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Abstract

In this thesis we exploit the setup of AdS3/CFT2 holography, and in particular the

D1D5 two-dimensional CFT, to describe states dual to geometries relevant for the

“fuzzball” proposal for the description of six-dimensional black hole microstates. Pre-

cise holographic dualities between CFT and bulk geometric objects are established and

checked, both for 2 and 3-charge states. In particular, VEVs of CFT operators of small

conformal dimension are checked to encode deviations from AdS3 geometry near the

spacetime boundary. 4-point functions of the “heavy-heavy-light-light” type are also

considered and matching is found between CFT and bulk computations via the usual

AdS/CFT prescription, with the heavy states being dual to (simple) microstate ge-

ometries. In this context, the issue of the presence of spurious singularities at leading

order in the large N limit is assessed and cancellations are found even without con-

sidering sub-leading corrections, at the cost of considering the full detail of the D1D5

CFT (i.e. including the Virasoro blocks of operators of small dimension charged under

the internal SU(2)L × SU(2)R R-symmetry group). Finally, more complicated 4-point

functions, involving operators in the twisted sector of the CFT, are computed and the

results are checked against known results in the literature with the aim of verifying

the robustness of the (new) techniques used. Supersymmetric Ward identities are also

derived, and checked for some cases, between correlators written in terms of bosons

and in terms of fermions.
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Chapter 1

Introduction

1.1 Black hole entropy

When looking for a quantum theory of gravity, among the typical systems that we

should consider there are certainly black holes. These systems arise as solutions of

general relativity (and supergravity theories) and present physical singularities (i.e.

divergences of one of the curvature scalars that it’s possible to define) covered by

horizons. This feature signals that the theory is unable to describe regions in which the

curvature is strong, and the fact that this is a typical short-distance effect is thought to

be an indication that deviations from General Relativity should be taken into account.

This discussion already contains a problematic point, upon which there is no clear

consensus: naively we would think that deviations from GR appear only in regions in

which the curvature is of order ∼ l−2
p , where lp ≡

(
~G/c3

)1/2
is the Planck length This

happens close to a black hole singularity, rather than near the horizon, where, especially

for large black holes, the curvature remains small. Indeed, for e.g. 4-dimensional

Schwarzschild black holes the horizon radius is

rs =
2GM

c2
, (1.1)

while curvature scales like ∼ r−2, so as the black hole mass increases the curvature at

the horizon gets weaker and weaker. In spite of this, many approaches to black hole

physics provide indications that deviations from GR also affect the region close to the

horizon, where the theory would suggest that nothing happens to a classical observer,

besides being affected by the peculiar causal structure of the system (which remains

the main feature of the horizon of a black hole).

Work by Bekenstein [3] also led to another piece of evidence in this direction: a black

hole carries an entropy proportional to the area of its horizon, the Bekenstein-Hawking
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CHAPTER 1. INTRODUCTION

entropy SBH , given in standard units by

SBH =
c3A

4G~
. (1.2)

The appearance of the Bekenstein-Hawking entropy suggested many different ideas,

perhaps the most important of which is the first hint to holography : due to the causal

structure of the system, the information contained in a black hole (which is inaccessi-

ble to a classical observer outside the horizon) is encoded on the horizon. Moreover,

information is not proportional to the volume of the region surrounded by the horizon,

as extensivity suggests, but to the area of the horizon itself. This fact has been called

holographic principle and led to the idea that a quantum theory of gravity should show

some holographic features.

1.2 The black hole entropy paradox

The presence of an entropy associated to a black hole might already be seen as a puzzle,

and for various reasons. Results by Hawking [4], derived using quantum field theory

in curved spacetime, state that quantum fields in a black hole background geometry

originate a process of pair production which leads to the emission of thermal radiation

with a temperature given, e.g. for a Schwarzschild black hole of mass M , by

TH =
~c3

8πGMkB
. (1.3)

More generally, this Hawking temperature is given by

TH =
κ

2π

~
kBc

, (1.4)

where κ is the surface gravity of the black hole, which in standard units has the dimen-

sion of an acceleration and is defined in terms of the null Killing vector normal to the

horizon χµ in natural units ~ = G = c = 1 as1

κ2
~=G=c=1 ≡ −

1

2
(∇µχν) (∇µχν) (1.5)

and interpreted as the force that must be exerted at infinity to keep a unit mass at

rest on the horizon (locally on the horizon this force would be infinite). Notice that

black hole horizons are usually Killing horizons, i.e. hypersurfaces invariant under an

1The conversion of the definition below into standard units is

κ =
c4

G
κ~=G=c=1.
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CHAPTER 1. INTRODUCTION

isometry of the metric and on which the corresponding Killing vector has zero norm.

Moreover they are also null surfaces: the vector field normal to them is null (and thus,

because of Lorentzian signature, it lies in their tangent space).

The first part of the entropy paradox is the following: if we consider black holes

that carry more charges than just their mass (for example electro-mangetically charged

and/or rotating black holes), there is a precise bound between the charges and the

mass that must be satisfied in order for the horizon to exist and not to have a naked

singularity (which is considered unphysical), the extremality bound. The inequality is

saturated when the mass squared equals the sum of the squares of the other charges (the

black hole has a the minimal mass given the other charges) and the black hole is said

to be extremal, in which case κ = 0 and thus TH = 0. The horizon area is still nonzero,

so we are presented with a system that, strangely enough, has a Bekenstein-Hawking

entropy but no temperature. Another part of the entropy paradox regards where the

information falling beyond the horizon is stored. Due to the uncertainty principle, if we

want to maximize the accuracy of the measurement of the state of a quantum system

we can’t consider cells of volume less than ∆x∆p ∼ ~ in (one-dimensional) phase

space. This suggests that information in phase space is stored in discrete cells, and we

cannot store as much information as we want in an arbitrarily small volume, because

its localization energy (roughly speaking ∼ ∆p2/2m) would be infinite. If we stick to

the picture from General Relativity, though, matter falling into a black hole eventually

reaches the singularity, in contradiction with the above (qualitative) statement. This

can be seen as another piece of evidence suggesting that quantum gravity effects should

be there to modify the classical GR picture.

One idea is that information is not stored only in the high-curvature region close

to the singularity, but in the whole region inside the horizon. This picture also naively

justifies the second law of black hole thermodynamics [5] that states that for all physical

processes
dA

dt
≥ 0, (1.6)

where A is the horizon area: matter falling beyond the horizon causes it to expand.

Indeed this must be the case, if we think of information as occupying discrete cells

on the horizon: when matter passes the horizon, more cells are added, and thus the

horizon (or some notion of surface related to it) must get bigger.

From statistical mechanics, we are used to associating an entropy to macroscopic

states given by a coarse-graining of a number N of microstates, which are all compat-

ible with the macroscopic state in the sense that the macroscopic observables cannot

distinguish between them. If the statistical ensemble of the microstates is microcanon-

ical (each microscopic state compatible with the macroscopic one is equally probable),
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CHAPTER 1. INTRODUCTION

entropy is then given by Boltzmann’s law,

S = kB log(N). (1.7)

In this view, black holes could be seen as macroscopic systems obtained by coarse-

graining over a microcanonical ensemble of states compatible with the black hole’s

charges. We may also go further: if we take Hawking radiation into account black holes

can be seen as thermodynamic systems at the Hawking temperature Th and should

be described by microstates in a canonical ensemble (in which each microstate has

probability p ∼ e−E/kBT ) with Gibbs entropy

S = −kB
∑
i

pi log pi, (1.8)

where the sum runs on every microstate in the ensemble. A third part of the black

hole entropy paradox regards whether inaccessible microstates in fact exist and whether

these they could be classical smooth (non-singular) geometries or some different kind

of degrees of freedom.

1.3 The black hole information paradox

Directly connected with the possibility of the existence of microstates for black hole

systems we also have the black hole information paradox [6–8], which come from the

fact that black holes are believed to emit Hawking radiation and therefore lose mass.

Historically, the starting point was the computation, in a semiclassical approximation

with quantum fields on a classical background curved spacetime, of black hole radiation

by Hawking [9, 10]. The relevant property of Hawking radiation is not merely its exis-

tence, but rather the fact that its spectrum is thermal, and thus typical of a statistically

mixed state. In the hypothesis that black holes can radiate away all of their mass, this

seems to be at odds with the unitary time evolution that is fundamentally assumed

to hold at the microscopic (quantum) level, as it looks that black holes formed from

matter in a pure statistical state can indeed evolve into a fully mixed state of thermal

radiation. This also assumes the validity of the no-hair conjecture [11], according to

which black hole solutions (in four dimensions) are unique upon fixing their mass and

charges (including angular momentum): once these parameters are fixed there are no

additional features in which information can be encoded. In d > 4 supergravity the-

ories black hole solutions possessing hair do exist, but it’s not clear how information

may be encoded in the additional parameters needed to specify the solution, and the

information paradox still holds.

Non-unitary evolution from pure states to mixed states is indeed what we call
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CHAPTER 1. INTRODUCTION

information loss: systems in states that are in principle distinguishable evolve into

states that are not distinguishable any more, not even in principle. This is completely

different from what we see in thermodynamic processes in our everyday life: if we burn

a piece of paper we indeed obtain approximately2 thermal radiation, but we also obtain

vapour, ashes and all that, which in principle allow to reconstruct the piece of paper

we started with. In the hypothesis black holes evaporate completely into Hawking

radiation, nothing is left to reconstruct the initial state of the matter that underwent

gravitational collapse.

Various proposals have been made to solve one of the most long-standing contra-

dictions between two successful physical theories, General Relativity and Quantum

Mechanics. Among these maybe the most natural ideas regarded the possibility of

information actually being carried by Hawking radiation (i.e. the spectrum not being

exactly thermal) and the possibility of a final state given by radiation plus a black

hole “remnant”, in which information would be encoded. The first idea is in fact now

disfavoured, as it seems to be impossible to encode enough information in the Hawking

radiation without its spectrum deviating too much from the thermal one [7,12]. As for

black hole remnants, see e.g. [13], the hypothesis is still debated.

More recent approaches include the fuzzball proposal [14], firewall idea [15], the

ER=EPR [16] model and the idea that black hole may have “soft hair” [17,18]. Despite

the richness of ideas developed in the decades, no consensus exists in the community.

Hawking’s computation [9,10] was performed in a semiclassical regime in which no

quantum gravity effects could be taken into account. It is commonly believed that a

complete theory of quantum gravity should be able to shed light upon the information

paradox, and indeed black hole physics is taken to be one of the main indications that

a quantum theory of gravity must exist.

Notice that the information paradox doesn’t apply to extremal black holes because

their Hawking temperature is zero. On the other hand the entropy paradox still applies,

and indeed due to the connection between supersymmetry and extremal black holes

much effort has been devoted to the description of the microstates of such systems.

This thesis falls in this category. Extending the results to the nonextremal cases has

historically been a difficult task, as many of the results and techniques granted by the

presence of supersymmetry become unavailable. Nevertheless, progress has been made

in the case of nearly-extremal black holes, treated as small deformations of the extremal

ones.

2The deviation from perfectly thermal, i.e. black body, spectrum comes from the fact that everyday
materials aren’t usually black bodies.
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1.4 Black holes and string theory

Black hole systems can be realized within the framework of string theory starting from

D-brane configurations. In particular, if we start from a spacetime with with a product

structureM×K, whereM is a noncompact manifold to be identified with the extended

spacetime dimensions and K is a compact manifold, we can consider configurations

consisting in D-branes wrapping (some cycles within) the compact space, while being

localized in the extended dimensions. Schematically, we can think of having N D-branes

wrapped around K, with the parameter gsN , where gs is the string coupling constant,

setting the typical scale of the system. For gsN � 1 the backreaction of the branes

on the geometry is small and the system is described in terms of string theory, while

for gsN � 1 the backreaction is large and the system is described in terms of a curved

metric. It is possible to connect the two descriptions looking at the emission of closed

strings by the D-branes: the backreacted metric can be reconstructed from the closed

string amplitudes, which provides a link between the microscopic description in terms of

strings and D-branes and the macroscopic one in terms of spacetime geometry [19–22].

This provides also a connections between string theory and the black branes solutions

known to appear in supergravity theories, which are another way with which black hole

solutions can be derived starting from configurations of branes.

The Strominger-Vafa black hole is an example of such systems obtained using D-

branes. It is a solution of 10-dimensional type IIB supergravity compactified on S1×T 4

(or S1×K3) and corresponding to a 3-charge black hole in 5 noncompact asymptotically

flat dimensions: it’s essentially a generalization of the Reissner-Nordström black hole..

It can be obtained starting from a D-brane configuration in which n1 D1-branes are

wrapped around the S1, n5 D5-branes are wrapped around both the S1 and the T 4 and

np unit of momentum travel along the D1-branes. In order for some supersymmetry

to remain unbroken, there must be only one kind of momentum excitations, either left

or right. The resulting 5-dimensional metric in the string frame is

ds2
SV = − dt2(

1 + Q1

r2

)2/3 (
1 + Q5

r2

)2/3 (
1 +

Qp
r2

)2/3
+

+

(
1 +

Q1

r2

)1/3(
1 +

Q5

r2

)1/3(
1 +

Qp
r2

)1/3 [
dr2 + r2dΩ2

3

]
,

(1.9)

where Q1, Q5 and Qp are the charges corresponding to the D1-branes, D5-branes and

momentum excitations, respectively (and are connected to n1, n5 and np). In this

coordinates the horizon is located at r = 0; moreover, the area of the horizon is nonzero,

which allows one to compare a “microscopic” value of the entropy, obtained studying

the D-brane configuration, with the Bekenstein-Hawking entropy. This is also called

the naive 3-charge geometry.
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A 2-charge geometry (again called naive) can be obtained from the above by setting

Qp = 0. This geometry is somehow singular, in the sense that the horizon area is zero,

and therefore there is no Bekenstein-Hawking entropy, but it’s still possible to compute

a (nonzero) entropy microscopically. If higher-derivative corrections to the Einstein-

Hilbert action are considered it’s possible to use the Wald formula [23] to compute the

entropy, essentially a generalization of the Bekenstein-Hawking one, finding agreement

with the microscopic result.

Starting from the Strominger-Vafa geometry it is possible to define a near-horizon

limit, here called decoupling limit, which consists in taking r2 small compared to Q1

and Q5 but large compared to Qp, allowing us to approximate

1 +
Qi
r2
∼ Qi
r2
, i = 1, 5. (1.10)

In this limit the metric reduces to

ds2 = RAdS3

[
du2

u2
+ u2

(
−dt2 + dy2

)]
+RS3 dΩ2

3, (1.11)

with uαr, which is the metric for AdS3×S3 spacetime with the AdS3 factor written in

Poincaré patch (see section 3.1.2 for more details). The fact that the decoupling limit

allows us to obtain a geometry with such a structure is crucial, as having an AdS factor

is the first indication that a description in terms of the AdS/CFT correspondence might

be possible.

1.5 The AdS/CFT correspondence

In the decoupling limit the factors previously asymptotically R1,4× S1 become asymp-

totically AdS3 × S3. Thanks to this the possibility of using the AdS/CFT correspon-

dence [24–26] opens up, and in particular we can use AdS3 holography to characterise

the bulk fields (or, more in general, string theory in the bulk) in terms of states in a

2-dimensional CFT living on the AdS3 boundary known as D1D5 CFT and already

conjectured in [24]. More precisely, on one side of the correspondence we have type

IIB string theory defined on an asymptotically AdS3 × S3 background, while on the

other side we have a 2-dimensional N = (4, 4) conformal field theory. In the supergrav-

ity limit we have that supergravity bulk fields are dual to states (or operators) in the

(strongly coupled) CFT (see Chapter 4 for more details). We will consider two classes

of CFT operators, one dual to black hole microstates and the other dual to probe fields:

the next section will give more details about the hypotheses under which we will be

working.

The D1D5 CFT is a (1+1)-dimensional sigma-model with target space
(
T 4
)N

/SN ,
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i.e. is the tensor product of N = n1n5 copies of the same CFT symmetric under the ex-

change of any two copies. It enjoys an N = (4, 4) supersymmetry with holomorphic and

antiholomorphic supercharges transforming under an SU(2)L × SU(2)R R-symmetry

group. A twisted sector of the theory exists in which more copies are glued together

in a sense that will be explained in Chapter 2. Throughout this work we will look at a

specific point in the moduli space of the theory, the free orbifold point, in which all the

couplings are zero and the CFT reduces to a collection of free bosons and free fermions.

Thanks to known non-renormalization theorems [27], in all the cases considered this

will be enough to make contact with the gravity side of the AdS/CFT correspondence.

Finally, we would like to emphasize how the dual CFT description can be used to

give a more precise definition to the expected description of black holes as statistical

ensembles. Indeed, once we know how to write black hole microstates in terms of

quantum states in the dual CFT, we also have a natural way of defining statistical

ensembles: it’s sufficient to consider a density matrix over the Hilbert space of the

CFT states.

1.6 Black hole microstates and the fuzzball proposal

One of the successes of string theory as a theory of quantum gravity was the computa-

tion of the entropy of the Strominger-Vafa solution from microscopic principles and the

verification of its agreement with the corresponding Bekenstein-Hawking result [28,29].

The entropy was computed counting the number of different D-brane configurations

compatible with fixed values for the charges. This result alone doesn’t fully solve the

black hole entropy entropy paradox, but suggests that a description in terms of mi-

crostates may be possible indeed. This thesis addresses the problem of describing black

hole microstates of the Strominger-Vafa black hole in the framework of the fuzzball pro-

posal. This asserts that black hole solutions arise by coarse-graining over an ensemble

of states3, some of which are given by smooth, regular geometries. An introduction to

the subject is given in [14] and [30]. Each of these smooth solutions looks very differ-

ent from the traditional picture of a black hole: indeed no horizon is present, and the

gravitational throat usually associated to black holes doesn’t end in a singularity, but

rather in a regular cap, whose geometry depends on the particular microstate solution

considered. The estimation for the typical size of microstates geometries (or fuzzball

geometries) gives roughly the radius of the horizon of a black hole: these systems could

give a description of gravitationally collapsed object which is completely different from

3The operation of coarse graining over an ensemble of solution of GR or supergravity isn’t really
defined, even though some notion of it should be there, if the interpretation of black holes as ther-
modynamical objects is true. In the dual CFT description of the microstates, however, ensemble and
density matrices can be defined, which in turns can be taken as a definition of what coarse-graining
could be in the bulk.
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the black hole solutions of general relativity and supergravity, directly suggesting that

deviations from the GR description are not at all confined to a small region within an

horizon, but rather start very close to the horizon itself.

The fuzzball proposal aims at solving both the entropy paradox, giving a description

of the black hole’s microstates, and the information paradox [30]. In order to do this,

one of the hypotheses leading to information loss is relaxed: we no longer assume

that deviations from GR are negligible at the horizon, even if the black hole is big

enough not to give strong curvature at the horizon radius. Indeed, the horizon scale is

exactly where microstate geometries start to differ from black holes. Hawking radiation

may be then seen as the thermal radiation of a highly degenerate object in which the

macroscopically indistinguishable degrees of freedom are encoded in the density matrix

giving the ensemble of microstates.

As for the Strominger-Vafa black hole, fuzzball geometries are solutions of 10-

dimensional supergravity with a specific configuration of D1 and D5-branes, compact-

ified to 5 dimensions, resulting in asymptotically flat geometries (in particular, the

asymptotic behaviour presents R1,4 × S1 factors, with the other 4 compact dimensions

corresponding to a T 4 of a Calabi-Yau K3 compact manifold). These reproduce the

same behaviour as the Strominger-Vafa solution at infinity (the charges of the mi-

crostates are the same as those of the black hole), but differ from it in the interior

of spacetime. The D1D5 CFT is obtained starting from the stacks of D1 and D5

branes, taking the decoupling limit and separating the branes. If we then consider

open strings extending between the branes we get that the low-energy description is

indeed a conformal field theory [31].

Thanks to the above construction, fuzzball microstates can be seen as bound states

of D-branes in an asymptotically flat bulk theory (before taking the decoupling limit).

More precisely, these are threshold bound states in the sense that the gravitational

attraction is compensated by the charge repulsion resulting in an equilibrium config-

uration with flat potential energy, as if we had a system of effectively non-interacting

objects. Such a precise construction is crucial to preserve some supersymmetry and

acts as a mechanism that decouples the dynamics of the objects from their kinemat-

ics, in the sense defined below, which is exactly what is needed to more easily address

the problem of black hole microstates: indeed the entropy paradox is related to the

kinematics of the system, while Hawking radiation and the information paradox are

inherently dynamical processes. The fact that supersymmetry is preserved implies that

fuzzball microstates are BPS, which in turns implies that their charges saturate the

analogue of the extremality bound. This is a purely gravitational sign of the dynam-

ics (Hawking radiation) being decoupled from the kinematics (entropy) of the system:

fuzzballs are the microstates of extremal black holes, which have zero temperature (and

therefore emit no Hawking radiation) but nonzero entropy.
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The technique to obtain fuzzball geometries that differ from the naive ones but start

from the same D-brane configuration [32–35] is perhaps clearer if we switch to another

duality frame. Through a series of S- and T-dualities, a 2-charge D1-D5 system in

type IIB supergravity can be connected to a 2-charge NS1-P system in type IIA given

by a fundamental string wrapped around the S1 and carrying momentum excitations

[14]. We can then look at the oscillations of the fundamental string in the transverse

(noncompact) space and parametrize it in terms of vibration profiles Fi(t − i), i =

1, . . . , 4, where y is the coordinate along the S1 and we are considering only left-moving

momentum excitations. These oscillations correspond to a supergravity solution which

is different from the naive one and, for n1 = 1 is given by

ds2
String = H

(
−dv du+K dv2 +Ai dxi dv

)
+ dxi dxi + dza dza,

Buv = −1

2

(
H − 1

)
, Bvi = H Ai,

e2φ = H,

H = H(xi, y, t) =

(
1 +

Q1

(x− F (t− y))2

)−1

,

K = K(xi, y, t) = Q1
Ḟ 2(t− y)

(x− F (t− y))2
,

Ai = Ai(xi, y, t) = −Q1
Ḟi(t− y)

(x− F (t− y))2
,

(1.12)

where x1, . . . , x4 are the coordinates on the R4, z1, . . . , z4 are the ones on the T 4 and

we defined the lightcone coordinates v ≡ t + y and u ≡ t − y. In the more general

case of n1 > 1, with or without multiwound strands of the NS1, generalizations of the

above constructions exist [14]. Through the opposite chain of duality transformation

we can get back to the D1-D5 duality frame: the resulting geometry is asymptotically

flat, smooth and horizonless and corresponds to the 2-charge solutions considered in

Chapter 4. 3-charge fuzzball geometries are more difficult to find, as no construction

in terms of a vibration profile is possible. Much work has been dedicated to the search

for 2 and 3-charge fuzzball solutions in supergravity [32,36–48,48–59].

As mentioned before, in the dual CFT description there is a precise way to define

statistical ensembles in terms of density matrices.In the context of the fuzzball proposal,

it is believed that not all of the entropy of the black hole is accounted for by microstates

that are smooth, horizonless geometries in supergravity: other states could be present

that have a precise description in the CFT but are not dual to any supergravity solution

(e.g. string states).

The bulk fuzzball geometries are generically dual to heavy CFT states, defined as

states with conformal dimension scaling as hH ∼ c. Intuitively, these are the states

that generate a strong backreaction on the geometry. As mentioned above, fuzzball

18



CHAPTER 1. INTRODUCTION

microstates that have a dual geometric description are only a subset of the full ensem-

ble: they are the semiclassical ones, understood as coherent states in the dual CFT

description [60]. The D1D5 CFT is an orbifold theory consisting in the symmetrized

tensor product of N CFT copies, and coherent states correspond to having the same

state on many (order ∼ N) of the copies.

Working with the CFT at the free orbifold point, we have that N copies of the

Neveu-Schwarz vacuum of the fermionic sector correspond to global AdS3 × S3 in the

bulk. The simplest 2-charge geometries can be schematically obtained taking tensor

products of Ramond vacua. Obtaining a CFT description for 3-charge microstates

proved to be more complicated, but is now known for a class of them, called superstrata

[58]: these are obtained starting from tensor products of excitations or Ramond vacua,

where the excitations are given by the action of modes of CFT operators of small

conformal dimension. CFT states dual to fuzzball geometries were studied in [32–35,

37,38,48,58,61–63].

Another line of research consisted in obtaining microstate geometries perturbatively

from string amplitudes in settings in which strings were used to probe the D-brane

configurations [19–22].

1.7 Main results and outline of the thesis

This thesis is the result of work focused on holographic computations: we looked for

observables that can be computed both on the CFT side and in the bulk and we com-

puted them on both sides of the duality, verifying their agreement on CFT states and

bulk geometries dual to each other. This operation is crucial because if any microscopic

description of black holes is possible, then there should be observables that are able to

distinguish among different microstates. Moreover, the agreement between the CFT

and the gravity computations is a strong signal of the duality of the specific CFT states

and bulk geometries selected.

The most relevant part of the work involved the computation of correlators among

operators in the D1D5 CFT. The correlators considered involve two heavy operators

acting as asymptotic states, and one or two light operators acting as probes, with con-

formal dimension HL such that limc→∞ hL/c = 0. New CFT technology was developed

to carry out the computations, and check were made against results known in the lit-

erature. On the bulk side we used various techniques corresponding to the different

observables considered. The starting point was always the identification of the correct

bulk geometry dual to a CFT state (or vice versa), and of the correct supergravity field

dual to the light operator(s) in the correlators. We refer to the specific chapters for a

case-by-case explanation.

The main results of the present work move in two directions, corresponding to
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the kinds of different fundamental objects considered: 3-point functions and 4-point

functions.

3-point functions have been used to perform precision holography computations

establishing the duality between microstate geometries and CFT states in many more

examples than previously known in the literature. Moreover, for the first time the exact

duality between 3-charge fuzzball geometries and more involved CFT states has been

established: the first examples of CFT states dual to superstrata were found.

The second direction of work involved 4-point functions of the HH-LL class, where

two operators are heavy and two are light. This is relevant for black hole physics [64–69],

as the light operators can be seen as bulk probes in the background generated by the

heavy states: issues like the typicality of the microstates, their distinguishability and

the comparison between having pure (heavy) states rather then a thermal ensemble

of them can be studied. In this context, the first example is given in which spurious

singularities within Virasoro blocks cancel out between different blocks without includ-

ing 1/c corrections to the c → ∞ limit. Moreover, a class of 4-point correlators is

discovered which is non-renormalized due to the presence of an affine symmetry: these

correspond to having simple heavy states exactly given by the tensor product of the

same CFT state on each of the N copies.

This thesis is organised as follows. In Chapter 2 a description as complete as possible

of the D1D5 CFT is given, to lay the foundations for all the subsequent results. In

particular, we work at the free orbifold point of the theory, a zero-coupling limit in which

the D1D5 CFT reduces to a collection of free bosons and free fermions. Most operators

we’ll be interested in are realised in terms of these fundamental fields. Moreover, all

the CFT techniques used will be presented, so that the CFT technology can have a

self-contained exposition.

Chapter 3 contains a presentation of the bulk side: the Strominger-Vafa solution is

presented along with its 2-charge analogue. Then the 2- and 3-charge fuzzball geome-

tries are presented and analysed. In particular the introduction of all the objects in

terms of which fuzzball geometries are defined allow for a general treatment of the mi-

crostate metrics: specifying a particular forms for those objects is equivalent to specify

a fuzzball solution.

Chapter 4 contains the holographic study of classes of 2- and 3-charge microstates

through the use of 1-point functions and Entanglement Entropy (EE) as observables.

1-point functions (VEVs) of light operators of small conformal dimension are checked

[32, 62, 63] against the (asymptotic expansion of) corresponding objects defining the

microstate metrics, where the VEVs are computed between heavy states dual to the

bulk metrics. A small interval in the spatial circle of the CFT is then selected as the

defining region for the computation of EE, which is carried out on the CFT side using

the replica trick [70] in terms of the light operators’ VEVs. This is checked to agree
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with the bulk result obtained via the Ryu-Takayanagi holographic prescription [71,72].

Chapter 5 is devoted to the study of another class of observables, namely CFT 4-

point functions of the HH-LL type, where two heavy operators are dual to a microstate

bulk geometry and two light operators are dual to probes moving in that background.

This time we selected a class of dual geometries simpler than in the previous chapter

in that all the geometries can be locally reduced to AdS3 × S3 via diffeomorphisms.

The heavy CFT states are also simpler, as in the usual basis we use they are not

superpositions. This simplicity allows on the one hand to compute the CFT 4-point

functions and on the other to analytically solve the wave equation holographically dual

to the CFT correlators. The 4-point functions are decomposed into Virasoro blocks and

affine blocks, one of the main results being that even at leading order in the c → ∞
expansion spurious singularities of Virasoro blocks [66, 68] cancel out between blocks

belonging to different primaries. Finally, an a priori unexpected matching between the

CFT and bulk computations is explained in terms of the affine blocks decomposition

of the correlators.

Chapter 6 contains the analysis of 4-point functions in the twisted sector of the

D1D5 CFT at the free orbifold point. Light operators written in terms of the free

bosons are considered as well. Correlators with bosons and fermions are then success-

fully connected using the Ward identities derived from the N = (4, 4) supersymmetry

structure of the theory.

A conclusion to this work is contained in Chapter 7, while Appendices A, B, C, D,

E present various technical results used in the course of the main text.
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Chapter 2

The D1D5 CFT

2.1 Field content

The CFT relevant for the fuzzball microstates is a 2-dimensional conformal field theory

with N = (4, 4) supersymmetry and central charge c = 6n1n5. Here we follow the

conventions of Section 7 of [58] (see the references therein for more details) and visualize

the CFT at the free orbifold point as a collection of N ≡ n1n5 strings (or “strands”),

each one with four bosons and four doublets of fermions(
XȦA

(r) (τ, σ) , ψαȦ(r) (τ + σ) , ψ̃α̇Ȧ(r) (τ − σ)
)
, (2.1)

where r = 1, . . . , N runs over the different strings and (τ, σ) are the timelike and

the spacelike directions in the CFT, which in our conventions will correspond to the

directions t and y on the bulk side. Here α, α̇ = ± are spinorial indices4 for the R-

symmetry group SU(2)L × SU(2)R which is identified with the rotations in the S3

factor of the bulk metric (which acts as an internal space from the point of view of

the CFT), while A, Ȧ = 1, 2 are indices for the SU(2)1 × SU(2)2 = SO(4)I rotations

acting on the tangent space in the compact manifold T 4. Here τ identifies the CFT

time coordinate in Lorentzian signature. We can Wick rotate to Euclidean space by

taking

τ → −iτE

so that now holomorphic and antiholomorphic fermions can be written as functions

ψαȦ(r) (τE + iσ), ψ̃α̇Ȧ(r) (τE − iσ).

4We sometimes use the notation α, α̇ = 1, 2 with the identifications 1 ≡ +, 2 ≡ −. In terms of the
eigenvalues of the J3 and J̃3 operators, defined below, these of course just correspond to ±1/2.
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Since the boundary of AdS3 is a cylinder, σ will naturally be a periodic coordinate,

with periodicity

σ ∼ σ + 2π. (2.2)

We can then change coordinates from the (τE , σ) cylinder to the complex plane by

defining

z = eτE+iσ, z̄ = eτE−iσ. (2.3)

To avoid confusion, it’s useful to define z and z̄ only in Euclidean signature: we can

always go back to the coordinates on the cylinder and Wick rotate back to Lorentzian

signature when needed (e.g. to compare CFT and gravity results). The fields become

ψαȦ(r) (z), ψ̃α̇Ȧ(r) (z̄).

Writing the bosons in the complex plane coordinates we have that their derivatives

within respect to z and z̄ are respectively holomorphic and antiholomorphic,

∂XAȦ
(r) (z), ∂̄XAȦ

(r) (z̄),

where ∂ ≡ ∂z and ∂̄ ≡ ∂z̄. The N = n1n5 CFT copies are all independent from each

other, and we see that each of them brings a contribution c1 strand = c̃1 strand = 6 to

the total holomorphic and antiholomorphic central charges (corresponding to 4 bosons

and 4 fermions). Each fermion can also take another name according to the dictionary

χ1 = −iψ11̇, χ1 = −iψ22̇, (2.4a)

χ2 = ψ12̇, χ2 = ψ21̇, (2.4b)

χ̃1 = −iψ̃1̇1̇, χ̃
1

= −iψ̃2̇2̇, (2.4c)

χ̃2 = ψ̃1̇2̇, χ̃
2

= ψ̃2̇1̇. (2.4d)

Fermions and bosons are all chiral primaries operators (CPO).

The orbifold nature of the theory comes from the fact that all the states (or, dually,

the operators) must be invariant under the action of an SN group acting on the CFT

copies: everything must be invariant under permutations of the N strands.

2.2 The untwisted (k = 1) sector

2.2.1 Boundary conditions, mode expansions and mode algebras

Let’s consider N completely independent strands: this is called the untwisted sector

of the theory and we can think of it as a collection of N strands of length k = 1
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(or “singly wound”), in contrast with the twisted sector, in which multiple strands of

length 1 are glued together to form longer (k > 1) ones (“multiply wound”). Having

strands of length 1 simply means that the boundary (monodromy) conditions for the

fields have to be imposed upon taking σ → σ + 2π (on the cylinder) or z → e2πiz (on

the complex plane). As we will see, something different happens with k > 1.

The OPE of the fermions and of the bosons are, respectively,

ψ1Ȧ
(r)(z)ψ

2Ḃ
(s) (w) =

εȦḂ δrs
z − w

+ [reg.] , (2.5a)

ψ̃1̇Ȧ
(r)(z̄) ψ̃

2̇Ḃ
(s) (w̄) =

εȦḂ δrs
z̄ − w̄

+ [reg.] , (2.5b)

∂XAȦ
(r) (z) ∂XBḂ

(s) (w) =
εABεȦḂ δrs
(z − w)2

+ [reg.] , (2.5c)

∂̄XAȦ
(r) (z̄) ∂̄XBḂ

(s) (w̄) =
εABεȦḂ δrs
(z̄ − w̄)2

+ [reg.] . (2.5d)

where εαβ and εȦḂ are the totally antisymmetric symbols and we use the convention

ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1 ( and εAB ε
BC = δCA). Using the χ fermions, the OPEs

are

χi(r)(z) χ̄
j
(s)(w) =

δij δrs
z − w

, χ̃i(r)(z̄)
¯̃χj(s)(w̄) =

δij δrs
z̄ − w̄

. (2.6)

The boundary conditions for the bosons are periodic,

XAȦ
(r) (τE , σ + 2π) = XAȦ

(r) (τE , σ), (2.7)

or, working with chiral bosons on the complex plane,

∂XAȦ
(r)

(
e2πiz

)
= ∂XAȦ

(r) (z), ∂̄XAȦ
(r)

(
e−2πiz̄

)
= ∂̄XAȦ

(r) (z̄). (2.8)

Fermions on the other hand can have either Ramond (R) or Neveu-Schwarz (NS) bound-

ary conditions, corresponding to the following scheme,

Cylinder C plane

R sector periodic antiperiodic

NS sector antiperiodic periodic

which on the cylinder correspond to

• Ramond: ψαȦ(r) (τ, σ + 2π) = ψαȦ(r) (τ, σ),

• Neveu-Schwarz: ψαȦ(r) (τ, σ + 2π) = −ψαȦ(r) (τ, σ),
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and on the complex plane correspond to

• Ramond: ψαȦ(r) (e2πiz) = −ψαȦ(r) (z),

• Neveu-Schwarz: ψαȦ(r) (e2πiz) = ψαȦ(r) (z).

The boundary conditions are reflected in the mode expansions of the fields. For the

bosons we have

∂XAȦ
(r) (z) =

∑
n∈Z

αAȦ(r)n z
−n−1, ∂̄XAȦ

(r) (z̄) =
∑
n∈Z

α̃AȦ(r)n z̄
−n−1, (2.9)

while for the fermions in the R sector we have

ψαȦ(r) (z) =
∑
n∈Z

ψαȦ(r)n z
−n− 1

2 , ψ̃α̇Ȧ(r) (z̄) =
∑
n∈Z

ψ̃α̇Ȧ(r)n z̄
−n− 1

2 , (2.10)

and in the NS sector we have

ψαȦ(r) (z) =
∑

n∈Z+ 1
2

ψαȦ(r)n z
−n− 1

2 , ψ̃α̇Ȧ(r) (z̄) =
∑

n∈Z+ 1
2

ψ̃α̇Ȧ(r)n z̄
−n− 1

2 . (2.11)

The mode expansions for the χ fermions in the two sectors are the same as the above,

i.e. in the R sector we have

χi(r)(z) =
∑
n∈Z

χi(r)nz
−n− 1

2 , χ̄i(r)(z) =
∑
n∈Z

χ̄i(r)nz
−n− 1

2 ,

χ̃i(r)(z̄) =
∑
n∈Z

χ̃i(r)nz̄
−n− 1

2 , ¯̃χi(r)(z̄) =
∑
n∈Z

¯̃χi(r)nz̄
−n− 1

2 ,
(2.12)

whereas in the NS sector we have

χi(r)(z) =
∑

n∈Z+ 1
2

χi(r)nz
−n− 1

2 , χ̄i(r)(z) =
∑

n∈Z+ 1
2

χ̄i(r)nz
−n− 1

2 ,

χ̃i(r)(z̄) =
∑

n∈Z+ 1
2

χ̃i(r)nz̄
−n− 1

2 , ¯̃χi(r)(z̄) =
∑

n∈Z+ 1
2

¯̃χi(r)nz̄
−n− 1

2 .
(2.13)

The OPEs (2.5) imply that the nonzero commutation relations of the bosonic modes

are [
αAȦ(r)n, α

BḂ
(s)m

]
= εABεȦḂ n δn+m,0 δrs,

[
α̃AȦ(r)n, α̃

BḂ
(s)m

]
= εABεȦḂ n δn+m,0 δrs,

(2.14)

while while the nonzero anticommutation relations for the fermions (in both sectors)

are {
ψ1Ȧ

(r)n, ψ
2Ḃ
(s)m

}
= εȦḂ δn+m,0 δrs,

{
ψ̃1̇Ȧ

(r)n, ψ̃
2̇Ḃ
(s)m

}
= εȦḂ δn+m,0 δrs. (2.15)
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The nonzero anticommutation relations for the modes of the χ fermions follow from

those of the ψ fermions,{
χi(r)n, χ̄

j
(s)m

}
= δij δn+m,0 δrs,

{
χ̃i(r)n,

¯̃χj(s)m

}
= δij δn+m,0 δrs. (2.16)

From (2.14) we see that the rule for Hermitian conjugation of the modes of the bosons

is (
αAȦ(r)n

)†
= εAB εȦḂ αBḂ(r)−n,

(
α̃AȦ(r)n

)†
= εAB εȦḂ α̃BḂ(r)−n, (2.17)

while from (2.15) we see that for the fermions we have(
ψαȦ(r)n

)†
= −εαβ εȦḂ ψβḂ(r)−n,

(
ψ̃α̇Ȧ(r)n

)†
= −εα̇β̇ εȦḂ ψ̃β̇Ḃ(r)−n (2.18)

The rules for Hermitian conjugation of the fields are(
∂XAȦ

(r) (z)
)†

= εAB εȦḂ z−2∂XBḂ
(r) (1/z),

(
∂̄XAȦ

(r) (z̄)
)†

= εAB εȦḂ z̄−2∂XBḂ
(r) (1/z̄),(

ψαȦ(r) (z)
)†

= −εαβ εȦḂ z
−1ψβḂ(r) (1/z),

(
ψ̃α̇Ȧ(r) (z̄)

)†
= −εαβ εȦḂ z̄

−1ψ̃β̇Ḃ(r) (1/z̄),

(2.19)

The mode expansions for the fields on the cylinder won’t be needed, but they can be

obtained from the above knowing that the transformation from the complex plane to

the cylinder is conformal and that the bosons and fermions are chiral primary operators,

i.e. they transform under a conformal transformation z → w as

O(w) =

(
∂w

∂z

)−h
O(z(w)), O(w̄) =

(
∂w̄

∂z̄

)−h̄
O(z̄(w̄)), (2.20)

where h is the left (holomorphic) conformal dimension of the field and h̄ the right

(antiholomorphic) one.

2.2.2 Vacuum states

The D1D5 CFT at the free orbifold point is a free theory, and this is reflected by the

properties of the vacuum. In each CFT copy the vacuum state is the tensor product

of a vacuum state for the bosons and one for the fermions, and each is in turn also a

product of a vacuum state for the holomorphic sector and one for the antiholomorphic

sector.

The bosonic vacuum state on the CFT copy (r), |0〉(r), is annihilated by all the positive

modes of the bosons,

αAȦ(r)n|0〉(r) = 0, α̃AȦ(r)n|0〉(r) = 0, ∀n ≥ 0, ∀A, Ȧ. (2.21)
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It is not strictly necessary that the bosons’ zero modes annihilate the vacuum, but if it

wasn’t so that would signal the presence of momentum along one of the directions of

the T 4, which is a charge that we want to keep switched off.

As mentioned above, rigorously the two |0〉 states above are not the same state, as the

one acted upon by the left-movers (αAȦ(r)n modes) is the left bosonic vacuum while the

one acted upon by the right-movers (α̃AȦ(r)n modes) is the right bosonic vacuum. The

left and right modes commute with each other and we will not distinguish between left

and right vacuum, as it is implied the total vacuum is a product of the two. We assume

the normalization

(r)〈0|0〉(s) = δr,s. (2.22)

The properties of the vacuum state(s) for the fermions strongly differ between the R

and NS sectors. In the NS sector the rule is analogous to what happens for bosons:

the vacuum |0〉(r),NS on the CFT copy (r) is annihilated by all the positive modes of

the fermions

ψαȦ(r)n|0〉(r),NS = 0, ψ̃α̇Ȧ(r)n|0〉(r),NS = 0, ∀n > 0, ∀α, α̇, Ȧ, (2.23)

where again we don’t make a distinction between left and right vacuum.

In the R sector things work differently, as the fermions do have zero modes in their

expansions, and half of them annihilate the vacuum while the other half doesn’t. As

before, the vacuum |0〉(r),R is annihilated by all the positive modes,

ψαȦ(r)n|0〉(r),R = 0, ψ̃α̇Ȧ(r)n|0〉(r),R = 0, ∀n > 0, ∀α, α̇, Ȧ, (2.24)

but this time we can define a Ramond vacuum state |+ +〉(r) such that

ψ1Ȧ
(r) 0|+ +〉(r),R = 0, ψ̃1̇Ȧ

(r) 0|+ +〉(r),R = 0. (2.25)

The fact that we can act with zero modes of the fermions ψ2Ȧ and ψ̃2̇Ȧ on | + +〉(r)
without annihilating it means that we have a family of degenerate vacua (acting with

negative modes on the other hand would raise the energy). The modes that create

degenerate vacua are then

ψ2Ȧ
(r) 0, ψ̃2̇Ȧ

(r) 0 or χ̄i(r) 0,
¯̃χi(r) 0.

