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A supertube is a supersymmetric configuration in string theory which occurs when a pair of

branes spontaneously polarizes and generates a new dipole charge extended along a closed

curve. The dipole charge of a codimension-2 supertube is characterized by the U-duality

monodromy as one goes around the supertube. For multiple codimension-2 supertubes, their

monodromies do not commute in general. In this paper, we construct a supersymmetric

solution of five-dimensional supergravity that describes two supertubes with such non-Abelian

monodromies, in a certain perturbative expansion. In supergravity, the monodromies are

realized as the multi-valuedness of the scalar fields, while in higher dimensions they correspond

to non-geometric duality twists of the internal space. The supertubes in our solution carry

NS5 and 52
2 dipole charges and exhibit the same monodromy structure as the SU(2) Seiberg-

Witten geometry. The perturbative solution has AdS2 × S2 asymptotics and vanishing four-

dimensional angular momentum. We argue that this solution represents a microstate of

four-dimensional black holes with a finite horizon and that it provides a clue for the gravity

realization of a pure-Higgs branch state in the dual quiver quantum mechanics.
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1 Introduction and summary

1.1 Background

The fact that black holes have thermodynamical entropy means that there must be many

underlying microstates that account for it. Because string theory is a microscopic theory of

gravity, i.e., quantum gravity, all these microstates must be describable within string theory,

at least as far as black holes that exist in string theory are concerned. A microstate must be

a configuration in string theory with the same mass, angular momentum and charge as the

black hole it is a microstate of, and the scattering in the microstate must be well-defined as

a unitary process. The fuzzball conjecture [1, 2, 3, 4, 5] claims that typical microstates spread

over a macroscopic distance of the would-be horizon scale. More recent arguments [6, 7] also

support the view that the conventional picture of black holes must be modified at the horizon

scale and replaced by some non-trivial structure.

The microstates for generic non-extremal black holes are expected to involve stringy excita-

tions and, to describe them properly, we probably need quantum string field theory. However,

for supersymmetric black holes, the situation seems much more tractable. Many microstates

for BPS black holes have been explicitly constructed as regular, horizonless solutions of su-

pergravity — the massless sector of superstring theory. It is reasonable that the massless

sector plays an important role for black-hole microstates because the large-distance structure

expected of the microstates can only be supported by massless fields [8]. It is then natural

to ask how many microstates of BPS black holes are realized within supergravity. This has

led to the so-called “microstate geometry program” (see, e.g., [9]), which is about explicitly

constructing as many black-hole microstates as possible, as regular, horizonless solutions in

supergravity.

A useful setup in which many supergravity microstates have been constructed is five-

dimensional N = 1 ungauged supergravity with vector multiplets, for which all supersym-

metric solutions have been classified [10,11]. This theory describes the low-energy physics of

M-theory compactified on a Calabi-Yau 3-fold X or, in the presence of an additional S1 [10,12],

of type IIA string theory compactified on X. The supersymmetric solutions are completely

characterized by a set of harmonic functions on a spatial R3 base, which we collectively denote

by H. We will call these solutions harmonic solutions. If we assume that H has codimension-3

singularities, its general form is

H(x) = h+
N∑
p=1

Γp
|x− ap|

. (1.1)
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The associated supergravity solution generically represents a bound state of N black-hole

centers which sit at x = ap (p = 1, . . . , N) and are made of D6, D4, D2, and D0-branes

represented by the charge vectors Γp. In the current paper, we take X = T 6 = T 2
45×T 2

67×T 2
89

and the D-branes wrap some of the tori directions.

By appropriately choosing the parameters in the harmonic functions, the harmonic solu-

tions with codimension-3 centers, (1.1), can describe regular, horizonless 5D geometries that

are microstates of black holes with finite horizons [13, 14]. However, although they represent

a large family of microstate geometries, it has been argued that they are not sufficient for

explaining the black-hole entropy [15,16].

In fact, physical arguments naturally motivate us to generalize the codimension-3 har-

monic solutions, which leads to more microstates and larger entropy. One possible way of

generalization is to go to six dimensions. This is based on the CFT analysis [17] which sug-

gests that generic black-hole microstates must have traveling waves in the sixth direction and

thus depend on it. This intuition led to an ansatz for 6D solutions [18], based on which a new

class of microstate geometries with traveling waves, called superstrata, was constructed [19].

For recent developments in constructing superstratum solutions, see [20,21,22,23].

The other natural way to generalize the codimension-3 harmonic solutions (1.1) is to con-

sider codimension-2 sources in harmonic functions. This generalization is naturally motivated

by the supertube transition [24] which in the context of harmonic solutions implies that, when

certain combinations of codimension-3 branes are put together, they will spontaneously po-

larize into a new codimension-2 brane. For example, if we bring two orthogonal D2-branes

together, they polarize into an NS5-brane along an arbitrary closed curve parametrized by λ.

We represent this process by the following diagram:

D2(45) + D2(67)→ ns5(λ4567), (1.2)

where D2(45) denotes the D2-brane wrapped on T 2
45 and “ns5” in lowercase means that it is

a dipole charge, being along a closed curve. The original D2(45) and D2(67)-branes appeared

in the harmonic functions as codimension-3 singularities, as in (1.1). The process (1.2) means

that those codimension-3 singularities can transition into a codimension-2 singularity in the

harmonic function along the curve λ. Another example of possible supertube transitions is

D2(89) + D6(456789)→ 52
2(λ4567; 89), (1.3)

where 52
2 is a non-geometric exotic brane [25, 26, 27, 28, 29, 30, 31] which is obtained by two

transverse T-dualities of the NS5-brane [30,31].

We emphasize that the supertube transition is not an option but a must; if two codimension-

3 branes that can undergo a supertube transition are put together, they will, because the

supertube is the intrinsic description of the bound state [1, Sec. 3.1]. This suggests that
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considering only codimension-3 singularities in the harmonic solutions is simply insufficient

and we must include codimension-2 supertubes for a full description of the physics.

In the presence of codimension-2 branes, the harmonic functions H in general become

multi-valued [32]. This is because codimension-2 branes generally have a non-trivial U-duality

monodromy around them [30,31], and H transforms in a non-trivial representation under it.

For a multi-center configuration, if the i-th codimension-2 brane has U-duality monodromy

represented by a matrix Mi around it, the harmonic functions will have the monodromy

H →MiH. (1.4)

When the matrices Mi,Mj do not commute for some i, j, we say that the configuration is

non-Abelian.1

In [32], two of the authors wrote down first examples of codimension-2 harmonic solutions.

They involve multiple species of codimension-2 supertubes and can have the same asymptotic

charges as a four-dimensional (4D) black hole with a finite horizon area. However, the con-

stituent branes were unbound ; namely, by tuning parameters of the solution, we can separate

the constituents of the solution infinitely far apart. This implies that the solution does not

actually represent a microstate of a BPS black hole, for the following reason [1, Sec. 3.1]:

Classically, it is possible to consider a configuration in which constituents are separated by

a finite fixed distance from each other. However, quantum mechanically, by the uncertainty

principle, fixing the relative position of the constituents increases kinetic energy and the con-

figuration would not exactly saturate the BPS bound. Namely, it cannot be a microstate of

a BPS black hole. So, the solution constructed in [32] is not a black-hole microstate. Re-

latedly, the solution in [32] had Abelian monodromies. There is some kind of linearity for

codimension-2 branes with commuting monodromies, and we can construct solutions with

multiple codimension-2 centers basically by adding harmonic functions for each center.2 This

suggests that codimension-2 branes with Abelian monodromies do not talk to each other and

are not bound.

Then the natural question is: does a configuration of supertubes with non-Abelian mon-

odromies exist? If so, is it a bound state, and does it represent a black-hole microstate? These

are precisely the questions that we address in this paper.

1.2 Main results

In this paper, we will construct a configuration of codimension-2 supertubes with non-Abelian

monodromies within the framework of harmonic solutions, in a certain perturbative expansion.

1This is totally different from making the gauge group non-Abelian, namely generalizing Einstein-Maxwell
to Einstein-Yang-Mills. For some recent work on non-Abelian generalizations in that sense, see [33,34].

2More precisely, one should include certain interaction terms as well [32]. However, it is still true in this
case that one can in principle construct solutions with multiple codimension-2 centers located wherever we
want.
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We will give evidence that, as expected, it represents a bound state, and that it corresponds

to a microstate of a 4D black hole with a finite horizon.

Our configuration is made of two circular supertubes which share their axis. The two

tubes are separated by distance 2|L| and the radii of both rings are approximately R. See

Figure 2 on page 24. The harmonic functions H will have a non-trivial monodromy around

each of the two tubes. The monodromies for the two supertubes do not commute, namely,

they are non-Abelian. Because it is technically difficult to find the solution for general R

and |L|, we consider the “colliding limit”, |L| � R, in which we can construct the harmonic

functions order by order in a perturbative expansion.

Despite that the colliding limit allows us to construct the solution explicitly, it also has

a drawback: we cannot determine the value of R and |L| separately. If we knew the exact

solution, not a perturbative one, then we would be able to constrain them by imposing physical

conditions (the absence of closed timelike curves) on the explicit solution. In this paper we

will not be able to do that. Instead, we will make use of supertube physics to argue that R and

|L| are fixed (Section 4.4). Although the argument physically well motivated and convincing,

it is not a proof; we hope to revisit this point in future work.

Because the physical parameters R and |L| are fixed, it is not possible to separate apart

the two supertubes and therefore the configuration represents a bound state. Moreover, it

has asymptotic charges of a 4D black hole with a finite horizon. Therefore, the non-Abelian

2-supertube configuration is arguably a black-hole microstate. The geometry is not regular

near the supertubes, but the singular behavior is an allowed one in string theory, just as

the geometry near a 1/2-BPS brane is metrically singular but is allowed. In this sense,

our solution is not a microstate geometry but a microstate solution as defined in [9]. Our

solution simultaneously involves the two types of supertube, (1.2) and (1.3), and therefore is

non-geometric in that the internal torus is twisted by T-duality transformations around the

supertubes.

We find that the asymptotic geometry of the perturbative solution is AdS2 × S2, namely

the attractor geometry [35] of the black hole with the same charge. Furthermore, we find

that the 4D angular momentum of the solution is zero, J = 0. We will argue that this is due

to cancellation between the angular momentum that the individual supertubes carry and the

one coming from the electromagnetic crossing between the monopole charges carried by the

supertubes.

On a more technical note, in the colliding limit |L| � R, we can split the problem of

finding harmonic functions with desired monodromies into two parts. If one is at a distance

d ∼ R � |L| away from the supertubes (the “far region”), the configuration is effectively

considered as made of a single tube whose monodromy is the product of two individual

monodromies. On the other hand, if one is at a distance d ∼ |L| � R away from the tubes
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(the “near region”), we can regard the tubes as infinitely long and the problem reduces to

that of finding 2D harmonic functions with desired monodromies. Once we find harmonic

functions in both regions, we can match them order by order in a perturbative expansion to

construct the harmonic function in the entire space. This is the sense in which our solution

is perturbative in nature. In the near region, the problem is to find a pair of holomorphic

functions with non-trivial SL(2,Z) monodromies around two singular points on the complex

z-plane. Mathematically, this problem is the same as the one encountered in the SU(2)

Seiberg-Witten theory [36] and we borrow their results to construct the harmonic functions.

The solution thus constructed is perfectly consistent at the perturbative level, but it

is possible that unexpected new features are encountered in the exact, full-order solution.

However, constructing such an exact solution is beyond the techniques developed in this

paper and left for future research.

In terms of the harmonic solutions H = {V,KI , LI ,M}, our configuration is given by

V = ReG , K1 = K2 = − ImG, K3 = ReF ,

L1 = L2 = ImF , L3 = ReG , M = −1

2
ReF ,

(1.5)

where F and G are complex functions and carry the information of the monodromies. This

class of solutions describes the general configuration in which the complexified Kähler moduli

of T 2
45 and T 2

67 are set to τ 1,2 = i whereas the one associated with T 2
89 is given by τ 3 = F

G
. This

class is a type IIA realization of the so-called SWIP solution [37]. It is the particular choice

of the pair ( FG ) that fixes the monodromies of the configuration. In our solution, F and G

are related to the defining functions of the Seiberg-Witten solution.

1.3 Implication for black-hole microstates

In the above, we argued that our codimension-2 configuration represents a black-hole mi-

crostate. Our perturbative solution is quite different from the supergravity microstates based

on codimension-3 harmonic solutions [2, 13, 14] that have been extensively studied in the lit-

erature. In particular, its 4D asymptotics is the AdS2 × S2 attractor geometry of the black

hole with the same asymptotic charges, because the harmonic functions cannot have constant

terms. Furthermore, the 4D angular momentum of our solution vanishes, J = 0, because of a

cancellation mechanism between the tube and crossing contributions. To better understand

the possible implications of these properties, let us recall some known facts and conjectures

about black-hole microstates.

For codimension-3 harmonic solutions, a well-known family of microstate geometries whose

4D asymptotics can be made arbitrarily close to AdS2×S2 and whose angular 4D momentum

J can be made arbitrarily small is the so-called scaling solutions [38,39,40].3 Scaling solutions

3Note that the angular momentum here is the 4D one. In the scaling solution, the 4D angular momentum
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are made of three or more codimension-3 centers and exist for any value of the asymptotic

moduli, provided that certain triangle inequalities are satisfied by the skew products of the

charges of the centers. The defining property of the scaling solutions is that we can scale down

the distance between centers in the R3 base so that they appear to collide. However, the actual

geometry does not collapse; what is happening in this scaling process is that an AdS throat gets

deeper and deeper, at the bottom of which the non-trivial 2-cycles represented by the centers

sit. At the same time, the angular momentum J becomes smaller and smaller. In the infinite

scaling limit where all the centers collide in the R3 base, the geometry becomes precisely

AdS and the angular momentum J vanishes. It has been argued [43, 44] that the majority

of the black-hole microstates live in this infinite scaling limit, where the branes wrapping

the 2-cycles [45], called “W-branes”, become massless and condense. In the IIA picture, W-

branes are fundamental strings stretching between D-brane centers. In the language of quiver

quantum mechanics [38] dual to scaling solutions, the configurations with a finite throat

correspond to Coulomb branch states, while the configurations with W-brane condensate

would correspond to pure-Higgs branch states [46]. However, the gravity description of such

condensate is unclear.4 It cannot simply be the infinite throat limit of the scaling solution,

because in that limit the non-trivial 2-cycles disappear in the infinite depth and the entire

geometry becomes just AdS, indistinguishable from the black-hole geometry. Furthermore,

quantization of the solution space of the scaling solutions [51] says that the depth of the

throat cannot be made arbitrarily large but is limited by quantum effects. So, it appears

that, although the scaling solution is an important clue for the W-brane condensate and

pure-Higgs branch states, it is not the answer itself.

Relatedly, Sen and his collaborators argued [52, 53, 54] that the contribution to black-

hole microstates can be split into the “hair” part which lives away from the horizon and the

“horizon” part which gives the main contribution to black-hole entropy. The horizon part

has asymptotically AdS2 geometry and vanishing angular momentum, J = 0. This is based

on the fact that, in 4D, only J = 0 black holes are BPS and all extremal black holes with

J 6= 0 are non-supersymmetric [52]. The analysis of the quiver quantum mechanics describing

the worldvolume theory of a D-brane black-hole system [54] also supports the claim that all

black-hole microstates in 4D have J = 0.

In summary, both the analysis of the scaling solutions and the arguments of Sen et al.

suggest that the majority of the black-hole microstates have AdS asymptotics and vanishing

angular momentum, J = 0. They are states with a condensate of W-branes, or equivalently

can be made arbitrarily small. If one goes to 5D, there are two angular momenta, and the 4D angular
momentum is one of the two. The other 5D angular momentum, which is nothing but the D0-brane charge
from the 4D viewpoint, has been quite difficult to make smaller than a certain lower limit, for the geometry to
correspond to a microstate in the D1-D5 system [39,40,41,42]. This problem can be overcome by generalizing
the harmonic solution to the superstratum in 6D [21]. This issue is not relevant to the current discussion.

4For recent attempts to construct the gravity description of W-branes, see [47,48,49,50].
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fundamental strings stretching between D-branes, and correspond to the pure-Higgs branch

states of the dual quiver quantum mechanics.

