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Abstract

American options are the reference instruments for the model calibration of a large
and important class of single stocks. For this task, a fast and accurate pricing
algorithm is indispensable. The literature mainly discusses pricing methods for
American options that are based on Monte Carlo, tree and partial differential equa-
tion methods. We present an alternative approach that has become popular under
the name de-Americanization in the financial industry. The method is easy to im-
plement and enjoys fast run-times (compared to a direct calibration to American
options). Since it is based on ad hoc simplifications, however, theoretical results
guaranteeing reliability are not available. To quantify the resulting methodological
risk, we empirically test the performance of the de—Americanization method for
calibration. We classify the scenarios in which de-Americanization performs very
well. However, we also identify the cases where de-Americanization oversimplifies
and can result in large errors.
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1 Introduction

1 Introduction

The most frequently traded single stock options are of American type. In general, there
exist a variety of (semi-)closed pricing formulas for European options. However, for
American options, there hardly exist any closed pricing formulas, and the pricing under
advanced models relies on computationally expensive numerical techniques such as Monte
Carlo simulation or partial (integro-) differential methods.

To tackle this core problem the financial industry has adopted the so-called de—Ameri-
canization approach which has become a market standard: American option prices are
transferred into European prices before the calibration process itself is started. This
is usually done by applying a relatively simple binomial tree. By replacing American
options with European options, the complexity of the calibration problem is reduced and
the computational costs are lowered significantly. The striking advantage of this proce-
dure is that it enables to employ the advanced and standard tools for model calibration
to European option data which are readibly available and typically efficient. Figure 1
illustrates the scheme of the de-Americanization methodology.
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American European
Option Prices Binomial Option Prices
Tree

Calibration Calibration

Calibrated Calibrated
Model Parameters Model Parameters

Figure 1 De-Americanization scheme: American option prices are transferred into Eu-
ropean prices before the calibration process itself is started. We investigate the
effects of de-Americanization by comparing the results to directly calibrating
American options.

The de-Americanization methodology enjoys three attractive features,

e it delivers fast run-times compared to a direct calibration to American options,

e it is easy to implement,

e it can flexibly be integrated into the pricing and calibration toolbox at hand.
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One downside is that no theoretical error control is available. Therefore, it is important
to empirically investigate the accuracy, the performance and the resulting methodological
risk of the method.

The method is briefly mentioned by Carr and Wu (2010), who describe how their im-
plied volatility data, stemming from the provider OptionMetrics, is obtained by applying
exactly this de-Americanization scheme. To the best of our knowledge, the de—Ameri-
canization methodology has not been investigated deeply in the literature. We therefore
devote the current paper to this task. In order to conduct a thourough investigation, we
consider prominent models and identify relevant scenarios in which to perform extensive
numerical tests. We focus on options on non-dividend-paying underlyings and explore
the CEV model as an example of a local volatility model, the Heston model as a stochas-
tic volatility model and the Merton model as a jump diffusion model. For all of these
models, we implemented finite element solvers as benchmark method for pricing Amer-
ican options. The following questions serve as guidelines to specify decisive parameter
settings within our studies.

1. Since American and European puts on non-dividend-paying underlyings coincide
for zero interest rates, we analyze in particular the methodology for different in-
terest rates.

2. Intuitively, with higher maturities, the early exercise feature of American options
becomes more valuable and American and European option prices differ more sig-
nificantly. Therefore, we investigate the following question: Does the accuracy of
the de-Americanization methodology depend on the maturity and do de-Ameri-
canization errors increase with increasing maturities?

3. In-the-money and out-of-the-money options play different roles. First, out-of-the-
money options are preferred by practitioners for calibration since they are more
liquidly traded, see for instance Carr and Wu (2010). Second, in-the-money options
are more likely to be exercised. How does the de—Americanization methodology
perform for out-of-the-money options and for in-the-money options?

4. The difference between American and European options is model-dependent. In-
tuitively, (higher) jump intensities lead to higher values of early exercise features.
How does the de—Americanization methodology perform for continuous models
(CEV model and Heston model)? How does it perform for different jump intensi-
ties (Merton model)?

Our investigation is organized as follows. First, we introduce the de—Americanization
methodology in Section 2. Then we briefly describe in Section 3 the models and the
benchmark pricing methodology. Section 4 presents the numerical results: The accuracy
of the calibration procedure obviously hinges on the accuracy of the underlying pricing
routine. We therefore first specify the de—Americanization pricing routine and investigate
its accuracy. Afterwards, we present the results of calibration to both synthetic data
and market data. To conclude the numerical study, we present the effects of different
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calibration results on the pricing of exotic options. We summarize our findings in Section
5.

1.1 Short literature overview on American options

For an overview of pricing American options, we refer to Barone-Adesi (2005). The
problem of pricing an American put traces back to Samuelson (1965) and McKean
(1965). Brennan and Schwartz (1977) were among the first to provide numerical so-
lutions. Additionally, the binomial tree model of Cox et al. (1979) was developed to
price American options. Broadie and Detemple (1996) described an approximation of
the American put price by interpolating between an upper and lower bound. Longstaff
and Schwartz (2001) combined American option pricing with Monte-Carlo techniques
based on a polynomial interpolation of the continuation value. The problem of pricing
American options can also be interpreted as a free boundary problem, see e.g. Kim
(1990), or as an optimal stopping problem, see e.g. Peskir and Shiryaev (2006), and be
formulated as a dynamic programming principle. Although Barone-Adesi (2005) con-
cludes that the mainstream computational problems have been solved satisfactorily, by
switching the focus on calibration, there are rather recent developments for calibrating
American options. As examples, we state Haring and Hochreiter (2015), who apply a
specific search algorithm in the calibration process, namely a Cuckoo search algorithm,
and Ballestra and Cecere (2016). They provide a method to forecast the parameters of
the constant elasticity of variance (CEV) model implied by American options in order
to fit the model relatively quickly to market data. To summarize, calibrating American
market data is a numerically challenging problem. The research in the literature puts
the focus now on optimizing the calibration procedure to reduce the run-time. At its
core, still path-dependent, rather complex, American options are priced.

2 De—Americanization methodology

In this section, we give a precise and detailed description of the methodology. The de—
Americanization methodology is used to fit models to market data. The core idea of de—
Americanization is to transfer the available American option data into pseudo-European
option prices prior to calibration. This significantly reduces the computational time
as well as the complexity of the required pricing technique. Basically, de—Americani-
zation can be split into three parts. The first part consists in collecting the available
market data. The currently observable price of the underlying Sy, interest rate r and
the available American option prices are collected. In the following, we will denote the
American option price of the i-th observed option by Vj. We interpret the market data
as the true option prices, thus we assume that the observed market prices Vj‘ can be
interpreted as Vi = SUPye(o,73] Ele ""H;(S))|Fo], i =1,...,N, where #H; is the i-th
payoff function, 7T; the maturity of the i-th option, and the expectations are taken under
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a risk-neutral measure, F is the natural filtration, and N denotes the total number of
options. Up to this point, no approximation has been used.

The second step is the application of the binomial tree to create pseudo-European — so
called de-Americanized — prices based on the observed American market data. In this
step, we look at each American option individually and find the price of the corresponding
European option with the same strike and maturity. This European option is found by
fitting a binomial tree to the American option. The binomial tree was introduced by
Cox et al. (1979) as follows. Starting at Sp, at each time step and at each node, the
underlying can either go up by a factor of u or down by a factor of % and the risk-neutral
probability of an upward movement is given by

(1)

Once the tree is set up, options can be valuated by going backwards from each final
node. Thus, path-dependent options can be evaluated easily. Since for each option i
the American option price VZ‘ is known, as well as Sy and r, the only unknown pa-
rameter of the tree is the upward factor w. At this step, the upward factor u; is
determined such that the price of the American option in the binomial tree matches
the observed market price. Thus, denoting {0 : At : T;} = {0,At,2A¢,...,T;}, we
have sup;cqo.apm) E [e 1H,(S,' :)|.7:0] = V3, where S’ * denotes the underlying process
described by a binomial tree with upward factor «;. The early exercise feature of Amer-
ican options is reflected in the fact that the the supremum is taken over all discrete time
steps. A detailed description of pricing American options in a binomial tree model is
given in Van der Hoek and Elliott (2006). Once S, s determined, the corresponding
European option with the same strike and maturity as the American option is specified,
Vi=E [e_rTiﬁi(S;E)]]:o]. Note that fixing u] also implicitly determines the implied
volatility.

Then, for each American option VIZ", a corresponding European option V]% has been found,
and the actual model calibration can start. The goal is to fit a model M, depending
on parameters p € R? where d denotes the number of parameters in the model, to the
European option prices Vé, i =1,...,N. Denote by S% W) the underlying process in
model M with parameters y € R In the calibration, the parameter vector p is deter-
mined by minimizing the objective function of the calibration. Algorithm 1 summarizes
the de—Americanization methodology in detail.

Regarding the uniqueness of the factor v} in the De-Americanization methodology de-
scribed in Algorithm 1, we will first investigate the case of a European put option. There-
fore, we interpret the risk-neutral probability in (1) as function of u, p(u) = “f:f_tl_l At
each node in the binomial tree we have a two-point distribution, that we call Bernoulli
distribution X ~ QB(u), where the value u is taken with probability p(u) and the value

1 is taken with probability (1 — p(u)).
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Algorithm 1 De-Americanization methodology
: procedure COLLECTION OF OBSERVABLE DATA
So, T, N
Vi= SUDte[0,7;] Ele " H;(Sp)|Fo), i=1,...,N

1
2
3
4: procedure APPLICATION OF THE BINOMIAL TREE TO EACH OPTION INDIVIDUALLY
5
6
7

fori=1: N
Find u; such that
SUD;e {0:ALT)} E[ef’“tﬁi(S::)\}"o] = V4 where the supremum is taken
over all stopping times ¢
8: Derive the corresponding European option price with u;
9: Vi = Ele™TH;(Sy! )| Fol
10: end

11: procedure CALIBRATION TO EUROPEAN OPTIONS
12: Find g such that the differences

13: Ele " Hi(5y ") ~ Vi, i=1,...,N

14: are minimized according to the objective function

Proposition 2.1
Fori=1,...n, let X; ~ QB(u) and Y; ~ QB(t). If u < ', and u, u' > ">t then for

any K € R
n + n +
i=1 i=1
Remark 2.2

In the implementation of the tree, we set the time step size At ~ 0.0002 and we use a
simple bi-section approach as suggested by Van der Hoek and Elliott (2006) to find u*.
Thus, given a market price Va, starting with an upper bound u,p, and a lower bound wy
satisfying the conditions in Proposition 2.1 such that,

E <FE

sup E[e_rtﬁi(Sf“b)\fo] > Va,
te{0:At:T;}

sup E[efrtﬁi(Sflbﬂfo] < Va,
te{0:At:T;}
the bi-section approach is started and the new candidate for u* is 4 = ”“bTﬂ”b When
SUP;e (0:ALT;} Ele " H;(S)|Fo] > Va, we set uy, = @ for the neat iteration, otherwise
up = U. As stopping criterion, we choose

sup E[ef’"tﬁi(sf)\fo] —Va| <e,
tE{O:At:Ti}

and set ¢ = 107° in our implementation. In Proposition 2.1 we have investigated the
European put case and can deduce from the convex ordering that the put prices are mono-
tonically increasing in uw. For a strict order, the u*-value is thus uniquely determined.
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In our case, the u*-value can be determined uniquely as minimum of all u values satis-
fying the stopping criterion. Moreover, this indicates that also the American put price
wn the binomial tree is increasing with increasing w. We validated this by numerical tests
(not reported). This is in line with the recommendation in Van der Hoek and Elliott
(2006). The only observed limitation is that the American put price can not given by an
immediate exercise at the initial time. This is explained in detail in Remark 4.1.