The total fermionic vacuum state for the CFT will have a structure like

N⊗
r=1

|+ +〉(r) ≡ |+ +〉N . (2.26)
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We assume the vacuum states in the R and NS sectors are normalized,

R,(r)〈+ + |++〉(s),R = δr,s, NS,(r)〈0|0〉(s),NS = δr,s. (2.27)

2.2.3 Other operators

We want to focus on operators of small conformal dimension. Among the operators

with total conformal dimension h + h̄ = 1 we have, on each strand of length 1, the

current operators,

Jαβ(r) (z) =
1

2
: ψαȦ(r) εȦḂ ψ

βḂ
(r) : (z) ,

J̃ α̇β̇(r) (z̄) =
1

2
: ψ̃α̇Ȧ(r) εȦḂ ψ̃

β̇Ḃ
(r) : (z̄) ,

(2.28)

with dimensions (h, h̄) = (1, 0) and (h, h̄) = (0, 1) respectively. Here : O1 · · · On :

denotes the normal ordering of the product of n operators within respect to the |++〉(r)
vacuum. The current operators corresponding to the R-symmetry group SU(2)L ×
SU(2)R are just sums of the above ones on the N CFT copies5,

Jαβ(z) =
N∑
r=1

Jαβ(r) (z), J̃ α̇β̇(z̄) =
N∑
r=1

J α̇β̇(r) (z̄). (2.30)

Jαβ and J̃αβ have the same conformal dimensions as Jαβ(r) and J̃αβ(r) , respectively. The

standard SU(2) generators in the holomorphic part of the R sector are

J+
(r) =

1

2
: ψ1Ȧ

(r)ψ
1Ḃ
(r)εȦḂ := i : χ1

(r)χ
2
(r) :≡ J1

(r) + iJ2
(r), (2.31a)

J−(r) = −1

2
: ψ2Ȧ

(r)ψ
2Ḃ
(r)εȦḂ := i : χ̄1

(r)χ̄
2
(r) :≡ J1

(r) − iJ2
(r), (2.31b)

J3
(r) = −1

2

(
: ψ1Ȧ

(r)ψ
2Ḃ
(r)εȦḂ : −1

)
=

1

2

(
: χ1

(r)χ̄
1
(r) : + : χ2

(r)χ̄
2
(r) : −1

)
. (2.31c)

Analogous definitions hold for the antiholomorphic generators. The constant term

in J3
(r) has been fixed in such a way that the |++〉(r) state has quantum numbers

(1/2, 1/2) under (the zero modes of) (J3
(r), J̃

3
(r)). Denoting the current operators as

Ja(r)(z), a = 1, 2, 3, we have the OPE rule

Ja(r)(z) J
b
(s)(w) =

δr,s
z − w

i εabc Jc(r)(w) + [reg.], (2.32)

5In general, when an operator is written as a sum of operators acting on different copies, O =
∑
r O(r)

we mean that Or acts nontrivially on the r-th copy, and as the identity on all the other copies,

O(r) ≡ 1(1) ⊗ · · · ⊗ 1(r−1) ⊗O(r) ⊗ 1(r+1) ⊗ · · · ⊗ 1(N). (2.29)
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where εabc is totally antisymmetric and ε123 = 1. The mode expansions are

Ja(r)(z) =
∑
n∈Z

Ja(r)n z
−n−1, (2.33)

and the OPE rule is reflected by the mode algebra[
Ja(r)n, J

b
(s)m

]
= i εabc Jc(r)n+m δr,s +

c1 copy

12
n δab δr,s δm+n,0. (2.34)

We use the zero modes of the currents to define other R vacua with different spin

|−+〉(r) ≡ J−(r) 0|++〉(r) , |+−〉(r) ≡ J̃−(r) 0|++〉(r) , |−−〉(r) ≡ J−(r) 0J̃
−
(r) 0|++〉(r) .

(2.35)

Another family of operators of total conformal dimension 1 we are going to consider

is given on a single strand by

Oαα̇(r)(z, z̄) ≡
−i√

2
: ψαȦ(r) εȦḂ ψ̃

α̇Ḃ
(r) : (z, z̄) =

∑
n,m∈Z

Oαα̇(r)mn z
−n− 1

2 z̄−m−
1
2 , (2.36)

which correspond to the operators O
(1,1)
(1)1i in the notation of [32] and have conformal

dimension (h, h̄) = (1/2, 1/2). The action of the operator (2.36) on the |++〉 state gen-

erates another R vacuum that plays an important role both in the examples discussed

in [32] and in this work (see [1]),

|00〉(r) ≡ lim
z→0

O22̇
(r)(z, z̄)|++〉(r) = O22̇

(r) 00|++〉(r) =
−i√

2
ψ2Ȧ

(r) 0 εȦḂ ψ̃
2̇Ḃ
(r) 0|++〉(r) , (2.37)

which has spin (0, 0) under (J3
(r), J̃

3
(r)). As for the SU(2) currents, the operator cor-

responding to (2.36) for the whole CFT (in the untwisted sector) is a sum over the

copies,

Oαȧ(z, z̄) =
N∑
r=1

Oαα̇(r)(z, z̄). (2.38)

The conjugation relations among the Oαα̇ are(
O11̇

)†
= O22̇,

(
O12̇

)†
= −O21̇. (2.39)

The normalization of all the vacua obtained acting with operators on |++〉 follows

form that of |++〉 itself and from the commutation relations of the operators,

(r)〈S|S′〉(s) = δr,s δS,S′ , (2.40)

where S, S′ can take the values ±± or 00.
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The stress-energy operator for the free orbifold theory is written in terms of bosons

and the fermions,

T (z) = TB(z) + TF (z) =

N∑
r=0

T(r)(z) =
∑
n∈Z

Ln z
−n−2, (2.41)

with

T(r)(z) = TB(r)(z) + TF(r)(z) =
∑
n∈Z

L(r)n z
−n−2, (2.42a)

TB(r)(z) =
1

2
εABεȦḂ : ∂XAȦ

(r) (z)∂XBḂ
(r) (z) :=

∑
n∈Z

LB(r)n z
−n−2, (2.42b)

TF(r)(z) =
1

2
εαβεȦḂ : ψαȦ(r) (z)∂ψβḂ(r) (z) :=

∑
n∈Z

LF(r)n z
−n−2. (2.42c)

The modes of T(r)(z) generate the Virasoro algebra on each CFT copy,

[
L(r)n, L(s)m

]
= (n−m)L(r)n+m δr,s −

c1 copy

12
n
(
n2 − 1

)
δn+m,0 δr,s. (2.43)

Using the OPE rules (2.5) for the free bosons and the free fermions, T (z) can be checked

to have the usual OPE with itself,

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ [reg.] . (2.44)

c is the central charge of the orbifold theory, and because T (z) is the sum of operators

T(r)(z) acting on one CFT copy each, it is given by the sum over the copies of the

central charge of each copy,

c = [# copies]× c 1 copy = 6N = 6n1n5. (2.45)

The explicit form of the modes is obtained using

L(r)n =

∮
z∼0

dz

2πi
zn+1 T(r)(z), (2.46)

where the contour runs around z = 0 counter-clockwise, and the result is

L(r)n = LB(r)n + LF(r)n, (2.47a)

LB(r)n =

∮
z∼0

dz

2πi
zn+1 TB(r)(z) =

1

2
εABεȦḂ

∑
m∈Z

: αAȦ(r)mα
BḂ
(r)n−m :, (2.47b)
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LF(r)n =

∮
z∼0

dz

2πi
zn+1 TF(r)(z) =

1

2
εαβεȦḂ

∑
m∈Z

(
−n+m− 1

2

)
: ψαȦ(r)mψ

βḂ
(r)n−m :,

(2.47c)

where we considered R sector fermions (for the NS sector ones we would just have

a sum over m ∈ Z + 1/2). The modes of the total stress energy operator (2.41) are

obtained in terms of the above summing over the CFT copies,

Ln =
N∑
r=1

L(r)n =
N∑
r=1

(
LB(r)n + LF(r)n

)
. (2.48)

The currents and the stress-energy operator have a nontrivial OPE,

Ja(z)T (w) =
Ja(w)

z − w
+ [reg.], (2.49)

which generates nontrivial commutation relations among the modes,[
Ja(r)n, L(s)m

]
= nJan+m δr,s. (2.50)

2.3 The twisted (k > 1) sector

2.3.1 Boundary conditions, mode expansions and mode algebras

So far we have looked at a collection of N strands of length k = 1, i.e. N independent

CFT copies with fields’ boundary conditions imposed as the cylinder coordinate under-

goes the transformation σ → σ + 2π (or alternatively as the complex coordinate z is

taken around the origin once). This is not the only possibility, as we can sew together k

strands of length 1 in a single strand of length k, in which the fields’ monodromies are

nontrivial. In the most general case, we may have M strands with lengths k1, . . . , kM

such that
∑M

i=1 ki = N .

Let’s consider a single strand of length k. Working on the complex plane, the rule

is that the k CFT copies sewn together work as different Riemann sheets upon sending

z → e2πiz, so taking z around the origin once fields in one copy get mapped to fields

in the adjacent copy among the k. For the bosons, this is

∂XAȦ
(r)

(
e2πiz

)
= ∂XAȦ

(r+1)(z), ∂̄XAȦ
(r)

(
e−2πiz̄

)
= ∂̄XAȦ

(r+1)(z̄) (2.51)

with the identification ∂XAȦ
(k+1) ≡ ∂XAȦ

(1) and ∂̄XAȦ
(k+1) ≡ ∂̄XAȦ

(1) . The rule for antiholo-

morphic fields follows from the one for holomorphic fields knowing that in Euclidean

signature z̄ is actually the complex conjugate of z. Because of this, we impose that

if for holomorphic fields sending z → e2πiz enforces the jump (r) → (r + 1), than the
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same thing happens to antiholomorphic fields taking the “complex conjugate” of the

same operation, i.e. sending z̄ → e−2πiz̄ enforces the copy jump (r)→ (r + 1).

We see that the boundary conditions are not diagonal, in the sense that upon taking

z around the origin a field on the copy (r) is not mapped to something proportional

to the field itself. Is it nevertheless possible to diagonalize the boundary conditions

by taking linear combinations of the fields on different copies: it’s essentially a change

of basis from the basis labelled by (r) = 1, . . . , k to another basis labelled by another

index ρ = 0, . . . , k − 1. For the bosons, this is

∂X11̇
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ∂X11̇

(r)(z), ∂X22̇
ρ (z) =

1√
k

k∑
r=1

e2πi rρ
k ∂X22̇

(r)(z), (2.52a)

∂X12̇
ρ (z) =

1√
k

k∑
r=1

e2πi rρ
k ∂X12̇

(r)(z), ∂X21̇
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ∂X21̇

(r)(z), (2.52b)

∂̄X11̇
ρ (z̄) =

1√
k

k∑
r=1

e2πi rρ
k ∂̄X11̇

(r)(z̄), ∂̄X22̇
ρ (z̄) =

1√
k

k∑
r=1

e−2πi rρ
k ∂̄X22̇

(r)(z̄), (2.52c)

∂̄X12̇
ρ (z̄) =

1√
k

k∑
r=1

e−2πi rρ
k ∂̄X12̇

(r)(z̄), ∂̄X21̇
ρ (z̄) =

1√
k

k∑
r=1

e2πi rρ
k ∂̄X21̇

(r)(z̄), (2.52d)

with the (diagonalized) monodromy conditions in the ρ basis now being

∂X11̇
ρ

(
e2πiz

)
= e2πi ρ

k ∂X11̇
ρ (z), ∂X22̇

ρ

(
e2πiz

)
= e−2πi ρ

k ∂X22̇
ρ (z), (2.53a)

∂X12̇
ρ

(
e2πiz

)
= e−2πi ρ

k ∂X12̇
ρ (z), ∂X21̇

ρ

(
e2πiz

)
= e2πi ρ

k ∂X21̇
ρ (z), (2.53b)

∂̄X11̇
ρ (e−2πi z̄) = e−2πi ρ

k ∂̄X11̇
ρ (z̄), ∂̄X22̇

ρ (e−2πi z̄) = e2πi ρ
k ∂̄X22̇

ρ (z̄), (2.53c)

∂̄X12̇
ρ (e−2πi z̄) = e2πi ρ

k ∂̄X12̇
ρ (z̄), ∂̄X21̇

ρ (e−2πi z̄) = e−2πi ρ
k ∂̄X21̇

ρ (z̄). (2.53d)

The mode expansions for the bosons on a strand of length k > 1 are obtained from

those in the untwisted sector by sending n → n ± ρ/k, with the sign depending on

which field we are considering and following from (2.53),

∂X11̇
ρ (z) =

∑
n∈Z

α11̇
ρ,n− ρ

k
z−n−1+ ρ

k , ∂X22̇
ρ (z) =

∑
n∈Z

α22̇
ρ,n+ ρ

k
z−n−1− ρ

k , (2.54a)

∂X12̇
ρ (z) =

∑
n∈Z

α12̇
ρ,n+ ρ

k
z−n−1− ρ

k , ∂X21̇
ρ (z) =

∑
n∈Z

α21̇
ρ,n− ρ

k
z−n−1+ ρ

k , (2.54b)

∂̄X11̇
ρ (z̄) =

∑
n∈Z

α̃11̇
ρ,n− ρ

k
z̄−n−1+ ρ

k , ∂̄X22̇
ρ (z̄) =

∑
n∈Z

α̃22̇
ρ,n+ ρ

k
z̄−n−1− ρ

k , (2.54c)

∂̄X12̇
ρ (z̄) =

∑
n∈Z

α̃12̇
ρ,n+ ρ

k
z̄−n−1− ρ

k , ∂̄X21̇
ρ (z̄) =

∑
n∈Z

α̃21̇
ρ,n− ρ

k
z̄−n−1+ ρ

k (2.54d)

The nonzero commutation relations in the twisted sector are a generalization of the
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ones in the untwisted sector, (2.14) and (2.15), but they are naturally realized in the ρ

basis. For the bosonic modes we have[
αAȦρ1,n, α

BḂ
ρ2,m

]
= εABεȦḂ n δn+m,0 δρ1,ρ2 ,

[
α̃AȦρ1,n, α̃

BḂ
ρ2,m

]
= εABεȦḂ n δn+m,0 δρ1,ρ2 ,

(2.55)

For the fermions we still have the distinction between the R and the NS sectors,

but they work differently in comparison with the case of the untwisted CFT. In the R

sector the monodromies of the fermions are

ψαȦ(r) (e2πiz) = −ψαȦ(r+1)(z), ψ̃α̇Ȧ(r)

(
e−2πiz̄

)
= −ψ̃α̇Ȧ(r+1)(z̄), (2.56)

again with the identifications ψαȦ(k+1) ≡ ψ
αȦ
(1) and ψ̃α̇Ȧ(k+1) ≡ ψ̃

α̇Ȧ
(1) , and can be diagonalized

with a (r)→ ρ change of basis, with ρ = 0, . . . , k − 1,

ψ1Ȧ
ρ (z) =

1√
k

k∑
r=1

e2πi rρ
k ψ1Ȧ

(r)(z), ψ2Ȧ
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ψ2Ȧ

(r)(z), (2.57a)

ψ̃1̇Ȧ
ρ (z̄) =

1√
k

k∑
r=1

e−2πi rρ
k ψ̃1̇Ȧ

(r)(z̄), ψ̃2̇Ȧ
ρ (z̄) =

1√
k

k∑
r=1

e2πi rρ
k ψ̃2̇Ȧ

(r)(z̄). (2.57b)

In the ρ basis the (diagonalized) monodromy conditions are

ψ1Ȧ
ρ

(
e2πi z

)
= −e−2πi ρ

k ψ1Ȧ
ρ (z), ψ2Ȧ

ρ

(
e2πi z

)
= −e2πi ρ

k ψ2Ȧ
ρ (z), (2.58a)

ψ̃1̇Ȧ
ρ

(
e−2πiz̄

)
= −e2πi ρ

k ψ̃1̇Ȧ
ρ (z̄) , ψ̃2̇Ȧ

ρ

(
e−2πiz̄

)
= −e−2πi ρ

k ψ̃2̇Ȧ
ρ (z̄) , (2.58b)

and the mode expansions follow from (2.58),

ψ1Ȧ
ρ (z) =

∑
n∈Z

ψ1Ȧ
ρ,n+ ρ

k
z−n−

1
2
− ρ
k , ψ2Ȧ

ρ (z) =
∑
n∈Z

ψ2Ȧ
ρ,n− ρ

k
z−n−

1
2

+ ρ
k , (2.59a)

ψ̃1̇Ȧ
ρ (z̄) =

∑
n∈Z

ψ̃1̇Ȧ
ρ,n+ ρ

k
z̄−n−

1
2
− ρ
k , ψ̃2̇Ȧ

ρ (z̄) =
∑
n∈Z

ψ̃2̇Ȧ
ρ,n− ρ

k
z̄−n−

1
2

+ ρ
k . (2.59b)

Taking z around the origin k times we get

ψαȦρ (e2πik z) = (−1)k ψαȦρ (z), ψ̃α̇Ȧρ (e−2πik z̄) = (−1)k ψ̃α̇Ȧρ (z̄). (2.60)

Fermions in the NS sector on a strand of length k have the following monodromy
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rules in the (r) basis,

ψαȦ(r) (e2πiz) = ψαȦ(r+1)(z), ψ̃α̇Ȧ(r)

(
e−2πiz̄

)
= ψ̃α̇Ȧ(r+1)(z̄), (2.61)

this time with ψαȦ(k+1) ≡ (−1)k+1 ψαȦ(1) and ψ̃α̇Ȧ(k+1) ≡ (−1)k+1 ψ̃α̇Ȧ(1) . The change of ba-

sis that diagonalizes the monodromy conditions is (r) → l, with l = −k−1
2 ,−k−1

2 +

1, . . . , k−1
2 ,

ψ1Ȧ
l (z) =

1√
k

k∑
r=1

e2πi rl
k ψ1Ȧ

(r)(z), ψ2Ȧ
l (z) =

1√
k

k∑
r=1

e−2πi rl
k ψ2Ȧ

(r)(z), (2.62a)

ψ̃1̇Ȧ
l (z̄) =

1√
k

k∑
r=1

e−2πi rl
k ψ̃1̇Ȧ

(r)(z̄), ψ̃2̇Ȧ
l (z̄) =

1√
k

k∑
r=1

e2πi rl
k ψ̃2̇Ȧ

(r)(z̄). (2.62b)

In the l basis the (diagonalized) monodromy conditions are

ψ1Ȧ
l

(
e2πi z

)
= e−2πi l

k ψ1Ȧ
l (z), ψ2Ȧ

l

(
e2πi z

)
= e2πi l

k ψ2Ȧ
l (z), (2.63a)

ψ̃1̇Ȧ
l

(
e−2πi z̄

)
= e2πi l

k ψ̃1̇Ȧ
l (z̄) , ψ̃2̇Ȧ

l

(
e−2πi z̄

)
= e−2πi l

k ψ̃2̇Ȧ
l (z̄) , (2.63b)

and the mode expansions follow from (2.63),

ψ1Ȧ
l (z) =

∑
n∈Z+ 1

2

ψ1Ȧ
l,n+ l

k

z−n−
1
2
− l
k , ψ2Ȧ

l (z) =
∑

n∈Z+ 1
2

ψ2Ȧ
l,n− l

k

z−n−
1
2

+ l
k , (2.64a)

ψ̃1̇Ȧ
l (z̄) =

∑
n∈Z+ 1

2

ψ̃1̇Ȧ
l,n+ l

k

z̄−n−
1
2
− l
k , ψ̃2̇Ȧ

l (z̄) =
∑

n∈Z+ 1
2

ψ̃2̇Ȧ
l,n− l

k

z̄−n−
1
2

+ l
k . (2.64b)

Taking z around the origin k times we get

ψαȦl (e2πik z) = (−1)k+1 ψαȦl (z), ψ̃α̇Ȧl (e−2πik z̄) = (−1)k+1 ψ̃α̇Ȧl (z̄). (2.65)

For the fermionic modes we have the nonzero anticommutation relations{
ψ1Ȧ
ρ1,n, ψ

2Ḃ
ρ2,m

}
= εȦḂ δn+m,0 δρ1,ρ2 ,

{
ψ̃1̇Ȧ
ρ1,n, ψ̃

2̇Ḃ
ρ2,m

}
= εȦḂ δn+m,0 δρ1,ρ2 . (2.66)

2.3.2 Vacuum states

Vacua in the twisted sector are analogous to the vacua in the untwisted one, apart from

having the monodromy conditions discussed above for the fields. The key properties of

the fields’ modes are also analogous to the ones in the untwisted case, save the fact that

they hold in the ρ basis, which is in a sense the most natural one due to the diagonal

monodromy conditions. We denote the bosonic vacuum on a strand of length k as |0〉k
and we impose that it is annihilated by all the nonnegative bosonic modes in the ρ
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basis,

αAȦρ,n |0〉k = 0, α̃AȦρ,n |0〉k = 0, ∀n ≥ 0, ∀A, Ȧ. (2.67)

The above generalization holds for the fermionic vacuum states as well. In the R

sector we have the vacua

|±±〉k, |00〉k, (2.68)

with the spin highest weight state |++〉k annihilated by all the fermions’ positive modes

in the ρ basis and by half of the zero modes,

ψαȦρ,n|++〉k = 0, ψ̃α̇Ȧρ,n|++〉k = 0, ∀n > 0, ∀α, α̇, Ȧ, (2.69)

ψ1Ȧ
ρ,0|++〉k = 0, ψ̃1̇Ȧ

ρ,0|++〉k = 0. (2.70)

The other states are obtained from |++〉k acting with the J−, J̃− and O−− operators

defined on a length-k strand (see next section) and the left and right spins of all the

states (2.68) are the eigenvalues of the J3, J̃3 operators, again defined on a strand of

length k.

For fermions in the NS sector we only have one vacuum state

|0〉k, (2.71)

which is annihilated by all the fermionic positive modes in the ρ basis,

ψαȦρ,n|0〉k = 0, ψ̃α̇Ȧρ,n|0〉k = 0, ∀n > 0, ∀α, α̇, Ȧ. (2.72)

The NS vacuum with twist k is a scalar of the SU(2)L × SU(2)R R-symmetry group,

as it was in the untwisted case.

2.3.3 Other operators in the twisted sector

Let’s look at the spin operators and at Oαα̇, this time defined on a strand of length k.

In the cases of operators that are written as sums over different copies, they keep their

form, but this time the sum goes up to k instead of N . Moreover, if the operators can

be written in terms of elementary fields (the bosons or the fermions), a change of basis
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(r)→ ρ can be performed. For the spin operators we have

J+ =
k∑
r=1

J+
(r) =

1

2

k∑
r=1

: ψ1Ȧ
(r)ψ

1Ḃ
(r)εȦḂ :=

1

2

: ψ1Ȧ
ρ=0ψ

1Ḃ
ρ=0εȦḂ : +

k−1∑
ρ=1

: ψ1Ȧ
ρ ψ1Ḃ

k−ρεȦḂ :

 ,

(2.73a)

J− =

k∑
r=1

J−(r) = −1

2

k∑
r=1

: ψ2Ȧ
(r)ψ

2Ḃ
(r)εȦḂ := −1

2

: ψ2Ȧ
ρ=0ψ

2Ḃ
ρ=0εȦḂ : +

k−1∑
ρ=1

: ψ2Ȧ
ρ ψ2Ḃ

k−ρεȦḂ :

 ,

(2.73b)

J3 =
k∑
r=1

J3
(r) = −1

2

k∑
r=1

(
: ψ1Ȧ

(r)ψ
2Ḃ
(r)εȦḂ : −1

)
= −1

2

k−1∑
ρ=1

(
: ψ1Ȧ

ρ ψ2Ḃ
ρ εȦḂ : −1

)
, (2.73c)

where we used the inverse of the transformation (2.57) (which are obtained switching

the sign of the phases) and the orthonormality condition

k∑
r=1

e2πi r
k

(ρ1+ρ2) = k δρ1+ρ2,0. (2.74)

The right spin operators are totally analogous.

For the Oαα̇ operators we have

O11̇ =
k∑
r=1

O11̇
(r) =

−i√
2

k∑
r=1

: ψ1Ȧ
(r)ψ̃

1̇Ḃ
(r)εȦḂ :=

−i√
2

k−1∑
ρ=0

: ψ1Ȧ
ρ ψ̃1̇Ḃ

ρ εȦḂ :, (2.75a)

O22̇ =
k∑
r=1

O22̇
(r) =

−i√
2

k∑
r=1

: ψ2Ȧ
(r)ψ̃

2̇Ḃ
(r)εȦḂ :=

−i√
2

k−1∑
ρ=0

: ψ2Ȧ
ρ ψ̃2̇Ḃ

ρ εȦḂ :, (2.75b)

O12̇ =

k∑
r=1

O12̇
(r) =

−i√
2

k∑
r=1

: ψ1Ȧ
(r)ψ̃

2̇Ḃ
(r)εȦḂ :=

−i√
2

: ψ1Ȧ
ρ=0ψ̃

2̇Ḃ
ρ=0εȦḂ : +

k−1∑
ρ=1

: ψ1Ȧ
ρ ψ̃2̇Ḃ

ρ εȦḂ :

 ,

(2.75c)

O21̇ =
k∑
r=1

O21̇
(r) =

−i√
2

: ψ2Ȧ
(r)ψ̃

2̇Ḃ
(r)εȦḂ :=

−i√
2

: ψ2Ȧ
ρ=0ψ̃

1̇Ḃ
ρ=0εȦḂ : +

k−1∑
ρ=1

: ψ2Ȧ
ρ ψ̃1̇Ḃ

ρ εȦḂ :

 .

(2.75d)

The vacuum states in the twisted sector (2.68) can be obtained starting from |++〉k
and acting with the appropriate operators as in (2.35) and (2.37), the only difference

being that the operators are now defined on a strand of length k.
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The stress-energy operator on a strand of length k is

T (z) =
∑
n∈Z

Ln z
−n−2 = TB(z) + TF (z) =

k∑
r=1

(
TB(r)(z) + TF(r)(z)

)
, (2.76)

where TB(r) and TF(r) have the forms in (2.42b) and (2.42c) respectively. Using (2.52) and

(2.57) (e.g. for R sector fermions) we can change from the (r) to the ρ basis obtaining

TB(z) =
∑
n∈Z

LBn z
−n−2 =

k∑
r=1

TB(r)(z) =
k−1∑
ρ=0

TBρ (z), (2.77a)

TF (z) =
∑
n∈Z

LFn z
−n−2 =

k∑
r=1

TF(r)(z) =
k−1∑
ρ=0

TFρ (z), (2.77b)

with

TBρ (z) =
1

2
εABεȦḂ : ∂XAȦ

ρ ∂XBḂ
ρ : (z), (2.78a)

TFρ (z) =
1

2
εαβεȦḂ : ψαḂρ ∂ψβȦρ : (z). (2.78b)

Switching to the ρ basis is essential to be able to use the mode expansions (2.54) and

(2.59), exploiting which we obtain

LBn =

k−1∑
ρ=0

1

2
εABεȦḂ

∑
m∈Z

: αAȦρ,m± ρ
k
αBḂρ,n−m∓ ρ

k
:, (2.79a)

LBn =

k−1∑
ρ=0

1

2
εαβεȦḂ

∑
m∈Z

(
−n+m− 1

2
± ρ

k

)
: ψαȦρ,m± ρ

k
ψβḂ
ρ,n−m∓ ρ

k
, (2.79b)

where the ± signs depend on the specific indices A,B, Ȧ, Ḃ, α, β of the fields (but the

relative signs are those shown). The modes Ln realise the Virasoro algebra (2.43) on

the length-k strand, and the OPE of T (z) with itself is again (2.44), with the central

charge given by k × c 1 copy.

Let’s now introduce another family of operators that play an important role in this

work. Strands of length k were defined as CFT copies obtained by sewing together

k untwisted copies and on which fields acquire the monodromy conditions studied in

section (2.3.1). The sewing operation is carried out by operators that act on a tensor

product of k untwisted vacua to give a single twisted one: these are the twist oper-

ators. We have twist operators σXk and σ̃Xk for the left and the right bosonic vacua,

twist operators Σk for the fermionic vacua in the NS sector and twist operators Σsṡ
k for

the fermionic vacua in the R sector.
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The σXk and σ̃Xk operators create bosonic ground states of length k as

lim
z→0

σXk (z) σ̃Xk (z̄)
[
⊗kr=1|0〉(r)

]
= |0〉k, (2.80)

and have conformal dimension

(
h, h̄

)
=

(
k2 − 1

6k
,
k2 − 1

6k

)
. (2.81)

σXk and its antiholomorphic counterpart can be written as a product of operators acting

on each of the original k CFT copies in the ρ basis,

σXk = ⊗k−1
ρ=0 σ

X
ρ , σ̃Xk = ⊗k−1

ρ=0 σ̃
X
ρ , (2.82)

where σXρ and σ̃Xρ act nontrivially on the copy ρ and as the identity on all the other

copies. Since for a product of k vacua of length 1 the (r)→ ρ change of basis is trivial,

⊗kr=1 |0〉(r) = ⊗k−1
ρ=0|0〉ρ, (2.83)

(2.80) can also be written as

|0〉k = lim
z→0
⊗k−1
ρ=0 σ

X
ρ (z) σ̃Xρ (z̄)|0〉ρ. (2.84)

The bosonic twist fields are scalars under all the internal symmetries. For each value

of ρ, the conformal dimension of σXρ (x) is

hσXρ =
ρ

k

(
1− ρ

k

)
, (2.85)

and the total conformal dimension (2.81) is obtained as a sum over ρ = 0, . . . , k − 1.

The same value corresponds to the antiholomorphic conformal dimension of σ̃Xρ (x̄).

Let’s now consider the twist field Σk(z, z̄) for the fermions in the NS sector. They

are scalars under SU(2)L × SU(2)R and their conformal dimension is

(
h, h̄

)
=

(
1

12

(
k − 1

k

)
,

1

12

(
k − 1

k

))
. (2.86)

The action of Σk is analogous to the one of the bosonic twist fields, and again they are

written as a product of operators acting on a single CFT copy in the ρ basis,

Σk(z, z̄) = ⊗k−1
ρ=0 Σρ(z, z̄). (2.87)

As in the bosonic case, for a product of k vacua of length 1 the (r)→ ρ change of basis
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is trivial,

⊗kr=1 |0〉(r),NS = ⊗k−1
ρ=0 |0〉ρ,NS, (2.88)

so the fermionic vacuum of length k in the NS sector is obtained as

lim
z→0

Σk(z, z̄)⊗kr=1 |0〉(r),NS = lim
z→0
⊗k−1
ρ=0 Σρ(z, z̄)|0〉ρ,NS = |0〉k. (2.89)

Let’s now consider the twist field Σs1ṡ2
k (z, z̄) for the fermions in the R sector. The

indices s1 and ṡ2 transform under a representation of spin ((k− 1)/2, (k− 1)/2) under

SU(2)L×SU(2)R, corresponding respectively to the left spin operators (2.73) and their

right counterparts. The conformal dimension of Σs1ṡ2
k is

(h, h̄) =

(
(k − 1)(2k − 1)

6k
,
(k − 1)(2k − 1)

6k

)
. (2.90)

If k = 2 the spin indices are in the fundamental representation of the SU(2)L×SU(2)R

R-symmetry group, so we have the usual α, α̇ and the operators are Σαα̇
2 . The conju-

gation relations among these four operators are(
Σ11̇

2

)†
= Σ22̇

2 ,
(

Σ12̇
2

)†
= −Σ21̇

2 . (2.91)

As in the other cases, Σs1ṡ2
k is written as the product

Σs1ṡ2
k (z, z̄) = ⊗k−1

ρ=0 Σs1ṡ2
ρ (z, z̄). (2.92)

In the R sector we have to be more careful because there is more than one twisted

vacuum, and whether or not these can be generated acting with Σs1ṡ2
k on products

of length-1 vacua also depends on the spin (i.e. the choice for s1 and ṡ2). The next

section contains examples that will hopefully help clarify this point. For each value of

ρ = 0, . . . , k − 1 the conformal dimension of Σs1ṡ2
ρ is

h = h̄ =
ρ2

k2
, (2.93)

and the total conformal dimension (2.90) is obtained summing over ρ.

In general, a twist operator can be seen as introducing a branch cut from its insertion

point z to infinity: the effect of taking one of the elementary fields around z is that

of crossing the branch cut and landing on the next (counter-clockwise) or previous

(clockwise) Riemann sheet, i.e. on the next or previous copy of the CFT among the k

glued together. We’ll always consider twist operators that are products of a bosonic and
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a fermionic part so they introduce the same twist in the bosonic and in the fermionic

sector of the theory: if we picture the fields as living on strands with various possible

lengths, it wouldn’t make sense to have a different length for the bosons and for the

fermions. In this view, it’s useful to write the operator that carries out the twist for

the bosons and the fermions in the R sector at the same time,

σXk σ̃Xk Σs1ṡ2
k =

k−1⊗
ρ=0

σXρ σ̃Xρ Σs1ṡ2
ρ . (2.94)

The total conformal dimension of the operator above is

h = h̄ =

k−1∑
ρ=0

[
ρ

k

(
1− ρ

k

)
+
ρ2

k2

]
=
k − 1

2
, (2.95)

which is of course just the sum of (2.81) and (2.90), but written in a way that highlights

the contribution of each value of ρ.

2.3.4 Example of a strand of length k = 2

As an example, let’s consider the N = 2 case and the gluing of two vacuum states in

the R sector of the fermions (in the following we will ignore the action of the twist field

on the bosonic part of the theory, but in general it’s still there),

|++〉(r=1) ⊗ |++〉(r=2).

If N = 2 the J3, J̃3 spin operators read

J3 = J3
(1) ⊗ 1(2) + 1(1) ⊗ J3

(2), J̃3 = J̃3
(1) ⊗ 1(2) + 1(1) ⊗ J̃3

(2),

and we have

J3
(
|++〉(1) ⊗ |++〉(2)

)
=
(
J3

(1)|++〉1
)
⊗ |++〉2 + |++〉1 ⊗

(
J3

(2)|++〉2
)

=
1

2

(
|++〉(1) ⊗ |++〉(2)

)
,

J̃3
(
|++〉(1) ⊗ |++〉(2)

)
=
(
J̃3

(1)|++〉1
)
⊗ |++〉2 + |++〉1 ⊗

(
J̃3

(2)|++〉2
)

=
1

2

(
|++〉(1) ⊗ |++〉(2)

)
.

Let’s now act on the state with Σαα̇
2 in order to create a single strand of length 2. The

length-1 vacuum states |++〉(r) are spin highest weight state with respect to both J3

and J̃3. The length-2 vacuum state we are going to generate has two key properties:

• Its total left (J3) spin is the sum of the left spin of the two length-1 vacuum states
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and of the twist field, and the same holds for its right (J̃3) spin.

• It’s still in the fundamental representation of the left and right spin, so its eigen-

values under J3 and J̃3 cannot be greater than 1/2.

The only possibility in order for

Σ±±2

(
|++〉(1) ⊗ |++〉(2)

)
not to be zero is therefore that of acting with Σ−−2 , which gives a state with spin

(2× 1/2− 1/2, 2× 1/2− 1/2) = (1/2, 1/2), still a highest weight state, denoted as

lim
z→0

Σ−−2 (z, z̄)
(
|++〉(1) ⊗ |++〉(2)

)
≡ |++〉k=2.

Acting with any other of the Σ±±2 would annihilate the state.

2.3.5 Twist fields acting on N strands

In the generic case, we will start from N strands of length 1 and act with a twist field

Σs1ṡ2
2 . As an example, let’s consider the tensor product of N vacua in the fermionic R

sector,
N⊗
r=1

|++〉(r) = |++〉(1) ⊗ |++〉(2) ⊗ · · · ⊗ |++〉(N) (2.96)

and the twist field Σ−−2 . Again, the action of any other of the Σ±±2 would annihilate

the state.

Acting with Σ−−2 on (2.96) generates the sum of all possible states in which two of the

length-1 states have been glued together to give a length-2 state. Formally, we could

write the twist field as

Σ−−2 =
N−1∑
r=1

∑
s>r

σ−−(rs), (2.97)

where σ−−(rs) is an operator that takes the length-1 states in the product (2.96) and maps

them into a |++〉2 state. The sums in (2.97) give a total of of N(N − 1)/2 terms, so

Σ−−2

N⊗
r=1

|++〉(r)

is a sum of N(N − 1)/2 states, each with one strand of length 2 and N − 2 strands of

length 1. Due to the fact that every possible pair of length-1 strands have been glued,

the state generated still satisfies the requirement of being symmetric under exchange

of any two states in the tensor product.

In the language of permutations, σ±±(rs) can be seen as creating a cycle from the
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objects in positions r and s in the sequence

(1)(2) · · · (r) · · · (s) · · · (N),

i.e. (assuming the spin properties do not annihilate the state) we have

σ±±(rs) [(1)(2) · · · (r) · · · (s) · · · (N)] = (1)(2) · · · (rs) · · · (N), (2.98)

with cycles of length k corresponding to strands of length k.

σ±±(rs) can also break a cycle (rs) of length 2 into its constituent cycles of length 1, giving

(r)(s). This is best understood looking at specific examples, e.g.

σ(rs) [(12 · · · ) · · · (r)(s) · · · (N)] = (12 · · · ) · · · (rs) · · ·N.

If we act p times (having p < N/2) with Σ−−2 on (2.96) we will get a complicated

sum of states, not all with the maximal number p of strands of length 2, which is due

to the fact that once a strand of winding 2 has been created, it can be destroyed acting

again with the twist field. If we denote as |2p〉 the sum of all possible products of p

strands |++〉k=2 and (N − 2p) strands |++〉k=1, we define

(
Σ−−2

)p [ N⊗
r=1

|++〉(r)

]
= p! |2p〉+ · · · , (2.99)

where p! was added for convenience and the dots contain sum of states with less than

p strands of length 2.

It is useful to compute how many states are contained in |2p〉. Acting once with Σ−−2

on (2.96) we can form one strand of length 2 starting from N strands of length one,

which can be done in
(
N
2

)
inequivalent ways. Acting with Σ−−2 a second time we can

form another strand of length 2, this time starting from N − 2 strands of length one

(and disregarding the possibility of disrupting the cycle formed with the first action,

which would give states that are not in |2p〉), which can be done in
(
N−2

2

)
inequivalent

ways, and so on. In the end the number of states is the product of the inequivalent

ways in which each Σ−−2 can create a new strand of length 2, which is(
N

2

)(
N − 2

2

)
· · ·
(
N − 2(p− 1)

2

)
1

p!
=

N !

(N − 2p)!p!2p
, (2.100)

where the factor 1/p! comes from dividing by the permutations of the p operators. From

this, we can fix the normalization of the state: the inner product of |2p〉 and |2q〉 will

be proportional to δp,q, with the proportionality constant given by the number of states

in |2p〉 (because in the product each state in the ket will give zero unless it encounters
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its homologous state in the bra), so

〈2q|2p〉 =
N !

(N − 2p)!p!2p
δk,p. (2.101)

Relation analogous to the ones appearing in this section can be written for the action

of a generic twist field Σs1ṡ2
k .

2.4 Bosonization rules

2.4.1 Bosonization of the fermions

The properties of the fermions can be realized writing them in terms of a set of bosons

with a technique called bosonization which will prove to be very useful for the compu-

tations of CFT correlators. On strands of length 1 we introduce bosons H(r)(z),K(r)(z)

in the holomorphic sector and H̃(r)(z̄), K̃(r)(z̄) in the antiholomorphic one with the OPE

rules

H(r)(z)H(s)(w) = −δr,s log(z − w) + [reg.], (2.102a)

K(r)(z)K(s)(w) = −δr,s log(z − w) + [reg.], (2.102b)

H̃(r)(z̄) H̃(s)(w̄) = −δr,s log(z̄ − w̄) + [reg.], (2.102c)

K̃(r)(z̄) K̃(s)(w̄) = −δr,s log(z̄ − w̄) + [reg.]. (2.102d)

The fermions can be written in terms of the bosons6 as

ψ11̇
(r) = i : eiH(r) :, ψ22̇

(r) = i : e−iH(r) :, (2.103a)

ψ12̇
(r) =: eiK(r) :, ψ21̇

(r) =: e−iK(r) :, (2.103b)

ψ̃1̇1̇
(r) = i : eiH̃(r) :, ψ̃2̇2̇

(r) = i : e−iH̃(r) :, (2.103c)

ψ̃1̇2̇
(r) =: eiK̃(r) :, ψ̃2̇1̇

(r) =: e−iK̃(r) :, (2.103d)

which is more simply expressed using the χ fermions as

χ1
(r) =: eiH(r) :, χ̄1

(r) =: e−iH(r) :, (2.104a)

χ2
(r) =: eiK(r) :, χ̄2

(r) =: e−iK(r) :, (2.104b)

χ̃1
(r) =: eiH̃(r) :, ¯̃χ1

(r) =: e−iH̃(r) :, (2.104c)

6Notice that this way of writing the fermions doesn’t naturally implement the fact that some of
them anticommute, e.g. {

ψ11̇
(r)n, ψ

12̇
(r)m

}
= 0, ∀n,m ∈ Z.

This has been taken into account in all the computations performing the anticommutations among
operators before switching to the bosonized language. It is possible to define bosonized fermions with
the correct anticommutation relations more rigorously through the use of cocycles [73].
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χ̃2
(r) =: eiK̃(r) :, χ̃

2
(r) =: e−iK̃(r) : . (2.104d)

In general, if X(z) is an operator with the same OPE rules as H or K, the operator

: eiαX(z) :

has conformal dimension (h, h̄) = (α2/2, 0) and spin (J3, J̃3) = (α/2, 0) (had X been

an antiholomorphic boson, the roles of the left and right conformal dimensions and

spins would have been exchanged). The OPE of two operators of the above form is

: eiαX(z) :: eiβX(w) : = : exp

(
(iα)(iβ)X(z)X(w) + iαX(z) + iβX(w)

)
:

= (z − w)αβ : exp

(
i(α+ β)X(w) +

+∞∑
n=1

(z − w)n

n!
∂nX(w)

)
: ,

(2.105)

where in the last step we used the contraction rule for X with itself (which gives the

divergent part of the X(z)X(w) OPE) and expanded X(z) around w. Knowing this

it’s easy to see that the contraction rules (2.102) and the definitions (2.103) imply the

OPE rules (2.5). As an example, let’s consider ψ11̇
(r)(z)ψ

22̇
(r)(w):

ψ11̇
(r)(z)ψ

22̇
(r)(w) = − : eiH(r)(z) :: e−iH(r)(w) :

= − : exp

(
H(z)H(w) +

+∞∑
n=1

∂n
(z − w)n

n!
H(w)

)
:

= − 1

z − w
: exp

(
(z − w) ∂H(w) +

1

2
(z − w)2 ∂2H(w) +O

(
(z − w)3

))
:

= − 1

z − w
− ∂H(w)− 1

2
(z − w)

(
∂2H(w)+ : (∂H(w))2

)
: +O

(
(z − w)2

)
,

which agrees with (2.5).

