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Abstract—This paper proposes a practical channel estimation
for 60GHz indoor systems with the massive uniform rectangular
array (URA) at base station (BS). Through antenna array
theory, the parameters of each channel path can be decomposed
into the angular information and the channel gain information.
We first prove that the true direction of arrivals (DOAs) of
each uplink path can be extracted via efficient array signal
processing method. Then, the channel gain information could
be obtained linearly with small amount of training resources,
which significantly reduces the training overhead and the feed-
back cost. More importantly, the proposed scheme unifies the
uplink/downlink channel estimations for both the time duplex
division (TDD) and frequency duplex division (FDD) systems,
making itself particularly suitable for protocol design. Compared
to the existing channel estimation algorithms, the newly proposed
one does not require any knowledge of channel statistics and
can be efficiently deployed by the two dimensional fast Fourier
transform (2D-FFT). Meanwhile, the number of user terminals
(UTs) simultaneously served can be increased from a sophisti-
catedly designed angle division multiple access (ADMA) scheme.
Simulation results are provided to corroborate the proposed
studies.

Index Terms—Massive MIMO, Angle Domain Signal Process-
ing, DOA Estimation, Angle Division Multiple Access (ADMA),
Angle Reciprocity.

I. INTRODUCTION

As a candidate radio band for 5G mobile communications,

the millimeter-wave in the range of 30–300 GHz has attracted

lots of attention [1]–[3]. Specifically, 60GHz spectrum has

been proposed for indoor and short-range outdoor environment

since its primary propagation paths only include the line-of-

sight (LOS) and the first-order reflections [4]–[6]. For 60
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GHz mobile communications, it is possible to equip hun-

dreds or thousands antennas at the base station (BS) due

to the short wavelength, resulting in a framework called

“massive MIMO” [7]. Theoretically, massive MIMO could

tremendously increase the capacity and improve the energy-

efficiency. Meanwhile, massive MIMO offers the potential

to use economic, inexpensive, and low-power components.

These advantages make massive MIMO promising for the next

generation wireless systems [8]–[10].

However, all the potential gains of massive MIMO systems

rely heavily on the accurate channel estimation at BS, which

formulates a great challenge for millimeter-wave indoor sce-

nario [11]. For example, conventional orthogonal training (OT)

framework [12] requires the number of the training streams to

be proportional to the number of the transmit antennas. Hence,

downlink training in massive MIMO systems needs extremely

large number of OT sequences. This severe overhead as well

as the accompanied high calculation complexity and feedback

cost may overwhelm the system performance.

For time division duplexing (TDD) massive MIMO systems,

downlink channel state information (CSI) could be obtained

via the channel reciprocity [13] from uplink channel estimation

[14]–[16]. However, in practice the calibration error of the

downlink/uplink RF chains [17] may ruin the channel reci-

procity. In addition, channel reciprocity has been proven to be

robust only for the single-cell scenario [18]. Moreover, channel

reciprocity does not hold for frequency division duplexing

(FDD) massive MIMO systems [19]–[25].

In order to reduce the effective number of channel param-

eters, many works exploited the sparse nature of the channel

and claimed the low rank properties in the uplink/downlink

channel matrices. Basically there are two main approaches to

formulate low rank assumption:

1) Eigen-decomposition based scheme [20]–[22] that di-

rectly assume the availability of low rank channel co-

variance matrices of all user terminals (UTs). However,

the complexity of eigen-decomposition based channel es-

timation is extremely high and this method requires large

overhead to obtain reliable channel covariance matrices

in practice.

2) Compressive sensing (CS) based scheme [23]–[25] that

assume limited number of spatial scattering paths be-

tween UTs and BS. However, the complexity of CS

method is still high due to the non-linear optimization
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while its effectiveness depends on the restricted isometry

property (RIP).

In this paper, we propose a practical yet simple channel

estimation scheme for 60 GHz indoor communications that

could better explore the inherent structure of array. We first

exploit the physical characteristics of the massive uniform

rectangular array (URA) and decompose the channel infor-

mation into angular information and gain information. We

design an array signal processing aided fast direction of

arrival (DOA) estimation algorithm that does not possess the

ambiguity problem. The remaining channel gain information

could be obtained with small amount of training resources,

which significantly reduces the training overhead and the

feedback cost. More importantly, the angle reciprocity from

antenna array theory says that, the direction of depart (DOD)

of the downlink channel is the same as the DOA, which could

be utilized to facilitate the downlink channel estimation, espe-

cially suitable for FDD system. With the angular information,

we further design a user scheduling algorithm, named as angle

division multiple access (ADMA), that greatly enhance the

spectrum efficiency of both the training and data transmission.

Compared to the existing channel estimation algorithms, the

newly proposed one does not require the knowledge of channel

covariances, does not require eigen-value decomposition of

huge matrices, and can be efficiently deployed by the linear

estimation approaches.

The rest of the paper is organized as follows. In section II,

the system model of 60GHz indoor massive MIMO systems

and the channel characteristics are described. In section III,

we examine the physical characteristics of URA and propose

a fast DOA estimation algorithm. The angular information

aided channel estimation algorithm of the uplink transmission

are presented in section IV. Section V provides the angular

information aided channel estimation algorithm for downlink

transmission as well as the user scheduling scheme for down-

link data transmission. Simulation results are then presented

in Section VI and conclusions are drawn in Section VII.

Notations: Small and upper bold-face letters donate col-

umn vectors and matrices respectively; the superscripts (·)H ,

(·)T , (·)∗ stand for the conjugate-transpose, transpose, and

conjugate of a matrix, respectively; tr(A) donates the trace

of A and [A]ij is the (i, j)th entry of A; diag{a} denotes a

diagonal matrix with the diagonal element constructed from

a, while diag{A} denotes a vector whose elements are

extracted from the diagonal components of A; E{·} denotes

the statistical expectation, and ‖h‖ is the Euclidean norm of

h.

II. SYSTEM MODEL

In this paper, we consider an indoor environment system

with one BS and K single-antenna UTs, as shown in Fig. 1.

BS

UT

BS

  

LOS 

First-order 

reflection

Fig. 1. Indoor environment model showing LOS, first-order reflection
propagation paths from a UT element to the BS antenna array.

BS is equipped with M×N antenna array in the form of URA

and is located in the center of ceiling, facing downward. UTs

are randomly and uniformly distributed inside room.

Following the measurement results, a statistical model of

the meeting-room environment was built in [26], which shows

that the line of sight (LOS) path and the 5 first-order reflected

paths contribute to the majority of the multipath components,

as shown in Fig. 1. Define θl,k ∈ (−180◦, 180◦) and αl,k ∈
(−90◦, 90◦) as the signal azimuth angle and the elevation

angle of the lth (l ≤ 6) path of the kth UT. The corresponding

uplink steering matrix [27] can be expressed as (1) shown on

top of this page, where d denotes the distance between two

neighboring elements, and λ is the wave length of the carrier

signal. Then the M ×N uplink channel matrix of the lth path

of the kth UT can be expressed as

Hl,k = al,kA(αl,k, θl,k), (2)

where al,k ∼ CN (0, 1) denotes the corresponding channel

attenuation of the kth UT along path l. Therefore, the overall

uplink channel matrix of the kth UT is

Hk =

6∑

l=1

al,kA(αl,k, θl,k). (3)

Obviously, (3) is a sparse channel model that represents the

low rank property and the spatial correlation characteristics of

millimeter-wave communications [28]–[30]. Nevertheless, our

next discussions start from the antenna array theory and will

provide different insight from either the eigen-decomposition

based scheme [20]–[22] or the CS based scheme [23]–[25].