Now if we look at our perturbative solution, it seems to have all the above properties

expected of a typical microstate of a 4D black hole. First, it has AdS2 asymptotics. This

was not done by fine-tuning of parameters but is a consequence of the non-trivial monodromy

of the supertubes. Second, its angular momentum vanishes, J = 0. This did not require

fine-tuning either, and it was due to the cancellation mechanism mentioned before between

different contributions to angular momentum. Moreover, our solutions are made of super-

tubes generated by the supertube transition which is nothing but condensation of the strings

stretching between the original D-branes. Therefore, it is natural to conjecture that our so-

lution is giving a gravity description of the W-brane condensate and represents a state in the

pure-Higgs branch. At least, it is expected to provide a clue for the gravity description of

pure-Higgs branch states.

Of course, to make such a strong claim we need strong evidence, including the demonstra-

tion that non-Abelian supertube configurations do exist beyond the perturbative level, and

the proof they have a huge entropy to account for the black-hole microstates. Such studies

would require more sophisticated tools and techniques than developed in the current paper.

At this point, we just state that it is quite non-trivial and intriguing that the perturbative

non-Abelian 2-supertube solution has the properties expected of black-hole microstates, and

leave further investigation as an extremely interesting direction of future research.

In [55] (see also [56]), an interesting set of solutions with AdS2 × S2 asymptotics were

constructed. They belong to the so-called IWP family of solutions [57,58] and are character-

ized by one complex harmonic function in three dimensions. The main differences between

the solutions in [55] and ours are as follows. First, because the solutions in [55] are based on

one complex harmonic function, their possible monodromies are Abelian. On the other hand,

our solution has two complex harmonic functions and thus the monodromies are in general

non-Abelian. Second, the solutions in [55] have two distinct AdS2 × S2 asymptotic regions.

In contrast, the multiple asymptotic regions in our solutions are related by U-duality and

regarded as one asymptotic region in different U-duality frames. Therefore, our solution has

only one physical asymptotic region.

Let us end this section by mentioning one other difference between microstates with

codimension-3 centers and ones with codimension-2 centers. One issue about the existing

construction of black-hole microstates based on codimension-3 harmonic solutions is that,

multi-center configurations (except for the case where there are two centers and one of them

is a 1/2-BPS center) are expected to lift and disappear from the BPS spectrum once generic

moduli are turned on [59]. The physical origin of this is that, if there are multiple centers,

when one continuously changes the moduli to arbitrary values, the discreteness of quantized
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charges is incompatible with the BPS condition [60]. This is certainly an issue for codimension-

3 centers but, codimension-2 supertubes may be able to avoid it by continuously deforming

the tube shapes and re-distributing the monopole charge density along its worldvolume, so

that the BPS condition is met even if one changes the moduli continuously. Therefore, it may

be that codimension-2 solutions provide a loophole for the no-go result of [59] and represent

microstates that remain supersymmetric everywhere in the moduli space.

1.4 Plan of the paper

The rest of this paper is organized as follows. In Section 2 we review the BPS solutions, called

harmonic solutions, which can describe a wide class of multi-center configurations in string

theory in four and five dimensions. We discuss their physical properties, giving examples for

cases with codimension-3 and codimension-2 centers. We also introduce the class of solutions

in which only one SL(2,Z) duality is turned on and has only one modulus τ . In Section 3, we

explicitly construct an example of non-Abelian supertubes. We first introduce the colliding

limit and the matching expansion which allow us to construct the solution order by order by

connecting the far-region and near-region solutions. We then use it to perturbatively construct

the solution. As the near-region solution, we use an ansatz inspired by the SU(2) Seiberg-

Witten theory. In Section 4, we study the physical properties of the solution. We work out

the brane charge content, the asymptotic geometry and the angular momentum, and discuss

the condition for the absence of closed timelike curves (CTCs). Based on the results, we argue

that the solution is a bound state and thus represent a black-hole microstate. We also discuss

the cancellation mechanism responsible for the vanishing of the angular momentum.

The Appendices include some details of the computations carried out in the main text

and some topics tangential to the content of the main text. In Appendix A, we discuss some

aspects of the duality transformations acting on the harmonic functions. In Appendix B, we

discuss some details of the matching expansion to higher order than is discussed in the main

text. In the main text, we focus on the class of solutions in which only one of the three moduli

of the STU model is activated. In Appendix C, we discuss the class of solutions in which two

of moduli are activated. In Appendix D, we discuss properties of the supertubes created from

a general 1/4-BPS center in the one-modulus class of solutions. In Appendix E, we present

the explicit harmonic functions for the D2 + D6→ 52
2 supertube used in the main text.
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2 Multi-center solutions with codimension 2 and 3

2.1 The harmonic solution

The most general supersymmetric solutions of ungauged d = 5, N = 1 supergravity with

vector multiplets have been classified in [61] (see also [10, 11, 62]).5 When one applies this

result to M-theory compactified on T 6 = T 2
45 × T 2

67 × T 2
89 (the so-called STU model) and

further assumes a tri-holomorphic U(1) symmetry [12], the general supersymmetric solution

corresponds to the following 11-dimensional fields:

ds2
11 = −Z−2/3(dt+ k)2 + Z1/3ds2

GH + Z1/3
(
Z−1

1 dx2
45 + Z−1

2 dx2
67 + Z−1

3 dx2
89

)
,

A3 =
(
BI − Z−1

I (dt+ k)
)
∧ JI , J1 ≡ dx4 ∧ dx5 , J2 ≡ dx6 ∧ dx7 , J3 ≡ dx8 ∧ dx9 ,

(2.1)

where I = 1, 2, 3; Z ≡ Z1Z2Z3; and dx2
45 ≡ (dx4)2 + (dx5)2 etc.

Supersymmetry requires that all fields in (2.1) be written in terms of 3D harmonic func-

tions as follows [12]. First, the metric ds2
GH must be a 4-dimensional metric of a Gibbons-

Hawking space given by

ds2
GH = V −1(dψ + A)2 + V dx2 , ψ ∼= ψ + 4π , x = (x1, x2, x3) . (2.2)

The 1-form A and the scalar V depend on the coordinates x of the R3 base and satisfy

dA = ∗3 dV , (2.3)

where ∗3 is the Hodge dual operator on the R3. From this, we see that V has to be a harmonic

function in R3,

∆V = 0 , ∆ ≡ ∂i∂i . (2.4)

The rest of the fields can be written in terms of additional harmonic functions KI , LI ,M on

R3 as follows:

BI = V −1KI(dψ + A) + ξI , dξI = − ∗3 dK
I , (2.5)

ZI = LI +
1

2
CIJKV

−1KJKK , (2.6)

k = µ(dψ + A) + ω , (2.7)

µ = M +
1

2
V −1KILI +

1

6
CIJKV

−2KIKJKK , (2.8)

where CIJK = |εIJK |. If one replaces the internal space T 6 = (T 2)3 by a Calabi-Yau 3-fold X,

most of our formulas remain valid as long as we replace CIJK by the triple intersection numbers

5Depending on whether the Killing vector constructed from the Killing spinor bilinear is timelike or null,
the solutions are classified into timelike and null classes. In this paper we will consider the timelike class.
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of X [12]. We sometimes write eight harmonic functions collectively as H = {V,KI , LI ,M}.
For two such vectors H,H ′, we define the skew product 〈H,H ′〉 by

〈H,H ′〉 ≡ VM ′ −MV ′ +
1

2
(KIL′I − LIK ′I). (2.9)

The 1-form ω satisfies

∗3dω = 〈H, dH〉 . (2.10)

Applying d ∗3 on this equation implies

0 = 〈H,∆H〉 . (2.11)

This is often called the integrability condition [63] (see also [13]), and is a necessary require-

ment for the existence of ω. Harmonicity of the functions H = {V,KI , LI ,M} may make

one think that the right-hand side identically vanishes. However, the harmonic functions

generically have singularities associated with the presence of sources, which can lead to a

non-vanishing contribution to the right-hand side and make ω multi-valued. Whether we

must allow or disallow such contribution must be determined based on physical considera-

tions, as we will discuss below in concrete examples.

The above represent a broad family of supersymmetric solutions characterized by eight

harmonic functions, H = {V,KI , LI ,M}. We call this set of solutions harmonic solutions.6

Although we started with d = 5 supergravity, the existence of the isometry along ψ allows

us to dimensionally reduce the solution to 4D. Therefore, the harmonic solutions can be

regarded as representing configurations in 4D.

Reducing the 11D solution (2.1) along ψ, we obtain the following supersymmetric solution

of type IIA supergravity:7

ds2
10,str = − 1√

Q
(dt+ ω)2 +

√
Q dx2 +

√
Q
V

(
Z−1

1 dx2
45 + Z−1

2 dx2
67 + Z−1

3 dx2
89

)
,

e2Φ =
Q3/2

V 3Z
, B2 =

(
V −1KI − Z−1

I µ
)
JI , (2.12)

C1 = A− V 2µ

Q
(dt+ ω) , C3 =

[
(V −1KI − Z−1

I µ)A+ ξI − Z−1
I (dt+ ω)

]
∧ JI ,

6These solutions were first found in [64] as solutions of d = 4,N = 2 supergravity with vector multiplets
and made more explicit in [65]. In 5D, the supersymmetric solutions in N = 2 supergravity with vector
multiplets in the timelike class were classified in [11, 61] (see also [10, 62]) and later reduced to 4D solutions
in [12], which are identical to the ones in [64, 65]. In 4D, it was later shown in [66] that these solutions are
the most general supersymmetric solutions in the timelike class in d = 4,N = 2 ungauged supergravity with
vector multiplets. There being no widely accepted name for these solutions, we call them harmonic solutions.

7For expressions for higher RR potentials, see, e.g., [32, App. E] and [67].
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where ds2
10,str is the string-frame metric and

Q ≡ V (Z − µ2V ) . (2.13)

Explicitly in terms of harmonic functions,

Q = V L1L2L3 − 2MK1K2K3 −M2V 2

− 1

4

∑
I

(KILI)
2 +

1

2

∑
I<J

KILIK
JLJ −MV

∑
I

KILI

≡ J4(H), (2.14)

where J4 is the quartic invariant of the STU model; for some more discussion, see Appendix A.

Let the complexified Kähler moduli for the 2-tori T 2
45, T 2

67, and T 2
89 be τ 1, τ 2, and τ 3,

respectively. The expression in terms of harmonic functions is

τ 1 = B45 + i
√

detGab =

(
K1

V
− µ

Z1

)
+ i

√
Q

Z1V
, (2.15)

where a, b = 4, 5 and the radii of 456789 directions have been all set to ls =
√
α′. The other

moduli τ 2 and τ 3 are given by the same expression with 45 replaced by 67 and 89, respectively.

In supergravity, these moduli parametrize the moduli space
[SL(2,R)

SO(2)

]3
. In string theory, this

reduces to
[ SL(2,R)

SL(2,Z)×SO(2)

]3
by the [SL(2,Z)]3 duality symmetry that identifies different values

of τ I .

For other embeddings of the harmonic solutions in type IIA and IIB supergravity, see [11,

68,69].

Duality transformations

Because we will consider codimension-2 configurations with non-trivial U-duality monodromies,

it is useful to recall some facts about the U-duality group in the STU model, which is

SL(2,Z)1 × SL(2,Z)2 × SL(2,Z)3 [70].

In particular, it is important to understand how the U-duality acts on the harmonic

functions. Let us take SL(2,Z)1. This group is generated by (i) simultaneous T-duality

transformations on the 45 directions and (ii) the shift symmetry B45 → B45 + 1. Because we

know the T-duality action on 10D fields from the Buscher rule and their expression (2.12)

in terms of harmonic functions, it is easy to read off how the harmonic functions transform

under (i). The same is true for the B-shift symmetry (ii). The result is that (i) and (ii) are

realized by the SL(2,Z)1 matrices

MT-duality =

(
0 −1
1 0

)
, MB-shift =

(
1 1
0 1

)
, (2.16)
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and that the eight harmonic functions transform as a direct sum of four doublets,(
K1

V

)
,

(
2M
−L1

)
,

(
−L2

K3

)
,

(
−L3

K2

)
. (2.17)

Since (i) and (ii) generate SL(2,Z)1, we conclude that, even for general transformations

SL(2,Z)1, the harmonic functions transform as a collection of doublets (2.17).

Because all three SL(2,Z)’s are on the same footing, we can infer the transformation of

harmonic functions under general SL(2,R)I transformation for I = 1, 2, 3. Under SL(2,R)I ,

the eight harmonic functions transform as a direct sum of four doublets:(
u
v

)
→MI

(
u
v

)
, MI ≡

(
αI βI
γI δI

)
∈ SL(2,R)I , (2.18)

where the vector ( uv ) represents any of the pairs(
KI

V

)
,

(
2M
−LI

)
,

(
−LJ
KK

)
,

(
−LK
KJ

)
, J 6= K 6= I . (2.19)

One can show that the transformations (2.18) for different values of I commute, as they should

because they are associated with different tori.

It is not difficult to show that the transformation (2.18) of the harmonic functions means

the standard linear fractional transformation of the complexified Kähler moduli as:

τ I → αI τ
I + βI

γI τ I + δI
, τJ → τJ (J 6= I) , (2.20)

where there is no summation over I.

For some more aspects on the duality transformation of the harmonic solutions, see Ap-

pendix A.

Conditions for the absence of closed timelike curves

(Super)gravity solutions can exhibit closed timelike curves (CTCs), signaling that the solution

is not physically allowed.8 To study their existence, let us look at the 10D metric (2.12). First,

for gtt, gii (i = 1, 2, 3) to be real, we need Q ≥ 0. Then, for the torus directions to give no

CTCs, we get V ZI ≥ 0, I = 1, 2, 3. So, we must impose the following conditions:

Q ≥ 0 , (2.21a)

V ZI ≥ 0 . (2.21b)

Next, let us focus on the R3 part of the 10D metric (2.12) which is

ds2
10,str ⊃ −

ω2

√
Q

+
√
Q dx2. (2.22)

It is possible that closed curve C in R3 becomes timelike under this metric, depending on the

behavior of the 1-form ω. That would imply a CTC, which must be physically disallowed.

We will discuss this condition in specific situations later.

8For over-rotating supertubes, CTCs can appear along the profile of the supertube [71,72].
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2.2 Configurations with only one modulus

Thus far, we have been discussing configurations for which all moduli τ I , I = 1, 2, 3 can in

principle be all non-trivial. Now let us focus on configurations with

τ 1 = τ 2 = i, τ 3 = arbitrary. (2.23)

Although being particular instances of the general solution, they can still describe a wide

range of physical configurations, such as ones with multiple centers with codimension 3 and

2. This class of solutions provides a particularly nice setup for our purpose of constructing

codimension-2 solutions with non-Abelian monodromies. This class is nothing but a type IIA

realization of the solution called the SWIP solution in the literature [37]. Here we discuss

some generalities about this class.

Using the expression (2.15) for τ I in terms of harmonic functions, we see that the condition

(2.23) implies the following relations:

K1 = K2 , L1 = L2 , L3 = V , M = −K
3

2
, (2.24)

leaving four independent harmonic functions. If we plug these expressions into (2.15), we

obtain

τ 3 =
K3 + iL1

V − iK1
=
F

G
, (2.25)

where we defined complex combinations

F ≡ K3 + iL1, G ≡ V − iK1. (2.26)

As we can see from (2.19), the pair ( FG ) transforms as a (complex) doublet under SL(2,Z)3.

From the expression (2.25), it is obvious that τ 3 undergoes linear fractional transformation

under SL(2,Z)3 (although we already said this in (2.20) in general). The harmonic functions

are written in terms of them as

V = ReG , K1 = K2 = − ImG, K3 = ReF ,

L1 = L2 = ImF , L3 = ReG , M = −1

2
ReF .

(2.27)

In terms of the complex quantities F,G, some previous formulas become

〈H,H ′〉 = Re(FḠ′ −GF̄ ′), (2.28)

Q = (ImFḠ)2. (2.29)

The equation for ω, (2.10), reads

∗3dω = Re
(
FdḠ−GdF̄

)
. (2.30)
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Let us consider the general no-CTC conditions. Under the constraint (2.24), the condition

(2.21a) is automatically satisfied because Q = (ImFḠ)2 ≥ 0. On the other hand, the

condition (2.21b) gives

Im(FḠ) = |G|2 Im τ 3 ≥ 0 . (2.31)

Here we have seen that switching off two moduli τ 1 and τ 2 leads to a substantial simplifica-

tion. In Appendix C, we discuss switching off one modulus τ 1, which also leads to interesting

simplification.