2.4.2 Spectral flow

Another interesting reason to define the H and K bosons and their antiholomorphic

counterparts is that they can be used to define an operator that maps the fermions’

NS vacuum to the R vacuum |++〉, an operation called spectral flow. On a length-1

strand we have

|++〉(r) = lim
z→0

e
i
2(H(r)(z)+K(r)(z)+H̃(r)(z̄)+K̃(r)(z̄))|0〉(r),NS. (2.106)

The generalization to N length-1 strands is straightforward: the operator is just a

tensor product over the copies, and of course the state is the tensor product of N states
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|0〉(r),NS, so we have

N⊗
r=1

|++〉(r) =
N⊗
r=1

[
lim
z→0

e
i
2(H(r)(z)+K(r)(z)+H̃(r)(z̄)+K̃(r)(z̄))|0〉(r),NS

]
. (2.107)

The left and right conformal dimensions of the spectral flow operator in (2.107) are

given by the sums of left and right conformal dimensions of each term in the tensor

product, so we have

h = h̄ =
N∑
r=1

1

2

(
1

2

)2

2 =
N

4
=

c

24
, (2.108)

where we used that

c = 6n1n5 = 6N. (2.109)

Since the NS vacuum has zero conformal dimension, we argue that the state (2.107) has

conformal dimension (2.108). It’s possible to check that the insertion of the spectral

flow operator on a length-1 strand in the NS vacuum, (2.106), indeed changes the

boundary conditions of the fermions living on that strand from NS to R.

2.4.3 Twist operators

The H and K bosons can also be used to define the fermionic part of the twist operators.

Among the operators in the Σs1ṡ2
k multiplet, we will only need the lowest weight state,

which we will denote as Σ
− k−1

2
,− k−1

2
k (z, z̄), the analogous for generic k of Σ−−2 . Before

writing down the operator, though, a few remarks are in order.

In the twisted sector, on a strand of length k, the bosonization of the fermions is

naturally written in the basis in which the monodromy conditions are diagonal, the ρ

basis. Therefore we have

ψ11̇
ρ = i : eiHρ :, ψ22̇

ρ = i : e−iHρ :, (2.110a)

ψ12̇
ρ =: eiKρ :, ψ21̇

ρ =: e−iKρ :, (2.110b)

ψ̃1̇1̇
ρ = i : eiH̃ρ :, ψ̃2̇2̇

ρ = i : e−iH̃ρ :, (2.110c)

ψ̃1̇2̇
ρ =: eiK̃ρ :, ψ̃2̇1̇

ρ =: e−iK̃ρ :, (2.110d)

with the OPE rules for the bosons

Hρ1(z)Hρ2(w) = −δρ1,ρ2 log(z − w) + [reg.], (2.111a)

Kρ1(z)Kρ2(w) = −δρ1,ρ2 log(z − w) + [reg.], (2.111b)

H̃ρ1(z̄) H̃ρ2(w̄) = −δρ1,ρ2 log(z̄ − w̄) + [reg.], (2.111c)

K̃ρ1(z̄) K̃ρ2(w̄) = −δρ1,ρ2 log(z̄ − w̄) + [reg.]. (2.111d)
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The bosonization technique can therefore be used to compute correlators more easily

also in the twisted sector, provided we write everything, operators and states, in the ρ

basis.

The second piece of information we need, in analogy with (2.83) and (2.88), is the fact

that for the tensor product of k length-1 vacua the (r)→ ρ change of basis is trivial,

k⊗
r=1

|++〉(r) =

k−1⊗
ρ=0

|++〉ρ. (2.112)

This writing is useful to understand the action of the twist fields, as they are naturally

written in the ρ basis. It also means that

k⊗
r=1

|++〉(r) =
k⊗
r=1

[
lim
z→0

e
i
2(H(r)(z)+K(r)(z)+H̃(r)(z̄)+K̃(r)(z̄))|0〉(r),NS

]
=

k−1⊗
ρ=0

[
lim
z→0

e
i
2(Hρ(z)+Kρ(z)+H̃ρ(z̄)+K̃ρ(z̄))|0〉ρ,NS

]
.

(2.113)

We are now ready to write the fermionic part of the lowest-weight state in the Σs1ṡ2
k

multiplet in terms of the H,K, H̃, K̃ bosons. It has the form

Σ
− k−1

2
,− k−1

2
k =

k−1⊗
ρ=0

e−i ρ
k
Hρ e−i ρ

k
Kρ e−i ρ

k
H̃ρ e−i ρ

k
K̃ρ ,

=
k−1⊗
ρ=0

e−i ρ
k (Hρ+Kρ+H̃ρ+K̃ρ) ,

(2.114)

which in the notation of (2.92) means that

Σ
− k−1

2
,− k−1

2
ρ = e−i ρ

k (Hρ+Kρ+H̃ρ+K̃ρ). (2.115)

All this allows us to write explicitly the action of the twist fields: the length-k state

|++〉k is produced acting with (2.114) on (2.113),

|++〉k = lim
z→0

Σ−
k−1

1
,− k−1

2 (z, z̄)
k−1⊗
ρ=0

|++〉ρ

= lim
z→0
w→0

k−1⊗
ρ=0

[
e−i ρ

k (Hρ(z)+Kρ(z)+H̃ρ(z̄)+K̃ρ(z̄)) e
i
2(Hρ(w)+Kρ(w)+H̃ρ(w̄)+K̃ρ(w̄))|0〉ρ,NS

]

= lim
z→0
w→0

|z − w|−(k−1)
k−1⊗
ρ=0

[
ei(− ρk+ 1

2)(Hρ(w)+Kρ(w)+H̃ρ(w̄)+K̃ρ(w̄))|0〉ρ,NS

]
,

(2.116)
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where ∀ρ we computed the OPE between the the ρ part of the twist operator and the

ρ part of the spectral flow operator. For each term involving an holomorphic boson we

have a structure like

e−i ρ
k
Hρ(z)e

i
2
Hρ(w) = (z − w)−

ρ
2k exp

[
i

(
−ρ
k

+
1

2

)
Hρ(w) +O(z − w)

]
. (2.117)
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Chapter 3

The bulk gravitational theory

The bulk dual interpretation of the CFT described in the previous chapter was already

pointed out in [24] and has been the starting point for the research on AdS3 holography.

This was later applied to black hole physics, especially in the context of the fuzzball

proposal [14,60] in which classes of black hole microstate geometries were described in

terms of their boundary CFT dual states [1,32,33,37,38,48,58,62,63]. The purpose of

this chapter is that of describing the geometric setting of the bulk gravitational theory,

so that the statement of the various dualities between geometries and states will be

stated as clearly as possible.

3.1 The 3-charge geometry

Let’s start from type IIB supergravity on a spacetime with topology M5 × S1 × T 4.

Assuming invariance under translation in the T 4 directions, the resulting solution can

be written [74] in the string frame as

ds2
(10) = − 2α√

Z1Z2
(dv + β)

[
du+ ω +

F
2

(dv + β)
]

+
√
Z1Z2 ds

2
4 +

√
Z1

Z2
dŝ2

4 , (3.1a)

e2φ = α
Z1

Z2
, (3.1b)

B = − αZ4

Z1Z2
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2 , (3.1c)

C0 =
Z4

Z1
, (3.1d)

C2 = − α

Z1
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2 , (3.1e)

C4 =
Z4

Z2
v̂ol4 −

αZ4

Z1Z2
γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) , (3.1f)

where

α =
Z1Z2

P
, P = Z1Z2 − Z2

4 . (3.2)
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The flat metric of T 4 has been denoted as dŝ2
4, while ds2

4 corresponds to a 4-dimensional

Euclidean line element that reduces asymptotically to flat R4. t and y are respectively

the time coordinate and the coordinate along the S1, with radius Ry, and we also

defined the light-cone coordinates

u =
t− y√

2
, v =

t+ y√
2
. (3.3)

The solution depends on the following objects: four scalar functions, Z1, Z2, Z4,F ; four

1-forms on R4, β, ω, a1, a4; two 2-forms on R4, γ2, δ2; one 3-form on R4, x3. All these

objects depend in general on v and on the R4 coordinates xi. Supersymmetry and the

equations of motion are satisfied if the conditions in [74] are satisfied. We will call (3.1)

the 3-charge solution. Sometimes it will be convenient do define the 1-forms

A ≡ −β + ω√
2
, B ≡ −β − ω√

2
. (3.4)

3.1.1 Reduction to 5d Strominger-Vafa black hole

The 3-charge solution is a generalization of the supergravity solution obtained by wrap-

ping a number n1 of D1-branes around the S1, a number n5 of D5-branes along bith

the S1 and the T 4 and allowing a number np of momentum modes to propagate along

the D1’s (see section 5.1 of [60] and references therein, or [75]), which corresponds to

a 3-charge (Strominger-Vafa) black hole in 5 dimensions, upon reduction over S1×T 4.

The corresponding metric will be called 3-charge naive geometry and has the form

(3.1a) with

Z1 = 1 +
Q1

r2
, Z2 = 1 +

Q5

r2
, F = −2Qp

r2
,

Z4 = 0, β = ω = 0, ds2
4 = dxi dxj δ

ij . (3.5)

The charges can be expressed in terms of the D-branes data n1, n5, np as

Q1 =
n1gs(α

′)3

V
, Q5 = gsn5α

′ , Qp =
npg

2
s(α
′)4

V R2
y

, (3.6)

where gs is the string coupling constant, α′ is the Regge slope and V parametrizes the

volume of the T 4 as below (3.19).

Let’s consider the general Ansatz (3.1a) and evaluate it on the solution (3.5). The

first step is the dimensional reduction of the metric on the T 4. The metric is globally

a product and no off-diagonal blocks are present, so the 6d metric in the string frame
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is just the 6d block of the 10d one: let’s call it GMN , with line element

ds2 = GMN dx
MdxN

= − 1√
Z1Z2

(
1 +
F
2

)
dt2 +

1√
Z1Z2

(
1− F

2

)
dy2 − F√

Z1Z2
dtdy +

√
Z1Z2

(
dr2 + r2dΩ2

3

)
,

(3.7)

where we wrote the flat R4 part in spherical coordinate, dΩ2
3 being the metric of S3

with unit radius,

dΩ2
3 = dθ2 + sin2 θ dφ2 + cos2 θ dψ2. (3.8)

Let’s now rename as µ, ν, . . . the indices along the direction transverse to the S1 and as

α the indices along it (so we have α ≡ y): this way the 6-dimensional indices are split

into 5 + 1 as {M}M=t,r,y,θ,φ,ψ = {µ, α}µ=t,r,θ,φ,ψ;α=y = {µ, y}µ=t,r,θ,φ,ψ. We can now

perform Kaluza-Klein dimensional reduction on the S1. Following the recipe in [76]

we define a 6-dimensional Vielbein êÂM , where Â, B̂, . . . = 0, . . . , 5 are six flat indices

with Lorentz signature raised and lowered using the 6-dimensional Minkowski metric

ηÂB̂ = diag(−1, 1, . . . , 1), in terms of which the 6-dimensional metric is obtained as

GMN = êÂM ê
B̂
N ηÂB̂. (3.9)

Since the ty block of the metric is the only one with off-diagonal components, we can

restrict the analysis to that 2× 2 block,

[GMN ]ty block =

[
Gtt Gty

Gyt Gyy

]
=

[
− 1√

Z1Z2

(
1 + F

2

)
− F

2
√
Z1Z2

− F
2
√
Z1Z2

1√
Z1Z2

(
1− F2

) ] . (3.10)

Using local Lorentz invariance, again restricting ourselves to the ty block, we can put

the 6-dimensional Vielbein in triangular form,

[
êÂM

]
=

[
ê0
t ê1

t

0 ê1
y

]
, (3.11)

and using (3.9) we get

ê0
t = (Z1Z2)−1/4

(
1− F

2

)−1/2

, ê1
t = −F

2
(Z1Z2)−1/4

(
1− F

2

)−1/2

,

ê1
y = (Z1Z2)−1/4

(
1− F

2

)1/2

.

(3.12)

We can now define a 5-dimensional reduced metric gµν with Vielbein eAµ (A,B, . . . =

0, 2, 3, 4, 5) and a metric gαβ on the compact space with Vielbein Eaα (a = 1), with

indices A,B, . . . raised and lowered with the 5-dimensional Minkowski metric ηAB =
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diag(−1, 1, . . . , 1) and indices a, b, . . . (in this case just one) raised and lowered with

the Euclidean metric δab,

gµν = eAµ e
B
ν ηAB, gyy = EayE

b
y δab =

(
E1
y

)2
. (3.13)

We can write the 6-dimensional Vielbein in terms of the above ones in the ty block as

[
êÂM

]
=

[
eAµ AαµE

a
α

0 Eaα

]
=

[
e0
t AytE

1
y

0 E1
y

]
, (3.14)

and comparing with (3.11) and (3.12) we get

E1
y = ê1

y = (Z1Z2)−1/4

(
1− F

2

)1/2

, e0
t = ê0

t = (Z1Z2)−1/4

(
1− F

2

)−1/2

,

Ayt =
ê1
t

E1
y

= − F/2(
1− F2

) . (3.15)

The metric in 5 dimensions is obtained from the Vielbein eAµ , but with a subtlety: if we

worked at the level of the action, we would have seen that the action in 5 dimensions

has the canonical form only if we rescale the metric by a factor

|det (gyy)|
1
d−2

∣∣∣
d=5

= g1/3
yy =

(
E1
y

)2/3
= (Z1Z2)1/6

(
1− F

2

)1/3

. (3.16)

This rescaling affects all the components of the 5-dimensional metric. The result is

gtt = eAt e
B
t ηAB |det (gyy)|

1
d−2

∣∣∣
d=5

= − (Z1Z2)−2/3

(
1− F

2

)−2/3

,

grr = Grr |det (gyy)|
1
d−2

∣∣∣
d=5

= (Z1Z2)1/3

(
1− F

2

)1/3

,

gθθ = Gθθ |det (gyy)|
1
d−2

∣∣∣
d=5

= r2 (Z1Z2)1/3

(
1− F

2

)1/3

,

gφφ = Gφφ |det (gyy)|
1
d−2

∣∣∣
d=5

= r2 sin2 θ (Z1Z2)1/3

(
1− F

2

)1/3

,

gψψ = Gψψ |det (gyy)|
1
d−2

∣∣∣
d=5

= r2 cos2 θ (Z1Z2)1/3

(
1− F

2

)1/3

.

(3.17)
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Substituting the forms (3.5) for Z1, Z2,F , the corresponding line element is

ds2
5d = − dt2(

1 + Q1

r2

)2/3 (
1 + Q5

r2

)2/3 (
1 +

Qp
r2

)2/3
+

+

(
1 +

Q1

r2

)1/3(
1 +

Q5

r2

)1/3(
1 +

Qp
r2

)1/3 [
dr2 + r2dΩ2

3

]
,

(3.18)

which is the metric of for the 5d 3-charge black hole in a set of coordinates where the

horizon is at r = 0. In this case the Einstein and the string frame metrics are related

just by a rescaling by a constant: if we look at (3.1) and call dŝ2
4 = ĝab dx

adxb the line

element of the T 4, we have that after dimensional reduction to 6d the dilaton becomes

e−2φ6 = e−2φ10 Vol
(
T 4
)

=
Z2

αZ1

(
det

(√
Z1

Z2
ĝab

))1/2

=
(2π)4 V

α
, (3.19)

where we defined V through (det (ĝab))
1/2 ≡ (2π)4 V . Further reducing on S1 we get

that the five-dimensional dilaton is

e−2φ5 = e−2φ6 Vol
(
S1
)

=
(2π)4 V

α
2πRy. (3.20)

This holds in general for the Ansatz (3.1): specifying to the case of the naive metric

(3.5) we have that since Z4 = 0 then α = 1, so

e−2φ5 |naive = (2π)5 V Ry, (3.21)

which is a constant. As the string frame (gSµν) and Einstein frame metrics (gEµν) are

related by

gEµν = e−
4
d−2

φd gSµν , (3.22)

(3.21) allows us to check that the 5d result (3.18) agrees up to a constant factor with

the one given in chapter 11 of [77], which is in the Einstein frame. As a last remark, if

we take the asymptotic (r → ∞) limit we immediately see that the geometry reduces

to 5-dimensional Minkowski spacetime: the naive 3-charge geometry is asymptotically

flat. This will hold also for the 3-charge microstate geometries.

The above results give us one of the main motivations behind this work, because

they show that on the bulk side of the AdS/CFT correspondence we indeed have a

5d black hole. In the following we will consider generalizations of the naive geometry

(3.7), i.e. more complicated choices of the functions the Ansatz (3.1) depends upon,

and in the spirit of the fuzzball proposal we will interpret them as microstates of the

5d black hole. Furthermore, black hole microstates will be put in correspondence with

CFT states.
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The Strominger-Vafa black hole is a BPS supergravity solution preserving 1/8 of the

supersymmetries, with finite horizon area and therefore nonzero Bekenstein-Hawking

entropy. Being a BPS solution, it corresponds to an extremal black hole, so the mass

can be expressed as a function of the other charges as [77]

M = M1 +M2 +M3, Mi =
πQi
4G5

, i = 1, 5, p, (3.23)

where G5 is Newton’s constant reduced to 5 dimensions. As usual for extremal black

holes, the surface gravity is zero and therefore the Hawking temperature is also zero.

The horizon area of the Strominger-Vafa black hole can be computed in 10d as

in [14], and in the Einstein frame we get

AH =
(
2π2
)

(2πRy)
(
(2π)4 V

)
(Q1Q5Qp)

1/2. (3.24)

Newton’s constant in 5d is given by

G5 =
G10

(2πRy) ((2π)4 V )
, (3.25)

so the Bekenstein-Hawking entropy is

SB-H =
AH

4G10
=

2π2(Q1Q5Qp)
1/2

4G5
. (3.26)

G10 can be expressed in terms of the string coupling constant gs and of the Regge slope

α′ as

G10 = 8π6g2
s(α
′)4, (3.27)

so using (3.6) we get

SB-H = 2π(n1n5np)
1/2. (3.28)

The fact that all the moduli of the theory (the volumes of the compact spaces, the string

coupling constant and the Regge slope) cancel out to give a result depending only on

three integer numbers was one of the ideas from which the whole black hole microstate

study originated. The microstate counting can also be performed microscopically: this

is performed in [14] in a different duality frame, and the result matches exactly (3.28).

The naive 3-charge metric and the general 3-charge geometries are all 1/8-BPS

solutions, provided momentum modes along the D1-branes (which give the charge Qp)

are either only left-moving or right-moving: modes moving in opposite directions break

orthogonal sectors of the supersymmetry and having both would break supersymmetry

completely.
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3.1.2 Dimensional reduction on T 4 and asymptotic form of the metric

As was mentioned above, reducing (3.1a) on T 4 we get the 6d string frame metric

ds2
S,(6) = − 2α√

Z1Z2
(dv + β)

[
du+ ω +

F
2

(dv + β)
]

+
√
Z1Z2 ds

2
4 . (3.29)

In order to get the Einstein frame metric we use (3.22) with d = 6 and φ6 given by

(3.19). Setting V = 1 we get

ds2
E,(6) = − 2√

P
(dv + β)

[
du+ ω +

F
2

(dv + β)
]

+
√
P ds2

4 . (3.30)

The first operation we have to perform on this geometry is the decoupling limit (or

near-horizon limit),

Qp � r2 � Q1, Q5. (3.31)

In this case the functions Z1, Z2 in the naive 3-charge geometries are approximated by

Z1 '
Q1

r2
, Z2 '

Q5

r2
. (3.32)

In the more general cases of 3-charge microstates, Z1 and Z2 will get other contributions

in the form of terms with higher and higher negative powers of r. The important fact

contained in (3.32) is that the constant terms can be neglected: they cause the geometry

to be asymptotically flat, so in the decoupling limit asymptotic flatness is lost. If we

then take the r →∞ limit again, starting from (3.30), writing

ds2
4 = dr2 + r2 dΩ2

3, (3.33)

we get

ds2
E,(6) '

√
Q1Q5

[
dr2

r2
+

r2

Q1Q5

(
−dt2 + dy2

)]
+
√
Q1Q5 dΩ2

3. (3.34)

Defining

u ≡ r√
Q1Q5

(3.35)

the metric becomes

ds2
E,(6) '

√
Q1Q5

[
du2

u2
+ u2

(
−dt2 + dy2

)]
+
√
Q1Q5 dΩ2

3, (3.36)

which is the metric for AdS3×S3 with the AdS factor written in Poincaré coordinates

and with radii

RAdS3 =
√
Q1Q5 = RS3 . (3.37)
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In the case of the microstate geometries this asymptotic limit is the same, as terms with

higher negative powers of r in Z1 and Z2 will be subleading as r →∞. The decoupling

limit and the asymptotic geometry we obtained are crucial in order for the holographic

construction to hold: the AdS3 factor is what allows us to exploit AdS3 holography

and characterize the microstate geometries in terms of CFT states.

3.2 The 2-charge geometry

If we start from (3.1) and we set F = 0 we get a solution called 2-charge geometry,

which in the string frame is

ds2
(10) = − 2α√

Z1Z2
(dv + β) (du+ ω) +

√
Z1Z2 ds

2
4 +

√
Z1

Z2
dŝ2

4 . (3.38)

This solution is again parametrized by the same objects as in (3.1), apart from F , and

has a “naive counterpart” obtained starting from the 3-charge one (3.5) and setting

Qp = 0, which corresponds to having the same D1 and D5-branes as in the 3-charge

case, but with no momentum modes along the D1-branes: because of this, less su-

persymmetry is broken, and indeed 1/4 of the supercharges are preserved. Also, in

2-charge geometries the functions Z1, Z2 and Z4 do not depend on the coordinate v.

As we see from (3.24), the horizon area is zero: the solution is a degenerate black hole

for which no Bekenstein-Hawking entropy is present7. Surprisingly, this doesn’t corre-

spond to zero microstate entropy, as counted using the D-branes setup: the microscopic

computation [14] gives a nonzero result (in agreement with [78]). The 2-charge solution

also has a description in terms of (1/4-BPS) microstates, dual to CFT states in which

the charge corresponding to the momentum modes along the D1-brane is turned off.

As in the 3-charge case, the 2-charge geometry is asymptotically flat.

In the case of 2-charge geometries the decoupling limit still exists, and we setQp = 0.

Taking r2 � Qp in the 3-charge case allowed us to neglect all the term containing Qp in

the geometry: with 2-charges they are simply not there to begin with, and the result is

the same. AdS3 holography is indeed applied both to 1/8- and to 1/4-BPS microstates,

the only difference being in what CFT dual states we have.

3.3 General structure of the geometries

In the previous sections we saw the construction and the characteristics of families of

solutions, giving some motivations about why we are considering them. Having exposed

7One should be careful about this kind of statement, as this analysis relies on an extrapolation to
strongly coupled string theory. What is known, though, is that if higher derivative corrections to the
Einstein-Hilbert action are considered, then the 2-charge black hole has nonzero entropy as well, if the
internal space is K3 [78].
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all the ingredients, we can now look at the structure of the geometries in a broader

perspective, clarifying what we really mean by microstate geometries. Consider the

5-dimensional Strominger-Vafa (i.e. 3-charge) black hole: according to the Bekenstein-

Hawking formula it has an entropy proportional to the area of its horizon. Moreover,

away from extremality it also has a temperature set by the values of the mass and

charges, the Hawking temperature given by the surface gravity. We may therefore try

to describe the black hole as a statistical mix of microstates in a canonical ensemble

at a certain temperature. The fuzzball proposal is indeed an attempt in this direction,

and it postulates that at least some of the entropy is given by microstates which are

smooth, horizonless geometries with the same charges as the black hole and which

asymptotically become indistinguishable from the black hole geometry itself. Looking

at the previous section, we identify the black hole as the naive 3-charge geometry

and the microstates as the Ansatz (3.1), with some suitable choice of the functions

Z1, Z2, Z4, . . . it is parametrized by. The same things happens in the case with 2 charges,

the only difference being that we describe the microstates of a somewhat degenerate

black hole solution.

The geometry can be seen schematically as follows:

• For r �
√
Q1,5 we are in the asymptotically flat regime: if we either consider

the black hole or a microstate, at infinity we still get Minkowski spacetime in 5d.

• As r decreases, we encounter a region called neck in which the functions Z1, Z2

etc. do not differ between the naive and the microstate case: here a microstate

geometry and a black hole are still indistinguishable.

• For |g| � r �
√
Q1,5, where |g| is an estimate of the order of some function(s)

g that gives the terms of order r−3, r−4, . . . in Z1, Z2, Z4 (i.e. the deviation from

the naive geometry), we are in a region called throat and we can forget the 1’s in

Z1, Z2, Z4, obtaining a geometry that reduces asymptotically (i.e. if we then take

the r →∞ limit again) to AdS3×S3×T 4. In the case of 2-charge geometries, the

functions g are called shape functions and exactly parametrize the geometry,

while in the 3-charge case the the parametrization is not as easy. The shape

functions give the deviation of a microstate geometry from that of a black hole.

• For r ∼ |g| the microstate geometry deviates from that of a black hole and

depends strongly on the shape functions. Since microstate geometries are smooth

and horizonless, as r decreases we don’t encounter any coordinate or curvature

singularity: as r → 0 the geometry ends in a cap whose shape is given by the

shape functions. The shape of the cap is what distinguishes one microstates

from another. It is possible to give an estimate of the typical scale at which

the microstate and the naive geometry start to differ [14]: this happens at the

56



CHAPTER 3. THE BULK GRAVITATIONAL THEORY

horizon scale. Indeed the fuzzball proposal is among the class of theories for which

nontrivial effects take place already at the horizon scale, where for big enough

black holes general relativity would suggest nothing happens: fuzzballs are in fact

additional structure at the horizon.

For 2-charge geometries, there is an algorithmic procedure to associate shape func-

tions g and CFT states, at least if they have a certain structure. In the 3-charge case

this is not possible and the geometry-state matching must be done case by case. Finally,

notice that in taking the decoupling limit we lose information about the asymptotically

flat behaviour of the geometry: if we start already in the decoupling limit (e.g. we work

out the gravity-CFT matching starting from a CFT state), it may not be trivial to ex-

tend the microstate geometry we obtain to the asymptotically flat regime [59]. Finally,

we want to stress that the horizon scale is only a typical scale for stringy effects to kick

in: indeed we will consider nontypical geometries which, in the decoupling limit, differ

from the asymptotic AdS3 × S3 × T 4 geometry already near the AdS3 boundary.
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Chapter 4

1/4 and 1/8-BPS precision

holography

This chapter relies on the results of [1] and is dedicated to the identification of the

precision dictionary between geometries (in both the 1/4 and 1/8-BPS cases) and CFT

states. The states will be superpositions of vacua in the Ramond sectors of the CFT

copies, or of excitations thereof, and they will be matched to specific forms for the

functions and 1-forms the microstate geometries are parametrized by, see (3.1).

In practice, this amounts to matching the first nontrivial terms inside Z1, Z2, Z4, . . .

to the VEVs of CFT operators of small dimension on the state dual to the geometry

considered. In the 1/4-BPS case, for the classes of geometries and states considered

here there will be an algorithmic way to perform the matching. Precision holography

is also tested using entanglement entropy as an observable: here we have both a CFT

prescription [70] and an holographic (bulk) one [71] to perform the calculation, so

once we have a guess for a geometry-state matching we can compute the entanglement

entropy on both sides and check they agree.

4.1 Generalities about the AdS/CFT correspondence

The statement of the AdS/CFT correspondence [24–26] is that a dictionary exists

between string theory in asymptotically AdS space and a gauge theory in flat space

living on its boundary, and quantities can be computed equivalently on either side.

Regimes amenable to direct computations are classical (super)gravity on the bulk side

and the perturbative (weak coupling) regime on the boundary side. The regimes of

validity of these approximations, in the case of AdS5/CFT4 holography, are detailed

in [79]. The string scale is set by the Regge slope α′ as

α′ = l2s , (4.1)
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where ls is the string length. Stringy effects kick in when the string scale is comparable

to the curvature scale R of spacetime, α′/R2 ∼ 1, so strings can be ignored if α′/R2

is small. On the bulk side we have another parameter governing the magnitude of

quantum effects, the string coupling gs. α
′ and gs are independent: if they are both big

we have to consider quantum strings (string scattering, etc.), but it could also be the

case that only one is big, in which case we can have classical strings or quantum point

particles. The most tractable case on the bulk side definitely corresponds to having

both parameters small, in fact this means we have classical fields, and the full string

theory reduces to classical supergravity. On the boundary CFT side we also have two

parameters, the Yang-Mills coupling constant gYM and the number of colors N of the

SU(N) gauge group8. We can trade gYM for the ’t Hooft coupling

λ ≡ g2
YMN. (4.2)

The large N expansion corresponds to an expansion in the topology of the scattering

diagrams, with the leading N → ∞ term corresponding to planar diagrams. Fixing a

topology, we can then perform an expansion in λ. The perturbative regime on the CFT

side corresponds to having λ small. The key relations that AdS/CFT provides are

gs = g2
YM =

λ

N
, α′ =

R2

√
λ
. (4.3)

In order to get classical supergravity on the bulk side we can take the following limits

on the parameters: first we keep λ fixed and we send N →∞. This way we have that

gs → 0, and thus no quantum effects are expected to appear. In this regime α′ can still

have any value, so in general we’ll have a theory of classical strings. Then we can also

send λ→∞, which corresponds to α′ → 0, and we get a bulk theory of classical fields,

supergravity. This is the bulk regime we want, but we can achieve it only at the price

of having a strong coupling for the boundary CFT. Also, by the above reasoning we

see that in the large N limit, corrections in 1/N represent quantum corrections in the

bulk theory.

In AdS3 holography the dual field theory description is a 2-dimensional conformal

field theory, and the role of the parameter N is played by the central charge c (actually

N2 − 1 ∼ N2 ↔ c). In the case of the D1D5 CFT described in Chapter 2 the total

central charge is9

c = c̃ = 6n1n5. (4.4)

The theory described in Chapter 2 is a free CFT, but we can imagine to deform it

8Here we have in mind the AdS5 × S5 case; the AdS3 case will be detailed below.
9Unfortunately we use the symbol N to refer both to the gauge group of SU(N) gauge theories and

to the number n1n5 of CFT copies. We refer to SU(N) only in this section, while in all other parts of
this work we only mean N = n1n5.
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turning on some coupling: the classical gravity regime would then correspond to having

a strongly coupled theory and to sending the number of CFT copies N → ∞. This is

confirmed by the link between Newton’s constant in 3d and the central charge [79],

c =
3R

2G
(3)
N

, (4.5)

where in our case the curvature radius is the AdS3 (and S3) radius, R = RAdS3 = RS3 :

if we want G
(3)
N to be small we need N to be large. While working at large N , we’ll

still work at the orbifold point of the CFT where the couplings are all set to zero and

all we are left with is a free theory: this can be done as long as we look at protected

quantities, i.e. observables that do not depend on the point in moduli space (values

of the couplings) we consider. Protected quantities can therefore be computed in the

free theory and then extrapolated to strong coupling. In particular, a certain class of

3-point functions10 are known to be protected by non-renormalization theorems [27]:

these are precisely the objects we will be looking at.

One of the aims of our analysis is to show that it is possible to use the AdS3/CFT2

duality to study the microstates of the Strominger-Vafa black hole, which carry D1,

D5 and momentum charges. On the CFT side, the microstates that can have a dual

geometric description in classical supergravity are the BPS semiclassical states with the

charges of the black hole. The expectation values of the BPS operators in a semiclassical

state |si〉 of this type give direct information on the structure of the bulk solution

corresponding to |si〉: by using the standard AdS/CFT dictionary, each BPS operator11

corresponds to a supergravity mode and so, roughly speaking, its expectation value

determines a particular deviation of the microstate solution from AdS3 × S3.

This approach was pioneered for the D1D5 CFT in [32,63,80] where it was applied

to 1/4-BPS configurations, which correspond on the bulk side to the microstates of a

black hole of vanishing horizon area in the supergravity limit. As we will discuss in

detail, much of the technology developed in those works can be directly used also in

the 1/8-BPS case. In order to illustrate the method we will focus on the expectation

values of the simplest class of BPS operators, i.e. those of (total) dimension one. The

main stumbling block preventing the generalization of [32, 63, 80] to the 1/8-BPS case

has been the absence of a rich enough class of geometries with a known CFT dual.

The geometries obtained by spectral flow in [37, 38, 41] have a too simple structure

to highlight the general pattern, while we do not know an explicit CFT dual for the

general multicentre solutions [40, 55–57]. However, recently a new class of 1/8-BPS

10We will often call VEVs our 3-point functions, as the two operators corresponding to the bulk
geometry are the same and are taken to be asymptotic (in and out) states.

11As explained below, for the time being we focus on operators of low dimension, even though it
would be very interesting to extend the analysis further.
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solutions was derived in [58] with an explicit proposal for the dual semiclassical CFT

states. We will focus on “atypical” states in this class which differ from AdS3 × S3

already very close to the AdS boundary. Then, we have non-trivial expectation values

already for BPS operators of dimension one and we can show that they match in a

non-trivial way the supergravity results. This provides a strong check for the proposed

dictionary between 3-charge geometries and semiclassical states.

Another interesting way to reconstruct the spacetime structure from CFT data is

to study the Entanglement Entropy (EE) both on the CFT side [70] and by using the

holographic prescription of [71,72]. In particular the EE of a space interval in the CFT2

probes the metric of the dual space-time deeper in the holographic direction as the

interval becomes bigger. The application of this approach to the 1/4-BPS geometries

that are (small) black hole microstates was first discussed in [81] focusing on the first

terms in the limit of small l/Ry (l is the size of the EE interval and Ry is the radius of the

space direction of the CFT). Again, in order to have a non-trivial match between bulk

and CFT results at this order one needs to focus on “atypical” geometries, however

this is sufficient to highlight the general issues that need to be understood in order

to use the EE as a tool to characterise the microstate geometries. In general these

geometries are not a metric product of (deformed) AdS3 and a compact 3d space, so

one needs to reformulate the extremization problem of [71,72] in terms of a codimension

2 submanifold of a 6D geometry that is asymptotically AdS3 × S3. A proposal on how

to do this in a computationally efficient way is discussed in [81]. Here we show that this

proposal is equivalent to the general covariant prescription of [82] and, as an explicit

application to 1/8-BPS configurations, we test this holographic prescription for the EE

in the case of the superstrata geometries derived in [58].

4.2 Gravity-CFT map for D1-D5 states

The aim of this section is to precisely characterize the semiclassical states that are

dual to the class of superstrata constructed in [58]. We first review the CFT/geometry

dictionary in the 1/4-BPS sector by summarising the results of [32,63] in the language

of orbifold CFT. Then we turn our attention to the 1/8-BPS sector relevant for the

superstrata.

4.2.1 Gravity-CFT map in a 1/4-BPS sector

In Chapter 2 we introduced the concept of strands which can be used to define the

states in the D1D5 CFT at the orbifold point. The RR ground state of each strand is

denoted by |s〉k, where s = (0, 0), (±,±) runs over one of the five12 possible spin states

12We restrict here to bosonic states which are invariant under rotations of the internal space T 4.
Hence our results trivially extend to the D1-D5 system compactified on K3. If one included all the
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and k is the length, or winding number, of the strand. A ground state of the D1D5

orbifold theory is obtained by taking the tensor product of N
(s)
k copies of the strand

|s〉k, with the constraint that the total winding number be N = n1n5. Thus a ground

state is specified by a partition {N (s)
k } of N :

ψ{N(s)
k }
≡
∏
k,s

(|s〉k)N
(s)
k ,

∑
s,k

kN
(s)
k = N . (4.6)

By convention we relate the norm of these states to the number of ways, N ({N (s)
k }),

the strand configuration determined by the partition {N (s)
k } can be obtained starting

from the state
∏N
r=1 |++〉(r) ≡ |++〉N :

(ψ{N(s)
k }

, ψ{N ′(s)k }) = δ{N(s)
k },{N

′(s)
k }N ({N (s)

k }) . (4.7)

To compute the combinatoric factor N ({N (s)
k }), consider the action of the twist field

Σ±±k on N copies of the CFT, to produce a strand of length k: there are N !
(N−k)! k ways

in which the twist field can act, corresponding to the possible choices of k among N

copies, up to cyclic permutations [83]. The full state ψ{N(s)
k }

is obtained by acting

repeatedly with twist fields, so that the total number of terms produced is

N !

(N − k1)! k1

(N − k1)!

(N − k1 − k2)! k2
. . . =

N !∏
k,s k

N
(s)
k

. (4.8)

For strands with multiplicity N
(s)
k > 1, the order by which the N

(s)
k twist operators act

is immaterial, and one should hence divide by N
(s)
k !. Since each term produced by the

action of twist operators has unit norm, one finds

N ({N (s)
k }) =

N !∏
k,sN

(s)
k ! kN

(s)
k

. (4.9)

At the orbifold point, also the action of the operators on the CFT states contains

a combinatoric part. Again this can be described in terms of permutations. The

untwisted operators correspond to the identity permutation and act equally on each

copy of the CFT. For instance, the total angular momenta are

J3 =
N∑
r=1

J3
(r) , J̃3 =

N∑
r=1

J̃3
(r) (4.10)

and, by construction, the states ψ{N(s)
k }

are eigenstates of the zero-modes of J3 and J̃3

bosonic states, one would have 3 extra states for the theory on T 4 and 19 extra states for K3. On T 4

there are also 8 fermionic states, while there are no fermionic states for K3.
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with eigenvalues
∑

k,s sN
(s)
k . In general the action of an operator on a D1-D5 state

involves the composition of the permutation defining the operator and the permutation

defining the state. Twisted operators correspond to permutations containing cycles of

length k > 1. For instance, in Section 4.3 we will consider the chiral primary operators

with a cycle of length 2 and all others of length 1. We will still indicate them with

the same symbol used in Chapter 2, Σ±±2 , understanding that one has to sum over

the contributions coming from any pair of the N CFT copies since the full operator

contains a sum over all permutations with a single length 2 cycle.

The geometries dual to coherent superpositions of RR ground states have been

constructed in [32–35]: as anticipated they are completely specified in terms of a closed

curve in R5, gA(v′) (A = 1, . . . , 5). The parameter along the curve, v′, has periodicity

L = 2πQ5

Ry
, where Q5 is the D5 charge and Ry is the radius of the S1 on which the

branes are wrapped. The equations that allow to construct the geometry given the

profile gA(v′), are listed in Appendix A. The map between geometries and states can

however be expressed solely in terms of the profile: the general idea is that the 5 spin

states s are related to the 5 components of gA(v′), the length of each strand is related

to the harmonic number in the Fourier expansion of gA(v′), and the magnitude of each

harmonic mode specifies the number of strands of each type. More precisely, define the

Fourier expansions

g1(v′) + i g2(v′) =
∑
n6=0

a
(1)
n

n
e

2π in
L

v′ , g3(v′) + i g3(v′) =
∑
n6=0

a
(2)
n

n
e

2π in
L

v′

g5(v′) = −Im
[ ∞∑
k=1

a
(00)
k

k
e

2π i k
L

v′
]
,

(4.11)

where, for later convenience, we rename

a
(1)
k>0 = a

(++)
k , a

(1)
k<0 = −a(−−)

|k| , a
(2)
k>0 = a

(+−)
k , a

(2)
k<0 = −a(−+)

|k| , (4.12)

and where we highlight the contribution to the (J3, J̃3) quantum numbers of each

excitation. The Fourier coefficients a
(s)
k are in general complex and satisfy a constraint

∑
k

[
|a(++)
k |2 + |a(−−)

k |2 + |a(+−)
k |2 + |a(−+)

k |2 +
1

2
|a(00)
k |2

]
=
Q1Q5

R2
y

. (4.13)

The dual CFT state is more naturally expressed in terms of dimensionless coefficients

A
(s)
k :

A
(±±)
k ≡ Ry

√
N

Q1Q5
a

(±±)
k , A

(00)
k ≡ Ry

√
N

2Q1Q5
a

(00)
k , (4.14)
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which satisfy ∑
k,s

|A(s)
k |

2 = N . (4.15)

A given set of Fourier coefficients {A(s)
k } specifies a profile gA(v′) and hence a geometry;

the CFT state dual to this geometry is [32,62,63]

ψ({A(s)
k }) =

∑
{N(s)

k }

′
(
∏
k,s

A
(s)
k )N

(s)
k ψ{N(s)

k }
=
∑
{N(s)

k }

′∏
k,s

(A
(s)
k |s〉k)

N
(s)
k , (4.16)

where again the sum
∑′
{N(s)

k }
is restricted to

∑
s,k

kN
(s)
k = N . (4.17)

Eq. (4.16) gives the explicit map between gravity and CFT for states with D1, D5

charges. Notice that the states dual to geometries, ψ({A(s)
k }), are generically superpo-

sitions of angular momentum eigenstates ψ{N(s)
k }

. The only exception is when a single

Fourier coefficient A
(s)
k is different from zero, and hence the CFT state is composed of

N/k equal strands. The states whose dual geometries are well described in the classical

supergravity limit are the ones in which the average numbers of strands of each type

(N
(s)
k ) is very large: N

(s)
k � 1. In this limit the sum over {N (s)

k } which appears in the

definition of the state ψ({A(s)
k }) is peaked over the average numbers N

(s)
k , which are

determined by the magnitudes of the Fourier coefficients A
(s)
k . To see this, consider the

norm of the state ψ({A(s)
k }):

|ψ({A(s)
k })|

2 =
∑
{N(s)

k }

′
N ({N (s)

k })
∏
k,s

|A(s)
k |

2N
(s)
k , (4.18)

where we have used the orthogonality of the states ψ{N(s)
k }

(4.7). One can now study

where the sum over {N (s)
k } in (4.18) is peaked in the large N

(s)
k limit. Using the leading

Stirling approximation for factorials, logN
(s)
k ! ≈ (N

(s)
k +1/2) logN

(s)
k −N

(s)
k , the saddle

point values N
(s)
k are the stationary points of the function

S({N (s)
k }) =

∑
k,s

N
(s)
k log |A(s)

k |
2 −N (s)

k logN
(s)
k +N

(s)
k −N

(s)
k log k , (4.19)

with the constraint
∑

s,k kN
(s)
k = N . One finds

kN
(s)
k = |A(s)

k |
2 , (4.20)

which is consistent with (4.15).
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In conclusion, in the state dual to the geometry specified by the Fourier coefficients

{A(s)
k }, the average number of strands of type |s〉k is |A(s)

k |
2/k. We will see that some

properties of the geometry are sensitive not only to the average numbers N
(s)
k , but also

to the form of the state in (4.16): in particular, the fact that the state ψ({A(s)
k }) is a

superposition of angular momentum eigenstates ψ{N(s)
k }

will be crucial in the following.

4.2.2 Gravity-CFT map in a 1/8-BPS sector

We saw that the profile gA(v′) provides a direct link between the 1/4-BPS geometries

and the corresponding semiclassical states in the CFT. In the 1/8-BPS sector, we do

not have a complete classification of the gravitational solutions dual to states and so

it is not possible to construct an exhaustive dictionary. Here we focus on the class of

1/8-BPS geometries recently derived in [58] by exploiting the linear structure of the

supersymmetry equations [54].

