complexity, it is difficult to obtain the fundamental solution for general material assumptions including dynamic cases.

The equilibrium equation for the anti-plane problem gives
\[
\frac{\partial \tau_x}{\partial x} + \frac{\partial \tau_y}{\partial y} = 0, \tag{1}
\]
where τ_x and τ_y are the shear stresses. For elasticity, one has
\[
\tau_x = \mu_x \frac{\partial w}{\partial x}, \quad \tau_y = \mu_y \frac{\partial w}{\partial y}, \tag{2}
\]
where w is the anti-plane displacement.

![Figure 1. Infinite FGM sheet with straight crack: (a) crack subjected to anti-plane load on the crack surfaces; (b) anti-plane concentrated force and its location.](image-url)
Due to the shear modulus varying exponentially in the domain, the equilibrium equation becomes

$$
epsilon \frac{\partial^2 w}{\partial x^2} + 2 \alpha \epsilon \frac{\partial w}{\partial x} + \frac{\partial^2 w}{\partial y^2} + 2 \beta \frac{\partial w}{\partial y} = 0 .$$

(3)

Applying the Fourier transform

$$w = \frac{1}{2\pi} \int_{-\infty}^{\infty} W(\omega, y) e^{-i\omega \epsilon} d\omega ,$$

(4)

the equilibrium equation (3) yields

$$\frac{d^2 W}{dy^2} + 2 \beta \frac{dW}{dy} - \epsilon \omega (\omega + 2\alpha i) W = 0 ,$$

(5)

where \(\epsilon = \mu_y^0 / \mu_x^0 \) is the orthotropic parameter of FGMs. Therefore, the general solution of displacement are given as

$$W^+ = A^+ e^{\gamma^+ y} \text{ when } y_0 \leq y \leq \infty$$

(6a)

$$W^- = A^- e^{\gamma^- y} \text{ when } -\infty \leq y \leq y_0$$

(6b)

where \(A^+ \) and \(A^- \) are coefficients for the upper and lower half-infinite planes respectively, and

$$\gamma^+ = -\sqrt{\epsilon (\omega + \alpha i)^2 + \lambda^2} - \beta , \quad \gamma^- = \sqrt{\epsilon (\omega + \alpha i)^2 + \lambda^2} - \beta , \quad \lambda = \sqrt{\beta^2 + \alpha^2} .$$

(7)

For a concentrated force \(Q \) acting at point \(P(x_0, y_0) \), the continuous conditions on the joint line can be described as

$$\tau_y^+ - \tau_y^- = Q \delta (x - x_0) , \quad w^+ - w^- = 0 , \quad \text{when} \quad y = y_0 .$$

(8)

Thus, we have two coefficients to be determined:

$$\mu_y^0 e^{2\alpha x + 2\beta y} \left[\gamma^- A^+ e^{\gamma^- y_0} - \gamma^- A^- e^{\gamma^- y_0} \right] = Q e^{i\omega_0}$$

$$A^+ e^{\gamma^+ y_0} - A^- e^{\gamma^- y_0} = 0$$

(9)

The displacement is obtained for the upper half-infinite plane

$$w^+(x, y) = Q e^{-2\alpha x_0 - 2\beta y_0} \frac{\pi \mu_y^0}{\alpha \mu_y^0} \int_{-\infty}^{\infty} \frac{e^{\gamma^+ y_0 (y - y_0) - i\omega (x - x_0)}}{\gamma^+ - \gamma^-} d\omega , \quad y_0 \leq y \leq +\infty .$$

(10)

Consider the integral formula of the Fourier transform

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{\omega + \alpha i)^2 + \lambda^2}} e^{\gamma (\omega + \alpha i)^2 + \lambda^2} e^{-i\omega x} d\omega = 2e^{-\alpha x} K_0(\lambda \sqrt{x^2 + y^2})$$

(11)

Then, from (10), the displacement in the upper half-infinite plane is written as
\[w^+(x,y) = \frac{Q}{2\pi\sqrt{\mu_x\mu_y}} e^{-\sigma(x+x_0)-\beta(y+y_0)} K_0(\lambda \bar{r}) \quad y_0 \leq y \leq +\infty \quad (12) \]

where \(\bar{r} = \sqrt{(x-x_0)^2 + (y-y_0)^2} \). It is easy to prove that the fundamental solution (12) is valid for the lower half-infinite plane. Therefore, the displacement fundamental solution under concentrated force \(Q \) for orthotropic FGMs is

\[w(x,y) = \frac{Q}{2\pi \mu_y \sqrt{\varepsilon}} e^{-\alpha(x+x_0)-\beta(y+y_0)} K_0(\lambda \bar{r}) \quad (13) \]

For the isotropic media, \(\varepsilon = 1 \) and \(\mu_x^0 = \mu_y^0 = \mu_0 \), we have

\[w(x,y) = \frac{Q}{2\pi \mu_0} e^{-\alpha(x+x_0)-\beta(y+y_0)} K_0(\sqrt{\beta^2 + \alpha^2 r}) \quad (14) \]

where \(r = \sqrt{(x-x_0)^2 + (y-y_0)^2} \), which is the same, given by Marin & Lesnic\(^{13} \) for potential problems.