2.3 Codimension-3 solutions

The harmonic solutions are characterized by a set of 8 harmonic functions. Non-trivial har-

monic functions in R3 must have singularities, which correspond to physical sources such

as D-branes. Depending on the nature of the source, the singularity can have various co-

dimension. Here we review some specifics about solutions with codimension-3 sources, or

codimension-3 solutions for short, which have been extensively studied in the literature. In

the next subsection, we will proceed to codimension-2 solutions, which is the main focus of

the current paper.

If one assumes that all singularities of the harmonic functions have codimension 3, the

general form of the harmonic functions is [12,64,65]

V = h0 +
N∑
p=1

Γ0
p

|x− ap|
, KI = hI +

N∑
p=1

ΓIp
|x− ap|

,

LI = hI +
N∑
p=1

ΓpI
|x− ap|

, M = h0 +
N∑
p=1

Γp0
|x− ap|

,

(2.32)

where x = (x1, x2, x3) and ap ∈ R3 (p = 1, . . . , N) specifies the location of the codimension-3

sources where the harmonic functions become singular. The charge vector Γp ≡ {Γ0
p,Γ

I
p,Γ

p
I ,Γ

p
0}

carries the charges of each source and, together with h ≡ {h0, hI , hI , h0}, fully determine the

asymptotic properties of the solution, namely mass, angular momenta and the moduli at

infinity.

We still have to satisfy the integrability condition (2.11). Because the Laplacian ∆ acting

on |x − ap|−1 gives a delta function supported at x = ap, the right-hand side of (2.11) does

not generally vanish. Mathematically, this does not pose any problem for the existence of ω,

although it becomes multi-valued, having a Dirac-Misner string [73]. However, the presence

of a Dirac-Misner string leads to CTCs [13]. Therefore, it is physically required that the

delta-function singularities be absent on the right-hand side of (2.11). This condition implies
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the well-known constraint [63]∑
q(6=p)

〈Γp,Γq〉
apq

= 〈h,Γp〉 for each p , (2.33)

where apq ≡ |ap − aq|.
Let us see how this argument goes [13]. Let B3 be a small ball containing x = ap, and

consider the integral ∫
B3

d2ω =

∫
B3

d3x 〈H,∆H〉, (2.34)

where we used (2.10). The integrand on the right-hand side is the same as the one in the

integrability condition (2.11). If it has a delta-function source at x = ap, the integral is

nonzero. On the other hand, the left-hand side can be rewritten as∫
B3

d2ω =

∫
S2

dω =

∫
∂S2

ω , (2.35)

where S2 = ∂B3 and the boundary ∂S2 can be taken to be an infinitesimal circle going around

the north pole, through which a Dirac-Misner string passes. This being non-vanishing means

that the component of ω along ∂S2 is finite; if we take the Dirac-Miser string to be along the

positive z-axis, then ωϕ 6= 0 where ϕ is the azimuthal angle around the z-axis. Therefore, for

this curve C = ∂S2, the first term in (2.22) does not vanish while the second one vanishes

(note that Q is finite as long as we are away from x = ap). So, curve C is a CTC. Therefore,

the right-hand side of the integrability condition (2.11) must not even have delta-function

singularities, and this is what leads to the constraint (2.33).

The interpretation of the singularities in the harmonic functions (2.32) from a string/M-

theory point of view is the existence of extended objects in higher dimensions. In the string/M-

theory uplift, p-form potentials are expressed in terms of the harmonic functions, which allows

us to establish a dictionary between the harmonic functions and their corresponding brane

configurations [65]. For example, in the type IIA picture (2.12), the dictionary between the

singularities in the harmonic functions and the D-brane sources is

V ↔ D6(456789) ,

K1 ↔ D4(6789)

K2 ↔ D4(4589)

K3 ↔ D4(4567)

,

L1 ↔ D2(45)

L2 ↔ D2(67)

L3 ↔ D2(89)

, M ↔ D0 . (2.36)

The D-branes are partially wrapped on T 6 and appear in 4D as pointlike (codimension-

3) objects sourcing the harmonic functions. The components of the charge vector Γ =

{Γ0,ΓI ,ΓI ,Γ0} are related to the quantized D-brane numbers by

Γ0 =
gsls
2
N0, ΓI =

gsls
2
N I , ΓI =

gsls
2
NI , Γ0 =

gsls
4
N0, (2.37)
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where N0, N I , NI , N0 ∈ Z (recall that the radii of the internal torus directions have been all

set to ls =
√
α′). When multiple sources are present, the harmonic solution (2.32) represents

a multi-center configuration of D-branes.

The harmonic solutions with codimension-3 sources have been extensively used to describe

various brane systems for various purposes. Examples include a 5D 3-charge black hole made

of M2(45), M2(67) and M2(89)-branes, which is dual to the Strominger-Vafa black hole [74];

the BMPV black hole [75]; the MSW black hole [76]; the supersymmetric black ring [11,68,77];

multi-center black hole/ring solutions [65]; and microstate geometries [13, 14].

One simple example is when (2.32) contains only one term, namely, N = 1. For the generic

charge vector Γ ≡ Γp=1, this describes a single-center black hole in 4D which is made of D0,

D2, D4 and D6-branes. The area-entropy of this black hole can be readily computed to be

S =
π
√
J4(Γ)

G4

, (2.38)

where the 4D Newton constant is given by G4 = g2
s l

2
s/8 and J4(Γ) is obtained by replacing

H = {V,KI , LI ,M} in (2.14) by Γ = {Γ0,ΓI ,ΓI ,Γ0}. Multi-center solutions which have the

same asymptotic moduli as this single-center solution and the same total charge
∑

p Γp = Γ

can be thought of as representing microstates/sub-ensemble of the ensemble represented by

the single-center black hole.

In the one-modulus class discussed in Section 2.2, the harmonic functions (2.32) can be

rewritten in terms of the complex harmonic function (2.26) as

F = hF +
N∑
p=1

Qp
F

|x− ap|
, G = hG +

N∑
p=1

Qp
G

|x− ap|
, (2.39)

where the complex quantities (hF , hG) and (Qp
F , Q

p
G) are related to the real quantities h and

Γp, respectively, just as (F,G) are related to H via (2.27). We will refer to (QF , QG) as

complex charges. Using (2.27) and (2.37), we can see that they are related to quantized

charges by

QF =
gsls
2

(N3 + iN1), QG =
gsls
2

(N0 − iN1),

N1 = N2, N1 = N2, N0 = N3, N3 = −N0.

(2.40)

The black-hole entropy (2.38) can be written as

S =
8π |Im(QF Q̄G)|

g2
s l

2
s

= 2π |N3N1 +N1N
0| . (2.41)
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2.4 Codimension-2 solutions

Codimension-2 sources are inevitable

In addition to codimension-3 sources, the harmonic solutions can also describe codimension-

2 sources. Actually, codimension-2 sources are not an option but a must ; codimension-3

sources are insufficient because they can spontaneously polarize into codimension-2 sources

by the supertube transition [24]. The supertube transition is a spontaneous polarization

phenomenon that a certain pair of species of branes — specifically, any 1/4-BPS 2-charge

system — undergo. In this transition, the original branes polarize into a new dipole charge,

which has one less codimension and extends along a closed curve transverse to the worldvolume

of the original branes. This new configuration represents a genuine BPS bound state of the 2-

charge system [1, Sec. 3.1]. The supertube transition may seem similar to the Myers effect [78],

but it is different; the Myers effect takes place only in the presence of an external field, whereas

the supertube transition occurs spontaneously, by the dynamics of the system itself.

The system described by codimension-3 harmonic solutions involves various D-branes as

we saw in (2.36). These D-branes can undergo supertube transitions into codimension-2

branes, which act as codimension-2 sources in the harmonic function. Therefore, codimension-

2 solutions are in the same moduli space of physical configurations as codimension-3 solutions,

and consequently must be considered if one wants to understand the physics of the D-brane

system.

In particular, supertubes are known to be important for BPS microstate counting of black

holes because of the entropy enhancement phenomenon [15, 16, 69, 79]. So, the supertubes

realized as codimension-2 sources in the harmonic functions must play a crucial role in the

black hole microstate geometry program, as first argued in [30,31]. The codimension-2 brane

produced by the supertube transition can generically be non-geometric, having non-geometric

U-duality twists around it.

A prototypical example of the supertube transition [24] can be represented as

D0 + F1(1)→ d2(λ1) . (2.42)

This diagram means that the 2-charge system of D0-branes and F1-strings has undergone a su-

pertube transition and polarized into a D2-brane along an arbitrary closed curve parametrized

by λ. The object on the right-hand side is written in lowercase to denote that it is a dipole

charge. In this case, as the D2 is along a closed curve, there is no net charge but a D2 dipole

charge. The original D0 and F1 charges are dissolved into the D2 worldvolume as magnetic

and electric fluxes. The Poynting momentum due to the fluxes generates the centrifugal force

that prevents the arbitrary shape from collapsing.

Upon duality transformations of the process (2.42), other possible supertube transitions
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can be found. For example,

D0 + D4(4567) → ns5(λ4567) ,

D4(4589) + D4(6789) → 52
2(λ4567; 89) ,

D2(45) + D2(67) → ns5(λ4567) ,

D2(89) + D6(456789) → 52
2(λ4567; 89) .

(2.43)

This means that the ordinary branes on the left-hand side can polarize into codimension-

2 branes, including the exotic branes such as the 52
2-brane.9 Note in particular that the

D-branes appearing on the left-hand side are the ones that appear in the brane-harmonic

function dictionary (2.36). So, the dictionary is insufficient and must be extended to include

codimension-2 branes that the codimension-3 D-branes can polarize into. Because we solved

the BPS equations and obtained harmonic solutions without specifying the co-dimensionality

of the sources, the codimension-2 supertubes on the right-hand side of (2.43) must be describ-

able in terms of the same harmonic solutions, just by allowing for codimension-2 singularities.

The formulas for the M-theory/IIA uplift also remain valid.

Examples of codimension-2 solutions

Let us study some codimension-2 solutions that are given in terms of the harmonic solutions.

From (2.43) let us consider the following process:

D2(45) + D2(67)→ ns5(λ4567) . (2.44)

It was shown in [32] that the codimension-2 ns5 supertube on the right-hand side can be

described within harmonic solutions by the following harmonic functions

V = 1 , K1 = 0 , K2 = 0 , K3 = γ ,

L1 = f2 L2 = f1 , L3 = 1 , M = −γ
2
,

(2.45)

where

f1 = 1 +
Q1

L

∫ L

0

dλ

|x− F(λ)|
, f2 = 1 +

Q1

L

∫ L

0

|Ḟ(λ)|2 dλ
|x− F(λ)|

. (2.46)

The supertube lies along the closed curve x = F(λ), where Fi(λ) (i = 1, 2, 3) are arbitrary

functions satisfying Fi(λ+L) = Fi(λ). Q1 is the D2(67)-brane charge, while the D2(45)-brane

charge is given by Q2 = Q1

L

∫ L
0
|Ḟ(λ)|2 dλ. The integrals in (2.46) arise as a consequence of

these charges being dissolved along the worldvolume of the supertube. For expressions of

L,Q1, Q2 in terms of microscopic quantities, see [32]. γ is a harmonic scalar function defined

through the equation

dα = ∗3dγ , α =
Q1

L

∫ L

0

Ḟi(λ) dλ

|x− F(λ)|
dxi . (2.47)

9For a review on exotic branes and a further analysis of supertube transitions involving them, see [31]. We
discuss a D2 + D6→ 52

2 transition in Appendix E.
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Even though the 1-form α is single-valued, γ is multi-valued and has monodromy as we go

once around the supertube [32]:

γ → γ + 1. (2.48)

The integrability condition (2.11) is satisfied without any delta-function singularity along the

profile, because ∆γ = 0 without any singular contribution on the profile [32]. Other data of

the harmonic solutions are

ZI = (f2, f1, 1) , µ = 0 , ω = −α , ξI = (0, 0,−α) . (2.49)

The charge content of the solution can be easily read off from the harmonic functions.

The original codimension-3 charges for D2(45) and D2(67) are encoded in L1 and L2 by the

dictionary (2.36). From (2.46), we see that these charges are distributed along the profile

x = F(λ) with densities Q1/L and (Q1/L)|Ḟ|2, respectively. On the other hand, the NS5

charge is encoded in the monodromy. Eq. (2.48) means the following monodromy around the

supertube: (
K3

V

)
=

(
γ
1

)
→
(
γ + 1

1

)
=

(
1 1
0 1

)(
K3

V

)
. (2.50)

From (2.18), (2.19), this means that we have the following SL(2,Z)3 monodromy:

M3 =

(
1 1
0 1

)
∈ SL(2,Z)3. (2.51)

One can also see this from the Kähler moduli,

τ 1 = i

√
f1

f2

, τ 2 = i

√
f2

f1

, τ 3 = γ + i
√
f1f2 . (2.52)

We see that, as we go once around the supertube, τ 1,2 are single-valued whereas τ 3 has the

monodromy

τ 3 → τ 3 + 1 . (2.53)

Because Re τ 3 = B89, this monodromy implies that there is an NS5-brane along the closed

curve.

One can consider other configurations involving codimension-2 branes. In Appendix E, we

discuss the D2(89)+D6(456789)→ 52
2(λ4567; 89) supertube, which is the last entry in (2.43)

and was studied in [32].

In the special case where |Ḟ| = 1, we have f1 = f2 ≡ f and therefore τ 1 = τ 2 = i as we

can see from (2.52). This case belongs to the one-modulus class discussed in Section 2.2, with

the complex harmonic functions

F = γ + if, G = 1. (2.54)
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This setup is simple but still non-trivial enough to include interesting physical situations such

as the D2(45)+D2(67)→ ns5(λ4567) supertube. It can also describe the D2(89)+D6(456789)→
52

2(λ4567; 89) supertube discussed in Appendix E. We will use this setup to construct a non-

Abelian supertube configuration involving both D2+D2→ ns5 and D2+D6→ 52
2 supertubes.

In the above we discussed configurations just with codimension-3 sources or just with

codimension-2 sources. One can also consider a mixed configuration in which a codimension-

3 source and a codimension-2 source coexist [32].

General remarks on codimension-2 solutions

For the codimension-3 case, we could show the direct connection between the presence of

delta-function sources on the right-hand side of equation (2.11) and the existence of CTCs.

We can follow the same line of logic for the codimension-2 case, but the conclusion is that

there is no such direct connection.

In (2.34), we had an integral over a small ball B3 containing a point where there is a

possible delta function. In the codimension-2 case, delta-function singularities are expected

to be along a curve on which a source lies, and there is a Dirac-Misner “sheet” ending on

that curve. Let us consider an integral over a very thin filled tube T 3 containing a piece of

such a curve. Now we rewrite the integral as we did in (2.35). Instead of S2 = ∂B3, we

have a cylinder C2 = ∂T 3, where we can ignore the top and bottom bases for a very thin

tube. As the boundary of the cylinder, ∂C2, we take two lines that go along the curve in

opposite directions. The Dirac-Misner sheet goes between the two lines. Then the integral

is basically equal to the jump across the Dirac-Miner sheet in the component of ω along the

curve. Let us denote it by ∆ω‖. Then, the integral is equal to l∆ω‖, where l is the length of

the tube. On the other hand, the same integral is equal to lσ, where σ is the local density of

the delta-function source along the curve. Equating the two, we obtain

∆ω‖ = σ. (2.55)

Namely, the jump in ω along the curve is given by the density of delta-function sources.

However, this does not give the behavior of ω itself, which is necessary for evaluating (2.22)

and study the presence of CTCs. So, the argument that worked for codimension 3 does not

apply to codimension 2. It must be some other singular behavior of the harmonic functions,

not just the delta-function source, that one must study to investigate the no-CTC condition.

We do not pursue that in this paper. Instead, we will study (2.22) for specific explicit metrics

in the presence of codimension-2 sources.