From (3), it is known that instead of directly estimating the

channel Hk, one could separately estimate the DOA informa-

tion (αl,k, θl,k), say from angle domain signal processing tech-

niques, and then estimate the corresponding path gain al,k. By
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[H̃l,k]i,j =
1√
MN

al,k

N−1∑

n=0

M−1∑

m=0

e−j( 2π
N

nj+ 2π
M

im−2πd/λ(m sinαl,k cos θl,k+n sinαl,k sin θl,k))

=
1√
MN

al,ke
−j M−1

2 ( 2π
M

i−2πd/λ sinαl,k cos θl,k)e−j N−1
2 ( 2π

N
j−2πd/λ sinαl,k sin θl,k)

· sin[
M
2 (2πM i− 2πd/λ sinαl,k cos θl,k)]

sin[ 12 (
2π
M i− 2πd/λ sinαl,k cos θl,k)]

· sin[
N
2 (

2π
N j − 2πd/λ sinαl,k sin θl,k)]

sin[ 12 (
2π
N j − 2πd/λ sinαl,k sin θl,k)]

. (4)

doing this, the number of the parameters to be treated is greatly

reduced. We then define Bk = {(αl,k, θl,k), l = 1, 2, · · · , 6}
as the angular signature of the kth UT that could uniquely

identify a UT inside the indoor environment.

III. DOA ESTIMATION WITH ANTENNA ARRAY THEORY

In this section, we show how to estimate DOA information

from a given Hk, while the detailed channel estimation algo-

rithm to obtain initial Hk of multiple UTs will be presented in

the next section. Conventional DOA estimation, e.g., multiple

signal classification (MUSIC) [31] and estimation of signal

parameters via rotational invariance technique (ESPRIT) [32]–

[35] can be applied for blind DOA estimation. However, these

subspace based methods perform eigen-decomposition whose

complexity is forbidden for massive MIMO system [36].

Nevertheless, thanks to the massive number of antennas as well

as the URA structures, we will demonstrate that the efficient

two-dimension fast Fourier transform (2D-FFT) approach can

be applied to help DOA estimation.

A. Fast Initial DOA Estimation via 2D-DFT

Define the 2D-DFT of the channel matrix Hk as H̃k =
FMHkFN , where FM and FN are the two normalized

DFT matrices, whose (p, q)th elements are [FM ]pq =
e−j 2π

M
pq/

√
M and [FN ]pq = e−j 2π

N
pq/

√
N , respectively.

Lemma 1: Most power of H̃l,k concentrates around

(il,k, jl,k), where il,k = ⌊Md/λ sinαl,k cos θl,k⌉, jl,k =
⌊Nd/λ sinαl,k sin θl,k⌉. Specifically, H̃l,k only has one

nonzero point (il,k, jl,k) as M → ∞, N → ∞.

Proof 1:

The (i, j)th component of channel matrix H̃l,k is computed

as (4).

It can be readily checked that the entries of H̃l,k pos-

sess sparse property. For example, if Md/λ sinαl,k cos θl,k
equals to some integer il,k and Nd/λ sinαl,k sin θl,k equals

to some integer jl,k, then H̃l,k has only one non-zero element

[H̃l,k]il,k,jl,k =
√
MNal,k, which means that all powers

are concentrated on the point (il,k, jl,k). However, for most

other cases, Md/λ sinαl,k cos θl,k and Nd/λ sinαl,k sin θl,k
are not integers, while the channel power will leak from

the point (⌊Md/λ sinαl,k cos θl,k⌉, ⌊Nd/λ sinαl,k sin θl,k⌉)
(defined as ‘central point’) to others. In fact, (4) is com-

posed of Sinc function such that the leakage of chan-

nel power is inversely proportional to M and N . Hence

when M and N are sufficiently large, H̃l,k is still a

sparse matrix with most of power concentrated around

(Md/λ sinαl,k cos θl,k, Nd/λ sinαl,k sin θl,k). An example

of a single path channel from (45◦, 32◦) is illustrated in Fig.

2, whose 2D-DFT is depicted. The number of antennas at

BS is 100 × 80. It can be checked that the central point of

the channel after 2D-DFT is (29, 15). Moreover, η = 95%
channel power concentrates on 15 2D-DFT points as shown

in the small planar graph inside Fig. 2.

When M,N → ∞, there always exists integers

(il,k, jl,k) that satisfy Md/λ sinαl,k cos θl,k = il,k,

Nd/λ sinαl,k sin θl,k = jl,k and all channel powers will

concentrate on a single 2D-DFT point (il,k, jl,k), formulating

the ideal sparsity.

An example of H̃k with M = 100 and N = 80 is shown

in Fig. 3. Hence, the angular signature of the kth user can be

immediately obtained from the power-concentrated position in

the 2D-DFT of Hk.

Remark 1: Since there only exist 6 paths from one UT

to BS, the power of the equivalent channel matrix H̃k will

concentrate around 6 bins, and is thus sparse. Hence, the

eigen-decomposition based scheme [20]–[22] and the CS-

based scheme [23]–[25] also proposed to estimate the limited

parameters in H̃k if one estimate H̃k instead of Hk. However,

the eigen-decomposition based method require the M × N
dimensional channel covariance matrix, while the CS-based

method, will have to handle much more non-zero entries in

H̃k due to the power leakage problem. Nevertheless, we next

show that the power leakage problem can be removed with the

aid of array signal processing approach, and the exact DOA

estimation can be obtained.

B. Fine DOA Estimation via Angular Rotation

Lemma 2: Define

ΦM (∆αl,k) = diag(1, ej∆αl,k,··· ,ej(M−1)∆αl,k

),

ΦN (∆θl,k) = diag(1, ej∆θl,k,··· ,ej(N−1)∆θl,k

), (5)

where ∆αl,k ∈ [− π
M , π

M ] and ∆θl,k ∈ [− π
N , π

N ] are the phase

rotation parameters. The angular rotation operation H̃ro
l,k =

FMΦM (∆αl,k)Hl,kΦN (∆θl,k)FN can concentrate all power

within one entry of H̃ro
l,k when

∆αl,k = (2π/Mil,k − 2πd/λ sinαl,k cos θl,k) ∈ [−π/M, π/M ],

∆θl,k = (2π/Njl,k − 2πd/λ sinαl,k sin θl,k) ∈ [−π/N, π/N ].
(6)