It is possible to construct a gravity-CFT map in this sector by relating each term in

the scalar function Z4 that appears in the general 1/8-BPS Ansatz (see equation (3.1))

to the type of strands defining the dual state. From this point of view then Z4 plays

the same role as the profile (4.11) for the 1/4-BPS case. We refer to Eq. (3.20) of [58]

for the explicit expression of Z4 in this class of solution, while here it is sufficient to say

that each term in Z4 is labeled by a pair (k,mk) of integer numbers satisfying k > 1

and 0 ≤ mk ≤ k and is completely determined by a positive number bk,mk and a phase

ηk,mk . The combination bk,mkeiηk,mk plays the same role as a
(00)
k in (4.11).

In analogy with the discussion of the 1/4-BPS case, we define the following eigen-

states of total angular momenta (4.10)

ψ{N(s)
k,mk

} ≡
4∏
s=1

∏
k

(|s〉k)N
(s)
k

∏
k,mk

(
(J+
−1)mkk
mk!

|00〉k

)N(00)
k,mk

(4.21)

where s = 1, . . . , 4 corresponds to the strands |±±〉k, (J+
n )k is n-th mode of the SU(2)L

current acting on a strand of length k and, as before, the sum is constrained by (4.17).

The states represent a generalization of the 1/4-BPS building block in (4.6) because we

now allow for the presence of RR ground states |00〉k excited with mk ≤ k insertions

of (J+
−1)k (it can be checked by using the free field representation of the operators that

mk cannot be greater than k otherwise the state vanishes). Then the (0, 0) strands

in (4.21) have eigenvalue mk for both (L0)k and (J3
0 )k. The normalization N ({N (s)

k,mk
})

of these states is related to the combinatoric properties of the permutation {N (s)
k,mk
}
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but contains also an extra factor derived from the contractions of the (J+
−1)k insertions

N ({N (s)
k,mk
}) =

(
N !∏4

s=1

∏
kN

(s)
k ! kN

(s)
k

) 1∏
k,mk

N
(00)
k,mk

! k
N

(00)
k,mk

 ∏
k.mk

(
k

mk

)N(00)
k,mk

.

(4.22)

Then we can define the states ψ({A(s)
k , Bk,mk}) as follows

ψ({A(s)
k , Bk,mk}) =

∑
{N(s)

k,mk
}

′

 4∏
s=1

∏
k

(A
(s)
k |s〉k)

N
(s)
k

∏
k,mk

(
Bk,mk

(J+
−1)mkk
mk!

|00〉k

)N(00)
k,mk

 ,
(4.23)

with norm

|ψ({A(s)
k , Bk,mk})|

2 =
∑

{N(s)
k,mk

}

′
N ({N (s)

k,mk
})

(
4∏
s=1

∏
k

|A(s)
k |

2N
(s)
k

)∏
k,mk

|Bk,mk |
2N

(00)
k,mk

 .

(4.24)

The numbers of strands N
(s)
k,mk

on which the sum in (4.24) is peaked are the stationary

points of the function

S({N (s)
k,mk
}) =

4∑
s=1

∑
k

[
N

(s)
k log |A(s)

k |
2 −N (s)

k logN
(s)
k +N

(s)
k −N

(s)
k log k

]
+

+
∑
k,mk

[
N

(00)
k,mk

log |Bk,mk |
2 −N (00)

k,mk
logN

(00)
k,mk

+N
(00)
k,mk

−N (00)
k,mk

log k+

+N
(00)
k,mk

log

(
k

mk

)]
, (4.25)

again with the constraint
∑

s,k kN
(s)
k +

∑
k,mk

kN
(00)
k,mk

= N . One finds

kN
(s)
k = |A(s)

k |
2, k N

(00)
k,mk

=

(
k

mk

)
|Bk,mk |

2 . (4.26)

We can relate the coefficients A
(s)
k with s = (±,±) to the supergravity parameters a

(s)
k

by using (4.14), while for s = (00) we have

Bk,mk ≡ Ry

√
N

2Q1Q5

(
k

mk

)−1

bk,mkeiηk,mk . (4.27)

Note that the gravity parameters a ≡ a
(++)
1 and bk,mk satisfy the constraints (6.10)

in [58], which generalizes the constraint (4.13) valid for two-charge geometries. When

translated in terms of the CFT parameters A
(s)
k and Bk,mk , using the above dictionary,
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the constraint becomes

4∑
s=1

∑
k

|A(s)
k |

2 +
∑
k

(
k

mk

)
|Bk,mk |

2 = N , (4.28)

which generalizes (4.15).

4.3 CFT 1-point functions and holography

Holography allows to extract the 1-point functions of chiral primary operators in 1/4

and 1/8 BPS states from the asymptotic expansion of the dual geometries. As these

1-point functions are protected, they should match the VEVs computed at the free orb-

ifold point of the CFT. We concentrate in this section on chiral primaries of dimension

1 and work out a series of examples that confirm the gravity-CFT map defined in the

previous section.

We start by recalling the connection between the geometry and the VEVs of CFT

operators for a general D1-D5-P microstate [32, 63]. The 6D Einstein frame metric

for such a microstate can be written [74] in the form (3.30), where all the objects are

defined in (3.1).

As we saw in Section (3.1.2), at leading order in the large distance expansion the

metric (3.30) reduces to AdS3 × S3. To extract the VEVs of operators of dimension 1,

it is enough to keep the first non-trivial corrections around AdS3 × S3, which have the

form

Z1 =
Q1

r2

(
1 +

f1
1i

r
Y i

1 +O(r−2)

)
, Z2 =

Q5

r2

(
1 +

f5
1i

r
Y i

1 +O(r−2)

)
, (4.29a)

Z4 =

√
Q1Q5

r3
A1iY

i
1 +O(r−4) , F = −2Qp

r2
+O(r−3) , ds2

4 = dxidxi +O(r−4) ,

(4.29b)

β = −
√

2Q1Q5

r2
aα−Y

α−
1 +O(r−3) , ω = −

√
2Q1Q5

r2
aα+Y

α+
1 +O(r−3) . (4.29c)

It is always possible to pick coordinates in such a way that

f1
1i + f5

1i = 0 , (4.30)

and we will always assume this gauge choice in the following. We have denoted by Y i
1

the l = 1 scalar spherical harmonics on R4, and by Y α±
1 the l = 1 vector spherical

harmonics; their expressions are

Y i
1 = 2

xi

r
, Y α+

1 =
ηαijdx

ixj

r2
, Y α−

1 =
η̄αijdx

ixj

r2
, (4.31)
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where ηαij = δαiδ4j − δαjδ4i + εαij4 and η̄αij = δαiδ4j − δαjδ4i− εαij4 (with α = 1, 2, 3) are

the ’t Hooft symbols. The D1, D5 and P charges Q1, Q5 and Qp are quantized in terms

of the D-branes data n1, n5, np as in (3.6). The coefficients f1
1i, A1i, aα± are constants

for 2-charge geometries but might depend on the light-cone coordinate v for 3-charge

states. They capture the VEVs of the chiral primaries of conformal dimension 1.

These chiral primaries comprise the SU(2)L × SU(2)R currents J3 and J̃3 (which

have dimensions (1, 0) and (0, 1)), and the operators of dimension (1/2, 1/2), Σαα̇
2 and

Oαα̇, introduced in Sections 2.2.3 and 2.3.3; it is understood that these operators

contain a sum over all copies of the CFT, as in (4.10). The same operators where

introduced in [32], where they were denoted by O
(0,0)
(2)i and O

(1,1)
(1)1i; (2.36), (2.75) and

(2.114) give an explicit representation of the operators at the free orbifold point of the

CFT. The precise relation between our operators and the operators of [32] is13

Σ++
2 = O

(0,0)
(2)1 + iO

(0,0)
(2)2 , Σ−−2 = (Σ++

2 )† = O
(0,0)
(2)1 − iO

(0,0)
(2)2 , (4.32a)

Σ+−
2 = O

(0,0)
(2)3 + iO

(0,0)
(2)4 , Σ−+

2 = −(Σ+−
2 )† = −

(
O

(0,0)
(2)3 − iO

(0,0)
(2)4

)
, (4.32b)

and similarly

O++ = O
(1,1)
(1)11 + iO

(1,1)
(1)12 , O−− = (O++)† = O

(1,1)
(1)11 − iO

(1,1)
(1)12 , (4.33a)

O+− = O
(1,1)
(1)13 + iO

(1,1)
(1)14 , O−+ = −(O+−)† = −

(
O

(1,1)
(1)13 − iO

(1,1)
(1)14

)
. (4.33b)

The relation between the 1-point functions of these operators in a state |s〉 and the

dual geometry was worked out in [32,63], and it is given by

〈s|Jα|s〉 = cJ aα+, 〈s|J̃α|s〉 = cJ̃ aα− , (4.34a)

〈s|O(0,0)
(2)i |s〉 = cO(0,0) f1

1i, 〈s|O(1,1)
(1)1i|s〉 = cO(1,1) A1i . (4.34b)

The coefficients cj , cJ̃ , cO(0,0) , cO(1,1) are constants independent of the state; their

value is difficult to determine a priori, and hence we will fix them by comparison

with some particular simple state. We will see that consistency between the CFT and

the holographic computations of the entanglement entropy in the D1-D5 microstates

provides a non-trivial check on the values of these coefficients. In [81] this consistency

relation was used to fix some of these coefficients:

cJ = −cJ̃ =
NRy√
Q1Q5

, cO(1,1) =

√
2NRy√
Q1Q5

; (4.35)

as expected, they only depend on the asymptotic moduli.

13The minus sign in the second equations in (4.32b) and (4.33b) is imposed by consistency with the
SU(2) algebra.
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All microstates considered in previous works had vanishing VEVs of the twist oper-

ators Σαα̇
2 , and hence the coefficient cO(0,0) was left undetermined. One of the purposes

of the next section is to fill this gap, by considering a microstate where the VEV of

Σαα̇
2 is non-trivial.

4.3.1 Switching on the twist fields’ VEVs

In this section we analyze the simplest D1-D5 microstate in which the VEV of the twist

field Σαα̇
2 is non-vanishing. Since the twist field can join two strands of winding one

into a strand of winding two (or split a doubly wound strand into two singly wound

strands), see Section 2.3.5, a state which contains both strands of winding one and two

has a non-trivial Σαα̇
2 VEV. A more general situation, in which the twist field joins

strands of winding k1 and k2 into a strand of winding k1 + k2 will be considered in

Appendix B.

The building blocks of the state we consider here are the strands |++〉k=1 and

|++〉k=2, where |++〉k is defined explicitly in (2.116). As we explained in Section 4.2,

to have a state which is well described by a classical geometry one needs to take a

linear superposition of states of the form (4.16), where now only the coefficients A
(++)
1

and A
(++)
2 are non-vanishing; N

(++)
1 and N

(++)
2 denote the numbers of strands of type

|++〉k=1 and |++〉k=2. To lighten the notation, in this section we rename A
(++)
1 ≡ A1,

A
(++)
2 ≡ A2 and N

(++)
2 ≡ p. Then the constraint (4.17) implies N

(++)
1 = N − 2p. The

state we consider is then

ψ(A1, A2) =

N/2∑
p=1

(
A1|++〉1

)N−2p(
A2|++〉2

)p
, (4.36)

where

|A1|2 + |A2|2 = N , (4.37)

as a consequence of (4.15). We know from (4.20) that the sum in (4.36) is peaked over

p̄ ≡ N (++)
2 =

|A2|2

2
⇒ N

(++)
1 = N − 2p̄ = |A1|2 . (4.38)

Note that the state ψ(A1, A2) is not normalized, but its norm is

|ψ(A1, A2)|2 =

N/2∑
p=1

N (p) |A1|2(N−2p)|A2|2p with N (p) =
N !

(N − 2p)! p! 2p
, (4.39)

where we have used (4.18).

By conservation of the angular momenta J3 and J̃3 it is easy to determine which

of the operators Σαα̇
2 acquire a VEV in the above state. When Σαα̇

2 acts on two
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strands of type |++〉k=1, it produces a state with winding two and angular momenta

(1 + α/2, 1 + α̇/2), with α, α̇ = ±1; for the VEV of the twist field to be non-zero, this

latter state has to overlap with the state |++〉k=2, whose spin is (1/2, 1/2). One thus

needs α = α̇ = −1, which means that Σ−−2 acquires VEV in the state (4.36). Since

Σ++
2 = (Σ−−2 )†, the VEV of Σ++

2 must also be non-zero: this VEV originates from the

process in which Σ++
2 acts on the doubly wound strand |++〉k=2 to produce two copies

of the singly wound strand, (|++〉k=1)2.

Consider first the VEV of Σ−−2 : the relevant contribution comes from the process

in which the twist field lowers by two the number of length one strands and increases

by one the number of length two strands, which is represented by

Σ−−2

[(
|++〉1

)N−2p(|++〉2
)p]

= (p+ 1)
[(
|++〉1

)N−2(p+1)(|++〉2
)p+1

]
. (4.40)

The combinatorial factor p+1 can be understood as follows. The twist field Σ−−2 can act

on any one of the
(
N−2p

2

)
copies of length one strands in the state

[(
|++〉1

)N−2p(|++〉2
)p]

,

which is made of N (p) terms; the total number of terms on the l.h.s. and the r.h.s. of

(4.40) matches if (
N − 2p

2

)
N (p) = (p+ 1)N (p+ 1) , (4.41)

which is verified using the expression for N (p) in (4.39).

From the basic action (4.40), one therefore has

Σ−−2 ψ(A1, A2) =

N/2∑
p=1

AN−2p
1 Ap2 (p+ 1)

(
|++〉1

)N−2(p+1)(|++〉2
)p+1

(4.42)

The VEV of Σ−−2 over ψ(A1, A2) is then computed as

〈Σ−−2 〉 ≡ |ψ(A1, A2)|−2 〈ψ(A1, A2)|Σ−−2 |ψ(A1, A2)〉

=
A2

1

A2
|ψ(A1, A2)|−2

N/2∑
p=1

(
|A1|2

)N−2p (|A2|2
)p
pN (p) =

A2
1

A2
p̄ =

A2
1Ā2

2
, (4.43)

where, in the last step, we have used (4.38).

For consistency, we should also verify that the VEV of Σ++
2 is the complex conjugate

of the VEV in (4.43). The relevant action of Σ++
2 is given by

Σ++
2

[(
|++〉1

)N−2p(|++〉2
)p]

=
(N − 2p+ 1)(N − 2p+ 2)

2

[(
|++〉1

)N−2p+2(|++〉2
)p−1

]
,

(4.44)
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where the combinatorial factor follows from the identity

pN (p) =
(N − 2p+ 1)(N − 2p+ 2)

2
N (p− 1) , (4.45)

which can be derived by following steps similar to those explained after (4.40); note

that the factor p on the l.h.s. of the above equation comes from the p possible ways in

which Σ++
2 can act on the p strands of type |++〉2. It follows by comparison of (4.40)

and (4.44), and by the identity (4.45), that

(ψ(p+ 1),Σ−−2 ψ(p)) = (Σ++
2 ψ(p+ 1), ψ(p)) , (4.46)

where for brevity we have denoted

ψ(p) ≡
[(
|++〉1

)N−2p(|++〉2
)p]

. (4.47)

This proves that indeed Σ++
2 = (Σ−−2 )† and it implies that

〈Σ++
2 〉 = 〈Σ−−2 〉

∗ =
Ā1

2
A2

2
. (4.48)

The only other operators of dimension one that have a non-vanishing VEV in the

state ψ(A1, A2) are the currents J3, J̃3. These VEVs can be straightforwardly com-

puted, as they are only sensitive to the average numbers of strands of length one and

two, which both carry spin (1/2, 1/2). Using (4.38) one then finds

〈J3〉 = 〈J̃3〉 =
1

2

(
N

(++)
1 +N

(++)
2

)
=

1

2

(
|A1|2 +

|A2|2

2

)
. (4.49)

We now compare the 1-point functions computed in the CFT with the ones extracted

from the dual geometry. This is the geometry associated with a profile whose only two

excited modes are a
(++)
1 and a

(++)
2 , in the notation of (4.11). For notational simplicity

we abbreviate a
(++)
1 ≡ a1 and a

(++)
2 ≡ a2. The relation between a1, a2 and A1, A2 is

given in (4.14):

ai =
Ai
Ry

√
Q1Q5

N
(i = 1, 2) . (4.50)

The parameters which encode the asymptotic behavior of the geometry, defined in

general in (4.29), take the following values for our microstate (see Appendix A):

f1
11 − if1

12 =
R2
y

2Q1Q5
a2

1ā2 , A1i = 0 , a3+ = −a3− =
Ry

2
√
Q1Q5

(
|a1|2 +

|a2|2

2

)
.

(4.51)
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Using the dictionary in (4.34a), with the cJ and cJ̃ of (4.35), one readily verifies

that the VEVs of J3 and J̃3 computed in (4.49) agree with their holographically derived

values. For the VEV of Σ−−2 , the first of (4.34b), together with (4.32), gives

〈Σ−−2 〉 = cO(0,0) (f1
11 − if1

12) . (4.52)

Comparison of the CFT (4.43) and gravity (4.51) results fixes the value of the unknown

coefficient cO(0,0) :

cO(0,0) =
N3/2Ry√
Q1Q5

. (4.53)

The fact that cO(0,0) is independent of a1, a2 represents already a non-trivial check; we

will see that the precise numerical value of cO(0,0) is checked also by the computation

of the entanglement entropy in the state ψ(A1, A2).

4.3.2 3 charges and two kinds of strands

We now extend the holographic computation of 1-point functions of dimension 1 chiral

primaries to the class of three-charge microstates introduced in Section 4.2.2. Consider

first a simple D1-D5-P state containing only two types of strands: strands of type

|++〉k=1 in their ground state and strands of type |00〉k=1 acted upon by the current

J+
−1, which carries momentum. The geometry dual to this state was first constructed

in [48, 74]. The CFT state has the form (4.21) where the non-vanishing coefficients

are A
(++)
1 and B1,1; renaming A

(++)
1 ≡ A, B1,1 ≡ B and N

(++)
1 ≡ p, and using the

constraint (4.6), we get

ψ(A,B) ≡
N∑
p=0

(A|++〉k=1)p
(
B J+

−1|00〉k=1

)N−p
. (4.54)

The constraint (4.28) now reads

|A|2 + |B|2 = N. (4.55)

and from (4.26) we have

N
(++)
1 = p̄ = |A|2, N

(00)
1 = N − p̄ = |B|2. (4.56)

These relations immediately give the VEVs of the angular momentum operators:

〈J3〉 =
N

(++)
1

2
+N

(00)
1 =

|A|2

2
+ |B|2, 〈J̃3〉 =

N
(++)
1

2
=
|A|2

2
, (4.57)
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since the strands |++〉k=1 and J+
−1|00〉k=1 carry angular momenta (1/2, 1/2) and (1, 0)

respectively. We can also read off the average value of momentum:

〈T̃ 〉 = 0 , 〈T 〉 = (N − p̄) = |B|2 ⇒ np ≡ 〈L0 − L̃0〉 = |B|2 , (4.58)

since every strand J+
−1|00〉k=1 carries 1 unit of momentum.

Consider now the operator Oαα̇. As one sees from (2.37) the operator O22̇ transform

the strand |++〉k=1 into |00〉k=1; in our state, the |00〉k=1 strand is acted upon by

J+
−1, and thus, to determine the action of Oαα̇ on the state ψ(A,B) we need to know

the commutation properties of Oαα̇ with the SU(2) current algebra. As the index

α transforms in the fundamental representation of SU(2) (which we represent by the

matrices τ i = σi/2), one has the following nontrivial commutator14

[(
J in
)αβ

, Oβα̇(v, u)
]

=
1

2
ein
√

2v
R
(
σi
)αβ

Oβα̇(v, u), (4.59)

where the v-dependent factor comes from the fact that we are considering the n-th

mode of current J i(v, u). Hence if we use (2.37), the commutator (4.59) and the fact

that positive modes of the currents annihilate the vacuum strands ((J in)k|s〉k = 0 for

n > 0), we obtain the following VEVs for individual strands

k=1〈00|J−+1O
12̇(v, u)|++〉k=1 = ei

√
2v
R , k=1〈+ + |O21̇(v, u) J+

−1|00〉k=1 = −e−i
√

2v
R ,

(4.60)

which are consistent with the hermiticity property O21̇ = −
(
O12̇

)†
. Note that it is

important that the operators O12̇ and O21̇ are inserted at a generic worldsheet point

(v, u) and that, due to the presence of the current J−+1, J+
−1, the non-zero-mode part

of the operators contributes to the correlator; if only zero-modes had contributed, O21̇

would have annihilated the state |++〉1 because of (2.25).

The action of O21̇ on angular momentum eigenstates is obtained by combining the

above result with the appropriate combinatorial factor15

O21̇(v, u)

[
(|++〉)pk=1

(
J+
−1|00〉k=1

)N−p]
= −e−i

√
2v
R (p+1)

[
(|++〉k=1)p+1 (J+

−1|00〉k=1

)N−p−1
]
.

(4.61)

The VEV of O21̇ on the state ψ(A,B) is then

〈O21̇(v, u)〉 = −e−i
√

2v
R
B

A
p̄ = −e−i

√
2v
R ĀB. (4.62)

14A similar relation holds for the modes of J̃3, with the difference that the dotted index gets rotated.
15O21̇ can act on the N − p strands of type J+

−1|00〉1, producing (N − p)
(
N
p

)
= (p + 1)

(
N
p+1

)
terms,

which matches the number of terms on the r.h.s. of (4.61).
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Because O21̇ = −
(
O12̇

)†
, the VEV of O12̇ is

〈O12̇(v, u)〉 = ei
√

2v
R AB̄. (4.63)

This example highlights a new feature of three-charge microstates: the VEVs of

some operators, like O21̇ and O12̇ in our example, are v-dependent. This v-dependence

originates from the presence of momentum charge (carried in our case by the current

J+
−1) and from the fact that states dual to geometries are not eigenstates of the mo-

mentum operator. Since holography relates the VEVs of operators with the coefficients

of the metric expanded around the AdS3 boundary, this implies that three-charge mi-

crostate geometries are generically v-dependent.

The geometry dual to ψ(A,B) is given in eqs. (5.2)-(5.3) of [48]. At the first non-

trivial order in the asymptotic expansion around the AdS boundary, this three-charge

solution admits an expansion of the form (4.29), where the only non-trivial metric

functions are

Z4 ≈ Ra b
cos θ

r3
cos

(√
2v

R
− ψ

)
, F ≈ − b

2

r2
, (4.64a)

β ≈ Ra2

√
2

sin2 θ dφ− cos2 θ dψ

r2
, ω ≈ R (a2 + b2)√

2

sin2 θ dφ+ cos2 θ dψ

r2
; (4.64b)

the coefficients a and b are taken to be real. The gravity coefficients extracted from

this geometry are then

A13 + iA14 =
Ra b

2
√
Q1Q5

ei
√

2v
R , Qp =

b2

2
, a3+ =

R (a2 + b2)

2
√
Q1Q5

, a3− = − Ra2

2
√
Q1Q5

.

(4.65)

Using the dictionary (4.14), (4.27), along with (3.6), (4.34), and (4.35), we find agree-

ment with the CFT results for the 1-point functions 〈O21̇〉, 〈O12̇〉, 〈J3〉, 〈J̃3〉, 〈L̃0−L0〉.

4.3.3 3 charges and three kinds of strands

The state analyzed in the previous section is a very particular three-charge state: as

explained in [48], that state can be generated by acting on the two-charge state with

strands |++〉k=1 and |00〉k=1 with the symmetry operator e
π
2

(J+
−1−J

−
+1). We call such

states descendants. We consider in this section a simple state which is not a descendant.

This state has also the property that the VEVs of all the dimension one operators are

non-trivial and it will allow us to provide a CFT derivation of a numerical coefficient

which was fixed in [58] by a non-trivial regularity requirement.

The state we consider has the form (4.21) with three type of strands: |++〉k=1,
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J+
−1|00〉k=2, |00〉k=1. We rename the associated coefficients as A

(++)
1 ≡ A,B2,1 ≡

B1, B1,0 ≡ B2 and the respective numbers of strands as N
(++)
1 ≡ N −2p1−p2, N

(00)
2,1 ≡

p1, N
(00)
1,0 ≡ p2, so that the state can be written as

ψ(A,B1, B2) =

N/2∑
p1=0

N−2p1∑
p2=0

(A|++〉k=1)N−2p1−p2
(
B1J

+
−1|00〉k=2

)p1 (B2|00〉k=1)p2 .

(4.66)

It is important to keep in mind that the state J+
−1|00〉k=2 has norm 2

k=2〈00|J−+1J
+
−1|00〉k=2 = 2 , (4.67)

as a consequence of the fractional mode contributions which appear when J+
−1 acts on

a strand of length 2: (J+
−1)2 = ψ11̇

−1ψ
12̇
0 + ψ11̇

0 ψ
12̇
−1 + ψ11̇

−1/2ψ
12̇
−1/2. The same mechanism

gives rise, for generic k and mk, to the factor
(
k
mk

)
in (4.22). We can then borrow the

general result (4.26) to obtain the average numbers of strands in our state:

p̄1 = |B1|2, p̄2 = |B2|2, N − 2p̄1 − p̄2 = |A|2, (4.68)

where the constraint among the coefficients is now

|A|2 + 2|B1|2 + |B2|2 = N. (4.69)

Since the strands |++〉k=1, J+
−1|00〉k=2 and |00〉k=1 carry spin (1/2, 1/2), (1, 0) and

(0, 0), the VEVs of the angular momentum operators are

〈J3〉 =
N

(++)
1

2
+N

(00)
2,1 =

|A|2

2
+ |B1|2, 〈J̃3〉 =

N
(++)
1

2
=
|A|2

2
. (4.70)

Momentum is carried only by the J+
−1|00〉k=2 strands, and thus

〈T̃ 〉 = 0 , 〈T 〉 = N
(00)
2,1 = |B1|2 ⇒ np = 〈L0 − L̃0〉 = |B1|2 . (4.71)

The presence of |00〉k=1 and |++〉k=1 strands signals that some of the Oαα̇ operators

can have a nonzero VEV, while the presence of strands of length 2 with non-zero

modes of the current acting on them implies a nonzero v-dependent VEV for the twist

operators Σαα̇
2 . On the gravity side, the VEV of Σαα̇

2 corresponds to a term of order

r−3 in the metric function Z1 (see Eq. (4.29a)); it was shown in [58] that such a term

is needed to ensure regularity of the metric. We will verify that the precise numerical

coefficient derived in [58] matches the CFT prediction.

Consider first the VEV of Oαα̇. By angular momentum conservation only O22̇ and

O11̇ can acquire a VEV; in particular one can consider the process in which O22̇ converts
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a |++〉k=1 into a |00〉k=1 strand:

O22̇

[
(|++〉k=1)N−2p1−p2

(
J+
−1|00〉k=2

)p1 (|00〉k=1)p2

]
=

= (p2 + 1)

[
(|++〉k=1)N−2p1−p2−1 (J+

−1|00〉k=2

)p1 (|00〉k=1)p2+1

]
. (4.72)

This gives rise to the VEV

〈O22̇〉 =
A

B2
p̄2 = AB̄2 . (4.73)

By hermiticity, O11̇ =
(
O22̇

)†
, one also obtains the VEV

〈O11̇〉 = 〈O22̇〉∗ = ĀB2. (4.74)

Consider now Σαα̇
2 . The twist operator can join two strands of length one into a

length two strand of type J+
−1|00〉k=2; by angular momentum conservation, the two

starting strands have to be |++〉k=1 and |00〉k=1 and the operator acting on them Σ+−
2 .

We thus expect the basic correlator

k=2〈00| J−+1 Σ+−
2

(
|+ +〉k=1 ⊗ |00〉k=1

)
Symm.

(4.75)

to be non-vanishing, where we have denoted by(
|+ +〉k=1 ⊗ |00〉k=1

)
Symm.

≡ |+ +〉(r=1) ⊗ |00〉(r=2) + |00〉(r=1) ⊗ |+ +〉(r=2) (4.76)

the product of the two states |++〉k=1 and |00〉k=1 symmetrized over two copies (r =

1, 2) of the CFT16. Note that∥∥∥∥∥
(
|+ +〉k=1 ⊗ |00〉k=1

)
Symm.

∥∥∥∥∥
2

= 2. (4.77)

To compute (4.75) we need to know the commutator of the doublet of operators Σαα̇
2

with the currents J in; this has a form analogous to (4.59):[(
J in
)αβ

,Σβα̇
2 (v, u)

]
=

1

2
ein
√

2v
R
(
σi
)αβ

Σβα̇
2 (v, u) . (4.78)

16This a basic requirement of the dual CFT: being an orbifold theory it requires invariance over
permutations of the copies, which translates into the fact that all the states must be symmetric upon
exchanging any pair of copies.
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Thus we find

k=2〈00| J−+1Σ+−
2

(
|+ +〉k=1 ⊗ |00〉k=1

)
Symm.

= ei
√

2v
R k=2〈00|Σ−−2

(
|+ +〉k=1 ⊗ |00〉k=1

)
Symm.

= ei
√

2v
R , (4.79)

where we have used

Σ−−2

(
|+ +〉k=1 ⊗ |00〉k=1

)
Symm.

= |00〉k=2 . (4.80)

We can now include the combinatorial factors17 and obtain the action of Σ+−
2 on the

full ensemble of strands:

Σ+−
2

[
(|++〉k=1)N−2p1−p2

(
J+
−1|00〉k=2

)p1 (|00〉k=1)p2

]
=

=
ei
√

2v
R

2
(p1 + 1)

[
(|++〉k=1)N−2p1−p2−1 (J+

−1|00〉k=2

)p1+1
(|00〉k=1)p2−1

]
. (4.81)

Hence we obtain the VEV

〈Σ+−
2 (v, u)〉 =

ei
√

2v
R

2

AB2

B1
p̄1 =

ei
√

2v
R

2
AB̄1B2. (4.82)

Of course one can also consider the opposite process in which Σ−+
2 acts on J+

−1|00〉k=2

to produce singly wound strands |++〉k=1 ⊗ |00〉k=1. This is captured by

Σ−+
2 J+

−1|00〉k=2 = −e−i
√

2v
R Σ++

2 |00〉k=2 = −e−i
√

2v
R

2

(
|++〉k=1⊗|00〉k=1

)
Symm.

, (4.83)

where we have used

Σ++
2 |00〉k=2 =

1

2

(
|+ +〉k=1 ⊗ |00〉k=1

)
Symm.

. (4.84)

Together with (4.77) this implies(
k=1〈+ + | ⊗ k=1〈00|

)
Symm.

Σ−+
2 J+

−1|00〉k=2 = −e−i
√

2v
R , (4.85)

17The number of ways Σ+−
2 can act on the strands (|++〉1)N−2p1−p2 (|00〉1)p2 is (N−2p1−p2) p2

2
; we

divide by 2 because we have already taken into account the exchange of a |++〉1 and a |00〉1 strand in
the symmetrized combination (4.76).
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which is consistent with (4.79) and the property Σ−+
2 = −

(
Σ+−

2

)†
. Thus

〈Σ−+
2 (v, u)〉 = −〈Σ+−

2 (v, u)〉∗ = −e−i
√

2v
R

2
ĀB1B̄2. (4.86)

Let us now compare with the dual geometry: it can be read off from Section 5.2

of [58] taking k1 = 2, m1 = 1. We focus in particular on the metric functions Z1,

Z2 and Z4, which determine the VEVs of Oαα̇ and Σαα̇
2 (the gravity values of the

momentum and of the angular momenta are given in (6.11) and (6.15) of [58] and are

easily seen to agree with the CFT values computed above). At the relevant order in

the 1/r expansion, the gravity solution is characterized by

Z1 =
Q1

r2
+

R2
y

2Q5
a b1b2 cos

(√
2v

Ry
− ψ

)
cos θ

r3
+O(r−4) , Z2 =

Q5

r2
+O(r−4) ,

(4.87a)

Z4 = Ry a b2
sin θ cosφ

r3
+O(r−4) , F = − b21

4r2
, (4.87b)

β =
Rya

2

√
2r2

(
sin2 θ dφ− cos2 θ dψ

)
, ω =

Ry

(
a2 +

b21
4

)
√

2r2

(
sin2 θ dφ+ cos2 θ dψ

)
(4.87c)

where the parameters a, b1, b2 are real. The order r−3 term of Z1 is necessary for having

a regular metric: its numerical value is determined by the constant c given in Eq. (5.15)

of [58], which in our case reads c = 1/2. Transforming into a coordinate system where

(4.30) is satisfied, one finds

f1
13 + if1

14 =
R2
y

Q1Q5

a b1b2
8

ei
√

2v
R , A11 =

Ry ab2

2
√
Q1Q5

, (4.88a)

a3+ =
Ry√
Q1Q5

1

2

(
a2 +

b21
4

)
, a3− = − Ry√

Q1Q5

a2

2
, Qp =

b21
8
. (4.88b)

Using the holographic dictionary (4.34), the values of the constant cO(1,1) and cO(0,0) in

(4.35) and (4.53), and the relations (4.14) and (4.27), which give

A = a
Ry
√
N√

Q1Q5
, B1 =

b1

2
√

2

Ry
√
N√

Q1Q5
, B2 =

b2√
2

Ry
√
N√

Q1Q5
, (4.89)

one verifies that the gravity result (4.88) matches, including all numerical factors, with

the CFT VEVs (4.70), (4.71), (4.73), (4.74), (4.82) and (4.86).

4.3.4 3 charges and two kinds of strands with different modes

Let’s consider another three-charge state, this time not of the class (4.21) and given

by superpositions of strands of length 1, |++〉k=1 and
(
L−1 − J3

−1

)
|00〉k=1, again with
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coefficients called A and B,

χ(A,B) ≡
N∑
p=0

(A|++〉k=1)p
(
B
(
L−1 − J3

−1

)
|00〉k=1

)N−p ≡ N∑
p=0

ApBN−p|p〉, (4.90)

where |p〉 is the state given by the tensor product of p states |++〉k=1 and (N − p)
states

(
L−1 − J3

−1

)
|00〉k=1, symmetrized under the exchanged of any two CFT copies.

All the strands have length one, and in this section we omit the twist subscript, so that

|++〉 ≡ |++〉k=1 and |00〉 ≡ |00〉k=1.

As a first step, let’s compute the norms of the building blocks χ(A,B) is given by.

We have

‖|++〉‖2 = 〈+ + |+ +〉 = 1, (4.91)

by normalization of the Ramond vacua in the untwisted sector. Moreover,

‖
(
L−1 − J3

−1

)
|00〉‖2 = 〈00| [L1, L−1] |00〉+ 〈00|

[
J3

1 , J
3
−1

]
|00〉+

− 〈00|
[
L1, J

3
−1

]
|00〉 − 〈00|

[
J3

1 , L−1

]
|00〉

= 〈00| [L1, L−1] |00〉+ 〈00|
[
J3

1 , J
3
−1

]
|00〉

=
1

2
+

1

2

= 1,

(4.92)

where we used the mode algebra (2.34), (2.43) and (2.50), the fact that |00〉 is normal-

ized, the fact that J3
0 |00〉 = 0, i.e. that |00〉 has spin (J3, J̃3) = (0, 0), and finally the

fact that positive modes of T and Ja annihilate the Ramond vacua.

We can now compute the norm of |p〉. This state is explicitly written as

|p〉 = |++〉 · · · |++〉︸ ︷︷ ︸
p times

(
L−1 − J3

−1

)
|00〉 · · ·

(
L−1 − J3

−1

)
|00〉︸ ︷︷ ︸

(N−p) times

+[perm.], (4.93)

and is a sum of
(
N
p

)
terms. When we compute the norm of |p〉, we get nonzero contri-

butions to the inner products coming only from the states in which we have the same

object in all the CFT copies: this reduces two sums to just one, and the result is a

product of the norms of the building block states (always 1 in our case), taken the

appropriate number of times, multiplied by the number of states in |p〉,

〈p|p〉 =

(
N

p

)
. (4.94)
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Moreover states with different p are orthogonal, so

〈p1|p2〉 =

(
N

p1

)
δp1,p2 . (4.95)

We are finally ready compute the norm of the full state χ(A,B),

‖χ(A,B)‖2 =

N∑
p,q=0

ĀqB̄N−qApBN−p〈q|p〉

=
N∑
p=0

(
|A|2

)p (|B|2)N−p(N
p

)
=
(
|A|2 + |B|2

)N
.

(4.96)

We impose

|A|2 + |B|2 = N, (4.97)

so that the normalization condition becomes

‖χ(A,B)‖2 = NN . (4.98)

We can now compute the VEV of O++ starting from the building blocks. This

operator connects states with spin J3 = 0 and J3 = 1/2, so let’s work on a single CFT

copy, suppressing copy indices, and let’s consider

〈+ + |O++(v, u)
(
L−1 − J3

−1

)
|00〉, (4.99)

where we chose to write everything in coordinates on the cylinder so the result can be

compared directly with the gravity computation. Using (4.59) we have

〈+ + |O++(v, u) J3
−1|00〉 = −〈+ + |

[
J3
−1, O

++(v, u)
]
|00〉

= −e
−i
√

2
Ry

v

2
〈+ + |O++(v, u)|00〉

= −e
−i
√

2
Ry

v

2
.

(4.100)

The second ingredient we need is the commutator of a primary operator with the modes

Ln. The stress-energy operator

T (z) =
∑
n∈Z

Ln z
−n−2 (4.101)
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generates infinitesimal transformations

z → w(z) = z + ε(z), (4.102)

and in particular its n-th mode Ln generates the transformation with ε(z) = zn+1. In

general for a holomorphic operator O(z) of conformal dimension h, under a conformal

transformation z → w(z) we have

O(z)→ O′(w) =

(
∂w

∂z

)−h
O(z)|z=z(w). (4.103)

For the infinitesimal transformation (4.102) this gives

δO(z) ≡ O′(z)−O(z) = −h ∂zε(z)O(z)− ε(z) ∂zO(z), (4.104)

and specifying to ε(z) = zn+1 we get

δO(z) =
[
O(z), Ln

]
= −h (n+ 1) znO(z)− zn+1 ∂z O(z). (4.105)

Transforming both the LHS and the RHS to the (v, u) coordinates (in Minkowskian

signature) using

z = e
i
√

2
Ry

v
, z̄ = e

i
√

2
Ry

u
, (4.106)

we get

[O(v), Ln] = δO(v) = −nh ein
√

2
Ry

vO(v) + i
Ry√

2
e

in
√

2
Ry

v
∂vO(v). (4.107)

For the term with L−1 therefore we have

〈+ + |O++(v, u)L−1|00〉 = 〈+ + |
[
O++(v, u), L−1

]
|00〉

=
e
−i
√

2
Ry

v

2
〈+ + |O++(v, u)|00〉+

+ i
Ry√

2
e
−i
√

2
Ry

v 〈+ + |∂vO++(v, u)|00〉,

(4.108)

where we used the fact that negative modes of T (z) annihilate R vacua from the right.

The mode expansion of an operator in coordinates on the cylinder is the “natural” one,

O(v, u) =
∑
m,n∈Z

Onm e−inv−imu, (4.109)

and because positive modes of O++ annihilate R vacua from the left and negative modes
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annihilate R vacua from the right we have

〈+ + |O++(v, u)|00〉 = 〈+ + |O++
00 |00〉

= 〈+ + |++〉

= 1,

(4.110)

where we recognized the definition in of |++〉 in terms of |00〉. In the mode expansion

in (v, u) coordinates, the zero mode is constant, so when we act with a derivative as

in ∂vO
++(v, u) the zero mode doesn’t appear in the expansion: having only nonzero

modes, the VEV of ∂vO
++(v, u) on R vacua is zero,

〈+ + |∂vO++(v, u)|00〉 = 0. (4.111)

The term with L−1 is therefore

〈+ + |O++(v, u)L−1|00〉 =
e
−i
√

2
Ry

v

2
. (4.112)

Putting these result together, on a single CFT copy and reinstating the copy indices

we have

(r)〈+ + |O++
(r) (v, u)

(
L(r)−1 − J3

(r)−1

)
|00〉(r) = e

−i
√

2
Ry

v
. (4.113)

Let’s now consider all the N CFT copies. As usual the total operator O++ is defined

as

O++ =
N∑
r=1

O++
(r) . (4.114)

From (4.113) we can write the action of O++
(r) on

(
L−1 − J3

−1

)
|00〉(r),

O++
(r) (v, u)

(
L−1 − J3

−1

)
|00〉(r) = e

−i
√

2
Ry

v |++〉(r) + [· · · ], (4.115)

where [· · · ] contain states with zero overlap with (r)〈+ + | and that therefore give no

contribution to the VEV. Let’s now look at the action of the symmetrized operator

O++ on the states |p〉. |p〉 is the sum of
(
N
p

)
states, each of which is a tensor product

with (N − p) states
(
L−1 − J3

−1

)
|00〉(r): acting on each of these tensor product states,

O++ generates states that give a contribution to the VEV only when it acts on these

(N − p) factors (and this is true for every state in the sum |p〉 is given by). Moreover,

each time O++
(r) acts on a factor

(
L−1 − J3

−1

)
|00〉(r), it gives a tensor product state with

(p + 1) factors |++〉 (plus other states with no overlap with the bras). Therefore the
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number of states |++〉+ [· · · ] that O++ generates is

[# states in |p〉]×
[
# of copies on which O++ acts nontrivially in the tensor product states

]
=

=

(
N

p

)
(N − p)

= [# states in |p+ 1〉]× (p+ 1),

(4.116)

which suggests that the action is

O++(v, u) |p〉 = e
−i
√

2
Ry

v
(p+ 1) |p+ 1〉+ [· · · ], (4.117)

where again [· · · ] contains states that have no overlap with any bra state 〈q|.
We can now compute the VEV of O++ on the state χ(A,B),

〈O++(v, u)〉χ =
N∑

p,q=0

ĀqB̄N−qApBN−p〈q|O++(v, u)|p〉

=
N∑

p,q=0

ĀqB̄N−qApBN−p e
−i
√

2
Ry

v
(p+ 1)〈q|p+ 1〉

=
N∑

p,q=0

ĀqB̄N−qApBN−p e
−i
√

2
Ry

v
(p+ 1)

(
N

q

)
δq,p+1

=
B

A
e
−i
√

2
Ry

v
N∑
q=0

(
|A|2

)q (|B|2)(N−q) q(N
q

)
.

(4.118)

Calling x ≡ |A|2 we have

〈O++(v, u)〉χ =
B

A
e
−i
√

2
Ry

v
x ∂x

N∑
q=0

xq
(
|B|2

)N−q (N
q

)
=
B

A
e
−i
√

2
Ry

v
xN

(
x+ |B|2

)N−1

=
B

A
e
−i
√

2
Ry

v |A|2N
(
|A|2 + |B|2

)N−1

= ĀBNN e
−i
√

2
Ry

v
,

(4.119)

where we used the normalization condition (4.97). Dividing by the norm ‖χ(A,B)‖2

we get
〈O++(vE , uE)〉χ
‖χ(A,B)‖2

= ĀB e
−i
√

2
Ry

v
. (4.120)

The operator O−− = (O++)
†

also acquires a VEV on χ(A,B), given by the complex

conjugate of the above.
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Let’s now consider the J3 and J̃3 operators. In order to compute their VEVs on

χ(A,B) we need to remember that the positive modes of these operators annihilate

R vacua from the left, while the negative modes annihilate R vacua from the right.