Next, we consider the fundamental solution under dynamic load for orthotropic FGMs. It is assumed that the mass density vary in the same manner as the shear module i.e. \(\rho = \rho_0 e^{2\alpha x + 2\beta y} \), where \(\rho_0 \) is the mass density at the origin. Then, the equilibrium equation becomes

\[\varepsilon \frac{\partial^2 w}{\partial x^2} + 2\alpha \varepsilon \frac{\partial w}{\partial x} + \frac{\partial^2 w}{\partial y^2} + 2\beta \frac{\partial w}{\partial y} = \frac{\rho_0}{\mu_y} \frac{\partial^2 w}{\partial t^2} \quad (15) \]

Applying the Fourier and the Laplace transforms over the equilibrium equation, with zero initial conditions gives

\[-\varepsilon \omega (\omega + 2\alpha i) \tilde{W} + \frac{d^2 \tilde{W}}{dy^2} + 2\beta \frac{d \tilde{W}}{dy} - \frac{p^2}{c^2} \tilde{W} = 0 \quad (16) \]

in which \(c = \sqrt{\mu_y^0 / \rho_0} \) is the velocity of the shear elastic wave along the y axis and

\[\tilde{W}(\omega, y, p) = \int_0^\infty W(\omega, y, t) e^{-\rho t} dt \quad (17) \]

Then, the roots of the characteristic equation (16) are

\[\gamma^+ = -\sqrt{\varepsilon (\omega + \alpha i)^2 + \lambda - \beta}, \quad \gamma^- = \sqrt{\varepsilon (\omega + \alpha i)^2 + \lambda - \beta}, \quad \lambda = \sqrt{\lambda^2 + p^2 / c^2}. \quad (18) \]

The general solutions of displacement of (16) are

\[\tilde{W}^+ = \tilde{A}^+ e^{\gamma^+ y} \text{ when } y_0 \leq y \leq \infty \quad (19a) \]
\[\tilde{W}^- = \tilde{A}^- e^{\tilde{\gamma} y} \text{ when } -\infty \leq y \leq y_0 \]

(19b)

where \(\tilde{A}^+ \) and \(\tilde{A}^- \) are the coefficients. The continuous conditions with a concentrated shear force \(Q \), acting at point \(P \), in time domain give

\[\tau_y^+ - \tau_y^- = Q \delta(x - x_0) \delta(t), \quad w^+ - w^- = 0, \quad y = y_0 \]

(20)

Thus, two coefficients can be obtained from

\[\mu_0 e^{2\alpha x + 2\beta y_0} \left[\tilde{\gamma}^+ \tilde{A}^+ e^{\tilde{\gamma} y_0} - \tilde{\gamma}^- \tilde{A}^- e^{\tilde{\gamma} y_0} \right] = Q e^{i\omega y_0} \]

(21)

As for static case, the displacement fundamental solution in the Laplace transform domain under concentrated force \(Q \delta(t) \) for orthotropic FGMs is obtained

\[\tilde{W}(x, y, p) = \frac{Q}{2 \pi \mu_0^{\sqrt{\epsilon}}} e^{-\alpha(x+x_0)-\beta(y+y_0)} K_0(\tilde{\lambda} \tilde{r}) \]

(22)

with the shear stresses

\[\tilde{\tau}_\gamma(x-x_0, y-y_0, p) = -\frac{Q}{2 \pi} \sqrt{\epsilon} e^{\alpha(x-x_0)+\beta(y-y_0)} \left[\alpha K_0(\tilde{\lambda} \tilde{r}) + \tilde{\lambda} K_1(\tilde{\lambda} \tilde{r}) \frac{x-x_0}{\tilde{r}} \right] \]

(23)

Again, for the isotropic media, the fundamental solution of displacement is given, in the Laplace domain as

\[\tilde{W}(x, y, p) = \frac{Q}{2 \pi \mu_0} e^{-\alpha(x+x_0)-\beta(y+y_0)} K_0(\tilde{\lambda} r) \]

(24)

Consider the inversion of the Laplace transform by Bateman, the fundamental solution of displacement in the time domain is given by

\[W(x, y, t) = \frac{Q}{2 \pi \mu_0^{\sqrt{\epsilon}}} e^{-\alpha(x+x_0)-\beta(y+y_0)} F(c, \tilde{\lambda}, \tilde{r}, t) \]

(25)

where

\[F(c, \tilde{\lambda}, \tilde{r}, t) = \frac{c^t}{\tilde{r}} \left[f(ct/\tilde{r}) - c \tilde{\lambda} \int_0^t f(c\sqrt{t^2-u^2}/\tilde{r}) J_1(c\tilde{\lambda} u) du \right] \]

(26)

in which
\[
f(t) = \begin{cases}
0 & 0 < t < 1 \\
\frac{1}{\sqrt{t^2 - 1}} & t > 1
\end{cases} \quad (27)
\]

where \(J_1(z) \) is the Bessel function. Substituting (27) into (26) gives,

\[
F(c, \lambda, \bar{r}, t) = \begin{cases}
1 & 0 < t < \bar{r} / c \\
\frac{J_1(c \lambda u) du}{\sqrt{t^2 - \bar{r}^2 / c^2 - u^2}} & t > \bar{r} / c
\end{cases} \quad (28)
\]

It is clear that the time-dependent displacement is zero before the arrival of the elastic shear wave.

The shear stresses can be obtained:

\[
\tau_x(x-x_0, y-y_0, t) = \frac{Q}{2\pi} \sqrt{e} e^{\alpha(x-x_0)+\beta(y-y_0)} \left[-\alpha F(c, \lambda, \bar{r}, t) + \frac{\partial F}{\partial \bar{r}} \frac{x-x_0}{\bar{r}} \right] \\
\tau_y(x-x_0, y-y_0, t) = \frac{Q}{2\pi} \sqrt{e} e^{\alpha(x-x_0)+\beta(y-y_0)} \left[-\beta F(c, \lambda, \bar{r}, t) + \frac{\partial F}{\partial \bar{r}} \frac{y-y_0}{\bar{r}} \right] \quad (29)
\]

