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Abstract: The geographic and temporal origins of dogs remain controversial. Here, we generated 39 
genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog 40 
(~4,800 calBP) from Ireland. Our analyses revealed a deep split (early Bronze Age or late 41 
Neolithic) separating modern East Asian and Western Eurasian dog populations. In addition, 42 
analyses of ancient and modern mitochondrial DNA revealed a sharp discontinuity in haplotype 43 
frequencies in Europe. These results suggest that dogs in Eastern and Western Eurasia were 44 
domesticated independently from distinct wolf populations. East Asian dogs were then likely 45 
transported alongside people during the late Neolithic or early Bronze Age, potentially 46 
coincident with the recently described major human migration of pastoralists into Europe, where 47 
they replaced the indigenous Upper Paleolithic European dogs. 48 

One Sentence Summary: Genomics and archeology reveal both a dual origin of domestic dogs 49 
and a subsequent translocation of East Asian dogs into Europe. 50 

Main Text: Dogs were the first domestic animal and the only animal domesticated prior to the 51 
advent of settled agriculture(1). Despite their importance in human history, no consensus has 52 
emerged with regard to their geographic and temporal origins, or whether dogs were 53 
domesticated just once or independently on more than one occasion. Though several claims have 54 
been made for an initial appearance of dogs in the early Upper Paleolithic (~30kya; e.g. 2), the 55 
first remains confidently assigned to dogs appear in Europe ~15,000 years ago and in Far East 56 
Asia ~12,500 years ago (1, 3). While archaeologists remain open to the idea that there was more 57 
than one geographic origin for dogs (e.g. (4, 5), most genetic studies have concluded that dogs 58 
were likely domesticated just once (6) – disagreeing on whether this occurred in Europe (7), 59 
Central Asia (8), or East Asia (9). 60 

Recent palaeogenetic studies have had a tremendous impact on our understanding of 61 
early human evolution (e.g. (10, 11)).  Here we apply a similar approach to reconstruct the 62 
evolutionary history of dogs. We generated 59 ancient mtDNA sequences from European dogs 63 
(from 14 to 3Kya) as well as a high coverage nuclear genome (~28x) of an ancient dog ~4,800 64 
calBP (12) from the Neolithic passage grave complex of Newgrange (Sí an Bhrú) in Ireland. We 65 
combined our ancient sample with 80 modern publically available full genome sequences and 66 
605 modern dogs (including village dogs and 48 breeds) genotyped on the 170k HD SNP array 67 
(12). 68 

We firstly assessed characteristics of the Newgrange dog by typing SNPs associated with 69 
specific phenotypic traits and by assessing the level of inbreeding. Our results suggest that the 70 
degree of artificial selection and controlled breeding during the Neolithic was similar to that 71 
observed in modern free-living dogs. In addition, the Newgrange dog did not possess variants 72 
associated with modern breed-defining traits including hair length or coat color. And though this 73 
dog was likely able to digest starch less efficiently than modern dogs, it was more efficient than 74 
wolves (12). 75 

A phylogenetic analysis, based on 170k SNPs revealed a deep split separating the modern 76 
Sarloos breed from other dogs (Fig. 1a). This breed - created in the 1930s in the Netherlands - 77 
involved breeding German Shepherds with captive wolves (13), thus explaining the breed’s 78 
topological placement. Interestingly, the second deepest split (evident on the basis of both the 79 
170K SNP panel – Fig 1a - and genome-wide SNPs  - Fig. S4) separates modern East Asian and 80 
Western Eurasian (Europe and the Middle East) dogs. Moreover, the Newgrange dog clusters 81 
tightly with Western Eurasian dogs. We used Principal Component Analysis (PCA), D-statistics 82 



and TreeMix (12) to further test this pattern. Each of these analyses unequivocally placed the 83 
Newgrange dog with modern European dogs (Figs. S5, S6, S7). These findings demonstrate that 84 
the node separating the East Asian and Western Eurasian clades is older than the Newgrange 85 
individual; directly radiocarbon dated to ~4,800 years ago. 86 

Other nodes leading to multiple dog populations and breeds (including the basal 87 
breeds(1) such as Greenland Sledge dogs or Siberian Husky; Fig. 1a) are poorly supported, 88 
suggesting that these breeds likely possess mixed ancestry from both Western Eurasian and East 89 
Asian dog lineages. To further assess the robustness of the deep split and those nodes associated 90 
with the potentially admixed lineages, we defined Western Eurasian and East Asian “core” 91 
groups (Fig. 1a) supported by the strength of the node leading to each cluster (12). We then used 92 
D-statistics to assess the affinity of each population to either Western Eurasian or East Asian 93 
core groups (12). The results of this analysis again revealed a clear East-West geographic pattern 94 
across Eurasia associated with the deep phylogenetic split (Fig. 1b). Breeds such as the Eurasier, 95 
Greenland Sledge dogs and Siberian Huskies (all basal breeds from Northern regions(1)), 96 
however, possess strong signatures of admixture with the East Asian core samples (Fig. S11), as 97 
do populations sampled in East Asia that clustered alongside Western Eurasian dogs (e.g. Papua 98 
New Guinean village dog; Fig. 1a).  99 