3 Pricing Methodology

In this section, we present a model formulation and numerical implementation of the
three investigated models (CEV, Heston, Merton). To investigate the de-Americaniza-
tion methodology, we need to price the American and Furopean options. Our market
data in the numerical study later on will be based on options on the Google stock (Ticker:
GOOG). As Google does not pay dividends, we neglect dividend payments in our pricing
methodology. Without dividend payments, for r > 0, it holds in general that American
calls coincide with European calls and only American puts have to be treated differently.
The opposite is true for » < 0, in which case American and European puts coincide and
American and European calls have to be treated differently.

In general, for European options, there exists a variety of fast pricing methodologies such
as Fast Fourier Transform (Carr and Madan (1999); Raible (2000)) or even closed-form
solutions. The common approaches for pricing American options are P(I)DE methods
using either the finite difference method (FDM) or a finite element method (FEM). We
choose FEM since it is typically more flexible. For an introduction of FEM in finance,
we refer to Achdou and Pironneau (2005), Achdou and Pironneau (2007) and Seydel
(2012). To solve the resulting variational inequalities for American options, we use the
Projected SOR Algorithm, Achdou and Pironneau (2005), Seydel (2012), for the CEV
and Merton models, and the Primal Dual Active Set Strategy, Hintermdiller et al. (2002),
for the Heston model.

3.1 Option Pricing Models
We briefly present the models that we use for our study, namely the constant elasticity of
variance model (CEV), the stochastic volatility Heston model, and the Merton model.

In all three of the models, the asset price dynamics S; are governed by a stochastic
differential equation (SDE) of the form

dS; = rS-dr +o(S,7)S; dW, + S;_ dJ;, So=s5>0, (2a)
N,

J-= > Y, (2b)
=0
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with W, a standard Wiener process, r the risk-free interest rate and a volatility function
o(S,7). The jump part (J-)r>0 is a compound Poisson process with intensity A > 0 and
independent identically distributed jumps Y;, ¢ € N, that are independent of the Poisson
process (N;)r;>0. The Poisson process and the Wiener process are also independent.

As an example of a local volatility model, we begin by presenting the CEV model, which
was introduced by Cox (1975). Here, the local volatility is assumed to be a deterministic
function of the asset price for the process in (2), o(S, 1) = aSg_l, 0<(¢<1,0>0and
A = 0. In this paper, we use the original example of the CEV model by Cox (1975) in
which the parameter constraint 0 < ¢ < 1 is designed to capture the leverage effect. This
effect describes the behaviour of an increasing volatility when the stock price decreases.

As an example of a stochastic volatility model, we use the model proposed by Heston
(1993). In contrast to the CEV model, the stochastic volatility is driven by a second
Brownian motion WT whose correlation with W is described by a correlation parameter
p € [—1,1], and the model is based on the dynamics of both the stock price (2), with
jump intensity A = 0, and the variance v, (3),

dv; = ’{(7 - UT)dt + éﬁdﬁz‘a (3)

with o(S,7) = \/v;, mean variance v > 0, rate of mean reversion x > 0 and volatility of
volatility &€ > 0. Jumps are not included in either of the CEV or Heston models.

The Merton model includes jumps. The log-asset price process is not exclusively driven
by a Brownian motion, but instead follows a jump-diffusion process. Thus, in the model
of Merton (1976), the volatility of the asset process is still assumed to be constant,
o(S,7) =0 >0, VS > 0,Y7 > 0. But being a jump diffusion model, the jump intensity
A > 0 is positive and Ny ~ Poiss(At). The jumps are taken to be independent normally
distributed random variables, Y; ~ A (a, 3?) with expected jump size o € R and standard
deviation 8 > 0.

3.2 Pricing P(I)DE

Denote by t = T — 7 the time to maturity 7', T < co and by K the strike of an option.
For the CEV model, we stay with the S variable, S € (0, 00), for the Heston and Merton
model we work with the log-transformed stock variable x := log (%), x € (—00,00). In

the following, we will denote an American or European call or put price by pAm/Eu

call/put * or
the CEV model we have P;;Zl/p Z’; : (0,T) x RT — R™ and for the Heston and Merton
Am/Eu
model we have P

vall fput (0,7) x R™ — R (n =1 (Merton), n = 2 (Heston)). The
value of an option at ¢ = 0 is given by the payoff function H Jput(1)s Peaijput(0) = Po =
j:zcall/put with Heau(S) := (§ — K)* or ﬁput(S) = (K — S)* in the CEV model and

Heant(z) = (Ke* — K)*, (Hpuw(x) := (K — Ke®)") in the Heston and Merton models.
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call /put Y
Eu /put _ 43

Then, to find the value of the European option P./}; Jput> PRYING Py call /put(S)

(Pgall/ put ';qca” /put(7)) at t = 0 leads to solve the following initial boundary value

problem
aPEu
Il /put Il /put
cgt/pu - ﬁsPcEaﬁ/put = 07 PcEa;g/put(O) = Pga /ou 3 (4)

where the spatial partial (integro) differential operator £%, s = {CEV,H, M} is deter-
mined by the model used to price the option. For the CEV, Heston and Merton, it is
given by (5a), (5b) and (5c), respectively.

2 pAm/Eu Am/Eu

¢—1
CEV pAm/Eu | USt 2 call/put call /put Am/Eu
L Pcall/put T 9 552 rsS oS -r call/put’ (5&)
1 aQPAm//E‘u 2 Am//E‘u 1 2 Am//E‘u
HpAm/Eu L call /put call /put 1.2 call /put
£ Pcall/p“t CT YT a2 +&vp Ovox + 2f VT o0
Am/Eu Am/Eu
oP oP
call /put 1 call /put Am/Eu
+ Ky — v)iav + (r — 21}) o erll/put, (5b)
Am/Eu aQPAm/Eu
EMPAm/Eu = call /put 1 2 call/put 5 Am/Eu
call/put = Or ) ox2 call /put
Am/Eu Am/Eu call/put Am/Eu
+ /R(Pcall/put (JT + Z) o Pcall/put (LL‘) o ox Z)F(dz) o 7ﬁPcall/put’
(5¢)

where, for the Merton model, the jump measure F' is given by

exp<_42“”2>dz (6)

F(dz) = T

A
\/ 27 32

[‘32
and the drift b € R is set to b := r — %02 - A (eo‘+2 — 1) due to the no-arbitrage
condition.

Due to its early exercise possibility, pricing an American option (e.g., put) results in
additional inequality constraints, and leads us to solve the following system of inequali-
ties

oP ci‘t?l?ll/put s Am . call Jput
—ar L Falipu 20 Palijpu — BT 20, (72)
opam
call /put s pAm Am call /put
<8tp —£ Pealtfput | - (Pcall/put -5 /P ) =0. (7b)

We denote the parameter vector by p := (&, p,7,k,7) € R® for the Heston model,
p = (0,¢) € R? for the CEV model and p := (0, , 3,\) € R* for the Merton model.
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Then the problems (4), (7) are parametrized problems with pu € P, where P C R? is a
parameter space. The solution can be written as P = P(u). In some cases, for notational
convenience, we will omit the parameter-dependence of P and related quantities.

3.3 Variational Formulation
3.3.1 Boundary Conditions

We tackle the non-homogeneous truncated Dirichlet boundary conditions by means of
the lift function uz, () = g(t) onto the domain. For all models, we consider only Dirichlet-
or Neumann-type boundary conditions. For the European call in the Heston model, we
specify them as follows according to Winkler et al. (2001),

I'1:v=Unn PEY(t, vmin, ) = Ke®®(dy) — Ke " ®(dy), (8a)
Ty :v=vmnax PCEa}‘l(t,vmax,x) = Ke", (8b)
and we interpolate linearly on the boundaries I's = {x = =iy} and T'y = {2 = Tmax}-
The cumulative distribution function ®(-) is defined in (10) and dj 2 = %\iﬁ?)t with

o =4/v.

The boundary conditions for American put options in the Heston model are as follows,
according to Clarke and Parrott (1999) and Diiring and Fournié (2012),

PAm(t,v,a:) = Hput(x), on T3zUTy,

put
8PAm aPAm
[;Z)ut (t, Umin, ) = 0, on Iy, azztt (t, Vmax, ) =0, on T.

For the CEV model, following Seydel (2012), we applied the boundary conditions

P;Z‘L;?/Eu(t, Smin) = 0, P;;ZL/Eu(t, Smaz) = Smaz — ¢ K, for call options,
Pgﬁ‘(t, Spmin) =€ K — Spin, Pﬁ%(t, Smaz) = 0, for European put options,
Pﬁ@”(t, Smin) = K — Smin, PﬁT(t, Smaz) = 0, for American put options.

In the Merton model, we subtract a function ¥ from the original pricing PIDE that
approximately matches the behavior of pMerton gych that for all t € [0,7] we have
pMerton — pMerton(y 2y (¢, ) — 0 for z — F00. We choose

\IIAm./Eu. call(t’ J,‘) — (Kerp o 1(677“15)(1)(3:)7 (9)
WA P (1 0) = (K~ Ke)(1 - 9(x)),

for European call and put options, respectively, where ® is the cumulative distribution
function of the normal distribution (10),

2

(z) = \/%/_ 3. (10)

NI

10
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The transformation of the Merton model obtained by subtracting an appropriately chosen
function ¥ as introduced in (9) results in zero boundary conditions in space, u(t, Zyin) =
u(t, tmax) = 0 for all t € [0,T7].

4 Numerical Study of the effects of de-Americanization

Our main objective is to investigate the de—Americanization methodology with respect
to the previously stated questions 1-4 on page 3. But before we look at these questions
and the calibration results in detail, we describe the discretization of our FEM pricers
followed by an investigation of the effects of de-Americanization on pricing. Then we
switch to calibrating to synthetic data and, finally, to market data.

4.1 Discretization

We set up mesh sizes and time discretization in all three models such that the errors
compared to benchmark solutions are roughly the same. In our test setting, we set
So=1,r=0.07, T ={0.5,0.875,1.25,1.625,2} and K to 21 equally distributed values
in [0.5, 1.5]. For the discretization, we choose [Syin, Smaz] = [0.01, 2] for the CEV model,
[Vmin, Vmaz) = [107°,3] and [Zmin, Tmaz] = [, 5] for the Heston model and for the
Merton model we set [Zmin, Tmaz] = [—D, 5]. Note that in order to avoid the degeneracy
of the Heston PDE at v = v,in, we set for the Heston model vy, = 1072 > 0. We set
N = 1000 for the CEV model, N = 49 x 97 = 4753 for the Heston model and N = 192
for the Merton model, as well as At = 0.008 for all models. For the CEV model, we
choose 0 = 0.15 and ( = 0.75 and as benchmark solution we implement the semi-closed-
form solution of the CEV model for European put and call prices as shown in Schroeder
(1989). We use the semi-closed-form solution in Janek et al. (2011) for the Heston model
as benchmark and as model parameters we use £ = 0.1, p = —0.5, v = 0.05, Kk = 1.2
and vg = 0.05. In the Merton model, Fourier pricing is used as benchmark. The model
is parametrized by setting ¢ = 0.2, « = —0.1, § = 0.1 and A = 3. Summarizing the
results, we observe that for all models, with the introduced discretization, the absolute
error between the benchmark and the FEM solution is in the region of 1073 to 10~ and,
thus, the pricers for all three models have comparable accuracy.

4.2 Effects of de—Americanization on Pricing

First, we focus on pricing differences caused by de—Americanization. Therefore, we
compare the de-Americanized American prices with the derived European option prices
in the following way. Starting with a set of model parameters, we price the American
and European options. Then, the binomial tree is applied to translate the American
option prices into de-Americanized pseudo-European prices. Subsequently, we compare

11
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the European and the pseudo-European so called de-Americanized prices to identify the
effects of the de-Americanization methodology.

The advantage of this approach is that we can purely focus on de—Americanization,
decoupled from calibration issues. In order to do so, we define the following test set for
the range of investigated options. Here, we focus on put options due to the fact that
American and European calls coincide for non-dividend-paying underlyings.