Consider a concentrated force with the Heaviside function i.e. \(QH(t) \), the fundamental solution of displacement in the Laplace domain is

\[
\tilde{W}_H(x, y, p) = \frac{Q}{2p\pi\sqrt{\mu^0_x\mu^0_y}} e^{-\alpha(x-x_0)+\beta(y-y_0)} K_0(\lambda\bar{r}) \quad (30)
\]

and the shear stresses are

\[
\tilde{\tau}_x^H(x-x_0, y-y_0, p) = -\frac{Q}{2p\pi} \sqrt{e} e^{\alpha(x-x_0)+\beta(y-y_0)} \left[\alpha K_0(\lambda\bar{r}) + \frac{\lambda K_1(\lambda\bar{r})}{\bar{r}} \frac{x-x_0}{\bar{r}} \right] \\
\tilde{\tau}_y^H(x-x_0, y-y_0, p) = -\frac{Q}{2p\pi} \sqrt{e} e^{\alpha(x-x_0)+\beta(y-y_0)} \left[\beta K_0(\lambda\bar{r}) + \frac{\lambda K_1(\lambda\bar{r})}{\bar{r}} \frac{y-y_0}{\bar{r}} \right] \quad (31)
\]

By using the formula of the Laplace transform inverse, the fundamental solutions in the time domain can be obtained

\[
W_H(x, y, t) = \frac{Q}{2\pi\sqrt{\mu^0_x\mu^0_y}} e^{-\alpha(x-x_0)+\beta(y-y_0)} F_H(c, \lambda, \bar{r}, t) \quad (32)
\]

where

\[
F_H(c, \lambda, \bar{r}, t) = \int_0^t F(c, \lambda, \bar{r}, t) dt \\
= \begin{cases}
\int_0^t \frac{dt}{\sqrt{t^2 - \bar{r}^2 / c^2}} - c\lambda \int_{\bar{r}/c}^t \frac{J_1(c \lambda u) du}{\sqrt{t^2 - \bar{r}^2 / c^2} - u^2} & 0 < t < \bar{r} / c \\
\int_{\bar{r}/c}^t \frac{dt}{\sqrt{t^2 - \bar{r}^2 / c^2}} - c\lambda \int_0^{\bar{r}/c} \frac{J_1(c \lambda u) du}{\sqrt{t^2 - \bar{r}^2 / c^2} - u^2} & t > \bar{r} / c
\end{cases} \quad (33)
\]
The integral domain is shown in Figure 2. By changing the order of the integration, we have

\[
\int_{t/c}^{t} \int_{0}^{\sqrt{t^2 - u^2 - \overline{F}^2 / c^2}} J_1(c\lambda u) du \, dt = \int_{0}^{\sqrt{t^2 - u^2 - \overline{F}^2 / c^2}} J_1(c\lambda u) du \, \int_{t/c}^{t} \frac{dt}{\sqrt{t^2 - u^2 - \overline{F}^2 / c^2}}
\]

\[
= \int_{0}^{t} J_1(c\lambda u) \times \ln \left(\frac{t + \sqrt{t^2 - u^2 - \overline{F}^2 / c^2}}{\sqrt{u^2 + \overline{F}^2 / c^2}} \right) du
\]

Therefore, (33) can be written as

\[
F_{H}(c, \lambda, \overline{F}, t) = \begin{cases}
\ln \left(\frac{t + \sqrt{t^2 - \overline{F}^2 / c^2}}{\overline{F} / c} \right) - c\lambda \int_{0}^{\sqrt{t^2 - \overline{F}^2 / c^2}} J_1(c\lambda u) \times \ln \left(\frac{t + \sqrt{t^2 - u^2 - \overline{F}^2 / c^2}}{\sqrt{u^2 + \overline{F}^2 / c^2}} \right) du & 0 < t < \overline{F} / c \\
0 & t > \overline{F} / c
\end{cases}
\]

(34)

Therefore the shear stresses can be obtained

\[
\tau_x^H(x - x_0, y - y_0, t) = \frac{Q}{2\pi} \sqrt{\varepsilon} e^{\alpha(x-x_0) + \beta(y-y_0)} \left[-\alpha F_{H}(c, \lambda, \overline{F}, t) + \frac{\partial F_{H}}{\partial \overline{F}} \frac{x - x_0}{\varepsilon \overline{F}} \right]
\]

\[
\tau_y^H(x - x_0, y - y_0, t) = \frac{Q}{2\pi} \sqrt{\varepsilon} e^{\alpha(x-x_0) + \beta(y-y_0)} \left[-\beta F_{H}(c, \lambda, \overline{F}, t) + \frac{\partial F_{H}}{\partial \overline{F}} \frac{y - y_0}{\overline{F}} \right]
\]

(35)

in which

\[
\frac{\partial F_{H}}{\partial \overline{F}} = \frac{1}{\overline{F}} \begin{cases}
0 & 0 < \overline{F} < 1 \\
- A(\overline{F}) - \overline{F} \lambda \int_{0}^{\sqrt{\overline{F}^2 - \overline{F}^2}} J_1(\overline{F} \lambda u) B(\overline{F}, u) du & \overline{F} > 1
\end{cases}
\]

(36)

Figure 2. Integration domain and changing the integral order.
where \(\bar{t} = ct / \bar{r} \) and the dimensionless functions \(A(\bar{t}) \) and \(B(\bar{t}, u) \) are defined as

\[
A(\bar{t}) = \frac{1}{\left(\bar{t} + \sqrt{\bar{t}^2 - 1} \right) \sqrt{\bar{t}^2 - 1}} + 1,
\]

\[
B(\bar{t}, u) = \frac{1}{\left(\bar{t} + \sqrt{\bar{t}^2 - (1+u^2)} \right) \sqrt{\bar{t}^2 - (1+u^2)}} + \frac{1}{1+u^2}.
\]

