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Abstract 

The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the 

resource. But which traits of consumer and resource have to be measured to predict link strengths, and how 

many? A novel theoretical framework for systematically determining trophic traits from empirical data was 

recently proposed. Here we demonstrate this approach for a group of 14 consumer fish species (Labeobarbus 

spp., Cyprinidae) and 11 aquatic resource categories coexisting in Lake Tana in northern Ethiopia, analysing 

large sets of phenotypic consumer and resource traits with known roles in feeding ecology. We systematically 

reconstruct structure and geometry of trophic niche space, in which link strengths are predicted by the distances 

between consumers and resources. These distances are then represented graphically resulting in an image of 

trophic niche space and its occupancy. We find trophic niche to be multi-dimensional. Among the models we 

analysed, one with two resource and two consumer traits had the highest predictive power for link strength. 

Results further suggest that trophic niche space has a pseudo-Euclidean geometry, meaning that link strength 

decays with distance in some dimensions of trophic niche space, while it increases with distance in other 

dimensions. Our analysis not only informs theory and modelling, but may also be helpful for predicting trophic 

link strengths for pairs of other, similar species. 
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Introduction 

The understanding of food-web structure and trophic interactions is the subject of continuous 

attention (Bersier 2007), not only out of scientific interest, but also because it could be 

instrumental in the effective management of exploited ecosystems (Dejen et al. 2006; Layman 

et al. 2005; Sibbing et al. 1994).  

The question what determines the strength of trophic interactions between species has 

been addressed at several levels of abstraction by empiricists and theorists, but the 

fundamental underlying intuition is similar. The trophic link strength ija  between a resource i 

http://dx.doi.org/10.1007/s12080-014-0229-5
mailto:Leo.Nagelkerke@wur.nl
mailto:axel.rossberg@cefas.co.uk


 2 

and a consumer j is typically modelled as a function of quantitative traits of resource and 

consumer (Eklöf et al. 2013; Emmerson et al. 2005; Klecka and Boukal 2013; Link 2004; 

Petchey et al. 2008; Pouilly et al. 2003; Rohr et al. 2010; Rossberg et al. 2006; Rossberg et al. 

2008; Rossberg et al. 2010b; Rossberg et al. 2010a; Russo et al. 2008; Sibbing and 

Nagelkerke 2001; Stouffer et al. 2011; Wainwright and Richard 1995; Williams and Purves 

2011; Yoshida 2003). That is, one assumes existence of minimal quantitative 

characterizations of species in terms of vectors it , 
jt  of real numbers (or subsets of real 

numbers), called the trophic traits of species, such that ),( jiij aa tt for any resource-

consumer pair ),( ji  considered in a model. The function ),( tsa , called the link-strength 

function, is understood to be continuous in its two arguments s and t  (Rossberg 2013). 

Because the trophic traits entering the link strength function effectively determine the trophic 

niche of a species, the subspace of the full traits space that is spanned by trophic traits can be 

identified with the trophic niche space. Defining as vulnerability traits those trophic traits that 

determine the role of a species a resource, and as foraging traits those that determine the role 

of species as a consumer, one can alternatively interpret trophic niche space as the space 

spanned, e.g., by the foraging traits alone (Cohen 1977; Rossberg et al. 2010b). We follow 

this convention here. 

An important caveat to be kept in mind in this framework is that the notion of trophic 

link strength as a quantity determined exclusively by the identities of consumer and resource 

species is a theoretical idealization (Arditi et al. 2005; Rossberg et al. 2010b). Trophic link 

strengths can be defined through their roles as parameters in population-dynamical models, 

typically entering such models via formulae for functional responses. The unavoidable 

simplification of real population dynamics by these formulae directly translates to an inherent 

inaccuracy of the concept of trophic link strength itself. This, in turn, fundamentally limits the 

accuracy at which empirical trophic link strengths can be predicted from trophic traits. 

Parsimony then dictates use of rather simple functional forms for link-strength functions, 

among which none should be expected to be the single “correct” choice. These considerations 

support the wide variety of approaches to the problem that can be found in the literature. The 

question is not so much which particular choices for link-strength function and trophic traits 

are correct, but rather in which context they can be empirically supported. 