Proof 2: The (i, j)th element of H̃ro
l,k can be calculated as

(7). It can be readily checked that the entries of H̃ro
l,k has only

one non-zero element [H̃l,k]
ro
il,k,jl,k

=
√
MNal,k.
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[H̃ro
l,k]i,j =[FMΦM (∆αl,k)Hl,kΦN(∆θl,k)FN ]i,j

=
1√
MN

al,k

N−1∑

n=0

M−1∑

m=0

e−j( 2π
N

nj+ 2π
M

im−2πd/λ(m sinαl,k cos θl,k+n sinαl,k sin θl,k)−m∆αl,k−n∆θl,k)

=
1√
MN

al,ke
−j M−1

2 ( 2π
M

i−2πd/λ sinαl,k cos θl,k−∆αl,k)e−j N−1
2 ( 2π

N
j−2πd/λ sinαl,k sin θl,k−∆θl,k)

· sin[
M
2 (2πM i− 2πd/λ sinαl,k cos θl,k −∆αl,k)]

sin[ 12 (
2π
M i− 2πd/λ sinαl,k cos θl,k −∆αl,k)]

· sin[
N
2 (

2π
N j − 2πd/λ sinαl,k sin θl,k −∆θl,k)]

sin[ 12 (
2π
N j − 2πd/λ sinαl,k sin θl,k −∆θl,k)]

.

=
1√
MN

al,ke
−j (M−1)π

M
(i−il,k)e−j (N−1)π

N
(j−jl,k) · sin[π(i − il,k)]

sin[ π
M (i− il,k)]

· sin[π(j − jl,k)]

sin[ πN (j − jl,k)]
. (7)

Fig. 2. An example of 2D-DFT sparse characteristics, where BS array has
100 × 80 antennas.
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Fig. 3. An example of 2D-DFT sparse characteristics, where BS array has
100 × 80 antennas.

Lemma 2 indicates that: when we gradually rotate Hk by

∆α ∈ [− π
M , π

M ] and ∆θ ∈ [− π
N , π

N ], then the original 6

bins in 2D-DFT domain will shrink to a single sharp peak

one by one (not simultaneously). Then, the corresponding

rotation value (∆α,∆θ) would serve as a good estimate of

(∆αl,k,∆θl,k) in Lemma 2. Together with the previously

obtained coarse DOA estimation from 2D-DFT, we could get

Fig. 4. The spatial resolution of different antenna spacing d1 = λ

4
, d2 = λ

2
,

d3 = λ, respectively, with a constant number of antennas M .

a fine DOA estimation as:

α̂l,k = arcsin


λ/d

√(
il,k
M

− ∆αl,k

2π

)2

+

(
jl,k
N

− ∆θl,k
2π

)2

 ,

θ̂l,k = arctan
jl,k
N − ∆θl,k

2π
il,k
M − ∆αl,k

2π

. (8)

Remark 2:

Though quite a few beamspace works [37]–[39] claim that

the 2D-DFT of channels could already represent the angle in-

formation of the UTs, it is known from section III.A that such

direct 2D-DFT of channels could merely presents the angle

information “on the discrete grids” but is not the true angle

information of the UTs when practical array is of finite size.

As will be seen later, utilizing the true angle information of

the channel, named angle domain, can offer many benefits, for

example, the less power leakage and the simplified downlink

channel estimation due to angle reciprocity.

C. Spatial Resolution and DOA Ambiguity

Though antenna array theory does help to decouple the

channel estimation of Hk into DOA estimation and gain

estimation which then reduces the number of the parameters

to be estimated, it meanwhile brings some inherent problem

during DOA estimation. For example, the spatial resolution

and DOA ambiguity that is related to the aperture of antenna

array should be carefully handled.

It is well known that the resolution of DOA estimation

can be improved by enlarging the antenna spacing without
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changing the number of antennas. It can be seen from Fig.

4 that when the antenna spacing increases (up to λ/2), the

width of beam becomes smaller while the number of the

orthogonal beams that the antenna could formulate keeps as

M . When the antennas spacing keeps on increasing (above

λ/2), the width of beam continues to shrink while there start

appearing the ambiguous beams, namely, the same steering

vector corresponds to two beams in the space. Therefore, the

antenna spacing of URA should generally be restricted to

no larger than λ/2 to avoid the DOA ambiguity. For indoor

communications, the situation of DOA estimation would be

a bit different. For example, the height of the UT is limited

by the height of human being and thus UTs would not be

distributed over all 3D space inside the room. In this case, the

elevation angle α and azimuth angle θ may stay in a smaller

range than (−π, π), say α ∈ (αmin, αmax), θ ∈ (θmin, θmax).
It is then possible to increase the antenna spacing to be greater

than λ/2 without causing the DOA estimation ambiguity.

Let us assume the length, the width and the height of the

indoor cuboid as Cl, Cw, Ch respectively, as shown in Fig. 1.

Moreover, assume the maximum height of the UT is Cm. The

maximum angle of elevation arise when UT is located in the

edge of the room. We can obtain

tanαmax =

√
(32Cl)2 + (12Cw)2

Ch − Cm
=

√
C2

w + 9C2
l

2(Ch − Cm)
. (9)

Thus, αmax can be expressed as

αmax = arctan

(√
C2

w + 9C2
l

2(Ch − Cm)

)
. (10)

If UTs are randomly distributed on the ground, then the

coverage of BS is limited within θl,k ∈ [−π, π] and αl,k ∈
[−αmax, αmax]. The DOA ambiguity happens if there exist

pseudo DoAs α̃, θ̃ and satisfy

2π
d1
λ
(sinα cos θ − sin α̃ cos θ̃) = 2kπ, k = 0,±1, · · · ,

2π
d2
λ
(sinα sin θ − sin α̃ sin θ̃) = 2kπ, k = 0,±1, · · · . (11)

To avoid DOA ambiguity, there should be no solutions to (11)

for α̃ ∈ [−αmax, αmax] and θ̃ ∈ [−π, π]. Thus we obtain

sinα cos θ − λ

d1
≤ (sin α̃ cos θ̃)min,

sinα cos θ +
λ

d1
≥ (sin α̃ cos θ̃)max,

sinα sin θ − λ

d2
≤ (sin α̃ sin θ̃)min,

sinα sin θ +
λ

d2
≥ (sin α̃ sin θ̃)max, (12)

−10 −5 0 5 10 15 20
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E

FFT based DOA estimation, d = 0.5λ

FFT based DOA estimation, d =
√

3/3λ

Fig. 5. Comparison of the proposed FFT based DOA estimation method with

d = 0.5λ and d =
√

3

3
λ, respectively.

which are equivalent to

d1
λ

≤ 1

sinα cos θ − (sin α̃ cos θ̃)min

,

d1
λ

≤ 1

(sin α̃ cos θ̃)max − sinα cos θ
,

d2
λ

≤ 1

sinα sin θ − (sin α̃ sin θ̃)min

,

d2
λ

≤ 1

(sin α̃ sin θ̃)max − sinα sin θ
, (13)

where (·)min and (·)max denote the minimum value and the

maximum value of the argument inside when α̃ and θ̃ go

through their respective range.