Finally, we consider the fundamental solution for a dislocation, as shown in Figure 3. Consider two reference cases. The first case is a dislocation located at the coordinate \(T(x_0, y_0) \) along the local axis \(x' \) with a slant angle \(\theta \) against axis \(x \). The second case is a unit concentrated shear force \((Q = 1) \) acting at the point \(P(x, y) \). Applying the principal of reciprocity over these two reference cases, we have the fundamental solution of displacement with a dislocation as

\[
\tilde{W}_D(x, y, p) = \tilde{\tau}_x(x_0 - x, y_0 - y, p) \sin \theta - \tilde{\tau}_y(x_0 - x, y_0 - y, p) \cos \theta
\]

in which \(\tilde{\tau}_x(x_0 - x, y_0 - y, p) \) and \(\tilde{\tau}_y(x_0 - x, y_0 - y, p) \) are the fundamental solutions of the shear stress shown in (23). Therefore, the fundamental solution of displacement with a dislocation is written, in the Laplace domain as

\[
\tilde{W}_D(x, y, p) = -\frac{1}{2\pi} e^{-\alpha(x-x_0)-\beta(y-y_0)} \left[\sqrt{\varepsilon\alpha \sin \theta - \frac{\beta \cos \theta}{\sqrt{\varepsilon}}} \right] K_0(\lambda\bar{r}) - \frac{\lambda K_1(\lambda\bar{r})}{\sqrt{\varepsilon\bar{r}}} [(x-x_0) \sin \theta - (y-y_0) \cos \theta].
\]

Figure 3. Two load cases: (a) Dislocation with angle \(\theta \); (b) Concentrated anti-plane force.
By Hooke's law, we can easily obtain the fundamental solutions of the shear stresses from (40). It is worth pointing out that the constant element is the most popular approach for the Displacement Discontinuity Method (DDM) in engineering by Crouch & Starfield15 and Wen19.

To demonstrate the effect due to the gradient coefficients of functionally graded materials, the time responses of the shear stress is observed. Consider a unit concentrated shear force acting at the origin, \(Q(t) = P_0 H(t) \), \(\alpha = 0 \) and \(\beta \) is chosen as 0, 0.5 and 1 respectively. The normalized shear stress \(\tau, a / P_0 \) versus the normalized time at the observing point \((a, a)\) is shown in Figures 4(a), 4(b) and 4(c) with different material properties. The effect by the gradient parameter \(\beta \) is shown in Figure 4(a) when constants \(\alpha = 0, \varepsilon = 1 \). The effect by parameter \(\alpha \) is also presented in Figure 4(b) in the case of \(\beta = 0, \varepsilon = 1 \). In Figure 4(c), the response of stress is shown when \(\alpha = \beta = 1 \) for different ratio of \(\varepsilon \). Obviously the stress is kept at zero until the shear elasticity wave arrived travelling from the load acting point. There is no oscillation for isotropic homogenous material \(\alpha = \beta = 0 \) at the observing point from Figures 4(a) and 4(b). However, the oscillations are seen for functionally graded materials in these figures. Obviously the oscillation caused by the gradient of materials is significant. In addition, the frequency of the oscillation increases when the gradient parameters \(\alpha \) and \(\beta \) increase.
Figure 4. Effects of the FGM constants. (a) $\alpha = 0$, $\varepsilon = 1$ and β is variable; (b) $\beta = 0$, $\varepsilon = 1$ and α is variable; (c) $\alpha = \beta = 1$ and ε is variable.

3. Integral equation of displace discontinuity for a crack

For the sake of simplicity, we consider a straight crack on the axis x, as shown in Figure 1(a). The fundamental solution for a dislocation at the origin in the Laplace space is obtained from (40) by letting $\theta = 0$.
\[
\tilde{W}_D(x, y, p) = \frac{1}{2\pi\sqrt{\varepsilon}} e^{-\alpha(x-x_0)-\beta(y-y_0)} \left[\beta K_0(\lambda F) - \lambda K_1(\lambda F) \frac{y-y_0}{F} \right]
\]

(41)

Thus the shear stress is obtained

\[
\tilde{\tau}_y^D(x, x_0, y, y_0, p) = \frac{\mu_y^0}{2\pi\sqrt{\varepsilon}} e^{\alpha(x-x_0)+\beta(y-y_0)} \left[\left(\frac{\lambda^2(y-y_0)^2}{F^2} - \beta^2 \right) K_0(\lambda F) + \frac{\lambda}{\varepsilon} \frac{(y-y_0)^2 - (x-x_0)^2}{F^3} K_1(\lambda F) \right]
\]

(42)

Therefore, the shear stress along the axis \(x\), by letting \(x_0 = \xi\) and \(y = y_0 = 0\) in (42) above becomes

\[
\tilde{\tau}_y^D(x, \xi, 0, 0, p) = \tilde{\Upsilon}(x, \xi, p) = -\frac{\mu_y^0}{2\pi\sqrt{\varepsilon}} e^{\alpha(x+\xi)} \left[\beta^2 K_0(\lambda (x - \xi)/\sqrt{\varepsilon}) + \frac{\lambda}{\varepsilon} \frac{x - \xi}{K_1(\lambda (x - \xi)/\sqrt{\varepsilon})} \right]
\]

(43)

Obviously the hyper-singular term in the shear stress above is

\[
T(x, \xi) = -\frac{\mu_y^0 e^{\alpha(x+\xi)}}{2\pi(x - \xi)^2}
\]