It is widely agreed that one of the most important phenotypic traits determining 

foraging capacity and vulnerability to predation is body size (Berlow et al. 2009; Emmerson 

et al. 2005; Layman et al. 2005; Stouffer et al. 2011; Vucic-Pestic et al. 2010). In addition, a 

broad body of natural-history studies suggests that other traits besides size are also relevant 

for trophic interactions (Barnett et al. 2006; Bhat 2005; Carlson and Wainwright 2010; 

Naisbit et al. 2012; Rohr et al. 2010; Russo et al. 2008; Schmitz and Price 2011; Spooner and 

Vaughn 2008). Such traits are typically related to structures involved in feeding, and were 

mostly studied through correlative approaches (Bhat 2005; Pouilly et al. 2003; Russo et al. 

2008), while others focused on the functionality of traits in relation to the mechanics of 

feeding (Dejen et al. 2006; Link 2004; Sibbing and Nagelkerke 2001; Wainwright and 

Richard 1995). 

In food-web studies, in turn, several models have been developed that reconstruct 

empirical food-web structure based on hypothetical abstract traits (or “latent traits”) of 

consumers and resources (Rohr et al. 2010; Stouffer et al. 2011; Williams and Purves 2011), 

without explicitly linking these to specific phenotypic traits of the species involved. However, 

this approach faces the question to what extent these abstract traits represent real ecological 

traits of species, rather than just being fitting parameters of food-web models, contingent on 

the particular datasets analysed. Recently Rossberg et al. (2010b) proposed a theoretical 

framework that allows for a systematic deduction of the trophically relevant combinations of 
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phenotypic traits of consumers and resources from empirical data, and of their relationships to 

abstract trophic traits. The framework proposes to use generic quadratic polynomials in 

consumer and resource trait values to model logarithmic link strengths — an approach that 

was now demonstrated for laboratory data by Klecka and Boukal (2013) —and then a 

mathematical analysis of these polynomials to extract the relevant trait combinations: a step 

performed for the first time here. By expressing trophic traits predictive of food-web structure 

in terms of measured phenotypic traits, the biological plausibility of abstract trophic traits can 

be assessed and their ontological status as proper ecological traits of species asserted. 

 Besides the issues of which and how many phenotypic traits predict trophic link 

strength, there is another question, central to food-web studies, concerning the dimensionality 

of trophic niche space (Cohen 1977; Eklöf et al. 2013). Trophic niche space would be one-

dimensional if a single “niche value” could be computed that would allow good predictions of 

whether a given consumer feeds on a resource or not. This value could be a single phenotypic 

trait, such as body size, but also a combination of several phenotypic traits. If more than one 

such number is needed, trophic niche space can be considered multi-dimensional. The number 

of independent numerical values determining a species’ role as consumer or as resource (at a 

given level of accuracy) can be understood as the number of dimensions of trophic niche 

space. Trophic niche-space dimensionality has implications for food-web structure and the 

distribution of trophic link strengths (Allesina et al. 2008; Cohen 1977; Rossberg et al. 2010a; 

Rossberg et al. 2011). Good fits to food-web structure have been demonstrated with models 

that work with one, or a few dimensions (Rohr et al. 2010), but also for models invoking 

high-dimensional trophic niche spaces (Rossberg et al. 2006; Rossberg et al. 2008). 

Considerable ambiguities persist regarding the role of body size and other phenotypic traits in 

determining food-web structure (Naisbit et al. 2012), and the discussion about trophic niche 

space dimensionality continues. The present study is a contribution to unravelling these issues. 

 Our main objective here is to reconstruct trophic niche space by deriving a set of 

quantitative abstract trophic traits, defined in terms of phenotypic traits, that locate each 

consumer and resource category in trophic niche space in such a way that the relative 

positions of consumers and resources predict their link strengths. In the course of this analysis, 

we will address questions regarding the number and nature of the phenotypic traits needed, 

and the dimensionality and geometry of trophic niche space. 

