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Abstract

Given a rigid realisation of a graph G in R2, it is an open problem
to determine the maximum number of pairwise non-congruent real-
isations which have the same edge lengths as the given realisation.
This problem can be restated as finding the number of solutions of
a related system of quadratic equations and in this context it is nat-
ural to consider the number of solutions in C2 rather that R2. We
show that the number of complex solutions, c(G), is the same for all
generic realisations of a rigid graph G, characterise the graphs G for
which c(G) = 1, and show that the problem of determining c(G) can
be reduced to the case when G is 3-connected and has no non-trivial
3-edge-cuts. We obtain results on the effect of the Henneberg moves
and the vertex-splitting operation on c(G). We then use these to de-
termine c(G) exactly for two important families of graphs, and show
that the graphs in both families have c(G) pairwise equivalent generic
real realisations. We also show that every planar isostatic graph on n
vertices has at least 2n−3 pairwise equivalent generic real realisations.

Keywords: rigid framework; number of equivalent realisations

1 Introduction

Graphs with geometrical constraints provide natural models for a variety of
applications, including Computer-Aided Design, sensor networks and flexibil-
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ity in molecules. Given a graph G and prescribed lengths for its edges, a basic
problem is to determine whether G has a straight line realisation in Euclidean
d-dimensional space with these given lengths. Closely related problems are to
determine whether a given realisation is unique or, more generally, determine
how many distinct realisations exist with the same edge lengths. Saxe [30]
has shown that both the existence and uniqueness problems are NP-hard.
However, this hardness relies on algebraic relations between coordinates of
vertices, and for practical purposes it is natural to study generic realisations.

Gortler, Healy and Thurston [12] showed that the uniqueness of a generic
realisation in Rd depends only on the structure of the underlying graph,
and we say that a graph G is globally rigid in Rd if it has a unique generic
realisation in Rd. It can be seen that G is globally rigid in R if and only if G
is equal to K2 or is 2-connected. Globally rigid graphs in R2 are characterised
by a combination of results due to Hendrickson [14], Connelly [6], and Jackson
and Jordán [16]. No characterisations are known in Rd when d ≥ 3.

More generally we can consider the number of realisations which are
equivalent to, i.e. have the same edge lengths as, a given generic realisa-
tion of a rigid graph1 in Rd. It is known that this number is finite, see
[4, 27], but in contrast to the case when the realisation is unique, the number
of equivalent realisations may depend on both the graph and the realisation
when d ≥ 2, see Figures 1 and 2. Bounds on the maximum number of equiva-
lent realisations, where the maximum is taken over all possible realisations of
a given graph, are obtained by Borcea and Streinu in [4], and this number is
determined exactly for generic realisations of graphs with a connected rigidity
matroid in R2 by Jackson, Jordán, and Szabadka in [17]. Results and algo-
rithms for calculating all equivalent realisations of frameworks which arise as
backbones of protein molecules in R3 are given by Liberti et al. in [21, 22, 23].

The set of all realisations which are equivalent to a given realisation can
be represented as the set of solutions to a system of quadratic equations.
In this setting it is natural to consider the number of complex solutions.
This number gives an upper bound on the number of real solutions which
often plays a crucial role in calculating the exact number of real solutions,
see for example [7, 9, 33]. In addition, the number of complex solutions is
much better behaved than the number of real solutions. For example, we
shall show that the number of complex solutions is the same for all generic

1Intuitively, a graph is rigid in Rd if every generic realisation in Rd is ‘locally unique’.
A formal definition of rigidity will be given in the next section.
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Figure 1: A realisation of a graph G in R2. The only other equivalent
realisation is obtained by reflecting the vertex w in the line through {u, v}.
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.Figure 2: Two equivalent realisations of the graph G of Figure 1 in R2. Two
other equivalent realisation can be obtained from these by reflecting the ver-
tex w in the line through {u, v}, giving four different equivalent realisations
in R2.
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realisations of a given rigid graph. The realisations of the graph G shown in
Figures 1 and 2 both have four equivalent complex realisations. Only two of
these are real for the realisations shown in Figure 1, but all four are real in
Figure 2.

Gortler and Thurston [13] recently showed that a graph has a unique
generic realisation in Cd if and only if it has a unique generic realisation
in Rd. This implies that the above mentioned characterisations of globally
rigid graphs in Rd for d = 1, 2 extend immediately to Cd, and explains
the apparent inconsistency that having a unique real realisation is a generic
property whereas the number of different real realisations is not.

We will concentrate on the 2-dimensional case in this paper. We review
notation and terminology for geometric rigidity theory in Section 2. We give
some preliminary results from algebraic geometry in Section 3 and use them
to show that the number, c(G), of complex realisations of a rigid graph G
which are equivalent to a given generic realisation is the same for all generic
realisations. We also show that, if G is isostatic i.e. G is rigid but G − e is
not rigid for all edges e of G, then c(G) is bounded below by the number of
rigid realisations of G which are equivalent to any given realisation.

We consider the effect of graph operations on c(G) in Section 4. It is
known that a type 1 Henneberg move doubles c(G). We will show that a
type 2 Henneberg move on a redundant edge does not increase c(G). We
also show that the vertex splitting move increases c(G) by a factor of at least
two when G is isostatic and that the same result holds for the maximum
number of pairwise equivalent generic real realisations of G. We use this
to deduce that every planar isostatic graph on n vertices has at least 2n−3

pairwise equivalent generic real realisations. We use our result for Henneberg
type 2 moves to give a short proof that the characterization of graphs with
unique generic realisations in R2 extends to C2 in Section 5.

In Section 6, we consider operations which glue two graphs G1, G2 to-
gether by either associating two pairs of vertices in each graph or by adding
three edges between them, and show how c(G) can be computed from c(G1)
and c(G2). We use our results to determine c(G) for a family of quadratically
solvable graphs and for graphs with a connected rigidity matroid, and show
that the graphs in both families have c(G) pairwise equivalent generic real
realisations in Section 7. We close with a short section of examples and open
problems.
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2 Definitions and notation

A complex (real) realisation of a graph G = (V,E) is a map p from V to C2

(R2). We also refer to the ordered pair (G, p) as a framework. A complex,
or real, framework (G, p) is generic if the set of all coordinates of the points
p(v), v ∈ V , is algebraically independent over Q.

For P = (x, y) ∈ C2 let d(P ) = x2 + y2 and ‖P‖ = (|x|2 + |y|2)1/2, where
|.| denotes the modulus of a complex number. Two frameworks (G, p) and
(G, q) are equivalent if d(p(u) − p(v)) = d(q(u) − q(v)) for all uv ∈ E, and
are congruent if d(p(u)− p(v)) = d(q(u)− q(v)) for all u, v ∈ V .

A framework (G, p) is complex, respectively real, rigid if there exists an
ε > 0 such that every complex, respectively real, framework (G, q) which is
equivalent to (G, p) and satisfies ‖(p(v)−q(v)‖ < ε for all v ∈ V , is congruent
to (G, p). Equivalently, every continuous motion of the points p(v), v ∈ V ,
in C2, respectively R2, which respects the length constraints results in a
framework which is congruent to (G, p). Note that real rigidity considers
only the real frameworks which are equivalent to a given real framework,
whereas complex rigidity considers all equivalent complex frameworks, some
or all of which may in fact be real.

The rigidity matrix of a framework (G, p) is the matrix R(G, p) of size
|E| × 2|V |, where, for each edge vivj ∈ E, in the row corresponding to vivj,
the entries in the two columns corresponding to vertices vi and vj contain
the two coordinates of (p(vi) − p(vj)) and (p(vj) − p(vi)), respectively, and
the remaining entries are zeros. The framework is infinitessimally rigid if
rank R(G, p) = 2|V | − 3. (We always have rank R(G, p) ≤ 2|V | − 3 since its
null space always contains three linearly independent vectors corresponding
to two translations and a rotation of the framework.)

Asimow and Roth [1] showed that infinitesimal rigidity is a sufficient con-
dition for the real rigidity of (G, p), and that the two properties are equivalent
when (G, p) is generic. This implies that real rigidity is a generic property
and we say that G is rigid if some/every generic real realisation of G is real
rigid. Theorem 3.6 below implies that complex rigidity is also a generic prop-
erty and that a graph G is complex rigid if and only if it is real rigid. This
allows us to describe a graph as being rigid without the need to distinguish
between real and complex rigidity. We say that G is isostatic if it is mini-
mally rigid i.e. G is rigid but G− e is not rigid for all edges e of G. Isostatic
graphs are characterised by a result of Laman [20] and this characterization
was extended to all rigid graphs by Lovász and Yemini [24]. We refer the
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reader to [35] for more information on the rigidity of graphs.
Given a complex or real framework (G, p), the fact that an algebraic vari-

ety can only contain finitely many isolated points implies that the maximum
number of pairwise non-congruent rigid frameworks which are equivalent to
(G, p) is finite. We denote the number of such complex, or real, frameworks
by c(G, p), and r(G, p), respectively. We will mostly be concerned with the
case when G is rigid and (G, p) is generic. In this case all equivalent frame-
works are rigid and hence c(G, p), and r(G, p), will count the total number of
complex, respectively real, frameworks which are non-congruent and equiva-
lent to (G, p).

3 Preliminary results

In this section we set up the machinery which we will use to count the number
of rigid frameworks which are equivalent to a given framework. We first show
that for most frameworks (G, p), we can choose a canonical representative in
each congruence class of the set of all equivalent frameworks. We then state
some standard results from algebraic geometry which will help us count the
number of such canonical representatives. Finally, we apply our results to
generic frameworks and show, in particular, that the number of canonical
representatives is the same whenever (G, p) is generic and rigid.

3.1 Canonical position

We say that a framework (G, p) with G = (V,E), V = {v1, v2, . . . , vn} and
n ≥ 3 is in canonical position (with respect to v1, v2, v3) if p(v1) = (0, 0),
p(v2) = (0, b2) with b2 6= 0 and Arg b2 ∈ (0, π], and p(v3) = (a3, b3) with
either a3 = 0 or Arg a3 ∈ (0, π]. It is collinear if p(u) − p(v) ∈ 〈s〉 for all
u, v ∈ V , for some fixed s ∈ C2, respectively s ∈ R2.

Our first result tells us that most complex frameworks are congruent to
a framework in canonical position. Its proof is given in the Appendix.

Lemma 3.1 Let (G, p) be a complex framework, v1, v2, v3 be vertices of G,
and S be the set of all equivalent frameworks. Suppose that d(p(v1)−p(v2)) 6=
0. Then each congruence class in S has a unique representative (G, q) which
is in canonical position with respect to v1, v2, v3. Furthermore:
(a) if (G, p) is not collinear, then each congruence class in S has exactly four
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realisations (G, q) with q(v1) = (0, 0) and q(v2) = (0, b2) for some b2 ∈ C\{0},
and exactly two of these realisations have Arg b2 ∈ (0, π];
(b) if (G, p) is collinear, then each congruence class in S has exactly two
realisations (G, q) with q(v1) = (0, 0) and q(v2) = (0, b2) for some b2 ∈ C\{0}.