So =1
K = 0.80,0.85,0.90,0.95,1.00, 1.05, 1.10, 1.15, 1.20
Lt 23 4 6 9 1224
12'12°12°12° 127127 12’ 12
r =0,0.01,0.02,0.05,0.07 (11)

In each model, 5 parameter sets are investigated to cover the parameter range. These
are summarized in Table 1.

Table 1 Overview of the parameter sets used for the CEV, Heston and Merton models

CEV Heston Merton

o ¢ § P Y K W o o B
pp 02 051010 -0.20 0.07 0.1 0.07]020 -0.01 0.01
pp 0.275 0.6 ]0.25 -0.50 0.10 04 0.10 | 0.15 -0.05 0.05
ps 035 0.7]040 -0.50 0.15 0.6 0.15|0.20 -0.10 0.10
pgy 0425 08| 0.55 -045 020 1.2 0.20 | 0.10 -0.10 0.20
ps 05 091]070 -0.80 0.30 1.4 0.30 | 0.10 -0.15 0.20

N O W N >

Motivation of the selected parameters for the CEV model The main feature
of the CEV model is the elasticity of variance parameter ¢, which is combined with the
level of the underlying to obtain a local volatility, namely o(S,t) = 057!, reflecting
the leverage effect. In our example, we investigate American puts and the option-holder
benefits from decreasing asset prices. In general, increasing the volatility leads to in-
creasing option prices, but especially compared to the classical Black-Scholes model we
are interested in the question of how strongly the incorporated leverage effect influences
the put prices and whether the differences between American and European puts can
be captured by the binomial tree. Thus, our selection for ¢ in p; is 0.5, which strongly
differs from the Black-Scholes model, and then ( is further increased up to 0.9 within
the scenarios. Additionally, we increase the values of o.

Motivation of parameter selection for the Heston model Similar to the CEV
model, the (American) put prices increase with increasing volatility. We try to cover this
effect by increasing the volatility of the volatility parameters and the correlation between

12



4.2 Effects of de—Americanization on Pricing

the two stochastic processes. In general, for stocks, the correlation between the volatility
and the underlying value is negative. Thus, in the de-Americanization study, we focus on
negative correlation values p. Starting in p; with a relatively low volatility and a slightly
negative correlation p, in py to py we increase the volatility of volatility parameter &,
the mean reverting level v and the mean reverting speed k, and also investigate higher
negative values for the correlation p. In all scenarios, the initial volatility vg is set to
match the mean reverting level, i.e., vg = 7.

Motivation of parameter selection for the Merton model The Merton model
is a jump diffusion model. Due to the early exercise feature of American options, the
existence of jumps has a significant impact on American option prices. Consider for
example an American put. Here, the option-holder benefits from decreasing asset prices.
Consequently, when the possibility of negative jumps increases, the option price will
increase as well. The jump intensity parameter A therefore plays a decisive role in this
de-Americanization study. The analogous reasoning holds for the expected jump size
parameter . In the upcoming numerical study, we try to incorporate these effects.
The considered scenarios for the Merton model presented in Table 1 are chosen by this
reasoning. Scenario p; describes a Black-Scholes-like market with a rather low presence
of jump occurrences. In po and p3, the jump feature appears more pronounced. Scenario
p4 and ps finally are encoded by rather jump-dominated parameter sets, which have an
average number of 7 jumps per year with large expected negative jump sizes that appear
highly volatile.

Remark 4.1

We price the put options in (11) for the parameter sets shown in Table 1. By including
K =1, at-the-money options are included in this analysis. For some parameters, espe-
cially for high interest rates combined with low volatility, it could occur that the price of
an American put option equals exactly K; — Sy, so that this American put option would
be exercised immediately. In the following analysis, we excluded these cases because a
unique European option price cannot be determined by applying the binomial tree. As
tllustrated in the following toy example in Figure 2, there are several possible values for u
to replicate the American option price if the price of the American option is determined
by tmmediately exercising it. In the example, a put option with strike K = 120 is priced.
Here, uw = 1.04 and u = 1.11 are possible solutions. To avoid this, we consequently only
consider American put options in our analyses when PI;%T > (K —So)™ - (1+6). Thus,
the American put option price exceeds the immediate exercise price by a factor of §. We
set 0 = 1%. In theory, we can not exclude that in all other cases the application of
the binomial tree finds a unique u* to replicate the American option price. However, in
various empirical tests this has been the case and only when the price of an American
put option equals exactly K; — Sy, problems have been observed.

In Tables 9 - 11 (CEV model), Tables 12 - 14 (Heston model) and Tables 19 - 21 (Merton
model) in the appendix, we show in the appendix the pricing effects for the synthetic
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4.2 Effects of de—Americanization on Pricing

u~ 1.036 107.33, 12,67, 12.67

\

103.6, 15.80, 16.40

\
/

100.00, 18.81, 20.00 100.00, 20.00, 20.00

/
\

96.53, 22.88, 23.47

/

93.17, 26.83, 26.83

uwa~1.112 123.63, 0.00, 0.00

\

111.19, 10.01, 10.01

\
/

100.00, 19.69, 20.00 100.00, 20.00, 20.00

/
\

89.94, 29.46, 30.06

/

80.89, 39.11, 39.11

Figure 2 Given an American put option price of 20 with Sy = 100, K = 120, » = 0.01,
i.e., an American put option in the exercise region, a unique tree cannot be
found to replicate this option. In this example, we show two binomial trees for
u =~ 1.036 (top) as well as u ~ 1.112 (bottom). In each tree, we show the value
of the underlying (black), the European put price (blue) and the American
put price (red) at each node. Both trees replicate the American option price
of 20.00 but result in different Furopean put prices: 18.81 and 19.69.
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Figure 3 De-Americanization effects on pricing put options in the CEV model. As
an example, the results are shown for ps for the average error between the
de-Americanized and the European prices for each strike (top left) and each
maturity (top right). The average differences of the corresponding American
and European prices is shown for each strike (bottom left) and each maturity
(bottom right).

prices in (11). For each scenario p;,i = 1,...,5, we present the average difference between
the de-Americanized prices and the European prices for each maturity and each strike
and accordingly show the maximal European price in this maturity to reflect the issue
stated in Remark 4.1. Similar studies have been done for the maximal error at each
strike and maturity and confirm the findings based on the average error presented in
the following. In Figure 3, we highlight the results for scenario ps in the CEV model
to illustrate the effects of de-Americanization in several interest rate environments for
different maturities or different strikes. For ps in the Heston model and ps in the Merton
model, the results are shown in Figure 4 and Figure 5, respectively. All of these figures
clearly highlight the case r = 0 as having hardly any de-Americanization effects (Heston
and Merton) or at least fewer such effects (CEV). For a better interpretability, in each
of the figures the differences between the corresponding American and European option
are shown, too.

In general, for the CEV model, we observe that for short maturities the de-Americanized
prices seem to overprice the European prices, whereas for longer maturities they seem
to underprice the European options. We see that with increasing ¢ and ( parameters
the maximal error increases and, overall, all parameter sets behave similarly. Focusing
on the interest rate, we observe that for higher interest rates (r = 5% and r = 7%)
the average errors are higher or at least in a comparable region. Especially for higher
interest rates, the maximal price has to be considered, because the higher the interest
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Figure 4 De-Americanization effects on pricing put options in the Heston model. As
an example, the results are shown for ps for the average error between the
de-Americanized and the European prices for each strike (top left) and each
maturity (top right). The average differences of the corresponding American
and European prices is shown for each strike (bottom left) and each maturity
(bottom right).

rate, the higher the probability that we did not consider some in-the-money options
due to Remark 4.1 and that the options with high prices are neglected in this setting.
Thus we deduce that the error increases with increasing interest rates and that at high
maturities the error increases for scenarios with higher volatility. For scenarios pi, pe
and p3, we clearly observe that the effects of de-Americanization increase with increasing
strikes. This means that for in-the-money options the de-Americanization effects tend
to be stronger than for out-of-the-money options. This is consistent with the statements
made by Carr and Wu (2010). However, for higher interest rates, the average error seems
to decrease with increasing strikes. The test setting in (11) is defined for S = 1. In the
CEV model, the volatility is scaled with S¢~!. In additional test, we set in (11) S = 100
and scaled the strike values K with a factor of 100, too. Overall, we observe that the
errors of the de-Americanization methodology give a similar picture to the results in
Tables 9 - 11. Naturally, by investigating differences of prices, the absolute number of
the error is higher by a factor of 10 to 100, which is tolerable when the underlying value
is scaled with a factor of 100.

For the Heston model, we observe in general that the de-Americanization error increases
with increasing interest rates within each parameter setting. Additionally we see that for
r = 0% there is hardly any effect. By focusing on the scenarios with a higher volatility
of volatility parameter (ps and p;), we observe stronger de-Americanization effects at
short and long maturities (7} and Tg). For short maturities, the de~Americanized price
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Figure 5 De-Americanization effects on pricing put options in the Merton model. As
an example, the results are shown for ps for the average error between the
de-Americanized and the European prices for each strike (top left) and each
maturity (top right). The average differences of the corresponding American
and European prices is shown for each strike (bottom left) and each maturity

(bottom right).

is consistently lower than the corresponding European price throughout all scenarios,
whereas for high maturities the de-Americanized price is higher than the corresponding
European price. To highlight the in-the-money and out-of-the-money issue in Figure 4,
note that in the Heston model the error is far smaller out-of-the-money than deep in-
the-money. However, the highest errors tend to occur in the at-the-money and slightly
in-the-money regions. For the Heston model, we did additional tests for parameter
scenarios in which the initial value of the volatility vy does not equal the mean reverting
level v. We report these additional scenarios in Table 15. The results are reported in
Tables 16 - 18. Overall, they are similar to the results presented in Tables 12 - 14.
At this point, we want to highlight two observations. Comparing the results for ps to
p7, for an increased initial volatility v, the de—Americanization error is slightly higher.
Additionally, by comparing pg with p; and pg with pg, the de-Americanization error is
slightly higher in cases with an increased vy compared to cases with an increased .

For the Merton model, we observe similar, small effects for scenarios p; and po, i.e.,
the scenarios with low jump intensity, whereas for the scenarios with increasing jump
intensity (ps, ps and ps) we observe stronger de-Americanization effects, especially for
increasing maturities and interest rates. Figure 5 additionally shows that for increasing
strikes the effect of de-Americanization increases slightly for lower interest rates and that
for higher interest rates this error increases more strongly in the in-the-money region.
Here, we focus on scenarios with o < 0, i.e. the expected jump size is negative. In
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4.3 Effects of de-Americanization on Calibration to Synthetic Data

additional tests, we investigated the five scenarios for the Merton model in Table 1 with
the corresponding positive value of a.. The results are similar to the results observed for
negative values of a.

In addition to all of these de-Americanization effects in absolute terms, we checked the
magnitude of the relative error for the 1-year at-the-money put option, i.e., the absolute
difference between the European and the de-Americanized price divided by the European
price. In the CEV model, the average relative error for this option in all scenarios and
interest rate settings was 0.1% with a peak of 0.17% at scenario po with » = 1%. The
average relative error for the Heston model was 0.17% with a peak of 0.83% in ps with
r = 7%. In the Merton model, the average relative error of the at-the-money put option
with maturity of one year was 0.18% with a peak of 1.02% at p5 and r = 7%.

Summarizing the results,

e de—Americanization effects are sensitive to interest rate. The higher the interest
rates, the higher the observable pricing differences,

e de—Americanization effects increase with increasing volatility and increasing ma-
turities,

e de—-Americanization effects tend to be stronger in-the-money,
e de—Americanization effects increase with higher jump intensities.

Overall, in the settings mentioned above, we observe a systematic effect caused by de—
Americanization. In the next step, we are interested in finding out whether these effects
are also reflected in the calibration results.