Our study system is the endemic group of cyprinid fishes (Labeobarbus species) from 

Lake Tana in northern Ethiopia (Nagelkerke et al. 1994; Nagelkerke and Sibbing 2000). We 

test to what extent the link strengths of 14 of these fish species with the 11 most abundant 

aquatic food resources (species and food resources in Online Resource 1, Table S1) can be 

explained based on their phenotypic traits. The Labeobarbus group is well-suited for this 

study since their feeding-related morphological traits and their diets were extensively studied. 

Moreover, the morphological differences between these species are likely to be the direct 

result of adaptive radiation, because these fishes most probably originated in the lake from a 

common ancestor in less than 17,000 years (de Graaf et al. 2010). The selection of phenotypic 

traits of the fishes and their resources is based on their known relationships to feeding ecology, 

thereby enabling a direct mechanistic interpretation of the role of these traits in trophic 

interactions (Sibbing and Nagelkerke 2001; Wainwright and Richard 1995). 

 

The model 

The framework developed by Rossberg et al. (2010b) was analysed further and reformulated 

by Rossberg (2013), who proposed the following link-strength function relating the strength 

aij of the trophic link between a resource (indexed by i) and a consumer (j) to their trophic 

traits: 
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The scale constant 
0a  has dimensions of link strength, depending on the particular measure 

for link strength used. The baseline vulnerably 
*

iV  and the D abstract vulnerability traits )(k
iv  

depend only on phenotypic traits of the resource; and the baseline foraging strength 
*

jF , and 

the D abstract foraging traits 
)(k

jf  depend only on phenotypic traits of the consumer. The 

baseline vulnerability and foraging strength (
*

iV  and 
*

jF ) represent overall fitness of resource 

and consumer with respect to trophic interactions, independent of the interaction partner 

(Rossberg et al. 2010b; Rossberg 2013). The number D is interpreted as the dimensionality of 

trophic niche space. The variables )(k
iv and 

)(k
jf , which can be interpreted as coordinates 

specifying the positions of resources and consumers in trophic niche space, are collectively 

referred to as proper trophic traits. The coefficients k  have values of either +1 or −1. They 

are, next to the dimensionality D, free parameters of the link-strength function and need to be 

determined empirically. The vector  D ,...,1  consisting of D coefficients of values +1 or 

−1, is called the signature of the model. It plays a key role in its geometric interpretation, as 

we explain in the Discussion. We call our representation of link strengths in terms of trophic 

traits a Trophic Trait Model (TTM). 

By convention, the D dimensions of niche space are indexed in order of decreasing 

variability of abstract vulnerability and foraging traits (specifically, such that var 
)(k

iv + var 

)(k
jf  decreases with increasing k, based on sample variances over all consumers and resources 

considered). In principle, the number of dimensions D is large, but if variability of traits 

decays fast enough with increasing k, terms corresponding to higher dimensions k in Eq. (1) 

can be approximated by constants and absorbed in the scale constant 0a . The effective 

dimensionality D is therefore limited by the desired precision, the precision at which the 

general form of Eq. (1) holds, and the precision of the available data used to fit the model. 

We devised a practical method for fitting the model given by Eq. (1) to empirical data. 

Our method follows and extends the method proposed by Rossberg et al. (2010b). It assumes 

additive linear relationships between abstract trophic traits and phenotypic traits for simplicity, 

but suitable non-linear transformations (e.g. logarithmic or logit transformations) of the 

phenotypic traits can be performed prior to its application. The method yields the values of D 

and 
k (k = 1,...,D) and results in mapping functions from phenotypic traits of resources i and 

consumers j onto the abstract traits *

iV , 
*

jF , )(k

iv , and 
)(k

jf  (k = 1,...,D). These are determined 

such that ija , given by Eq. (1), approximates the measured link strengths (details of the fitting 

algorithm are described in Online Resource 2). 

By relating the abstract trophic traits to phenotypic traits, as we do here, the number of 

free model parameters does not increase with the number of species, as it otherwise would 

(Rohr et al. 2010). As a result, the number of parameters becomes much smaller and the 

fitting procedure more robust to over-fitting. In addition, results are more easily checked for 

plausibility, and the fitted model can be applied to species for which their relevant phenotypic 

traits, but not their abstract trophic traits, are known, thus admitting a prediction of their 

trophic links.  