The existence of such a deep phylogenetic split between modern East Asian and Western 100 
Eurasian lineages suggests that dogs were derived independently from geographically and 101 
genetically differentiated wolf populations in different regions of Eurasia. To address this 102 
hypothesis we reconstructed their population history through time using the Multiple 103 
Sequentially Markovian Coalescent (MSMC)(12, 14). A reconstruction of effective population 104 
size from single high coverage genomes demonstrated a long, shared population history between 105 
the Newgrange dog and modern dogs from both Western Eurasia and East Asia (Fig. S15). A 106 
reconstruction using two genomes per group improved the resolution for recent time periods 107 
(Fig. 2a) and revealed a bottleneck in the Western Eurasian population, following its divergence 108 
from the East Asian core. A similar bottleneck observed in non-African human populations has 109 
been interpreted as a signature of a migration out of Africa (15). We therefore speculate that the 110 
analogous bottleneck observed in our dataset could be the result of a divergence and subsequent 111 
migration from east to west; supporting suggestions drawn from recent analyses of modern dog 112 
genomes (8, 9, 16). 113 

To further assess the possibility that dogs were independently domesticated from two 114 
separate wolf populations, we computed the divergence time between Eastern and Western 115 
populations using MSMC. To obtain reliable time estimates, we used the radiocarbon age of the 116 
Newgrange dog to calibrate the mutation rate for dogs (12)(Fig. S16). This resulted in a mutation 117 
rate estimate of between 0.3x10-8 and 0.45x10-8 per generation - similar to that obtained with an 118 
ancient grey wolf genome (17). Using this mutation rate, we calculated the divergence time 119 
between the two modern Russian wolves (18) used in this study and the modern dogs to be 60-120 
20Kya (Fig. S17; Fig. 2b). Importantly, this date should not be interpreted as a time frame for 121 
domestication, since the wolves we examined may not have been closely related to the 122 
population that gave rise to dogs (6).  123 

This analysis also suggested that the divergence between the East Asian and Western 124 
Eurasian core groups (~14,000-6,400 years ago) occurred commensurate or several millennia 125 
after the earliest known appearance of domestic dogs in both Europe (>15,000 years) and East 126 
Asia (>12,500 years) (1) (Figs. S17, 2b). In addition, admixture signatures from wolves into 127 



Western Eurasian dogs most likely pushed this estimated time of divergence deeper into the past 128 
(12) meaning that the expected time of divergence between East and Western cores is likely 129 
younger than our estimate. These results imply that indigenous populations of dogs were already 130 
present in Europe and East Asia prior to this genomic divergence. As a result, the early 131 
indigenous dog population in Europe was most likely replaced by the arrival of East Eurasian 132 
dogs.  133 

To investigate the likelihood of this replacement, we sequenced and analyzed 59 hyper-134 
variable mtDNA fragments from ancient dogs spread across Europe and combined those with 135 
167 modern sequences (12). Each sequence was then assigned to one of four major well-136 
supported haplogroups (A-D) (19). While the majority of ancient European dogs belonged to 137 
either haplogroup C or D (63% and 20%, respectively), most modern European dogs possess 138 
sequences within haplogroups A and B (64 and 22% respectively) (Fig. 2c, d, e). Using 139 
simulations, we showed that this finding cannot be explained by drift alone (12). Instead, this 140 
pattern arose from clear turnover in the mitochondrial ancestry of European dogs, most likely as 141 
a result of an arrival of East Asian dogs. This migration led to a replacement of ancient dog 142 
lineages in Europe that were present by at least 15,000 years ago (1). 143 

Though the mtDNA turnover is obvious, the nuclear signatures reveal an apparent long-144 
term continuity. Assessments of ancestry in humans have demonstrated that major (nuclear) 145 
turnovers can be difficult to detect without samples from the admixing population (11). A 146 
genome-wide PCA analysis revealed that PC2 clearly discriminates the Newgrange dog from 147 
other modern dogs (Fig. S8), suggesting that this individual possessed ancestry from an 148 
unsampled population. 149 