4.3 Effects of de—Americanization on Calibration to Synthetic Data

Here, we study the de-Americanization effect on synthetic American market data. To
this effect, in a first step, we generate artificial market data using our FEM implemen-
tations of the three considered models. In a second step, we calibrate each model to the
previously generated market data. This methodology allows us to disregard the noise
affiliated with real market data is affiliated with and thus enables us to study the effect
of de-Americanization exclusively.
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4.3 Effects of de-Americanization on Calibration to Synthetic Data

Our artificial market data is specified as follows.

So=1
r="7%

2

Ti=—,  Ki={09509751,1025,1.05},
6

T=2  Kp={0.9,0.925K,1.075,1.1}, (12)
9

Ty= 5, Ks={085,0.875, Ky, 1.125,1.15},

Ty =1, Ky = {0.8,0.825, K3,1.175,1.2},

T =2, K5 = {0.75,0.775, K4, 1.225, 1.25}.

While in the pricing analysis, we investigated only put options, we will now introduce
two settings: one only involving put options, and one involving out-of the money put and
call options. Whereas by calibrating to put options only, in-the-money, at-the-money
and out-of-the-money options are considered in the calibration process, by calibrating
to out-of-the-money options only out-of-the-money options are considered. The moti-
vation of focusing on out-of-the-money options is connected to observations of market
practices. In the following section regarding the calibration to market data, we introduce
the methodology of the creation of the VIX index as benchmark for handling available
market data and for focussing on out-of-the-money options. As the data in (12) shows,
we consider a high-interest market and a set of maturities ranging from rather short-
term American options with 2 months maturity to long-term American products with 2
years maturity. Each maturity 7; is associated with a set of strikes K, i € {1,...,5}.
To analyze the effects of de-~Americanization on pricing, we price these options for the
five parameter scenarios in Table 1. Regarding the calibration methodology, we have to
make two choices. First, we have to decide which option types to include and, second,
we need to determine the objective function.

Regarding the choice of options, we first consider only put options for the whole strike tra-
jectory due to the fact that, in our setting of non-dividend paying underlyings, American
and European calls coincide. Thus, we include in-the-money as well as out-of-the-money
options. Second, motivated by the fact that the value of out-of-the-money options does
not include any intrinsic value and is therefore supposed to better reflect the randomness
of the market (as mentioned in Carr and Wu (2010)), we consider as a second approach
that only includes out-of-the money puts and out-of-the money calls for the whole set of
strikes and maturities. By calibrating later to market data, there was not given a strike
exactly equal to Sy, so we only have "almost" at-the-money options. Thus, calibrating
to out-of-the-money options, we did not use the at-the-money option. Consequently, in
this second study, for each ¢ € {1,...,5}, we consider call option prices for maturities 7T;
and strikes k € K; with £ > 1 and put option prices for maturities T; and strikes k € K;
with k£ < 1. At-the-money option data, i.e., options with strike K = 1, is neglected.

Once the synthetic American market data has been generated, we create associated
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4.3 Effects of de-Americanization on Calibration to Synthetic Data

second synthetic market data by applying the de-Americanization routine using the
binomial model.

Remark 4.1 and Figure 2 describe situations in which the de-Americanization routine
yields non-unique results. In the calibration to de-Americanized prices, we exclude op-
tions that cannot be de-Americanized uniquely as explained by the following remark.

Remark 4.2 (Disregarding non-unique de—Americanized prices)

As outlined above, we artificially generate American market data for a calibration study
on synthetic data. In a first step, we calibrate to the generated American prices di-
rectly. In a second step, we de—Americanize the option data and calibrate to the resulting
quasi-European options. Here, we only consider option prices that admit a unique de—
Americanized price. Consequently, all American put option prices that violate

PA™ > (K — So)* - (1+6), with § = 1%, (13)

are not de—Americanized and thus are neglected in the second step.

The second crucial assumption is the objective function. A variety of objective functions
are proposed in the literature, e.g., the root mean square error, the average absolute
error as a percentage of the mean price, the average absolute error, the average relative
percentage error, absolute price differences, relative price differences, absolute implied
volatilities, relative implied volatilities (see for example Detlefsen and Haerdle (2006),
Bauer (2012), Fengler (2005), Schoutens et al. (2004)).

We work directly with the observed prices and choose an objective function that considers
prices, and due to the fact that the considered out-of-the-money option prices are rather
small, we focus on absolute instead of relative differences. In the calibration, we take
the absolute average squared error (aase) as the objective function and we minimize,

1
aase = Zoptions Z |Market price, — Model pricey|?. (14)
options

optiony,

The results of the calibration to synthetic data are summarized in Table 2 for the CEV
and Merton models and in Table 3 for the Heston model for calibrating to put options
and calibrating to out-of-the-money options.

Overall, we see that for the CEV model the parameters match well when calibrating to
American options. When calibrating to de-Americanized prices however, the volatility
parameter o is underestimated in most cases and this underestimation is counterbalanced
by an overestimated (-value.

Focusing on the Heston model, we observe that in every calibration to American options
the parameters are matched better than in the corresponding calibration to de-Ameri-
canized data. We clearly see that the three parameters v, £ and vy are matched, but
the remaining two parameters £ and p show different results. When calibrating put
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Table 2 Calibration results for calibrating to put options only and out-of-the-money
options for the CEV model (left) and Merton model (right). Due to the effect
of non-unique de-Americanization results, for the CEV model, some option
prices have been neglected in the calibration to de-Americanized option data,
as Remark 4.2 explains. In scenarios p; to ps, 5, 5, 10, 10 and 10 prices were
excluded in the calibration to put options only. In scenarios p; and ps of the
Merton model, 5 prices have been excluded in the calibration to put options

4.3 Effects of de-Americanization on Calibration to Synthetic Data

only.
CEV Merton
o ¢ aase o Q B A aase

true 0.2 0.5 — 0.20 -0.01 0.01 1
Put Am 0.1977 0.4962 7.74e-6 | 0.20 0.01 0.05 0.29 1.07e-10
D1 DeAm | 0.1894 0.4501 8.35e-5 | 0.20 -0.06 0.03 0.37 8.37e-8
oom Am 0.1997 0.4996 4.52e-6 | 0.20 0.00 0.05 0.32 1.35e-10
DeAm | 0.1793 0.9609 2.75e-4 | 0.20 -0.02 0.04 0.30 3.80e-9

true 0.275 0.6 — 0.15 -0.05 0.05 2
Put Am 0.2740 0.6004 4.98e-7 | 0.15 -0.06 0.05 1.55 2.69e-11
D2 DeAm | 0.2607 0.7539 2.04e-6 | 0.14 -0.10 0.01 1.31 1.63e-7
oomm Am 0.2736 0.5978 1.91e-6 | 0.16 -0.10 0.04 0.66 1.91e-10
DeAm | 0.2484 0.5367 1.10e-5 | 0.15 -0.11 0.03 0.74 2.22e-8

true 0.35 0.7 — 0.20 -0.10 0.10 3
Put Am 0.3515 0.7576 4.37¢-5 | 0.22 -0.19 0.07 1.31 8.83e-10
D3 DeAm | 0.3272 0.8528 1.92e-4 | 0.16 -0.05 0.11 5.04 3.12e-8
oomm Am 0.3476 0.6984 1.00e-4 | 0.22 -0.19 0.07 1.32 5.47e-10
DeAm | 0.3141 0.5527 5.99e-4 | 0.19 -0.17 0.09 1.88 3.33e-7

true 0.425 0.8 — 0.10 -0.10 0.20 5
Put Am 0.4258 0.7898 1.53e-6 | 0.10 -0.10 0.20 5.00 1.22e-13
D4 DeAm | 0.3942 0.8755 7.30e-6 | 0.10 -0.10 0.20 5.00 6.29¢-16
oo Am 0.4262 0.7966 3.27¢-6 | 0.09 -0.09 0.21 4.90 2.19e-7
DeAm | 0.3801 0.6009 1.96e-5 | 0.15 -0.14 0.22 3.63 6.53e-7

true 0.5 0.9 — 0.10 -0.15 020 7
Put Am 0.4982 0.9036 1.53e-6 | 0.10 -0.15 0.20 7.00 8.96e-13
D5 DeAm | 0.4570 0.9192 1.02e-5 | 0.05 -0.11 0.21 7.95 1.73e-7
oom Am 0.4986 0.9036 4.02¢-6 | 0.10 -0.15 0.20 7.00 5.00e-13
DeAm | 0.4430 0.6549 2.38¢-5 | 0.05 -0.20 0.23 5.08 1.67e-6

options, as the volatility of volatility parameter £ increases,the calibrated de—Aameri-
canized parameter overestimates the true parameter. When calibrating out-of-the-money
options, we observe that £ is underestimated for lower £ values and overestimated for
higher £ values. Regarding p, as the volatility of volatility is increased, the de-Ameri-
canized parameter tends to underestimate the p value. Later, by focusing on pricing
exotic options, we will see whether these two contrary effects cancel each other or lead
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Table 3 Heston model: Calibration results for calibrating to put options only and out-
of-the-money options.

13 P 0% K o aase

true 0.1 -0.2 0.07 0.1 0.07 —
Put Am 0.1002 -0.1999 0.07 0.1026  0.07 1.43e-13
D1 DeAm 0.1 -0.4839 0.0651 0.5144 0.0695 1.50e-7
oom Am 0.1006 -0.1987  0.07 0.1049 0.07 4.73e-13
DeAm 0.1 -0.1949 0.0665 0.2292  0.07 1.32e-8

true 0.25 -0.5 0.1 0.4 0.1 —
Put Am 0.25 -0.5 0.1 0.4 0.1 6.47e-23
D2 DeAm | 0.2667 -0.5067 0.0978 0.4374 0.0992 3.28e-8
oom Am 0.25 -0.5 0.1 0.4 0.1 2.99e-17
DeAm | 0.2199 -0.5 0.0885 0.1618 0.1 5.76e-9

true 0.4 -0.5 0.15 0.6 0.15 —
Put Am 0.4 -0.5 0.15 0.6 0.15  7.15e-16
D3 DeAm | 0.4684 -0.437 0.1544 0.6806 0.1495 6.04e-9
oom Am 0.4 -0.5 0.15 0.6 0.15  7.03e-18
DeAm | 0.3970 -0.5 0.1517 0.5413 0.1494 4.68e-9

true 0.55 -0.45 0.2 1.2 0.2 —
Put Am 0.55 -0.45 0.2 1.2 0.2 1.44e-17
D4 DeAm | 0.5773 -0.4298 0.2046 1.1975 0.1986 2.86e-9
oom Am 0.55 -0.45 0.2 1.2 0.2 8.41e-22
DeAm | 0.5625 -0.4369 0.2035 1.2198 0.1988  4.50e-9

true 0.7 -0.8 0.3 1.4 0.3 —
Put Am 0.7 -0.8 0.3 14 0.3 1.68e-17
D5 DeAm | 0.8504 -0.7057 0.3136 1.5832 0.2993 1.31e-8
oom Am 0.7 -0.8 0.3 14 0.3 8.58e-23
DeAm | 0.7763 -0.7602 0.3073 1.7021 0.2979  2.34e-8

to different exotic option prices.

For the Merton model, we observe that when calibrating American options ¢ is matched
fairly accurately in most cases. For the other 3 parameters, we observe that whenever the
jump intensity A is underestimated, the corresponding mean « and standard deviation S
of the jump are adjusted accordingly. Similar observations can be made for calibration
to de-Americanized prices. Here, especially for calibrating out-of-the-money values in
ps and ps, we observe that the o value is also not matched.

Summarizing the results, we observe that when calibrating de-Americanized synthetic
data in a high-interest-rate environment for the continuous CEV and Heston models, the
main parameters driving the volatility of the underlying, ¢ and o (CEV) and £ and p
(Heston), are often not exactly matched. In these cases, the application of the binomial
tree is not able to capture the volatility of the underlying exactly. For the jump model
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4.4 Effects of de—Americanization on Calibration to Market Data

(Merton), we observe that due to the de-Americanization the jump intensity is (more
strongly) mismatched than when directly calibrating to American options and in these
cases the wrongly calibrated jump intensity parameter may be compensated by adjusting
the other model parameters accordingly.