The frameworks (G, p) which cannot be placed in canonical position are
those which have d(p(u)−p(v)) = 0 for all vertices u, v of G i.e. p(u)−p(v) ∈
〈(1, i)〉 ∪ 〈(1,−i)〉, for all u, v ∈ V .

3.2 Results from Algebraic Geometry

Given a subfield K of C and a point p ∈ Cn we use K(p) to denote the
field extension of K by the coordinates of p. We say that p is generic over
K if its components form an algebraically independent set over K. Given
fields K ⊆ L ⊆ C with L a finitely generated field extension of K, the
transcendence degree of L over K, td[L : K], is the cardinality of a largest
subset of L which is algebraically independent over K, see [29, Section 18.1].
(It follows from the Steinitz exchange axiom, see [29, Lemma 18.4], that
every set of elements of L which is algebraically independent over K can be
extended to a set of td[L : K] elements which is algebraically independent
over K.) We use K to denote the algebraic closure of K in C. Note that
td[K : K] = 0.

We use K[X1, X2, . . . , Xn] to denote the ring of polynomials in the in-
determinates X1, X2, . . . , Xn with coefficients in K and K(X1, X2, . . . , Xn)
to denote its field of fractions. Given a multivariate polynomial function
f : Cn → Cm we use df |x to denote the Jacobean matrix of f evaluated at
a point x ∈ Cn. We will need two standard results on generic points in Cn.
Their proofs are given in the Appendix.

Lemma 3.2 Let f : Cn → Cm by f(p) = (f1(p), f2(p), . . . , fm(p)), where
fi ∈ Q[X1, X2, . . . , Xn] for 1 ≤ i ≤ m. Let W (p) = {q ∈ Cn : f(p) = f(q)}
for each p ∈ Cn.
(a) If If p is generic and rank df |p = m then f(p) is generic.

(b) If td[Q(f(p)) : Q] = n then p is generic and Q(p) = Q(f(p)).
(c) If p is generic and rank df |p = n then Q(p) = Q(f(p)), W (p) is finite,
and |W (p)| = |W (q)| for all generic q ∈ Cn.

Lemma 3.3 Let X1, X2, . . . , Xn and D1, D2, . . . , Dt be indeterminates and
let fi ∈ K[X1, X2, . . . , Xn, D1, D2, . . . , Dt] for all 1 ≤ i ≤ m, for some field
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K with Q ⊆ K ⊆ C. For each d ∈ Ct let Vd = {x ∈ Cn : fi(x, d) =
0 for all 1 ≤ i ≤ m}. Then Vd 6= ∅ for some d ∈ Ct with td[K(d) : K] = t if
and only if Vd 6= ∅ for all d ∈ Ct with td[K(d) : K] = t.

3.3 Generic frameworks

Let (G, p) be a framework with G = (V,E), V = {v1, v2, . . . , vn} and E =
{e1, e2, . . . , em}. We view p as a point p = (p(v1), p(v2), . . . , p(vn)) in C2n.
The rigidity map dG : C2n → Cm is given by dG(p) = (`(e1), `(e2), . . . , `(em)),
where `(ei) = d(p(u) − p(v)) when ei = uv. Note that the evaluation of the
Jacobian of the rigidity map dG at the point p ∈ C2n is twice the rigidity
matrix of (G, p). When H is a subgraph of G, we will simplify notation and
write dH(p) rather that dH(p|H).

A framework (G, p) is said to be quasi-generic if it is congruent to a
generic framework. Lemma 3.2 implies the following result for quasi-generic
frameworks. A detailed proof is given in the Appendix.

Lemma 3.4 Let (G, p) be a quasi-generic complex framework with vertices
v1, v2, . . . , vn. Then d(p(vi) − p(vj)) 6= 0 for all 1 ≤ i < j ≤ n and
td[Q(dG(p)) : Q] = rank R(G, p). Furthermore, if G is rigid, p(v1) = (0, 0)
and p(v2) = (0, b2), then Q(p) = Q(dG(p)).

We can use Lemma 3.4 to show that the set of quasi-generic realisations
of a rigid graph is closed under equivalence.

Lemma 3.5 Suppose (G, p) is a rigid generic framework on n ≥ 3 vertices
and (G, q) is equivalent to (G, p). Then (G, q) is quasi-generic.

Proof. Lemma 3.4 and the hypothesis that (G, p) is rigid imply that

td[Q(dG(p)) : Q] = rank R(G, p) = 2n− 3.

We can now use Lemma 3.1 and the fact that dG(q) = dG(p) to deduce
that (G, q) is congruent to a framework (G, q∗) in canonical position with
respect to three vertices v1, v2, v3 of G. Lemma 3.4 gives td[Q(q∗) : Q] =
td[Q(dG(p)) : Q] = 2n − 3 and hence the last 2n − 3 coordinates of q∗ are
algebraically independent. We can now apply a translation and rotation to
(G, q∗) to transform it to a generic framework (G, q̃). Since (G, q) is congru-
ent to (G, q̃), it is quasi-generic. •
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Theorem 3.6 Suppose (G, p) is a quasi-generic complex realisation of a
rigid graph G = (V,E). Let S be the set of all equivalent realisations of
G. Then the number of congruence classes in S is finite. Furthermore, this
number is the same for all generic realisations of G.

Proof. The theorem is trivially true when |V | ≤ 2 so we may assume that
|V | ≥ 3. We may also assume, by Lemmas 3.1 and 3.4, that (G, p) is in
canonical position and that each congruence class of S contains exactly four
frameworks (G, q) in which the first three coordinates of q are zero. For each
of these four frameworks, the last 2n − 3 coordinates will be algebraically
independent by Lemma 3.4. The theorem now follows by applying Lemma
3.2(c) to the map fG : C2n−3 → Cm given by fG(x) = dG(0, 0, 0, x) evaluated
at the point x = p̂, where p̂ is the projection of p onto its last 2n− 3 coordi-
nates. •

As mentioned in the Introduction, we denote this common value of c(G, p)
over all generic realisations of G by c(G). We close this section by showing
that we may obtain a lower bound on c(G) when G is isostatic by using a
non-generic realisation of G. Our proof uses the concept of the multiplicity of
an isolated solution of a system of polynomial equations. We refer the reader
to [32, page 224] for a formal definition but note that an isolated solution
p ∈ Cn of a system of n equations in n variables has multiplicity one if the
Jacobean of the system has rank n at p and has multiplicity at least two if
the Jacobean has rank less than n.

Let S be the set of all rigid frameworks which are equivalent to a given
framework (G, p), Ω(G, p) be the partition of S into congruence classes and
Ω′(G, p) be the set of all congruence classes in Ω(G, p) which contain frame-
works which are rigid but are not infinitesimally rigid and not collinear. By
definition we have c(G, p) = |Ω|. Let c′(G, p) = |Ω′|.

Theorem 3.7 Suppose (G, p) is a realisation of an isostatic graph G =
(V,E) with d(p(v1)− p(v2)) 6= 0 for some v1v2 ∈ E. Then

c(G) ≥ c(G, p) + c′(G, p).

Proof. Let (G, q) be a generic realisation of G. Since G is isostatic and
(G, q) is generic, dG(q) is generic over Q by Lemma 3.4. Let Wp and Wq be
the set of all t ∈ C2|V | such that t(v1) = (0, 0), the first component of t(v2) is
zero, and (G, t) is equivalent to (G, p), respectively (G, q). Then Lemmas 3.1
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and 3.4 imply that Wq is a complex algebraic variety defined for a generic set
of parameters dG(q) and has exactly 4 c(G) points. Let mi(q) be the number
of isolated points of Wq with multiplicity i. Then mi(q) = 0 for i ≥ 2 because
every framework equivalent to (G, q) is infinitesimally rigid by Lemma 3.4.
Hence Σi≥1imi(q) = 4c(G).

Similarly let mi(p) be the number of isolated points of Wp with multi-
plicity i. Since Wq is defined by a set of |E| polynomials in 2|V | − 3 vari-
ables with |E| = 2|V | − 3 and dG(p) is a specialisation of dG(q), we have
Σi≥1imi(p) ≤ Σi≥1imi(q) by [32, Theorem 7.1.6].

Let (G, p̃) be a rigid framework which is equivalent to (G, p). Then
Lemma 3.1 implies that Wp contains at least two isolated points which are
congruent to p̃ if (G, p) is collinear and at least four isolated points which
are congruent to p̃ if (G, p) is not collinear. Furthermore, each isolated point
of Wp corresponding to a rigid framework which is not infinitesimally rigid
(and in particular each isolated point corresponding to a rigid collinear frame-
work) has multiplicity at least two, and each isolated point corresponding to
an infinitesimally rigid framework has multiplicity one. Hence

4c(G, p) + 4c′(G, p) ≤
∑
i≥1

imi(p) ≤
∑
i≥1

imi(q) = 4c(G).

•

Note that Theorem 3.7 also holds when d(p(v1)−p(v2)) = 0 for all v1v2 ∈
E since in this case we have c(G, p) = 1, c′(G, p) = 0 and c(G) ≥ 1.

The result [32, Theorem 7.1.6] we used in the proof of Theorem 3.7 is
obtained using homotopic continuation. A purely algebraic proof for the
case when all frameworks equivalent to (G, p) are rigid can be obtained using
[15, Chapter XI].

It is not difficult to construct frameworks which show that strict inequality
can hold in Theorem 3.7. For example label the vertices of K4 as v1, v2, v3, v4,
let H = K4 − v3v4 and let G be obtained by adding a new vertex v5 and
two new edges v5v3, v5v4 to H. It is straightforward to show that c(G) =
4, for example by using Lemma 4.1 below. However the realisation (G, p)
given by p(v1) = (0, 0), p(v2) = (0, 1), p(v3) = (1, 1), p(v4) = (−1, 1), and
p(v5) = (2, 3) has c(G, p) = 2. This follows because every realisation (H, q)
which is equivalent but not congruent to (H, p|H) has q(v3) = q(v4) and
hence cannot be extended to a realisation of G which is equivalent to (G, p)
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(because d(p(v5)−p(v3)) 6= d(p(v5)−p(v4))). Thus all realisations equivalent
to (G, p) are extensions of (H, p|H) and there are exactly two ways to do this.

Note also that the conclusion of Theorem 3.7 does not hold for rigid
graphs which are not isostatic. For example, label the vertices of K5 as
v1, v2, v3, v4, v5, and let G = K5− v4v5. Then c(G) = 1 because G is globally
rigid. On the other hand, any rigid realisation (G, p) with p(v1), p(v2) and
p(v3) collinear has c(G, p) ≥ 2 since we may obtain an equivalent but non-
congruent realisation by reflecting p(v4) in the line joining p(v1), p(v2) and
p(v3).