Ideally, a large number of different body plans and behavioural repertoires of consumers 

and resources would be covered by a single TTM, because this would allow reconstructing 

complete food webs from the phenotypic traits of their member species. We purposely restrict 



 5 

ourselves here to the simpler case where all consumers are closely related, while still 

considering widely varying resources. Since the basic morphological pattern of all consumers 

analysed is identical, this enhances the functional interpretation of morphological differences 

between species. 

Material and methods 

Consumer and resource traits 

We used a matrix of 19 morphological traits measured for the 14 Labeobarbus species in a 

previous study (Sibbing and Nagelkerke 2001). These traits relate to all aspects of feeding, 

from detection to digestion and were selected a priori based on their supposed role in the 

whole foraging and feeding process as currently understood for cyprinid fishes (Sibbing 

1991b; Sibbing 1991a; Sibbing and Nagelkerke 2001). The feeding process can be subdivided 

into search and detection, approach, intake, size selection, taste selection, transport, 

pharyngeal mastication and digestion. Most of these activities (except for taste selection and 

mastication) were represented by at least one phenotypic trait. Measurements were performed 

on more than 1,300 fresh, or freshly frozen and thawed specimens caught in 1992 – 1995. 

Traits were either of dimension length (and measured in mm) or angular. Measures of 

dimension length were corrected for overall size by using ratios, or expressing them in units 

of body length, specifically fork length, the length from snout tip to the fork of the tail fin. 

Fork length itself was also included in the matrix as a measure of overall fish size. Since all 

measured specimens attained their adult shape (all were > 15 cm in length) we did not expect 

complications resulting from allometric growth and ratios were considered as reliable shape 

descriptors (Sibbing and Nagelkerke 2001). We used mean values per species for all 

consumer traits and log-transformed them to accommodate variations in the scaling of 

morphological traits with fork length (Albrecht et al. 1993). 

The 11 food resource categories were characterized using 11 traits, which were selected a 

priori based on the supposed challenges they present for fishes feeding on them (Sibbing and 

Nagelkerke 2001). Traits refer to size, velocity, shape, habitat, digestibility, and mechanical 

properties of the resources. Resource traits were quantified along ordinal scales with 2 to 5 

values and were therefore directly comparable, independent of the actual measuring units 

(traits of consumers and resources in Online resource 1, tables S2 and S3, and Figure S1). 

Trophic link strengths 

For simplicity, we assume linear functional responses, and so define link strength as the 

biomass flux from resource to consumer relative to resource biomass abundance and 

consumer numerical abundance. This would ideally be calculated from the resource biomass, 

the consumer’s total intake rate and its diet (de Ruiter et al. 1995; Fath et al. 2007). Total 

intake rates per individual are expected to be related to body size through an allometic scaling 

law (i.e. a power law). In the TTM, Eq. (1), this allometric scaling can be represented by a 

linear dependence of the baseline foraging traits 
*

jF  on logarithmic fork length. This means 

that there will be variation in 
*

jF  due to size differences between species: the last term of the 

equation, however, will not be affected and the results for dimensionality D and the proper 

trophic traits )(k

iv and 
)(k

jf remain the same. Since absolute intake rates were not available for 

our study system, we disregarded this allometric variation in 
*

jF , taking instead volumetric 

diet proportions as representative for intake rates. Sufficiently precise direct measurements of 

resource biomasses were not available either. Instead, we used the mean proportions by 

volume that resource categories contributed to diets − which were recorded in more than 
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4,700 specimens in a previous study (Sibbing and Nagelkerke 2001) (Online resource 1, Table 

S4) − as estimates of “abundance”. Just as for the absolute intake rates, inaccuracies in 

abundance estimates would not much affect results for niche-space dimensionality D and 

proper trophic traits )(k

iv and 
)(k

jf , because these could be compensated by adjusting in Eq. (1) 

the baseline vulnerability traits *
iV  of resources alone. Thus, we effectively quantified “link 

strength” here by the proportion by volume that a resource contributes to the diet of a 

consumer divided by the mean of this proportion over all consumers. With link strength so 

defined, no resource item can have low link strength with all consumers, which is a 

reasonable assumption given that resource categories were selected a priori based on their 

relevance for the studied set of consumers. The viability of this simplified quantification of 

link strength is investigated a posteriori through a cross-validation of the TTM and an 

analysis of how the predictability of link strengths increases with information on traits. If our 

estimates of link strengths were too inaccurate to be meaningful, increasing information on 

traits would not help predicting them. 