4.4 Effects of de—Americanization on Calibration to Market Data

In this section, we investigate the effects of de-~Americanization by calibrating market
data. The single stock of our choice is Google as an example of a non-dividend-paying
stock. Table 4 gives an overview of the processed data for the calibration procedure. In
total we obtained a data set containing 482 options, with slightly more puts than calls.
The risk-free interest rate for maturities of 1 month, 3 months, 6 months, 1 year and
2 years are taken from the U.S. Department of the Treasury' and have been linearly
interpolated whenever necessary.

Table 4 Processed Google option data for tg = 02.02.2015, Sy = 523.76

Maturity T  # of options r

Ty 27.02.2015 0.07 47 0.0001

T, 20.03.2015 0.13 49 0.000129508
T3 17.04.2015 0.20 52 0.00017541
T, 19.06.2015 0.38 87 0.00046087
Ts 18.09.2015 0.62 98 0.000955435
T 15.01.2016 0.95 101 0.001602174
T; 20.01.2017 1.97 48 0.004786339

In order to structure the available data, we follow the methodology applied for the
volatility index (VIX) by the Chicago board of exchange (CBOE (2009)):

Only out-of-the-money put and call options are used

The midpoint of the bid-ask spread for each option with strike K; is considered

Only options with non-zero bid prices are considered

e Once two puts with consecutive strike prices are found to have zero bid prices, no
puts with lower strikes are considered for inclusion (same for calls)

Basically, by this selection procedure, we only select out-of-the-money options that (due
to non-zero bid prices) can be considered as liquid. In general, an option price consists
of two components reflecting the time value and the intrinsic value of the option. By
focusing on out-of-the-money options, the intrinsic value effects are mostly neglected and
the highest option price will be at-the-money. Additionally, the highest market activity

"http://www.treasury.gov/resource-center /data-chart-center /interest-rates /Pages/ Text View.aspx?data=yield
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4.5 Effects of de-Americanization in pricing exotic options

Table 5 Calibration results for calibrating to out-of-the-money put and call options

combined.
CEV
o ¢ aase
Am 0.25 0.98 3
Google Data 1y 41, 0.25 0.97 3.32
Heston
13 P 0% K v aase

Am 0.2290 -0.6854 0.0585 4.3186 0.0651 0.8464

Google Data 1y | 09245 -0.6941 0.0586 4.1433 0.0647 0.8319

Merton
o o B A aase
Google Data Am 0.1936 -0.2000 0.2194 0.2935 0.5813
DeAm | 0.1935 -0.2000 0.2133 0.3014 0.6035

is in the at-the-money and slightly out-of-the-money region. The calibration results are
summarized in Table 5.

Here, we observe hardly any differences in the parameters. This is in line with our ob-
servations in Section 4.2 for low-interest-rate environments. In these settings, American
and European puts almost coincide and, thus, there will hardly be any difference in the
prices and it is only natural that we observe very similar calibration results. Interest-
ingly, the aase value obtained by calibrating the Heston model is slightly lower when
calibrating de-Americanized options than American options.

4.5 Effects of de—Americanization in pricing exotic options

Plain vanilla options are traded liquidly in the market and are used to calibrate models.
Financial institutions use these calibrated models to price more exotic products such as
barrier and lookback options. In this subsection, we analyze which influences different
calibration results have on the accuracy of exotic option prices.

We analyze a down-and-out call option and a lookback option and hence translate
differences in the calibrated model parameters into quantitative prices. The payoff
Hpoc(S(T)) of a down-and-out call option with barrier B is given by

Hpoc(S(T)) = (S(T) — K)* - Linin,r S(t)>B- (15)

In our setting, we set Sy = 100, the barrier B to 90% of the initial underlying value and
the strike K to 105% of the underlying value. For the lookback option, we choose the
same strike and the payoff Hpookback(S(T)) is

H L ookback (S(T)) = (S(T) — K)*,  with 8(T) = max S(1). (16)
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4.5 Effects of de-Americanization in pricing exotic options

We price these two exotic options for the calibrated parameters in Tables 2, 3 and 5
via a standard Monte Carlo method with 106 sample paths, 400 time steps per year
and antithetic variates as variance reduction technique. The results are shown in the
following Table 6.

Table 6 Overview of prices for barrier and lookback options

CEV Heston Merton

barrier lookback | barrier lookback | barrier lookback
true 9.93 10.11 8.75 8.80 3.86 25.70
Put Am 9.93 10.10 8.74 8.78 3.92 25.86
[ DeAm  9.93 10.01 4.54 4.86 3.98 26.09
oom Am 9.93 10.11 8.73 8.78 3.93 25.86
DeAm 10.13 11.13 8.27 8.37 3.88 25.77
true 10.13 11.14 2.28 2.73 2.57 22.97
Put Am 10.14 11.14 2.28 2.73 2.49 22.73
Do DeAm 1147 14.59 2.07 2.54 2.56 22.94
oom Am 10.12 11.10 2.27 2.73 2.64 23.24
DeAm  9.95 10.40 4.32 4.57 2.43 22.75
true 11.60 14.93 1.15 1.80 6.65 37.35
Put Am 12.48 17.83 1.15 1.80 6.78 37.88
D3 DeAm 13.53 23.85 1.86 2.77 6.50 36.51
oom Am 11.56 14.81 1.14 1.80 6.76 37.85
DeAm 10.07 10.91 1.40 2.08 6.17 37.63
true 13.56 24.08 0.83 1.86 10.17 54.99
Put Am 13.54 24.00 0.83 1.86 10.14 55.00
D4 DeAm 14.14 30.87 1.04 2.21 10.11 54.98
oom Am 13.51 23.81 0.83 1.86 10.18 54.99
DeAm 10.60 12.37 0.94 2.05 9.42 55.54
true 14.76 43.40 0.02 0.52 15.63 76.15
Put Am 14.80 43.99 0.02 0.52 15.48 75.69
D5 DeAm 14.78 43.50 0.03 0.67 15.99 75.97
oom Am 14.74 42.81 0.02 0.52 15.58 76.06
DeAm 11.68 15.13 0.02 0.56 13.98 75.01
Google Am 14.21 32.10 0.69 1.51 4.03 28.91
data DeAm 14.12 30.70 0.67 1.47 4.03 28.93

Overall, we observe a different picture in each of the three models. In p; and ps of the
CEV model, the scenarios with relatively small volatility, we do not see any differences.
Thus, in cases with small volatility and medium elasticity of variance {, de-Ameri-
canization seems to work. In the other scenarios, we observe that the calibration of
de—Americanized prices leads to higher exotic option prices if we calibrate put options
only and lower exotic option prices if we calibrate out-of-the-money options. Thus, the
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4.6 Discussion of run-times

typically lower calibrated o-value in combination with an increased (-value obtained by
calibrating de-Americanized options has this effect on the pricing of exotic options.

For the Heston model, we see that in the cases where the calibration of de-Americanized
data led to different £ and p values there are differences in the exotic option prices.
More precisely, in all these cases, the corresponding barrier and lookback prices are too
high. This means that de—Americanization causes an systematic overpricing of exotic
options.

For the Merton model, we see rather small differences for lookback options, but more
interestingly, we observe differences for the down-and-out barrier option. This reflects
the fact that the differently calibrated jump intensities and accordingly adjusted means
and standard deviations of the jumps can buffer de-Americanization effects over paths
where the option cannot vanish like in the barrier option case.

In high-interest-rate environments, the de—Americanization methodology leads to dif-
ferent exotic options prices in the CEV model when the volatility of the underlying is
higher. When using only put options, the exotic option prices tend to be higher; when
considering out-of-the-money options, the exotic option prices tend to be lower. In the
Heston model, we observe a similar picture as in the CEV model, however here no general
statement holds between higher and lower exotic option prices. Regarding the Merton
model, the differences in the exotic option prices are more visible when considering the
down-and-out barrier option.

4.6 Discussion of run-times

In the introduction, we described qualitatively why the de—Americanization methodol-
ogy has a faster run-time and that run-time aspects are the driving factor behind this
approach. Our investigations focus on the accuracy of the de-Americanization method-
ology. The numerical implementations are all made from scratch and not optimized with
regards to run-time performance. With this in mind, we would like to present some
run-time results for the Heston model to compare the run-times of calibrating directly
to American options to applying the de—Americanization methodology. We compute the
results on a PC with Intel(R) Xeon(R) CPU E31270 @ 3.40GHz (4 physical cores, 8
logical cores) and 16GB RAM. All codes are written in Matlab R2014a. In Table 7, the
run-time results for calibrating the Heston model to the synthetic data are shown.

These results show the run-time advantages of calibrating to European options (using
the FEM methodology) instead of calibrating to American options. Moreover, in the
run-time comparison of both approaches, the preprocessing of the American option data
by the application of the binomial tree has to be considered as well. Combining both,
the run-times of the de-Americanization methodology are still advantageous compared
to a direct calibration to American option data.
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5 Conclusion

Table 7 Run-times for calibrating to synthetic market data in the Heston model. Here,
we took the calibration to put options in scenario ps of the Heston model as
an example.

run-time
to American options (FEM) 8 hours
to European options (FEM)  9.96 min
preprocessing data (tree) 36.40 min

In Burkovska et al. (2016), we highlight another benefit of the de—Americanization
methodology. By reducing the calibration problem to European options, the (semi-)
closed-form solutions of the corresponding models, e.g. applying Fourier techniques for
the Heston model, can be used in the calibration process. By calibrating to a similar set
of Google market data, we observe the run-times as summarized in Table 8.

Table 8 Run-times for calibrating to a similar set of Google market data in the Heston
model as shown in Burkovska et al. (2016). In this setting, the calibration has
been applied to a set of 401 Google put option prices. The accuracy results are
similar to the results reported in Table 5.

run-time
to American options (FEM) 68.72 hours
to European options (closed-form)  4.96 min
preprocessing data (tree) 4.96 hours

Especially when using Fourier techniques in the calibration process for the European
problem, the run-time of the de-Americanization method is mostly due to the processing
of the American data. Although the numerical implementations have not been opti-
mized with regards to run-time performances and the key focus in this paper is the
accuracy, these observations highlight the attractive features of the de-Americanization
methodology as stated in the introduction, namely

e it delivers fast run-times compared to a direct calibration to American options,
e it is easy to implement,

e it can flexibly be integrated into the pricing and calibration toolbox at hand.

5 Conclusion

In this paper, we investigate the de—Americanization methodology by performing ac-
curacy studies to compare the empirical results of this approach to those obtained by
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5 Conclusion

solving related variational inequalities for local volatility, stochastic volatility and jump
diffusion models. On page 3, we pose key questions regarding the robustness of the
de—Americanization methodology with regard to changes in the (i) interest rates, (ii)
maturities, (iii) in-the-money and out-of-the-money options, and (iv) continuous and
discontinuous models with increasing jump intensities.

First, focusing on pricing, we observe that de-Americanization causes larger errors (i)
for higher interest rates, (ii) for higher maturities, (iii) in the in-the-money region and
(iv) for continuous models in scenarios with higher volatility and/or correlation, as well
as in jump models for higher jump intensities. Second, we investigate model calibration
to synthetic data for a specified set of maturities and strikes in a high-interest-rate envi-
ronment. Numerically, we observe noticeable differences in the calibration results of the
de—Americanization methodology compared to the benchmark. For continuous models,
the main difference lies in the resulting volatility parameters. For the jump model, the
jump intensity is underestimated by the de—Americanization method, especially in set-
tings with high jump intensities, whereas the mean and the standard deviation of the
jumps are overestimated. When calibrating Google market data, hardly any differences
occur, which can be explained by the very low-interest-rate environment. This is in
line with the results for question (i). In the final step, we investigate the effects of de—
Americanization in the model calibration on pricing exotic options. Here, exotic option
prices play the role of a measure of the distance between differently calibrated model
parameters. In most cases, we observe that exotic option prices are reasonably close to
the benchmark prices. However, we observe severe outliers for all investigated models.
We find scenarios in which the exotic option prices differ by roughly 50% in the CEV
model (p4) and the Heston model (p;) and by roughly 10% in the Merton model (ps);
see Table 6. Whereas in the CEV model and the Merton model the differences tend to
be higher when calibrating to out-of-the-money options instead of only to put options,
in the Heston model we have a mixed picture for different scenarios.