Moreover, R vacua are eigenstates of the zero modes on one CFT copy J3
(r) 0 and J̃3

(r) 0,

with the eigenvalues corresponding respectively to their left and right spin. Using this

and using the mode algebras (2.34) and (2.50) we see that on a single CFT copy the

only nonzero terms when considering 〈q|J3|p〉 or 〈q|J̃3|p〉 are

(r)〈+ + |J3
(r)(v)|++〉(r) =

1

2
= (r)〈+ + |J̃3

(r)(v)|++〉(r). (4.121)

We can then write

J3(v)|p〉 =
1

2
|p〉, (4.122a)

J̃3(v)|p〉 =
1

2
|p〉. (4.122b)

Because of this, the VEVs of J3 and J̃3 on χ(A,B) are the same, and, e.g. for J3, we

have

〈J3(v)〉χ =
N∑

p,q=0

ĀqB̄N−qApBN−p〈q|J3(vE)|p〉

=

N∑
p,q=0

ĀqB̄N−qApBN−p
(p

2

)
〈q|p〉

=
1

2

N∑
p=0

(
|A|2

)p (|B|2)N−p p(N
p

)

=
1

2
x ∂x

N∑
p=0

(x)p
(
|B|2

)N−p (N
p

)∣∣∣∣
x=|A|2

=
1

2
x ∂x

(
x+ |B|2

)N ∣∣∣
x=|A|2

=
|A|2

2
N
(
|A|2 + |B|2

)N−1

=
|A|2

2
NN ,

(4.123)

where we used the inner product (4.95) and the normalization condition (4.97). The

result for J̃3 is the same, and dividing by the norm (4.98) we get

〈J3(v)〉χ
‖χ(A,B)‖2

=
|A|2

2
, (4.124a)

〈J̃3(v)〉χ
‖χ(A,B)‖2

=
|A|2

2
. (4.124b)
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Finally, we can consider the momentum modes. The units of momentum are counted

by

np = 〈L0 − L̃0〉, (4.125)

and correspond to the momentum charge Qp through (3.6), which gives

Qp =
Q1Q5

NR2
y

np. (4.126)

To compute np, let’s start working on a single strand and act on the states with L0.

We have

L(r) 0|++〉(r) = 0, (4.127)

and

L(r) 0

(
L(r)−1 − J3

(r)−1

)
|00〉(r) =

([
L(r) 0, L(r)−1

]
−
[
L(r) 0, J

3
(r)−1

])
|00〉(r)

=
(
L(r)−1 − J3

(r)−1

)
|00〉(r),

(4.128)

where we used the fact that |++〉 and |00〉 are ground states in the Ramond sector and

we exploited the mode algebras (2.43) and (2.50). When we consider N strands, with

Ln given by the sum over copies (2.48), acting on states |p〉, L0 just reads the number

of states
(
L−1 − J3

−1

)
|00〉 in the tensor product,

L0|p〉 = (N − p)|p〉, (4.129)

which intuitively corresponds to counting the units of momentum in the state. The

computation is analogous to that for the VEV of J3 and gives

〈L0〉χ =
N∑

p,q=0

ĀqB̄N−qApBN−p〈q|L0|p〉

=
N∑
p=0

(
|A|2

)p (|B|2)N−p (N − p)
(
N

p

)
=
(
N − |A|2

)
N2

= |B|2NN ,

(4.130)

so
〈L0〉χ

‖χ(A,B)‖2
= N − |A|2 = |B|2 = np, (4.131)

which corresponds to the average number of
(
L−1 − J3

−1

)
|00〉. There are no excitations

for the right momentum modes, 〈L̃0〉χ = 0.

The geometry dual to the state χ(A,B) was found in [59] and corresponds to se-
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lecting the values for the k, n,m parameters

k = 1, m = 0, n = 1. (4.132)

The full solution is complicated, but we can restrict to just the objects we need. We

have

Z4 = bk,m,nRy
∆k,m,n

Σ
cos v̂k,m,n, (4.133)

where

∆k,m,n = akrn
(
r2 + a2

)− k+n
2 cosm θ sink−m θ, (4.134)

Σ = r2 + a2 cos2θ, (4.135)

v̂k,m,n =

√
2

Ry
(m+ n) v + (k −m)φ−mφ. (4.136)

The parameter a will be related to the parameter A in the CFT state, while bk,m,n will

be related to the parameter B. Specifying to the k = 1,m = 0, n = 1 case we get

∆1,0,1 = a
r

r2 + a2
sin θ, (4.137)

v̂1,0,1 =

√
2

Ry
v + φ. (4.138)

The object bk,m,n has inside Z4 has a complicated expression, but it our case it can be

simply treated as another parameter, and we put

b1,0,1 ≡ b. (4.139)

Given the above definitions we get

Z4 =
a b r Ry

(r2 + a2) (r2 + a2 cos2 θ)
cos

(√
2 v

Ry
+ φ

)
, (4.140)

which has the large-r expansion

Z4 =
1

r3

{
√

2 aRy

√
Q1Q5

Ry
− a2 cos

(√
2 v

Ry
+ φ

)
sin θ

}
+O(r−4). (4.141)

From the supergravity solution we also have the regularity condition

a2 +
xk,m,n bk,m,n

2
=
Q1Q5

R2
y

, (4.142)
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where the only information we need is that

x1,0,1 = 1, (4.143)

(see [59] for the general definition). In the k = 1,m = 0, n = 1 case this reduces to

a2 +
b2

2
=
Q1Q5

R2
y

. (4.144)

The angular dependence of the leading term in (4.141) can be rewritten as

cos

(√
2 v

Ry
+ φ

)
sin θ = cos

(√
2 v

Ry

)
cosφ sin θ − sin

(√
2 v

Ry

)
sinφ sin θ

=
1

2
cos

(√
2 v

Ry

)
Y 1

1 −
1

2
sin

(√
2 v

Ry

)
Y 2

1 ,

(4.145)

so using (4.29) we can read off

A11 =
a bRy

2
√
Q1Q5

cos

(√
2 v

Ry

)
, A12 = − a bRy

2
√
Q1Q5

sin

(√
2 v

Ry

)
, (4.146)

where we used the constraint (4.144). Using (4.33), (4.34b) and (4.35) the gravity

prediction for the VEV of O++ is(
〈O++(v, u)〉χ

)
Gravity

= cO(1,1)

(
A11 + iA12

)
=

N a bR2
y√

2Q1Q5

e
−i
√

2 v
Ry

=

(
a
Ry
√
N√

Q1Q5

)(
b
Ry
√
N√

2Q1Q5

)
e
−i
√

2 v
Ry .

(4.147)

The result above agrees with the CFT computation (4.120) upon setting

A = a
Ry
√
N√

Q1Q5
, B = b

Ry
√
N√

2Q1Q5
, (4.148)

assuming that A,B ∈ R.

We can now compute the VEVs of J3 and J̃3 on the gravity side and compare

them with the CFT results (4.124). According to the holographic prescription (4.34a)

and (4.29c), the VEVs of Ja and J̃a are encoded in the leading term (∼ r−2) of

the asymptotic expansion of the 1-forms β and ω, which are part of the supergravity

solution. Taking the solution found in [59] with k = 1, m = 0, n = 1 and expanding
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for large r we get

β =
Ry a

2

√
2 r2

(
sin2 θ dφ− cos2 θ dψ

)
+O(r−3),

=
Ry a

2

√
2 r2

Y 3−
1 (θ, φ) +O(r−3), (4.149a)

ω =
Ry a

2

√
2 r2

(
sin2 θ dφ+ cos2 θ dψ

)
+O(r−3),

=
Ry a

2

√
2 r2

Y 3+
1 (θ, φ) +O(r−3), (4.149b)

from which, using (4.29c) we read off

a3+ =
Ry a

2

2
√
Q1Q5

, a3− = − Ry a
2

2
√
Q1Q5

. (4.150)

Using (4.34a) and (4.35) we finally get

(
〈s|J3(vE)|s〉

)
Gravity

=
N R2

y a
2

2Q1Q5
=
A2

2
, (4.151a)(

〈s|J̃3(vE)|s〉
)

Gravity
=
N R2

y a
2

2Q1Q5
=
A2

2
, (4.151b)

where we used (4.148). This agrees with the CFT results (4.124) upon taking A and B

to be real and is an independent check that the relation (4.148) among the parameters

appearing in the CFT state and in the supergravity solution is correct.

Let’s finally compute Qp. From [59] we have

F = b2k,m,nFk,m,n, F1,0,n = − 1

a2

(
1− r2n

(r2 + a2)n

)
, (4.152)

where for k = 1,m = 0, n = 1 we have the identification (4.139) and

F1,0,1 = − 1

a2

(
1− r2

r2 + a2

)
, (4.153)

which give the asymptotic expansion

F = − b
2

r2
+O

(
r−4
)
. (4.154)

Using (4.29) we read off the momentum charge

Qp =
b2

2
. (4.155)
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The gravity prediction for np is thus

(np)gravity =
NR2

y

Q1Q5
Qp = B2, (4.156)

where we used (4.148), finding agreement with the CFT result (4.131) upon choosing

B ∈ R.

4.4 Entanglement entropy in D1-D5 microstates

The entanglement entropy of a space domain A in a given microstate represents a useful

observable to characterize the microstate itself. The investigation of this observable,

for a domain A composed of a single interval of length l in a two-charge microstate,

was initiated in [81], where by following [84, 85] it was shown that the EE admits an

expansion for small l in terms of the VEVs of operators whose dimensions increase with

the order of the l-expansion. If only chiral primary operators (and their descendants)

are kept in this expansion, the resulting EE coincides with the one evaluated at the

gravity point in the CFT moduli space, which, on the other hand, can be holographically

computed via the Ryu-Takayanagi formula [71] (and its generalizations [82]). Hence the

EE provides an alternative handle to compare the VEVs of chiral operators in D1-D5

microstates in the CFT and the gravity pictures. We extend here the results of [81]

by considering more general two-charge microstates, with non-vanishing VEVs for the

twist operators, and also a class of three-charge microstates.

Before analyzing particular examples, we describe a general approach for the holo-

graphic and the CFT derivations of the EE in microstate geometries.

4.4.1 Holographic computation at the first non-trivial order

The original formalism of Ryu-Takayanagi applies to static asymptotically AdS ge-

ometries; as microstate geometries are not static, the appropriate formulation is the

covariant one developed in [82]: the EE is given by the area of the co-dimension two

surface that extremizes the area functional and is homotopic to the entangling domain

A, seen as a submanifold of the AdS boundary. Our situation has a further complica-

tion, in that microstate geometries are asymptotically AdS3×S3 (as the compact space

trivially decouples for our class of microstates, we directly work in the 6D Einstein ge-

ometry (3.30) obtained by compactification on T 4); moreover generic microstates have

a product structure only at the boundary, and there is no invariant way to decouple

the AdS3 and the S3 part in the spacetime interior. In [81] a recipe was given to write

the 6D space as an S3 part fibered over an asymptotically AdS3 space (mathematically,

to define an almost product structure); the recipe was based on the introduction of a
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special set of coordinates, defined, at the first non-trivial order in the expansion around

the AdS boundary, by a de Donder gauge condition. This recipe allows to define a 3D

asymptotically AdS metric, to which the formulas of [71, 82] can be directly applied;

moreover, reducing the problem from 6D to 3D drastically simplifies the computation

of the EE.

Though the recipe used in [81] correctly reproduces the CFT result at the first

non-trivial order in the small l expansion, it would be desirable to have an a priori

justification for the gauge choice defining the AdS3 × S3 split. An alternative, geo-

metrically natural, procedure18 to holographically compute the EE in spaces that are

asymptotically AdS3×S3, is to consider, as suggested by [82], an extramal co-dimension

two surface in the full 6D space that reduces at the boundary to ∂A × S3. We will

show here the equivalence between the invariant 6D and the gauge-fixed 3D recipes, at

the first non-trivial order in the expansion around the AdS boundary (which coincides

with the small l expansion). The extension to higher orders remains an interesting

open problem.

The 6D19 Einstein metric can, in full generality, be written in the form

ds2
6 ≡ GMN dx

MdxN = gµν dx
µdxν +Gαβ(dxα +Aαµ dx

µ)(dxβ +Aβν dx
ν) , (4.157)

so that one has

Aαµ = GαβGµβ , gµν = Gµν −GαβGµαGνβ . (4.158)

The coordinates are chosen in such a way that xµ are AdS3 coordinates at the boundary

and xα are S3 coordinates at the boundary; the continuation of these coordinates to

the interior of the space is, a priori, arbitrary. In [81] this arbitrariness was (partly)

fixed by requiring that the gauge fields Aαµ satisfy the gauge condition

∇0
αA

α
µ = 0 , (4.159)

with ∇0
α the covariant derivative with respect to round metric of S3. We will see that

this gauge choice simplifies the covariant EE computation and reduces the problem to

the 3D one solved in [81].

In this 6D geometry, consider a co-dimension two submanifold which at the bound-

ary reduces to S3 times a co-dimension two submanifold in AdS3 given by the boundary

of the entangling domain A = [0, l]. We can parametrize its worldvolume by xα plus a

parameter λ, so that the parametric representation of the submanifold is (xµ(λ, xα), xα).

18We thank R. Emparan, V. Hubeny and J. Simon for drawing our attention to this point.
19Though we specify to geometries that are asymptotically AdS3 × S3, as they are the ones relevant

for the D1-D5 system, the argument can be readily extended to AdS×S-type of spaces in arbitrary
dimension.
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The metric induced on the submanifold is

ds2
∗ = gµνdx

µ
∗dx

ν
∗ +Gαβ(dxα +Aαµdx

µ
∗ )(dx

β +Aβνdx
ν
∗) ≡ g∗IJdλIdλJ , (4.160)

with

dxµ∗ = ẋµdλ+ ∂αx
µdxα , (4.161)

and λI ≡ (λ, xα). According to the recipe of [82], this submanifold should extremize

the area functional:

∂

∂xµ

√
detg∗ − ∂

∂λ

∂

∂ẋµ

√
detg∗ − ∂

∂xα
∂

∂∂αxµ

√
detg∗ = 0 , (4.162)

where we abbreviate ẋµ ≡ ∂λxµ. These are complicated partial differential equations for

the unknowns xµ(λ, xα). However, in the limit of small l, the extremal surface probes

only a region of spacetime very near the AdS boundary, and, at least at leading order in

this asymptotic expansion, the extremality equations can be reduced to simpler ordinary

differential equations for the functions Xµ(λ) ≡
∫
dxα
√

detG0 xµ(λ, xα). To perform

this perturbative analysis, we introduce a parameter ε that controls the expansion away

from the AdS boundary; the first non-trivial corrections to the metric have the form

gµν ≡ g0
µν + ε δg1

µν + ε2 δg2
µν , Gαβ ≡ G0

αβ + ε δG1
αβ + ε2 δG2

αβ , Aαµ ≡ ε δAαµ , (4.163)

where g0
µν is the AdS3 metric, which only depends on xµ, and G0

αβ is the S3 metric,

which only depends on xα; the correction terms, δgiµν , δGiαβ, δAαµ, depend both on xµ

and xα. Correspondingly the functions describing the submanifold can be expanded as

xµ(λ, xα) = xµ0 (λ) + ε xµ1 (λ, xα) + ε2 xµ2 (λ, xα) +O(ε3) , (4.164)

where xµ0 (λ) is an extremal surface in AdS3. The expansion (4.163) descends from

the asymptotic expansion (4.29), where one should think of f I1i, A1i, aα± as being

proportional to ε, while Qp is proportional to ε2. One can then verify that, for our

geometries, the first order corrections to the AdS3 and the S3 metrics vanish: δg1
µν =

δG1
αβ = 0. Since, as we will see, the gauge fields Aαµ only contribute quadratically, this

implies that the first non-trivial corrections to the extremal surface xµ(λ, xα) and to

the EE appear at order ε2. Here we will limit our analysis to these first non-trivial

corrections..

In Appendix C we provide the proof of the following facts:

(i) in the gauge (4.159), the first order corrections to the extremal surface vanish:

xµ1 (λ, xα) = 0;

(ii) at order ε2 the area of the extremal surface, and hence the EE, only depends

on the S3 integral of the extremal surface: Xµ(λ) ≡
∫
dxα
√

detG0 xµ(λ, xα);
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(iii) the extremality equations for Xµ(λ) are the geodesic equations for a curve in

a reduced 3D metric

g̃µν ≡ g0
µν + ε2

∫
dxα
√

detG0
(
δg2
µν +

1

3
g0
µν G

αβ
0 δG2

αβ

)
. (4.165)

These are precisely the equations considered in [81].

4.4.2 CFT computation at the first non-trivial order

The CFT result for the EE for a single interval A of length l at order ∼ l2 is

SA =

[
2N log

(
l

Ry

)
− l2

12R2
y

(
−2〈T 〉+N−1

J 〈J
α〉2 +N−1

J̃
〈J̃α〉2+

+N−1
O(1,1)〈O

(1,1)
(1)1i〉

2 +N−1
O(0,0)〈O

(0,0)
(2)i 〉

2
)

+O
(
(l/Ry)

3
)]
, (4.166)

where the N coefficients are the normalizations of the two-point functions of the oper-

ators

〈0|Jα(1)Jβ(0)|0〉 = NJ δαβ, 〈0|J̃α(1)J̃β(0)|0〉 = NJ̃ δ
αβ,

〈0|O(1,1)
(1)1iO

(1,1)
(1)1j |0〉 = NO(1,1) δij , 〈0|O(0,0)

(2)i O
(0,0)
(2)j |0〉 = NO(0,0) δij , (4.167)

with values

NJ = NJ̃ = NO(1,1) =
n1n5

2
. (4.168)

Part of this result was found in [81], the only difference being that here we need to

compute the explicit value of NO(0,0) and we have an extra term coming from the VEV

of the stress-energy operator.

The computation of NO(0,0) is straightforward: it is sufficient to consider a state

(|++〉k=1)N and compute the VEV of Σ++
2 Σ−−2 on it, which by (4.40) and (4.44) yields

(
k=1
〈+ + |

)N
Σ++

2 Σ−−2

(
|++〉k=1

)N
=
N(N − 1)

2
' N2

2
. (4.169)

Writing the operators Σ±±2 in terms of O
(0,0)
(2)i as in (4.32) we get an extra factor 1/2

(NO(0,0) is defined starting from the real operators) which gives

NO(0,0) '
N2

4
. (4.170)

As explained in [81], all the terms but the one related to T come from contributions

of 2-point functions of the CFT primaries: the contributions of the 1-point functions of
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primaries give zero, and in the case analyzed there no descendants had a nonzero VEV.

In the present case, though, T is a descendant of the identity operator, has a nonzero

VEV and because of its conformal dimension it gives a contribution of the same order

in l/Ry as the 2-point functions. This new contribution can be computed exploiting

the procedure followed in [84,85]. The EE for a single interval A in the dual CFT can

be written as

SA = − ∂

∂n
Sn|n=1, Sn = 〈s|Tn(z, z̄)T−n(w, w̄)|s〉, (4.171)

with

Tn(z, z̄)T−n(w, w̄) = |z − w|−4∆n

1 +
∑
K

n∑
j=1

(z − w)∆K (z̄ − w̄)∆̄Kd
(j)
K O

(j)
K + · · ·

 ,

(4.172)

where we have written only the contribution of single CFT operators acting nontrivially

on one copy of the CFT (not tensor products or two or more of them) and ∆n =

∆̄n = c
24(n − 1

n) is the conformal dimension of the twist fields T±n. We can isolate

the contribution given by T multiplying both sides by T (u), taking the VEV on the

vacuum20 |0〉 and comparing the terms in ∼ (u− w)−4 as z → w. From the OPE

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(4.173)

we have that the relevant part of the RHS is

|z − w|−4∆n(z − w)2dT
c/2

(u− w)4
, (4.174)

where we have used the fact that the 2-point function of T with itself brings a δj,j
′

and,

since the constant doesn’t actually depend on j we set d
(j)
K ≡ dT . For the LHS we have

〈0|Tn(z, z̄)T−n(w, w̄)T (u)|0〉 =
〈0|T−n(∞)T (1)Tn(0)|0〉

(z − w)2∆n−2(z − u)2(w − u)2(z̄ − w̄)2∆n
, (4.175)

and we immediately see that as z → w this is exactly of the same order as (4.174).

Therefore we have

dT =
2

c
〈0|T−n(∞)T (1)Tn(0)|0〉. (4.176)

The twist fields T±n introduce a branch cut from 0 to ∞, with the effect that taking

an operator around the origin makes it jump from one Riemann sheet to the another

20Here by |0〉 we mean the vacuum given by the tensor product of the bosonic vacuum and of the NS
vacuum both in the left and right fermionic sectors. The crucial property we want to exploit is that
the VEV on this state of any primary operator is zero.
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among the n. We can get rid of the twist fields altogether by performing the conformal

transformation

z → z̃ = z1/n, (4.177)

which maps the n Riemann sheets to a single copy of the complex plane. In doing

so the T±n disappear and we only have to worry about the transformation of T . It’s

now clear why we are considering the contribution to the EE of the 1-point function of

the stress-energy operator and not of primary operators of small conformal dimension.

Had we had a primary instead of T , the conformal transformation we are using to get

rid of the twist fields would have given an object proportional to the 1-point function

of the primary itself in the vacuum |0〉, which is zero. We can only hope to obtain a

nonzero contribution from 1-point functions of descendants, and among these the only

one contributing at the order in l/Ry we are interested in is exactly T . The reason why

the contribution of T is nonzero comes from the fact that it transforms as

T (z)→ T (z̃) =

(
∂z̃

∂z

)−2 [
T (z)− c

12
S(z̃, z)

]
, (4.178)

where

S(z̃, z) =

(
∂3z̃

∂z3

)(
∂z̃

∂z

)−1

− 3

2

[(
∂2z̃

∂z2

)(
∂z̃

∂z

)−1
]2

(4.179)

is the Schwarzian derivative of the transformation. Performing the conformal transfor-

mation u → ũ = u1/n we get a term proportional to 〈0|T (ũ)|0〉, which is zero because

T has no VEV on |0〉, plus another term that gives

dT = lim
u→1

2

c

c

12
S(ũ, u) =

1

6
lim
u→1

S(ũ, u). (4.180)

The Scwarzian derivative reads

S(ũ, u) =
1

2
u−2 1

n

(
n− 1

n

)
=

12

c
u−2

(
∆n

n

)
, (4.181)

which gives

dT =

(
2

c

)
∆n

n
=

1

12

(
1− 1

n2

)
. (4.182)

Notice that within respect to [70], our ∆n is defined after summing over j, which gives

an extra factor n.

The result for the contribution to Sn (where again the sum over j brings just a

factor n) is

Sn,T = |z − w|−4∆n (z − w)2 1

12

(
n− 1

n

)
〈s|T (w)|s〉, (4.183)
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which gives a contribution to the EE

SA,T = −1

6
(z − w)2〈s|T (w)|s〉. (4.184)

Notice that up to this point the coordinates (z, z̄), (w, w̄) are generic; now we have to

specify a choice of coordinates in order to set a fixed value for the time and an interval

in the spatial circle for the entangling domain A. In doing this we have to be careful, as

the fact that the stress-energy operator is not a primary causes its VEV to depend on

the choice of coordinates, i.e. under a conformal transformation z → z̃, due to (4.178),

T and its antiholomorphic counterpart T̃ can acquire a VEV even if it was zero in the

original coordinates,

〈T (z)〉 → 〈T (z̃)〉 =

(
∂z̃

∂z

)−2 [
〈T (z)〉 − c

12
S(z̃, z)

]
. (4.185)

In the preceding section all the VEVs have been computed in coordinates on the com-

plex plane (proportional to ∼ t±iy), and in particular it is with this choice that 〈T 〉 = 0

on 2-charge states, i.e. that L0 reads zero conformal dimension for ground states in

the Ramond sector. Consistency with this requires that the coordinates in (4.184) be

identified with

z ≡ t+ iy

Ry
, z̄ ≡ t− iy

Ry
. (4.186)

Notice that the coordinates in (4.184) are generic and must not be confused with the

coordinates on the cylinder with the same name as in (4.106): the one above is an

identification, not a coordinate transformation. This is also consistent with Eq. (4.3)

of [81]. We can further identify z with the choice (t, y) = (t, l) and w with (t, y) = (t, 0)

where 0 and l correspond to the boundary of the entangling domain A = [0, l] and

where the value of t is arbitrary, getting

z =
t+ il

Ry
, w =

t

Ry
. (4.187)

The contribution of T to the EE at order ∼ l2/R2
y then becomes

SA,T =
l2

6R2
y

〈s|T (t/Ry)|s〉. (4.188)

As a final remark, we’d like to stress the fact that the EE at a given order in the small

l/Ry expansion is independent of the choice of coordinates, even though 〈T 〉 is not.

This comes from the fact that when changing coordinates, additional terms come both

from the transformation of 〈T 〉 (and 〈T̃ 〉) and from the universal logarithmic leading

term. It can be seen, e.g. at order ∼ l2/R2
y, that the additional terms in fact cancel
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out.

4.4.3 Entanglement Entropy of three-charge states

We now want to compare the CFT prediction for the single interval EE derived in

Section 4.4.2, with the holographic computation outlined in Section 4.4.1. For generic

D1-D5-P states, we immediately face the difficulty that we do not know the general

expression of the dual geometry. We have however verified, through the examples of

Sections 4.3.2 and 4.3.3, that the 3-charge solutions found in [58] have an asymptotic

expansion of the form (4.29). We conjecture that this is true for all three-charge states.

The knowledge of the expansion (4.29) is enough to compute the EE up to order

∼ (l/Ry)
2, and hence compare with the CFT result (4.166).

Starting with the 6D metric given in (3.30) with the metric coefficients expanded

as in (4.29), one derives the reduced 3D metric defined in (4.165):

g̃tt = − r2

√
Q1Q5

[
1 + 2δP +

1

r2

(
(a+)2 + (a−)2 −Qp

)]
+O(r−2) , (4.189)

g̃yy =
r2

√
Q1Q5

[
1 + 2δP − 1

r2

(
(a+)2 + (a−)2 −Qp

)]
+O(r−2) , (4.190)

g̃rr =
r2

√
Q1Q5

[
1 + 4δP

]
+O(r−2) , (4.191)

g̃ty =
r2

√
Q1Q5

[
− 1

r2

(
(a+)2 − (a−)2 −Qp

)]
+O(r−2) , (4.192)

with

δP = −1

2

(f1
1 )2

r2
− 1

2

(A1
1)2

r2
, (4.193)

where

(a±)2 ≡
3∑

α=1

(aα±)2 , (f1
1 )2 ≡

4∑
i=1

(f1
1i)

2 , (A1)2 ≡
4∑
i=1

(A1i)
2 . (4.194)

The gauge fields coming from the reduction on S3 (4.157) are

Aαv =
√

2Gαβ0 aγ+(Y γ+
1 )β +O(r−2) , Aαu =

√
2Gαβ0 aγ−(Y γ−

1 )β +O(r−2) , (4.195)

with Gαβ0 the inverse of the round S3 metric. They satisfy the gauge condition (4.159)

because the vector spherical harmonics are divergence-less:

∇α(Y γ±
1 )α = 0 . (4.196)

As explained in Section 4.4.1, we can thus apply the Ryu-Takayanagi procedure to the
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reduced 3D metric g̃µν and we obtain the result:

SA = 2n1n5

[
log

(
r0l√
Q1Q5

)
− l2

12Q1Q5

(
−Qp + (a+)2 + (a−)2 + 2(A1)2 + 2(f1

1 )2
)

+O(l3)

]
,

(4.197)

where r0 is an IR cutoff corresponding to the AdS3 boundary (see [81]). One imme-

diately recognizes a structure similar to (4.166): the term (f1
1 )2 corresponds to the

contribution given by O
(0,0)
(2)i ≡ Σαα̇

2 , the term (A1)2 to O
(1,1)
(1)1i ≡ O

αα̇, the terms (a±)2 to

Jα and J̃α and the term Qp to 〈L0− L̃0〉. To verify that also the numerical coefficients

match, one uses the relations between the gravity parameters f1
1i, A1i, aα±, Qp and the

CFT VEVs given in (4.34) with the coefficients cO(0,0) , cO(1,1) , cJ , cJ̃ specified in (4.53)

and (4.35), and the values of the normalization constants N in (4.168) and (4.170).

One can check that these substitutions map precisely the gravity result (4.197) into the

CFT formula (4.166). Part of this match was already performed in [81]; what is new

here is the momentum contribution proportional to Qp ∼ 〈L0− L̃0〉 and the verification

of the numerical factor in front of the twist field term proportional to (f1
1 )2 ∼ 〈Σ2〉2.

Note that this provides an independent non-trivial check of the coefficient cO(0,0) , which

was fixed in Section 4.3.1 by requiring the CFT-gravity consistency for one particular

microstate.

The contribution of T also agrees with the expansion for small L of equation (3.11)

of [86] with r2
0 = Qp.

4.5 1-point functions and Entaglement Entropy: discus-

sion and outlook

The 1-point functions of BPS operators and the single interval EE are useful observables

to establish a link between microstates and the dual geometries, and to enlighten the

emergence of the spacetime from the CFT. Even if the computations of this chapter

were limited to chiral primaries of dimension 1 and to the first non-trivial corrections to

the EE in the small interval limit, the detailed match between gravity and CFT results

provides a quite impressive verification of the map between 1/4-BPS states and two-

charge geometries proposed in [32,63], and of its extension to the 1/8-BPS states of [58].

In examples like the one worked out in Appendix B, a relatively simple gravity result

is matched against a very non-trivial CFT computation, which uses the correlators of

twist operators21 derived in [88]. In other examples, like the one of Section 4.3.3, the

presence of a particular term in the geometry follows, in the gravity picture, from a

quite involved regularity analysis [58], while it is implied quite straightforwardly by the

non-vanishing of a twist operator VEV, in the CFT picture. This last phenomenon is

21The techniques for handling twist operator insertions in orbifold CFTs have been developed in a
long series of papers [87,88]; the effects of these insertions on the EE have been investigated in [89].
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surprising, because the analysis of regularity requires the knowledge of the geometry in

the interior of the spacetime, while the CFT picture only involves operators of small

dimension (one, in our case), which are associated with deformations of the geometry

close to the AdS boundary. This example highlights the power of the CFT in predicting

non-trivial features of the dual spacetime.

Hence, a natural extension of our work consists in extracting from the CFT analysis

the necessary information to construct the geometries dual to a larger and more generic

family of three-charge states than the one known at present, possibly capturing a finite

fraction of the D1-D5-P entropy. In the three-charge microstates of [58], the momen-

tum is carried by the current J+
−1 acting on strands with spin (0, 0); when spectrally

flowed to the NS sector, J+
−1 becomes J+

0 [44]. Together with L0, L±1,22 the modes

Jα0 form the rigid subsector of the CFT chiral algebra, and states where momentum

is carried by these rigid generators constitute the so-called “graviton gas” contribution

to the D1-D5-P elliptic genus [90,91]. The full elliptic genus includes states where mo-

mentum is carried by fractional-moded currents acting on strands of winding greater

than one: indeed these states dominate the entropy in the limit of large charges. Con-

structing the geometries dual to such states23 is crucial for the advancement of the

fuzzball program [7, 60, 93], which aims at providing a geometric description of black

hole microstates in terms supergravity (or more generally string theory) configurations

without horizons. For the purpose of this construction, the information provided by the

VEVs of BPS operators of dimension larger than one, which determine the higher or-

ders in the asymptotic expansion (4.29), could be essential. Extending the holographic

analysis to higher dimension operators could pose technical hurdles (like the operator

mixing phenomenon discussed in [80]), but the general methods developed in [94–96]

should allow progress in this direction.

Having higher dimension operators under control would also be necessary for un-

derstanding how a thermal behavior emerges from typical black hole microstates and to

quantify the deviations between typical pure states and statistical ensembles [97–99].

The states we consider in this chapter are not generic representatives of the ensemble

giving rise to the black hole entropy, and indeed the VEVs of simple, low dimension

operators, which are non-vanishing in our states, are expected to be suppressed in the

large charge limit for typical microstates. But more complex, higher dimension opera-

tors can have non-trivial VEVs also in typical states. At least for BPS operators, the

free orbifold CFT picture described in Chapter 2 offers a precise tool to characterize

and estimate the correlators which can distinguish generic states among themselves

and from the maximally mixed state. The holographic dictionary will then allow to

22Geometries dual to states where momentum is carried by L−1 were constructed at linear level
in [61] and can be extended to nonlinear level using methods similar to [58].

23Particular states in this class have already been constructed in [92].
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determine if and how these differences manifest themselves in the classical geometry.

Similar questions could be addressed by using the single interval EE as a probe of

the microstate geometry. As we have seen, when the length of the interval is small, the

EE only probes the region of spacetime close to the boundary, and is only sensitive to

operators of small dimension. But as the length increases, the entangling curve reaches

deeper in the bulk, possibly exploring the whole spacetime24. It has been argued

[65, 101, 102] that in the limit of large central charge, the EE in a typical pure state is

dominated by the conformal block of the identity, and hence it reproduces the thermal

answer associated with the BTZ black hole [86]. On the other hand we have seen that

in our atypical states, the EE receives contributions also from the conformal blocks

of non-trivial chiral primaries. It would be interesting to quantify the contribution of

non-trivial primaries to the EE in typical states, and evaluate the induced deviations

from the thermal behaviour. Chapter 5 moves in this direction giving a conformal and

affine block analysis of 2-point functions of operators of small conformal dimension in

CFT states corresponding to (simple) 2- and 3-charge microstates.

24The regions of the geometry that are not swept by the entangling curve are called entanglement
shadows. The existence of shadows in geometries containing conical defects was pointed out in [100];
in the D1D5 CFT, these geometries are dual to pure states containing multiply wound strands with
spin (±1/2,±1/2).
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Chapter 5

HH-LL 4-point functions and

holography

As we have seen in Chapter 4, on the CFT side the black hole microstates correspond to

1/8-BPS “heavy” states in the Ramond-Ramond sector which have conformal dimen-

sion of order c. If we think for example of the simple (|++〉k=1)N state, we see that it

is the product of N Ramond vacua obtained after spectral flow from N Neveu-Schwarz

ones as in (2.107): its dimension is equal to the dimension (2.108) of the spectral flow

operator itself and it is therefore of order ∼ c. All of the R vacua are obtained start-

ing from the NS vacuum by spectral flow (and then acting with some other operator,

depending on the specific state considered), so all of them have dimensions of order

∼ c.
In this chapter we extend the study of the 1/4 and 1/8-BPS states in the (4, 4) CFT

and their dual asymptotically AdS3 × S3 ×M geometries by studying the correlators

of (two) light operators in a heavy state25. In the OPE limit in which the light oper-

ators are close, the correlator effectively resums an infinite series of vev’s, and hence

it represents an observable that can probe the bulk of the space-time. Our approach

is based on very standard techniques: on the CFT side we need to calculate a 4-point

function with two heavy and two light operators, while on the bulk side we study the

wave equation of a light field in the dual non-trivial geometry. The main goal is to

understand in some detail how the large c limit of the CFT correlator reproduces the

result obtained in the gravitational description. This heavy-light, large c limit has been

analyzed in several papers: an explicit expression for the Virasoro blocks in this limit

was derived in [64,65] and a dual interpretation of this result in pure AdS3 gravity was

discussed in [105–109]. Here we will apply the same approach to the simplest possible

25Correlators involving two light twist operators that induce a transition between two different heavy
states have been computed in [103], with the purpose of studying absorption and emission of quanta
from a D1D5 bound state. A computation of two-point functions of primary operators in heavy excited
states at large c has also been recently performed in [104].
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heavy operators in the (4, 4) CFT that have a dual geometric description in type IIB

supergravity.

One of the main features of our analysis is that the full higher dimensional geom-

etry is important in the bulk calculation, which is reflected on the CFT side by the

contribution of operators that are not Virasoro descendants of the identity. This is a

pattern that already emerged in Chapter 4 in the study of the 1-point functions and the

entanglement entropy [1,81] and, of course, it is particularly evident in our calculations

because we chose very peculiar and simple heavy operators (i.e. very atypical states in

the black hole ensemble). However, these examples show that pure heavy states are not

directly described by the 3D geometry of the BTZ solution and that, on the CFT side,

Virasoro primaries different from the identity can play an important role also in the

large c limit. In particular, in the correlators we consider, the singularities due to the

large c Virasoro block of the identity are resolved by the contributions of new primaries

that are non-trivial already at the leading order in the limit c� 1. So in this case the

pattern is different from the one discussed in [68]26, where it is argued that 1/c correc-

tions are crucial to restore unitarity. In the simple cases we investigate, this mechanism

is visible already at the supergravity level as the relevant new Virasoro primaries are

actually affine descendants of the identity. For more general correlators the contribu-

tion of primary operators that are not captured in the supergravity approximation will

most likely be crucial to avoid the appearance of spurious singularities when c → ∞.

We also present an argument based on crossing symmetry supporting the idea that

the heavy-light correlators have in general a regular large c limit if the contribution

of all primaries is considered. Thus, even if the results for the correlators we studied

cannot be directly extrapolated to typical black hole microstates, we suggest that the

absence of large c spurious singularities in the heavy-light correlators is generic and

that it might be seen as a CFT feature supporting the fuzzball proposal [14, 30]. The

results in this chapter were found in [2].

5.1 The CFT picture

In this section we discuss some simple examples of four-point correlators in the D1D5

CFT. In particular we are interested in correlators with two heavy (OH) operators,

which have conformal dimension of order c, and two light (OL) operators, which have

conformal dimension of order one. Thus the structure of the correlators we consider is

〈OH(z1)ŌH(z2)OL(z3)ŌL(z4)〉 =
1

z2hH
12 z2hL

34

1

z̄2h̄H
12 z̄2h̄L

34

G(z, z̄) , (5.1)

26See [66, 102, 110] for a detailed discussion of the Virasoro blocks beyond the leading term in the
c→∞ expansion and [111] for the possible relevance of 1/c corrections in black hole collapse.
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where, as usual, zij = zi − zj and

z =
z14z23

z13z24
, (5.2)

while (hH , h̄H) and (hL, h̄L) are the holomorphic/antiholomorphic conformal dimen-

sions of the heavy and light operators respectively.

As in the previous chapter, we take two main simplifying assumptions. First we

focus on highly supersymmetric operators. The light operators we use are chiral pri-

maries both in the left and in the right sector of the CFT. Instead the heavy operators

are in the Ramond-Ramond sector of the CFT, but are related to chiral primaries by a

chiral algebra transformation that acts only on the left sector (hence they generically

preserve half of the CFT supercharges). Second, we work again at the free orbifold

point of the CFT moduli space, so all the technology of Chapter 2 applies.

5.1.1 Simple correlators in the untwisted sector

We first focus on operators in the untwisted sector of the symmetric orbifold, which

means that they are written as combinations of operators acting on each copy. The

symmetry under permutations among the copies is realised differently in the light and

the heavy operators: the light operators act trivially on all the strands but one27 (see

(2.29)), while the heavy ones are constructed by multiplying N copies of the same

operator, each copy acting on a different strand:

OL =
1√
N

N∑
r=1

OL(r) , OH = ⊗Nr=1O
H
(r) . (5.3)

In the language of the previous chapters, the structures (5.3) are the key distinguish-

ing feature between what we generically called “CFT operators” and what we called

“vacuum states”. In this chapter we concentrate on light operators of dimension

hL = h̄L = 1/2 constructed with the fermions; in concrete we take

OL(r) = − i√
2
ψ1Ȧ

(r)εȦḂψ̃
1̇Ḃ
(r) ≡ O

++
(r) , ŌL(r) = − i√

2
ψ2Ȧ

(r)εȦḂψ̃
2̇Ḃ
(r) ≡ O

−−
(r) . (5.4)

All the operators OH(r) we are going to consider in the untwisted sector have right

conformal dimension h̄(r) = 1/4 and right spin J̃3
(r) = 1/2, which gives a total right

conformal dimension for the heavy operators h̄H = N/4, so we can distinguish the

heavy operators by their left conformal dimension and left spin. The heavy operators

we choose in the untwisted sector are characterised by an integer s determining the

27In an unfortunate mismatch of conventions, in this chapter we found more useful to add a 1/
√
N

normalization to the definition of the light operators, see (2.38) for a comparison. This only changes a
numerical factor in the correlators.
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number of J+ excitations acting on a ground state in each copy; their explicit expression

is more easily written in the bosonized language of Section 2.4 (see also below), and

their left conformal dimension and spin are given by

hH = N

(
s+

1

2

)2

, J3
H = N

(
s+

1

2

)
. (5.5)

We therefore denote the single copy operators making up the heavy states as OH(r)(s) and

the same notation will be adopted for the correlators, which are denoted as G (s; z, z̄).

As a first concrete example we consider the heavy operator corresponding to s = 0;

it is written in terms of the spin fields SȦ(r) twisting the elementary fermions ψαȦ(r) (and

S̃Ȧ(r) twisting ψ̃α̇Ȧ(r) )

OH(r)(s = 0) = S1̇
s=0,(r)S

2̇
s=0,(r)S̃

1̇
s=0,(r)S̃

2̇
s=0,(r) , (5.6)

where the definition for generic s is

S1̇
s,(r) ≡ e

i(s+ 1
2)H(r) , S2̇

s,(r) ≡ e
i(s+ 1

2)K(r) , S̃1̇
s,(r) ≡ e

i(s+ 1
2)H̃(r) , S̃2̇

s,(r) ≡ e
i(s+ 1

2)K̃(r) .

(5.7)

The s = 0 case corresponds to the operators generating the states (2.106). Let us com-

ment on the AdS-dual interpretation of the operators entering this correlator. For s = 0

the heavy state is the Ramond-Ramond ground state with the highest value for the left

and right spins, (|++〉k=1)N . This state can be obtained by starting from the SL(2,C)

invariant vacuum and performing a spectral flow to the Ramond-Ramond sector as

in (2.106), which means that the dual supergravity solution28 is locally isometric to

AdS3×S3. The light operator (5.4) is a supersymmetric fluctuation of the B-field and

the axion [32] around the geometry dual to OH . We can calculate the correlator at the

orbifold point of the CFT moduli space by using the standard bosonization approach

and the free field contractions in the bosonic language. We collect in Appendix D a

brief derivation of the result:

G
(
s = 0; z, z̄

)
=

1

|z|
. (5.8)

A simple generalization of (5.8) is to consider the correlator with the same light

states, but heavy states corresponding to generic s, which contain excited spin fields in

the holomorphic sector

OH(r) (s; z, z̄) = S1̇
s,(r)S

2̇
s,(r)S̃

1̇
s=0,(r)S̃

2̇
s=0,(r) , (5.9)

28It is possible to extend this solution to an asymptotically flat type IIB supergravity background,
which then represents a (very special) microstate for the Strominger-Vafa black hole [112,113].
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where SȦs,(r) has conformal weight (s+ 1/2)2/2. Again by using the bosonized language

it is straightforward to calculate the correlator (see Appendix D for some detail)

G (s; z, z̄) =
1

zs+
1
2 z̄

1
2

(5.10)

Note that the new heavy state is an affine descendant of the Ramond-Ramond ground

state (5.6) and so the dual description can be locally mapped to AdS3 × S3 with a

change of coordinates that encode (at the boundary) the action of the superalgebra

on (5.6). Thus, as discussed later in Section 5.1.2, this new correlator inherits several

properties from the previous example in (5.8).