For example, let us take Cl = 3, Cw = 2, Ch = 3.5, and

Cm = 0.5. Then, αmax = arctan
√
85
6 ≈ 2π

3 . From (13), we

can obtain the following inequalities

d1
λ

≤ 1

| sinα cos θ +
√
3
2 |

,
d1
λ

≤ 1

|
√
3
2 − sinα cos θ|

,

d2
λ

≤ 1

| sinα sin θ +
√
3
2 |

,
d2
λ

≤ 1

|
√
3
2 − sinα sin θ|

. (14)

Hence, we can obtain d1 ≤
√
3
3 λ and d2 ≤

√
3
3 λ, which are

greater than λ/2. In this case, one should set the array aperture

exactly as d1 =
√
3
3 λ and d2 =

√
3
3 λ to enhance the accuracy

of DOA estimation.

To verify that the larger antenna aperture does increase

the DOA estimation accuracy, we demonstrate the DOA es-

timation results of the proposed algorithm in Fig. 5 with

M = 100, N = 100 for different antenna spacing d. The

number of UTs is taken only as 1 for illustration. The mean

square error (MSE) of the DOAs are defined as

MSE =

6∑

l=1

(
|α̂l − αl|2

α2
l

+
|θ̂l − θl|2

θ2l

)/
6. (15)



6

t... ...

Preamble

Coherence interval 1 Coherence interval N

TDD/FDD

Short pilot Data transmission

...Group 1 Group 1

blocks

Uplink

Short pilot 

and feedback Data transmission

...Group 1 Group 1

blocks

Downlink

Fig. 6. A unified transmission scheme including preamble, uplink/downlink
training and data transmission.

It is seen that when antenna spacing d increases, the MSE of

the proposed FFT algorithm reduces while there is no DOA

estimation ambiguity.

IV. UPLINK CHANNEL ESTIMATION STRATEGY

In this section, we propose a communication framework that

include uplink preamble, uplink training, uplink data transmis-

sion, downlink training, and downlink data transmission, as

shown in Fig. 6. The transmission initializes from an uplink

preamble to obtain the angular signature of all UTs with the aid

of the algorithm in the previous section. Then UTs are grouped

and scheduled for the subsequent uplink/downlink training and

data transmission based on their respective angular signature.

It needs to be mentioned that the proposed framework is

applicable for both TDD and FDD schemes.

A. Obtain Angular Signature Through Uplink Preamble

During the preamble stage, each UT send the orthogonal

training sequence to obtain their initial channel estimate. If the

number of available orthogonal training sequences is limited,

say smaller than the number of users, then each UT would

have to sequentially reuse orthogonal training sequences. To

ease illustration, we assume K orthogonal training sequences

are available at preamble stage and the length of the training

sequences is also equal to K . This process seems time

consuming but will only be performed once at the start of

the transmission, as will be explained later.

Denote the available orthogonal training sequences set as

P = [p1,p2, · · · ,pK ] with pH
i pj = K · σ2

p · δ(i− j) and σ2
p

being the average training power. The tensor of the received

training signals Y ∈ CM×N×K at BS can be written as

Y =

K∑

k=1

(Hk ×3 pk +Nk), (16)

where Hk ∈ CM×N×1 is the uplink channel tensor1 [40] for

the kth UT, [Hk]:,:,1 = Hk, and Nk ∈ CM×N×K is the in-

dependent additive white Gaussian noise tensor with elements

distributed as CN (0, 1). Since the first two dimensions of Hk

denote the BS antennas and the third dimension represents

UT antenna, we may use ×3 to obtain the received signal Y .

1In this paper, we consider the three-dimensional tensor whose element is
(x, y, z). The corresponding algebra of tensors is provided in the appendix.

Hence, the least square (LS) estimation of the channel Hk can

be expressed as

Ĥk =
1

Kσ2
p

Y ×3 p
H
k =

1

Kσ2
p

K∑

k′=1

(Hk′ ×3 pk′ +Nk′ )×3 p
H
k

=Hk +
1

Kσ2
p

Nk ×3 p
H
k = Hk +

1√
K(

σ2
p

σ2
n
)
Nk, (17)

where σ2
p/σ

2
n is defined as the uplink training signal-to-noise

ratio (SNR), and Nk denotes the normalized Gaussian white

noise.

Repeating the similar operations in (17) for all G groups

yields the channel estimates for all K UTs. The next step is

to obtain 6 angular rotations (∆αl,k,∆θl,k), l = 1, 2, · · · , 6
and extract the angular signature Bk = {(αl,k, θl,k), l =
1, 2, · · · , 6} of each UT via the 2D-DFT and angular rota-

tion approaches in previous section. The detailed steps are

summarized in Algorithm 1:

Algorithm 1 Obtaining the angular signature from uplink

preamble

Step 1: Extract the estimation of Ĥk as Ĥk = [Ĥk]:,:,1 for all

UTs. After 2D-DFT of Ĥk, we can obtain
˜̂
Hk = FMĤkFN ,

which have 6 original bins Fl,k, l = 1, 2, · · · , 6, as shown in

Fig. 3.

Step 2: Initial estimation via 2D-DFT: Select the element with

the maximal power in each original bins, respectively. Namely,

Ql,k = argmax(i,j)∈Fl,k
‖[ ˜̂Hk]i,j‖2, and the location of the

maximal power Ql,k in lth original bin is (il,k, jl,k) = (i, j).
Step 3: Fine estimation via angular rotation: Search for

∆α ∈ [− π
M , π

M ] and ∆θ ∈ [− π
N , π

N ] with a certain

precision, and define
˜̂
Hro

k = FMΦM (∆α)ĤkΦN (∆θ)FN ,

which also have 6 bins. For each original bins Fl,k, if

argmax(i,j)∈Fl,k
‖[ ˜̂Hro

k ]i,j‖2 > Ql,k, we update Ql,k =

argmax(i,j)∈Fl,k
‖[ ˜̂Hro

k ]i,j‖2, ∆αl,k = ∆α,∆θl,k = ∆θ,

(il,k, jl,k) = (i, j).
Step 4: After searching all ∆α and ∆θ, we can obtain the

location of the maximal power Ql,k and the optimal angular

rotation (∆αl,k,∆θl,k) for each bin of all UTs.

Step 5:The angular information (α̂l,k, θ̂l,k) can be esti-

mated from (8). After that, the angular signature Bk =
{(α̂l,k, θ̂l,k), l = 1, 2, · · · , 6} of the kth UT can be obtained.

The number of search grids within [− π
M , π

M ] and [− π
N , π

N ]
determines the accuracy and the complexity of the whole

algorithm. We denote G as the search grids, which are evenly

distributed in [− π
M , π

M ] and [− π
N , π

N ]. Clearly, the number of

search grids is inversely proportional to the complexity of the

algorithm but is proportional to the accuracy of the algorithm.