4 Graph construction moves

We first consider the effect of Henneberg moves on the number of equivalent
complex realisations of a rigid graph. The type 1 Henneberg move on a graph
H adds a new vertex v and two new edges vx, vy from v to distinct vertices
x, y of H. The type 2 Henneberg move deletes an edge xy from H and adds
a new vertex v and three new edges vx, vy, vz from v to x, y and another
vertex z of H distinct from x, y.

It is straightforward to show that applying the type 1 move will double
the number of realisations, see for example [4, 33].

Lemma 4.1 Let G = (V,E) be a rigid graph with at least four vertices,
vn ∈ V with N(vn) = {v1, v2}, and H = G− vn. Then c(G) = 2c(H).

We next consider type 2 moves. We need the following result which is
an extension of [17, Lemma 4.1] to complex frameworks. Its proof uses ideas
from simplified versions of the proof of [17, Lemma 4.1] given in [25, 31].

Lemma 4.2 Let (G, p) be a quasi-generic complex framework and vn ∈ V
with N(vn) = {v1, v2, v3}. Suppose that (G, q) is a complex realisation of
G which is equivalent to (G, p). If G − vn is rigid then d(p(vi) − p(vj)) =
d(q(vi)− q(vj)) for all 1 ≤ i < j ≤ 3.

Proof. By symmetry we need only show that d(p(v1) − p(v2)) = d(q(v1) −
q(v2)). Label the vertices of G as v1, . . . , vn and put p(vi) = pi = (pi,1, pi,2)
and q(vi) = qi = (qi,1, qi,2) for all 1 ≤ i ≤ n. Since G − vn is rigid and
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d(vn) = 3, G is rigid. By applying Lemma 3.1 to both (G, p) and (G, q), we
may suppose that p1,1 = p1,2 = p2,2 = 0 and q1,1 = q1,2 = q2,2 = 0. 2 Then

d(p1 − p2)− d(q1 − q2) = p22,1 − q22,1
so it will suffice to show that p22,1 − q22,1 = 0.

Let p′ = p|G−vn , q′ = q|G−vn , K = Q(p′) and L = Q(q′). Consider the
equivalent frameworks (G− vn, p′) and (G− vn, q′). Applying Lemma 3.4 to
G − vn, we have K = L. Thus q2,1, q3,1, q3,2 ∈ K. Since (G, q) is equivalent
to (G, p), we have the following equations.

q2n,1 + q2n,2 = p2n,1 + p2n,2 (1)

(qn,1 − q2,1)2 + q2n,2 = (pn,1 − p2,1)2 + p2n,2 (2)

(qn,1 − q3,1)2 + (qn,2 − q3,2)2 = (pn,1 − p3,1)2 + (pn,2 − p3,2)2 (3)

Subtracting (1) from (2) and (3) we obtain

qn,1 =
p2,1
q2,1

pn,1 +
q22,1 − p22,1

2q2,1
(4)

qn,2 =
p3,1
q3,2

pn,1 +
p3,2
q3,2

pn,2 −
q3,1
q3,2

qn,1 +
q23,1 − p23,1 + q23,2 − p23,2

2q3,2
(5)

We may use (4) to eliminate qn,1 from the right hand side of (5) to obtain a
matrix equation for qn of the form

qn = Apn + b (6)

where A is a 2 × 2 lower triangular matrix with entries in K and b ∈ K 2.
Rewriting (1) as qTn qn = pTnpn and then substituting for qn using (6) we obtain

pTn (ATA− I)pn + 2bTApn + bT b = 0. (7)

This is a polynomial equation for the components of pn with coefficients in
K. Since td[Q(p) : Q] = 2n − 3 by Lemma 3.4, {pn,1, pn,2} is algebraically
independent over K. This implies that the polynomial on the left hand side
of (7) is identically zero. In particular ATA = I and, since A is lower tri-
angular, A must be a diagonal matrix with ±1 entries on the diagonal. In
particular a1,1 = p2,1/q2,1 = ±1 and hence p22,1 − q22,1 = 0. •

2We have switched the order of the coordinate axes from that given in Lemma 3.1 since
it makes the remainder of the proof more straightforward.
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Lemma 4.3 Let G = (V,E) be a rigid graph, vn ∈ V with N(vn) = {v1, v2, v3},
and let H be obtained from G− vn by adding the edges e1 = v1v2, e2 = v2v3
and e3 = v1v3 whenever they do not already exist in G − vn. Suppose that
G− vn is rigid. Then c(G) = c(H).

Proof. Let (G, p) be a generic realisation of G and (G, p′) be a realisation
which is congruent to (G, p) and in canonical position. Let S be the set of all
realisations (G, q) which are equivalent to (G, p) and in canonical position.
Similarly, let S∗ be the set of all realisations (H, q∗) which are equivalent to
(H, p|H) and in canonical position. By Lemma 3.1, |S| = c(G) and |S∗| =
c(H).

Let F be a complete graph with vertex set {v1, v2, v3, vn}. Then Lemma
4.2 implies that (F, q|V (F )) is congruent to (F, p′|V (F )) for all (G, q) ∈ S.
Lemma 3.1 now gives q(vi) = p′(vi) for all i ∈ {1, 2, 3, n} and all (G, q) ∈
S. We may use a similar argument to deduce that q∗(vi) = p′(vi) for all
i ∈ {1, 2, 3} and all (H, q∗) ∈ S∗. This implies that the map θ : S → S∗

defined by θ(G, q) = (H, q|V−vn) for all (G, q) ∈ S is a bijection. Hence
c(G) = |S| = |S∗| = c(H). •

Corollary 4.4 Let G = (V,E) be a rigid graph, vn ∈ V with N(vn) =
{v1, v2, v3}, and H = (G− vn) + e1 where e1 = v1v2. Suppose that G− vn is
rigid. Then c(G) ≤ c(H).

Proof. By Lemma 4.3, c(G) = c(H ∪ {e2, e3}) ≤ c(H), where e2 = v2v3 and
e3 = v1v3. •

An edge e in a rigid graph G is redundant if G− e is rigid. Corollary 4.4
tells us that if we extend a rigid graph H by performing a Henneberg type
2 move on a redundant edge of H then we do not increase c(H). On the
other hand it is not difficult to construct examples with c(G) = 1 and c(H)
arbitrarily large.

It is an open problem to determine the effect that performing a Henneberg
type 2 move on a non-redundant edge has on c(H).

Problem 4.5 Do there exist universal constants k1, k2 > 0 such that if H is
a rigid graph and G is obtained by performing a Henneberg type 2 move on
a non-redundant edge of H, then k1 c(H) ≤ c(G) ≤ k2 c(H)?
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In particular, we do not know whether performing a Henneberg type 2 move
on a non-redundant edge can decrease the number of complex realisations.

We next consider the operation of vertex splitting introduced by Whiteley
in [34]. Given a vertex v in a graph H, this move constructs a new graph G
from H − v by partitioning the neighbours of v into two sets N1, N2, adding
two new vertices v1, v2 joined to N1, N2 respectively, then adding the edge
v1v2 and another edge v2x for any x ∈ N1. Whiteley showed that this move
preserves rigidity. Since it also preserves the edge count, G will be isostatic
whenever H is isostatic.

Lemma 4.6 Let H be an isostatic graph on at least three vertices and G be
obtained from H by applying the vertex splitting move. Then c(G) ≥ 2c(H).

Proof. Suppose that G is obtained from H by splitting v into v1, v2. Let
(H, p) be a generic realisation of H. Construct a realisation (G, q) of G
by putting q(v1) = q(v2) = p(v) and q(u) = p(u) for all other vertices u.
We will obtain a bound on c(G) by applying Lemma 3.7 to (G, q). It is
straightforward to show that c(G, q) = c(H, p). In addition, no framework
which is equivalent to (G, q) is infinitesimally rigid (because the row indexed
by v1v2 in its rigidity matrix is zero) or collinear (because (H, p) is generic).
Hence c′(G, q) = c(G, q). Theorem 3.7 now gives

c(G) ≥ 2c(G, q) = 2c(H, p) = 2c(H).

•

We can also obtain a lower bound on the number of real generic realisa-
tions produced by the vertex split operation. We need the following lemma.

Lemma 4.7 Suppose that G = (V,E) is isostatic and (G, si), 1 ≤ i ≤ m, are
distinct pairwise equivalent infinitesimally rigid real frameworks in canonical
position with respect to three given vertices v1, v2, v3. Then, for each ε > 0,
there exist distinct quasi-generic pairwise equivalent real frameworks (G, ti),
1 ≤ i ≤ m, in canonical position with respect to v1, v2, v3, which satisfy
‖ti − si‖ < ε for all 1 ≤ i ≤ m.

Proof. Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , e2n−3}. We associate
each vector p̂ = (b2, a3, b3, . . . , an, bn) ∈ R2n−3 with a real framework (G, p)
where p(v1) = (0, 0), p(v2) = (0, b2) and p(vi) = (ai, bi) for i ≥ 3. We can
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now define a differentiable map fG : R2n−3 → R2n−3 by taking fG(p̂) to be
the ordered vector of squared edge lengths in the framework (G, p). The rank
of the Jacobean matrix dfG|p̂ is equal to the rank of the rigidity matrix of
(G, p) and hence rank dfG|ŝi = 2n−3 for all 1 ≤ i ≤ m. The inverse function
theorem now implies that we can choose open neighbourhoods Ni of ŝi and
N of fG(ŝi) in R2n−3 such that fG maps Ni diffeomorphically onto N for all
1 ≤ i ≤ m. This allows us to choose a generic point d ∈ N and points t̂i ∈ Ni

such that ‖ti − si‖ < ε and fG(t̂i) = d for all 1 ≤ i ≤ m. Since d is generic
and Q(d) ⊆ Q(t̂i), the coordinates of t̂i are algebraically independent and
hence each framework (G, ti) is quasi-generic. We can ensure that (G, ti) is
in canonical position with respect to v1, v2, v3 by choosing d such that ti is
sufficiently close to si. •

Theorem 4.8 Let H be an isostatic graph on at least three vertices and let
G be obtained from H by applying the vertex splitting move. Let (H, p) be a
generic real realisation of H. Then there exists a generic realisation (G, t)
of G such that r(G, t) ≥ 2r(H, p).