For codimension-3 sources, construction of general multi-center solutions is straightforward

because of “linearity”: one can simply add the poles representing different codimension-

3 sources, as we did in (2.32). However, in contrast, construction of general solutions with
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multiple codimension-2 sources is less straightforward. This is because linearity is lost if there

are multiple codimension-2 objects whose monodromy matrices do not commute, in other

words, if the monodromies are non-Abelian. Indeed, the explicit construction of solutions

with multiple codimension-2 supertubes thus far [32] is restricted to the case where (i) all

supertubes have the same monodromy, or (ii) different supertubes have different monodromies

but they all commute with each other. In either case, the monodromies are Abelian. In such

cases, linearity still holds and the corresponding harmonic functions can be obtained by adding

harmonic functions for each supertube.10 In the next section, we will construct a configuration

of two supertubes with non-Abelian monodromies in a certain limit.

Although we have only discussed sources with codimension 3 and 2, it is also possible to

consider sources with codimension 1. Such a source represents a domain wall that connects

spaces with different values of spacetime-filling fluxes, just like a D8-brane in 10D connects

spacetimes with different values of the RR flux 10-form. Including codimension-1 sources

should lead to a wide range of physical configurations which have been little studied. It

would be very interesting to include them in the harmonic solutions and explore the physical

implications of solutions with codimension 3, 2, and 1 sources.

3 Explicit construction of non-Abelian supertubes

3.1 Non-Abelian supertubes

In the previous section, we saw that harmonic solutions can describe BPS configurations

of codimension-2 supertubes. A codimension-2 supertube has a non-trivial U-duality mon-

odromy around it, which can be represented by a monodromy matrix M . If multiple codi-

mension-2 supertubes are present and the i-th supertube has a monodromy matrix Mi then,

in general, the monodromies of different supertubes do not commute, [Mi,Mj] 6= 0 for some

pair (i, j), namely, the monodromies are non-Abelian. In this section, we show, for the first

time, that such a non-Abelian configuration of supertubes is indeed possible.

We will focus on configurations in which only one modulus τ 3 ≡ τ is non-trivial and

has SL(2,Z) monodromies. As discussed in Section 2.2, in this situation, only four harmonic

functions are independent (2.24), which can be combined into two complex harmonic functions

F,G. In terms of them, the modulus τ can be written as

τ =
F

G
. (3.1)

The simplest non-Abelian configuration is one with two supertubes. As we go around the i-th

supertube, the harmonic functions transform as(
F
G

)
→Mi

(
F
G

)
, Mi ∈ SL(2,Z) , i = 1, 2. (3.2)

10See Footnote 2.
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We require that the monodromies be non-Abelian,

[M1,M2] 6= 0. (3.3)

See Figure 1 for a pictorial description of such a 2-supertube configuration.

Figure 1: A non-Abelian configuration of two supertubes. The monodromy ma-
trices M1,M2 of the two supertubes do not commute, [M1,M2] 6= 0.

Specifically, we will consider a two-supertube configuration with the following monodromies:

M1 =

(
1 0
−2 1

)
, M2 =

(
3 2
−2 −1

)
. (3.4)

These clearly give a non-Abelian pair of monodromies satisfying (3.3). As we will discuss

later in this section, this choice is motivated by the solution to a similar monodromy problem

discussed in the SU(2) Seiberg-Witten theory [36]. If we go around the two supertubes, the

total monodromy is

M = M2M1 =

(
−1 2

0 −1

)
. (3.5)

If one is far away from the supertubes, none of the monodromies of the supertubes are

visible and the configuration looks like that of a single-center codimension-3 solution. From the

|x| → ∞ behavior of the harmonic functions, we can read off the charges of the single-center

solution. We will find that the charges are those of a 4-charge black hole in four dimensions

with a finite horizon. In other words, seen from a large distance, our configuration looks

like an ordinary 4-charge black hole without any monodromic structure. However, as one

approaches it, the topology of the supertubes becomes distinguishable and discovers that the

spacetime has non-trivial non-Abelian monodromies.

3.2 Strategy

The problem that we should attack in principle is the following. We first specify two closed

curves C1, C2 in R3 along which the two supertubes lie, such as the ones in Figure 1. Then we
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must find a pair of harmonic functions (F,G) which, as we go around curve Ci, undergoes the

monodromy transformation (3.2) with the monodromy matrix Mi given in (3.4). If we can

find such pair (F,G), then the configuration exists.

Although this is a mathematically well-posed problem, explicitly carrying it out for general

shapes of supertubes is technically challenging. Instead, our strategy here is to take a particu-

larly simple configuration for the two supertubes and further take a limit in which the problem

of finding the solution becomes simple and tractable but is still non-trivial. This is sufficient

for the purpose of proving the existence of a configuration of non-Abelian supertubes.

Figure 2: (a) A configuration of two circular supertubes sharing the axis. (b) The
configuration in the colliding limit, |L| � R. In this limit, we can study the
problem in two different regimes, the near and far regions. In the near region, the
system becomes 2-dimensional but we must consider two separate monodromies
M1,M2 of two supertubes. In the far region, the system remains 3-dimensional
but there is only one tube with monodromy M = M2M1.

Specifically, we assume that the two tubes are circular and share the axis (so that the

configuration is axisymmetric). The two tubes have almost identical radius R > 0 and are

very close to each other, separated by distance 2|L|; see Figure 2(a). More precisely, in

equations, the location of supertubes 1 and 2 is specified as follows:

Supertube 1: (x1)2 + (x2)2 = (R + |L| cos l)2, x3 = +|L| sin l,

Supertube 2: (x1)2 + (x2)2 = (R− |L| cos l)2, x3 = −|L| sin l,
(3.6)

where l is the angle between the two tubes relative to the x1-x2 plane; for example, l = 0 if

they are concentric. We study this system in the colliding limit,

|L| � R. (3.7)

In this limit, we can break down the problem into two regimes, depending on the distance d

from an observer to the supertubes, as follows:
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(i) The near region, d ∼ |L| � R.

In this region, the two supertubes can be regarded as infinite straight lines and we can

forget the direction along them. Therefore, the system can effectively be treated as 2-

dimensional. By symmetry, we can zoom in onto the region near the point (x1, x2, x3) =

(R, 0, 0) without loss of generality, and identify the z-plane with a small piece of the

x1-x3 plane near that point with the relation

z = (x1 −R) + ix3, |x1 −R|, |x3| ∼ |L| � R. (3.8)

On the z-plane, the two supertubes are located at z = L and z = −L, where we defined

L = |L|eil. (3.9)

So, the problem reduces to that of finding on the z-plane a pair of 2D harmonic functions

(F,G) that has non-trivial monodromies M1,M2 given in (3.4) around z = ±L. See

Figure 2(b).

(ii) The far region, |L| � R ∼ d.

In this region, the two supertubes cannot be resolved and we effectively have only one

supertube sitting at

(x1)2 + (x2)2 = R2, x3 = 0, , (3.10)

with the combined monodromy M = M2M1 given in (3.5). So, the problem reduces

to that of finding 3D harmonic functions (F,G) with the monodromy M around one

circular supertube.

After finding the expressions for the harmonic functions (F,G) in regions (i) and (ii), we

must connect them in the intermediate region, |L| � d � R, in order to show the existence

of (F,G) defined in the entire space. Namely, we must match the large-|z| behavior of the

near-region solution smoothly onto the near-ring (i.e., (x1, x2, x3)→ (R, 0, 0)) behavior of the

far-region solution.

This matching can be done order by order and the harmonic function in the entire space

can be reconstructed to any order in perturbative expansion. To see exactly how this works

in practice, let us study a toy example in which we can work out the matching procedure in

detail.

A toy model for the matching procedure

As a simpler physical problem in which there are two very different scales |L| and R with

|L| � R, let us consider the following problem. In three dimensions, we would like to find

25



the field configuration sourced by two point-like charges at x = ±L ≡ (0, 0,±|L|) with charge

Q±. Assume that the field H is governed by the Helmholtz equation(
∆− 1

R2

)
H = 0 . (3.11)

Of course, for this problem, we know the exact answer:

H =
Q+e

− |x−L|
R

|x− L|
+
Q−e

− |x+L|
R

|x + L|
. (3.12)

However, let us try here to recover this expression by working in the “near region” |x| ∼ |L| �
R and in the “far region” |L| � R ∼ |x| separately, and finally matching the expressions in

the intermediate region connecting the two.

In the near region |x| ∼ |L| � R, we can ignore the R dependence in (3.11). Therefore,

the expression in the near region is

H =
Q+

|x− L|
+

Q−
|x + L|

. (3.13)

Let (r, θ, ϕ) be the spherical polar coordinates for R3. If we increase r, still staying inside the

near region, we can do a small |L|
r

expansion of this and obtain

H =
Q+ +Q−

r
+

(Q+ −Q−)|L| cos θ

r2
+O

(
|L|2

r3

)
, (3.14)

which corresponds to the standard multipole expansion. We would like to find how this

multipole expansion matches onto the one in the far region.

To be able to do the matching, there must be an intermediate region where the ex-

pansion (3.14) is correct. To understand what this means, let us make the scaling for the

intermediate region, |L| � r � R, more precise by setting

r

R
∼ ε ,

|L|
r
∼ δ , (3.15)

where ε, δ � 1. If we are to keep r finite, the replacement

R→ Rε−1 , |L| → |L|δ , (3.16)

will keep track of the order of expansion. If we do this replacement in the exact expres-

sion (3.12) and expand it in powers of ε and δ, we obtain

H =

[
Q+ +Q−

r
+

(Q+ −Q−)|L| cos θ

r2
δ +O(δ2)

]
− (Q+ +Q−)ε

R

+

[
(Q+ +Q−)r

2R2
− (Q+ −Q−)|L| cos θ

2R2
δ +O(δ2)

]
ε2 +O(ε3) . (3.17)
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If we make ε small enough so that only the O(ε0) terms remain, then this reproduces the

near-region expansion (3.14). Therefore, the correct procedure is: take ε→ 0 first, and then

match the δ expansion. In other words, take R → ∞ first, and then match the small |L|
r

expansion.

With this mind, let us go to the far region. Here, the two charges cannot be resolved

and the function H can be singular only at r = 0. The instruction is: find solutions of the

Helmholtz equation such that their R → 0 limit reproduces (3.14), term by term in the |L|
r

expansion. First,

(Q+ +Q−)
e−

r
R

r
(3.18)

is clearly an exact solution with a singularity at r = 0. If we take R → ∞, this gives r−1,

which reproduces the first term in (3.14). Next,

(Q+ −Q−) |L| e−
r
R

(
1

r2
+

1

Rr

)
cos θ (3.19)

is an exact solution and its R→∞ limit reproduces the second term in (3.14). So, up to this

order, the far-region solution which reproduces (3.14) is

H =
(Q+ +Q−) e−

r
R

r
+ (Q+ −Q−) |L| e−

r
R

(
1

r2
+

1

Rr

)
cos θ +O

(
|L|2

r3

)
. (3.20)

It is clear that we can keep going with this procedure to find the far-region solution that

reproduces the expansion (3.14) to an arbitrarily high order, upon taking the R → ∞ limit.

In principle, if we can sum this expansion to all orders, we can recover the exact expres-

sion (3.12) with singular sources at x = ±L. However, at any finite order, the perturbative

expression (3.20) has a singularity only at r = 0; namely, some features of the exact solution

can be seen only after carrying out the infinite sum, which is a limitation of the method of

matching expansion.

Below, we will use the exactly same matching procedure to find the harmonic functions

describing a configuration of non-Abelian supertubes.

3.3 The near region

Now with the colliding limit and the matching procedure understood, let us construct the

solution starting from the near-region side.

Some general statements

As we mentioned before, in the near region, we can regard the round supertubes as parallel,

infinite straight lines. Forgetting about the direction along the tubes, the problem reduces to

the one on the z-plane defined in (3.8). A harmonic function in 2D can be written as the sum
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of holomorphic and anti-holomorphic functions. In the present case, this means that F,G are

both written as a sum of holomorphic and anti-holomorphic functions.

Let us further assume that F and G are purely holomorphic:

F = F (z), G = G(z). (3.21)

This is equivalent to assuming that τ = F/G is holomorphic. In this case, we can solve (2.30)

to find ω explicitly. If we set

ω = ω2dx
2 + ωzdz + ωz̄dz̄, (3.22)

where ωz, ωz̄ and ω2 are independent of x2, then

ω2 = − Im(FḠ) + C, ∂ωz̄ − ∂̄ωz = 0 (3.23)

where C is a constant.

The above ω2 is SL(2,Z) invariant because(
α β
γ δ

)
: Im(FḠ)→ Im[(αF + βG)(γF̄ + δḠ)] = Im[(αδ − βγ)FḠ] = Im(FḠ), (3.24)

for αδ − βγ = 1. Therefore, even if there is a singularity around which there is an SL(2,Z)

monodromy and (F,G) are multi-valued, ω2 is always single-valued. By (2.55), this means

that the integrability condition (2.11) is satisfied without delta-function singularities along

the supertube.

The constant C and functions ωz, ωz̄ must ultimately be fixed by extending the near-region

solution to the far-region solution and requiring that ω be regular everywhere and vanish at

3D infinity. In the present case, we will find that ω in the far region has a non-vanishing

component only in the direction along the supertube. Therefore, we set ωz = ωz̄ = 0. On the

other hand, the constant C cannot be fixed unless we have an exact solution (we only have a

perturbative solution in the present paper).

When there is a supertube, the direction along its profile is a dangerous direction where

there can be CTCs [71,72]. This is the x2 direction in the present case and the 22 component

of the metric which is, e.g., from (2.12),

g22 ∝ −ω2
2 +Q = −[− Im(FḠ) + C]2 + [Im(FḠ)]2 = C[2 Im(FḠ)− C]. (3.25)

From (2.31), Im(FḠ) ≥ 0. So, for (3.25) not to be negative, the constant C must be in the

following range:

0 ≤ C ≤ 2 min[Im(FḠ)]. (3.26)

This does not have to hold up to z = ∞. It only has to hold up to some value of |z| above

which the 2D approximation breaks down.
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The solution

On the z-plane, we would like to construct a pair of harmonic functions (F,G) that has non-

trivial non-Abelian monodromy (3.2) around some singular points. In doing that, we must

require that the imaginary part of τ = F/G be always positive, because of the condition (2.31).

There are many such possibilities, but in this paper we will take the pair of holomorphic

functions that appeared in the solution of d = 4,N = 2 supersymmetric gauge theory by

Seiberg and Witten [36], because it is a fundamental example of configurations with non-

Abelian monodromies.

The original work of Seiberg and Witten was about the exact determination of the low-

energy effective theory of N = 2 pure SU(2) gauge theory. At low energy, the theory has a

Coulomb moduli space parametrized by the vacuum expectation value of the vector multiplet

scalar, z = 〈trφ2〉 ∈ C. At point z on the moduli space, one has a pair of holomorphic

functions (aD(z), a(z)) which represent the mass of the magnetic monopole and the electron

at that point. In terms of them, the low-energy coupling constant, τ(z), is expressed as

τ(z) =
daD
da

=
a′D(z)

a′(z)
. (3.27)

The theory has an SL(2,Z) duality group which changes the coupling constant τ and acts

non-trivially on the spectrum of dyons. More specifically, under SL(2,Z), the pair (aD, a)

transforms as a doublet and τ undergoes linear fractional transformation. The moduli space

has three singularities at z = ±L,∞ around which there are non-trivial monodromies of the

SL(2,Z) duality. The one at z = L is due to the magnetic monopole becoming massless and

the monodromy around it is given by M1 in (3.4). On the other hand, the one at z = −L is

due to the (1, 1) dyon getting massless and the monodromy is given by M2 in (3.4). Finally,

the one at z = ∞ is due to asymptotic freedom and the monodromy is given by M in (3.5).

See Figure 3 for the monodromy structure of the moduli space.

One sees that this theory has everything we need. We identify the SL(2,Z) duality group

on the gauge theory side with the SL(2,Z)3 U-duality group on the supertube side, the

modulus z with the z coordinate of the near region, the mass parameters (aD, a) with the

harmonic functions (F,G), and τ with the torus modulus τ 3 = τ . Furthermore, the position

z = ±L of the singularities on the moduli space is identified with the position of the supertubes

in the near region. The precise identification between (F,G) and (aD, a) is(
F
G

)
= c

(
a′D(z)
a′(z)

)
(3.28)

where c ∈ C is a constant of dimension [c] = (length)1/2.11 Now Figure 3 is understood as the

monodromy structure of the harmonic functions (F,G) in the near region.