Then we can obtain the complexity of the worst MSE is about

O(MN logMN +MN +GKMN), which is much smaller

than O((MN)3) especially when M,N is large. In fact, for

massive MIMO with very large M,N , a small value of G is

already good enough to provide very high accuracy and low

complexity.
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B. Channel Estimation with ADMA

The preamble will only be sent once at the beginning of the

transmission. Afterwards, the CSI should be re-estimated when

it exceeds the coherent time. Nevertheless, since a UT may not

physically change its position in a relatively longer time, we

may treat the DOA component of the channel as unchanged

within several or even tens of the channel coherence times,

while the remaining gain component could be re-estimated

via much simplified approach. After preamble, we assume

that there are only τ < K short pilot sequences with length

L(τ ≤ L) in uplink training stage. Specifically, with the

angular information obtained from preamble, UTs can be

grouped and served simultaneously.

Let us divide K UTs into Gul groups while UTs in each

group satisfy Bk1 ∩ Bk2 = ∅, k1 6= k2 and Bk1 − Bk2 ≥ Ω,

where Ω denotes the guard interval and Bk1 −Bk2 means the

minimum distance of the elements in Bk1 and Bk2 . Namely,

(αl,k1 − αl,k2)min ≥ Ω and (θl,k1 − θl,k2)min ≥ Ω. Since

each Bk contains only 6 path, one group could easily contain

multiple UTs and then Gul ≪ K generally holds. Since UTs

are grouped based on their angular information, we name this

scheme as ADMA. For the ease of illustration, let us assume

Gul ≤ τ . Moreover, denote the UT set of the gth group as Ug.

Let us then assign the training sequence sg to the gth group

and allow all UTs to transmit the training sequences simul-

taneously. The received signals at BS can then be expressed

as

Y =

Gul∑

g=1

∑

k∈Ug

Hk ×3 sg +N . (18)

Similar to (17), we could obtain

Ĥg =
1

Lσ2
s

Y ×3 s
H
g =

1

Lσ2
s

( Gul∑

g=1

∑

k∈Ug

Hk ×3 sg +N
)
×3 s

H
g

=Hk +
∑

l∈Ug/{k}
Hl +

1

Lσ2
s

N ×3 s
H
g

=Hk +
∑

l∈Ug/{k}
Hl +

1√
L(

σ2
s

σ2
n
)
Ng. (19)

Obviously, the second term in the last equation contains

channel matrices of all the other UTs in the same group and

is the so called pilot contamination.

Lemma 3: For massive MIMO scenario, i.e., M → ∞, N →
∞, the following property holds:

lim
M→∞
N→∞

vec(A(α1, θ1))
Hvec(A(α2, θ2)) =

{
1, α1=α2

θ1=θ2

0, otherwise.

(20)

Proof 3: Define

a(vα,θ) =
1√
M

[1, ej2π
d
λ
sinα cos θ, · · · , ej2π d

λ
(M−1) sinα cos θ]H ,

(21)

a(uα,θ) =
1√
N

[1, ej2π
d
λ
sinα sin θ, · · · , ej2π d

λ
(M−1) sinα sin θ]H .

(22)

It can be easily checked that vec(A(αi, θi)) = a(vαi,θi) ⊗
a(uαi,θi), for i = 1, 2. Then there is

lim
M→∞,N→∞

vec(A(α1, θ1))
Hvec(A(α2, θ2))

= lim
M→∞,N→∞

[a(vα1,θ1)⊗ a(uα1,θ1)]
H [a(vα2,θ2)⊗ a(uα2,θ2)]

= lim
M→∞,N→∞

[a(vα1,θ1)
Ha(vα2,θ2)]⊗ [a(uα1,θ1)

Ha(uα2,θ2)]

=δ(sinα1 cos θ1 − sinα2 cos θ2) · δ(sinα1 sin θ1 − sinα2 sin θ2),
(23)

where δ(·) is the Dirac delta function and the nonzero value

is obtained if and only if
{

sinα1 cos θ1 = sinα2 cos θ2
sinα1 sin θ1 = sinα2 sin θ2

(a)⇐⇒
{

α1 = α2

θ1 = θ2.
(24)

and
(a)⇐⇒ is due to the bounded range of α1, α2, θ1, θ2 ∈ [0, π].

Therefore, we get that different channels for different angular

signature will be orthogonal when M and N approach infinity.

Let us then multiply both sides of (19) by steering vector

vecH(A(α̂l,k, θ̂l,k)) and obtain

vecH(A(α̂l,k, θ̂l,k))[Ĥg](3)

=vecH(A(α̂l,k, θ̂l,k))([Hk](3) +
∑

l∈Ug/{k}
[Hl](3)

+
1√

L(
σ2
s

σ2
n
)
[Ng](3))

=al,k +
1√

L(
σ2
s

σ2
n
)

vecH(A(α̂l,k, θ̂l,k))[Ng ](3). (25)

According to Lemma. 3 and bearing in mind that Bk and Bl are

separated at least by one guard interval Ω, we know the entries

of
∑

l∈Ug/{k} vecH(A(α̂l,k, θ̂l,k))[Hl](3) in (25) approximate

to zero for massive URA. Clearly (25) could serve as good

estimate for al,k and is thus denoted as âl,k.

With the angular information from (8) and gain information

from (25), we may obtain the normalized uplink channel

estimation for all UTs as

[Ĥk](3) =

6∑

l=1

âl,kvec(A(α̂l,k, θ̂l,k)). (26)

Remark 3: The aforementioned discussions have illuminated

the framework for pilot reusing and user scheduling during

uplink training, where the same training sequences can be

reused if UTs do not have overlapped angular signature,

namely, they are “orthogonal in angle domain”. While for

those UTs that cannot be spatially separated, they have to

use “orthogonal training” to avoid the pilot contamination.

Moreover, the key 2D-DFT operation in the proposed scheme

can be efficiently implemented by 2D-FFT.

V. DOWNLINK TRANSMISSION STRATEGY

A. Downlink Channel Estimation with Angle Reciprocity

The key difficulty to apply the conventional downlink chan-

nel estimation algorithms for massive MIMO systems lies in

the requirement that the length of the training has to be no
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TABLE I
PARAMETERS FOR THE RELATIVE PERMITTIVITY AND CONDUCTIVITY OF BUILDING MATERIALS [45].

Material class Relative permittivity Conductivity Frequency range (GHz)

Concrete 5.31 0.0326 0.8095 1-100

Brick 3.75 0.038 0.0 1-10

Plasterboard 2.94 0.0116 0.7076 1-100

Wood 1.99 0.0047 1.0718 0.001-100

Glass 6.27 0.0043 1.1925 0.1-100

Ceiling board 1.50 0.0005 1.1634 1-100

Chipboard 2.58 0.0217 0.7800 1-100

Floorboard 3.66 0.0044 1.3515 50-100

Metal 1 107 0.0 1-100

less than the number of antennas. Moreover, the feedback of

huge CSI from UTs back to BS also costs severe overhead.

For TDD systems, the estimated uplink channel can be used

as downlink channel by the property of channel reciprocity.

However, for FDD systems the channel reciprocity does not

hold.

It has been shown in [41]–[45] that the uplink and downlink

channel may have similar angular information due to the

characteristics of the physical propagation, especially when the

uplink and downlink frequencies are not far from each other.