(44)

which is independent of the orthotropic parameter \(\varepsilon\). Consider a straight crack of length \(2a\) with the density of the discontinuity displacement \(\tilde{\psi}(x) = \Delta\tilde{W} = [\tilde{W}^+ - \tilde{W}^-]\) on its surface in the region \(-a \leq x \leq a\), as shown in Figure 1(a). The boundary integral equation can be written as

\[
\int_{-a}^{a} \tilde{\Upsilon}(x, \xi, p)\tilde{\psi}(\xi) d\xi = -\tilde{\tau}_0(x, p), \quad -a \leq x \leq a
\]

(45)

where \(\tilde{\tau}_0(x, p)\) is the applied anti-plane shear force. Taking the second degree of the Hadamard’s finite part in Eq. (45) yields

\[
\int_{-a}^{a} \frac{\tilde{\psi}(\xi)e^{\alpha(x+\xi)}}{|x - \xi|^2} d\xi + \int_{-a}^{a} E(x, \xi, p)\tilde{\psi}(\xi) d\xi = \frac{2\pi\tilde{\tau}_0(x, p)}{\mu_y^0}, \quad -a \leq x \leq a
\]

(46)

\[
E(x, \xi, p) = \frac{1}{\sqrt{\varepsilon}} e^{\alpha(x+\xi)} \left[\beta^2 K_0(\lambda (x - \xi)/\sqrt{\varepsilon}) + \frac{\lambda}{\varepsilon} \frac{x - \xi}{K_1(\lambda (x - \xi)/\sqrt{\varepsilon})} - \frac{1}{(x - \xi)^2} \right]
\]

in which the function \(E(x)\) is of weak singular \(O(\ln r)\). Because of the shear stress being of singularity \(O(r^{-1/2})\) at the crack tips \(x = \pm a\), we assume that

\[
\tilde{\psi}(x, p) = \sqrt{a^2 - x^2} e^{-\alpha x} \sum_{k=0}^{K} c_k U_k(x/a),
\]

(47)

where \(c_k\) represents the coefficient, \(U_k(x/a)\) are the Chebyshev polynomials of the second kind i.e.
\[U_k(x/a) = \frac{\sin[(k+1)\arccos(x/a)]}{\sin[\arccos(x/a)]}. \] (48)

Due to the integral formula given by Kaya and Erdogan\(^{33}\),
\[\int_{-a}^{a} \sqrt{a^2 - \xi^2} U_k(\xi/a) \frac{d\xi}{(x_i - \xi)^2} = -\pi(k+1)U_k(x_i/a), \] (49)

where the collocation points \(x_i \) are chosen as
\[x_i/a = \cos\left(\frac{(2i+1)\pi}{2(K+1)}\right), \quad i = 0,1,2,\ldots,K, \] (50)

Then, Eq.(46) at the collocation point \(x_i \) becomes
\[\sum_{k=0}^{K} c_k e^{\alpha x_i} \left[-\pi(k+1)U_k(x_i/a) + \frac{a}{2} E(x_i,\xi,p) \sqrt{a^2 - \xi^2} U_k(\xi/a) d\xi \right] = \frac{2\pi \bar{\tau}_0(x_i,p)}{\mu_x^0}, \quad i = 0,1,\ldots,K. \] (51)

In order to cancel the weak singularity in \(E(x_i,\xi) \), a coordinate transformation is introduced i.e. \(\xi' = \sqrt{x - x_i} \). Eq.(51) provides a set of linear system of equations with \(K + 1 \) unknowns \(c_k \) to be determined. As the displacement field at the crack tips for FGMs is the same as isotropic materials near the crack tip i.e.
\[\psi(\pm a, p) = \lim_{r \to 0} \frac{2\tilde{K}_{II}(\pm a)}{\pi\mu_x(\pm a)} \sqrt{2\pi r} \]
\[\tilde{K}_{II}(\pm a) = \frac{\sqrt{\pi} \mu_x(\pm a)}{2} \lim_{r \to 0} \frac{\psi(\pm a, p)}{\sqrt{2r}} \] (52)

where \(\tilde{K}_{II} \) indicates the stress intensity factor. Therefore, the stress intensity factors can be determined directly by the displacement discontinuity, from Eq.(47), as
\[\tilde{K}_{II}(\pm a, p) = \frac{\mu_x^0 e^{\pm a}}{2} \sum_{k=0}^{K} c_k U_k(\pm 1) \sqrt{\pi a}, \] (53)

From the properties of the Chebyshev polynomials, \(U_k(+1) = k + 1 \) and \(U_k(-1) = (-1)^k(k + 1) \). In the following numerical examples, the number \(K \) in Eq.(50) is taken to 15 in this example.

By selecting \((L+1) \) samples in the Laplace space \(p_l, l = 0,1,\ldots,L \), \(\tilde{K}_{II}(\pm a, p_l) \) is evaluated for each Laplace parameter from Eq.(53). Thereafter, the time-dependent function \(\tilde{K}_{II} \) in the time domain can be determined by the Laplace inversion techniques. By selecting
\[
p_i = (\sigma + 2l\pi i)/T \quad (i = \sqrt{-1})
\]
, an accurate inverse method proposed by Durbin34 is adopted here, as follows
\[
\tilde{K}_{\text{iii}}(t) = \frac{2e^{\sigma/T}T}{T} \left[-\frac{1}{2} \tilde{K}_{\text{iii}}(p_0) + \sum_{l=0}^{L} \Re e\left\{ \tilde{K}_{\text{iii}}(p_l)e^{2l\pi i/T} \right\} \right]
\]
(54)

In the Durbin's inverse formula in Eq.(54), there are two free parameters \(\sigma\) and \(T\). In fact, the parameter \(T\) depends on the observing period of time and \(\sigma\) is taken to 5 in all examples below.