Fitting the trophic trait model (TTM) 

Our procedure for estimating the TTM from field data has three main aspects: (i) Estimation 

of model parameters based on the observed diets, a given set of empirical trait variables, and a 

prescribed number D of dimensions of trophic niche space. This requires finding the signature 

 D ,...,1  and representations of the abstract trophic traits in Eq. (1) in terms of additive 

linear functions of phenotypic trait variables, which together reproduce observed link 

strengths as accurately as possible. In principle, this could be done using any model-fitting 

procedure. However, standard methods using iterative optimization algorithms tend to be 

rather slow and sensitive to initial conditions. Another method was therefore used, which we 

describe in detail in Online resource 2. It exploits the fact that the right-hand side of Eq. (1) is 

formally similar to a multivariate normal distribution and can, in principle, be interpreted as 

the probability per unit time for a trophic interaction to occur conditional to both consumer 

and resource being present. The method is fast and, as we verified using synthetic input data 

(now shown here), robust to measurement errors.  

(ii) Cross-validation of the model to assess its predictive power. Cross-validation asks 

if a model can make predictions for cases that were not taken into account when fitting the 

model. This was here done by verifying how well the link strength of any conceivable 

consumer-resource pair could be predicted from the TTM when all information on this 

particular consumer and resource was ignored. Predictive power was quantified by the 

correlation between the so predicted and the measured link strengths. Since link strengths are 

less accurate for less abundant resources, diet categories were weighted by the squares of their 

estimated abundances when computing these correlations. This corresponds to 1/variance 

weighting, which is optimal in the maximum likelihood sense (Piegorsch and Bailer 2005). 

(iii) Choice of a set of empirical trait variables appropriate for achieving high 

predictive power. This was done by an exhaustive search through all combinations of up to 

two resource traits and two consumer traits, retaining the combinations that scored best in 

cross-validation. Larger sets of traits were not considered to avoid a combinatorial explosion 

of the cases considered, which can lead to unnoticed overfitting (Reunanen 2003) and because 

our goal here is not to find optimal numbers of traits or niche-space dimensions, but only to 

determine lower bounds. Variable selection requires repeated cross-validation, and cross-

validation repeated parameter estimation. This makes this procedure, which we coded in R (R 

Development Core Team 2010), computation intensive. It was carried out separately for each 

number of dimensions D ranging from 1 to 4. More than four dimensions were not tested, 
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because only up to four different phenotypic trait variables were considered. Details on fitting 

the TTM are provided in Online resource 2. 

Evaluating relevance of coordinates 

Since the question of the dimensionality of trophic niche space is of high theoretical 

importance, a specific test was carried out to determine the relevance of the higher niche-

space dimensions. Specifically, the statistical significance of the information contributed by 

higher dimensions was tested against the null-hypothesis that, for a fixed cut-off-dimension 

Dc, a random assignment of trophic traits )(k

iv  and 
)(k

jf for k ≥Dc could have led to an equally 

good fit to the data as the assignment determined by our fitting procedure. To test this 

hypothesis, the values of )(k

iv  and 
)(k

jf were randomly permuted over all consumers and 

resources, respectively. We did this independently for each k ≥Dc. Using 10,000 Monte-Carlo 

iterations, we computed 2.5% and 97.5% quantiles of the correlation between observed and 

predicted link strengths, weighted by resource abundance. This analysis was carried out for all 

TTMs obtained with D = 1−4. Results obtained for the TTM with D = 4 are shown here, the 

corresponding results for lower D can be found in online resource 3. 