Namely, the directional of departure (DOD) of the downlink

channel is the same as the DOA of the uplink channel that have

been estimated through preamble. This property is then named

as angular reciprocity. A side proof of angular reciprocity can

be found in Table. I [45], showing the values of the relative

permittivity, the conductivity, and the frequency range of a

number of building materials. It is seen that the propagation

characteristic may not change for the frequency variation up

to 10GHz, theoretically. In practice, the downlink and uplink

frequency in 60 GHz could be away for as large as several

gigaHertz. In this case, DOA and DOD could be different by

a small value, which could nevertheless be compensated for

via beaming sweeping method within a small region [46].

Denote the downlink channel from BS to the kth UT as Gk.

Similar to (3), Gk can be modeled as

Gk =

6∑

l=1

βl,kA(αl,k, θl,k), (27)

where A(αl,k, θl,k) is the steering matrix defined in (1) but

with different downlink carrier wavelength λ, and βl,k is the

corresponding downlink channel gain of each path that is to

be estimated. All other parameters have the same definitions

as in (3).

Denote gk = vec(Gk) ∈ CMN×1, the downlink channel

from BS to the kth UT can be represented by

gH
k =

6∑

l=1

βl,kvecH(A(αl,k, θl,k)) = βH
k Ck, (28)

where βk = [β1,k, β2,k, · · · , β6,k]
H , and

Ck = [vec(A(α1,k, θ1,k)), vec(A(α2,k, θ2,k)),

· · · , vec(A(α6,k, θ6,k))]
H . (29)

With (28), the downlink channel estimation for each UT

only needs to estimate 6 unknowns in βk. To reuse the

overall τ orthogonal training sequences, let us divide K
UTs into different groups and clusters. We first gather UTs

with different angular signature Bk that are separated by a

certain guard interval into the same group, i.e., Bk ∩ Bl =
∅,Bk − Bl ≥ Ω, k 6= l. The same orthogonal training matrix

Sg = Sk = [s1, s2, · · · , s6]H ∈ C6×L can be reused by

different UTs in the gth group, where tr{SH
k Sk} = 1 for

k ∈ Dg and Dg is the UT index set of the gth group. Secondly,

let us take any ⌊ τ
6 ⌋ groups as a training cluster and define the

group index set of the qth training cluster as Dtr
q . Different

groups in the same training cluster use different 6-traning

sequences among all τ training sequence, namely, Sg′SH
g = 0

for Dg′ ,Dg ∈ Dtr
q . Moreover, different training clusters must

transmit training sequences in different time slot. For the ease

of exposition, assume that all K UTs are divided into Gd

groups and Gdt training clusters, Namely, Gdt = ⌈Gd/⌊ τ
6 ⌋⌉.

Let us then take the training of the gth group for example

to describe the downlink channel estimation. From antenna

array theory, it is easily known that the optimal downlink

beamforming vector corresponding to the lth path of the kth

UT is wl,k = vec(A(α1,k, θ1,k)) when the number of antennas

of BS is infinite.

Then, the overall MN × 6 beamforming matrix that

pointing towards the kth UT can be expressed as Wk =
[w1,k,w2,k, · · · ,w6,k], i.e., Wk = CH

k . Moreover, the overall

beamforming matrix of the gth group is defined as

Wg =
∑

k∈Dg

WkΛk, (30)

where Λk = diag{γ1,k, γ2,k, · · · , γ6,k} is the 6 × 6 diagonal

matrix, and the scalar variable γl,k is the transmit power

toward the lth propagation path of the kth UT. Denoting

P dt
k as the maximum training power of the kth UT, there is

tr{ΛkΛ
H
k } ≤ P dt

k .

Then the received signals at the kth UT in the gth training

cluster can be expressed as

yH
k =gH

k

∑

g∈Dtr
q

WgSg + nH
k

=βH
k CkWkΛkSk +

∑

l∈Dg/{k}
βH
k CkWlΛlSg

+
∑

g′∈Dtr
q /{Dg}

βH
k CkWg′Sg′ + nH

k , (31)

where nH
k is the noise vector at the kth UT with the elements

distributed as CN (0, σ2).
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According to Lemma 3, we can obtain

lim
M→∞,N→∞

CkWl =

{
Ik, k = l
0, k 6= l,

(32)

where Ik is 6×6 identity matrix. Bearing in mind that Bk and

Bl are separated at least by one guard interval Ω, we know

that the second term in (31) approximates to zero for massive

URA. Therefore, (31) can be expressed as

yH
k = βH

k ΛkSk +
∑

g′∈Dtr
q /{Dg}

βH
k CkWg′Sg′ + nH

k . (33)

Since Sg′SH
k = 0, the complex path gain vector βH

k of UT

k can be estimated by the LS method as

β̂H
k = yH

k (ΛkSk)
H((ΛkSk)(ΛkSk)

H)−1 = βH
k + nH

k SH
k Λ−1

k ,
(34)

and there is no interference coming from other UTs in the

cluster Dtr
g . Hence, the overall estimated channel for the kth

UT in the gth group is

ĝH
k = β̂H

k Ck = yH
k SH

k Λ−1
k Ck = gH

k + nH
k SH

k Λ−1
k Ck.

(35)

Then, each UT only needs to feedback 6 components β̂k

to BS such that BS can perform the optimal user schedul-

ing and power allocation for the subsequent downlink data

transmission. Compared to the feedback of large amount of

measurements in conventional channel estimation method, the

overhead of the newly proposed framework is significantly

reduced.

The downlink MSE of the LS estimator in (35) can be

computed as

MSEd
k =E{‖ nH

k SH
k Λ−1

k Ck ‖2} = σ2
n ‖ Λ−1

k ‖2 tr{CH
k Ck}−1,

(36)

while the optimal power allocation matrix Λk can be obtained

from the following problem:

min

K∑

k=1

σ2
n ‖ Λ−1

k ‖2 tr{CH
k Ck}−1

s.t.
K∑

k=1

tr{Λ∗
kΛk} ≤

K∑

k=1

P dt
k . (37)

Inspecting (37), it can be straightforwardly shown that the

matrix Λk of the kth UT are the same and there should be

γ1,k = γ2,k = · · · = γ6,k =

√
6Pdt

k

6 .

It is obvious that the dimension and the complexity of

the downlink training has been reduced to a large extent in

our newly proposed framework. The sparsity in the angle

domain makes it possible to fulfill channel estimation with a

small number of pilots, which greatly improves the spectrum

efficiency. The user-interference due to pilot reuse will vanish

when the angular signatures of the UTs in the same group

do not have the same elements. Meanwhile, UTs do not

need the knowledge of angular signature set Bk to perform

the estimation of 6 channel parameters βk, which is another

key advantage of the proposed downlink channel estimation

strategy.

B. Downlink Data Transmission with User Scheduling

After obtaining the angular signatures and channel gains

of all UTs, we could schedule UTs into different groups

to enhence the data transmission efficiency. Meanwhile, the

scheduling scheme should maximize the achievable rate for

each group under given power constraint.

Assume UTs are scheduled into Gdd groups and denote the

UT index set of the gth group as Ddd
g , g = 1, 2, · · · , Gdd.