Proof. Suppose the vertex splitting move splits v into v1, v2 and adds edges
v1v2 and v1x. We may suppose that (H, p) is a quasi-generic real realisa-
tion of H in canonical position with respect to v, x, y for some vertex y of
H. We have p(v) = (0, 0) and p(x) = (0, a) with a generic. Note that all
frameworks equivalent to (H, p) are quasi-generic and hence infinitesimally
rigid by Lemma 3.5. Construct a real realisation (G, q) of G by putting
q(v1) = q(v2) = p(v) and q|H = p, and let S be the set of all equivalent
real realisations (G, qi), in canonical position with respect to v1, x, y. It is
straightforward to show that r(G, q) = |S| = r(H, p).

Let Ĝ be the graph obtained from G by performing a Henneberg type 2
move which deletes the edge v1v2 and adds a new vertex w and new edges
wv1, wv2, wx. Let (Ĝ, q̂) be the framework obtained by putting q̂(w) = (a, 0)
and q̂|G = q, and let Ŝ be the set of all equivalent realisations (Ĝ, q̂i) which
are in canonical position with respect to v1, x, y and satisfy q̂i(v1) = q̂i(v2) =
(0, 0). Then (Ĝ, q̂i) ∈ Ŝ if and only if (G, q̂i|G) ∈ S and q̂i(w) = (±a, 0),
so |Ŝ| = 2|S| = 2r(H, p). In addition each (Ĝ, q̂i) ∈ Ŝ is infinitesimally
rigid. To see this suppose that m is an infinitesimal motion of (Ĝ, q̂i) with
m(v1) = m(x) = (0, 0). Then m(w) = (0, 0) and so m(v2) = (0, 0). It follows
that m induces an infinitesimal motion of the framework (H, pi) given by
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pi(v) = (0, 0) and pi|H−v = q̂i|H−v, which is zero on v and x. The facts that
(H, pi) is equivalent to (H, p) and that all frameworks equivalent to (H, p)
are infinitesimally rigid now tells us that m is identically zero.

We can now use Lemma 4.7 to deduce that, for all ε > 0, there exists a set
T̂ of infinitesimally rigid, pairwise equivalent, quasi-generic real frameworks
with |T̂ | = |Ŝ| and such that each (Ĝ, t̂i) ∈ T̂ is in canonical position with
respect to v1, x, y, and satisfies ‖t̂i − q̂i‖ < ε for all 1 ≤ i ≤ |T̂ |.

Let T be the set of all frameworks (G, ti) where ti = t̂i|G and (Ĝ, t̂i) ∈ T̂ .
We will show that, for sufficiently small ε, we have |T | = |T̂ | and each
(G, ti) ∈ T is infinitesimally rigid and equivalent to (G, t1). Recall that
q̂i(v2) = (0, 0) and q̂i(w) = (±a, 0) for all 1 ≤ i ≤ |Ŝ|. Let t̂1(v2) = (a2, b2)
and t̂1(w) = (a′, b′). Then, for sufficiently small ε, the fact that {v1, x, w}
induce a triangle in Ĝ implies that t̂i(w) = (±a′, b′). The fact that {v2, x, w}
induces a triangle in Ĝ now implies that t̂i(v2) = (a2, b2) when t̂i(w) = (a′, b′)
and t̂i(v2) = (−a2, b2) when t̂i(w) = (−a′, b′). This gives

d(ti(v2)− ti(v1)) = a22 + b22 = d(t1(v2)− t1(v1))

so each (G, ti) is equivalent to (G, t1). The assertion that each (G, ti) is
infinitesimally rigid now follows from the facts that G is rigid and (G, ti) is
quasi-generic.

It remains to show that |T | = |T̂ |. Choose i, j with 1 ≤ i < j ≤ |T̂ |. Since
q̂i 6= q̂j, we have q̂i(u) 6= q̂j(u) for some vertex u of Ĝ. If u 6= w then the fact
that t̂i(u) and t̂j(u) can be chosen to be arbitrarily close to q̂i(u) and q̂j(u),
respectively, means we can ensure that ti(u) = t̂i(u) 6= t̂j(u) = tj(u). Hence
suppose that u = w. Interchanging i, j if necessary, we have q̂i(w) = (a, 0)
and qj(w) = (−a, 0). This implies that t̂i(w) = (a′, b′) and t̂j(w) = (−a′, b)
and hence that ti(v2) = t̂i(v2) = (a2, b2) and tj(v2) = t̂j(v2) = (−a2, b2).
Hence ti 6= tj for all 1 ≤ i < j ≤ |T̂ |.

We can now combine the above inequalities to deduce that

r(G, t1) ≥ |T | = |T̂ | = |Ŝ| = 2|S| = 2r(H, p)

and the result follows since (G, t1) is quasi-generic. •

Theorem 4.9 Every planar isostatic graph G = (V,E) has a generic reali-
sation (G, p) such that r(G, p) ≥ 2|V |−3.
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Proof. Every isostatic planar graph can be reduced to a 3-cycle by a se-
quence of edge contractions in such a way that each intermediate graph is
planar and isostatic by [10, 27]. Since each edge contraction reduces |V | by
one the result follows by induction using Theorem 4.8 and the fact that K3

is globally rigid. •

5 Globally rigid graphs and globally linked

pairs of vertices

We first use Corollary 4.4 to characterise graphs G with c(G) = 1. Our
characterization is the same as that given in [16] for globally rigid graphs in
R2. (This result can be deduced immediately from the characterisation in
[16] and the result of Gortler and Thurston mentioned in the Introduction
that generic global rigidity in Rd and Cd are equivalent. We give our proof
since it is short and direct.)

Theorem 5.1 Let G = (V,E) be a graph with at least four vertices. Then
c(G) = 1 if and only if G is 3-connected and redundantly rigid.

Proof. Necessity was proved for real (and hence also for complex) generic
realisations in [14]. We prove sufficiency by induction on |V | + |E|. If G
has four vertices then G = K4 and c(G) = 1 since G is complete. Hence
suppose that |V | ≥ 5. If G − e is 3-connected and redundantly rigid for
some e ∈ E, then c(G − e) = 1 by induction, and hence c(G) = 1. Thus
we may suppose that G − e is not both 3-connected and redundantly rigid.
By [16, Theorem 6.1] there exists a vertex vn ∈ V with N(v) = {v1, v2, v3}
such that H = G − vn + v1v2 is 3-connected and redundantly rigid. This
implies in particular that G − vn is rigid. Induction and Corollary 4.4 now
give c(G) ≤ c(H) = 1. •

Let (G, p) be a complex realisation of a rigid graph G = (V,E) and
u, v ∈ V . We say that {u, v} is globally linked in (G, p) if every equivalent
complex realisation (G, q) of G has d(p(u)−p(v)) = d(q(u)−q(v)). It can be
seen that u, v is globally linked in (G, p) if and only if c(G, p) = c(G+ e, p),
where e = uv. Theorem 3.6 now implies that the property of being globally
linked is a generic property i.e. if {u, v} is globally linked in some generic
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complex realisation of G then {u, v} is globally linked in all such realisations.
We say that {u, v} is globally linked in G if {u, v} is globally linked in some,
or equivalently all, generic complex realisations of G.

The analogous concept for real realisations was introduced in [17]. (The
situation for generic real realisations is more complicated as it is not neces-
sarily true that if {u, v} is globally linked in some generic real realisation of
G then {u, v} is globally linked in all generic real realisations. For example
the pair u, v is globally linked in the real realisation in Figure 1, but not in
Figure 2. This problem is circumvented in [17] by defining {u, v} to be glob-
ally linked in G in R2 if {u, v} is globally linked in all generic real realisations
of G.)

Our next result is analogous to a result for real realisations given in [17,
Theorem 4.2].

Theorem 5.2 Let (G, p) be a generic complex realisation of a graph G =
(V,E) and u, v, v1, v2, v3, vn ∈ V with N(vn) = {v1, v2, v3} and vn 6= u, v. Let
H = G − vn + v1v2. Suppose that G − vn is rigid and that {u, v} is globally
linked in (H, p|H). Then {u, v} is globally linked in (G, p).

Proof. Suppose (G, q) is equivalent to (G, p). Let p∗ = p|H and q∗ = q|H .
Since G− vn = H − v1v2 is rigid, Lemma 4.2 implies that d(p(v1)− p(v2)) =
d(q(v1) − q(v2)). Hence (H, p∗) and (H, q∗) are equivalent. Since {u, v} is
globally linked in (H, p∗), we have

d(p(u)− p(v)) = d(p∗(u)− p∗(v)) = d(q∗(u)− q∗(v)) = d(q(u)− q(v)).

Thus {u, v} is globally linked in (G, p). •

The real analogue of Theorem 5.2 was used in [17, Section 5] to character-
ize when two vertices in a generic real realisation of an ‘M-connected graph’
are globally linked in R2. We can show that the same characterization holds
for complex realisations. We first need to introduce some new terminology.

A matroid M = (E, I), consists of a set E together with a family I
of subsets of E, called independent sets, which satisfy three simple axioms
which capture the properties of linear independence in vector spaces, see [28].
Given a complex realisation (G, p) of a graph G = (V,E), its rigidity matroid
R(G, p) = (E, I) is defined by taking I to be the family of all subsets of E
which correspond to linearly independent sets of rows in the rigidity matrix
of (G, p). It is not difficult to see that the set of independent subsets of E is
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the same for all generic complex realisations of G. We refer to the resulting
matroid as the rigidity matroid of G and denote it by R(G).

Given a matroidM = (E, I) we may define an equivalence relation on E
by saying that e, f ∈ E are related if e = f or if there is a circuit, i.e. minimal
dependent set, C ofM with e, f ∈ C. The equivalence classes are called the
components of M. If M has at least two elements and only one component
then M is said to be connected. We say that a graph G = (V,E) is M-
connected if its rigidity matroid R(G) is connected. The M-components of
G are the subgraphs of G induced by the components of R(G). For more
examples and basic properties of M-connected graphs see [16]. An efficient
algorithm for constructing the M-components of a graph is given in [3].

Theorem 5.3 Let G = (V,E) be a an M-connected graph and u, v ∈ V .
Then {u, v} is globally linked in G if and only if u and v are joined by three
internally disjoint paths in G.

Proof. Necessity follows for real (and hence also complex) generic realisa-
tions by [17, Lemma 5.6]. Sufficiency follows by applying the same proof
technique as for [17, Theorem 5.7] but using Theorem 5.2 in place of [17,
Theorem 4.2] •

The following conjecture is a complex version of [17, Conjecture 5.9]. It
would characterise when two vertices in a rigid graph are globally linked.

Conjecture 5.4 Let G = (V,E) be a rigid graph and u, v ∈ V . Then {u, v}
is globally linked in G if and only if either uv ∈ E or u and v are joined by
three internally disjoint paths in some M-connected component of G.

Note that the ‘sufficiency part’ of Conjecture 5.4 follows from Theorem 5.3.