4. Numerical examples and discussion

Example 4.1 Functionally graded media under static load on crack surface

First we consider a straight crack between \((-a,a)\) subjected to a uniform shear load \(\tau_0\) on the crack surfaces. In the static analysis of the functionally graded materials, there are two material parameters including two gradient parameters \(\alpha\) and \(\beta\) when the orthotropic parameter \(\varepsilon = 1\).

Numerical results of the normalized stress intensity factor \(K_{\text{iii}}(\varepsilon)/\tau_0\sqrt{\pi a}\) are shown in Table 1 and Table 2 for different material parameters, i.e. the gradient parameters \(\alpha\) and \(\beta\) are selected as 0, 0.25, 0.5, 0.75 and 1 respectively. The same problems were studied by Li et al27 analytically and by Zhang et al.31 using the Boundary Integral Equation Method (BIEM) which can be used to examine the degree of accuracy in this paper. It shows that the difference between the BIEM and the DDM is very small (see the numerical results for static case listed in Table 1 and Table 2 by Zhang et al.31) and they are identical when \(\alpha = 0\), as shown in these tables.

Second, we consider a slant crack in FGMs, as shown in Figure 5 with \(\alpha' = 0, \beta' = 1\) and \(\beta'\) is free variable in the coordinate \((x'oy')\). Therefore, in the new coordinate system \((x,y)\), one has
\[
\mu_x = \mu_y = \mu_0 e^{2\beta(x\sin\theta + y\cos\theta)}
\]
(55)

So we have two gradient parameters in the new system \((xoy)\)
\[
\alpha = \beta'\sin\theta, \quad \beta = \beta'\cos\theta, \quad \varepsilon = 1.
\]
(56)

The normalized stress intensity factors are presented in Table 3 for different gradient parameters \(\beta'\) and crack orientations \(\theta\).
Figure 5. A slant crack with orientation θ in two coordinates.

Table 1. Stress intensity factors $K_{III}(a)/\tau_0\sqrt{\pi a}$ while $\varepsilon = 1$.

<table>
<thead>
<tr>
<th>α/β</th>
<th>0.00</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
<th>1.75</th>
<th>2.00</th>
<th>2.25</th>
<th>2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.0000</td>
<td>1.0280</td>
<td>1.0762</td>
<td>1.1308</td>
<td>1.1875</td>
<td>1.2444</td>
<td>1.3007</td>
<td>1.3559</td>
<td>1.4099</td>
<td>1.4625</td>
<td>1.5137</td>
</tr>
<tr>
<td>0.25</td>
<td>1.0906</td>
<td>1.1234</td>
<td>1.1865</td>
<td>1.2565</td>
<td>1.3277</td>
<td>1.3983</td>
<td>1.4675</td>
<td>1.5348</td>
<td>1.6002</td>
<td>1.6637</td>
<td>1.7253</td>
</tr>
<tr>
<td>0.50</td>
<td>1.1438</td>
<td>1.1920</td>
<td>1.2396</td>
<td>1.3219</td>
<td>1.4078</td>
<td>1.4931</td>
<td>1.5764</td>
<td>1.6570</td>
<td>1.7350</td>
<td>1.8103</td>
<td>1.8830</td>
</tr>
<tr>
<td>0.75</td>
<td>1.1765</td>
<td>1.2002</td>
<td>1.2625</td>
<td>1.3465</td>
<td>1.4395</td>
<td>1.5348</td>
<td>1.6291</td>
<td>1.7211</td>
<td>1.8102</td>
<td>1.8963</td>
<td>1.9793</td>
</tr>
<tr>
<td>1.00</td>
<td>1.1974</td>
<td>1.2174</td>
<td>1.2725</td>
<td>1.3518</td>
<td>1.4445</td>
<td>1.5342</td>
<td>1.6343</td>
<td>1.7242</td>
<td>1.8239</td>
<td>1.9254</td>
<td>2.0251</td>
</tr>
<tr>
<td>1.25</td>
<td>1.2114</td>
<td>1.2286</td>
<td>1.2770</td>
<td>1.3495</td>
<td>1.4378</td>
<td>1.5350</td>
<td>1.6363</td>
<td>1.7384</td>
<td>1.8396</td>
<td>1.9388</td>
<td>2.0354</td>
</tr>
<tr>
<td>1.50</td>
<td>1.2213</td>
<td>1.2362</td>
<td>1.2790</td>
<td>1.3447</td>
<td>1.4271</td>
<td>1.5202</td>
<td>1.6195</td>
<td>1.7124</td>
<td>1.8129</td>
<td>1.9152</td>
<td>2.0151</td>
</tr>
<tr>
<td>1.75</td>
<td>1.2285</td>
<td>1.2417</td>
<td>1.2798</td>
<td>1.3394</td>
<td>1.4156</td>
<td>1.5036</td>
<td>1.5992</td>
<td>1.6990</td>
<td>1.8006</td>
<td>1.9024</td>
<td>2.0033</td>
</tr>
<tr>
<td>2.00</td>
<td>1.2340</td>
<td>1.2457</td>
<td>1.2801</td>
<td>1.3343</td>
<td>1.4047</td>
<td>1.4873</td>
<td>1.5784</td>
<td>1.6750</td>
<td>1.7745</td>
<td>1.8752</td>
<td>1.9757</td>
</tr>
<tr>
<td>2.25</td>
<td>1.2382</td>
<td>1.2488</td>
<td>1.2800</td>
<td>1.3296</td>
<td>1.3947</td>
<td>1.4722</td>
<td>1.5587</td>
<td>1.6514</td>
<td>1.7479</td>
<td>1.8466</td>
<td>1.9460</td>
</tr>
<tr>
<td>2.50</td>
<td>1.2416</td>
<td>1.2513</td>
<td>1.2797</td>
<td>1.3254</td>
<td>1.3859</td>
<td>1.4584</td>
<td>1.5403</td>
<td>1.6290</td>
<td>1.7223</td>
<td>1.8184</td>
<td>1.9158</td>
</tr>
</tbody>
</table>

Table 2. Stress intensity factors $K_{III}(-a)/\tau_0\sqrt{\pi a}$ while $\varepsilon = 1$.