The received signal yk over the 6 propagation paths can be

expressed as

yk = gH
k

∑

k∈Ddd
g

WkΓkdk + nk

= βH
k CkWkΓkdk +

∑

l∈Ddd
g /{k}

βH
k CkWlΓldl + nk

= βH
k κkdk + nk =

6∑

l=1

βl,kκl,kdk + nk, (38)

where κk = [κ1,k, κ2,k, · · ·κ6,k]
H denote the normalized

power allocation, Γk = diag{κ1,k, κ2,k,
· · ·κ6,k}, dk = [dk, dk, · · · , dk]H ∈ C6×1 is the transmitted

signal of the kth UT, and nk is zero mean circularly symmetric

complex Gaussian noise. As seen from (38), the gains of

the beams over the 6 propagation paths can be adjusted by

controlling the vector κk.

To maximize the achievable rate for each group, UTs in the

same group should have non-overlapping angular signatures

such that the inter-user interference could be avoided. Thus,

we can take a simple method to schedule UTs, where UTs in

the same group have non-overlap angular signature, Bk∩Bl =
∅,Bk−Bl ≥ Ω for k 6= l. We here try to minimize the number

of UT groups while to maximize the sum capacity as much

as possible for each time block.

Thus, the throughput of each group can be expressed as

R(Ddd
g |Pg) ,

∑

k∈Dg

log2(1 + ρk), (39)

where Pg is the total power constraint for this group, and ρk
denotes the data transmission SNR of the kth UT. Moreover,

the power constraint is
∑

k∈Ddd
g

ρk ≤ Pg . The optimal power

allocation of each group can be simply obtained by the

conventional water-filling algorithm [47] to obtain the optimal

κk. Obviously, the optimal beam gains should be selected as

the estimated channel gains κk = βk/‖βk‖.

With the aforementioned criterion, we provide a greedy user

scheduling approach in Algorithm 2. Basically, the UTs with

the strongest channel gain will be first scheduled and then the

other UTs with non-overlapping angular signatures can join

the same group only if the achievable sum-rate of the whole

group increases afterwards. Moreover, the power constraint Pg

for each group is adjusted dynamically and it is proportional

to the final number of UTs in each group.

VI. SIMULATION RESULTS

In this section, we show the effectiveness of the proposed

strategy through numerical examples. The BS is equipped with

M×N = 100×100 URA of d = λ/2, and K = 30 active UTs
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Algorithm 2 ADMA User Scheduling Algorithm in Downlink

Data Transmission

Step 1: Calculate power of estimated channel vector ‖ ĝk ‖2
for all UTs.

Step 2: Initialize g = 1, Ddd
g = ∅, Pg = 0, R(Ddd

g |Pg) = 0,

and the remaining UT set Ur = {1, 2, · · · ,K}.

Step 3: Select the UT in Ur with the maximal power of chan-

nel, k = argmaxk∈Ur
‖ ĝk ‖2. Then set Ddd

g = Ddd
g ∪ {k},

Ur = Ur \ {k}, Pg = Pk, and calculate R(Dg|Pg) according

to (39).

Step 4: Select all UTs in Ur whose angular signatures are

non-overlapping with UTs in Ddd
g , and denote them by D′

g,

which can be expressed as

D′
g = {m ∈ Ur|Bm ∩ Bk = ∅,Bk − Bl ≥ Ω, ∀k ∈ Dg}.

Step 5: If D′
g 6= ∅, find a UT k′ in D′

g and set P ′
g = Pg+Pk,

such that

k′ = arg max
k′∈D′

g

R(Ddd
g ∪ {k′}|P ′

g).

If R(Ddd
g ∪ {k′}|P ′

g) ≥ R(Ddd
g |Pg), set Ddd

g ∪ {k′}, Ur =
Ur \ {k′}, Pg = P ′

g and go to Step 4.

Step 6: If Ur 6= ∅, modify g = g + 1, return to Step 3.

Step 7: The minimal number of UT group Gdd is set as the

current g, and the optimal user scheduling result is accordingly

given by D1,D2, · · · ,DGdd .

are randomly distributed on the ground and are gathered into

5 spatially distributed clusters. We use the ray-tracing way to

model the 60GHz indoor environment channels [48], [49]. The

channel matrix of different UTs are formulated according to

(2) and (28). The default value of τ is assumed to be τ = 12,

and the guard interval for user grouping is set as Ω = 4◦. The

length of pilot is taken as L = 12, 24, 36, respectively. The

SNR is defined as ρ = σ2
p/σ

2
n, and the normalized MSE of

the uplink and downlink channels are defined as

MSEu =
1

K

K∑

k=1

‖ [Hk](3) − ˆ[Hk](3) ‖2
‖ [Hk](3) ‖2

,

MSEd =
1

K

K∑

k=1

‖ gk − ĝk ‖2
‖ gk ‖2 , (40)

respectively. In all examples, the angular signatures of all UTs

are estimated from the preamble.

Fig. 7 illustrates the MSE performances of uplink/downlink

training, respectively, as a function of SNR with different

training sequence length L. The total power for both uplink

and downlink training is constrained to Pu
k = P d

k = L · ρ
for all UTs as a given SNR ρ. For the uplink training,

K = 30 UTs are divided into Gu = 12 groups. All these

12 groups can be scheduled in the same training length L
with τ = 12 available orthogonal training sequences. While

for the downlink training, K = 30 UTs are gathered into

5 groups and are assigned into Gd = 3 clusters, i.e., they

can be scheduled simultaneously with the limited number of

orthogonal training τ = 12 too. It is seen from Fig. 7 that when

L increases, the MSE performances of uplink/downlink can be

−10 −5 0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SNR/dB

M
S

E

Uplink, L=12

Downlink, L=12

Uplink, L=24

Downlink, L=24

Uplink, L=36

Downlink, L=36

Fig. 7. Comparison of uplink/downlink MSE performances of the proposed
channel estimation scheme with τ = 12 and L = 12, 24, 36, respectively.
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Fig. 8. The uplink MSE performance comparison of the proposed channel
estimation method and the conventional LS method, with τ = 12 and L =
12, 24, 36, respectively.

improved, because the total training power is proportional to

L. Moreover, it can be seen that the uplink MSE performances

are generally better than that of downlink for any SNR and L.

This can be inferred by comparing the noise terms of (25) and

(36), where the noise power included in the uplink training is

only proportional to
√
L while it is proportional to L for the

downlink training.

Fig. 8 and Fig. 9 compare the proposed channel estimation

with the convention LS method for both uplink and down-

link cases. To apply the conventional LS method, τ = 30
orthogonal training sequences are used for uplink case while

10000× 10000 orthogonal training matrix is used for down-

link case. To be mentioned, the proposed channel estimation

method only need τ = 12 orthogonal training sequences after

the angle knowledge is obtained from preamble. To provide a

fair comparison, the total uplink training power Pu
k = L · ρ

is kept the same for any given ρ and L, while the total

downlink training power
∑K

k=1 P
d
k = KL · ρ are kept the
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Fig. 9. The downlink MSE performance comparison of the proposed channel
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12, 24, 36, respectively.
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same too. It is seen that the proposed channel estimation

method performs better than the conventional LS method in

any SNR region even when the latter has sufficient number of

orthogonal training and when the corresponding computational

complexity is affordable. The reasons can be found that the

proposed method only involves 6 components of the noise

vector while the conventional LS method includes the whole

noise power from all antenna elements.