First, the methodological risk of de-Americanization critically depends on the interest
rate environment.

e For low-interest-environments, the errors caused by de-Americanization are negli-
gibly small and the de-Americanization methodology can be employed when fast
run-times are preferred.

e For higher-interest-rate environments, however, de-Americanization leads to un-
controllable outliers.

Intuitively, the higher the interest rate, the higher is the early exercise premium of an
American put option and, hence, the higher are the differences between an American
and a European put price. At its core, the de-Americanization methodology is replacing
American options with European options. Thus, with higher differences between both
of them, the potential of making an error increases. Second, we find that

e de—Americanization tends to lead to outliers in scenarios with a higher volatility
and /or higher jump intensities.
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5 Conclusion

In these scenarios, the model describing the evolution of the underlying differs strongly
from the assumptions of the model, namely a constant volatility coefficient and the
absence of jumps. The binomial tree is roughly a discrete version of the model and,
therefore, the model independent approach of the binomial tree has its limitations the
stronger the underlying process differs from the model. For this reason, and since the de—
Americanization methodology does not provide an error control, we strongly recommend
applying a pricing method in the calibration that is certified by error estimators.

However, also for scenarios in which a direct application of the de—Americanization
methodology can lead to outliers, the method can be applied usefully:

e It can, for example, be used as first estimator for the model parameters and this
estimate can then be used as initial guess in a calibration routine to reduce the
run-time.

For further research, we see three main areas: an adjustment of the calibration routine to
incorporate uncertainty in the data, an inclusion of dividend payments and an adjustment
of the binomial tree as technique to translate American into European prices.

e Calibration: The effect of uncertainty in the data leads to an additional complex-
ity of the calibration procedure. Calibration is not a deterministic inverse problem
anymore, but can be formulated as a Bayesian inverse problem. For instance,
Gupta and Reisinger (2014) present a robust calibration of financial models apply-
ing Bayesian estimators. Moreover, the impact of the de—Americanization step can
be interpreted as distortion of the input data, which can also be considered from
a Bayesian perspective.

e Dividend payments: The numerical results for the jump diffusion model and the
sensitivity to interest rates indicate that discrete and continuous dividends may
intensify the errors caused by the de—Americanization method.

e Binomial tree technique: The tree could be replaced by a more sophisticated,
maybe not anymore model invariant, technique. Obviously, one has to keep in mind
here that this leads to higher computational effort and some of the advantages of the
de—Americanization methodology, such as faster run-times and model flexibility,
could be reduced.
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6 Proof of Proposition 2.1

Proof
We can reduce this case to the one-dimensional case in the following way. Let j €
{1,...,n} and denote by PI(-)(-) the conditional probability given o(X;,i # j). Then, by
definition of the conditional probability

4

n +
<K_HXi> ]:// K — X;() [ Xiw) | PP(dw')(w)P(dw).
=1

G

E

For all j € {1,...,n} and w € Q the function v — (K — x[],; Xi(w))* is conver. By
the independence of X; and {X;,i # j} a.s. PI(X; € -) = P(X; € -). This allows us to
use the one-dimensional result from Lemma 6.1 and from X; =¢, Y; it follows

+ +

/ K — X)) ] x: Pj(dw’)g/ K-Y)[[Xi| P/(d) as.

i i#i
n +

(K—HXi> <E||K-Y]]x

i=1 i#j

As a neat step, conditioning on (o(Y;, Xs,1 # j, j2) the same technique is applied to show

This yields
+

E

+ +
E||K-x;, [ X <E||K-Y;, [[ XY
177,52 i7#7,J2
and successively, the assertion of the proposition follows. O
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6 Proof of Proposition 2.1

Here, we present an additional lemma which will be used in the proof of Proposition
2.1.

Lemma 6.1

Focusing on one node in the binomial tree, let X ~ QB(u) and Y ~ QB(v') with v’ > u.
Let u, u' > ™ be satisfied. Then the random variable X is smaller than the random
vartable Y with respect to the convex order, i.e. X <. Y.

Proof
Following (Miiller and Stoyan, 2002, Theorem 1.5.3 and Theorem 1.5.7) it suffices to
show

1. E[X] = E[Y]

2. E[(X - k)T < E[(Y — k)]
Since p as in (1) is set up as risk-neutral probability, it holds for any u that E[X] = e™*
and thus, the first condition is satisfied. Given a random variable X with a factor u and
a random variable Y with factor v’ > u, we distinguish regarding the second condition 5
cases.

Obviously, in any case both options are out-of-the-money and E[(X —k)T] =0= E[(Y —
k)t

Case 3: L <1 <k<u<u.

In this case, we have

E[(Y —k)'] = B[(X — k)] = p(u) (' = k) — p(u)(u — k)

(u )" = p(u)u —k (p(u') — p(u)) .

ueTAtfl

The function p(u) = ““5—= is a monotonically decreasing function because the derivative
rA 2, rA A/ 1 —e2rAt
P(u) = =¢ t;ﬁ_i);”“ would have the roots ugp = %, but due to e™t > 1

etther the derivative has no roots or a root at uw = 1 in the case r = 0. Thus, by assuming
uu> e B[(Y — k)] — E[(X — k)T] is monotone in k and in Case 4 for k=1 we
show that E[(Y — k)T] — E[(X — k)™] = 0 holds.

Case 4: %§k<%§u§u’.

Due to k < 1 it follows E[(X — k)*| = E[X — k]. Thus, E[(Y — k)] — E[(X —k)*] =
E[(Y —k)T] — E[X — k)]. Obviously, it holds

E((Y — k)] = E[Y — 4]
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7 Detailed Results for Effects of de-Americanization on Pricing

and this leads to E[(Y —k)T| — E[X — k)] > E[Y — k] — E[X — k)] = 0.
Case 5: kg%g%gugu’.

It holds E[(Y — k)™ = E[Y — k] and E[(X — k)*| = E[X — k]. Thus, E[(Y — k)] —
E(X —k)"|=E]Y — k] — E[X — k] = 0 follows. O

7 Detailed Results for Effects of de—Americanization on Pricing
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7 Detailed Results for Effects of de-Americanization on Pricing

Table 9 De—Americanization effects on pricing put options in the CEV model - Average
error between the de-Americanized and European prices for each maturity.

Ty T, T4 Ty Ts Tg T Ty

r=0% | 1L.E4 1E4 1E4 1E4 1BE4 1B4 9E5 6.E-5
r=1% | 3E-4 3E4 3E4 3E4 2E4 2E4 2E4 1.E-4

pr r=2% | 3E-4 3E4 3E4 3E4 2E4 2E4 2E4 8ES5
r=5% | 3E4 3E4 3E4 3E4 2E4 2E4 1E4 -3.E5
r=17% | 34 3E4 3E4 3E4 2E4 2E4 1E4 -9.E5
T=0% | 2.64 2.E4 2E4 1E4 1E4 1B4 1E4 7E5
r=1% | 3E4 3E4 3E4 3E4 3E4 2BE4 2E4 1.E-4

ps r=2% | 3E-4 3E4 3E4 3E4 3E4 2E4 2E4 B5E5
r=5% | 3E4 4E4 3E4 3E4 2E4 1E4 6E5 3.E-4
r=17% | 3B4 3E4 3E4 3E4 2E4 7.E5 T7E5 5.E-4
r=0% | 2.64 2E4 2E4 1E4 1E4 184 1E4 6E5
r=1% | 3E4 3E4 3E4 3E4 3E4 2BE4 2E4 1.E-4

ps r=2% | 3B4 3E4 3E4 3E4 3BEB4 2BE4 2E4 6.ES5
r=5% | 3E4 3E4 3E4 3E4 2E4 1E4 8E5 -2E4
r=17% | 34 3E4 3E4 3E4 2E4 1E4 -1.E7 -3.E-4
r=0% | 264 1E4 1E4 1E4 1E4 SE5 8E5 2.E-4
r=1% | 3E4 3E4 3E4 2E4 2E4 2BE4 2E4 3Ed4

ps r=2% | 3B4 3E4 3E4 2E4 2BE4 1E4 1E4 3E4
r=5% | 3B.4 3E4 3E4 2E4 2BE4 1E4 8ES5 1.E-4
r=17% | 4E-4 3E4 3E4 2E4 2E4 1E4 7E5 2.E-4
r=0% | 2.64 2E4 2E4 1E4 1E4 1B4 9E5 1E5
r=1% | 3E4 3E4 3E4 3E4 3E4 2E4 2E4 6.E7

ps r=2% | 3B4 3E4 3E4 3E4 2E4 2E4 1E4 -1.EA4
r=5% | 4E4 3E4 3E4 3E4 2E4 1E4 -7.E6 -5E4
r=17% | 4E4 4E4 3E4 3E4 2E4 4E5 -1.E4 -8E-4

Table 10 De—Americanization effects on pricing put options in the CEV model - Average
error between the de-Americanized and European prices for each strike.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

r=0% 4.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5
r=1% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4

P1 r=2% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4
r=5% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4
r="7% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 1.E-4 2.E-4 8.E-5
r=0% 5.E-5 9.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5
r=1% 9.E-5 2.E-4 3.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

P2 r=2% 8.E-5 2.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4
r=5% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4
r="7% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4
r=0% 4.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5
r=1% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

P3 r=2% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4
r=5% 5.E-5 1.E-4 2.E-4 3.E-4 4.E-4 3.E-4 2.E-4 2.E-4 6.E-5
r="7% 3.E-5 9.E-5 2.E-4 2.E-4 3.E-4 3.E-4 2.E-4 1.E-4 -2.E-5
r=0% 4.E-5 7.E-5 1.E-4 1.E-4 2.E-4 2.E-4 1.E-4 1.E-4 9.E-5
r=1% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 3.E-4 2.E-4

P4 r=2% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4
r=5% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 -3.E-5
r="7% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 -1.E-4
r=0% 3.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 7.E-5
r=1% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4

Ps5 r=2% 5.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4
r=5% 2.E-5 7.E-5 1.E-4 2.E-4 3.E-4 3.E-4 1.E-4 1.E-4 -9.E-6
r="7% 4.E-5 4.E-5 1.E-4 2.E-4 2.E-4 2.E-4 4.E-5 4.E-5 -1.E-4
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7 Detailed Results for Effects of de-Americanization on Pricing

Table 11 De—-Americanization effects on pricing put options in the CEV model - Max-
imal European put prices.