5.1.2 Simple correlators in the twisted sector

We now consider correlators in the twisted sector of the CFT. In analogy to what we

did in the previous section, the heavy operators are constructed by taking N/k identical

strands of length k. The antiholomorphic conformal dimension of our heavy operators

on each strand is always h̄H,1 strand = k/4 and their right spin is J̃3
H,1 strand = 1/2.

As before, we consider s momentum-carrying excitations in the holomorphic sector, so

we characterize the heavy operators by two integers s and k, and their left conformal

dimension and spin read

hH,1 strand =
N

k

(
k

4
+
s(s+ 1)

k

)
, J3

1 strand =
N

k

(
s+

1

2

)
. (5.11)

The operators are denoted as OH(s, k) and the correlators as G(s, k; z, z̄).

The first kind of heavy operators we consider corresponds to s = 0 and generic

k and is a generalization to strands of length k of (5.6): on each strand we have k

operators SȦk,ρ and k operators S̃Ȧk,ρ and the total heavy operator is

OH(s = 0, k) =
[
⊗k−1
ρ=0 σ

X
ρ σ̃

X
ρ S

1̇
k,s=0,ρS

2̇
k,s=0,ρS̃

1̇
k,s=0,ρS̃

2̇
k,s=0,ρ

]N/k
, (5.12)

where σXρ and σ̃Xρ are the twist fields acting on the bosonic sector of the CFT (see

(2.82)) while the Sα̇k,s=0,ρ are the operators in (2.116), i.e.

S1̇
k,s=0,ρ ≡ ei(− ρk+ 1

2)Hρ , S2̇
k,s=0,ρ ≡ ei(− ρk+ 1

2)Kρ ,

S̃1̇
k,s=0,ρ ≡ ei(− ρk+ 1

2)H̃ρ , S̃2̇
k,s=0,ρ ≡ ei(− ρk+ 1

2)K̃ρ .
(5.13)

The correlator is obtained again through bosonization in the twisted sector (the deriva-
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tion is sketched in appendix D) and reads

G (s = 0, k; z, z̄) =
1/k

|z|
1− |z|2

1− |z|2/k
, (5.14)

where the 1/k factor comes from having the same contribution from each of the N/k

strands and from the normalization chosen for the light operators in (5.3).

The second kind of heavy operator we consider corresponds to nonzero s and k and

is a generalization to strands of length k of (5.9). These states have s(s+ 1)/k units of

momentum on each strand, and since the number of momentum units must be integer,

assuming k is a prime number for simplicity, we have that either s = pk or s = pk− 1,

with p ∈ N. In the s = pk case, in the left sector of each strand we have k operators

SȦk,s,ρ, and another k operators S̃Ȧk,ρ live in the right sector. The total heavy operator

is

OH(s = pk, k) =
[
⊗k−1
ρ=0 σ

X
ρ σ̃Xρ S1̇

k,s=pk,ρS
2̇
k,s=pk,ρS̃

1̇
k,s=0,ρS̃

2̇
k,s=0,ρ

]N/k
. (5.15)

Notice that since hH,1 strand depends on s, for s > 0 we have hH,1 strand 6= h̄H,1 strand

and so heavy states carry non-vanishing momentum; the explicit definition of the heavy

operators for s = pk is, in the bosonized language,

S1̇
k,s=pk,ρ ≡ ei(− ρk+ 1

2
+ s
k )Hρ , S2̇

k,s=pk,ρ ≡ ei(− ρk+ 1
2

+ s
k )Kρ ,

S̃1̇
k,s=pk,ρ ≡ ei(− ρk+ 1

2
+ s
k )H̃ρ , S̃2̇

k,s=pk,ρ ≡ ei(− ρk+ 1
2

+ s
k )K̃ρ ,

(5.16)

and the correlator reads

G (s = pk, k; z, z̄) =
1/k

|z|
1− |z|2

1− |z|2/k
z−p. (5.17)

When s = pk − 1 the heavy operator differs from the previous case only in the ρ = 0

sector, and has the form

OH(s = pk−1, k) =
[
S1̇
k,s=pk−1,ρ=0S

2̇
k,s=pk−1,ρ=0 ⊗k−1

ρ=1 σ
X
ρ σ̃

X
ρ S1̇

k,s=pk,ρS
2̇
k,s=pk,ρS̃

1̇
k,s=0ρS̃

2̇
k,s=0,ρ

]N/k
,

(5.18)

where Sα̇k,s=pk−1,ρ 6=0 and S̃α̇k,s=pk−1,ρ 6=0 have the same forms as in the s = pk case, while

for ρ = 0 they read

S1̇
k,s=pk−1,ρ=0 ≡ ei(− 1

2
+p)Hρ=0 , S2̇

k,s=pk−1,ρ=0 ≡ ei(− 1
2

+p)Kρ=0 ,

S̃1̇
k,s=pk−1,ρ=0 ≡ ei(− 1

2
+p)H̃ρ=0 , S̃2̇

k,s=pk−1,ρ=0 ≡ ei(− 1
2

+p)K̃ρ=0 .
(5.19)

The difference between the s = pk and the s = pk− 1 cases is that the heavy operators

in the first are obtained from the one in the latter by acting with the mode 2p of the
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J− current acting on the length-k strand, J−2p; this action only changes the operators

in the ρ = 0 sector. The correlator reads

G(s = kp− 1, k; z, z̄) =
1/k

|z|
z−p

(
z +
|z|2/k − |z|2

1− |z|2/k

)
. (5.20)

5.2 Conformal blocks decomposition

In this section we analyze the correlators obtained above in terms of Virasoro and affine

conformal blocks, exploiting the underlying SU(2) R-symmetry. In the channel where

the two light operators approach each other (z3 → z4), the cross-ratio z tends to 1

and we can expand the function G in (5.1) to extract the Virasoro or affine primary

operators entering in the decomposition:

G = (1− z)2hL(1− z̄)2h̄L
∑
Op

CHHOpCLLOpVV,A(hp, hH , hL, z)V̄V,A(h̄p, h̄H , h̄L, z̄) ,

(5.21)

where the sum is over all Virasoro or affine primaries Op, VV and VA are the Virasoro or

affine blocks, CHHOp are the structure constants between Op and the heavy operators

and CLLOp are the structure constants between Op and the light operators.

5.2.1 Virasoro blocks decomposition

For the description in terms of the Virasoro blocks we focus on the large c limit where

it is possible to use the results of [64,65]. In this limit the contribution of the Virasoro

descendants of a primary of weight hp is captured by the block whose holomorphic part

is29

VV (hp, hH , hL, z) = zhL(α−1)

(
1− zα

α

)hp−2hL

2F1 (hp, hp; 2hp; 1− zα) , (5.22)

where α =
√

1− 24hH
c . Some of the heavy states we consider have conformal dimension

hH = c/24 (they are the ones corresponding to tensor products of ground states,

without any excitation); in this case the large c limit of the Virasoro block is captured

by the α→ 0 limit30 of (5.22)

VV (hp, hH → c/24, hL, z) = z−hL (−ln z)hp−2hL . (5.23)

In all amplitudes analyzed in the previous section, the first primary entering the

29We normalize the conformal block so that the first term of the z → 1 expansion is (1− z)hp−2hL .
30It is also possible to follow a similar derivation as in [65] with hH = c/24 and show that the result

agrees with the α→ 0 limit of the formula above.
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z → 1 decomposition is the identity. If we consider only the contribution of its Virasoro

block, for instance in the simplest case (5.8), we have

G
(
s = 0; z, z̄

)
=

1

|z|
|1− z|2

| ln z|2
+ . . . , (5.24)

where we used (5.21) and (5.23) with hp = 0, hL = 1/2, and the analogous expression

for the antiholomorphic sector with h̄p = 0, h̄L = 1/2. Focusing on the holomorphic

dependence, there is a mismatch between (5.24) and (5.8) already at the order (1− z),
which signals that primaries of conformal dimension (hp, h̄p) = (1, 0) must contribute

to the correlator (5.8). It is straightforward to see that in the OPE of the two light

operators OL, ŌL the first (normalized) Virasoro primaries are

O(1,0) =

√
2

N

N∑
r=1

J3
(r) ,

O(2,0) =
1√
6N

N∑
r=1

(
−∂ψαȦ(r)ψ

βḂ
(r) εαβεȦḂ +

1

2
∂XAȦ

(r) ∂X
BḂ
(r) εABεȦḂ

)
.

(5.25)

We can straightforwardly compute the three-point correlators between these primaries

and the heavy or the light operators so to extract the structure constants entering in

the decomposition (5.22). For later convenience, we summarize the results involving

the light and the heavy operators in (5.9) for generic s:

CLLO(1,0)
=

1√
2
, CHHO(1,0)

=
√

2

(
s+

1

2

)
,

CLLO(2,0)
=

1√
6
, CHHO(2,0)

=
(1 + 2s)2

2
√

6
.

(5.26)

Thus one can improve on the decomposition (5.24) by adding the Virasoro blocks for

the operators in (5.25)

G
(
s = 0; z, z̄

)
=

1

|z|
|1− z|2

| ln z|2

(
1− 1

2
ln z +

1

12
(ln z)2 + . . .

)
, (5.27)

which reproduces (5.8) to the leading order in the z̄ → 1 and to second order in z → 1

limits.

We can proceed with the same analysis for the remaining correlator (5.10) in the

untwisted sector. One now has hH = c
6

(
s+ 1

2

)2
, h̄H = c

24 , and we have to use the large

c Virasoro blocks (5.22) for the holomorphic part and (5.23) for the antiholmorphic

one. The contribution of the identity gives

G
(
s; z, z̄

)
= − |1− z|

2

√
z̄ log(z̄)

α z
α−1

2

1− zα
+ · · · , (5.28)
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where α =

√
1− 4

(
s+ 1

2

)2
. Again, the expansion of the expression above for z → 1

already disagrees with the exact result (5.10) at order (1− z) and, as before, we need

to add the Virasoro blocks of other primaries. By using the s-dependent structure

constants in (5.26), we have

G
(
s; z, z̄

)
=
|1− z|2√
z̄ log(z̄)

α z
α−1

2

zα − 1

[
1− 1 + 2s

2
log z − (1 + 2s)2

2α2

(
2 +

1 + zα

1− zα
log zα

)
+ . . .

]
.

(5.29)

As in the s = 0 case, the expression above agrees with the exact result (5.10) up to

order (1− z)2(1− z̄)0 in the z → 1 expansion.

5.2.2 Affine blocks decomposition

In all of our examples the light operator (5.4) used to probe the heavy states is written

just in terms of the elementary fermions of the orbifold CFT. This suggests that it

is convenient to study the decomposition of this type of correlators in terms of affine

blocks related to the SU(2)L current algebra generated by (2.31). As this symmetry

is part of the chiral superalgebra we can use this analysis to argue that the correlators

considered in the previous section are protected by supersymmetry, and then, in the

next section, to match the free CFT result with supergravity calculations. Also, in

contrast to the pure Virasoro case, the results for the affine blocks are exact in c and

so we can use them to understand the effect of resumming the large c limit of the

blocks of all Virasoro primaries: we will see that the singularities due to each Virasoro

block [68] disappear even at large c. This is reminiscent of what happens in some

out-of-time-ordered correlators in SU(N)k WZW models [114].

We start from the simplest example discussed in (5.8) and analyze it in two slightly

different ways. First we observe that the correlator is purely fermionic and that it is

given by a sum over the N strands of correlators that involve non-trivially only the

fields on one strand at a time. We can then effectively restrict to two free complex

fermions on a length one strand, which realize a SU(2)k=1 × U(1) WZW model31 (see

for instance [115]). Note that the SU(2)k=1 factor is identified with the R-symmetry

SU(2)L, and is thus a symmetry of the CFT at a generic point in the moduli space; the

U(1) symmetry, instead, disappears away from the free orbifold point. The non-trivial

4-point function to compute is the one appearing in the first line of (D.6) for s = 0; with

respect to the SU(2)k=1 subsector of the WZW model, all the four operators involved

are SU(2)k=1 primaries of spin 1/2. Though the light operators also carry a U(1)

31This approach is similar to one adopted in [114] in the study of quantum chaos in rational CFT.
Notice however that in that analysis the large central charge limit is obtained by studying the WZW
model SU(N)k in the limit N, k →∞ with N/k fixed, instead of using the symmetric orbifold of many
copies of SU(2)k=1, as relevant for our case.
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charge, the heavy states are scalars under this U(1), and thus the correlator reduces

to a trivial 2-point function in the U(1) sector. This means that it should be possible

to write the amplitude (5.8) by using the classic result of [116] for the affine blocks of

SU(N)k WZW models in the special case where N = 2 and k = 1. This model has

only two primaries (the identity and the spin 1/2 primary) and so the only SU(2)k=1

primary appearing in the OPE of two spin 1/2 operators has to be the identity. So in

this case the affine decomposition (5.21) contains just one term, given by the SU(2)k=1

block of the identity: since SU(2)k=1 is part of the superconformal algebra, this shows

that the amplitude (5.8) can be written in terms of protected quantities.

It is straightforward to check that the hypergeometric describing the SU(N)k blocks

reduce to elementary functions for the identity block with N = 2 and k = 1; by adapting

the results summarized in [115] to our notations we have32

VSU(2)1
= (1− z)−2hL

(
F−1
F−2

)
= (1− z)−2hL

(
z−

1
2

z
1
2

)
, (5.30)

where the component F−1 (F−2 ) contributes if the operators in z1 and z4 (z2 and z4)

have opposite spin. In our case (D.6) F−1 enters in the decomposition of (5.8) and

reproduces directly the whole amplitude.

The simple result in (5.30) suggests that only a subsector of the full SU(2)k=1

affine blocks contributes to our correlator. This is indeed the case and the amplitude is

saturated just considering the affine descendants obtained by acting with the modes of

the currents J3 (and J̃3) on the identity. Focusing on this U(1)L subgroup, the affine

block of the identity reads33

VU(1)(qH , qL, z) = (1− z)−2hLz2qHqL , (5.31)

where the qH and qL are identified with the J3 quantum numbers of the operators

ŌH(r)(z2) and OL(r)(z3) (note that, with this identification, the level of the U(1)L current

algebra is k = 1/2, in the conventions of [65]). Then, by using qH = −1/2 − s and

qL = 1/2, we immediately reproduce not just (5.8) but also (5.10).

The correlators involving states in the twisted sector can also be described in terms

of U(1)L affine blocks. From (D.10a) the generator J3 on a strand of length k splits

into the sum of k U(1)’s labelled by ρ = 0, . . . , k − 1. While the charge of the light

operator is still qL = 1/2 for any ρ, the charge of the heavy operators is ρ-dependent,

as can be seen from (5.16) and (5.19). So the contribution to the block decomposition

of each ρ-sector is given by (5.31) with the values for the q’s that can be read off from

32In order to translate the choice of the zDi ’s of [115] into ours it is sufficient to take zDi=1,3 = zi=1,3,
zD2 = z4, and zD4 = z2; notice also that the blocks in [115] have a different normalization and that the
hypergeometric appearing in Eq.(15.170) of [115] should read 2F1

(
κ+1
κ
, κ−1

κ
, 2κ−N

κ
, x
)
.

33See [65] for a recent discussion of the U(1) blocks in the context of the heavy-light large c limit.
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(5.16) and (5.19); after performing the sum over ρ, one can check that the correlators

(5.17) and (5.20) are reproduced by (5.21) with only the inclusion of the U(1)L affine

block of the identity.

5.3 The gravity picture

Let |s, k〉 denote the pure states generated by the action of the heavy operators on the

conformal invariant vacuum:

|s, k〉 ≡ lim
z,z̄→0

OH(s, k; z, z̄)|0〉 . (5.32)

Since operators of conformal dimension of order c backreact strongly on the geome-

try and generate a non-trivial gravity background, these states admit a dual gravity

description. The four-point correlators computed in the previous section can thus be

thought as two-point functions of light correlators in a non-trivial geometry:

〈s, k|OL(1)ŌL(z)|s, k〉 =
1

|1− z|4hL
G(z, z̄) . (5.33)

In the limit of large central charge this geometry is well approximated by a solution

in supergravity34. In this section we will compute this two-point function at the point

in the CFT moduli space where supergravity is weakly coupled, i.e. higher curvature

corrections are negligible.

This point in moduli space differs from the free orbifold point, where the CFT cor-

relators have been computed. While the light operators we consider are chiral primaries

both in the left and right sector and the heavy operators are chiral at least in the right

sector, their four-point correlators are generically expected to receive corrections when

one deforms the free orbifold theory towards the point in moduli space corresponding

to weakly coupled supergravity. This is made evident by the decomposition (5.21),

which generically contains also non-chiral primaries (and their descendants). For the

particular correlators we consider in this work, we have however shown in Section 5.2.2

that the expansion (5.21) only contains the identity operator and its super-descendants

with respect to a U(1) subgroup of the superconformal algbera. This implies that CFT

and gravity results must agree. In this section we verify this expectation.

34The requirement of large central charge limit is however not sufficient to guarantee the dual bulk
state is described by a supergravity solution, as it’s possible to construct CFT states with no dual
classical geometry even in the c→∞ limit.
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5.3.1 The 6D geometries

As we saw, the D1D5 CFT is dual to a gravity theory on spaces that are asymptoti-

cally35 AdS3×S3. We stress that the S3 factor is necessary to geometrically implement

the SU(2)L × SU(2)R R-symmetry of the CFT. The geometries dual to generic heavy

operators are complicated 6D spaces, which only asymptotically factorize into the prod-

uct of AdS3 and S3. All these geometries are known when the heavy operators are chiral

primaries both on the left and the right sector [32,34,35]; a subset of geometries is known

for heavy operators that are chiral only on the right sector [37,41,50,55,56,58,92,117],

or are not chiral on either sector [118,119].

In this chapter we concentrate on a particularly simple set of BPS states, whose

dual geometries are locally isometric to AdS3 × S3 via a diffeomorphism that does not

vanish at the boundary (which suggests that some transformation also takes places in

the boundary CFT). The 6D Einstein metric for these states can be written in the form

ds2 =
√
Q1Q5 (ds2

AdS3
+ ds2

S3) , (5.34a)

ds2
AdS3

=
dr2

a2k−2 + r2
− a2k−2 + r2

Q1Q5
dt2 +

r2

Q1Q5
dy2 , (5.34b)

ds2
S3 = dθ2 + sin2 θ dφ̂2 + cos2 θ dψ̂2 . (5.34c)

As usual, the coordinates t, y are identified with the time and space coordinates of

the CFT, and we take y to parametrize an S1 of radius Ry; φ̂ and ψ̂ are some linear

combinations of the S3 Cartan’s angles φ, ψ and the CFT coordinates t, y; the partic-

ular linear combination depends on the state and will be given below. This is just a

particular case of the general six-dimensional Einstein metric (3.30). The parameter a

is linked to the D-brane charges and the S1 radius by

a =

√
Q1Q5

Ry
. (5.35)

Finally k is a positive integer which introduces a conical defect in the geometry ds2
AdS3

:

indeed this space represents a Zk orbifold of AdS3.

The gravity solution also includes a RR 2-form, whose field strength is

F3 = 2Q5 (−volAdS3 + volS3) , (5.36a)

volAdS3 =
r

Q1Q5
dr ∧ dt ∧ dy , volS3 = sin θ cos θ dθ ∧ dφ̂ ∧ dψ̂ . (5.36b)

35To describe generic states one should consider the full 10D geometry, which asymptotes AdS3 ×
S3 ×M , with M either T 4 or K3. For the class of states we consider, the M factor is irrelevant and
we restrict to the 6D part of the geometry.
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The 3-form field strength is anti-self-dual in the 6D Einstein metric

∗6 F3 = −F3 , (5.37)

where ∗6 is the Hodge star with respect to ds2 and we choose the orientation εrtyθφ̂ψ̂ =

+1.

The two-charge states

The states |s = 0, k〉 have hH = h̄H = c
24 = N

4 and thus carry D1 and D5 charges but

no momentum charge. The geometries dual to these states were found in [34] and can

be written in the form (5.34) with

φ̂ = φ− t

Ry k
, ψ̂ = ψ − y

Ry k
. (5.38)

Note that the original set of coordinates (t, y, φ, ψ) is subject to the identifications

(t, y, φ, ψ) ∼ (t, y + 2π l Ry, φ+ 2πm, ψ + 2π n) , (5.39)

with l,m, n ∈ Z. Only when k = 1 eq. (5.38) defines a new set of coordinates (t, y, φ̂, ψ̂)

which satisfy analogous identifications

(t, y, φ̂, ψ̂) ∼ (t, y + 2π l Ry, φ̂+ 2πm, ψ̂ + 2π n) , (k = 1) . (5.40)

In this case the coordinate transformation (t, y, φ, ψ)→ (t, y, φ̂, ψ̂) realizes the spectral

flow from the state |s = 0, k = 1〉 to the SL(2,C)-invariant vacuum, whose dual ge-

ometry is (5.34) with the identifications (5.40), i.e. global AdS3 × S3. For k > 1 the

identifications induced on the (t, y, φ̂, ψ̂) coordinates are more complicated:

(t, y, φ̂, ψ̂) ∼
(
t, y + 2π l Ry, φ̂+ 2πm, ψ̂ − 2π

l

k
+ 2π n

)
. (5.41)

The geometry dual to the state |s = 0, k〉 is given by (5.34) expressed in the (t, y, φ, ψ)

coordinate system via (5.38): geometrically it represents a Zk orbifold of AdS3 × S3.

For k > 1 there is no state in the D1D5 CFT dual to the geometry (5.34) with the

identifications (5.40).

The three-charge states

The states |s, k〉 have hH = N
4 + N s(s+1)

k2 , h̄H = N
4 and thus carry momentum np =

h − h̄ = N s(s+1)
k2 . The dual geometries have been found in [92] and are of the form
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(5.34) with

φ̂ = φ− t

Ry k
− s t+ y

Ry k
, ψ̂ = ψ − y

Ry k
− s t+ y

Ry k
(s ∈ Z) . (5.42)

As in the previous example, this coordinate redefinition preserves the simple periodic

identifications only for k = 1. For k > 1 the geometry is again a Zk orbifold of

AdS3×S3, though the orbifold group, determined by the coordinate redefinition (5.42),

acts differently than in the previous example. It is important to keep in mind that

the integers s and k must be such that the momentum on each strand s(s + 1)/k

be integer36. This allows for non-integer s/k; states with s/k integer are particularly

simple, as they are obtained from the 2-charge states with s = 0 by a global chiral

algebra transformation.

We note that setting s = 0 the D1-D5-P states specified by eq. (5.42) reduce to the

D1D5 states corresponding to (5.38). In the following we will thus work with the more

general class of states described by (5.42).

5.3.2 The holographic two-point function

We want to compute the correlator of the light operators OL ≡ O++ and ŌL ≡ O−−

in the states |s, k〉, whose dual geometries are specified by (5.34),(5.36) and (5.42). We

will do this by computing the vev of the operator ŌL in the presence of a source for

the operator OL, and then differentiating the vev with respect to the source to obtain

the two-point correlator:

〈s, k|OL(0, 0)ŌL(t, y)|s, k〉 = i
δ〈ŌL(t, y)〉J
δJ̄L(0, 0)

∣∣∣
J=0

, (5.43)

where J̄L is the source coupling to OL and the correlator is computed on the cylinder

parametrized by t and y. The vev 〈ŌL(t, y)〉J is extracted from the supergravity field

dual to ŌL. The above correlator is in Lorentzian signature and is time-ordered, which

allows Wick rotation to Euclidean signature and comparison with the CFT results.

In 6D37 the fields dual to the chiral primary operators O±± are a scalar w and a

2-form B2, which satisfy a coupled system of differential equations. The linearization

of these equations around the background given by (5.34) and (5.36) gives [44,120]

dB2 − ∗6dB2 = 2wF3 , d ∗6 dw =
Q1

Q5
dB2 ∧ F3 . (5.44)

36This condition only holds when n1 and n5 are coprime and a more general condition applies if n1

and n5 share a common divisor [92]; for simplicity we will assume n1 and n5 coprime in this work.
37When lifted to the 10D IIB duality frame, B2 is the NSNS 2-form and w is the component of the

RR 4-form along the compact space M .
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The factorised form of the background (when expressed in φ̂, ψ̂ coordinates) allows to

reduce the 6D equations (5.44) to two sets of decoupled equations on AdS3 and S3. To

this purpose one can make the Ansatz [53]

w = Y B , B2 = γ (Y ∗AdS3dB −B ∗S3dY ) , (5.45)

where Y is a function of θ, φ̂, ψ̂, B is a function of r, t, y, ∗AdS3 and ∗S3 are the Hodge

duals with respect to ds2
AdS3

and ds2
S3 and γ is a constant that will be determined

shortly. It is straightforward to verify that this Ansatz satisfies (5.44) if Y and B are

eigenfunctions of the respective Laplacians:

2AdS3B = `(`− 2)B , 2S3Y = −`(`+ 2)Y , (5.46)

and if γ = Q5

` . Then Y is a scalar harmonic on S3 of order `, with ` a positive integer;

B is a minimally coupled scalar in AdS3 with mass m2 = `(`− 2).

As the CPO’s O±± form a multiplet with SU(2)L × SU(2)R charges j = j̄ = 1/2,

the gravity dual field must have spin 1, and hence we should look for solutions for B

and Y with ` = 1. This follows from the fact that the above multiplet contains four

elements and forms a vector representation of SO(4) = SU(2) × SU(2). The vev of

O−− is encoded in the component of the field w proportional to the spherical harmonic

Y ++
1 = sin θ eiφ (see (4.33) and (4.34)). Thus we look for a solution of the form

w = B(t, y, r) sin θ eiφ̂ = B(t, y, r) e
−i t

Ryk
−i s t+y

Ryk sin θ eiφ , (5.47)

where B(t, y, r) solves the AdS3 Laplace equation (5.46) with ` = 1. Note that the

phase e
−i s y

Ryk is not globally well-defined on the circle y ∼ y + 2π Ry when s/k is

fractional. Thus, for w to be a globally defined field, we need to require that the

function B(t, y, r) has an appropriate monodromy when going around the S1 to cancel

that of the phase:

B(y, y + 2πRy, r) = B(t, y, r) ei ŝ
k

2π , (5.48)

where ŝ = smod k and we choose 0 ≤ ŝ < k.

Since the non-normalizable and normalizable solutions of the AdS3 wave equation

go like r−1 log r and r−1, the usual AdS/CFT prescription implies that the asymptotic

behaviour of the field w has the form

w ≈ J̄L(t, y) log r + 〈ŌL(t, y)〉J
r

sin θ eiφ . (5.49)

Requiring that w is finite in the interior of space links the normalizable and non-

normalizable terms of the solution. In accordance with (5.43), the two point function

of OL(0, 0) and ŌL(t, y) is given by the vev 〈ŌL(t, y)〉J when the source for OL is a
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delta-function: J̄L(t, y) = δ(t, y).

In summary, one looks for a solution of the equation (5.46) for B with ` = 1 which

is regular in the bulk, has the monodromy (5.48), and with the leading behavior at

large r

B(t, y, r) ≈ δ(t, y)
log r

r
+ b1(t, y)

1

r
. (5.50)

AdS solutions with monodromies like in (5.48) are not usually considered in the litera-

ture. In Appendix E we will derive the solution of the wave equation in AdS3/Zk with

the boundary conditions prescribed above by generalising the computations in [121,122].

One finds

b1(t, y) = −i
e

iŝ y
Ry k

e
i t
Ry k − e−i t

Ry k

 e
i t−y
Ry

e
i t−y
Ry − 1

e
−iŝ t

Ry k +
1

e
i t+y
Ry − 1

e
iŝ t
Ry k

 . (5.51)

The two-point correlator of the light operators in the state |s, k〉 is given by

〈s, k|OL(0, 0) ŌL(t, y)|s, k〉 = i b1(t, y) e
−i t

Ryk
−i s t+y

Ryk . (5.52)

To compare the bulk result (5.52) with the CFT, one should transform from the

Minkowskian cylinder coordinates t and y to the Euclidean plane coordinates38 z, z̄:

z = e
i t+y
Ry , z̄ = e

i t−y
Ry , (5.53)

and remember that

OL(z, z̄) = (zz̄)−1/2OL(t, y) , (5.54)

(and the same for ŌL) since OL(z, z̄) is a primary of dimension hL = h̄L = 1/2.

The coordinate transformation above is just (2.3) in Lorentzian signature with the

identifications39 τ ≡ t/Ry and σ ≡ y/Ry. The gravity result for the correlator on the

plane is then

〈s, k|OL(1) ŌL(z, z̄)|s, k〉 =
z
ŝ−s
k

|z| |1− z|2
1− |z|2(1− ŝ

k
) + z̄ (|z|−2 ŝ

k − 1)

1− |z|
2
k

. (5.55)

One can check that when s = kp (and thus ŝ = 0) the previous result reduces to the

CFT expression (5.17), and when s = kp− 1 (and thus ŝ = k − 1) one recovers (5.20),

up to overall numerical coefficients that have not been kept in the gravity derivation.

38This is different from what is done when the thermal results are extracted from the Euclidean
correlators. Of course in the thermal case, one needs to perform the Wick rotation so as to identify the
compact coordinate with time and, on the bulk side, the four point correlators are compared with the
wave equation on a BTZ black hole.

39Correctly, the periodicity of the CFT σ coordinate, σ ∼ σ + 2π, corresponds to the periodicity
y ∼ y + 2πRy of the spacetime coordinate y along the S1.
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5.4 HH-LL 4-point functions: discussion and outlook

It is well known that symmetric orbifolds provide a prototypical example of CFTs that

have a sparse spectrum, which is a necessary condition to have a dual gravitational

description in terms of a string or supergravity theory [123]. We focused on the best

known example of such orbifold theories, the D1D5 CFT at the free point. In Section 5.1

we calculated on the CFT side a very special class of 4-point correlators among BPS

operators, where two states are heavy (i.e. have conformal dimension of order c), while

the other two are light (i.e. their conformal dimension is of order 1). These correlators

are essentially combination of the free-fermion result and, in the (OHOH)(OLOL) OPE,

are completely saturated by the affine identity block of a U(1) subgroup of the SU(2)

symmetry of the theory. This suggests that they are protected by supersymmetry and

motivates the supergravity analysis of Section 5.3. Again thanks to the simplicity of

our external states, also the gravity calculation is easy and, in this case, the basic

ingredient is obtained by studying the scalar wave equation in AdS3/Zk. Then in order

to obtain the full correlator it is important to know how the 3D result is uplifted to

the full 10D geometry. In all examples under analysis, we find agreement with the free

CFT result, even if this description is valid in a different point of the moduli space,

thus confirming the expectations based on supersymmetry as mentioned above.

Of course, in the Euclidean case, the correlators we studied are singular only in the

OPE limits. One of the main features of our result is that, for the whole correlator,

this holds even at the leading order in the large c limit, while, in the same limit, the

contribution of the Virasoro identity block in the (OHOH)(OLOL) OPE develops spu-

rious singularities [66, 68]. In other words, the c → ∞ limit of the correlators studied

here is not captured by the contribution of the identity Virasoro block in the heavy-

light channel. This is reflected by the gravity calculations: the 2-point functions of the

light operators in the near-horizon limit of the Strominger-Vafa black hole (which is

the extremal BTZ) captures just the identity Virasoro block, while the same calcula-

tion in the microstate geometry dual to the heavy state reproduces the whole 4-point

correlators, including the contributions of the higher order Virasoro primaries. This

supports the intuition that the black hole geometry describes the correlators in a sta-

tistical ensemble, while each individual microstate yields correlators that deviate from

the statistical answer before one reaches singularities that are usually related to the

presence of a horizon.

In our case, due to the simple form of the heavy states, these deviations are present

even at distances larger than the Schwarzschild radius, and in particular near the

AdS boundary. On the CFT side, this means that, in the (HH)(LL) OPE, there are

contributions of non-trivial Virasoro primaries with small conformal dimension (order

1). The pattern discussed above is different from the one advocated in [68], where it
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is suggested that quantum (i.e. 1/c corrections) are needed to resolve the spurious

singularities of the statistical/black hole result. Thus it is natural to ask whether the

regularity of our Euclidean correlators in the large c regime is due to some peculiar

feature of the D1D5 CFT under analysis and/or is a consequence of the very special

operators considered. We believe that this is actually a general property as argued

below.

The absence of spurious singularities at finite values of the central charge c is a

direct consequence of the convergence of the OPE expansion in unitary CFT and of

the basic properties of the Hilbert space structure of the spectrum [124]. In a nutshell,

in the radial quantization, one can separate the four operators in the correlator by a

sphere of radius r, with |z4| < |z3| < r < |z2| < |z1|. Then the convergence of the OPE

ensures that the operators O1 and O2 in the external region produce a new state |φe〉
on the sphere and the same happens, in the internal region, for the operators O3 and

O4 that produce |φi〉 (of course if z1 → ∞, z2 = 1 > z3 > z4 = 0, |φi〉 depends on

z = 1 − z3). So the 4-point correlator reduces to the scalar product 〈φe|φi(z)〉 which

is finite for any value of z in the interval 0 < |z| < 1. In [68] it was noted that it is

not straightforward to take the c → ∞ limit in this argument if one identifies O1, O2

with the heavy operators and O3, O4 with the light ones. We can see this directly in

the simplest one of our examples, i.e. the correlator with the operators (5.4) and (5.6).

The OPE between the light operators reads

OL(w)ŌL(0) =
1

|w|2
+

1

N

∑
r

(
J3

(r)

w̄
+
J̃3

(r)

w

)
+

1

N

∑
r 6=s

OL(r)O
L
(s) + . . . (5.56)

In the large c limit, normally one would discard the contribution of the terms with the

currents, as their norm is of order 1/N . However the OPE between the heavy operators

produces terms, again proportional to the currents, that are divergent in the N → ∞
limit

OH(w)ŌH(0) =
1

|w|2hH

(
1 + w

∑
r

J3
(r) + w̄

∑
r

J̃3
(r) + . . .

)
. (5.57)

Such non-normalizable terms can combine with the currents that appear in (5.56) to

give non-negligible contributions to the block decomposition of the correlator; moreover

their presence invalidates the regularity argument based on the existence of a well-

defined scalar product, and is probably responsible for the singular behaviour of the

heavy-light Virasoro blocks.

At the level of the correlators one can repeat the same derivation focusing on the

OPE channel where the light operators are close to the heavy ones. In this case the

intermediate states are normalizable even in the c → ∞ limit and so the argument

discussed above shows that the large c Euclidean correlators should not have spurious
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singularities. Of course this does not provide any information on the identity Vira-

soro block nor other (HH)(LL) blocks because they do not appear in the (HL)(HL)

decomposition. However once the regularity of the large c limit of the correlators is

established, we know that there is an infinite number of Virasoro primaries contributing

to the (HH)(LL) OPE. In the simple cases considered in this work, it turns out that

these primaries are protected, as they are affine descendants of the identity operator.

Thus the correlator we compute at the CFT orbifold point reproduces the one ex-

tracted from the dual geometry: in these instances then correlators are regular already

at the level of supergravity. In general the OPE argument in the (HL)(HL) channel

predicts that correlators be regular in the large c limit at a generic point in the CFT

moduli space. We do not expect, however, that all the operators ensuring the absence

of spurious singularities at large c will be captured in the supergravity approximation.

It would be an important progress to identify explicitly the CFT operators that are

relevant to the (HH)(LL) decomposition of a more general correlator. This could help

to understand from a CFT perspective what contributions survive in the large c limit

beside those that reproduce the thermal behaviour.

It is of course very interesting to elucidate the meaning of this pattern on the dual

gravity side, where the main question is whether there are effects that modify the

standard general relativity picture at the scales of Schwarzschild radius Rs in the limit

where Rs is large in Planck units. Scenarios that fall in this class are the fuzzball [14,30]

and the firewall [15] proposals. In situations that can be studied within the AdS/CFT

duality, one could rephrase these ideas by saying that the heavy-light correlators, in

a pure heavy state should differ from the ones calculated in a statistical ensemble

even in the c → ∞ limit. This is exactly the behaviour we observe in the simple

correlators analyzed in this work. Of course, even if this is a general pattern as suggested

above, there are several points that need to be understood in order to have a complete

picture on the gravitational side. These include the following questions: what are

the non-trivial operators that generically appear in the (HH)(LL) decomposition of

a typical heavy states? Is it possible to associate a scale in the radial direction to

these contributions and show it is of the same order of Rs? For which correlators

are the contributions from non-trivial conformal blocks negligible and in which cases

is the result well approximated by the thermal correlator? Posing such questions in

this framework might help to clarify some aspects of the “fuzzball complementarity”

conjecture [12,125].

We conclude by discussing some less speculative and more concrete possible devel-

opments. Of course it would be interesting to consider 4-point correlators that are not

related by a change of coordinates to 2−point functions in AdS3/Zk. In the same spirit,

also changing the form of the light operators could provide new information on how

different objects probe the heavy backgroud. Both these generalizations would allow
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to compare the bulk and the CFT results in examples with a richer structure. Finally

it would be interesting to analyze heavy-light 4-point correlators in other CFTs that

have a holographic interpretation at large c, so as to check or disprove the generality

of the pattern suggested by the analysis for the D1D5 CFT.
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Chapter 6

More correlators in the twisted

sector and supersymmetric Ward

identities

The aim of this chapter is that of providing a check of the CFT techniques developed

up to this point giving alternative derivations of results known in the literature. In

particular we want to compute 4-point functions involving bosonic or fermionic40 light

operators and in which the heavy states are given by twist fields. To this aim we will

make use of both the bosonization technique presented in section (2.4) and the mode

expansions and mode algebra in the twisted sector presented in section (2.3.1). The

correlators we want to compute are the ones contained in [126], which are also used as

building blocks for the analysis performed in [127].

In addition to the aforementioned points, we also write the supersymmetry trans-

formations between the bosons and fermions of the D1D5 CFT at the free orbifold

point, writing also the supersymmetric Ward identities that connect correlators with

light operators given in terms of bosons to correlators with operators given in terms of

fermions. Always working at the free orbifold point, we are able to explicitly compute

the correlators connected by the Ward identities and to check that these are indeed

verified.

6.1 Fermionic light operators

In the first correlator we consider the light operators are two of the CFT fermions,

ψ11̇ and ψ22̇, and we compute their 4-point function with two heavy operators as their

40In a little abuse of language we call “bosonic” and “fermionic” the operators written in terms of
free bosons or free fermions respectively, even though e.g. composite operators given by two fermions
are indeed bosons.
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2-point function between asymptotic states |++〉k, generated starting from the NS

vacuum |0〉NS by acting with the operator in (2.116), which we will call

O++
k (z, z̄) ≡

k−1∏
ρ=0

ei(− ρk+ 1
2)(Hρ(z)+Kρ(z)+H̃ρ(z̄)+K̃ρ(z̄)). (6.1)

To be precise, the one above is the composition of the twist operator Σ−
k−1

2
,− k−1

2 with

(tensor product of k times) the operator that implements the spectral flow |0〉NS →
|++〉k=1. We consider the light operators with specific copy indices in the (r) basis

so that we have light operators ψ11̇
(r) and ψ22̇

(s) acting nontrivially only on one of the

CFT copies glued together into the length-k strand by the twist field41. The correlator

explicitly reads

GF (z1, z2) = k〈+ + |ψ11̇
(r)(z1)ψ22̇

(s)(z2)|++〉k

= lim
u1→∞
u2→0

u2hH
1 ū2h̄H

1 〈
(
O++
k

)†
(u1, ū1)ψ11̇

(r)(z1)ψ22̇
(s)(z2)O++

k (u2, ū2)〉, (6.2)

where in the last line the 4-point function is computed in the tensor product of k copies

of the NS vacuum |0〉NS. hH and h̄H are the left and right conformal dimensions of

O++
k , which can be computed by looking at (6.1) as

hH = h̄H = 2

k−1∑
ρ=0

1

2

(
−ρ
k

+
1

2

)2

=
k2 + 2

12k
. (6.3)

The first thing we do is performing the (r)→ ρ change of basis inverting the relations

in (2.57), which gives

GF (z1, z2) =
1

k

k−1∑
ρ1,ρ2=0

k〈+ + |ψ+1̇
ρ1

(z1) e−2πi
rρ1
k ψ−2̇

ρ2
(z2) e2πi

sρ2
k |+ +〉k. (6.4)

Looking at the correlator above, we see that (by angular momentum conservation)

we have a nonzero result only if the fermions can have nontrivial contractions among

themselves, i.e. if ρ1 = ρ2, so

GF (z1, z2) =
1

k

k−1∑
ρ=0

e2πi(s−r) ρ
k k〈+ + |ψ+1̇

ρ (z1)ψ−2̇
ρ (z2)|+ +〉k. (6.5)

41There is another abuse of language here: light operators were previously defined as sums over
operators acting nontrivially on a different CFT copy in order to fulfil the orbifold requirement of
symmetry under the exchange of any two copies. In this section instead we consider operators acting
only on one specific copy : rigorously this would be forbidden by the orbifold CFT constraint, but we
will proceed anyway, keeping in mind that at this stage this is only, possibly, just a building block for
a more meaningful quantity we may want to compute. The operators may be called light anyway, as
their conformal dimension is of order ∼ N0
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We are ready to compute the 4-point function within the sum. The heavy operators

have both a holomorphic and a antiholomorphic part: the correlator will be a product

of a holomorphic and an antiholomorphic term, with the latter being given just by

the contraction of the heavy operators between themselves (the dependence on u1, u2

and their complex conjugates must of course disappear in the u1 → ∞ and u2 → 0

limit). Using the bosonized form (2.110) of the fermions, the complete expression of

the correlator in the sum is

k〈+ + |ψ+1̇
ρ (z1)ψ−2̇

ρ (z2)|+ +〉k =

= − lim
u1→∞
u2→0

u2hH
1 ū2h̄H

1 〈e−i(− ρk+ 1
2)(Hρ(u1)+Kρ(u1))eiHρ(z1)e−iHρ(z2)ei(− ρk+ 1

2)(Hρ(u2)+Kρ(u2))〉×

× 〈e−i(− ρk+ 1
2)(H̃ρ(ū1)+K̃ρ(ū1))ei(− ρk+ 1

2)(H̃ρ(ū2)+K̃ρ(ū2))〉×

×
k−1∏
ρ′=0
ρ′ 6=ρ

[
〈e−i

(
− ρ
′
k

+ 1
2

)
(Hρ′ (u1)+Kρ′ (u1))

e
i
(
− ρ
′
k

+ 1
2

)
(Hρ′ (u2)+Kρ′ (u2))〉×

× 〈e−i
(
− ρ
′
k

+ 1
2

)
(H̃ρ′ (ū1)+K̃ρ′ (ū1))

e
i
(
− ρ
′
k

+ 1
2

)
(H̃ρ′ (ū2)+K̃ρ′ (ū2))〉

]
.