6 Separable graphs

A k-separation of a graph G = (V,E) is a pair (G1, G2) of edge-disjoint
subgraphs of G each with at least k + 1 vertices such that G = G1 ∪G2 and
|V (G1) ∩ V (G2)| = k. If (G1, G2) is a k-separation of G, then we say that G
is k-separable and that V (G1)∩ V (G2) is a k-separator of G. We will obtain
expressions for c(G) when G is a rigid graph with a 2-separation, and also
when G has a 3-separation induced by a 3-edge-cut.
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Lemma 6.1 Let (G1, G2) be a 2-separation of a rigid graph G with V (G1)∩
V (G2) = {v1, v2} and let Hi = Gi + e where e = v1v2 for i = 1, 2. Suppose
that {v1, v2} is globally linked in G. Then c(G) = 2c(H1)c(H2).

Proof. Let (G, p) be a generic realisation of G and choose d0 ∈ C with
d(p(v1)− p(v2)) = d20 and Arg d0 ∈ (0, π]. Let S be the set of all realisations
(G, q) which are equivalent to (G, p) and satisfy q(v1) = (0, 0) and q(v2) =
(0, d0). Lemma 3.1 and the hypothesis that {v1, v2} is globally linked in G
imply that |S| = 2c(G).

For i = 1, 2, the hypothesis that G is rigid implies that Hi is rigid. Let
Si be the set of all realisations (Hi, qi) which are equivalent to (Hi, p|Hi

) and
satisfy qi(v1) = (0, 0) and qi(v2) = (0, d0). Lemma 3.1 and the fact that
v1v2 ∈ E(Hi) imply that |Si| = 2c(Hi). It is straightforward to check that
the map θ : S → S1 × S2 defined by θ(G, q) = [(H1, q|V (H1), (H2, q|V (H2)] is a
bijection. Hence 2c(G) = |S| = |S1| × |S2| = 4c(H1)c(H2). •

We next show that we can apply Lemma 6.1 when G has a 2-separation
(G1, G2) in which G1 and G2 are both rigid. We need one more piece of
matroid terminology. AnM-circuit in a graph G is a subgraph H such that
E(H) is a circuit in the rigidity matroid of G.

Lemma 6.2 Let (G1, G2) be a 2-separation of a rigid graph G with V (G1)∩
V (G2) = {v1, v2} and let Hi = Gi + e where e = v1v2 for i = 1, 2. Suppose
that G1 and G2 are both rigid. Then {u, v} is globally linked in G and c(G) =
2c(H1)c(H2).

Proof. We first show that {v1, v2} is globally linked in G. This holds triv-
ially if e ∈ E(G) and hence we may suppose that e 6∈ E(G). Since Gi

is rigid, ei is contained in an M-circuit Ci of Hi for each i = 1, 2. Then
C = (C1−e)∪ (C2−e) is anM-circuit of G by [2, Lemma 4.1]. We may now
use Theorem 5.3 to deduce that {u, v} is globally linked in C. Since C ⊆ G,
{u, v} is globally linked in G. The fact that c(G) = 2c(H1)c(H2) now follows
immediately from Lemma 6.1. •

In order to obtain results for graphs with 2-separations (G1, G2) in which
G1 and G2 are not both rigid, we need a result concerning the number of
complex realisations of a rigid graph satisfying given ‘distance’ constraints.
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Lemma 6.3 Let G = (V,E) be a rigid graph with V = {v1, v2, . . . , vn},
E = {e1, e2, . . . , em} and ei = vi1vi2 for all 1 ≤ i ≤ m. Suppose that T =
{e1, e2, . . . , et} ⊆ E is such that rank(G − T ) = rank(G) − t. Let (G, p)
be a generic realisation of G and d∗T = {d∗1, d∗2, . . . , d∗t} ⊂ C be algebraically
independent over Q(dG−T (p)). Then the number of pairwise non-congruent
realisations (G, q) of G with (G−T, q) equivalent to (G−T, p) and d(p(vi1)−
p(vi2)) = d∗i for all ei ∈ T is c(G).

Proof. Let K = Q(dG−T (p)). We will define polynomials fi ∈ K[X, Y,D]
for 1 ≤ i ≤ m, where X = (X1, X2, . . . , Xn), Y = (Y1, Y2, . . . , Yn), and
D = (D1, D2, . . . , Dt) are indeterminates. We first associate two variables
Xi, Yi with each vi ∈ V and a variable Di with each ei ∈ T . We then put
fi = (Xi1 −Xi2)

2 + (Yi1 − Yi2)2 −Di for each ei ∈ T and fi = (Xi1 −Xi2)
2 +

(Yi1 − Yi2)2 − d(p(vi1)− p(vi2)) for each ei ∈ E \ T .
We now apply Lemma 3.3. We need to find x, y ∈ Cn and d ∈ Ct such

that fi(x, y, d) = 0 for all 1 ≤ i ≤ m, and td[K(d), K] = t. This is easy
since we can just put (xi, yi) = p(vi) for all vi ∈ V and di = d(p(vi1)− p(vi2))
for all ei ∈ T , and use the definition of the polynomials fi to deduce that
fi(x, y, d) = 0 for all 1 ≤ i ≤ m. Since G is rigid td[Q(dG(p)),Q] = 2n − 3
and td[Q(dG−T (p)),Q] = rank(G − T ) = 2n − 3 − t by Lemma 3.4. Since
td[Q(dG(p)),Q] = td[K(d), K] + td[K,Q] we have td[K(d), K] = t. Since we
also have td[K(d∗T ), K] = t, Lemma 3.3 implies that there exists a realisation
(G, q) with (G− T, q) equivalent to (G− T, p) and d(p(vi1)− p(vi2)) = d∗i for
all ei ∈ T .

We may assume that (G, q) is in canonical position with respect to v1, v2, v3.
Since Q(d∗T ) ⊆ Q(dG(q)), td[Q(dG(q)) : Q] = td[Q(dG(q)) : K] + td[K : Q] ≥
td[Q(d∗T ) : K] + td[K : Q] ≥ |T | + 2n − 3 − |T | = 2n − 3. Since (G, q) is in
canonical position and Q(dG(q)) ⊆ Q(q) we must have td[Q(q) : Q] = 2n−3.
We may now rotate and translate (G, q) to obtain a generic framework. Hence
(G, q) is quasi-generic and and the number of pairwise non-congruent reali-
sations of G which are equivalent to (G, q) is c(G). •

Our next result is needed to enable us to apply Lemma 6.3 to k-separations.

Lemma 6.4 Let H1, H2 be rigid graphs. Put H = H1 ∪H2, H3 = H1 ∩H2,
and T = E(H3). Suppose that H3 is isostatic and that rank(H2 − T ) =
rank(H2) − |T |. Let (H, p) be a quasi-generic realisation of H, G1 be a
spanning rigid subgraph of H1, and (G1, q1) be a realisation of G1 which
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is equivalent to (G1, p|G1). Then d∗T = {d(q1(u) − q1(v)) : uv ∈ T} is
algebraically independent over Q(dH2−T (p|H2)).

Proof. If T = ∅ there is nothing to prove so we may suppose that |T | ≥ 1
and hence |V (H3)| ≥ 2. We may also assume that (H, p) and (H1, q1) are
both in canonical position with p(u) = (0, 0) = q1(u), p(v) = (0, y) and
q1(v) = (0, z) for some y, z ∈ C and some u, v ∈ V (H3).

Since H1, H2 are rigid, H = H1∪H2 is rigid. Let F be a spanning isostatic
subgraph of H which contains T and let Fi = F ∩Hi. Then

|E(F )| = |E(F1)|+ |E(F2)| − |T |
≤ (2|V (H1)| − 3) + 2(|V (H2)| − 3)− 2(|V (H3)| − 3)

= 2|V (H)| − 3.

Equality must occur throughout and hence Fi is a spanning isostatic subgraph
of Hi for i = 1, 2. Lemma 3.4 now implies that

Q(dF1(q1)) = Q(q1) = Q(dG1(q1)) (8)

and
Q(dF1(p)) = Q(p) = Q(dH1(p))) = Q(dG1(p))). (9)

Since (G1, q1) and (G1, p|G1) are equivalent dG1(q1) = dG1(p). Equations (8)
and (9) now give Q(dF1(p)) = Q(dF1(q1)) and hence

Q(dH(p)) = Q(dH1(p), dH2−T (p))

= Q(dF1(p), dH2−T (p))

= Q(dF1(q1), dH2−T (p)).

Thus

td[Q(dH(p)) : Q] = td[Q(dH2−T (p) : Q] + td[Q(dF1(q1) : Q(dH2−T (p)].

By Lemma 3.4, td[Q(dH(p)) : Q] = rank(H) = 2|V (H)| − 3 and

td[Q(dH2−T (p)) : Q] = rank(H2 − T ) = 2|V (H2)| − 3− |T |.

Thus

td[Q(dF1(q1) : Q(dH2−T (p)] = 2|V (H)| − 3− (2|V (H2)| − 3− |T |)
= 2|V (F1)| − 3 = |E(F1)|.
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Hence dF1(q1) is algebraically independent over Q(dH2−T (p). Since T ⊆
E(F1), d

∗
T is also algebraically independent over Q(dH2−T (p). •

Lemma 6.5 Let (G1, G2) be a 2-separation of a rigid graph G with V (G1)∩
V (G2) = {v1, v2}. Suppose that G2 is not rigid and put H2 = G2 + e where
e = v1v2. Then G1 and H2 are both rigid and c(G) = 2c(G1)c(H2).

Proof. Let F be a spanning isostatic subgraph of G. We have |E(F ) ∩
E(G1)| ≤ 2|V (G1)| − 3, and |E(F ) ∩ E(G2)| ≤ 2|V (G2)| − 4 since G2 is not
rigid. Thus

|E(F )| = |E(F ) ∩ E(G1)|+ |E(F ) ∩ E(G2)|
≤ 2|V (G1)| − 3 + 2|V (G2)| − 4 = 2|V (F )| − 3.

Since F is rigid, we must have equality throughout. In particular |E(F ) ∩
E(G1)| = 2|V (G1)| − 3 so G1 is rigid.

Consider the 2-separation (G1, H2) of H = G+e, and let F ′ be a spanning
isostatic subgraph ofH which contains e. Then |E(F ′)∩E(H2)| ≤ 2|V (H2)|−
3 and, since e ∈ E(F ′), |E(F ′) ∩ E(G1)| ≤ 2|V (G1)| − 4. Thus

|E(F ′)| = |E(F ′) ∩ E(G1)|+ |E(F ′) ∩ E(H2)|
≤ 2|V (G1)| − 4 + 2|V (H2)| − 3 = 2|V (F ′)| − 3.

Since F ′ is rigid, we must have equality throughout. In particular |E(F ′) ∩
E(H2)| = 2|V (H2)| − 3 so H2 is rigid.