11At this stage, c can actually be an arbitrary single-valued holomorphic function in z. However, one can
show that, in order that the fields near each of the two supertube at z = ±L behave the same way as they
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Figure 3: The monodromy structure in the near region. At z = ±L we have
singularities corresponding to the position of the supertubes. When going around
one of them, (F,G) gets transformed by Mi. Going around both of them induces
a monodromy transformation M = M2M1.

One may wonder about the meaning, in the supertube context, of the singularity at z =∞
of the Seiberg-Witten solution. Recall that the near-region description in terms of the z-plane

is only an approximation near the tubes. In reality, the infinity of the near-region z-plane

is connected to the 3D space, where the tube is not infinitely long but is finite and closed.

In the context of the original Seiberg-Witten theory, which is defined in the z-plane, the

monodromy at z = ±L must be canceled by the monodromy at z =∞. On the other hand,

in the supertube context, the z-plane is connected to a larger space, R3 and the monodromy

is canceled by the other side of the supertube in R3.

The explicit expression for a(z) and aD(z) is

a(z) =

√
2

π

∫ L

−L
dx

√
z − x

(L− x)(L+ x)
=
√

2(z + L) 2F1

(
−1

2
,
1

2
; 1;

2L

z + L

)
,

aD(z) =

√
2 i

π

∫ z

L

dx

√
z − x

(x− L)(x+ L)
=
L− z
2i
√
L

2F1

(
1

2
,
1

2
; 2;

L− z
2L

)
.

(3.29)

Here 2F1(a, b; c; z) is the hypergeometric function. Note that L is a complex number (see (3.9)).

The sign of the square root in the integral expression is defined to be positive for 0 < L < z

and, for complex L, z, it is defined by analytic continuation. Taking derivatives, we have

a′(z) =
1√
2π

∫ L

−L

dx√
(z − x)(L− x)(L+ x)

=

√
2

π
√
z + L

K

(
2L

z + L

)
,

a′D(z) =
i√
2π

∫ z

L

dx√
(z − x)(x− L)(x+ L)

=
i

π
√
L
K

(
L− z

2L

)
,

(3.30)

where K(z) = π
2 2F1(1

2
, 1

2
; 1; z) is the complete elliptic integral of the first kind. As mentioned

above, as we go around the singular points z = L,−L and z =∞, the pair (aD, a) and hence

do near ordinary supertubes, such as the D2 + D2 → ns5 supertube given in (2.54) or the D2 + D6 → 52
2

supertube given in (E.6), we must take c to be constant. It must be possible to derive the behavior of c near
supertubes by properly taking account of its backreaction of the brane worldvolume. See [80] for a discussion
of such backreaction in F-theory configurations of 7-branes.
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(a′D, a
′) undergoes SL(2,Z) transformations given by the monodromy matrices M1,M2 in (3.4)

and M in (3.5), respectively.

Now we have (F,G) in the near region, which is related via (3.28) to (a′D, a
′) given in (3.30).

To match this with the far-region solution, we will later need the |z| → ∞ behavior of (a′D, a
′).

It is given by

a′(z) =
1√
2z

+
3L2

4(2z)5/2
+

105L4

64(2z)9/2
+ · · · , (3.31a)

a′D(z) =
i

π

[
1√
2z

ln
8z

L
+

3L2

4(2z)5/2

(
ln

8z

L
− 5

3

)
+

105L4

64(2z)9/2

(
ln

8z

L
− 389

210

)
+ · · ·

]
.

(3.31b)

Just from the leading terms, it is easy to check that we have the monodromy(
a′D
a′

)
→
(
−1 2
0 −1

)(
a′D
a′

)
= M

(
a′D
a′

)
. (3.32)

For later convenience, let us also write down the behavior near the singularities z = ±L.

Near z = L,

a′(z) = − 1

2π
√
L

[
ln
z − L
32L

− 1

8L

(
ln
z − L
32L

+ 2

)
(z − L) + · · ·

]
. (3.33a)

a′D(z) =
i

2
√
L

[
1− 1

8L
(z − L) + · · ·

]
=

i

2
√
L

∞∑
n=0

(
(2n)!

22nn!2

)2(−1

2L

)n
(z − L)n. (3.33b)

Near z = −L,

a′(z) =
i

2π
√
L

[
ln
z + L

−32L
+

1

8L

(
ln
z + L

−32L
+ 2

)
(z + L) + · · ·

]
. (3.34a)

a′D(z) = − i

2π
√
L

[
ln
z + L

32L
+

1

8L

(
ln
z + L

32L
+ 2

)
(z + L) + · · ·

]
. (3.34b)

From these, it is easy to check the monodromy M1,M2.

3.4 The far region: coordinate system and boundary conditions

Having fixed the near-region solution, the next task is to find the far-region solution that

matches onto it. For that, as preparation, let us introduce the coordinate system appropriate

for our purpose and discuss the boundary conditions that the far-region solution must satisfy.

Toroidal coordinate system

As we explained, in the far region, we effectively have one supertube. To describe this con-

figuration, we introduce the toroidal coordinate system (η, σ, φ) [81]; see Figures 4 and 5. In

terms of Cartesian coordinates (x1, x2, x3), the toroidal coordinates are given by

x1 = R

√
η2 − 1

η − cosσ
cosφ , x2 = R

√
η2 − 1

η − cosσ
sinφ , x3 = R

sinσ

η − cosσ
, (3.35)
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Figure 4: Toroidal coordinates (η, σ, φ). η is a “radial” coordinate that decreases
as one goes away from the ring, σ is the angular variable around the ring and φ is
an angular variable along the ring.

where R is the radius of the ring, σ is the angular variable around the ring and φ is the

angular variable along the ring. The inverse relations are given by

η =
x2 +R2

Σ
, cosσ =

x2 −R2

Σ
, tanφ =

x2

x1
, (3.36)

with

Σ2 = (x2 −R2)2 + 4R2(x3)2 . (3.37)

The domain of the coordinates is 1 ≤ η < ∞, −π ≤ σ < π, 0 ≤ φ < 2π. Then, the flat 3D

metric in the toroidal coordinates is given by

ds2 =
R2

(η − cosσ)2

(
dη2

η2 − 1
+ dσ2 + (η2 − 1)dφ2

)
. (3.38)

To connect the far- and near-region solutions, we have to relate the near-region (2D) and

the far-region (3D) coordinates. In the near-region limit η → ∞, the Cartesian coordinates

are given, to leading order, by

x1 ' R +
R cosσ

η
, x2 = 0 , x3 ' R sinσ

η
. (3.39)

Then we can relate the z coordinate defined in (3.8) to the toroidal coordinates (η, σ) as

z = (x1 −R) + ix3 =
R

η
eiσ . (3.40)

This is the fundamental relation to connect the near- and far-region solutions.

Boundary conditions

On the far-region solution, we have to impose boundary conditions at infinity (η → 1 and

σ → 0 simultaneously) and near the supertube (η →∞).

First, let us discuss the boundary condition at infinity. We require the harmonic functions

to go as

H = h+
Γ

r
+O

(
1

r2

)
as r →∞, (3.41)
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Figure 5: Toroidal coordinates in the x2 = 0 section. Solid lines represent
constant-η surfaces and dotted lines represent constant-σ surfaces. As η → 1,
the constant-η surface approaches the vertical (x3) axis , while the position of the
ring corresponds to the η →∞ limit.

where r =
√

(x1)2 + (x2)2 + (x3)2. This is the same r → ∞ behavior as the codimension-

3 solution, (2.32) (or (2.39)). This is because we are interested in codimension-2 branes

(supertubes) which have been produced by the supertube transition out of codimension-3

branes. Very far from it, the codimension-2 brane must look like a codimension-3 object with

the original monopole charge. Therefore, the harmonic function must have the 1/r term whose

coefficient Γ is the same as the total monopole charge of the original brane configuration.

The boundary condition near the tube (η → ∞) comes from the matching condition

discussed at the end of Section 3.2. Let us write the large-|z| expansion of a′(z) and a′D(z)

as12

a′(z) =
∞∑
n=0

a′n(z) , a′D(z) =
∞∑
n=0

a′Dn(z) , (3.42)

where a′n, a
′
Dn = O(z−2n−1/2) (here it is understood that O(z−2n−1/2) includes z−2n−1/2 log z).

The first three terms of each expansion are given in (3.31a) and (3.31b). As we discussed

earlier in Section 3.2, we must be able to find a far-region solution that matches onto this

expansion, order by order. Concretely, let us do a near-ring (η → ∞) expansion of the far-

region harmonic functions F and G and let the n-th term be Fn and Gn where their behavior

12This expansion corresponds to (3.14) of the toy model in Section 3.2.
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as η →∞13 is Fn, Gn = O(η2n+1/2).14 Then, upon using the dictionary (3.40), we must have

Fn = ca′Dn +O(η2n−1/2), Gn = ca′n +O(η2n−1/2), η →∞. (3.43)

Note that the lesson of the toy model in Section 3.2 was that we have to take the limit r � R

first, and then match the small |L|
r

expansion. In the present case, the former corresponds to

matching only the leading O(η2n+1/2) term in (3.43), while the latter corresponds to doing

this for each value of n.

For example, for the first (n = 0) term, we have

F0 =
ic

π
√

2z
ln

8z

L
+O(η−1/2) , G0 =

c√
2z

+O(η−1/2) . (3.44)

In principle, we can find Fn and Gn satisfying (3.43) for n arbitrarily large. If we could

carry out the infinite sum F =
∑

n Fn and G =
∑

nGn, it would correspond to the exact

two-supertube solution defined in the entire R3.

3.5 The far region: the solution

In the far region, there is only one supertube (see Figure 4) and we are instructed to find a

pair of harmonic functions (F,G) that has the monodromy(
F
G

)
→M

(
F
G

)
=

(
−1 2
0 −1

)(
F
G

)
(3.45)

as σ → σ + 2π. In other words,

F → −F + 2G , (3.46a)

G→ −G , (3.46b)

Harmonic functions in toroidal coordinates

Let us explain now how to construct F and G. We start with the ansatz for G since its

monodromy (3.46b) is simpler. If we assume the following separated form,

G(η, σ, φ) =
√
η − cosσ T (η)S(σ)V (φ) , (3.47)

the Laplace equation becomes

∆G =
(η − cosσ)5/2

R2
T (η)S(σ)V (φ)

×
[

1

η2 − 1

V ′′(φ)

V (φ)
+
S ′′(σ)

S(σ)
+

1

T (η)

(
1

4
T (η) + 2ηT ′(η) + (η2 − 1)T ′′(η)

)]
= 0 . (3.48)

13The behavior will be determined in the next section 3.5 and Appendix B.
14These n-th terms correspond to (3.20) of the toy model in Section 3.2.
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This can be reduced to the following three ordinary differential equations:

0 = V ′′(φ) +m2V (φ) , (3.49a)

0 = S ′′(σ) + k2S(σ) , (3.49b)

0 = (η2 − 1)T ′′(η) + 2ηT ′(η) +

(
1

4
− k2 − m2

η2 − 1

)
T (η) , (3.49c)

with arbitrary constants m and k. The general solutions for these equations are given by

V (φ) = eimφ , (3.50a)

S(σ) = eikσ , (3.50b)

T (η) = P
|m|
|k|−1/2(η) and Q

|m|
|k|−1/2(η) , (3.50c)

where Pm
k (η) and Qm

k (η) are the associated Legendre functions of the first and second kind,

respectively, with degree k and order m. If we require 2π periodicity along the φ (respectively

σ) direction, the constant m (respectively k) will take integer values. Because our configura-

tion is symmetric along φ (see Figure 4), we should take m = 0. Then as we can easily see

from the form of the solutions (3.50), we have to choose k ∈ Z + 1/2 in order for G to have

the monodromy (3.46b). So the solution for G is written as

G =
√
η − cosσ eikσ

(
A|k|−1/2P|k|−1/2(η) +B|k|−1/2Q|k|−1/2(η)

)
, (3.51)

where k ∈ Z + 1/2 and A|k|−1/2, B|k|−1/2 are constants.

Let us turn to F . The monodromy (3.46a) motivates the following ansatz:

F (η, σ, φ) =
√
η − cosσ

(
U(η)− σ

π
T (η)

)
S(σ)V (φ) . (3.52)

Plugging this into the Laplace equation, we obtain

0 = U(η)

[
1

η2 − 1

V ′′(φ)

V (φ)
+
S ′′(σ)

S(σ)
+

1

U(η)

(
1

4
U(η) + 2ηU ′(η) + (η2 − 1)U ′′(η)

)
− 2

π

T (η)

U(η)

S ′(σ)

S(σ)

]
− σ

π
T (η)

[
1

η2 − 1

V ′′(φ)

V (φ)
+
S ′′(σ)

S(σ)
+

1

T (η)

(
1

4
T (η) + 2ηT ′(η) + (η2 − 1)T ′′(η)

)]
. (3.53)

If we take T, S and V to be the solutions of (3.48) given by (3.50), then the second line of

(3.53) vanishes and we are left with

(η2 − 1)U ′′(η) + 2ηU ′(η) +

(
1

4
− k2 − m2

η2 − 1

)
U(η) =

2

π
T (η)

S ′(σ)

S(σ)
. (3.54)

This differential equation differs from (3.49c) in its inhomogeneous term. The solution of

(3.54) for a specific choice of T (η) and S(σ) can be easily found. We gave a few examples in

Appendix B.
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Even though we have to solve (3.54) to get explicit harmonic functions, the monodromy

can be easily seen without solving it. Let us assume k ∈ Z+ 1/2 as in (3.51) to get an overall

sign flip after going around the supertube (σ → σ + 2π). We also set m = 0 because of the

symmetry of our configuration. Then the monodromy is exactly what we want (3.46a):

F → −F + 2G as σ → σ + 2π . (3.55)

If we choose a particular term in (3.42) with a specific value of n that we want to reproduce,

the value of k can be determined and the equation (3.54) can be solved. Here we will focus

on the first (n = 0) term in (3.43). The leading term in the large-|z| expansion of a′(z) is

a′0 =
1√
2z

=

√
η

2R
e−iσ/2 , (3.56)

where we have used the dictionary (3.40). Then we have to take k = −1/2 to reproduce this

as a limit of the 3D harmonic function G. We can easily show that this is also correct choice

for a′D0 and F . With this choice, T (η) is also fixed and is given by a linear combination of

P0(η) and Q0(η).

The resulting harmonic functions can be written as

F (η, σ, φ) =
√
η − cosσ e−iσ/2U(η)− σ

π
G , (3.57)

G(η, σ, φ) =
√
η − cosσ e−iσ/2T (η) , (3.58)

where

T (η) = A0P0(η) +B0Q0(η) (3.59)

and U(η) is a solution of

(η2 − 1)U ′′(η) + 2ηU ′(η) = − i
π
T (η) . (3.60)

A0 and B0 are constant of integration which should be chosen from the boundary conditions.

It is easy to write down solutions explicitly if we impose boundary conditions at infinity,

(3.41), before solving (3.60). The boundary condition at infinity, (3.41), leads to the condition

B0 = 0 , (3.61)

since Q0(η) diverges at 3D infinity.15 Then (3.60) is easily solved to give

U(η) = C0P0(η) +D0Q0(η)− i

π
A0 ln

η + 1

2
. (3.62)

15 More precisely, B0 6= 0 would lead to divergence at 3D infinity and on the x3-axis. If σ 6= 0, as we can see
from (3.35), η = 1 corresponds to the points on the x3-axis, (x1, x2, x3) = (0, 0, R cot σ2 ). As η → 1, Q|k|−1/2

diverges as log(η − 1) while the prefactor is finite:
√
η − cosσ =

√
2 |sin σ

2 |. Therefore, B0 6= 0 makes the
harmonic function diverge on the x3-axis and should be avoided.
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By imposing the same boundary condition at infinity on U(η), (3.41), we conclude that

D0 = 0 . (3.63)

The final expression for the harmonic functions is

F (η, σ, φ) =
√
η − cosσ e−iσ/2

i

π
A0

(
π

i

C0

A0

− ln
η + 1

2
+ iσ

)
, (3.64)

G(η, σ, φ) =
√
η − cosσ e−iσ/2A0 , (3.65)

where we used P0(η) = 1.