(6.6)

The above object may look complicated, but in fact is just the product of simple

building blocks: due to the nature of the heavy operator, the full object is a product

over ρ′ = 0, . . . , k − 1 and has been split into the ρ′ = ρ term times all the other ones

(which are all the same, because the fermions appear only for ρ′ = ρ). Everything

was then also split between an holomorphic and an antiholomorphic part, with the

fermions appearing only in the first, being holomorphic (the antiholomorphic part of

the ρ′ = ρ term actually reconstructs a full product over all values of ρ′). Performing

all the possible contractions using the rules (2.105) for the bosonized fields we get

k〈+ + |ψ+1̇
ρ (z1)ψ−2̇

ρ (z2)|+ +〉k =

= −z−1
12 lim

u1→∞
u2→0

u2hH
1 ū2h̄H

1

(
z1 − u2

z2 − u2

)(− ρk+ 1
2)(u1 − z2

u1 − z1

)(− ρk+ 1
2)
×

× u−2(− ρk+ 1
2)

2

12 ū
−2(− ρk+ 1

2)
2

12

k−1∏
ρ′=0
ρ′ 6=ρ

u
−2
(
− ρ
′
k

+ 1
2

)2

12 ū
−2
(
− ρ
′
k

+ 1
2

)2

12

= −z−1
12

(
z1

z2

)(− ρk+ 1
2)
,

(6.7)
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where we defined u12 ≡ u1 − u2 and used the fact that

u
−2(− ρk+ 1

2)
2

12 ū
−2(− ρk+ 1

2)
2

12

k−1∏
ρ′=0
ρ′ 6=ρ

u
−2
(
− ρ
′
k

+ 1
2

)2

12 ū
−2
(
− ρ
′
k

+ 1
2

)2

12 =

= u
−2
∑k−1
ρ′=0

(
− ρ
′
k

+ 1
2

)2

12 ū
−2
∑k−1
ρ′=0

(
− ρ
′
k

+ 1
2

)2

12

= u−2hH
12 ū−2h̄H

12 .

(6.8)

The full correlator is then computed performing the sum over ρ,

GF (z1, z2) = −1

k

1

z12

(
z1

z2

)1/2 k−1∑
ρ=0

[(
z2

z1

)1/k

e2πi s−r
k

]ρ

= −1

k

1

z12

(
z1

z2

)1/2 1−
(
z2
z1

)
e2πi(s−r)

1−
(
z2
z1

)1/k
e2πi s−r

k

.

(6.9)

Let’s now change coordinates as

zi = eiwi . (6.10)

We have

GF (w1, w2) =

(
dz1

dw1

)1/2( dz2

dw2

)1/2

G(z1(w1), z2(w2))

= − e
i
(
w1−w2

2k
+π
k

(r−s)
)

2k sin
(
w1−w2

2k + π
k (r − s)

) , (6.11)

which agrees with equation (A.40) of [126], upon defining

w ≡ w1 − w2 + 2π(r − s), w̄ ≡ w̄1 − w̄2 + 2π(r − s). (6.12)

The extra sign we get is accounted for by the fact that in (A.40) of [126] the correlator

considered is defined with the light operators in the opposite order.

6.2 Bosonic light operators

In the previous chapters we studied correlators (3- and 4-point functions) involving light

operators written in terms of the free fermions of the theory at the orbifold point, but

nothing prevents us from considering light operators composed of the bosons. Although

this may be less relevant for the direct study of microstate geometries (in which the

deviations from AdS3 × S3 are captured by the VEVs of operators written in terms of

the fermions), the 4-point functions have their own relevance. This also allows us to

check the technology developed in Chapter 2 for the bosons in the twisted sector. We
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consider again a strand of length k with the k length-1 bosonic vacua glued together

by the twist operators σXk (z) and σ̃Xk (z̄) (these are heavy operators because they are

written as products over copies, as in (2.82)). The light bosonic operators are(
∂X11̇

(r)∂̄X
11̇
(r)

)
(z, z̄),

(
∂X22̇

(r)∂̄X
22̇
(r)

)
(z, z̄), (6.13)

where as a first step in analogy with the previous section we consider operators acting

on one single CFT copy (in the (r) basis, with r = 1, . . . , k). The correlator is

GBr,s(zi, z̄i) = k〈0|
(
∂X11̇

(r)∂̄X
11̇
(r)

)
(z1, z̄1)

(
∂X22̇

(s)∂̄X
22̇
(s)

)
(z2, z̄2)|0〉k. (6.14)

In order to compute GB we change from the (r) to the ρ basis inverting (2.52), we

use the the mode expansions (2.54) and then we perform the sums over ρ. The full

correlator is the product of a holomorphic and a antiholomorphic part, and we will

focus only on the holomorphic one, the other being obtained from it just by sending

zi → z̄i,

GBr,s(zi, z̄i) = GBr,s(zi) ḠBr,s(z̄i). (6.15)

The key point to compute the correlator is the action of the modes of the operators on

the twisted vacuum states: as we see from (2.67) apart from the shift in the modes, this

is analogous to what happens in the untwisted sector, with positive modes annihilating

the vacuum states. Changing from the (r) to the ρ basis the left part of the correlator

reads
GBr,s(zi) = k〈0|∂X11̇

(r)(z1)X22̇
(s)(z2)|0〉k

=
1

k

k−1∑
ρ1,ρ2=0

e2πi
rρ1
k e−2πi

sρ2
k k〈0|∂X11̇

ρ1
(z1)∂X22̇

ρ2
(z2)|0〉k

=
1

k

k−1∑
ρ=0

e2πi r−s
k

ρ
k〈0|∂X11̇

ρ (z1)∂X22̇
ρ (z2)|0〉k,

(6.16)

where in the last step we used the fact that if the bosons act on different CFT copies

(either in the (r) or in the ρ basis) the correlator is zero. Expanding the bosons in
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modes we get that the correlator inside the sum reads

k〈0|∂X11̇
ρ (z1)∂X22̇

ρ (z2)|0〉k =

=
∑
n1∈Z

n1− ρk>0

∑
n2∈Z

n2+ ρ
k
<0

z
−n1−1+ ρ

k
1 z

−n2−1− ρ
k

2 k〈0|α11̇
ρ,n1− ρk

, α22̇
ρ,n2+ ρ

k
|0〉k

=
∑
n1∈Z

n1− ρk>0

∑
n2∈Z

n2+ ρ
k
<0

z
−n1−1+ ρ

k
1 z

−n2−1− ρ
k

2 k〈0|
[
α11̇
ρ,n1− ρk

, α22̇
ρ,n2+ ρ

k

]
|0〉k

= (z1z2)−1

(
z1

z2

)ρ/k +∞∑
n=1

(
z2

z1

)n (
n− ρ

k

)

= (z1z2)−1

(
z1

z2

)ρ/k
(
z2
z1

)
[
1−

(
z2
z1

)]2 −
ρ

k

(
z2
z1

)
1−

(
z2
z1

)
 ,

(6.17)

where we used that

+∞∑
n=1

An =
A

1−A
, (6.18a)

+∞∑
n=1

nAn = A∂A

[
+∞∑
n=1

An

]
=

A

(1−A)2
. (6.18b)

The total correlator reads

GBr,s(zi) =
1

k
(z1z2)−1


(
z2
z1

)
[
1−

(
z2
z1

)]2

k−1∑
ρ=0

[
e2πi r−s

k

(
z1

z2

)1/k
]ρ

+

−1

k

(
z2
z1

)
1−

(
z2
z1

) k−1∑
ρ=0

ρ

[
e2πi r−s

k

(
z1

z2

)1/k
]ρ .

(6.19)

We can split GBr,s(zi) into the sum of two terms corresponding to the terms in the curly

brackets,

GBr,s(zi) = GBr,s,1(zi) + GBr,s,2(zi), (6.20)

and using that

k−1∑
ρ=0

Aρ =
1−Ak

1−A
, (6.21a)

k−1∑
ρ=0

ρAρ = A∂A

k−1∑
ρ=0

Aρ

 =
1

(1−A)2

(
A− kBk + (k − 1)Bk+1

)
, (6.21b)
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we get that

GBr,s,1(zi) =
1

k
(z1z2)−1

(
z2
z1

)
[
1−

(
z2
z1

)]2

1− e2πi(r−s)
(
z1
z2

)
1− e2πi r−s

k

(
z1
z2

)1/k

=
1

k
(z1z2)−1 x−1

(1− x−1)2

1− x
1− x1/k

, (6.22a)

GBr,s,2(zi) = − 1

k2
(z1z2)−1

(
z2
z1

)
1−

(
z2
z1

) 1(
1− e2πi r−s

k

(
z1
z2

)1/k
)2×

×

{
e2πi r−s

k

(
z1

z2

)1/k

− k e2πi(r−s) z1

z2
+ (k − 1) e2πi(r−s) k+1

k

(
z1

z2

) k+1
k

}

= − 1

k2
(z1z2)−1 x−1

1− x−1

1(
1− x1/k

)2 {x1/k − kx+ (k − 1)x1+ 1
k

}
(6.22b)

where x ≡ e2πi(r−s)z1/z2. The total result simplifies into

GBr,s(zi) =
1

k2
(z1z2)−1 1(

x1/2k − x−1/2k
)2

=
1

k2
(z1z2)−1 1(

e2πi r−s
2k ei

w1−w2
2k − e−2πi r−s

2k e−i
w1−w2

2k

)2 ,
(6.23)

and changing coordinates as zi → wi using (6.10) we get

GBr,s(wi) =

(
dz1

dw1

)(
dz2

dw2

)
GBr,s(zi(wi)) =

=
1

4k2

1

sin2
(
w1−w2

2k + 2π
2k (r − s)

) . (6.24)

The antiholomorphic part is just the complex conjugate of this, so the complete corre-

lator in wi coordinates is

GBr,s(wi, w̄i) =
1

4k2 sin2
(
w1−w2

2k + 2π
2k (r − s)

) 1

4k2 sin2
(
w̄1−w̄2

2k + 2π
2k (r − s)

) , (6.25)

which agrees42 with (A.33) of [126].

In order to obtain something that doesn’t contain free copy indices, we have to sum

over all the copies, which boils down to a sum over the difference r − s = 0, . . . , k − 1:

this operation is performed between (4.9) and (4.11) of [126] and it’s rather difficult. In

the following, we will take another path, passing to the ρ basis and doing the sum over

42Notation: we label the length of a strand as k while in [126] it’s labelled as n. What is called k
in [126] is the difference r − s.
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r as our first step. Summing over copies also satisfies the orbifold CFT requirement of

symmetry among all the copies, so the object we compute is actually a sensible quantity

to consider. Let’s consider the complete correlator

GB(zi, z̄i) = k〈0|
(
∂X11̇∂̄X11̇

)
(z1, z̄1)

(
∂X22̇∂̄X22̇

)
(z2, z̄2)|0〉k, (6.26)

with implicit sums over the k copies,

(
∂XAȦ∂̄XAȦ

)
(z, z̄) =

k∑
r=1

∂XAȦ
(r) (z)∂̄XAȦ

(r) (z̄). (6.27)

Again we can perform the (r) → ρ change of basis, but this time the sum over (r)

makes the phases disappear,

(
∂X11̇∂̄X11̇

)
(z, z̄) =

1

k

k∑
r=1

k−1∑
ρ1,ρ2=0

e2πi
ρ1−ρ2
k

r∂X11̇
ρ1

(z)∂̄X11̇
ρ2

(z̄)

=
1

k

k−1∑
ρ1,ρ2=0

∂XAȦ
ρ1

(z)∂̄X11̇
ρ2

(z̄) k δρ1,ρ2

=
k−1∑
ρ=0

∂X11̇
ρ (z)∂̄X11̇

ρ (z̄), (6.28)

(
∂X22̇∂̄X22̇

)
(z, z̄) =

k−1∑
ρ=0

∂X22̇
ρ (z)∂̄X22̇

ρ (z̄). (6.29)

The correlator becomes

GB(zi, z̄i) =
k−1∑

ρ1,ρ2=0

k〈0|∂X11̇
ρ1

(z1)∂X22̇
ρ2

(z2)|0〉k k〈0|∂̄X11̇
ρ1

(z̄1)∂̄X22̇
ρ2

(z̄2)|0〉k

=

k−1∑
ρ=0

k〈0|∂X11̇
ρ (z1)∂X22̇

ρ (z2)|0〉k k〈0|∂̄X11̇
ρ (z̄1)∂̄X22̇

ρ (z̄2)|0〉k

≡
k−1∑
ρ=0

GBρ (zi)GBρ (z̄i),

(6.30)

where we called GBρ (zi) and GBρ (z̄i) respectively the holomorphic and the antiholomor-

phic parts of the object within the sum. Following the same steps used to compute the
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first bosonic correlator we get

GB(zi) ≡ k〈0|∂X11̇
ρ (z1)∂X22̇

ρ (z2)|0〉k

= (z1z2)−1

(
z1

z2

)ρ/k−ρ
k

(
z2
z1

)
1−

(
z2
z1

) +

(
z2
z1

)
[
1
(
z2
z1

)]2

 ,
(6.31)

while the antiholomorphic part is obtained taking the above and replacing zi → z̄i. In

total we get

GB(zi, z̄i) =
1

|z1z2|2
k−1∑
ρ=0

∣∣∣∣z1

z2

∣∣∣∣ 2ρ
k

−ρ
k

(
z2
z1

)
1−

(
z2
z1

) +

(
z2
z1

)
[
1−

(
z2
z1

)]2


−ρ

k

(
z̄2
z̄1

)
1−

(
z̄2
z̄1

) +

(
z̄2
z̄1

)
[
1−

(
z̄2
z̄1

)]2

 .

(6.32)

If we define

z ≡ z2

z1
, z̄ ≡ z̄2

z̄1
, (6.33)

the result above is more usefully rewritten as

GB(z, z̄) =
1

|z1z2|2
|z|2

|1− z|2

 1

|1− z|2
k−1∑
ρ=0

|z|−
2ρ
k − 1

k

(
1

1− z
+

1

1− z̄

) k−1∑
ρ=0

ρ|z|−
2ρ
k +

+
1

k2

k−1∑
ρ=0

ρ2|z|−
2ρ
k

 .

(6.34)

The prefactor 1/|z1z2|2 is compensated by the Jacobians when passing to the wi coor-

dinates. Looking at (4.9) and (4.11) of [126] we see that the heavy state there is more

complicated: what we are computing corresponds to the generic term of their sum, and

to our aims it’s just sufficient to ignore the sum over n (more precisely, we will ignore

what in their notation is 1/N
∑+∞

n=1 nNn · · · ), so we get that the analogous of GB(wi)

is

GBBKS(w, w̄) = − C

16k2 sin2
(
w−w̄

2

) [ 1

sin2
(
w
2

) +
1

sin2
(
w̄
2

) − 2 sin
(
w−w̄

2

)
k tan

(
w−w̄

2k

)
sin
(
w
2

)
sin
(
w̄
2

)] .
(6.35)

The original definition of w and w̄ is w ≡ w1 − w2 + 2π(r − s) and w̄ ≡ w̄1 − w̄2 +

2π(r − s) but since the sums over the copies have already been done nothing in the

above expression should depend on r and s. This is indeed the case: the dependence
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disappears from the combination w − w̄ as we have that

sin2
(w

2

)
= sin2

(
w1 − w2

2
+ π(r − s)

)
= sin2

(
w1 − w2

2

)
,

sin
(w

2

)
sin
( w̄

2

)
= sin

(
w1 − w2

2

)
sin

(
w̄1 − w̄2

2

)
.

(6.36)

Using (6.10) and (6.33) we have

z = e−i(w1−w2) = e−iw, z̄ = ei(w̄1−w̄2) = eiw̄, (6.37)

and the result is rewritten as

GB(w, w̄) =
|z|2

|1− z|2

 1

|1− z|2
k−1∑
ρ=0

|z|−
2ρ
k − 1

k

(
1

1− z
+

1

1− z̄

) k−1∑
ρ=0

ρ|z|−
2ρ
k +

+
1

k2

k−1∑
ρ=0

ρ2|z|−
2ρ
k


z=e−iw

z̄=eiw̄

(6.38)

Performing the sums is not difficult, but the result is not illuminating: we can make

Mathematica do it, write the results in the w coordinates and compare the expressions,

the final answer being that GB(w, w̄) and GBBKS(w, w̄) are in agreement.

6.3 Connecting fermionic and bosonic operators: Ward

identities

In addition to conformal symmetry, the D1D5 CFT also enjoys supersymmetry, with

transformations connecting the bosons and the fermions of the theory. This fact can be

used to derive Ward identities relating 4-point functions with fermionic light operators

to 4-point functions with bosonic light operators. To start, let’s consider a single strand

of length 1 (we will omit the copy label in the following) and let’s define the left and

right supercurrents,

GαA(z) ≡
(
∂XAȦψ

αȦ
)

(z), G̃α̇A(z) ≡
(
∂̄XAȦψ̃

α̇Ȧ
)

(z̄), (6.39)

where the indices of the bosons have been lowered43 using εAB and εȦḂ,

∂XAȦ = εABεȦḂ ∂X
BḂ, ∂̄XAȦ = εABεȦḂ ∂̄X

BḂ. (6.40)

43For convenience, notice that the operation of raising the indices works the same way,

∂XAȦ = εABεȦḂ ∂XBḂ , ∂̄XAȦ = εABεȦḂ ∂̄XBḂ .

129



CHAPTER 6. MORE CORRELATORS IN THE TWISTED SECTOR AND
SUPERSYMMETRIC WARD IDENTITIES

The action of the supercurrent G2
A(w) on a fermion ψ1Ȧ(z) is a contour integral in

which w is taken on a counter-clockwise path around z,∮
w∼z

dw

2πi
G2
A(w)ψ1Ȧ(z) =

∮
w∼z

dw

2πi
∂XAḂ(w)ψ2Ḃ(w)ψ1Ȧ(z)

=

∮
w∼z

dw

2πi
∂XAḂ(w)

(
− εḂȦ

w − z
+ [reg.]

)
= −∂XAḂ(z) εḂȦ,

(6.41)

where the SU(2)L indices for the supercurrent and for the fermion were chosen so that

they have a nontrivial OPE (we used (2.5a)) and the result follows from the fact that

∂XAȦ(w) has no singularities at w = z1, so the only singular term is the one brought by

the OPE of the fermions. An analogous fact holds for the antiholomorphic supercurrent

and fermions, ∮
w̄∼z̄

dw̄

2πi
G̃2̇
A(w̄)ψ̃1̇Ȧ(z̄) = −∂̄XAḂ(z̄) εḂȦ. (6.42)

These are the supersymmetry transformations of the fields. Looking at the previous

sections, we see that we can apply this to transform the light bosonic operators into

the light fermionic ones, as∮
w∼z

dw

2πi

∮
w̄∼z̄

dw̄

2πi
G2
A(w)G̃2̇

B(w̄)ψ1Ċ(z)ψ̃1̇Ḋ(z̄) =

= −
∮
w∼z

dw

2πi
G2
A(w)ψ1Ċ(z)

∮
w̄∼z̄

dw̄

2πi
G̃2̇
B(w̄)ψ̃1̇Ḋ(z̄)

= −∂XAȦ(z) εȦĊ ∂̄XBḂ(z̄) εḂḊ,

(6.43)

which can be recast into

∂XAȦ(z) ∂̄XBḂ(z̄) = −εȦĊεḂḊ
∮
w∼z

dw

2πi

∮
w̄∼z̄

dw̄

2πi
G2
A(w)G̃2̇

B(w̄)ψ1Ċ(z)ψ̃1̇Ḋ(z̄).

(6.44)

The light operators considered in the previous sections can readily be obtained by

choosing the appropriate values for the indices of the bosons,

∂X11̇(z)∂̄X11̇(z̄) = ∂X22̇(z)∂̄X22̇(z̄)

= −
∮
w∼z

dw

2πi

∮
w̄∼z̄

dw̄

2πi
G2

2(w)G̃2̇
2(w̄)ψ11̇(z)ψ̃1̇1̇(z̄).

(6.45)

Always working on a strand of length 1 and suppressing the copy indices for sim-

plicity, we have that the analogous to the correlator with bosonic light operators (6.26)
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is

〈H|
(
∂X11̇∂̄X11̇

)
(z1, z̄1)

(
∂X22̇∂̄X22̇

)
(z2, z̄2)|H〉 =

= 〈H|
(
∂X22̇∂̄X22̇

)
(z1, z̄1)

(
∂X11̇∂̄X11̇

)
(z2, z̄2)|H〉 =

= −
∮
w∼z1

dw

2πi

∮
w̄∼z̄1

dw̄

2πi
〈H|G2

2(w)G̃2̇
2(w̄)ψ11̇(z1)ψ̃1̇1̇(z̄1)

(
∂X11̇∂̄X11̇

)
(z2, z̄2)|H〉,

(6.46)

where we considered generic asymptotic heavy states |H〉. In order to compute the

integrals above we could deform the contour of the dw integral, picking contributions

for all the points where we can have poles of order 1, except for z1 (we also do the same

for the dw̄ integral). Naively, these points will be where the supercurrent G2
2(w) can

have nontrivial contractions with other operators, i.e. at w = 0,∞, z2, while for the

antiholomorphic integral we have to look at G̃2̇
2(w̄) and the points will be w̄ = 0,∞, z̄2.

If the heavy states in the fermionic sector are R vacua, though, we cannot push the

contours as easily, as they introduce a branch cut corresponding to the antiperiodic

boundary conditions of the fermions. The branch cut has the nature of a square root,

as going around the origin once the fermions in the R sector get a minus sign (this

can be seen from the mode expansions (2.10)). We can nevertheless introduce a factor

in the integrand that cancels the branch cut without altering the value of the integral

itself, this factor being
√
w (and

√
w̄ for the antiholomorphic integral). Indeed we have∮

w∼z1

dw

2πi

√
wG2

2(w)ψ1Ȧ(z1) =

∮
w∼z1

dw

2πi

√
w ∂X2Ḃ(w)ψ2Ḃ(w)ψ1Ȧ(z1)

= −
√
z1 ∂X2Ḃ(z1) εḂȦ,

(6.47)

where we just had to evaluate
√
w ∂X2Ḃ(w) at w = z1 since it contains no singularities

at that point. For the antiholomorphic integral we have the analogous relation∮
w̄∼z̄1

dw̄

2πi

√
w̄ G̃2̇

2(w̄)ψ̃1̇Ȧ(z̄1) = −
√
z̄1 ∂̄X2Ḃ(z̄1) εḂȦ. (6.48)

Noticing that introducing a factor
√
w w̄ brings an extra factor

√
z1z̄1 = |z1| we have

to divide by, we then have

〈H|
(
∂X11̇∂̄X11̇

)
(z1, z̄1)

(
∂X22̇∂̄X22̇

)
(z2, z̄2)|H〉 =

= − 1

|z1|

∮
w∼z1

dw

2πi

∮
w̄∼z̄1

dw̄

2πi

√
w w̄ 〈H|G2

2(w)G̃2̇
2(w̄)ψ11̇(z1)ψ̃1̇1̇(z̄1)

(
∂X11̇∂̄X11̇

)
(z2, z̄2)|H〉.

(6.49)

We can obtain a Ward identity relating the correlators with bosonic and fermionic light

operators by computing the integrals, which can now be done pushing the contour. The

full correlator is again the product of an holomorphic and and antiholomorphic 4-point
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function, so we can write the last line of (6.49) as

1

|z1|

∮
w∼z1

dw

2πi

√
w 〈H|G2

2(w)ψ11̇(z1)∂X11̇(z2)|H〉
∮
w̄∼z̄1

dw̄

2πi

√
w̄ 〈H̃|G̃2̇

2(w̄)ψ̃1̇1̇(z̄1)∂̄X11̇(z̄1)|H̃〉,

(6.50)

where again with an abuse of notation we denoted |H〉 as the holomorphic part of the

asymptotic state and |H̃〉 as its antiholomorphic part. Let’s consider the holomorphic

term. As we said before, pushing the contour we get a contour integral with a path

going around the only possible points where we could have singularities coming from

the contraction of G2
2(w) with other operators: in total the integral becomes a sum of

three integrals, with w going around 0,∞ and z2. The paths go around these points

clockwise, so we get an extra minus sign to bring them back into counter-clockwise

orientation. If w goes around 0, singularities can arise from the contraction of G2
2 with

|H〉 and we have

−
∮
w∼0

dw

2πi

√
wG2

2(w)|H〉 = −
∑
n∈Z

∮
w∼0

dw

2πi

√
wG2

2,n z
−n−3/2|H〉

= −G2
2,0|H〉

= 0,

(6.51)

where we expanded the supercurrent in modes G2
2,n and assumed the fact that the

heavy state is invariant under supersymmetry (which is true if we choose it to be e.g.

a Ramond vacuum)44. Analogously, from the term in which w goes around ∞ we get

−
∮
w∼∞

dw

2πi

√
w 〈H|G2

2(w) = −
∑
n∈Z

∮
w∼∞

dw

2πi

√
w 〈H|G2

2,n z
−n−3/2

=

∮
u∼0

du

2πi
u−2〈H|G2

2,n u
n+1

= 〈H|G2
2,0

= 0,

(6.52)

where we changed variables in the integral as w → u = 1/2 and again we assumed the

heavy state is invariant under supersymmetry. The only point that can give contribu-

44The modes GαA,n of the supercurrents on a strand of length 1 are written in terms of the modes of
the bosons and fermions as

GαA,n =
∑
m∈Z

αAȦ,m ψ
αȦ
n−m ,

so we immediately see that if |H〉 is a Ramond vacuum all the nonzero modes of G2
2 certainly annihilate

it.

132



CHAPTER 6. MORE CORRELATORS IN THE TWISTED SECTOR AND
SUPERSYMMETRIC WARD IDENTITIES

tions is then w = z2. In this case we have

−
∮
w∼z2

dw

2πi

√
w 〈H|G2

2(w)ψ11̇(z1)∂X11̇(z2)|H〉 =

=

∮
w∼z2

dw

2πi

√
w 〈H|ψ11̇(z1)G2

2(w)∂X11̇(z2)|H〉

=

∮
w∼z2

dw

2πi

√
w 〈H|ψ11̇(z1)ψ2Ȧ(w)∂2Ȧ(w)∂X11̇(z2)|H〉

=

∮
w∼z2

dw

2πi
〈H|

(
√
z2 +

1

2
√
z2

(w − z2) +O((w − z2)2)

)
×

×
(
ψ11̇(z2) + (w − z2)∂ψ11̇(z2) +O((w − z2)2)

)
×

×
(

ε21εȦ2

(w − z2)2
+ [reg.]

)
|H〉

= 〈H|ψ11̇(z1)

(
1

2
√
z2
ψ22̇ +

√
z2 ∂ψ

22̇(z2)

)
|H〉

= ∂z2

{
√
z2〈H|ψ11̇(z1)ψ22̇(z2)|H〉

}
.

(6.53)

With an analogous computations we get that the antiholomorphic part of the correlator

is

−
∮
w̄∼z̄2

dw

2πi

√
w̄ 〈H̃|G̃2̇

2(w̄)ψ̃1̇1̇(z̄1)∂̄X11̇(z̄2)|H̃〉 = ∂z̄2

{√
z̄2〈H̃|ψ̃1̇1̇(z̄1)ψ̃2̇2̇(z̄2)|H̃〉

}
.

(6.54)

Substituting this into (6.49) we get the full Ward identity. We will write it reinstating

the copy indices for the fields: working on N strands of length 1, we get the Ward

identity

〈H|
(
∂X11̇∂̄X11̇

)
(r)

(z1, z̄1)
(
∂X22̇∂̄X22̇

)
(s)

(z2, z̄2)|H〉 =

=
δr,s
|z1|

∂z2∂z̄2

{
|z2|〈H|ψ11̇

(r)(z1)ψ22̇
(s)(z2)|H〉〈H̃|ψ̃1̇1̇

(r)(z̄1)ψ̃2̇2̇
(s)(z̄2)|H̃〉

}
,

(6.55)

where we assumed the fact that if the two operators act on different CFT copies we

get zero (this happens e.g. if the heavy states are R vacuum states, as in Chapter 5,

as opposed to superpositions, as in Chapter 4).

Let’s consider the heavy states |H〉 = |++〉k=1 and see if the Ward identity is

satisfied. The state |++〉k=1 only refers to the fermionic sector: when computing the

bosonic correlator it has to be read as

|++〉k=1 ⊗ |0〉k=1, (6.56)
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so the 4-point function reads

k=1〈0|
(
∂X11̇

(r)∂̄X
11̇
(r)

)
(z1, z̄1)

(
∂X22̇

(s)∂̄X
22̇
(s)

)
(z2, z̄2)|0〉k=1 × k=1〈+ + |++〉k=1 =

=
δr,s

|z1 − z2|4
,

(6.57)

where the result follows from (6.19) setting k = 1 (or easily by expanding the operators

in modes and using the mode algebra) and we used the fact that the fermionic ground

states are normalized,

k=1〈+ + |++〉k=1 = 1. (6.58)

The result for the fermionic correlator can be read from (6.9), again setting k = 1,

k=1〈+ + |ψ11̇
(r)(z1)ψ22̇

(s)(z2)|++〉k=1 = − δr,s
z1 − z2

(
z1

z2

)1/2

, (6.59)

k=1〈+ + |ψ̃1̇1̇
(r)(z̄1)ψ̃2̇2̇

(s)(z̄2)|++〉k=1 = − δr,s
z̄1 − z̄2

(
z̄1

z̄2

)1/2

, (6.60)

where the correlator for antiholomorphic fields is obtained from the first one by replac-

ing zi → z̄i. Let’s evaluate the RHS of the Ward identity (6.55),

δr,s
|z1|

∂z2∂z̄2

{
|z2| k=1〈+ + |ψ11̇

(r)(z1)ψ22̇
(s)(z2)|+ +〉k=1 k=1〈+ + |ψ̃1̇1̇

(r)(z̄1)ψ̃2̇2̇
(s)(z̄2)|+ +〉k=1

}
=

= δr,s ∂z2

(
1

z1 − z2

)
∂z̄2

(
1

z̄1 − z̄2

)
=

δr,s
|z1 − z2|4

,

(6.61)

which matches the bosonic correlator (6.57), satisfying (6.55) and giving a specific

example of how the Ward identity is satisfied.

Let’s now consider the twisted sector. The definition of the supercurrents on a

strand of length k is

GαA(z) ≡
k∑
r=1

ψαȦ(r) (z) ∂X
(r)

AȦ
(z), G̃α̇A(z̄) ≡

k∑
r=1

ψ̃α̇Ȧ(r) (z̄) ∂̄X
(r)

AȦ
(z̄). (6.62)

Following the same steps as in the untwisted sector we get that the Ward identity is

〈H|
(
∂X11̇∂̄X11̇

)
(z1, z̄1)

(
∂X22̇∂̄X22̇

)
(z2, z̄2)|H〉 =

=
1

|z1|
∂z2∂z̄2

{
|z2|〈H|ψ11̇(z1)ψ22̇(z2)|H〉〈H̃|ψ̃1̇1̇(z̄1)ψ̃2̇2̇(z̄2)|H̃〉

}
,

(6.63)

where now the operators are sums over the k CFT copies, as in (6.27) for the bosons,

134



CHAPTER 6. MORE CORRELATORS IN THE TWISTED SECTOR AND
SUPERSYMMETRIC WARD IDENTITIES

while for the fermions this reads

(
ψαȦψ̃α̇Ḃ

)
(z, z̄) =

k∑
r=1

ψαȦ(r) (z) ψ̃α̇Ḃ(r) (z̄). (6.64)

Let’s put |H〉 = |++〉k for generic k and check that the Ward identity is satisfied.

For the bosonic correlator on the LHS the result is GB(zi, z̄i) as in (6.34), with z and z̄

written in terms of z1, z2, z̄1 and z̄2 using the definitions (6.33). For the RHS of (6.63)

we have that the fermionic correlators read

k〈+ + |ψ11̇(z1)ψ22̇(z2)|++〉k k〈+ + |ψ̃1̇1̇(z̄1)ψ̃2̇2̇(z̄2)|++〉k =

=
k−1∑

ρ1,ρ2=0

k〈+ + |ψ11̇
ρ1

(z1)ψ22̇
ρ2

(z2)|++〉k k〈+ + |ψ̃1̇1̇
ρ1

(z̄1)ψ̃2̇2̇
ρ2

(z̄2)|++〉k

=

k−1∑
ρ=0

k〈+ + |ψ11̇
ρ (z1)ψ22̇

ρ (z2)|++〉k k〈+ + |ψ̃1̇1̇
ρ (z̄1)ψ̃2̇2̇

ρ (z̄2)|++〉k,

(6.65)

where we used the fact that nonzero contributions only come from the cases in which

the fermions can have nontrivial contractions among themselves, which happens only

if ρ1 = ρ2. The holomorphic factor inside the sum can be read off from (6.7) while the

antiholomoprhic one is obtained by sending zi → z̄i. In total we have

k〈+ + |ψ11̇(z1)ψ22̇(z2)|++〉k k〈+ + |ψ̃1̇1̇(z̄1)ψ̃2̇2̇(z̄2)|++〉k =

=
1

|z1 − z2|2

∣∣∣∣z1

z2

∣∣∣∣ k−1∑
ρ=0

∣∣∣∣z2

z1

∣∣∣∣2ρ/k

=

∣∣∣ z1z2 ∣∣∣
|z1 − z2|2

1−
∣∣∣ z2z1 ∣∣∣2

1−
∣∣∣ z2z1 ∣∣∣2/k .

(6.66)

In order to check the Ward identity, the result above must be inserted into (6.63). As

for the computation of the bosonic correlator, the result is not illuminating by itself.

Nevertheless it’s easy to check with Mathematica that (6.63) is indeed satisfied.

6.4 Correlators involving more complicated operators

In this section we consider a 4-point function on one strand of length 1 (untwisted

sector), but with more complicated operators. Inspired by the analysis carried out in

Chapter 5, we cosider Oαα̇ as the light operators, while the role of the heavy states is

now played by |00〉k=1 (which for simplicity we will just denote as |00〉 here). A we are

working on a single strand in the untwisted sector, the heavy operators are not “really
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heavy” in the sense that we would need to actually consider N = c/6 singly-wound

strands to have h ∼ c, but we keep the name by analogy nevertheless. Also, the indices

over the CFT copies won’t be needed in this section. The correlator is

G00(zi, z̄i) ≡ 〈00|O++(z1, z̄1)O−−(z2, z̄2)|00〉. (6.67)

In order to use the bosonization technique, we first need to write the heavy state in

the bosonized language, which we haven’t done yet. By the definition (2.37) we have

|00〉 = lim
u1→0

uh1 ū
h̄
1 O
−−(u1, ū1) |++〉k=1

= − i√
2

lim
u1→u2
u2→0

(u1 − u2)1/2(ū1 − ū2)1/2 εȦḂ ψ
2Ȧ(u1)ψ̃2̇Ḃ(ū1)×

× e
i
2(H(u2)+K(u2)+H̃(ū2)+K̃(ū2))|0〉NS

=
1√
2

lim
u1→u2
u2→0

|u1|
[
e−i(K(u1)+H̃(ū1)) − e−i(H(u1)+K̃(ū1))

]
e

i
2(H(u2)+K(u2)+H̃(ū2)+K̃(ū2))|0〉NS

=
1√
2

lim
u→0

[
e

i
2(H(u)−K(u)−H̃(ū)+K̃(ū)) − e

i
2(−H(u)+K(u)+H̃(ū)−K̃(ū))

]
|0〉NS,

(6.68)

where h = h̄ = 1/2 are the left and right conformal dimensions of Oαα̇ and we used the

rules in (2.105). G00 splits into the sum of four terms,

G00(zi, z̄i) =
4∑

n=1

G00,n(zi, z̄i), (6.69)

where

G00,1(zi, z̄i) ≡ 〈00|ψ11̇(z1)ψ̃1̇2̇(z̄1)ψ21̇(z2)ψ̃2̇2̇(z̄2)|00〉, (6.70a)

G00,2(zi, z̄i) ≡ 〈00|ψ12̇(z1)ψ̃1̇1̇(z̄1)ψ22̇(z2)ψ̃2̇1̇(z̄2)|00〉, (6.70b)

G00,3(zi, z̄i) ≡ −〈00|ψ12̇(z1)ψ̃1̇1̇(z̄1)ψ21̇(z2)ψ̃2̇2̇(z̄2)|00〉, (6.70c)

G00,4(zi, z̄i) ≡ −〈00|ψ11̇(z1)ψ̃1̇2̇(z̄1)ψ22̇(z2)ψ̃2̇1̇(z̄2)|00〉. (6.70d)

Because |00〉 is the sum of two terms, each of the G00,n is in turn the sum of four

terms. Not all of them contribute, though: in the bosonized language, in order to have

a nonzero correlator the coefficient of the bosons in the exponential must add up to
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zero. For G00,1 and G00,2 we have

G00,1(zi, z̄i) = −1

4
lim
u1→∞
u2→0

|u1|NS〈0|
[
e−

i
2(H−K−H̃+K̃) − e−

i
2(−H+K+H̃−K̃)

]
(u1, ū1)×

× eiH(z1)e−iK(z2)eiK̃(z̄1)e−iH̃(z̄2)
[
e

i
2(H−K−H̃+K̃) − e

i
2(−H+K+H̃−K̃)

]
(u2, ū2)|00〉NS

=
1

4
lim
u1→∞
u2→0

|u1|NS〈0|e−
i
2(H(u1)−K(u1)−H̃(ū1)+K̃(ū1))eiH(z1)e−iK(z2)×

× eiK̃(z̄1)e−iH̃(z̄2)e
i
2(H(u2)−K(u2)−H̃(ū2)+K̃(ū2))|0〉NS

=
1

4

1

|z1||z2|
= G00,2(zi, z̄i),

(6.71)

while for G00,3 and G00,4 we have

G00,3(zi, z̄i) =
1

4
lim
u1→∞
u2→0

|u1|NS〈0|
[
e−

i
2(H−K−H̃+K̃) − e−

i
2(−H+K+H̃−K̃)

]
(u1, ū1)×

× eiK(z1)e−iK(z2)eiH̃(z̄1)e−iH̃(z̄2)
[
e

i
2(H−K−H̃+K̃) − e

i
2(−H+K+H̃−K̃)

]
(u2, ū2)|00〉NS

=
1

4
lim
u1→∞
u2→0

|u1|
{

NS〈0|e−
i
2(H(u1)−K(u1)−H̃(ū1)+K̃(ū1))eiK(z1)e−iK(z2)eiH̃(z̄1)e−iH̃(z̄2)×

× e
i
2(H(u2)−K(u2)−H̃(ū2)+K̃(ū2))|0〉NS+

+ NS〈0|e−
i
2(−H(u1)+K(u1)+H̃(ū1)−K̃(ū1))eiK(z1)e−iK(z2)eiH̃(z̄1)e−iH̃(z̄2)×

× e
i
2(−H(u2)+K(u2)+H̃(ū2)−K̃(ū2))|0〉NS

}
=

1

4

1

|z1 − z2|2

{∣∣∣∣z2

z1

∣∣∣∣+

∣∣∣∣z1

z2

∣∣∣∣} = G00,4(zi, z̄i).

(6.72)

The total result is

G00(zi, z̄i) =
1

2

1

|z1z2|
+

1

2

1

|z1 − z2|2

{∣∣∣∣z2

z1

∣∣∣∣+

∣∣∣∣z1

z2

∣∣∣∣} . (6.73)

The next step in our analysis will be that of writing a Ward identity between G00,

which is a correlator containing light operators written in terms of the free fermions,

and another correlator with light operators written in terms of the free bosons, much in

the same spirit as in the above sections. With passages analogous to the ones followed

previously it’s easy to get∮
w∼z

dw

2πi

√
wGαA(w)∂XBḂ(z) = δBA∂z

(√
z ψαḂ(z)

)
, (6.74a)∮

w̄∼z̄

dw̄

2πi

√
w̄ G̃α̇A(w̄)∂̄XBḂ(z̄) = δBA∂z̄

(√
z̄ ψ̃α̇Ḃ(z̄)

)
, (6.74b)
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where as usual the strategy is to take the OPE between the supercurrent and the

bosonic field and use the residue theorem. Knowing this we can write

δBAδ
D
C ∂z∂z̄

{(
− i√

2

)
|z|ψ1Ȧ(z)ψ̃1̇Ḃ(z̄)εȦḂ

}
=

= δBAδ
D
C ∂z∂z̄

(
|z|O++(z, z̄)

)
=

(
− i√

2

)∮
w∼z

dw

2πi

√
wG1

A(w)∂XBȦ(z)

∮
w̄∼z̄

dw̄

2πi

√
w̄ G̃1̇

C(w̄)∂̄XDḂ(z̄)εȦḂ.

(6.75)

We then choose A = B = C = D = 1, multiply by O−− and consider the 4-point

function with heavy states |H〉, getting

∂z1∂z̄1

{
|z1|〈H|O++(z1, z̄1)O−−(z2, z̄2)|H〉

}
=

=

(
− i√

2

)2 ∮
w∼z1

dw

2πi

∮
w̄∼z̄1

dw̄

2πi
|w|G1

1(w)G̃1̇
1(w̄)〈H|∂X1Ȧ(z1)∂̄X1Ḃ(z̄1)εȦḂ×

× ψ2Ċ(z2)ψ̃2̇Ḋ(z̄2)εĊḊ|H〉.
(6.76)

The
√
w and

√
w̄ factors were considered from the beginning so that now we can

freely deform the contour as in (6.53) (again assuming the heavy state is such that no

contributions arise from w = 0 and w =∞, as in (6.51) and (6.52)). The result is the

Ward identity for correlators involving O++ and O−−,

∂z1∂z̄1

{
|z1|〈H|O++(z1, z̄1)O−−(z2, z̄2)|H〉

}
=

=
|z2|
2
〈H|

(
∂X1Ȧ∂̄X1ḂεȦḂ

)
(z1, z̄1)

(
∂X2Ċ ∂̄X2ḊεĊḊ

)
(z2, z̄2)|H〉.

(6.77)

We can verify the above identity is satisfied for the choice |H〉 = |00〉. Denoting

GF00(zi, z̄i) ≡ G00(zi, z̄i), (6.78)

GB00(zi, z̄i) ≡ 〈00|∂
(
X1Ȧ∂̄X1ḂεȦḂ

)
(z1, z̄1)

(
∂X2Ċ ∂̄X2ḊεĊḊ

)
(z2, z̄2)|00〉, (6.79)

(6.77) reads

∂z1∂z̄1

(
|z1| GF00(zi, z̄i)

)
=
|z2|
2
GB00(zi, z̄i). (6.80)

We already have the result for GF00(zi, z̄i), while for GB00(zi, z̄i) we observe as before

that the different choices of |H〉 only involve the fermionic sector, while the asymptotic

states in the bosonic one are just the vacuum, giving

GB00(zi, z̄i) =
2

|z1 − z2|4
, (6.81)
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the factor 2 coming from the fact that GB00(zi, z̄i) is the sum of four terms, two of which

are zero (indices must be such that all the bosons can have nontrivial contractions).