Let (G, p) be a generic realisation of G. For each z ∈ C \ {0} with
Arg z ∈ (0, π] let S(z) be the set of all realisations (G, q) of G such that (G, q)
is equivalent to (G, p), q(v1) = (0, 0) and q(v2) = (0, z). Define S1(z) and
S2(z) similarly by replacing (G, p) by (G1, p|G1) and (H2, p|H2) respectively.
Lemma 3.1 and Theorem 3.6 imply that S(z), S1(z) and S2(z) are finite, and
are non-empty for only finitely many values of z. In addition we have

2c(G) =
∑

S(z)6=∅

|S(z)| and 2c(G1) =
∑

S1(z)6=∅

|S1(z)|. (10)

We will show that
|S(z)| = 2|S1(z)| c(H2) (11)
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for all z ∈ C \ {0} with Arg z ∈ (0, π]. If S1(z) = ∅ then we must also have
S(z) = ∅, since for any (G, q) ∈ S(z) we would have (G1, q|V (G1)) ∈ S1(z), so
(11) holds trivially.

We next consider the case when S1(z) 6= ∅. Choose (G1, q1) ∈ S1(z).
We may apply Lemma 6.4 with H = G + e, H1 = G1 + e, T = {e} and
d∗T = {d(q1(v1)−q1(v2))} to deduce that d∗T is algebraically independent over
Q(dH2(p)). We may then apply Lemma 6.3 (with G = H2) and Lemma 3.1
to deduce that |S2(z)| = 2c(H2). Since the map θ : S(z)→ S1(z)× S2(z) by
θ(G, q) = [(G1, q|V (G1)), (H2, q|V (G2))] is a bijection, we have

|S(z)| = |S1(z)| |S2(z)| = 2 |S1(z)| c(H2).

Thus (11) also holds when S1(z) 6= ∅.
Equation (11) and the fact that c(H2) 6= 0 imply that S1(z) = ∅ if and

only if S(z) = ∅. We can now use equations (10) and (11) to deduce that

c(G) =
∑

S(z)6=∅

|S(z)| = 2
∑

S1(z)6=∅

|S1(z)| c(H2) = 2 c(G1) c(H2).

•
Note that Lemma 4.1 is the special case of Lemma 6.5 when G2 is a path of
length two.

Lemmas 6.1 and 6.5 immediately give

Theorem 6.6 Suppose that G is a rigid graph and (G1, G2) is a 2-separation
of G with V (G1)∩V (G2) = {u, v}. Then G1 + uv, G2 + uv, and at least one
of G1, G2 are rigid. Furthermore:
(a) if G1 and G2 are both rigid then c(G) = 2c(G1 + uv) c(G2 + uv);
(b) if G1 is rigid and G2 is not rigid then c(G) = 2c(G1) c(G2 + uv).

We next state a complementary result for k-separations when k ≥ 3 and
the common intersection is globally rigid. Its proof is straightforward.

Theorem 6.7 Suppose that G is a rigid graph and (G1, G2) is a k-separation
of G such that k ≥ 3 and G1∩G2 is globally rigid. Then c(G) = c(G1) c(G2).

We close this section by deriving a reduction formula for c(G) when G
has a 3-edge-cut. We first need to determine c(G) when G is the triangular
prism i.e. the graph on six vertices consisting of two disjoint triangles joined
by a perfect matching shown in Figure 3.
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Figure 3: The triangular prism.

Lemma 6.8 Let P be the triangular prism. Then c(P ) = 12.

Proof. It is well known that every realisation of P in C2 has at most 12
equivalent, non-congruent realisations and that there exists a (real) realisa-
tion (G, p) with 12 equivalent, non-congruent (real) realisations in which the
vertices are not collinear, see for example [4, 8]. We can now use Theorem
3.7 to deduce that c(G) = 12. •

Theorem 6.9 Suppose that G is a rigid graph and G = G1∪G2∪{e1, e2, e3}
where V (G1) ∩ V (G2) = ∅, ei = uivi for 1 ≤ i ≤ 3, u1, u2, u3 are distinct
vertices of G1, and v1, v2, v3 are distinct vertices of G2. Then G1 and G2 are
rigid and c(G) = 12 c(G1) c(G2).

Proof. Let F be a spanning isostatic subgraph of G. We have |E(F ) ∩
E(G1)| ≤ 2|V (G1)| − 3 and |E(F ) ∩ E(G2)| ≤ 2|V (G2)| − 3. Thus

|E(F )| ≤ |E(F ) ∩ E(G1)|+ |E(F ) ∩ E(G2)|+ 3

≤ 2|V (G1)| − 3 + 2|V (G2)| − 3 + 3 = 2|V (F )| − 3.

Since F is rigid, we must have equality throughout. In particular |E(F ) ∩
E(Gi)| = 2|V (Gi)| − 3 so Gi is rigid for i = 1, 2.

Claim 1 Let H2 be obtained from G2 by adding the vertices u1, u2, u3 and
edges u1u2, u2u3, u3u1, u1v1, u2v2, u3v3. Then c(G) = c(G1) c(H2).

Proof. Let (G, p) be a generic realisation of G. For each fixed b2, a3, b3 ∈
C\{0} with Arg b2,Arg a3 ∈ (0, π] let S(b2, a3, b3) be the set of all realisations
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(G, q) of G such that (G, q) is equivalent to (G, p), q(u1) = (0, 0), q(u2) =
(0, b2) and q(u3) = (a3, b3). Define S1(b2, a3, b3) and S2(b2, a3, b3) similarly
by replacing (G, p) by (G1, p|G1) and (H2, p|H2) respectively. Lemma 3.1 and
Theorem 3.6 imply that S(b2, a3, b3), S1(b2, a3, b3) and S2(b2, a3, b3) are finite,
and are non-empty for only finitely many values of b2, a3, b3. In addition we
have

c(G) =
∑

S(b2,a3,b3)6=∅

|S(b2, a3, b3)| and c(G1) =
∑

S1(b2,a3,b3)6=∅

|S1(b2, a3, b3)|.

(12)
We will show that

|S(b2, a3, b3)| = |S1(b2, a3, b3)| c(H2) (13)

for all b2, a3, b3 ∈ C \ {0} with Arg b2,Arg a3 ∈ (0, π]. If S1(b2, a3, b3) = ∅
then we must also have S(b2, a3, b3) = ∅, since for any (G, q) ∈ S(b2, a3, b3)
we would have (G1, q|V (G1)) ∈ S1(b2, a3, b3), so (13) holds trivially.

We next consider the case when S1(b2, a3, b3) 6= ∅. Choose (G1, q1) ∈
S1(b2, a3, b3). Let T = {u1u2, u2u3, u3u1} and d∗T = {d(q1(ui) − q1(uj)) :
uiuj ∈ T}. We may apply Lemma 6.4 with (H, p) = (G∪T, p) and (H1, q1) =
(G1∪T, q1) to deduce that d∗T is algebraically independent over Q(dH2−T (p)).
We may then apply Lemma 6.3 (withG = H2) to deduce that |S2(b2, a3, b3)| =
c(H2). Since the map θ : S(b2, a3, b3) → S1(b2, a3, b3) × S2(b2, a3, b3) by
θ(G, q) = [(G1, q|V (G1)), (G2, q|V (G2))] is a bijection, we have

|S(b2, a3, b3)| = |S1(b2, a3, b3)| |S2(b2, a3, b3)| = |S1(b2, a3, b3)| c(H2).

Thus (13) also holds when S1(b2, a3, b3) 6= ∅.
Equation (13) and the fact that c(H2) 6= 0 imply that S1(b2, a3, b3) = ∅

if and only if S(b2, a3, b3) = ∅. We can now use equations (12) and (13) to
deduce that

c(G) =
∑

S(b2,a3,b3)6=∅

|S(b2, a3, b3)| =
∑

S1(b2,a3,b3)6=∅

|S1(b2, a3, b3)| c(H2) = c(G1)c(H2).

This completes the proof of Claim 1. •

We may apply the argument of Claim 1 to H2 to deduce that c(H2) =
c(G2) c(P ), where P is the triangular prism. Claim 1 and the fact that
c(P ) = 12 now give c(G) = 12 c(G1) c(G2). •
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7 Two families of graphs

We use the results from the previous section to determine c(G) for two im-
portant families of rigid graphs.

Quadratically solvable graphs

Let G = (V,E) be an isostatic graph with E = {e1, e2, . . . , em} and ei = uivi
for 1 ≤ i ≤ m. Then G is quadratically solvable if for all d = (d1, d2, ..., dm) ∈
Cm such that {d1, d2, d3, . . . , dm} is algebraically independent over Q, there
exists a realisation (G, p) of G with d(p(ui) − p(vi)) = di for all 1 ≤ i ≤ m,
in which Q(p) is contained in a quadratic extension of Q(d) i.e. there exists
a sequence of field extensions K1 ⊂ K2 ⊂ . . . ⊂ Km such that K1 = Q(d),
Km = Q(p) and Ki+1 = Ki(x) for some x2 ∈ Ki for all 1 ≤ i < m. These
graphs are important in the theory of equation solving in Computer Aided
Design, see for example [11, 26].

We may recursively construct an infinite family QS of quadratically solv-
able isostatic graphs as follows. We first put the complete graph on three
vertices K3 in QS. Then, for any two graphs G1, G2 ∈ QS, any two vertices
u1, v1 in G1, and any edge e = u2v2 of G2, we construct a new graph G by
‘gluing’ G1 and G2 − e together along u1 = u2 and v1 = v2, and add G to
QS. Note that the special case of this construction when G2 = K3 is just
the Henneberg type 1 move and hence the family of graphs which can be
constructed from K3 by Henneberg type 1 moves is a subfamily of QS.

The second author conjectured in [26] that an isostatic graphG is quadrat-
ically solvable if and only if it belongs to QS. This conjecture was subse-
quently verified for isostatic planar graphs in [27]. Our next result determines
c(G) for all G ∈ QS.

Theorem 7.1 Suppose G ∈ QS. Then c(G) = 2|V (G)|−3.

Proof. We use induction on |V (G)|. If |V (G)| = 3 then G = K3 and
c(G) = 1. Hence we may assume that |V (G)| > 3. It follows from the re-
cursive definition of QS that there exists a 2-separation (G1, G2) of G with
V (G1) ∩ V (G2) = {u, v} and such that G1 and G2 + uv both belong to QS.
The theorem now follows from Lemma 6.5 and induction. •
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We can use this result and the fact that all QS graphs can be constructed
using vertex splits to determine the maximum number of generic real reali-
sations for any QS graph. We will need a result from [27] that a graph G
is in QS if and only if G has a decomposition G = G1 ∪ G2 ∪ G3 where
G1 ∩G2 = u3, G2 ∩G3 = u1, G3 ∩G1 = u2 and each Gi is either K2 or is in
QS. We will also need the following concept: an edge e in a QS graph G is
contractible if either G/e ∈ QS or G/e = K2.