Matching

We have obtained the solutions in the near and far regions. Let us fix the coefficients A0 and

C0 by matching the two solutions in the intermediate region. This amounts to imposing the

conditions (3.44). The near-ring (η →∞) expressions for F and G are

F ' √η e−iσ/2 i
π
A0

(
π

i

C0

A0

− ln
η

2
+ iσ

)
, G ' √η e−iσ/2A0 . (3.66)

Therefore, the conditions (3.44) read

i

π

√
η e−iσ/2A0

(
π

i

C0

A0

− ln
η

2
+ iσ

)
=
i

π
c

√
η

2R
e−iσ/2

(
ln

4R

L
− ln

η

2
+ iσ

)
,

√
η e−iσ/2A0 = c

√
η

2R
e−iσ/2 .

(3.67)

These determine the constants to be

A0 =
c√
2R

, C0 =
i

π

c√
2R

ln
4R

L
. (3.68)

The final expression for the far-region solution is

F (η, σ, φ) =
ic

π
√

2R

√
η − cosσ e−iσ/2

[
− ln

L(η + 1)

8R
+ iσ

]
, (3.69a)

G(η, σ, φ) =
c√
2R

√
η − cosσ e−iσ/2 . (3.69b)

4 Physical properties of the solution

In the previous section, we obtained the explicit expression for the harmonic functions (F,G)

in (3.69) which describes the far-region behavior of a non-Abelian two-supertube configura-

tion, at the leading order in a perturbative expansion. In terms of these complex harmonic

functions, the real harmonic functions {V,KI , LI ,M} can be expressed via (2.27). Here we

discuss some physical properties of this solution.
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4.1 Geometry and charges

First, let us study the asymptotic form of the harmonic functions near 3D infinity, r = ∞,

which corresponds to η = 1, σ = 0 in the toroidal coordinates. Using the relation (3.36), we

find that

F = hF +
QF

r
+O

(
1

r2

)
, G = hG +

QG

r
+O

(
1

r2

)
, (4.1)

where

hF = hG = 0, (4.2)

QF = ic
√
Rν, QG = c

√
R (4.3)

with

ν ≡ 1

π
log

4R

L
. (4.4)

The asymptotic form (4.1) is the same as that of the general codimension-3 harmonic func-

tion, (2.39). Note that, under our assumption (3.7),

Re ν =
1

π
log

4R

|L|
� 1. (4.5)

The asymptotic monopole charges of the solution can be read off from the coefficients

of the 1/r terms in the harmonic functions, (4.3). The corresponding D-brane numbers

N0, N I , NI , N0 can be determined from the relation (2.40). Explicitly,

N3 + iN1 =
2ic
√
Rν

gsls
, N0 − iN1 =

2c
√
R

gsls
. (4.6)

The entropy of the single-center black hole with charges (4.3) can be computed using (2.41):

S =
8π |Im(QF Q̄G)|

g2
s l

2
s

=
8π|c|2R
g2
s l

2
s

Re ν. (4.7)

This is non-vanishing because of (4.5) and therefore our solution has the same asymptotic

charges as a black hole with a finite horizon area.

One peculiar thing about the harmonic functions (4.1) is that the constant terms always

vanish, hF = hG = 0. This fact came from the harmonic analysis in the toroidal coordinates.

For example, in the ansatz for G, (3.51), the prefactor goes as
√
η − cosσ ∼

√
2R/r in the

3D infinity limit η → 1, σ → 0. On the other hand, P|k|−1/2(η = 1) = 1 and therefore G ∼ 1/r

and does not have a constant term. We do not have the option of turning on Q|k|−1/2(η),

because it diverges on the x3-axis and should not be present (see Footnote 15).

This means that this solution cannot have flat asymptotics. Instead, the asymptotic

geometry is always the attractor geometry [35] of a single-center black hole with D6, D4,
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D2 and D0 charges in the near-horizon limit. Indeed, the asymptotic form of the type IIA

geometry is easily seen from (2.12) to be

ds2
10,str = − 1

Im(FḠ)
(dt+ ω)2 + Im(FḠ)

(
dr2 + r2dΩ2

2

)
+ dx2

4567 + Im

(
F

G

)
dx2

89

∼ − r2

Im(QF Q̄G)
dt2 + Im(QF Q̄G)

(
dr2

r2
+ dΩ2

2

)
+ dx2

4567 + Im

(
QF

QG

)
dx2

89, (4.8a)

e2Φ = Im

(
F

G

)
∼ Im

(
QF

QG

)
. (4.8b)

We see that this is AdS2 × S2 × T 6 with radius RAdS2 = RS2 =
√

Im(QF Q̄G).

Asymptotic charge versus local charge

It is interesting to compare the asymptotic charges (4.3) with the one that we would obtain

from the behavior of fields near the supertubes. From (3.33) and (3.34), we find that the

behavior of the harmonic functions F,G near the supertubes is

z ∼ +L : F ∼ const., G ∼ − c

2π
√
L

log(z − L),

z ∼ −L : F ∼ − ic

2π
√
L

log(z + L), G ∼ ic

2π
√
L

log(z + L).
(4.9)

If a codimension-2 source at |z| = 0 has D-brane number densities n0, n1, n3 and n1 per

unit length for D6(456789), D4(6789), D4(4567), and D2(45) branes, respectively, then the

harmonic functions will have the following logarithmic behavior:16

V ∼ −gslsn0 log |z|, K1 ∼ −gslsn1 log |z|,

K3 ∼ −gslsn3 log |z|, L1 ∼ −gslsn1 log |z|.
(4.11)

Or, in terms of the complex harmonic functions F,G,

F ∼ −gsls(n3 + in1) log |z|, G ∼ −gsls(n0 − in1) log |z|. (4.12)

Comparing this with (4.9), we see that the D-brane number densities are

z = +L : n3 + in1 = 0, n0 − in1 =
c

2πgsls
√
L
,

z = −L : n3 + in1 =
ic

2πgsls
√
L
, n0 − in1 = − ic

2πgsls
√
L
.

(4.13)

16For example, if we array D6-branes at intervals of distance a, from (2.37)

V ∼ gsls
2

∑
n∈Z

1√
|z|2 + na

∼ gsls
2a

∫ Λ

−Λ

dx√
|z|2 + x2

∼ −gsls
a

log
|z|
2Λ

+O(Λ−2) (4.10)

where Λ is a cutoff. By replacing a with 1/n0, we obtain (4.11).

39



Because these charges are distributed over rings of radius approximately R, the total D-brane

numbers would be

N3 + iN1
?
=

icR

gsls
√
L
, N0 − iN1 ?

=
(1− i)cR
gsls
√
L
. (4.14)

These are completely different from the charge we observe at infinity, (4.6).

The reason why we obtained incorrect total charges (4.14) is that our solution is multi-

valued. In normal situations, the Gaussian surface on which we integrate fluxes to obtain

charges can be continuously deformed from asymptotic infinity to small surfaces enclosing

local charges. However, in the present case, the fields in our solution are multi-valued because

of the monodromies around the supertubes, and so are the fluxes. Another way of saying

this is that there is a branch cut (or disk) inside each of the two tubes, and the fluxes are

discontinuous across it. When we deform the Gaussian surface at infinity, we cannot shrink

them to enclose just the supertubes; all we can do is to deform it into two surfaces, each

of which encloses one entire branch disk with the supertube on its circumference. When we

evaluate the flux integral on the Gaussian surfaces, there will be contributions not just from

the supertubes but also from (the discontinuity in) the fluxes on the disks. The difference

between (4.6) and (4.14) is due to the contribution from the fluxes on the disks.

This situation of branch cuts carrying charge by the discontinuity in the fluxes across it

is an example of the so-called Cheshire charge that appears in the presence of vortices with

non-trivial monodromies called Alice strings [82,83,84]. For discussions on the realizations of

Alice strings in string theory, see [85, 86].

When integrating fluxes on Gaussian surfaces to compute charges in the presence of Chern-

Simons interactions (such as supergravity in 11, 10, and 5 dimensions), one must be careful

about different definitions of charges [87]. The relevant one here is the Page charge, which is

conserved, localized, quantized, and gauge-invariant under small gauge transformations. For

Page charge, we can freely deform a Gaussian surface unless they cross a charge source or a

branch cut for the fluxes. The discussion of charges in the paragraphs above is understood to

be using the Page charge. For the explicit form of the Page fluxes for D-brane charges, see,

e.g., [31, App. D] [32, App. E].

Angular momentum

By solving equation (2.30) for the harmonic functions given in (3.69), we find

ω =
|c|2

2π

(
η + 1) ln

|L|(η + 1)

8R
+ 2 ln

4R

|L|

)
dφ , (4.15)

where the integration constant was fixed by requiring that ω vanish at η = 1 (3D infinity).

In spherical polar coordinates (r, θ, ϕ), the asymptotic behavior of (4.15) as r →∞ is

ω ' |c|
2R2

π

(
1 + ln

|L|
4R

)
sin2 θ

r2
dϕ = O

(
1

r2

)
. (4.16)
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In four dimensions, the angular momentum is given by the O
(

1
r

)
term in the (t, i) components

of the metric, which is nothing but the 1-form ω in our case. Therefore, we conclude that the

4D angular momentum J of our configuration vanishes:

J = 0. (4.17)

Note that (4.16) means that the entire angular momentum vector vanishes, not just its x3

component.

4.2 Closed timelike curves

No-CTC conditions for the one-modulus class solutions with τ 1 = τ 2 = i were briefly discussed

in Section 2.2. For the explicit harmonic functions of the far-region solution (3.69), the

condition (2.31) gives

Im(FḠ) =
|c|2(η − cosσ)

2πR
ln

8R

|L|(η + 1)
' |c|

2η

2πR
ln

8R

|L|η
≥ 0 (4.18)

for large η (near the supertube). This means that, in order not to have CTCs, we must

restrict the range of the variable η to be

η .
8R

|L|
. (4.19)

Namely, the far-region solution has CTCs very near the tube.

Next, let us consider the positivity of the metric (2.22) along the supertube direction, φ.

This gives

− ω2

Q
+

R2(η2 − 1)

(η − cosσ)2
dφ2 ≥ 0. (4.20)

After plugging the explicit expression for ω (4.15), we can rewrite (4.20) as

R2dφ2

(η − cosσ)2
[
ln |L|(η+1)

8R

]2

×

(
(η2 − 1)

[
ln
|L|(η + 1)

8R

]2

−
[
(η + 1) ln

|L|(η + 1)

8R
+ 2 ln

4R

|L|

]2
)
≥ 0 . (4.21)

Near the ring (η →∞), the no-CTC condition (4.21) gives

− 2η ln

(
2Rη

|L|

)
ln

(
|L|η
8R

)
≥ 0 , (4.22)

which is satisfied for
|L|
2R

< 1 ≤ η ≤ 8R

|L|
. (4.23)
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The lower bound does not impose any condition on η because η ≥ 1 by definition, and the

upper bound is the same as (4.19).

So, we found that there are CTCs in the far-region solution very near the ring, η ∼ 8R
|L| .

However, this does not represent a problem with our solution. It only indicates that, too

much near the ring, the description in terms of the far-region solution with a single ring

breaks down and we must instead switch to the near-region solution with two rings. Indeed,

by the relation (3.40), η ∼ R
|L| corresponds to |z| ∼ |L| in the near region, which is the

distance scale at which the single “effective” supertube must be resolved into two supertubes.

This is exactly parallel to the familiar story in the context of F-theory [88, 89]. In type IIB

perturbative string theory, the O7-plane has negative tension and its backreacted metric has

a wrong signature very near its worldvolume. However, in F-theory, non-perturbative effects

resolve the O7-plane into two (p, q) 7-branes and replace the wrong-signature metric by a new

metric with the correct signature everywhere. The two (p, q) 7-branes have non-commuting

monodromies of the SL(2,Z) duality of type IIB string. We are seeing exactly the same

phenomenon in a more involved situation with circular supertubes.

To rigirously show that our solution is completely free from CTCs, we must construct

the exact solution by summing up the infinite perturbative series, because the perturbative

solution to any finite order will have CTCs (this is related to the limitation of the matching

expansion discussed below (3.20)). However, that is beyond the scope of the present paper

and we will leave it as future research.

4.3 Bound or unbound?

Our 2-supertube configuration has three parameters: c ∈ C determines the overall amplitude

of the harmonic functions, L ∈ C parametrizes the distance and the angle between two

supertubes, and R > 0 is the average radius of the two supertubes. The crucial question is:

does this represent a bound state or not?

In the case of codimension-3 solutions, allowed multi-center configurations are determined

by imposing equation (2.33). How this works is as follows. One first fixes the value of moduli

(the constant terms in H), the number of centers (say N), and the charges of each center

(Γp, p = 1, . . . , N). By plugging these data into (2.33), we can fix the inter-center distances

apq. After this, some parameters will remain unfixed. They parametrize the internal degrees

of freedom of the multi-center configuration, similar to the internal atomic motion inside a

molecule. When it is a bound state, it is not possible to take some centers infinitely far away

from the rest of the centers by tuning the parameters.

In our solution, the asymptotic moduli have already been fixed to the attractor value [35].

We have two codimension-2 supertube centers, and we know that the total monopole charges

are given by (QF , QG). Actually, as we will discuss below, the monopole charges of each of
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the two supertubes can be also determined if we fix the complex charges QF , QG. So, the

question is whether there is some free parameter left by tuning which we can make the two

tubes infinitely far apart. If so, then the configuration is unbound. Otherwise, it is bound.

Our solution contains five real parameters (R ∈ R; c, L ∈ C) and four of them can be

determined by fixing QF,G ∈ C. So, we seem to be left with one free real parameter. For

example, we can take it to be |L|, the absolute value of the inter-tube distance parameter

L. If |L| could take an arbitrarily large value, the two tubes could be separated infinitely

far away from each other and thus the solution would be unbound. Physically, however, we

expect that we can constrain this parameter by requiring the absence of CTCs [71, 72], and

that the tubes cannot be infinitely separated. Such no-CTC analysis would be possible if we

knew the exact solution. The problem is that we only have a perturbative solution in the

matching expansion. As we saw in the previous section, perturbative solutions have apparent

CTCs and are not suitable for such analysis.

To work around this problem, we will instead make use of supertube physics to argue that

all the parameters are constrained and thus our non-Abelian solution represents a bound state.

Actually, we can fix all the parameters from this argument. It is not a rigorous argument,

but is robust enough to give convincing evidence that the solution represents a bound state.

4.4 An argument for a bound state

We know that the monodromy matrices of the two supertubes sitting at z = ±L are

ML =

(
1 0
−2 1

)
, M−L =

(
3 2
−2 −1

)
. (4.24)

In Appendix D.2, we derived the monodromy matrix of the supertube produced by the su-

pertube transition of a general 1/4-BPS codimension-3 center. In the one-modulus class that

we are working in (τ 1 = τ 2 = i, τ 3: any), a general 1/4-BPS codimension-3 center has charge

Γ = gsls
2

(a, (b, b, c), (d, d, a),− c
2
), where a, b, c, d ∈ Z, ad+ bc = 0 and not all of a, b, c, d simul-

taneously vanish. Using the formulas (D.17) and (D.18), it is easy to see that the unique sets

of charges that lead to supertubes with monodromy M±L are the ones with

ML : c = d = 0, M−L : a = −c, b = d, (4.25)

with the dipole charge q = 2 for both cases. In terms of complex charges (cf. (2.40)),

QF =
gsls
2

(c+ id), QG =
gsls
2

(a− ib), (4.26)

the condition (4.25) can be written as:

ML : QF = 0, M−L : QF = −QG. (4.27)
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The supertubes at z = ±L must have come from two codimension-3 centers with charges

satisfying this condition, respectively.17

From (4.3), the total charges of our two-supertube configuration is(
QF

QG

)
total

= c
√
R

(
iν
1

)
. (4.28)

Let us split this total charge into the ones for the z = +L supertube and the ones for the

z = −L supertube as (
QF

QG

)
total

=

(
QF

QG

)
L

+

(
QF

QG

)
−L
, (4.29)

and require that the individual charges satisfy the condition (4.27), namely,

QF,L = 0, QF,−L = −QG,−L. (4.30)

We immediately find (
QF

QG

)
L

= c
√
R

(
0

1 + iν

)
, (4.31a)(

QF

QG

)
−L

= c
√
R

(
iν
−iν

)
. (4.31b)

In our solution we have two codimension-2 supertubes, instead of codimension-3 centers.