Fig. 10 displays the downlink MSE performances as a

function of SNR for different URA sizes. The total power for

different number of BS antennas are constrained consistently.

It is clearly seen from Fig. 10 that increase the number of

BS antennas will improve the channel estimation accuracy for

downlink because: (i) increasing the number of BS antennas

will improve the angular signatures accuracy; (ii) the second

term of (31) is more and more close to zero when the number

of BS antennas increases.

Fig. 11 compares the downlink MSE performances of the
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Fig. 11. The downlink MSE performances of the proposed method, JSDM
method and the CS-based method

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Coherence interval T/symbols

a
c
h

ie
v
a

b
le

 s
u

m
 r

a
te

/(
b

it
s
/s

/H
z
)

CSI estimated by conventional LS, SNR= 0dB

CSI estimated by proposed method, SNR = 0dB

CSI estimated by conventional LS, SNR= 20dB

CSI estimated by proposed method, SNR = 20dB

Fig. 12. The average achievable sum rate of the proposed channel estimation
method and conventional LS as a function of coherence interval T .

proposed channel estimation method, the eigen-decomposition

based JSDM method [50], and the CS-based method [25]. It

can be seen that the MSE performance of JSDM is slightly

better than the proposed one, since the former catches the

exact eigen-direction to recover the channel. In fact, when

the number of antennas in BS is infinite, every steering

vector in the proposed method equivalent to the corresponding

eigenvector in JSDM method. In this case, the performance

of the proposed one is equal to the eigen-decomposition

based JSDM method. Nevertheless to obtain the M × N
dimensional channel covariance matrix for JSDM would not

be an easy and stable task in practice. On the other side, the

proposed method and CS-based method could directly handle

the instantaneous channel estimation but CS-based method has

an error floor due to the power leakage problem in it sparse

channel representation.

Fig. 12 illustrates the average achievable sum rate for the
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method, respectively, where L = 12 and τ = 12.

downlink data transmission, defined as

Csum =

(
1− Tpilot

T

) Gdt∑

g=1

R(Ddd
g |Pg)/G

dt, (41)

where Tpilot denotes the length of pilot used for channel

training. To make the comparison fair, the overall training

power and the overall data power within the coherent time

T are set as the same for each method. It can be seen from

Fig. 12 that the average achievable sum rate of the proposed

method is much higher than that from conventional LS when

T is relatively small or when SNR is relatively low. When T
becomes large, the training length of LS is small compared to

T and then the average achievable sum rate from conventional

LS will approach that from the the proposed method.

Lastly, we illustrate the bit error rate (BER) of QPSK

modulation for the downlink data transmission in Fig. 13.

Three kinds of CSI are compared: perfect CSI, CSI estimated

by the proposed method, and CSI from the conventional LS

method. To keep the comparison fair, the overall training

power is set as the same for each method. It is seen that

the BER achieved by the proposed channel estimation method

perform better than the conventional LS method by about

1.5dB while possesses less than 1 dB gap from that of the

perfect CSI. The results clearly demonstrates the effectiveness

of the proposed method.

VII. CONCLUSION

In this paper, we exploited the antenna array theory for

channel estimation 60 GHz indoor massive URA communica-

tions environment. We showed that the channel estimation can

be decomposed into angular estimation and gain estimation,

which is a unique property for massive MIMO systems. We

then proposed an array signal processing aided fast DOA

estimation algorithm, while the gain information could be

obtained with very small amount of training resources, which

significantly reduces the training overhead and the feedback

cost. Moreover, we utilized the angle reciprocity to facilitate

the downlink channel estimation for both TDD and FDD

systems. To enhance the spectral and energy efficiency, we

also designed an ADMA user scheduling algorithm based on

angular information of different UTs. Compared to existing

channel estimation algorithms, the newly proposed one does

not require any information of channel statistics, can be effi-

ciently deployed by the 2D-FFT operations, and is unified for

both TDD and FDD systems, making it a practical solutions

for 60 GHz indoor communications.

VIII. APPENDIX

THE INTRODUCTION OF TENSOR

An n-mode vector of an (I1 × I2 × · · · × IN )-dimensional

tensor A is an IN -dimensional vector obtained from A by

varying the index in and keep other indices fixed. A matrix

unfolding of the tensor A along the nth mode is denoted by

[A](n) in which the element ai1,i2,··· ,iN is at the position with

the row number in and the column number equal to

(i1 − 1)I2 · · · In−1 + (i2 − 1)I3 · · · In−1 + · · ·+ in−1+

(in+1 − 1)In+2 · · · IN I1 · · · In−1 + · · ·+ (iN − 1)I1 · · · In−1.

The n-mode product of a tensor A ∈ CI1×I2×···×IN by a

matrix U ∈ CJn×In , denoted by A ×n U, is an (I1 × · · · ×
In−1 × Jn × In+1 × · · · × IN )-tensor of which the entries are

given by

(A×n U)i1,··· ,jn,in+1,··· ,iN =
∑

in

ai1,··· ,in,in+1,··· ,iN · ujn,in .

The outer product of a tensor A ∈ CI1×I2×···×IN and B ∈
CJ1×J2×···×JM is given by

C = A ◦ B ∈ C
I1×I2×···×IN×J1×J2×···×JM ,

where ci1,··· ,iN ,j1,··· ,jM = ai1,··· ,iN · bj1,··· ,jM .

Given the tensor A ∈ CI1×···×IN and the matrices F ∈
CJn×In , G ∈ CKn×Jn , and Ur ∈ CJr×Ir , then we have the

following equations

(A×n F)×n G = A×n (G · F)

[A×1 U1 ×2 · · · ×R UR](r)

=Ur · [A](r) · (Ur+1 ⊗ · · · ⊗UR ⊗U1 ⊗ · · · ⊗Ur−1).

The relationship between the tensor and the corresponding

matrix multiplication can be expressed as

B = A×n Un ⇔ [B](n) = Un · [A](n).

For example, given a tensor A ∈ CI1×I2×I3 and the

matrices F1 ∈ CJ1×I1 , F2 ∈ CJ2×I2 , and F3 ∈ CJ3×I3 , we

have the matrix [A](1) ∈ CI1×(I2×I3), [A](2) ∈ CI2×(I1×I3),

and [A](3) ∈ C
I3×(I1×I2). Moreover, the 1-mode product

of the tensor A by the matrix F1 can be expressed as

A ×1 F1 ∈ CJ1×I2×I3 , the 2-mode product of the tensor A
by the matrix F2 can be expressed as A×2 F2 ∈ CI1×J2×I3 ,

and the 3-mode product of the tensor A by the matrix F3 can

be expressed as A×3 F3 ∈ CI1×I2×J3 .
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