Lemma 7.2 Suppose that G = (V,E) ∈ QS and |V | ≥ 3. Then G has at
least two contractible edges.

Proof. Induction on |V |. If |V | = 3 then G = K3 and G has three con-
tractible edges. Hence we may suppose that |V | ≥ 4. By [27], G has a
decomposition G = G1 ∪ G2 ∪ G3 where G1 ∩ G2 = u3, G2 ∩ G3 = u1,
G3 ∩ G1 = u2 and each Gi is either K2 or in QS. Since |V | ≥ 4 we may
assume that G1 6= K2. By induction, G1 has two contractible edges e and
f . If neither e nor f is equal to u2u3 then they are both contractible in G
by [27] (since we have G/e = G1/e ∪ G2 ∪ G3). So suppose e = u2u3 and
f is contractible in G. If |V (G2)| ≥ 3 or |V (G3)| ≥ 3 then we can find
another contractible edge in G2 or G3. Otherwise G2 = K2 = G3 and the
edges u1u3 and u1u2 are both contractible in G (since u2u3 ∈ E and hence
G/u1u2 = G/u2u3 = G1). •

Theorem 7.3 Suppose G = (V,E) ∈ QS. Then the maximum value of
r(G, p) over all generic real realisations (G, p) of G is 2|V |−3.

Proof. We use induction on |V |. If |V (G)| = 3 then G = K3 and and the
theorem holds, so we may assume that |V | > 3. Then G has a contractible
edge e by Lemma 7.2. We can now use Theorem 4.8 and induction to deduce
that G has a generic real realisation (G, p) such that r(G, p) ≥ 2|V |−3. On
the other hand Theorem 7.1 shows that r(G, q) ≤ 2|V |−3 for all generic real
realisations (G, q). •

Note that Theorem 7.3 extends the result of [4] that the maximum value
of r(G, p) over all generic realisations of graphs G which can be constructed
by Henneberg type 1 moves is 2|V |−3.
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M-connected graphs

We will determine c(G) when G is an M-connected graph. We need some
new terminology. For each {u, v} ⊂ V , let wG(u, v) denote the number of
connected components of G−{u, v} and put b(G) =

∑
{u,v}⊂V (wG(u, v)−1).

Note that wG(u, v) − 1 = 0 if {u, v} is not a 2-separator of G, so we can
assume that the summation in the definition of b(G) is restricted to pairs
{u, v} which are 2-separators of G.

Theorem 7.4 Let G be an M-connected graph. Then c(G) = 2b(G).

Proof. We use induction on b(G). Suppose b(G) = 0. Then G is 3-connected
and, since G is M-connected, it is also redundantly rigid. Hence c(G) = 1
by Theorem 5.1. Thus we may assume that b(G) ≥ 1.

Choose vertices u, v of G with wG(u, v) ≥ 2 and let (G1, G2) be a 2-
separation in G with V (G1)∩V (G2) = {u, v}. Let Hi = Gi +uv for i = 1, 2.
By [17, Lemma 5.3(b)], Hi is M-connected for i = 1, 2. In addition, [16,
Lemma 3.6] implies that every 2-separator {u′, v′} of G which is distinct
from {u, v} is a 2-separator of Hi for exactly one value of i ∈ {1, 2}, and, for
this value of i, satisfies wG(u′, v′) = wHi

(u′, v′). Since we also have wG(u, v) =
wH1(u, v) +wH2(u, v), we may deduce that b(G) = b(H1) + b(H2)− 1. Using
induction and Lemma 6.1 we have

c(G) = 2 c(H1) c(H2) = 2× 2b(H1) × 2b(H2) = 2b(G).

•

Our expression for c(G) in Theorem 7.4 is identical to that given for
r(G, p) in [17, Theorem 8.2] when (G, p) is a generic real realisation of G,
and provides an explanation for the fact that r(G, p) is the same for all
generic real realisations (G, p) of an M-connected graph G.

8 Closing Remarks and Open Problems

The obvious open problem is:

Problem 8.1 Can c(G) be determined efficiently for an arbitrary rigid graph
G?
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Figure 4: The graphs G1, G2, G3 and G4.

The isostatic graphs G1, G2, G3 and G4 of Figure 4 indicate that it may
be difficult to obtain an affirmative answer to Problem 8.1 for all graphs.
Emeris and Moroz [7] give a real framework (G1, p) with r(G1, p) = 28 and
use mixed volume techniques to prove that c(G1, q) ≤ 28 for all complex rigid
frameworks (G1, q), (an error in their proof was subsequently corrected in [8]).
We may now use Theorem 3.7 to deduce that c(G1) = 28. A similar technique
can be used to show that c(G3) = 68, see [19]. Computer calculations, i.e.
calculating c(G, p) for ‘randomly chosen’ realisations (G, p), indicate that
c(G2) = 22 and c(G4) = 45. These values have recently been confirmed by
Josef Schicho (personal communication) using the algorithm described by
Capco et al in [5]. It is difficult to imagine how these numbers could be
deduced from the structures of G1, G2, G3 and G4.

Until recently, the fastest algorithms for determining c(G) solved the as-
sociated system of polynomial equations using Gröbner basis calculations.
Such algorithms are exponential and struggle to cope with some graphs on
only seven vertices such as G2. An exciting new algorithm based on a re-
currence formula for c(G) is described in [5]. Although still exponential, it
has been used to determine c(G) for all isostatic graphs on at most twelve
vertices, see [5].

If we cannot determine c(G) precisely then we could ask for tight asymp-
totic upper bounds on c(G).

Problem 8.2 Determine the smallest k ∈ R such that c(G) = O(kn) for all
rigid graphs G with n vertices.
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Clearly c(G) will be maximised when G is isostatic, and hence it follows
from [4, Theorem 1.1] that c(G) ≤ 1

2

(
2n−4
n−2

)
≈ 4n for all rigid graphs G with

n vertices. Borcea and Streinu [4, Proposition 5.6] also construct an infinite
family of isostatic graphs G with c(G) = 12(n−3)/3 ≈ 2.29n by taking several
copies of the triangular prism P with a single triangle in common. The fact
that c(G) = 12(n−3)/3 for this family can be deduced from Lemmas 6.7 and
6.8. Emiris and Moroz [7] use a similar construction with P replaced by G1 to
obtain an infinite family of isostatic graphs G with c(G) = 28(n−3)/4 ≈ 2.3n.
A similar construction based on G3 gives an infinite family of isostatic graphs
G with c(G) = 68(n−3)/5 ≈ 2.33n.

The calculations in [5] determine the isostatic graphs on n vertices which
maximise c(G) for all n ≤ 12. The graphs for n = 6, 7, 8 are the triangular
prism P , G1 and G3. All three are planar graphs with exactly two triangles.
The graphs from [5] for n = 9, 10, 11 are also planar with exactly two triangles
and the corresponding values for c(G) are 172, 440 and 1144, respectively.
(Curiously, their isostatic graph on n = 12 vertices which maximises c(G)
has no triangles.) We may glue copies of their graph on 11 vertices together
along a common triangle to obtain an infinite family of graphs with c(G) =
1144(n−3)/8 ≈ 2.41n. It follows that the answer to Problem 8.2 will satisfy
11441/8 ≤ k ≤ 4.

It would also be of interest to determine a tight lower bound on c(G)
when G is isostatic.

Conjecture 8.3 For all isostatic graphs G with n vertices, c(G) ≥ 2n−3.

Note that this conjecture holds with equality for QS graphs by Theorem 7.1,
and also holds for planar graphs by Theorem 4.9. The results of [5] confirm
that the conjecture is also true when n ≤ 12. Rather embarrassingly, the
only lower bound we have for an arbitrary isostatic graph G is the trivial
bound c(G) ≥ 2.

Since every isostatic graph can be obtained from a triangle by Henneberg
type 1 and 2 moves, and since every Henneberg type 1 move doubles c(G)
by Lemma 4.1, it is tempting to try to prove Conjecture 8.3 by showing
that if we perform the Henneberg type 2 move on a isostatic graph G then
we will increase c(G) by at least a factor of two. Unfortunately this is not
the case: the graph G2 of Figure 4 can be obtained from the triangular
prism P by a Henneberg type 2 move; we have c(P ) = 12 and we have
c(G2) = 22 < 2 c(P ) = 24.
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We may also consider the problem of deciding which graphs have rigid
realisations in C2.

Conjecture 8.4 A graph G = (V,E) has a realisation in C2 which is rigid
and has d(p(u) − p(v)) 6= 0 for some uv ∈ E if and only if G is generically
rigid.

It is straightforward to show that G has a realisation in C2 which is rigid
(and has d(p(u)− p(v)) = 0 for all uv ∈ E) if and only if G is connected.

Our final problem is to consider the relationship between c(G) and r(G, p).
Dylan Thurston asked whether every rigid graph G has a generic real reali-
sation (G, p) such that r(G, p) = c(G) at a workshop on global rigidity held
at Cornell University in February 2011.

The graph G4 in Figure 4 shows that the answer to this question is neg-
ative. We have c(G4) = 45. On the other hand, the proof technique used
by Hendrickson [14] to obtain necessary conditions for global rigidity can be
adapted to show that r(G, p) is even for all generic real realisations of a graph
G which is rigid but not globally rigid.3 Thus r(G4, p) ≤ 44 for all generic
real realisations of G4. By glueing several copies of G4 along a common edge,
we may construct an infinite family of rigid graphs G on n vertices such that
r(G, p)/c(G) ≤ (44/45)

n−2
6 for all generic real realisations of G. It follows

that we can make the ratio r(G, p)/c(G) arbitrarily close to zero.
We may say a bit more about the parity argument used in the above

construction. Let G = (V,E) be a graph which is rigid but not globally
rigid and S be the set of all realisations which are in canonical position with
respect to three given vertices v1, v2, v3 and are equivalent to a given generic
real realisation (G, p) of G. Since all edge lengths in (G, p) are real, the map
(G, q) 7→ (G, q∗), where q∗ is obtained by taking the complex conjugates of
the coordinates of q and then, if necessary, reflecting the resulting framework
in the axes to return to canonical position, is an involution on S.

3Let S be the set of all real realisations which are in canonical position and are equiv-
alent to (G, p). If G is not redundantly rigid then G − e is not rigid for some edge e. In
this case each component of the real configuration space of (G− e, p) will contain an even
number of elements of S. If G is redundantly rigid then, since G is not globally rigid, G
has a 2-separation. In this case reflecting one of the sides of the 2-separation in the line
through the two vertices of the corresponding 2-separator gives an involution on S with
no fixed points.
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Suppose (G, q∗) is equal to (G, q) and let q(v1) = (0, 0), q(v2) = (0, y2)
and q(v3) = (x3, y3). Then q∗(v2) = (0,±ȳ2) = (0, y2). Hence y2 is either real
or imaginary.