Predicted diet proportions 

Based on the predicted link strength and the assumed resource abundances, we computed the 

expected consumer diet fractions contributed by each resource. The relationship between 

observed and predicted diet fractions was evaluated using reduced major axis (RMA) 

regression (Quinn and Keough 2002), because neither of the variables could be considered as 

‘independent’. 

Results 

Optimal combinations of phenotypic trait variables and the predictive power they achieved 

are listed in Table 1. We note that in Table 1 the correlation between prediction and 

observation achieved in cross-validation is always higher than the correlation found when the 

TTM is fitted to the full dataset, a phenomenon that indicates potential overfitting by variable 

selection as discussed by Reunanen (2003). However, the strength of the effect declines with 

increasing dimensionality D, and for D≥2  is less than a few percent. The correlations based 

on fits to the full dataset are the more reliable measures of predictive power ultimately 

achieved, because they were not used for variable selection. Containing this effect was one 

reason for allowing only combinations of up to two resource traits and two consumer traits. 

Table 1. Correlations between predicted and realized link strengths in models with increasing niche-
space dimensionality. The traits of both the resources and the consumers used in the selected models 
are listed as well as the correlations obtained in leave-one-out cross-validation and with the selected 
model fitted to the entire dataset. 

dimensions traits of resource 
used 

traits of consumer 
used 

correlation in 
cross-validation 

correlation of 
selected model 

1 diameter; toughness fork length;  
eye diameter 

0.57 0.14 

2 pelagic;  
macro-reduction 

barbel length 0.69 0.66 

3 pelagic;  
elongate 

barbel length 0.66 0.65 

4 pelagic;  
macro-reduction 

fork length;  
barbel length 

0.74 0.72 
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The best predictive power was found for a trophic niche space with D = 4 dimensions, the 

highest dimensionality considered (Table 1). 

We will, in the following, concentrate on the case D = 4. The ecological validity of 

selected variables and model fit in this case is supported by the observation that the 

explanatory variables selected for D = 4 occur also at lower dimensionalities (Table 1). 

Moreover, the resulting embedding of resources and consumers in trophic niche space has a 

clear ecological interpretation. The resource traits selected for D = 4 are ‘pelagic’, which 

characterizes the main habitat, and ‘need for macro-reduction’, which is a categorical trait 

indicating whether the resource needs to be masticated before swallowing. The selected 

consumer traits are body size, measured as ‘fork length’, and ‘barbel length’, a trait related to 

the detection of especially benthic resources (Sibbing and Nagelkerke 2001).  

Table 2 specifies the mapping of these phenotypic traits into the four-dimensional trophic 

niche space by the TTM, the resulting niche-space coordinates of consumers and resources, 

 
Figure 1. Projection of dimensions 1 and 2 (top) and 1 and 3 (bottom) of the niche space of 14 
Labeobarbus species (consumers: diamonds) and 11 resource categories (squares). The phenotypic 
traits which explain the ordination for consumers (solid arrows) and resources (dashed arrows) are 
also indicated. To outline the trophic niche of one consumer species (L. acutirostris, Ac) a circle (top) 
and a hyperbola (bottom) corresponding to a pseudo-Euclidean distance of 1 have been drawn around 
this species. Abbreviations as in Online resource 1, Table S1. 
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and weight (var 
)(k

iv + var 
)(k

jf ) and signature ( k ) of each dimension k. The σ-values for the 

leading two dimensions are positive, implying, by Eq. (1), that link strength decays with 

increasing distance between resource and consumer traits. For dimensions 3 and 4, we find 

negative σ, meaning that this situation is reversed. Within the leading two dimensions (Fig. 

1a), the effects of the consumer trait ‘barbel length’ and the resource trait ‘pelagic’ are 

collinear, consistent with the understanding that long barbels are of use for detecting 

resources in or at the sediment, but less important for detecting resources in the water column. 

Consistent with ecological intuition is also the result that objects requiring much macro-

reduction are larger and hence tend to be eaten by larger-bodied consumers (fork length). The 

TTM “automatically” identifies these relationships. 

 

The relevance of subsequent niche-space coordinates in the four-dimensional trophic 

niche space is reported in Table 3. When the values of all coordinates are assigned at random 

to consumers and resources (cut-off dimension Dc  = 1), the correlation coefficients between 

measured and predicted link strengths are distributed symmetrically around zero, as expected. 