T T, Ty Ty Ts Tg T Ty

r=0% | 00556 0.104 0.108 0.154 0.204 0211 0.218 0.244
r=1% | 0.055 0.102 0.106 0.151 0.155 0.203 0.208  0.226

pr  r=2% | 0.054 0.101 0.104 0.107 0.151 0.196 0.198  0.208
r=5% | 0.052 0.057 0.097 0.098 0.100 0.136 0.136  0.161
r=7% | 0.051 0.054 0.057 0.093 0.093 0.093 0.093  0.109
r=0% | 0.108 0.164 0.204 0.208 0.217 0230 0.242 0.283
r=1% | 0.103 0.152 0.201  0.204 0.212 0.223 0.233  0.265

ps  r=2% | 0.102 0.109 0.154 0.201 0.207 0.216 0.224  0.248
r=5% | 0.099 0.104 0.147 0.150 0.192 0.195 0.198  0.203
r=17% | 0.058 0.101 0.105 0.144 0.146 0.182 0.181 0.176
r=0% | 0.152 0205 0.212 0.219 0.233 0.252 0.269 _ 0.320
r=1% | 0.108 0.203 0.209 0.216 0.228 0.245 0.260  0.303

ps r=2% | 0.107 0.201 0.207 0.213 0.224 0.239  0.251  0.287
r=5% | 0.105 0.153 0.199 0.203 0.210 0.219  0.226  0.241
r=7% | 0.103 0.150 0.194 0.196 0.201 0.206 0.210 0.214
r=0% | 0.156 0212 0.223 0.233  0.252 _ 0.276 _ 0.207 _ 0.352
r=1% | 0.155 0.210 0.220 0.230 0.247 0.270  0.288  0.336

ps rT=2% | 0.154 0.208 0.218 0.227 0.243 0.263 0.279  0.319
r=5% | 0152 0.203 0.210 0.217 0.229 0.244 0.255 0.275
r=7% | 0.150 0.200 0.206 0.211  0.221  0.232  0.239  0.247
r=0% | 0.205 0.220 0.235 _0.248  0.272 _ 0.300 _ 0.323 _ 0.377
r=1% | 0.205 0.219 0.232 0.245 0.267 0.294 0.314  0.360

ps r=2% | 0.204 0.217 0.230 0.242 0.263 0.287 0.306  0.345
r=5% | 0.201 0.212 0.223 0.233 0.250 0.268 0.281  0.300
r=7% | 0.156 0.209 0.218 0.227 0.241  0.256 0.266  0.273

Table 12 De—-Americanization effects on pricing put options in the Heston model - Aver-
age error between the de-Americanized and European prices for each maturity.

T T, Ty Ty Ts Tg T Ty
r=0% | 1.B-8 287  2.B7 TE-7 287 TE-7  3.B7 -3.E7
r=1% | -7.E-5 -4E-5 -5E-5 -4E-5 -4E5 -3.E5 -3.E-5 6.E-6

pr r=2% | -9E-5 -7.E-5 -9.E5 -6.E5 -5E5 -5E5 -4.E5 3.E5
r=5% | -3E-4 -4E4 -1E4 -9E5 -9E5 -8E5 -7.E-5 3.E-5
r=7% | -3E4 -3E4 -9E4 -1E4 -8E5 -1E4 -1.E4 -4E-5
r=0% | 3.B8 T.E-7 TE8 -2.B7 B3E7 4E7 -8E8 -3.E8
r=1% | -4E-5 -3E5 -4E5 -3E5 -2E5 -1.E5 -2E6 9.E5
ps r=2% | -1.E4 -5E5 -6E5 -5E5 -4E5 -3E5 -8E-6 1.E-4
r=5% | -2E4 -7.E-5 -1E4 -9E5 -8E5 -9E5 -1.E4 2E5
r=7% | -2E4 -6E4 -1E4 -1E4 -1E4 -2E4 -2E4 -3.E4
r=0% | 389 4.B8 -3E7 359 8B-8 -2.E7 5.E7 TE-7
r=1% | -3.E-5 -2.E-5 -3E5 -2E5 -6E6 1.E-5 3.E-5 2.E-4
ps r=2% | -6.E-5 -4E5 -4E5 -3E5 -7.E-6 2.E-5 6.E-5  3.E-4
r=5% | -1.E4 -7.E-5 -9.E5 -5E5 -2E5 2E-5 7.E-5  5.E-4
r=17% | -4E4 -9E5 -1E4 -7E5 -4E5 -2E5 1E5 4E-4
r=0% | 2.B-8 -8ES8 287 488 -5BE7 -1.B7 -4B7 287
r=1% | -3.E-5 -2.E-5 -2E5 -1.E-5 2E6 2E-5 5.E-5 2.E-4
py r=2% | -5.E5 -3E5 -3E5 -1.E5 1.E-5 5.E-5 9.E-5 4.E-4
r=5% | -1.E4 -5E5 -6.E-5 -1.E5 4.E-5 1.E-4 2E4 8E4
r=17% | -1.E4 -6E5 -8E5 -1.E5 4.E-5 1.E-4 2E4 9E4
r=0% | -1.B-7 -3.B-7 -3.B-7 2.B-7 588  8E7 I.B-6 -2.E6
r=1% | -2E-5 -2E5 -2E5 -7.E-6 2.E-5 8.E-5 2.E-4 7.E-4
ps r=2% | -4E-5 -3E5 -4E5 -1.E5 3.E-5 1.E-4  3.E-4 1.E-3
r=5% | -1.E44 -7.E-5 -1.E4 -5E5 2E-5 2.E-4 5E4 2.E3
r=17% | -1.E4 -1E4 -1E4 -9E5 -1.E5 2E4 5E4 3.E3
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7 Detailed Results for Effects of de-Americanization on Pricing

Table 13 De-Americanization effects on pricing put options in the Heston model - Av-
erage error between the de-Americanized and European prices for each strike.
The empty fields are due to Remark 4.1.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
r=0% -4.E-9 5.E-8 1.E-8 -1.E-7 -6.E-8 -5.E-7 -3.E-8 -2.E-7 8.E-7
r=1% 3.E-6 6.E-6 9.E-6 1.E-5 2.E-5 4.E-5 7.E-5 2.E-4 3.E-4
P1 r=2% 8.E-6 1.E-5 2.E-5 3.E-5 5.E-5 9.E-5 2.E-4 5.E-4 9.E-4
r=5% 2.E-5 3.E-5 5.E-5 8.E-5 1.E-4 2.E-4 6.E-4 2.E-3 4.E-3
r="7% 2.E-5 4.E-5 7.E-5 1.E-4 2.E-4 4.E-4 9.E-4 3.E-3
r=0% 3.E-8 -6.E-8 8.E-9 1.E-7 -2.E-7 -4.E-7 -3.E-7 5.E-7 -6.E-7
r=1% -2.E-5 -1.E-5 -2.E-6 7.E-6 2.E-5 3.E-5 4.E-5 1.E-4 2.E-4
P2 r=2% -2.E-5 -2.E-6 1.E-5 3.E-5 4.E-5 6.E-5 1.E-4 2.E-4 4.E-4
r=5% 1.E-6 3.E-5 6.E-5 9.E-5 1.E-4 2.E-4 3.E-4 8.E-4 1.E-3
r="7% 1.E-5 5.E-5 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 1.E-3 2.E-3
r=0% 7.E-8 8.E-7 7.B-7 8.E-7 7.E-7 2.E-6 7.E-7 3.E-6 2.E-6
r=1% 2.E-6 4.E-6 9.E-6 1.E-5 2.E-5 3.E-5 4.E-5 6.E-5 1.E-4
p3 r=2% 5.E-6 1.E-5 2.E-5 4.E-5 6.E-5 8.E-5 9.E-5 2.E-4 3.E-4
r=5% 2.E-5 5.E-5 9.E-5 1.E-4 2.E-4 2.E-4 4.E-4 8.E-4 1.E-3
r="7% 4.E-5 9.E-5 1.E-4 2.E-4 3.E-4 3.E-4 7.E-4 1.E-3 2.E-3
r=0% -2.E-8 -8.E-8 2.E-7 -1.E-8 1.E-7 -7.E-8 1.E-7 4.E-9 -2.E-7
r=1% -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -1.E-4 -9.E-5 -7.E-5
P4 r=2% -4.E-4 -4.E-4 -3.E-4 -3.E-4 -2.E-4 -2.E-4 -1.E-4 -7.E-5 -9.E-6
r=5% -7.E-4 -6.E-4 -5.E-4 -4.E-4 -2.E-4 -1.E-4 -5.E-5 1.E-4 3.E-4
r="7% -7.E-4 -6.E-4 -5.E-4 -3.E-4 -2.E-4 -1.E-4 3.E-5 3.E-4 6.E-4
r=0% 2.E-7 2.E-7 4.E-7 7.B-7 7.B-7 4.E-7 8.E-7 1.E-6 9.E-7
r=1% 4.E-4 4.E-4 4.E-4 4.E-4 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4
P5 r=2% 7.E-4 7.E-4 6.E-4 6.E-4 6.E-4 5.E-4 5.E-4 4.E-4 4.E-4
r=5% 1.E-3 1.E-3 1.E-3 1.E-3 9.E-4 7.E-4 6.E-4 5.E-4 5.E-4
r="7% 3.E-4 1.E-3 1.E-3 1.E-3 9.E-4 7.E-4 6.E-4 6.E-4 5.E-4

Table 14 De—-Americanization effects on pricing put options in the Heston model - Max-
imal European put prices.

Ty To T3 Ty Ts Te T Tg
r=0% 0.200 0.202 0.205 0.209 0.217 0.229 0.240 0.278
r=1% 0.199 0.200 0.202 0.205 0.212 0.222 0.231 0.261
P1 r=2% 0.198 0.198 0.200 0.202 0.207 0.214 0.221 0.244
r=5% 0.195 0.193 0.191 0.191 0.192 0.194 0.195 0.198
r="7% 0.194 0.189 0.186 0.184 0.182 0.180 0.179 0.171
r=0% 0.201 0.204 0.208 0.214 0.224 0.238 0.251 0.293
r=1% 0.200 0.202 0.206 0.210 0.219 0.231 0.242 0.277
P2 r=2% 0.199 0.200 0.203 0.207 0.214 0.224 0.233 0.261
r=5% 0.196 0.195 0.195 0.197 0.200 0.204 0.208 0.217
r="7% 0.194 0.191 0.190 0.190 0.191 0.192 0.193 0.192
r=0% 0.202 0.208 0.216 0.224 0.238 0.256 0.273 0.326
r=1% 0.201 0.207 0.213 0.220 0.233 0.250 0.264 0.309
p3 r=2% 0.200 0.205 0.211 0.217 0.228 0.243 0.255 0.294
r=5% 0.197 0.199 0.203 0.207 0.215 0.224 0.231 0.250
r="7% 0.195 0.196 0.198 0.201 0.206 0.212 0.216 0.225
r=0% 0.204 0.214 0.224 0.234 0.252 0.275 0.295 0.362
r=1% 0.203 0.212 0.221 0.231 0.247 0.268 0.287 0.345
Ppa r=2% 0.202 0.210 0.219 0.227 0.243 0.262 0.278 0.329
r=5% 0.199 0.205 0.211 0.218 0.229 0.243 0.255 0.286
r="7% 0.197 0.202 0.207 0.212 0.221 0.231 0.240 0.259
r=0% 0.207 0.222 0.234 0.248 0.270 0.297 0.322 0.400
r=1% 0.206 0.220 0.232 0.245 0.265 0.291 0.314 0.384
P5 r=2% 0.205 0.218 0.230 0.242 0.261 0.285 0.306 0.369
r=5% 0.202 0.213 0.223 0.233 0.249 0.268 0.283 0.326
r="7% 0.201 0.210 0.219 0.227 0.241 0.257 0.269 0.300

Table 15 Overview of additionally investigated parameter sets for the Heston model.

Heston
§ P Y K v
D6 0.25 -0.50 0.3 0.4 0.1
p7 0.25 1 -0.50 0.1 04 0.3
D8 0.70 -0.80 0.3 14 0.1
P9 070 -0.80 0.1 14 0.3
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Table 16 De—Americanization effects on pricing put options in the Heston model - Av-
in the additional scenarios.

1.05 1.10 1.15 1.20

1.00
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0.90
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-2.E-4
-5.E-4
-7.E-4
-5.E-4

0.85
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0.80
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7 Detailed Results for Effects of de-Americanization on Pricing

Table 18 De-Americanization effects on pricing put options in the Heston model - Max-

imal European put prices in the additional scenarios.