However, these supertubes must still carry the original monopole charges (4.31) dissolved

into their worldvolume. Using the relation (2.27), we can express (4.31) in terms of charges

vectors as

Γ±L =

(
ReQG, (− ImQG,− ImQG,ReQF ), (ImQF , ImQF ,ReQG),−1

2
ReQF

)
±L
. (4.32)

The radii and angular momentum of the configuration are determined by the charges of

the centers. Then, we can study what the radii of the circular supertubes generated by the

supertube transition of codimension-3 centers with charges (4.31) are. This has been worked

out in Appendix D.3 and, using the formula (D.21), it is not difficult to show that the radii

of the supertubes at z = ±L are given by

R2
L = R|c(1 + iν)|2 = R|c|2

[
1 +

2l

π
+

1

π2

((
log

4R

|L|

)2

+ l2
)]

,

R2
−L = R|c|2|ν|2 =

R|c|2

π2

((
log

4R

|L|

)2

+ l2
)
.

(4.33)

17To be precise, by charges here, we mean Page charges discussed in Section 4.1.
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In deriving this, each supertube was assumed to be in isolation; the actual radii must be

corrected by the interaction between the two tubes. On the other hand, the radii squared of

the two tubes in our actual solution are

(R± ReL)2 = (R± |L| cos l)2. (4.34)

As a preliminary, zeroth-order approximation, let us equate (4.33) and (4.34). It is not difficult

to show that, unless l = −π
2
, there is no solution that is consistent with the colliding limit,

R
|L| � 1. If l = −π

2
, the two supertubes have the same radius and the condition that (4.33)

equals (4.34) gives

|c| =
√
R

|ν|
=

π
√
R√(

log 4R
|L|

)2
+ π2

4

. (4.35)

The total charges (4.3) are, if we set c = |c|eiγ,

(QF , QG) = c
√
R (iν, 1) =

eiγR√(
log 4R

|L|

)2
+ π2

4

(
i log

4R

|L|
− π

2
, π

)
. (4.36)

Fixing these charges will fix γ,R, |L|. So, everything is fixed.

In summary, consideration of supertube physics suggests that the configurational parame-

ters of our two-supertube solution are all fixed if we fix the asymptotic charges. In particular,

it is impossible to take the two tubes infinitely far apart. This is strong evidence that our

solution is a bound state. Having the same asymptotic charges as a black hole with a finite

horizon, it should represent a microstate of a genuine black hole. Our argument is not rigorous

in the sense that, in computing the supertube radii (4.33), we ignored the interaction between

the tubes. Therefore, precise values such as l = −π
2

may not be reliable. However, we expect

that it captures the essential physics and the conclusion remains valid even for more accurate

treatments.

4.5 A cancellation mechanism for angular momentum

In the last section, we pointed out the puzzling fact that the total angular momentum of

our solution vanishes, even though the two constituent supertubes are expected to carry non-

vanishing angular momentum. Here, we argue that this is due to cancellation between the

angular momentum J±L carried by the two individual tubes and the angular momentum Jcross

that comes from the electromagnetic crossing between the two tubes; namely,

Jtotal = JL + J−L + Jcross ≈ 0. (4.37)

Just as in Section 4.4, our argument will not be rigorous; we will see that (4.37) holds only to

the leading order in |L|
R

. We expect that, in an exact treatment, (4.37) will hold as a precise

equality. However, this study is beyond the scope of this paper.
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In our solution, we have two round supertubes which were produced by the supertube effect

of codimension-3 centers with charges (4.31). In Appendix D.3, we computed the angular

momentum carried by a round supertube created from a general 1/4-BPS codimension-3

center. Applying the formula (D.21) to the charges (4.31), it is not difficult to show that the

component of angular momentum along the axis of the tubes (x3-axis) is18

JL = −R|c|
2(1 + |ν|2 − 2 Im ν)

4G4

, J−L = −R|c|
2|ν|2

4G4

. (4.38)

Now let us turn to Jcross. For multi-center codimension-3 solutions with charge vectors

Γp, there is non-vanishing angular momentum coming from the crossing between electric and

magnetic fields given by [63]

Jcross =
1

2G4

∑
p<q

〈Γp,Γq〉 apq
|apq|

, apq ≡ ap − aq. (4.39)

In the present case, we have supertubes with codimension 2, not 3. However, let us still apply

this formula using the tubes’ monopole charges (4.31) (or (4.32)) . This is not precise, but

must give a rough approximation of the crossing angular momentum for our solution. Using

(4.31) and (4.32), the component of the angular momentum along the tube axis is19

Jcross =
1

2G4

〈Γ−L,ΓL〉 = −R|c|
2(Im ν − |ν|2)

2G4

. (4.40)

If we add (4.40) and (4.39), we get

JL + J−L + Jcross = −R|c|
2

4G4

. (4.41)

This is much smaller than the individual terms:

JL, J−L, Jcross ∼
R|c|2|ν|2

G4

∼
R|c|2(log R

|L|)
2

G4

(4.42)

because we are taking the limit R
|L| � 1. Therefore, we conclude that (4.37) holds to the

leading order in |L|
R

.

This is an interesting observation, suggesting that the vanishing of angular momentum in

our configuration is indeed due to cancellation between the “tube” angular momentum and

the “cross” angular momentum. Presumably, the nonzero reminder (4.41) gets canceled if

we take into account the contribution to the angular momentum arising from the interaction

between the two tubes (recall that we computed the angular momentum of supertubes as if

they were in isolation).

18The sign was determined from the sign of ω2 = ωφ/R in (3.23) near z = ±L using (3.33) and (3.34).
19In Section 4.4, we argued that the physically allowed configuration in the limit R

|L| � 1 has l = −π2 , which

means that the center of the z = ±L tubes are at x3 = ∓|L|. This determines the sign of (4.40).
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5 Future directions

We constructed our solution by taking the configuration that appeared in the SU(2) Seiberg-

Witten theory as the near-region solution. More specifically, it was a holomorphic fibration

of a genus-1 Riemann surface on a base of complex dimension 1. However, this is just an

example, so any other such holomorphic fibration will work. In particular, any F-theory

solution can be used for the near-region solution. In the standard F-theory background, the

metric only knows about the torus modulus τ , but in our case we also need the periods (aD, a)

and richer structure is expected. We can generalize this structure by replacing the torus fiber

by a higher-genus Riemann surface. For example, if one considers compactification of type

IIA on T 2×K3, the U-duality group becomes O(22, 6;Z), which contains the genus-2 modular

group Sp(4,R). Therefore, one can construct configuration of more general supertubes using

a fibration of a genus-2 Riemann surface over a base [90]. One can also consider generalizing

the base. In the near region the base is complex 1-dimensional, while in the far region it is real

3-dimensional. By including an internal S1 direction, one can extend the base to a complex

2-dimensional space, where a supertube must appear as a complex curve around which there

is a monodromy of the fiber. In such a setup, one can use the power of complex analysis and

it might help to construct solutions on a real 3-dimensional base as the one we encountered

in the current paper.

It is known that the geometry of the Seiberg-Witten theory has a string theory realization

[88, 91, 92]. If one realizes the Seiberg-Witten curve as a configuration of F-theory 7-branes,

then the worldvolume theory of a probe D3-brane in that geometry is exactly the d = 4,N = 2

theory. One may wonder if our solution also represents a moduli space of some gauge theory

on a probe D-brane. However, such interpretation does not seem straightforward. The near-

region geometry looks very similar to F-theory configurations, but the 7-brane in the current

setup is not just a pure 7-brane but it has some worldvolume fluxes turned on to carry 5-brane

and 1-brane charges. Therefore, it is not immediately obvious what probe brane one should

take. Furthermore, although the near-region configuration preserves 16 supersymmetries,

only 4 supersymmetries are preserved in the far region, as a 4-charge black-hole microstate.

A brane probe will most likely halve the supersymmetries in each region. So, the relevant

theory seems to be d = 3,N = 1 (or d = 2,N = 2) theory whose moduli space has a special

locus, which corresponds to the near region, at which supersymmetry is enhanced to N = 4

(or N = 8). It is interesting to investigate what the theory can be.

We developed techniques to construct solutions in the far and near regions separately and

connect them by a matching expansion. We worked out only first terms in the expansion,

but one can in principle carry out this to any order. In some situations one may be able to

carry out the infinite sum and obtain the exact solution in entire R3. Such exact solutions are

important because, as discussed below (3.20), there are features of the exact solution that are
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not visible at any finite order. Such features include the precise structure of the monodromy

and the metric near the supertubes. They are crucial to analyze the no-CTC condition near

the supertubes and fix parameters of the solution, such as L and R. We hope to be able to

report development in that direction in near future [93].

In this paper, we mainly considered the case where two of the three moduli are frozen. It

is interesting to investigate possible solutions in the case where this assumption is relaxed.

In Appendix C, we discussed the case where two moduli are dynamical. For example, it

is interesting to study how the solutions studied in [32] fit in the formulation developed in

Appendix C. Relatedly, we assumed that in the near region the modulus τ 3 is holomorphic.

However, as far as supersymmetry is concerned, this is not necessary; the only requirement

is that the harmonic functions be written as a sum of holomorphic and anti-holomorphic

functions. It would be interesting to see if there are physically allowed solutions for which τ 3

is not holomorphic.

Our configuration has the same asymptotic charge as a 4D black hole. 4D black holes

are often discussed in the context of the AdS3/CFT2 duality where the boundary CFT is the

so-called MSW CFT [76]. However, this CFT is not as well-understood as the D1-D5 CFT

which appears as the dual of black-hole systems in 5D. It is interesting to see if our solutions

can be generalized to construct a microstate for 5D black holes; for recent work to relate

microstates of the MSW CFT and those of the D1-D5 CFT, see [23].
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A Duality transformation of harmonic functions

In Section 2, we showed that the [SL(2,Z)]3 duality of the STU model acts on harmonic

functions as (2.18). Here, we discuss some aspects of the duality transformation.

In the main text, we introduced vectors such as H = {V,KI , LI ,M}. To see the group

48



theory structure, it is more convenient to introduce the Sp(8,R) vector [67]

H = (HΛ,HΛ) = (H0,HI ,H0,HI) =
1√
2

(−V,−KI , 2M,LI) (A.1)

which transforms in the standard way under the four-dimensional electromagnetic Sp(8,R)

duality transformation of N = 2 supergravity.

The skew product 〈H,H ′〉 defined in (2.9) can be written as

〈H,H ′〉 = −HΛH′Λ +HΛH′Λ (A.2)

For a generic Sp(8,R) symplectic vector V = (VΛ,VΛ) = (V0,VI ,V0,VI), the quartic invariant

J4(V) is given by

J4(V) = −(VΛVΛ)2 + 4
∑
I<J

VIVIVJVJ − 4V0V1V2V3 + 4V0V1V2V3. (A.3)

Using this, the quantity Q defined in (2.13) and rewritten in (2.14) can be expressed as

Q = J4(H) = J4(H). (A.4)

In this language, the most general U-duality transformation can be written as an 8 × 8

matrix S ∈ [SU(1, 1)]3 ∼= [SL(2,R)]3 ⊂ Sp(8,R) [67, 94]

S = ST U , (A.5)

where

S =



δ1 γ1

β1 α1

δ1 γ1

δ1 γ1

α1 −β1

−γ1 δ1

β1 α1

β1 α1


, (A.6a)

T =



δ2 γ2

δ2 γ2

β2 α2

δ2 γ2

α2 −β2

β2 α2

−γ1 δ2

β2 α2


, (A.6b)

U =



δ3 γ3

δ3 γ3

δ3 γ3

β3 α3

α3 −β3

β3 α3

β3 α3

−γ3 δ3


. (A.6c)
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with αIδI − βIγI = 1, I = 1, 2, 3. It is straightforward to show that the action of the matrix

(A.5) on the symplectic vector (HΛ,HΛ) reproduces the transformation law (2.18).

The transformation law (2.18) means that the eight harmonic functions transform under

the 2⊗ 2⊗ 2 representation of [SL(2,Z)]3 as follows:

(H0,HI ,H0,HI) =
1√
2

(−V,−KI , 2M,LI)

= (H222; H122,H212,H221; −H111; H211,H121,H112)

(A.7)

where Habc (a, b, c = 1, 2) transforms as Habc →
∑

a′,b′,c′(M1)aa
′
(M2)bb

′
(M3)cc

′Ha′b′c′ . In terms

of Habc,

−〈H,H ′〉 = HΛH′Λ −HΛH′Λ = εa1a2εb1b2εc1c2Ha1b1c1Ha2b2c2 , (A.8)

J4(H) = J4(H) =
1

2
εa1a2εa3a4εb1b2εb3b4εc1c3εc2c4Ha1b1c1Ha2b2c2Ha3b3c3Ha4b4c4 . (A.9)

A matrix Mab cannot be written as a product of two vectors ua, vb in general but it can be

written as a sum of multiple vectors, Mab =
∑

i u
a
i v

b
i . Similarly, we must be able to decompose

the tensor Habc as

Habc =
∑
i

uai v
b
iw

c
i , (A.10)

where uai , v
b
i , and wci are real functions transforming as doublets of SL(2,Z)1, SL(2,Z)2, and

SL(2,Z)3, respectively.

Let us consider the situation considered in Appendix C where we set one of the moduli to a

trivial value: τ 1 = i. Here we will give an alternative proof that the harmonic functions in this

case are given by (C.6), (C.7). As we can see in (C.3), the combinations of harmonic functions

that transform nicely under the remaining SL(2,Z)2×SL(2,Z)3 are V −iK1, K2+iL3, K3+iL2

and −L1 − 2iM . In terms of Habc, they are

V − iK1 =
√

2 (−H222 + iH122) ≡ H22,

K2 + iL3 =
√

2 (−H212 + iH112) ≡ H12,

K3 + iL2 =
√

2 (−H221 + iH121) ≡ H21,

−L1 − 2iM =
√

2 (−H211 + iH111) ≡ H11.

(A.11)

The components of the tensor Hbc defined here are complex functions transforming as a 2⊗2

of SL(2,Z)2 × SL(2,Z)3. Just as in (A.10), we can decompose it as

Hbc =
∑
i

V b
i W

c
i , (A.12)
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where V b
i ,W

c
i are complex. However, this is inconsistent with the constraint (C.2), which

reads in terms of Hbc as

H11H22 = H12H21, (A.13)

unless the summation over i in (A.12) has only one term. In that case,

V − iK1 = H22 = V 2W 2, K2 + iL3 = H12 = V 1W 2,

K3 + iL2 = H21 = V 2W 1, −L1 − 2iM = H11 = V 1W 1.
(A.14)

This is the same as (C.6), (C.7) with the identification
(
V 1

V 2

)
=
(
F2
G2

)
,
(
W 1

W 2

)
=
(
F3
G3

)
.

It is interesting to see how the transformations of the harmonic functions known in the

literature are embedded in the general [SL(2,Z)]3 transformation (2.18). We will consider the

“gauge transformation” [95] and the “spectral flow transformation” [96] as such transforma-

tions. To our knowledge, explicit [SL(2,Z)]3 matrices for these transformations have not been

explicitly written down in the literature. For a discussion on how these transformations are

embedded in the U-duality group of the STU model from a different perspective, see [67].

The so-called “gauge transformation” [95] is defined as the following transformation of

harmonic functions:

V → V,

KI → KI + cIV,

LI → LI − CIJKcJKK − 1

2
CIJKc

JcKV,

M →M − 1

2
cILI +

1

4
CIJKc

IcJKK +
1

12
CIJKc

IcJcKV.