<table>
<thead>
<tr>
<th>α/β</th>
<th>0.00</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
<th>1.75</th>
<th>2.00</th>
<th>2.25</th>
<th>2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.0000</td>
<td>1.0280</td>
<td>1.0762</td>
<td>1.1308</td>
<td>1.1875</td>
<td>1.2444</td>
<td>1.3007</td>
<td>1.3559</td>
<td>1.4099</td>
<td>1.4625</td>
<td>1.5137</td>
</tr>
<tr>
<td>0.25</td>
<td>0.8570</td>
<td>0.8775</td>
<td>0.9178</td>
<td>0.9631</td>
<td>1.0099</td>
<td>1.0568</td>
<td>1.1031</td>
<td>1.1486</td>
<td>1.1930</td>
<td>1.2363</td>
<td>1.2786</td>
</tr>
<tr>
<td>0.50</td>
<td>0.7291</td>
<td>0.7406</td>
<td>0.7683</td>
<td>0.8030</td>
<td>0.8401</td>
<td>0.8777</td>
<td>0.9151</td>
<td>0.9519</td>
<td>0.9880</td>
<td>1.0232</td>
<td>1.0576</td>
</tr>
<tr>
<td>0.75</td>
<td>0.6309</td>
<td>0.6373</td>
<td>0.6544</td>
<td>0.6780</td>
<td>0.7050</td>
<td>0.7333</td>
<td>0.7622</td>
<td>0.7910</td>
<td>0.8194</td>
<td>0.8474</td>
<td>0.8748</td>
</tr>
<tr>
<td>1.00</td>
<td>0.5576</td>
<td>0.5614</td>
<td>0.5719</td>
<td>0.5874</td>
<td>0.6061</td>
<td>0.6266</td>
<td>0.6480</td>
<td>0.6698</td>
<td>0.6917</td>
<td>0.7135</td>
<td>0.7350</td>
</tr>
<tr>
<td>1.25</td>
<td>0.5025</td>
<td>0.5048</td>
<td>0.5115</td>
<td>0.5218</td>
<td>0.5347</td>
<td>0.5493</td>
<td>0.5650</td>
<td>0.5814</td>
<td>0.5981</td>
<td>0.6149</td>
<td>0.6318</td>
</tr>
<tr>
<td>1.50</td>
<td>0.4599</td>
<td>0.4615</td>
<td>0.4660</td>
<td>0.4730</td>
<td>0.4820</td>
<td>0.4926</td>
<td>0.5042</td>
<td>0.5165</td>
<td>0.5293</td>
<td>0.5424</td>
<td>0.5556</td>
</tr>
<tr>
<td>1.75</td>
<td>0.4262</td>
<td>0.4273</td>
<td>0.4304</td>
<td>0.4354</td>
<td>0.4419</td>
<td>0.4497</td>
<td>0.4584</td>
<td>0.4678</td>
<td>0.4778</td>
<td>0.4880</td>
<td>0.4985</td>
</tr>
<tr>
<td>2.00</td>
<td>0.3989</td>
<td>0.3996</td>
<td>0.4019</td>
<td>0.4056</td>
<td>0.4104</td>
<td>0.4163</td>
<td>0.4229</td>
<td>0.4303</td>
<td>0.4380</td>
<td>0.4462</td>
<td>0.4546</td>
</tr>
<tr>
<td>2.25</td>
<td>0.3761</td>
<td>0.3767</td>
<td>0.3784</td>
<td>0.3811</td>
<td>0.3849</td>
<td>0.3894</td>
<td>0.3946</td>
<td>0.4004</td>
<td>0.4066</td>
<td>0.4131</td>
<td>0.4200</td>
</tr>
<tr>
<td>2.50</td>
<td>0.3568</td>
<td>0.3573</td>
<td>0.3586</td>
<td>0.3607</td>
<td>0.3636</td>
<td>0.3672</td>
<td>0.3713</td>
<td>0.3760</td>
<td>0.3810</td>
<td>0.3864</td>
<td>0.3920</td>
</tr>
</tbody>
</table>
Table 3. Stress intensity factors $K_{\text{III}}^{(\pm)} / \tau_0 \sqrt{\pi a}$ for isotropic FGMs while $\alpha' = 0$.

<table>
<thead>
<tr>
<th>$\beta' \theta$</th>
<th>$K_{\text{III}}^{+} / \tau_0 \sqrt{\pi a}$</th>
<th>$K_{\text{III}}^{-} / \tau_0 \sqrt{\pi a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°</td>
<td>30°</td>
</tr>
<tr>
<td>0.00</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.25</td>
<td>1.0280</td>
<td>1.0777</td>
</tr>
<tr>
<td>0.50</td>
<td>1.0762</td>
<td>1.1685</td>
</tr>
<tr>
<td>0.75</td>
<td>1.1308</td>
<td>1.2643</td>
</tr>
<tr>
<td>1.00</td>
<td>1.1875</td>
<td>1.3616</td>
</tr>
<tr>
<td>1.25</td>
<td>1.2444</td>
<td>1.4584</td>
</tr>
<tr>
<td>1.50</td>
<td>1.3007</td>
<td>1.5534</td>
</tr>
<tr>
<td>1.75</td>
<td>1.3559</td>
<td>1.6459</td>
</tr>
<tr>
<td>2.00</td>
<td>1.4099</td>
<td>1.7354</td>
</tr>
<tr>
<td>2.25</td>
<td>1.4625</td>
<td>1.8219</td>
</tr>
<tr>
<td>2.50</td>
<td>1.5137</td>
<td>1.9053</td>
</tr>
</tbody>
</table>