With increasing cut-off dimension Dc, correlations increase. When only the values of the 

fourth coordinate are assigned at random (Dc  = 4), the confidence interval barely excludes the 

value obtained without randomization, indicating that the information contained in the fourth 

coordinate only marginally contributes to improving predictions. This observation supports 

our decision not to consider niche-space dimensionality beyond D = 4. 

As a simple model application, we computed the diets predicted by the model. Comparing 

these with the observed diets (Fig. 2), we found a high and highly significant correlation 

(R
2
=0.72, p<0.0001, n = 154). 

 
Figure 2. Relationship between observed diet and predicted diets. The solid line is a reduced major 
axis (RMA) regression line, with the 95% the confidence band indicated by the stippled lines. The inset 
shows the same data on a double log-scale. 
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Table 2. Description of the four dimensions of niche space, including var 
)(k

iv + var 
)(k

jf  (as a 

measure of the weight of dimension k), the signature σ of the model, and the projections of all 
consumers and resources into trophic niche space. 

dimension   1 2 3 4 

var 
)(k

iv + var 
)(k

jf  
 

0.953 0.348 0.279 0.218 

σ  +1 +1 -1 -1 

consumers phenotypic traits         

 fork length 2.154 -3.625 -2.006 2.625 

 barbel -6.063 -1.059 2.423 1.397 

 offset -11.606   3.397 6.191 -1.557 

 Projections         

 L. acutirostris 0.691 0.192 -0.256 -0.215 

 L. brevicephalus -0.299 0.493 0.276 -0.357 

 L. crassibarbis -1.292 -0.034 0.571 0.148 

 L. dainellii 0.075 -0.265 -0.109 0.200 

 L. gorgorensis -0.314 -0.954 -0.132 0.774 

 L. gorguari 0.165 -0.016 -0.079 -0.003 

 L. longissimus 1.596 -0.369 -0.823 0.138 

 L. macrophtalmus 0.301 0.676 0.058 -0.556 

 L. megastoma 0.766 -0.106 -0.375 0.011 

 L. nedgia -0.863 -0.126 0.352 0.179 

 L. platydorsus -0.460 0.029 0.215 0.021 

 L. surkis -0.049 -0.057 0.006 0.049 

 L. truttiformis 0.378 0.547 -0.013 -0.462 

 L. tsanensis -0.695 -0.010 0.309 0.073 

 

resources phenotypic traits         

 pelagic 1.366 0.496 0.726 0.608 

 macro-reduction 0.442 -0.173 0.302 -0.053 

 offset -1.777 0.175 -1.109 -0.178 

 projections         

 phytoplankton  -0.411 0.670 -0.382 0.430 

 sessile algae -1.336 0.001 -0.807 -0.231 

 macrophytes -0.011 -0.519 0.097 -0.390 

 seeds -0.011 -0.519 0.097 -0.390 

 detritus -0.894 -0.172 -0.506 -0.284 

 zooplankton -0.411 0.670 -0.382 0.430 

 macro-crustaceans -0.452 -0.346 -0.204 -0.337 

 benthic 
invertebrates 

-1.336 0.001 -0.807 -0.231 

 macro-insects -0.452 -0.346 -0.204 -0.337 

 mollusks -0.452 -0.346 -0.204 -0.337 

  Fish 0.914 0.150 0.522 0.271 
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Discussion 

In this study we explored to what extent link strengths between consumers and resources can 

be explained by their phenotypic traits through a Trophic Trait Model (TTM). The results 

provide information on structure and dimensionality of trophic niche space. This study is 

solely based on previously published data (Sibbing and Nagelkerke 2001), which suggests 

that the kind of analysis done here is applicable to a wealth of other datasets that were 

assembled for different purposes. The input for the theoretical model consisted of mean 

values of 19 phenotypic traits for each consumer species, 11 physical traits for each resource, 

and a matrix of link strengths based on the presence of the resources in the guts of the 

consumers. The values for resource traits were semi-quantitative estimates, since no direct 

measurements were taken. This is likely to have limited the precision of our analysis and, as a 