T Ty Ty T, T Tg T Ty

r=0% | 0.201 0.204 0.209 0.216 _ 0.229 _ 0.249  0.269 _ 0.343
r=1% | 0.200 0.202 0.207 0.212 0.224  0.242  0.260  0.327

ps r=2% | 0.199 0.201 0.204 0.209 0.219 0.236  0.252  0.311
r=5% | 0.196 0.195 0.196 0.199  0.205 0.216  0.227  0.266
r=7% | 0194 0.192 0.191 0.192 0.196 0.204 0.212  0.240
r=0% | 0.208 0.225  0.240  0.254 _ 0.277 _ 0.305 _ 0.327 _ 0.390
r=1% | 0.208 0.224 0.237  0.251  0.273  0.298  0.319  0.373

pr  r=2% | 0.207 0.222 0.235 0.248  0.268 0.292 0.311  0.357
r=5% | 0.204 0.217 0.228  0.239  0.255  0.274  0.287  0.312
r=7% | 0.202 0.214 0.224 0.233  0.247 0.262 0.272  0.285
T=0% | 0.200 0.203 0.208 0.215 _ 0.230 _ 0.255 _ 0.280 _ 0.366
r=1% | 0.199 0.201  0.205 0.211  0.226  0.249  0.272  0.350

pg  r=2% | 0.198 0.199 0.203 0.208 0.221 0.243  0.264  0.335
r=5% | 0.195 0.194 0.195 0.198  0.208 0.224  0.241  0.293
r=7% | 0.193 0.190 0.190 0.192  0.199  0.213  0.226  0.268
T=0% | 0.206 0.218 0.220  0.238 _ 0.253 _ 0.270 _ 0.283 _ 0.320
r=1% | 0.205 0.217 0.226 0.235  0.249  0.264  0.275  0.305

po r=2% | 0.204 0.215 0.224 0.232  0.245 0.257 0.267  0.290
r=5% | 0.202 0.210 0.217 0.223  0.232  0.240 0.244  0.249
r=17% | 0.200 0.207 0.213 0.218 0.224  0.229  0.230  0.225

Table 19 De—-Americanization effects on pricing put options in the Merton model -
Average error between the de-Americanized and European prices for each

maturity.
Ty To T3 Ty Ts Tg Ty Ty
r=0% -3.E-4 -3.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -1.E-4
r=1% -3.E-4 -3.E-4 -3.E-4 -3.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4
P1 r=2% -3.E-4 -3.E-4 -3.E-4 -2.E-4 -3.E-4 -2.E-4 -2.E-4 -2.E-4
r=5% -2.E-4 -2.E-4 -1.E-4 -2.E-4 -2.E-4 -3.E-5 -9.E-5 9.E-5
r="7% -2.E-4 -2.E-4 -4.E-5 -9.E-6 -5.E-5 -5.E-5 3.E-4 9.E-5
r=0% -1.E-4 -1.E-4 -1.E-4 -1.E-4 -1.E-4 -1.E-4 -1.E-4 -8.E-5
r=1% -1.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -3.E-4 -3.E-4
P2 r=2% -1.E-4 -1.E-4 -1.E-4 -2.E-4 -2.E-4 -3.E-4 -3.E-4 -5.E-4
r=5% -2.E-5 -3.E-5 -1.E-4 -3.E-5 -6.E-5 -3.E-4 -2.E-4 -5.E-4
r="7% -4.E-5 9.E-5 -5.E-6 -1.E-4 3.E-5 6.E-5 -2.E-4 -4.E-4
r=0% -1.E-4 -9.E-5 -8.E-5 -7.E-5 -6.E-5 -6.E-5 -5.E-5 -4.E-5
r=1% -1.E-4 -1.E-4 -2.E-4 -2.E-4 -3.E-4 -3.E-4 -4.E-4 -6.E-4
P3 r=2% -1.E-4 -2.E-4 -2.E-4 -3.E-4 -4.E-4 -6.E-4 -7.E-4 -1.E-3
r=5% -1.E-4 -2.E-4 -3.E-4 -4.E-4 -7.E-4 -1.E-3 -2.E-3 -2.E-3
r="7% -9.E-5 -2.E-4 -3.E-4 -5.E-4 -8.E-4 -1.E-3 -2.E-3 -3.E-3
r=0% 1.E-6 -2.E-6 -3.E-7 4.BE-7 1.E-7 -3.E-7 3.E-6 -1.E-6
r=1% 8.E-5 1.E-4 1.E-4 8.E-5 5.E-5 -8.E-6 -8.E-5 -4.E-4
P4 r=2% 2.E-4 2.E-4 2.E-4 1.E-4 2.E-5 -1.E-4 -3.E-4 -1.E-3
r=5% 4.E-4 6.E-4 4.E-4 1.E-4 -3.E-4 -9.E-4 -1.E-3 -3.E-3
r="7% 3.E-4 5.E-4 6.E-4 7.E-5 -6.E-4 -3.E-3 -2.E-3 -4.E-3
r=0% -2.E-6 -8.E-7 -1.E-6 4.BE-7 -2.E-7 -2.E-6 -4.E-6 -1.E-6
r=1% 5.E-5 3.E-5 -2.E-5 -6.E-5 -2.E-4 -3.E-4 -4.E-4 -9.E-4
P5 r=2% 1.E-4 2.E-5 -9.E-5 -2.E-4 -4.E-4 -7.E-4 -1.E-3 -2.E-3
r=5% 2.E-4 -4.E-5 -4.E-4 -8.E-4 -1.E-3 -2.E-3 -3.E-3 -5.E-3
r=7% 4.E-5 -6.E-5 -8.E-4 -1.E-3 -2.E-3 -3.E-3 -4.E-3 -6.E-3
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7 Detailed Results for Effects of de-Americanization on Pricing

Table 20 De—Americanization effects on pricing put options in the Merton model -
Average error between the de-Americanized and European prices for each
strike. The empty fields are due to Remark 4.1.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
r=0% 8.E-05 1.E-04 2.E-04 3.E-04 3.E-04 3.E-04 2.E-04 2.E-04 3.E-04
r=1% 8.E-05 1.E-04 2.E-04 3.E-04 3.E-04 3.E-04 3.E-04 3.E-04 2.E-04
P1 r=2% 7.E-05 1.E-04 2.E-04 3.E-04 3.E-04 3.E-04 3.E-04 2.E-04 2.E-04
r=5% 5.E-05 9.E-05 2.E-04 2.E-04 2.E-04 2.E-04 3.E-05 -2.E-04 -6.E-04
r="7% 3.E-05 7.E-05 1.E-04 2.E-04 2.E-04 8.E-05 -4.E-04 -8.E-04 0.E00
r=0% 2.E-05 4.E-05 7.E-05 1.E-04 2.E-04 2.E-04 2.E-04 2.E-04 1.E-04
r=1% 3.E-05 6.E-05 1.E-04 2.E-04 3.E-04 4.E-04 4.E-04 4.E-04 4.E-04
P2 r=2% 4.E-05 7.E-05 1.E-04 2.E-04 3.E-04 4.E-04 4.E-04 4.E-04 3.E-04
r=5% 5.E-05 1.E-04 2.E-04 3.E-04 4.E-04 3.E-04 -3.E-05 -4.E-04 0.E+-00
r="7% 6.E-05 1.E-04 2.E-04 3.E-04 4.E-04 8.E-05 -1.E-03 -1.E-03 0.E4-00
r=0% 2.E-05 3.E-05 4.E-05 5.E-05 8.E-05 1.E-04 1.E-04 9.E-05 7.E-05
r=1% 9.E-05 1.E-04 2.E-04 2.E-04 3.E-04 4.E-04 4.E-04 4.E-04 5.E-04
P3 r=2% 2.E-04 2.E-04 3.E-04 4.E-04 5.E-04 6.E-04 6.E-04 7.E-04 8.E-04
r=5% 3.E-04 5.E-04 6.E-04 8.E-04 1.E-03 1.E-03 1.E-03 1.E-03 1.E-03
r="7% 5.E-04 6.E-04 8.E-04 1.E-03 1.E-03 1.E-03 2.E-03 1.E-03 2.E-03
r=0% -3.E-06 2.E-06 2.E-06 -3.E-06 3.E-06 -2.E-06 -3.E-07 -2.E-06 5.E-07
r=1% 4.E-05 5.E-05 4.E-05 5.E-05 4.E-05 2.E-05 -9.E-06 -4.E-05 -9.E-05
P4 r=2% 1.E-04 1.E-04 2.E-04 2.E-04 2.E-04 1.E-04 8.E-05 5.E-06 -9.E-05
r=5% 4.E-04 5.E-04 6.E-04 7.E-04 7.E-04 7.E-04 5.E-04 2.E-04 1.E-04
r="7% 7.E-04 8.E-04 1.E-03 1.E-03 1.E-03 1.E-03 8.E-04 8.E-04 8.E-04
r=0% 2.E-06 -2.E-07 -6.E-09 -3.E-07 4.E-06 1.E-06 2.E-06 7.E-08 3.E-06
r=1% 1.E-04 2.E-04 2.E-04 2.E-04 2.E-04 3.E-04 3.E-04 3.E-04 3.E-04
Ps5 r=2% 3.E-04 4.E-04 4.E-04 5.E-04 5.E-04 6.E-04 6.E-04 7.E-04 7.E-04
r=5% 9.E-04 1.E-03 1.E-03 1.E-03 2.E-03 2.E-03 2.E-03 2.E-03 2.E-03
r="7% 1.E-03 1.E-03 2.E-03 2.E-03 2.E-03 2.E-03 3.E-03 3.E-03 3.E-03

Table 21 De-Americanization effects on pricing put options in the Merton model -
Maximal European put prices.

Ty T3 T3 Ty Ts Te Ty Ty
r=0% 0.200 0.200 0.201 0.203 0.207 0.214 0.221 0.248
r=1% 0.199 0.198 0.198 0.199 0.201 0.206 0.211 0.230
P1 r=2% 0.198 0.196 0.195 0.195 0.196 0.199 0.202 0.212
r=5% 0.195 0.190 0.187 0.184 0.180 0.176 0.174 0.165
r="7% 0.193 0.186 0.181 0.177 0.170 0.163 0.157 0.138
r=0% 0.200 0.200 0.200 0.201 0.203 0.208 0.214 0.237
r=1% 0.199 0.198 0.197 0.197 0.198 0.200 0.204 0.218
P2 r=2% 0.198 0.196 0.194 0.193 0.192 0.192 0.194 0.200
r=5% 0.195 0.190 0.185 0.182 0.176 0.170 0.165 0.152
r="7% 0.193 0.186 0.180 0.174 0.165 0.155 0.148 0.125
r=0% 0.200 0.201 0.205 0.210 0.221 0.237 0.252 0.302
r=1% 0.199 0.199 0.202 0.206 0.216 0.230 0.243 0.284
P3 r=2% 0.198 0.197 0.200 0.203 0.211 0.223 0.234 0.268
r=5% 0.195 0.192 0.191 0.193 0.197 0.203 0.209 0.223
r="7% 0.193 0.188 0.186 0.186 0.188 0.191 0.194 0.197
r=0% 0.205 0.212 0.221 0.232 0.256 0.288 0.315 0.398
r=1% 0.204 0.210 0.219 0.229 0.252 0.282 0.307 0.381
Pa r=2% 0.203 0.208 0.216 0.226 0.247 0.276 0.299 0.365
r=5% 0.200 0.203 0.208 0.216 0.235 0.257 0.275 0.319
r="7% 0.198 0.199 0.203 0.210 0.227 0.246 0.260 0.292
r=0% 0.205 0.217 0.238 0.260 0.295 0.336 0.370 0.474
r=1% 0.204 0.215 0.236 0.258 0.291 0.330 0.362 0.457
P5 r=2% 0.203 0.213 0.234 0.255 0.286 0.324 0.354 0.441
r=5% 0.200 0.208 0.228 0.247 0.274 0.306 0.330 0.394
r="7% 0.198 0.205 0.224 0.241 0.267 0.294 0.315 0.366
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