We first consider the case when y2 is real. We have q∗(v3) = (±x̄3, ȳ3) =
(x3, y3) so x3 is either real or imaginary and y3 is real. If x3 is real then we
have q∗(vj) = (x̄j, ȳj) = (xj, yj) for all vj ∈ V so q is real. If x3 is imaginary
then q∗(vj) = (−x̄j, ȳj) = (xj, yj) so q(vj) = (xj, yj) where xj is imaginary
and yj is real for all vj ∈ V .

We next consider the the case when y2 is imaginary. We have q∗(v3) =
(±x̄3,−ȳ3) = (x3, y3) so x3 is either real or imaginary and y3 is imaginary.
If x3 is imaginary then we have q∗(vj) = (−x̄j,−ȳj) = (xj, yj) for all vj ∈ V
so q is imaginary. This is impossible since (G, q) is equivalent to (G, p) and
so we must have d(q(u) − q(v)) > 0 for all uv ∈ E. If x3 is real then
q∗(vj) = (x̄j,−ȳj) = (xj, yj) so q(vj) = (xj, yj) where xj is real and yj is
imaginary for all vj ∈ V .

In summary (G, q∗) is equal to (G, q) if and only if q is real, or we have
q(vj) = (xj, iyj) where xj, yj ∈ R for all vj ∈ V , or we have q(vj) = (ixj, yj)
where xj, yj ∈ R for all vj ∈ V . We will refer to the latter two such realisa-
tions as Minkowski realisations.4 It follows that the number of realisations in
S which are neither real nor Minkowski must be even. As noted above, the
number of real realisations is also even. Thus it is the number of Minkowski
realisations which can be odd.

Although the answer to Thurston’s question is negative, it would still
be of interest to find special families of graphs G for which r(G, p) = c(G)
for some generic real realisation (G, p). For example Theorem 7.4 and [17,
Theorem 8.2] show that the family ofM-connected graphs have this property,
and indeed show that r(G, p) = c(G) = 2b(G) for all generic real realisations
when G is M-connected. Theorems 7.1 and 7.3 show that the family QS
also has this property.

Acknowledgement We would like to thank Shaun Bullett, Peter Cameron,
and Bob Connelly for helpful conversations, and the Fields Institute for sup-
port during its 2011 thematic programme on Discrete Geometry and Appli-
cations.

4We can associate such realisations q with realisations q̃(vj) = (xj , yj) in 2-dimensional
Minkowski space where distance is given by the Minkowski norm d(x, y) = | − x2 + y2|.
Results on generic global rigidity in d-dimensional Minkowski and other Pseudo-Euclidean
spaces are given in [13].
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A Proofs of Lemmas 3.1, 3.2, 3.3 and 3.4

Proof of Lemma 3.1 We first show that (G, p) is congruent to a framework
(G, q) in canonical position. As a first step, we define (G, q̃) by putting
q̃(vi) = p(vi) − p(v1) for all vi ∈ V . Then (G, q̃) is congruent to (G, p) and
q̃(v1) = (0, 0). Since d(p(v2)− p(v1)) 6= 0, there exists a unique b2 ∈ C \ {0}
such that d(p(v2)− p(v1)) = b22 and Arg b2 ∈ (0, π]. Let q̃(v2) = (a, b). Then
a2 + b2 = d(q̃(v2) − q̃(v1)) = d(p(v2) − p(v1)) = b22. Put z1 = b/b2 and
z2 = −a/b2. Then z21 + z22 = 1 and we may define a realisation (G, q∗) which
is congruent to (G, p) and satisfies q∗(v1) = q̃(v1) = (0, 0) and q∗(v2) = (0, b2)

by putting q∗(vi) =

(
z1 z2
−z2 z1

)
q̃(vi) for all vi ∈ V . Let q∗(v3) = (a3, b3).

If a3 = 0 or Arg a3 ∈ (0, π], we put q = q∗. Otherwise Arg a3 ∈ (−π, 0] and

we put q(vi) =

(
1 0
0 −1

)
q∗(vi) for all vi ∈ V .

It remains to show that (G, q) is unique. We have already seen that b2 is
uniquely determined by p. Choose d1, d2 ∈ C such that d(p(v1)− p(v3)) = d1
and d(p(v2) − p(v3)) = d2. Since (G, p) and (G, q) are congruent, we have
a23 + b23 = d1 and a23 + (b3 − b2)2 = d2. These equations imply that b3 and a23
are uniquely determined by p. Since we also have a3 = 0 or Arg a3 ∈ (0, π],
q(v3) = (a3, b3) is uniquely determined by p. By applying a similar argument
to vi for all 4 ≤ i ≤ n, we have q(vi) = (±ai, bi) for some fixed ai, bi ∈ C
which are uniquely determined by p. Furthermore, the facts that (G, q) is
congruent to (G, p) and d(a3−ai, b3−bi) 6= d(a3+ai, b3−bi) whenever ai 6= 0,
imply that q(vi) is also uniquely determined by p. Hence (G, q) is unique.

Parts (a) and (b) of the lemma follow by noting that (G, p) is collinear if
and only if q(vi) = (0, bi) for all vi ∈ V \{v1, v2}. Hence we can choose v3 = vi
with q(v3) = (a3, b3) and a3 6= 0 if and only if (G, p) is not collinear. The
assertions now follow since we have two choices for Arg b2, and an additional
two choices for Arg a3 when a3 6= 0. •

Proof of Lemma 3.2
(a) Relabelling if necessary, we may suppose that the first m columns of
df |p are linearly independent. Let p = (p1, p2, . . . , pn). Define h : Cm →
Cm by h(x1, x2, . . . , xm) = f(x1, x2, . . . , xm, pm+1, . . . , pn). and let p′ =
(p1, p2, . . . , pm). Then h(p′) = f(p) and rank dh|p′ = m.

Let h(p′) = (β1, β2, . . . , βm). Suppose that g(β1, β2, . . . , βm) = 0 for some
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polynomial g with integer coefficients. Then g(f1(p), f2(p), . . . , fm(p)) = 0.
Since p is generic, we have g(h(x)) = 0 for all x ∈ Cm. By the inverse
function theorem h maps a sufficiently small open neighbourhood U of p′

bijectively onto h(U). Thus, for each y ∈ h(U), there exists x ∈ U such that
h(x) = y. This implies that g(y) = g(h(x)) = 0 for each y ∈ h(U). Since g is
a polynomial map and h(U) is an open subset of Cm, we have g ≡ 0. Hence
h(p′) = f(p) is generic.

(b) Since fi is a polynomial with rational coefficients, we have fi(p) ∈ Q(p)
for all 1 ≤ i ≤ m. Thus Q(f(p)) ⊆ Q(p). Since td[Q(f(p)) : Q] = n, we have
td[Q(p) : Q] = n. Thus p is generic, Q(f(p)) ⊆ Q(p) and td[Q(f(p)) : Q] =
n = td[Q(p) : Q]. Suppose Q(f(p)) 6= Q(p) and choose γ ∈ Q(p)−Q(f(p)).
Then γ is not algebraic over Q(f(p)) so td[Q(γ, f(p)) : Q] = n + 1. This
contradicts the facts that Q(γ, f(p)) ⊆ Q(p) and td[Q(p) : Q] = n. Hence
Q(p) = Q(f(p)).

(c) Reordering the components of f if necessary, we may suppose that the
first n rows of df |p are linearly independent. Let g : Cn → Cn by g(p) =
(f1(p), f2(p), . . . , fn(p)). Then rank dg|p = n. Since p is generic, we can use
(a) to deduce that g(p) is a generic point in Cn. We can now use (b) to de-
duce that Q(p) = Q(g(p)) = Q(f(p)). It also implies that g−1(g(p)) is a zero-
dimensional algebraic variety and hence is finite. Since W (p) ⊆ g−1(g(p)),
W (p) is also finite. The fact that |W (p)| = |W (q)| for all generic q ∈ Cn now
follows from the fact that C is algebraically closed. •

Proof of Lemma 3.3 Let I be the ideal ofK(D)[X] generated by {fi(X,D) :
1 ≤ i ≤ m}. For each d ∈ Ct with td[K(d) : K] = t let Id be the ideal of
K(d)[X] generated by {fi(X, d) : 1 ≤ i ≤ m}. There is an isomorphism
from K(D)(X) to K(d)(X) which maps I onto Id. Furthermore, Hilbert’s
Weak Nullstellensatz tells us that Vd 6= ∅ if and only if Id contains a non-zero
element of K(d). We may use the above isomorphism to deduce that Vd 6= ∅
if and only if I contains a non-zero element of K(D). The lemma now follows
since the latter condition is independent of the choice of d. •

Proof of Lemma 3.4 The assertion that d(p(vi) − p(vj)) 6= 0 for all 1 ≤
i < j ≤ n follows from the hypothesis that (G, p) is quasi-generic. Lemma
3.1 now allows us to assume, without loss of generality, that p(v1) = (0, 0)
and p(v2) = (0, b2) for some b2 ∈ C.

Let H be a spanning subgraph of G whose edge set corresponds to a max-
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imal set of linearly independent rows of R(G, p). Let fH : C2n−3 → C|E(H)|

be defined by putting fH(z) equal to dH(0, 0, 0, z) for all z ∈ C2n−3. Let p̂
be the projection of p onto its last 2n − 3 coordinates. Then rank dfH |p̂ =
rank R(H, p) = |E(H)| so Lemma 3.2(a) implies that fH(p̂) = dH(p) is
generic.

Suppose G is rigid. Then |E(H)| = 2n − 3, and Lemma 3.2(b) gives
Q(p) = Q(p̂) = Q(fH(p̂)) = Q(dH(p)). Since Q(dH(p)) ⊆ Q(dG(p) ⊆ Q(p),
we have Q(p) = Q(dG(p)) and

td[Q(dG(p)) : Q] = td[Q(dH(p)) : Q] = |E(H)| = rank R(G, p).

It remains to consider the case when G is not rigid. Let G1, G2, . . . , Gt be
the maximal rigid subgraphs of G. By the previous paragraph, td[Q(dGi

(p)) :
Q] = 2|V (Gi)|−3 for all 1 ≤ i ≤ t, and by a standard result on 2-dimensional
rigidity, rank R(G, p) =

∑t
i=1 2|V (Gi)| − 3. Hence

td[Q(dG(p)) : Q] ≤
t∑

i=1

td[Q(dGi
(p)) : Q] =

t∑
i=1

(2|V (Gi)|−3) = rank R(G, p).

On the other hand, we may use the fact that dH(p) is generic to deduce
that td[Q(dG(p)) : Q] ≥ td[Q(dH(p)) : Q] = |E(H)| = rank R(G, p). Thus
td[Q(dG(p)) : Q] = rank R(G, p). •
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