Inserting (6.73) and (6.81) it’s easy to verify that (6.80) is indeed satisfied.
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Chapter 7

Conclusion

First developed as a tentative description of hadronic resonances, string theory be-

came one of the most promising candidates as a theory of quantum gravity upon the

realization, in the mid ’70s, that the spectrum of the closed bosonic string contains

an excitation that has all the characteristics required to be the graviton, the quan-

tum of the gravitational interaction. Since then, much progress has been made, from

superstrings to M-theory, D-branes and the AdS/CFT conjecture.

It is both natural and tempting to try to put together all the pieces of the puzzle

and try to solve the long-standing questions that the problem of quantum gravity brings

up. In particular, the description of black holes, the understanding of the origin of their

thermodynamic properties and the resolution of the information paradox are perhaps

the most important and ambitious topics on which a theory of quantum gravity must

be tested. This becomes even more pressing if we think that these problems lead to

theoretical inconsistencies between two theories, GR and quantum field theory, that are

well established and incredibly successful experimentally, in their domains of validity.

Mathur’s fuzzball proposal [14] is a genuine description of black holes, and it’s well

motivated from fundamental principles in string theory. It incorporates successfully the

most important tools at our disposal: the supergravity black hole solutions are under-

stood in terms of D-brane configurations and AdS/CFT is naturally implemented in

the near-horizon limit, with a CFT description given by the D1D5 CFT. This last point

allows to shed a light on the thermodynamics of black holes, as statistical field theory

is rigorously established, as opposed to the thermodynamic description emerging on

the gravity side. We finally seem to have an explicit form for classes of black hole mi-

crostates, both as CFT states and as bulk geometries: questions like distinguishability

of microstates and typicality can be assessed more precisely.

One of the topics of this thesis is that of establishing precisely the holographic

duality between CFT states and their dual bulk geometries. In doing so, it’s impor-

tant to choose relevant observables that are able to capture the differences between
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microstates. In particular, we focused on the VEVs of (light) CFT operators of small

conformal dimensions taken on the (heavy) states dual to the bulk geometries: these

correspond holographically [32, 62, 63] to deviations from AdS3 × S3 geometry already

near the AdS3 boundary. The strategy was that of computing the 1-point functions on

the CFT side (exploiting non-renormallization theorems [27] to work with the D1D5

CFT at the free orbifold point) and the deviation from AdS3 × S3 geometry of the

corresponding microstate metric, establishing the match.

Another observable we considered is Entanglement Entropy: on the one hand this

can be computed on the CFT side using the replica trick [70], while on the other

hand it corresponds to the area of a co-dimension 2 extremal surface that reduces

to the boundary of the entangling domain in the CFT spatial circle (and wraps the

whole S3) asymptotically [71, 72, 82]. For a sufficiently small entangling domain, the

extremal surface doesn’t extend much away from the boundary and only the leading

order deviations from AdS3 × S3 geometry are relevant, which again correspond to

1-point function of CFT operators of small conformal dimension. The bulk-boundary

correspondence was tested between classes of 2- and 3-charge microstates.

Another topic that was investigated is that of HHLL CFT 4-point functions, where

the heavy states are dual to a particular class of microstate geometries and the light

operators correspond to supergravity fields probing the bulk geometry. Using O++

as the light operator and 2- and 3-charge states as the heavy states, we computed

the 4-point functions in the D1D5 CFT at the free orbifold point and, following the

holographic prescription, in the bulk, solving the wave equation for the appropriate

supergravity field probing the background geometry dual to the heavy states. The

agreement between the CFT and bulk result came somewhat as a surprise, but was

justified upon considering the affine block decomposition of the HHLL correlator: the

affine SU(2)L×SU(2)R symmetry is indeed present at any point of the moduli spaces,

and correlators entirely saturated by affine blocks are therefore protected.

A final direction of work involved CFT computations at the free orbifold point

prominently. In particular, it was important to verify that the techniques used in

the previously mentioned parts of the work were actually able to reproduce results

from the literature, and in particular we focused on the correlator contained in [126].

Moreover, exploiting the fact that the D1D5 CFT enjoys supersymmetry, we wrote

the supersymmetric Ward identities connecting correlators with light operators given

in terms of bosons at the free orbifold point and correlators where those operators are

given in terms of fermions. The validity of the Ward identities was verified explicitly,

as the correlators can be computed explicitly at the free orbifold point.

HHLL have recently been connected to the black hole information loss problem,

seen from a dual CFT point of view [64–69]. In particular, a connection was made

between “spurious singularities” in Euclidean time appearing in the Virasoro block of
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the identity in the c → ∞ limit and how one expects the correlator to behave [68].

HHLL 4-point functions can be seen as 2-point functions computed in the background

given by the heavy operators, and there must be a qualitative difference between a

thermal 2-point function, corresponding holographically to probes moving in a black

hole background, and a 2-point function computed in a pure state.

In a thermal 2-point function (thermal) Euclidean time is periodic, and in the

CFT computation this creates infinitely many images of the OPE singularities. This is

exactly what one gets from the Virasoro block of the identity as c → ∞. The puzzle

appears when we consider the same 2-point function in a pure state: with pure states

time is not periodic anymore and a CFT correlator in Euclidean signature should

have only singularities corresponding to the different OPE limits that can be taken.

If the correlator is saturated by the Virasoro block of the identity, then it develops

infinitely many singularities in the c → ∞ limit, as in the thermal case, which is not

acceptable. Mechanisms to avoid this considering each Virasoro block separately have

been suggested, referring to sub-leading corrections in the 1/c expansion and to “non-

perturbative” features [65, 66, 68, 128]. Our result, on the contrary, moves in the other

direction: having a specific CFT and dual supergravity theory to work with, we know

exactly which Virasoro blocks appear in the correlator, and, with our choice of light and

heavy operators, we observe that spurious singularities cancel out among the different

blocks even in the c→∞ limit.

The appearance of spurious singularities in HHLL correlators brings up questions

that still have to be settled. In particular, in [128] it is argued that in the cases consid-

ered here spurious singularities cancel out between different Virasoro blocks at c→∞
because of the presence of affine symmetry, i.e. because we are actually focusing on an

integrable sector of the theory. While it’s true that we are focusing on a particularly

simple sector, the argument given in Section 5.4 should be valid irrespective of the pres-

ence of an affine symmetry, which ends up being just the particular mechanism that

enforces the more general feature of singularity cancellation between different Virasoro

blocks as c → ∞ in the specific cases considered. Whether and how cancellations

happen in correlators that are not protected by affine symmetry is one of the main

motivations for studying the more complicated 4-point functions considered in [129].

Another future line of work to address the above problem avoiding the complications

faced in [129] could be that of exploiting the Ward identities presented in Chapter

6: it should be possible to start from non-protected 4-point functions involving light

operators written in terms of fermions and map them to correlators with light operators

written in terms of bosons, with the advantage that the latter class of operators, of the

form ∼ ∂XAȦ∂̄XBḂ (like the ones considered in [126]), have indices only along the

internal T 4 directions, thus giving a simpler wave equations to solve when computing

the 4-point function holographically.
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Even though fifteen years of research have brought much progress towards the ex-

planation of black hole physics through the fuzzball proposal, a lot remains to be done.

The known classes of microstates do not account for the totality of the entropy of (3-

charge) black holes, and, much in the spirit of [58], an active branch of research consists

in finding more bulk microstate geometries and their dual CFT states. Moreover, re-

search is being carried out about 4-point functions in which the CFT result at the free

orbifold point and in the bulk differ [129]. Another interesting direction of work in-

volves considering deformation of the D1D5 CFT away from the free orbifold point that

still preserve supersymmetry, and generalizing the construction to non-supersymmetric

fuzzballs.

Finally, we would like to mention that the fuzzball proposal gives an explicit and

rigorous realization of holography: a lot of effort in the literature is being devoted

to connecting black holes to topics like quantum chaos, the SYK model and Random

Matrix theory, see e.g. [130], and one should expect that all the features pointed out

using those approaches are actually reproduced using the fuzzball description and the

D1D5 CFT in particular, as was checked in [127].

More than forty years have passed since Hawking’s computation of black hole ra-

diation and since theoretical physicists realized the best theories they had to describe

the gravitational interaction on one side and all other particle interactions on the other

side don’t fit well in a unified picture. In this context, black holes have represented

the best theoretical laboratory in which to test ideas about quantum gravity. String

theory in particular has performed well in this direction, with an unparalleled richness

of concepts and techniques that revealed to be useful to tackle one of the most difficult

problems theoretical physics has ever had to face. On the other hand, black hole physics

has been a constant theme within string theory for the last twenty years and has guided

string theorists towards new discoveries (such as holography), in an enriching feedback

loop of ideas.
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Appendix A

General gravity results for D1-D5

geometries

We will now give some general results for the objects Z1, Z2 and Z4 for 2-charge ge-

ometries up to order ∼ 1/r3. First we define

h1(v′) ≡ g1(v′) + ig2(v′), h2(v′) ≡ g3(v′) + ig4(v′), (A.1)

where g1, . . . , g5 have the expansions (4.11).

We have

Z1 ≡ 1 +
Q5

L

∫ L

0
dv
|ḣ1|2 + |ḣ2|2 + |ġ5|2

|xi − gi|2
, Z2 ≡ 1 +

Q5

L

∫ L

0
dv

1

|xi − gi|2
, (A.2)

A ≡ −Q5

L

∫ L

0
dv

ġ5

|xi − gi|2
, A ≡ −Q5

L

∫ L

0
dv

ġjdx
j

|xi − gi|2
, (A.3)

where the denominator can also be rewritten as

|xi − gi|2 ≡
4∑
i=1

(xi − gi)2 = |(x1 + ix2)− h1|2 + |(x3 + ix4)− h2|2, (A.4)

and where A is the 1-form defined in (3.4).

The result for Z1 at order ∼ 1/r3 is

Z1 '
4π2Q5

L2

∑
k 6=0

{
|a(1)
k |

2 + |a(2)
k |

2 +
1

4
|a(00)
|k| |

2

}
+

+
4π2Q5

L2

1

r3

∑
k,l,n6=0

1

n

{(
x1 − ix2

r

)(
a

(1)
k ā

(1)
l a(1)

n δk−l+n + a
(2)
k ā

(2)
l a(1)

n δk−l+n

)
+

+

(
x3 − ix4

r

)(
a

(1)
k ā

(1)
l a(2)

n δk−l+n + a
(2)
k ā

(2)
l a(2)

n δk−l+n

)
+ [c.c.]

}
+
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+
π2Q5

L2

1

r3

+∞∑
k,l=0

∑
n 6=0

1

n

{(
x1 − ix2

r

)(
a

(00)
k a

(00)
l a(1)

n δk+l+n + 2a
(00)
k ā

(00)
l a(1)

n δk−l+n+

+ā
(00)
k ā

(00)
l a(1)

n δ−k−l+n

)
+

+

(
x3 − ix4

r

)(
a

(00)
k a

(00)
l a(2)

n δk+l+n + 2a
(00)
k ā

(00)
l a(2)

n δk−l+n+

+ā
(00)
k ā

(00)
l a(2)

n δ−k−l+n

)
+ [c.c.]

}
, (A.5)

where δm ≡ δm,0 and where we put a
(00)
k<0 = 0.

The result for Z2 does not contain terms of order ∼ 1/r3, thus

Z2 = 1 +
Q5

r2
+O

(
1

r4

)
, (A.6)

while for Z4 we have

Z4 =
πQ5

L

1

r3

+∞∑
k=1

1

k

{(
x1 − ix2

r

)(
a

(00)
k a

(1)
−k + ā

(00)
k a

(1)
k

)
+

+

(
x3 − ix4

r

)(
a

(00)
k a

(2)
−k + ā

(00)
k a

(2)
k

)
+ [c.c.]

}
. (A.7)

The 1-form A = Aidx
i can be written at order ∼ 1/r3 as

Ai = −2Q5fij
xj
r4
, fij ≡

1

L

∫ L

0
dv ġigj = −fji. (A.8)

We can switch to complex coordinates

z1 ≡ x1 + ix2, z̄1 ≡ x1 − ix2, (A.9)

z2 ≡ x3 + ix4, z̄2 ≡ x3 − ix4, (A.10)

and define indices za, zb, . . . such that za = (z1, z̄1, z2, z̄2) and so on to get

Aza = −2Q5fzazb
dzb

r4
. (A.11)

We have

fz1z̄1 =
2πi

L

∑
n6=0

a(1)
n

ā
(1)
n

n
, fz1z2 = − (fz̄1z̄2)∗ = −2πi

L

∑
n6=0

a(1)
n

a
(2)
−n
n
, (A.12)

fz2z̄2 =
2πi

L

∑
n6=0

a(2)
n

ā
(2)
n

n
, fz1z̄2 = − (fz̄1,z2)∗ =

2πi

L

∑
n 6=0

a(1)
n

ā
(2)
n

n
. (A.13)
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The components of the 1-form B at order ∼ 1/r3 are obtained in the coordinates

xi as

Bi = −Q5 εijklfkl
xj
r4
. (A.14)
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Appendix B

General D1-D5 state with twist

field VEV

In general the twist field Σs1ṡ2
k1+k2

can join two strands of length k1 and k2 into a strand

or length k1 + k2 (or vice versa split the (k1 + k2)-long strand into k1 and k2 pieces).

Thus a state with three different strands of lengths k1, k2 and k3 = k1 + k2 will have a

non-vanishing VEV for Σs1ṡ2
k1+k2

. For simplicity we take the spin state of all the strands

to be (++), so our building blocks are |++〉ki , with i = 1, 2, 3. In Section 4.3.1 we

have considered the particular case with k1 = k2 = 1, k3 = 2. The interest of the

more general case relies on the fact that the action of the twist field on strands of

length greater than one is quite subtle, and it produces a non-trivial numerical factor

which was computed by CFT methods in [88] (see Eq. (5.25) there). We will show that

holography provides a non-trivial check for this coefficient.

The state we consider has the form (4.16) where the only non-trivial coefficients

are A
(++)
k1

≡ A1, A
(++)
k2

≡ A2, A
(++)
k3

≡ A3; for brevity, we also rename N
(++)
k1

≡ p1,

N
(++)
k2

≡ p2, N
(++)
k3

≡ p3; these numbers are subject to the constraint k1p1 + k2p2 +

k3p3 = N . The state is then

ψ(A1, A2, A3) ≡
N/k1∑
p1=0

N−k1p1
k2∑

p2=0

(A1|++〉k1)p1 (A2|++〉k2)p2 (A3|++〉k3)
N−k1p1−k2p2

k3 .

(B.1)

Its norm is

|ψ(A1, A2, A3)|2 =

N/k1∑
p1=0

N−k1p1
k2∑

p2=0

Ap1
1 A

p2
2 A

N−k1p1−k2p2
k3

3 N (p1, p2) , (B.2)
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with

N (p1, p2) =
N !

p1! p2! (N−k1p1−k2p2

k3
)! kp1

1 kp2
2 k

N−k1p1−k2p2
k3

3

. (B.3)

According to the general result (4.20) the sum in (B.1) is peaked around the average

values

p̄i =
|Ai|2

ki
(i = 1, 2, 3) . (B.4)

We can now consider the action of the twist field on the state ψ(A1, A2, A3). By

angular momentum conservation, only the operator Σ
− k1+k2−1

2
,− k1+k2−1

2
k1+k2

can glue two

strands and only Σ
k1+k2−1

2
,
k1+k2−1

2
k1+k2

can split one strand45. The novelty with respect

to the state with k1 = k2 = 1 is that when Σ
− k1+k2−1

2
,− k1+k2−1

2
k1+k2

glues two strands of

windings k1, k2 > 1, the final state is multiplied by the factor

ck1k2 =
k1 + k2

2k1k2
. (B.5)

Note that c1,1 = 1, and thus this effect was invisible in the computation of Section 4.3.1.

This factor was derived via a non-trivial CFT computation in [88]; we will import

their result here, and show that it is necessary for consistency with the holographic

computation of the VEV. One has moreover to include the usual combinatorial factors

which arise when one has multiple strands of the same type, so the total action of the

twist field is

Σ
− k1+k2−1

2
,− k1+k2−1

2
k1+k2

[
(|++〉k1)p1 (|++〉k3)p2 (|++〉k3)p3

]
=

= ck1k2 (p3 + 1) k3

[
(|++〉k1)p1−1 (|++〉k2)p2−1 (|++〉k3)p3+1

]
. (B.6)

The combinatorics is explained as follows: there are p1 (p2) ways to pick one strand of

length k1 (k2); moreover on a strand of length k1 (k2), the gluing action of Σ
− k1+k2−1

2
,− k1+k2−1

2
k1+k2

can be applied at k1 (k2) positions within the strand. Thus the number of terms ap-

pearing on the l.h.s. of (B.6) is

p1 p2 k1 k2N (p1, p2) = (p3 + 1) k3N (p1 − 1, p2 − 1) , (B.7)

where we have used (B.3). Since this equals the number of terms present on the r.h.s. of

(B.6) (up to the factor ck1,k2), this justifies the combinatorial factors in that equation.

The calculation for the VEV of Σ
− k1+k2−1

2
,− k1+k2−1

2
k1+k2

on ψ(A1, A2, A3) now proceeds

45Although the notation is not incredibly clear, these twist operators are simply, respectively, the
ones with minimal and maximal (left and right) spins, given that they create/split strands of length
k1 + k2.
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along similar lines as in Eq. (4.43), and one obtains

〈Σ−
k1+k2−1

2
,− k1+k2−1

2
k1+k2

〉 ≡ |ψ(A1, A2, A3)|−2 〈ψ(A1, A2, A3)|Σ−−2 |ψ(A1, A2, A3)〉

= ck1k2

A1A2

A3
p̄3 =

k1 + k2

2 k1k2
A1A2Ā3 . (B.8)

Analogous arguments determine the action of Σ
k1+k2−1

2
,
k1+k2−1

2
k1+k2

, when it splits a

strand of winding k1 + k2 into pieces of length k1 and k2:

Σ
k1+k2−1

2
,
k1+k2−1

2
k1+k2

[
(|++〉k1)p1 (|++〉k3)p2 (|++〉k3)p3

]
=

= ck1k2 (p1 + 1) k1 (p2 + 1) k2

[
(|++〉k1)p1+1 (|++〉k2)p2+1 (|++〉k3)p3−1

]
. (B.9)

One can again check that, thanks to the identity (B.7), the action of Σ
k1+k2−1

2
,
k1+k2−1

2
k1+k2

is consistent with hermitian conjugation and thus

〈Σ
k1+k2−1

2
,
k1+k2−1

2
k1+k2

〉 = 〈Σ−
k1+k2−1

2
,− k1+k2−1

2
k1+k2

〉∗ =
k1 + k2

2 k1k2
Ā1Ā2A3 . (B.10)

The VEVs of the angular momentum operators are determined by the average

numbers of strands, and are given by

〈J3〉 = 〈J̃3〉 =
1

2
(p̄1 + p̄2 + p̄3) =

1

2

(
|A1|2

k1
+
|A2|2

k2
+
|A3|2

k1 + k2

)
. (B.11)

On the gravity side, the dual geometry is associated with the profile with modes

a
(++)
k1

≡ a1, a
(++)
k2

≡ a3 and a
(++)
k3

≡ a3, related with the CFT parameters as

ai =
Ai
R

√
Q1Q5

N
(i = 1, 2, 3) . (B.12)

The gravity coefficients determining the VEVs are

f1
11 − if1

12 =
R2

Q1Q5

k1 + k2

2 k1k2
a1 a2 ā3 , A1i = 0 , (B.13)

a3+ = −a3− =
R

2
√
Q1Q5

(
|a1|2

k1
+
|a2|2

k2
+
|a3|2

k3

)
. (B.14)

The angular momenta derived from a3+, a3− are easily seen to match with the CFT

values (B.11). Using the coefficient cO(00) given in (4.53), the gravity prediction for the

VEV of Σ−−2 is

〈Σ−
k1+k2−1

2
,− k1+k2−1

2
k1+k2

〉Grav. = cO(0,0) (f1
11 − if1

12) =
N3/2R3

(Q1Q5)3/2

k1 + k2

2 k1k2
a1 a2 ā3 , (B.15)
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which matches with the CFT prediction (B.8) in view of (B.12).
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Appendix C

Entanglement Entropy and

reduced metric

Below we sketch the proof for the statements at the end of Section 4.4.1.

(i) Consider the extremality equation (4.162) at first order in ε. Since ∂αx
µ starts

at order ε, and in (4.162) there appears the first derivative of
√

detg∗ with respect to

∂αx
µ, it is enough to compute

√
detg∗ at second order in ∂αx

µ. This can be done by

doing an expansion around ∂αx
µ = 0, where the induced metric g∗ greatly simplifies.

Indeed when ∂αx
µ = 0 one has

g∗λλ = ĝµν ẋ
µẋν , g∗λα = Gαβ A

β
µ ẋ

µ , g∗αβ = Gαβ , (∂αx
µ = 0) (C.1)

with

ĝµν ≡ gµν +GαβA
α
µA

β
ν . (C.2)

Then the inverse of the induced metric is

gλλ∗ = gλλ , gλα∗ = −gλλAαµ ẋµ , gαβ∗ = Gαβ + gλλAαµA
β
ν ẋ

µẋν , (∂αx
µ = 0) (C.3)

where gλλ is the inverse of

gλλ ≡ gµν ẋµẋν . (C.4)

Using this observation, one can compute the expansion of
√

detg∗ up to the first order

in ∂αx
µ: √

detg∗
∣∣∣
∂αxµ=0

=
√
gλλ detG , (C.5)

∂
√

detg∗

∂∂αxµ

∣∣∣
∂αxµ=0

=
√
gλλ detG (Aαµ − gλλAασgµρẋρẋσ) . (C.6)

When evaluating the first two terms in the extremality equation (4.162) at first

order in ε, one only needs (C.5); moreover, due to the absence of first order corrections
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to gµν and Gαβ, one can approximate

√
detg∗ =

√
g0
µν ẋ

µẋν
√

detG0 +O(ε2) . (C.7)

Substituting the expansion (4.164) for xµ(λ, xα) in the above equation, one immedi-

ately concludes that, at first order in ε, the first two terms in (4.162) give a linear and

homogeneous equation for xµ1 . Consider now the last term in (4.162): the only contri-

bution that is not homogeneous in xµ1 comes from (C.6). At our order of approximation

such a term is

− ∂

∂xα
∂

∂∂αxµ

√
detg∗ = −ε

√
g0
λλ detG0 gλλ0 (∇0

αδA
α
µ g

0
ρσ −∇0

αδA
α
σ g

0
µρ) ẋ

ρ
0ẋ
σ
0 +O(ε2) ,

(C.8)

where

g0
λλ ≡ g0

µν ẋ
µ
0 ẋ

ν
0 (C.9)

does not depend on xα. This term vanishes thanks to the de Donder gauge condition

(4.159). We thus conclude that the equation for xµ1 is linear and homogeneous and

hence it admits the solution xµ1 = 0.

(ii) Consider now the contributions of order ε2 to the area of the extremal surface

A =

∫
dλdxα

√
detg∗ , (C.10)

which gives the EE. We notice that to compute
√

detg∗ up to order ε2 one can set

∂αx
µ = 0: indeed, having shown that xµ1 = 0, we know that ∂αx

µ starts at order ε2;

moreover (C.6) implies that the first derivative of
√

detg∗ with respect to ∂αx
µ is at

least of order ε; thus the contributions from ∂αx
µ to

√
detg∗ are at least of order ε3.

For the computation of A we can then use the simplified expression (C.5), and obtain

A =

∫
dλdxα

√
gλλ detG+O(ε3) = A0 + ε2

∫
dλ
√
g0
λλ g

λλ
0 g0

µν ẋ
µ
0 Ẋ

ν
2 + . . .+O(ε3) ,

(C.11)

where A0 is the order zero term, Xµ
2 is the S3 integral of xµ2

Xµ
2 ≡

∫
dxα
√

detG0 xµ2 , (C.12)

and the dots in (C.11) are terms of order ε2 that do not depend on xµ2 (but are propor-

tional to δg2
µν and δG2

αβ). We conclude that to compute A at second order we do not

need to know xµ2 (λ, xα) but only its integral Xµ
2 (λ).

(iii) We now want to derive a differential equation for Xµ
2 (λ), or equivalently for

Xµ(λ). Since the extremality equation (4.162) at order ε2 is of course linear in xµ2 , we

can derive an equation for its S3-integral by integrating (4.162) on S3; the last term in
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(4.162), being a total derivative with respect to xα, drops out of the integral; so we get

the equation ∫
dxα

[ ∂

∂xµ

√
detg∗ − ∂

∂λ

∂

∂ẋµ

√
detg∗

]
= 0 , (C.13)

where we can use the approximation (C.5) for
√

detg∗.

We thus see that the problem reduces to that of finding an extremal surface in the

“reduced 3D” metric gEµν ≡ gµν (detG). Note that gEµν would be the Einstein metric in

3D if it were independent of xα. In this extremality problem the variables xα appear

as external parameters, i.e. the equation does not contain derivatives with respect to

xα. At the end of the computation one should integrate over xα. Alternatively one can

perform the integral over xα before solving the equations and define an xα-independent

3D metric

g̃µν ≡ g0
µν + ε2

∫
dxα
√

detG0
(
δg2
µν +

1

3
g0
µν G

αβ
0 δG2

αβ

)
. (C.14)

(Note: we are assuming the normalization
∫
dxα
√

detG0 = 1). The equations that

determine Xµ(λ) ≡
∫
dxα
√

detG0 xµ(λ, xα) are the geodesic equations for a curve in

the metric g̃µν .
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Appendix D

CFT computations of the HH-LL

4-point functions

In this appendix we will study in more detail the CFT computations that lead to

the results for the HH-LL correlators in section (5.1). Since the theory enjoys an

SU(2)1 × U(1) affine symmetry on each strand, in addition to the SU(2)L generators

we also have a U(1) generator J0 defined as

J0(z) =
N∑
r=1

J0
(r)(z) , J0

(r) = −C
2
ψα1̇

(r)ψ
β2̇
(r)εαβ , (D.1)

where C is a constant that is not fixed by the algebra (corresponding to the fact that

the level of the U(1) factor inside a SU(2)k × U(1) affine algebra is undetermined).

The Ja(r) generators of SU(2)L can also be written in terms of the bosons H and K,

noticing that

ψ+1̇
(r)ψ

−2̇
(r) = −i∂H(r), ψ+2̇

(r)ψ
−1̇
(r) = i∂K(r), (D.2)

as

J3
(r) =

i

2

(
∂H(r) + ∂K(r)

)
, J+

(r) = iei(H(r)+K(r)), J−(r) = ie−i(H(r)+K(r)). (D.3)

The light operators we consider are (on a strand)

OL(r) = − i√
2
ψ+Ȧ

(r) εȦḂψ̃
+Ḃ
(r) ≡ O

++
(r) , ŌL(r) = − i√

2
ψ−Ȧ(r) εȦḂψ̃

−Ḃ
(r) , (D.4)

while the ones acting on the product theory are given by the sum over copies in (5.3).

In all the cases considered we will get the same result for each strand, so we can just

work on a copy and (in the untwisted sector) multiply by N . The states corresponding
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to the heavy operators (5.9) we consider in the untwisted sector are

|s, k = 1〉 ≡ lim
z,z̄→0

OH(s, k = 1; z, z̄)|0〉NS

= ⊗Nr=1

[
(J+
−2s)(r) · · · (J+

−2)(r) lim
z,z̄→0

OH(r)(s = 0, k = 1; z, z̄)

]
|0〉NS .

(D.5)

The left and right parts of the four-point function (5.3) factorize and we need to evaluate

correlators of the form

F ȦĊs,(r)(zi) ≡ 〈e
i(s+ 1

2)(H(r)(z1)+K(r)(z1))e−i(s+ 1
2)(H(r)(z2)+K(z2)(r))ψ+Ȧ

(r) (z3)ψ−Ċ(r) (z4)〉×

×
∏
r′ 6=r
〈e−i(s+ 1

2)(H(r)(z1)+K(r)(z1))ei(s+ 1
2)(H(r)(z2)+K(r)(z2))〉. (D.6)

The right part is completely analogous, with the exception that in the right sector we

always have s = 0. Notice that in principle the light operators acting on the product

theory bring two sums over strands. Despite this, by spin conservation, the only nonzero

contributions come from the cases in which both light operators act on the same strand,

which reduces the full correlator to just one sum over copies. Moreover, since the heavy

operators are product over copies, the term relative to the r-th copy is multiplied by the

two-point functions of the heavy operators on all the copies r′ 6= r. The full correlation

function reads

〈OH(z1)ŌH(z2)OL(z3)ŌL(z4)〉 =
N∑
r=1

1

2
F ȦĊs,(r)(zi)F

ḂḊ
0,(r)(z̄i) εȦḂεĊḊ. (D.7)

F ȦĊs,(r)(zi) is nonzero only if the two fermions can have a nontrivial contraction, which

selects the cases (Ȧ, Ḃ) = (1̇, 2̇) and (Ȧ, Ḃ) = (2̇, 1̇). In the first case, using (2.105) to

contract each possible pair of fields, we get

F 1̇2̇
s,(r)(zi) = − z

s+ 1
2

13 z
s+ 1

2
24

z2h
12 z

s+ 1
2

14 z
s+ 1

2
23 z34

= − 1

z2h
12 z34

z−s−
1
2 , (D.8)

where h =
(
s+ 1

2

)2
. The second case is analogous, giving F 2̇1̇

s,(r)(zi) = −F 1̇2̇
s,(r)(zi). The

antiholomorphic parts are obtained from these setting s = 0 and replacing zi → z̄i and

h→ h̄ = 1/4. Putting everything together we get

〈OH(z1)ŌH(z2)OL(z3)ŌL(z4)〉 =
1

z2hH
12 z̄2h̄H

12 |z34|2
|z|−1 z−s ; (D.9)

a factor N would come from the fact that each term of the sum over r gives N times

the same contribution, but this is cancelled by the normalization (5.3) of OL. The first
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correlator we compute in the untwisted sector corresponds to s = 0, while the second

to generic s.

Let’s consider the twisted sector. In this case we have N/k strands of length k and,

working on one strand, the current operators become

J3 = −1

2

k−1∑
ρ=0

ψ+Ȧ
ρ ψ−Ḃρ εȦḂ, (D.10a)

J+ =
1

2

ψ+Ȧ
ρ=0ψ

+Ḃ
ρ=0εȦḂ +

k−1∑
ρ=1

ψ+Ȧ
ρ ψ+Ḃ

k−ρεȦḂ

 , (D.10b)

J− =
1

2

ψ−Ȧρ=0ψ
−Ḃ
ρ=0εȦḂ +

k−1∑
ρ=1

ψ−Ȧρ ψ−Ḃk−ρεȦḂ

 . (D.10c)

Switching from the (r) to the ρ basis using (2.57) the light operators are rewritten as

k∑
r=1

O++
(r) =

k−1∑
ρ=0

O++
ρ , O++

ρ ≡ − i√
2
ψ+Ȧ
ρ εȦḂψ̃

+Ḃ
ρ , (D.11)

where ŌL is the complex conjugate of this. In the s = pk case the states generated

by the heavy operators (5.15) can be expressed in terms of the operators (5.13) corre-

sponding the s = 0 case plus the action of modes of J+,

|s, k〉 ≡
[(
J+
−2s/k . . . J

+
−2/k

)
lim
z,z̄→0

⊗k−1
ρ=0 σ

X
ρ σ̃

X
ρ S

1̇
k,s=0,ρS

2̇
k,s=0,ρS̃

1̇
k,s=0,ρS̃

2̇
k,s=0,ρ

]N/k
|0〉NS .

(D.12)

Following the same logic as in the untwisted sector, the correlator is given in terms of

functions

F ȦĊk,s=pk,ρ(zi) ≡ 〈ei(− ρk+ 1
2

+p)(Hρ(z1)+Kρ(z1))e−i(− ρk+ 1
2

+p)(Hρ(z2)+K(z2)ρ)ψ+Ȧ
ρ (z3)ψ−Ċρ (z4)〉×

×
∏
ρ′ 6=ρ
〈ei
(
− ρ
′
k

+ 1
2

+p
)
(Hρ′ (z1)+Kρ′ (z1))

e
−i
(
− ρ
′
k

+ 1
2

+p
)
(Hρ′ (z2)+Kρ′ (z2))〉 ×

×
k−1∏
ρ′′=0

[
〈σXρ′′(z1)σXρ′′(z2)〉〈σ̃Xρ′′(z̄1)σ̃Xρ′′(z̄2)〉

]
(D.13)

as

〈OH(z1)ŌH(z2)OL(z3)ŌL(z4)〉 =
1

k

k−1∑
ρ=0

1

2
F ȦĊk,s=pk,ρ(zi)F

ḂḊ
k,s=0,ρ(z̄i) εȦḂεĊḊ, (D.14)

where the 1/k factor takes care of the fact that we have the same contribution for

each length-k strand (it would be N/k, but the N factor in the numerator cancels
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out because of the normalization of the light operators). As in the untwisted sector,

F ȦĊk,s=pk,ρ(zi) is nonzero only if (Ȧ, Ċ) take values (1̇, 2̇) or (2̇, 1̇), and we have

F 1̇2̇
k,s=pk,ρ(zi) = − z

− ρ
k

+ 1
2

+p

13 z
− ρ
k

+ 1
2

+p

24

z2h
12 z
− ρ
k

+ 1
2

+p

14 z
− ρ
k

+ 1
2

+p

23 z34

= − 1

z2h
12 z34

z
ρ
k
− 1

2
−p , (D.15)

where h = k
4 + s(s+1)

k , F 2̇1̇
k,s,ρ(zi) = −F 1̇2̇

k,s,ρ(zi) and z is defined in (5.2). The antiholo-

morphic part is again obtained taking the holomorphic one, setting s = 0 (i.e. p = 0)

and replacing zi → z̄i and h→ h̄ = k/4. Putting everything together we get

〈OH(z1)ŌH(z2)OL(z3)ŌL(z4)〉 =
1/k

z2hH
12 z̄2h̄H

12 |z34|2
z−p

|z|
1− |z|2

1− |z|
2
k

. (D.16)

In the s = pk − 1 case, with the same procedure as before we have

F ȦĊk,s=pk−1,ρ=0(zi) = 〈ei(− 1
2

+p)(H0(z1)+K0(z1))e−i(− 1
2

+p)(H0(z2)+K0(z2))ψ+Ȧ
0 (z3)ψ−Ċ0 (z4)〉×

×
k−1∏
ρ′=1

〈ei
(
− ρ
′
k

+ 1
2

+p
)
(Hρ′ (z1)+Kρ′ (z1))

e
−i
(
− ρ
′
k

+ 1
2

+p
)
(Hρ′ (z2)+Kρ′ (z2))

×
[
〈σXρ=0(z1)σXρ=0(z2)〉〈σ̃Xρ=0(z̄1)σ̃Xρ=0(z̄2)〉

]
,

(D.17)

while for ρ 6= 0 (and in the whole right sector) we have the same functions as in (D.13),

i.e. F ȦĊk,s=pk−1,ρ 6=0 = F ȦĊk,s=pk,ρ6=0. The correlator takes again the form (D.14) and the

only new object to compute is

F 1̇2̇
k,s=pk−1,ρ=0(zi) = − z

− 1
2

+p

13 z
− 1

2
+p

24

z2h
12 z
− 1

2
+p

14 z
− 1

2
+p

23 z34

= − 1

z2h
12 z34

z
1
2
−p, (D.18)

where again h = k
4 + s(s+1)

k and F 2̇1̇
k,s=pk−1,ρ=0(zi) = −F 1̇2̇

k,s=pk−1,ρ=0(zi). The full corre-

lator in the s = pk − 1 case reads

〈OH(z1)ŌH(z2)OL(z3)ŌL(z4)〉 =
1/k

z2hH
12 z̄2h̄H

12 |z34|2
z−p

((z
z̄

) 1
2

+
1

|z|
|z|

2
k − |z|2

1− |z|
2
k

)
.

(D.19)

The first correlator considered in the twisted sector corresponds to choosing s = 0, while

the second and the third correspond respectively to the s = pk and the s = pk−1 case.
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Appendix E

Wave equation in AdS3/Zk

In this section we solve the wave equation (5.46) for a scalar field of dimension 1, in

the geometry written in (5.34), with the monodromy (5.48) and the boundary condi-

tion (5.50). We will follow a route similar to the one employed in [121, 122], and our

result generalises the one obtained in the previous works to the case with non-trivial

monodromy (ŝ 6= 0). The boundary CFT lives on the cylinder and to induce the ap-

propriate geometry on the boundary we will work in global AdS coordinates; we will

keep careful track of the periodicity of the spatial circle, which is crucial to distinguish

geometries with different values of the conical defect and to properly implement the

monodromy condition. More general discussions about the dynamics of a scalar field

in Lorentzian AdS of general conformal dimension, the interpretation of the normaliz-

able modes solution, and the difference between different choice of patch can be found

in [131].

The AdS part of the geometry in (5.34b) can be simplified by the redefinitions:

t = k

√
Q1Q5

a
τ y = k

√
Q1Q5

a
σ , r =

a

k
tan ρ , (E.1)

where the new coordinates τ , σ, ρ have the following domains46

ρ ∈
[
0,
π

2

]
, σ ∈

[
0,

2π

k

]
, τ ∈ [0,+∞) . (E.2)

After this change the metric takes the form

ds2
AdS3

=
1

cos2 ρ

(
−dτ2 + dρ2 + sin2ρ dσ2

)
(E.3)

with the boundary located at ρ = π
2 .

The most general solution with the prescribed monodromies involves an arbitrary sum

46The σ coordinate defined here should not be confused with the CFT spatial coordinate with the
same name.
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over Fourier modes:

B(τ, σ, ρ) =
1

(2π)2
eiŝσ

∑
l∈Z

∫
dω eiωτeilkσg(l, ω)χl,ω(ρ) , (E.4)

where the choice of the function g(l, ω) encodes a particular boundary data and we

assume 0 ≤ ŝ < k. Substituting into the wave equation we obtain a differential equation

for χl,ω(ρ) that reads

χ′′l,ω(ρ) + csc ρ sec ρχ′l,ω(ρ) +
(
ω2 − (lk + ŝ)2 csc2 ρ+ `(`− 2)

)
χl,ω(ρ) = 0 . (E.5)

This is an hypergeometric equation, as it is made evident by the change x = sin2 ρ:

χ′′l,ω(x) +
1

x
χ′l,ω(x) +

1

4

(
ω2

x(1− x)
− (lk + ŝ)2

x2(1− x)
+

1

x(1− x)2

)
χl,ω(x) = 0 . (E.6)

The solution that is finite everywhere in the bulk47 is

χl,ω(x) = x
|lk+ŝ|

2 (1−x)
1
2 2F1

(
1

2
(1 + |lk + ŝ| − ω),

1

2
(1 + |lk + ŝ|+ ω), 1 + |lk + ŝ|, x

)
.

(E.7)

From the expansion of this solution near the boundary (x = 1) one can extract the

non-normalizable and the normalizable modes

χl,ω(x) ≈ Γ(1 + |lk + ŝ|)
Γ(1

2(1 + |lk + ŝ| − ω))Γ(1
2(1 + |lk + ŝ|+ ω))

×{[
2γE + ψ(

1

2
(1 + |lk + ŝ| − ω)) + ψ(

1

2
(1 + |lk + ŝ|+ ω))

]
(1− x)

1
2

+ [log(1− x)] (1− x)
1
2

}
,

(E.8)

with the digamma function defined as ψ(z) ≡ d
dz log(Γ(z)), and γE the Euler constant.

The non-normalizable mode (the source) is the coefficient of the [log(1− x)] (1 − x)
1
2

term and the normalizable mode (the VEV) is the term proportional to (1 − x)
1
2 .

Reverting to the original coordinates, these two terms correspond to the ones shown

in (5.50). A delta function source at the boundary is obtained by tuning the function

g(l, ω) in (E.4) in such a way that the non-normalizable term has constant Fourier

transform; this is achieved setting

g(l, ω) =
Γ(1

2(1 + |lk + ŝ| − ω)) Γ(1
2(1 + |lk + ŝ|+ ω))

Γ(1 + |lk + ŝ|)
. (E.9)

The coefficient of the normalizable term, denoted as b1(τ, σ) in (5.50), is then found

47The form of the other independent solution can be found, for example, in [131]. It can be shown
to contain divergences for x→ 0 (i.e. r → 0).
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from (E.8) to be

b1(τ, σ) =
∑
l∈Z

∫
dω

(2π)2
eiωτ+i(lk+ŝ)σ

[
ψ(

1

2
(1+|lk+ ŝ|−ω))+ψ(

1

2
(1+|lk+ ŝ|+ω))+2γE

]
.

(E.10)

In order to perform the sum we use the series representation of the digamma function

ψ(z) = −γE +

∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
. (E.11)

Separating the term with l = 0 in the sum, and forgetting contact terms coming from

summation over constants Fourier modes we have

b1(τ, σ) =
∞∑
n=0

[ ∞∑
l=0

∫
dω

(2π)2
eiωτ+i(lk+ŝ)σ

(
2

ω − (lk + ŝ)− 1− 2n
− 2

ω + (lk + ŝ) + 1 + 2n

)

+
∞∑
l=1

∫
dω

(2π)2
eiωτ−i(lk−ŝ)σ

(
2

ω − (lk − ŝ)− 1− 2n
− 2

ω + (lk − ŝ) + 1 + 2n

)]
.

(E.12)

As usual, to define the ω-integral one has to pick the integration contour: we choose the

Feynman prescription, which allows the Wick rotation to Euclidean space and hence

comparison with the CFT correlator, which is evaluated on the Euclidean plane. The

integral is thus readily computed and yields

b1(τ, σ) = − i

2π

∞∑
n=0

[ ∞∑
l=0

ei(lk+ŝ)σe−i(lk+ŝ+1+2n)τ +

∞∑
l=1

e−i(lk−ŝ)σe−i(lk−ŝ+1+2n)τ

]

= − i

2π

eiŝσ

eiτ − e−iτ

[
e−iŝτ

1− eik(σ−τ)
+

eiŝτ

eik(σ+τ) − 1

]
.

(E.13)

Re-expressing the result in the original physical coordinates defined in (E.1), and sup-

pressing the overall numerical coefficient (which is not meaningful as we did not keep

track of the normalization of the operators), we finally obtain

b1(t, y) = −i
e

iŝ y
Ry k

e
i t
Ry k − e−i t

Ry k

 e
i t−y
Ry

e
i t−y
Ry − 1

e
−iŝ t

Ry k +
1

e
i t+y
Ry − 1

e
iŝ t
Ry k


= −i

(z
z̄

) ŝ
2k 1

|z|
1
k − |z|−

1
k

[
z̄

z̄ − 1
|z|−

ŝ
k +

1

z − 1
|z|

ŝ
k

]
.

(E.14)
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