(A.15)

It is easy to see that this transformation is a special case of general [SL(2,Z)]3 transformations

(2.18) with

MI =

(
1 cI

0 1

)
, I = 1, 2, 3. (A.16)

This transformation shifts the B-field as

B2 → B2 +
c1α′

R4R5

J1 +
c2α′

R6R7

J2 +
c3α′

R8R9

J3. (A.17)

If one likes, the shift in B2, (A.17), can be always undone by subtracting c1α′

R4R5
J1+ c2α′

R6R7
J2+

c3α′

R8R9
J3 from B2 by hand, because subtracting from B2 the closed form JI affects none of the

equations of motion or supersymmetry conditions. This is relevant especially in 5D solutions

(for which h0 = 0) because, changing the asymptotic value of B2 as in (A.17) would mean to

change the asymptotic value of the Wilson loop along ψ for a 5D gauge field that descends

from the M-theory 3-form Aµij. Such a gauge transformation would not vanish at infinity

51



in 5D and is not allowed. So, one must always undo the shift (A.17) after doing the gauge

transformation (A.15). After this procedure, no gauge-invariant fields are changed under the

transformation (A.15) and it is just re-parametrization of harmonic functions {V,KI , LI ,M}.
The “spectral flow transformation” is defined as [96]

V → V + γIK
I − 1

2
CIJKγIγJLK +

1

3
CIJKγIγJγKM,

KI → KI − CIJKγJLK + CIJKγJγKM,

LI → LI − 2γIM,

M →M,

(A.18)

where CIJK = CIJK . This transformation has been used extensively to generate new solutions

from known ones. It is easy to see that this transformation is a special case of general SL(2,Z)

transformations with

MI =

(
1 0
γI 1

)
, I = 1, 2, 3. (A.19)

B Matching to higher order

In the main text, we worked out the matching between the far- and near-region solutions to

the leading order. In this Appendix, we carry out the matching to higher order.

From the large-|z| expansion of the near-region solution (3.31), we find that the far-region

solution must have the following expansion:

F =
√
η − cosσ

∞∑
n=0

e−i
4n+1

2
σ
(
fn(η)− σ

π
gn(η)

)
, (B.1a)

G =
√
η − cosσ

∞∑
n=0

e−i
4n+1

2
σgn(η) . (B.1b)

The Laplace equations for F and G lead to

(1− η2)f ′′n − 2ηf ′n + 2n(2n+ 1)fn =
i

π
(4n+ 1)gn ,

(1− η2)g′′n − 2ηg′n + 2n(2n+ 1)gn = 0 .
(B.2)

The equation for gn is the standard Legendre differential equation while the one for fn is an

inhomogeneous Legendre differential equation of resonant type [97].

The general solution for gn(η) is given by

gn(η) = A2nP2n(η) +B2nQ2n(η) , (B.3)

where P2n(η) is the Legendre polynomial and Q2n(η) is the Legendre function of the second

kind. As Q2n(η) diverges at 3D infinity and on the x3-axis (see Footnote 15), we require
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B2n = 0. The expression for P2n(η) for some small values of n is

P0(η) = 1 , (B.4a)

P2(η) =
1

2
(3η2 − 1) , (B.4b)

P4(η) =
1

8
(35η4 − 30η2 + 3) . (B.4c)

P2n(η) are normalized so that P2n(1) = 1.

Having found gn, we can plug it into (B.2) to find fn. We have not been able to find a

simple explicit expression for fn that works for general n. We give the following integral form:

fn(η) = C2nP2n(η) +D2nQ2n(η)

− i

π
A2n(4n+ 1)

(
P2n(η)

∫ η

1

dsP2n(s)Q2n(s)−Q2n(η)

∫ η

1

ds [P2n(s)]2
)
. (B.5)

We have chosen the particular solution (the last term) to vanish at 3D infinity (η = 1). As

before, we require D2n = 0 so that fn is finite at infinity. For given n, it is easy to carry out

the integral and the explicit expression for a few small values of n is

f0(η) = C0 −
i

π
A0 ln

η + 1

2
, (B.6a)

f1(η) = C2P2(η)− i

π
A2

(
P2(η) ln

η + 1

2
+

1

4
(η − 1)(7η + 1)

)
, (B.6b)

f2(η) = C4P4(η)− i

π
A4

(
P4(η) ln

η + 1

2
+

1

96
(η − 1)(533η3 + 113η2 − 241η − 21)

)
. (B.6c)

The undetermined coefficients A2n and C2n are fixed by matching the expansion (B.1)

order by order with the large-|z| expansion of the near-region solution given in (3.31). This

has been done for the leading n = 0 term in the main text in Section 3.5; see (3.68). For

n = 1, this determines the coefficients to be

A2 =
cL2

2(2R)5/2
, C2 =

i

π

cL2

2(2R)5/2

(
ln

4R

L
− 1

2

)
. (B.7)

C Configurations with only two moduli

Let us consider configurations with one modulus set to a trivial value. Specifically, we set

τ 1 = i, τ 2, τ 3 : arbitrary. (C.1)

This choice fixes two harmonic functions; from Eq. (2.15), we find

−L1 − 2iM =
(K2 + iL3)(K3 + iL2)

V − iK1
. (C.2)
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Only six harmonic functions are independent. In this case, the expression for the other moduli

τ 2,3 simplifies to

τ 2 =
K2 + iL3

V − iK1
, τ 3 =

K3 + iL2

V − iK1
. (C.3)

Because τ 2 undergoes linear fractional transformation under SL(2,Z)2, we can set20

K2 + iL3 = H2F2, V − iK1 = H2G2, (C.4)

where under SL(2,Z)2 the pair
(
F2
G2

)
transforms as a doublet while H2 is invariant. The

quantities F2, G2, H2 are complex. With this choice (C.4), τ 2 is invariant under SL(2,Z)3 as

it should be. Similarly, because τ 3 undergoes linear fractional transformation under SL(2,Z)3,

we can set

K3 + iL2 = H3F3, V − iK1 = H3G3, (C.5)

where under SL(2,Z)3 the pair
(
F3
G3

)
transforms as a doublet while H3 is invariant. F3, G3, H3

are complex. Combining (C.4) and (C.5), we find that H2 = G3 and H3 = G2 and therefore

K2 + iL3 = F2G3, V − iK1 = G2G3, K3 + iL2 = G2F3, (C.6)

with which (C.2) becomes

−L1 − 2iM = F2F3. (C.7)

The moduli (C.3) can now be written as

τ 2 =
F2

G2

, τ 3 =
F3

G3

. (C.8)

In terms of F2,3, G2,3, the harmonic functions are

V = ReG2G3 , K1 = − ImG2G3 , K2 = ReF2G3 , K3 = ReG2F3 ,

L1 = −ReF2F3 , L2 = ImG2F3 , L3 = ImF2G3 , M = −1

2
ImF2F3 .

(C.9)

Because we are parametrizing 6 real harmonic functions using 4 complex functions F2,3, G2,3,

there is redundancy: the transformation
(
F2
G2

)
→ H

(
F2
G2

)
,
(
F3
G3

)
→ H−1

(
F3
G3

)
, where H is a

complex function, leaves the harmonic functions invariant.

Let us consider the no-CTC conditions (2.21). The condition (2.21a) is automatically

satisfied because Q = (K1K3 + L2V )2(K1K2 + L3V )2/((K1)2 + V 2)2 ≥ 0. The conditions

V ZI ≥ 0, (2.21b), become

V Z2 = K1K3 + L2V = |G2|2 Im(F3Ḡ3) = |G2G3|2 Im τ 3 ≥ 0 ,

V Z3 = K1K2 + L3V = |G3|2 Im(F2Ḡ2) = |G2G3|2 Im τ 2 ≥ 0 .
(C.10)

20Actually, one could more generally set K2 + iL3 =
∑
iH

(i)
2 F

(i)
2 , V − iK1 =

∑
iH

(i)
2 G

(i)
2 where

(
F

(i)
2

G
(i)
2

)
transforms as a doublet under SL(2,Z)2 for all i. However, τ1 would not be invariant under SL(2,Z)3, unless
the i summation contains only one term. For a different argument for (C.6), (C.7), see Appendix A.
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D Supertubes in the one-modulus class

In Section 2.2, we discussed a class of harmonic solutions for which only one modulus, τ 3 = τ ,

is turned on. (This class is nothing but a type IIA realization of the solution called the SWIP

solution in the literature [37].) Here let us study some properties of supertubes described in

this class.

D.1 Condition for a 1/4-BPS codimension-3 center

Let us consider a codimension-3 center in the harmonic solution and let the charge vector of

the center be Γ. In terms of quantized charges, Γ can be written as

Γ =
gsls
2

(
a, (b, b, c), (d, d, a),− c

2

)
, (D.1)

where a, b, c, d ∈ Z. Here, we took into account the constraint (2.24) and charge quantiza-

tion (2.37). In general, this center represents a 1/8-BPS center preserving 4 supercharges,

with entropy (see (2.41))

S = 2π
√
j4(Γ), j4(Γ) ≡ (ad+ bc)2. (D.2)

We would like to find the condition for the charge vector Γ to represent a 1/4-BPS center

preserving 8 supercharges, which can undergo a supertube transition into a codimension-2

center. According to [98], a center with charge vector Γ represents

4-charge 1/8-BPS center ⇔ j4(Γ) > 0.

3-charge 1/8-BPS center ⇔ j4(Γ) = 0,
∂j4

∂xi
6= 0

2-charge 1/4-BPS center ⇔ j4(Γ) =
∂j4

∂xi
= 0,

∂2j4

∂xi∂xj
6= 0

1-charge 1/2-BPS center ⇔ j4(Γ) =
∂j4

∂xi
=

∂2j4

∂xi∂xj
= 0,

∂3j4

∂xi∂xj∂xk
6= 0,

(D.3)

where xi represents charges of D-branes which, in the present case, are a, b, c, d. Applying

this to the present case, we find that

4-charge 1/8-BPS center ⇔ ad+ bc 6= 0, (D.4a)

2-charge 1/4-BPS center ⇔ ad+ bc = 0, but not a = b = c = d = 0 (D.4b)

In the present class of configurations satisfying (D.1), we cannot have a 3-charge 1/8-BPS

center or a 1-charge 1/2-BPS center. For the latter, for example, even if a = b = c = 0 and

d 6= 0, it still represents a D2(45)-D2(67) system which is a 2-charge 1/4-BPS system.
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D.2 Puffed-up dipole charge for general 1/4-BPS codimension-3
center

If the 1/4-BPS system with charges satisfying (D.4b) polarizes into a supertube, what is its

dipole charge, or more precisely, the monodromy matrix around it? From (2.19), we see that

the combinations of charges that transform as doublets are(
K3

V

)
=

(
−2M
L3

)
∝
(
c
a

)
,

(
−L1

K2

)
=

(
−L2

K1

)
∝
(
−d
b

)
(D.5)

with ad+ bc = 0. If we act with a general SL(2,Z) matrix, the first doublet transforms as(
c
a

)
→
(
c′

a′

)
=

(
α β
γ δ

)(
c
a

)
=

(
αc+ βa
γc+ δa

)
, (D.6)

where α, β, γ, δ ∈ Z and αδ − βγ = 1. The second one transforms in the same way. Let us

require that the lower component of the first doublet in (D.5) vanishes in the transformed

frame, namely, a′ = γc+ δa = 0. If we write

a = xâ, c = xĉ, x = gcd(a, c), (D.7)

so that â and ĉ are relatively prime, then it is clear that a′ = 0 for the following choice:

γ = â, δ = −ĉ. (D.8)

Note that the lower component of the second doublet in (D.5) also vanishes in the transformed

frame:

b′ = −γd+ δb = −âd− ĉb = −1

x
(ad+ bc) = 0 (D.9)

by the assumption of 1/4-BPSness, (D.4b). For the matrix
(
α β
γ δ

)
to be an SL(2,Z) matrix,

we must satisfy

αδ − βγ = −αĉ− βâ = 1, (D.10)

but there always exist α, β ∈ Z satisfying this, for â, ĉ are coprime.

In the frame dualized by the SL(2,Z)3 matrix

U =

(
α β
â −ĉ

)
(D.11)

satisfying (D.10), it is easy to show that the charges are(
K3

V

)
=

(
−2M
L3

)
∝
(
x
0

)
,

(
−L1

K2

)
=

(
−L2

K1

)
∝
(
y
0

)
. (D.12)
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To derive this, we used the fact that, if we write b, d as

b = yb̂, d = yd̂, y = gcd(b, d), (D.13)

then the condition ad+ bc = 0 implies that

(b̂, d̂) = ±(â,−ĉ). (D.14)

(D.12) correspond to the following charges:

x units of D4(4567)+D0, y units of D2(45)+D2(67). (D.15)

As we can see from (2.43), both of these pairs must puff out into ns5(λ4567), where λ

parametrizes a closed curve in transverse directions. The SL(2,Z)3 monodromy matrix for

ns5(λ4567) is

Mns5(λ4567) =

(
1 q
0 1

)
(D.16)

where q ∈ Z is the dipole charge number (the number of NS5-branes). If we dualize this back,

the monodromy of the supertube in the original frame is

M = U−1Mns5(λ4567)U =

(
1− qâĉ qĉ2

−qâ2 1 + qâĉ

)
(D.17)

where we used (D.10). This result is symmetric under the exchange of
(
c
a

)
and

(−d
b

)
as it

should be because, using (D.14), we can write this as

M =

(
1 + qb̂d̂ qd̂2

−qb̂2 1− qb̂d̂

)
. (D.18)

Even in cases where some of a, b, c, d vanish, we can use the formulas (D.17) or (D.18).

If a = c = 0, we can use (D.18). If b = d = 0, we can use (D.17). If a or c vanishes, we

can use the rule gcd(k, 0) = k for k ∈ Z6=0 in (D.7). For example, if c = 0, then x = a and

â = 1, ĉ = 0.

D.3 Round supertube

Let us compute the radius and the angular momentum of the round supertube that is created

from a 1/4-BPS center with general a, b, c, d satisfying ad+ bc = 0.

If we T-dualize (D.15) along 7, S-dualize, T-dualize along 4567, and then finally S-dualize,

we obtain

x units of F1(7)+P(7), y units of F1(6)+P(6). (D.19)
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This is the so-called FP system which is well-studied, rotated in the 67 plane. In the FP

system with F1(7) and P(7) with quantized charges NF1, NP ∈ Z, the radius R and angular

momentum J of a circular configuration are given by (see, e.g., [71]):

R = ls

√
NF1NP

q
, J =

NF1NP

q
, (D.20)

where q ∈ Z is the dipole charge number. For the rotated system (D.19), this becomes

R = ls

√
x2 + y2

q
, J =

x2 + y2

q
. (D.21)

Following the duality chain back, we find this expression is again valid for the original frame

with general a, b, c, d ∈ Z, ad+ bc = 0.

E Harmonic functions for the D2 + D6 → 52
2 supertube

In the main text, we reviewed the harmonic functions for the D2+D2→ns5 supertube (2.44).

Here we recall the harmonic functions for the D2(89)+D6(456789)→ 52
2(λ4567;89) supertube

[32], which is the last line of (2.43). This involves the exotic brane 52
2 with a non-geometric

monodromy.

Harmonic functions which describe this supertube are [32]

V = f2 , K1 = γ , K2 = γ , K3 = 0 ,

L1 = 1 , L2 = 1 , L3 = f1 , M = 0 .
(E.1)

where f1, f2 are the same functions that appeared in (2.46). γ is defined in (2.47) and has

the monodromy (2.48).

The behavior of V, L3 shows that we do have D6(456789) and D2(89) charges distributed

along the profile. On the other hand, the monodromy can be read off from(
−L1

K2

)
=

(
−1
γ

)
→
(
−1
γ + 1

)
=

(
1 0
−1 1

)(
−L1

K2

)
. (E.2)

From (2.18), (2.19), this means that we have the following SL(2,Z)3 monodromy:

M3 =

(
1 0
−1 1

)
∈ SL(2,Z)3. (E.3)

One can also see this from the Kähler moduli,

τ 1 = i

√
f1

f2

, τ 2 = i

√
f2

f1

, τ 3 = − 1

τ ′3
, τ ′3 = γ + i

√
f1f2. (E.4)
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We see that, as we go once around the supertube, τ 1,2 are single-valued whereas τ 3 has the

monodromy

τ 3 → τ 3

−τ 3 + 1
. (E.5)

Because τ 3 = B89 + i
√

detGab where a, b = 8, 9, this monodromy implies that, every time one

goes through the supertube, the radii of the torus T 2
89 keeps changing. Namely, this spacetime

is twisted by T-duality and is non-geometric. This is precisely the correct monodromy for the

52
2-brane [30,31].

As in the case of the D2+D2→ ns5 supertube discussed around(2.44), if |Ḟ| = 1, we have

f1 = f2 ≡ f and therefore τ 1 = τ 2 = i as we can see from (E.4). So, the situation reduces to

the one-modulus class of Section 2.2, with the complex harmonic functions

F = i, G = −i(γ + if). (E.6)
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