Our MSMC analysis reveals that the population split between the Newgrange dog and the 150 
East Asian core (as measured by cross coalescence rate [CCR]) is older (on average) than the 151 
split between modern Western Eurasian and East Asian lineages (Fig. 2b). Simulations suggest 152 
that this pattern could be explained by a partial replacement model in which the Newgrange dog 153 
retained a degree of ancestry from an outgroup population (Fig. S20a,b), that was different from 154 
modern wolves (12). Alternatively, this pattern could also be explained by secondary gene flow 155 
from Asian dogs into modern European dogs (Fig. S20c). Nevertheless, simulations show that 156 
secondary gene flow has a smaller effect on CCR than the partial replacement model (Fig. 157 
S20b,d). Moreover, secondary gene flow cannot explain the placement of the Newgrange dog on 158 
our genome-wide PCA (Fig. S8). Overall, these observations are consistent with a model in 159 
which the Newgrange dog retained a degree of ancestry from an ancient canid population that 160 
falls outside of the variation of modern dogs, but that is also different from modern wolves. 161 

The evidence for a human-mediated East-West translocation of dogs, during the late 162 
Neolithic/early Bronze Age, is consistent with recent genetic evidence from both dogs (9, 16) 163 
and humans (10, 11). Thus, the arrival of Eastern dogs likely resulted in the replacement of an 164 
indigenous population that inhabited Europe during the Paleolithic (Fig. 2c,d,e). The overall 165 
genomic pattern presented here, supporting the existence of two populations of dogs during the 166 
Paleolithic in the East and West of Eurasia, is consistent with two scenarios. Either two wolf 167 
populations were domesticated independently (Fig. 3a), or dog domestication occurred once 168 
(more than 12,000 years ago) followed by a Paleolithic dispersal across Eurasia. In the latter 169 
scenario, a temporal cline across Eurasia of the first appearance of dogs should be evident in the 170 
archaeological record. Instead, current archaeological evidence (12) reveals that no dogs 171 



predating 8,000 years ago are present in central Eurasia (Fig. 3b; Table S7), countering the 172 
hypothesis that dogs were transported across Eurasia during the Paleolithic. 173 

 Our combined results support the following hypothesis: two genetically differentiated and 174 
potentially extinct wolf populations in Eastern (8, 9) and Western Eurasia (7) were independently 175 
domesticated prior to the advent of settled agriculture (Fig. 3a). The eastern dog population then 176 
dispersed westward alongside humans during the recently described late Neolithic and Early 177 
Bronze Age human migrations (Yamnaya culture) into Western Europe (10, 11), including 178 
Ireland (20) whereupon they replaced an indigenous Paleolithic dog population. For numerous 179 
reasons, the null hypothesis should be that individual animal species were domesticated just once 180 
(21). The combined genetic and archeological results presented here, however, suggest that dogs, 181 
like pigs(22), were domesticated twice. Additional studies incorporating larger numbers of 182 
prehistoric samples, as well as further archeological investigation, will allow us to more firmly 183 
establish the temporal and geographic origins of domestic dogs. 184 

 185 
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Fig. 1: Deep split between East Asian and Western Eurasian dogs.a. A neighbour-joining 231 
tree (with bootstrap values) based on Identity by State (12) of 605 dogs. Red and yellow clades 232 
represent the East Asian and Western Asian core groups respectively (12). b. A map showing the 233 
location and relative proportion of ancestry (mean D-values) of dogs (Fig. S10). Positive values 234 
(red) indicate that the population shares more derived alleles with the East Asian core while 235 
negative values (yellow) indicate a closer association with the Western Eurasian core. 236 

Fig. 2: Effective population size, divergence times and mtDNA. a. Effective population size 237 
through time of East and Western Eurasian dogs and wolves with MSMC. b. Cross-coalescence 238 
rate (CCR) per year for each population pair in Fig. 2a. The CCR represents the ratio of within 239 
and between population coalescence rates (CR). The ratio measures the age and pace of 240 
divergence between two populations. Values close to 1 indicate that both within and between CR 241 
are equal meaning the two populations have not yet diverged. Values close to 0 indicate that the 242 
populations have completely diverged. c. Bar plot representing the proportion of mtDNA 243 
haplogroups at different time periods. d. Locations of archaeological sites with haplogroup 244 
proportions. e. Location of modern samples with haplogroup proportions. 245 

Fig. 3: Model of dog domestication and archeological evidence for a dual origin of dogs. a. 246 
Most likely model of dog domestication suggested by our data. An initial wolf population split 247 
into East and West Eurasian wolves that were then domesticated independently before going 248 
extinct (as indicated by the † symbol). The Western Eurasian dog population (European) was 249 



then partially replaced by a human-mediated translocation of Asian dogs during the late 250 
Neolithic / early Bronze Age, a process that took place gradually after the arrival of the eastern 251 
dog population. b. Map representing the geographic origin and age of the oldest archeological 252 
dog remains in Eurasia (12). 253 
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