Example 4.2 Functionally graded media under dynamic load on crack surface

Consider the same crack of length $2a$ in FGMs, subjected to dynamic shear force $\tau_0 H(t)$ in time domain and τ_0 / ρ in the Laplace domain. The number of samples in the Laplace space is chosen as $L = 200$ with two free parameters $\sigma = 5, T = 20$ in the Durbin's inversion method. Several FGMs are considered as follows

Case 1: Gradient parameter $\theta = \beta = 0, \epsilon = 1$ and α varies from 0 to 1;
Case 2: Gradient parameter $\theta = \alpha = 0, \epsilon = 1$ and β varies from 0 to 1;
Case 3: Gradient parameter $\alpha = 0, \beta = 0.5, \epsilon = 1$ and crack orientation θ is variable;
Case 4: Orthotropic parameter ϵ varies from 0.25 to 4 when $\alpha = 1, \beta = \theta = 0$.

The normalized stress intensity factors $K_{\text{III}}(t) / \tau_0 \sqrt{\pi a}$ for each case are presented from Figure 6 to Figure 9 versus dimensionless time ct / a. These results show that the gradient parameters have significant influences on the transient dynamic stress intensity factors, particularly at the tip of the right-hand-side. In Case 1, the normalized dynamic stress intensity factors at the right crack-tip are larger than that at left crack-tip, when the gradient parameter α is large than zero. In other words, the normalized dynamic stress intensity factors at the right crack-tip $K_{\text{III}}^{(+)}$ increase when the gradient parameter α increases. However, the normalized factors at the left crack-tip $K_{\text{III}}^{(-)}$ decrease when α increases. Because the shear modulus at the right crack-tip is always larger than that at the left crack-tip when the gradient parameter $\alpha > 0$, it is shown that the stress intensity factor is bigger as expected. Similar to the shear stress response for a concentrated shear force
shown in Figure 4, the oscillation for the dynamic stress intensity factor at the right crack-tip is obvious when the parameter α is larger. However, the oscillation is relatively weaker at the left crack-tip, as shown in Figures 6(a) and 6(b). In Case 2, the stress intensity factors are the same at two crack tips, due to symmetry. It can be observed that the oscillation is huge when β is taken to 1, as shown in Figure 7. Again, the normalized dynamic stress intensity factor at the right crack-tip K_{III} increases when the gradient parameter β increases. However, the oscillation of the curve K_{III} versus the normalized time caused by the gradient parameter is significant when $\beta > 0.75$. In Case 3, the results are similar to Case 1 and the influence caused by the orientation of the crack is significant from Figures 8(a) and 8(b). In Case 4, the effect of the orthotropic parameter ε can be seen clearly from Figures 9(a) and 9(b). Since the arrival times of the shear elasticity wave travelling from the left crack-tip to the right crack-tip are different for different orthotropic parameters, the corresponding times for the picks are also different. However, the maximum values of the dynamic stress intensity factors at each crack-tip are almost the same. In addition, for each case, the picks are collocated at time $ct/a = 2\sqrt{\varepsilon}$, as expected. From these numerical examples, it can be concluded as following

(1) The gradient parameters of material α, β, and the ratio ε may have significant influence on the stress intensity factor and causes oscillations. The peak value of the normalized stress intensity factors increases with increasing gradient parameters α and β;

(2) The stress intensity factor at the crack tip with the bigger shear modulus (right crack-tip) is larger than that with smaller modulus (left crack-tip), i.e. $K_{II}^{(\varepsilon)} > K_{II}^{(-\varepsilon)}$;

(3) For isotropic FGMs under both static and dynamic load, the degree of accuracy is observed with semi-analytical solutions given by Zhang et al 31 and analytical solution by Li et al 27. It is shown that the difference is very small compared with different approaches.

Finally, it is worth to mention that the FGMs are innovative composite materials whose composition and microstructure vary in space following a predetermined law 35,36. The gradual change in composition and microstructure gives place to a gradient of properties and performances. The investigation in this paper concentrated on the evaluation of stress intensity factors under dynamic loading with three free parameters, i.e. α, β and the ratio ε. If two coordinate axes are normalized to the crack length a, the gradient parameters can be treated as dimensionless.
parameters. The computational strategy and solutions are valid for any gradient parameters of FGMs.

Figure 6, Normalized dynamic stress intensity factors of Case 1: (a) right crack-tip; (b) left crack-tip.
Figure 7, Normalized dynamic stress intensity factors of Case 2.
Figure 8. Normalized dynamic stress intensity factors of Case 3: (a) right crack-tip; (b) left crack-tip.
5. Conclusion

The fundamental solutions with anti-plane concentrated force and dislocation were derived in this paper for orthotropic FGMs. The influences of the material properties on the time-dependent shear stresses with a concentrated shear force were observed. For larger gradient parameters, oscillations occur for the shear stresses. For the application of these fundamental solutions, the first kind Fredholm integral equation was formulated for fracture problems with the Chebyshev series to determine the stress intensity factor for both static and dynamic loads. Dynamic anti-plane fracture problems were studied in the Laplace transformed domain and the Durbin's inverse transform method was employed. The static and the dynamic stress intensity factors were presented for different material parameters.
Acknowledgement

The first author would like to thank the support partially from the Natural and Science Foundation Council of China (No.11301040) and the Science Research Fund of Hunan Provincial Education Department (No.17B003). The second author like to thank the support partially from the National Natural Science Foundation of China (No.51608055).

References