result, the resolution of higher niche-space dimensions. Yet, the analysis identified at least 

two independent trophic traits of resources and two independent trophic traits of consumers 

that together determine the strengths of trophic links. These two trophic traits of consumers 

and resources collapse onto a pair of two-dimensional hyper-planes in the four geometric 

dimensions of trophic niche space. This becomes apparent when projecting niche space onto 

the plane spanned by dimensions 1 and 3 (Fig. 1b). Then, consumers and resources are 

concentrated along narrow bands (that is, we are seeing both planes at a flat angle). The 

question if dimensions 3 and 4 should be included in a measure of the “dimensionality of 

trophic niche space” therefore depends on the specific context. In the geometrical sense of the 

model given by Eq. (1) they do, but in a narrower topological sense they may not, because 

only two-dimensional hyper-planes of trophic niche space are occupied. However, with larger, 

more precise datasets that admit better model fits and more phenotypic/physical traits to be 

included, such a complete collapse onto two dimensions would be unlikely to occur. 

The concrete identification of the phenotypic traits responsible for foraging and 

vulnerability to predation adds significant biological meaning to the concept of abstract, or 

latent, trophic traits (Rohr et al. 2010; Rossberg et al. 2010b; Yoshida 2003), because these 

traits are now well interpretable in terms of trophic biology. Large barbel length is known to 

enhance performance in the detection of small benthic resource organisms by cyprinid fishes, 

but not in the detection of pelagic resources (Kotrschal et al. 1991). On the other hand, large 

body size of the consumer enhances the capacity of eating large resource organisms, which 

tend to be pelagic (mostly fish) rather than benthic. The restriction of the analysis to 

phenotypic traits of known trophic relevance adds to the value of this approach. Recent 

studies by Eklöf et al. (2013) and Klecka and Boukal (2013) also demonstrated the 

explanatory power of such trophically relevant traits. The TTM makes no sharp association of 

specific explanatory variables with specific dimensions of trophic niche space (Fig. 1). Yet, 

strongly simplifying, one can say that the most important dimension of trophic niche space 

is – for this dataset – resource habitat and the corresponding foraging strategy, while the 

second dimension corresponds to consumer body size and the ability of larger consumers to 

chew larger (and mostly harder) resources. It must be stressed that the question which 

dimensions are “important”, that is, in which direction of trophic niche space consumers and 

resources are spread out broadly in comparison with the trophic niche width, depends on the 

particular set of consumers and resources included in the analysis. The Labeobarbus 

consumer species considered spanned only a factor 2.4 in body size. With a broader variety of 

consumers, the role of body size is likely to become more prominent. Woodward and Hildrew 

(2002), for example, presented a detrended correspondence analysis of the diets of freshwater 

invertebrates in which the effect of body size appears to be similar to that of habitat/behaviour. 

This analysis differentiated consumer species by ontogenetic stage, thus covering large ranges 

in body size. 
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Besides this verification of the plausibility of the TTM on ecological grounds, cross-

validation was used to ensure reproducibility of results. Fitting models with high-dimensional 

niche spaces is known to be difficult (the estimates of niche-space dimensionality by Eklöf et 

al. (2013), for example, suffer from an incorrect application of the Akaike information 

criterion (AIC) to models which include permutations as “parameters” (see appendix C of 

Allesina (2011)). In our work, the high correlation between predicted and measured link 

strengths found in cross-validation of the TTM using a four-dimensional niche space (Table 1, 

Fig. 2) and the observation that all four dimensions significantly contribute to it (Table 3) 

demonstrate that our approach has substantial predictive power, despite (a) the rather coarse 

measure of link strength used, (b) the simple, semi-quantitative classification of resource traits, 

(c) the simple model structure (Eq. 2) and (d) the fast and robust, but perhaps not optimal 

model-fitting algorithm. While improvements with regards to points (a) to (d) can be expected 

to enhance the predictive power of the TTM, the current form of handling these is viable 

already. 

The mechanistic interpretability of the identified trophic traits together with our 

rigorous cross-validation suggest that the picture of trophic niche space we obtained is a 

reasonably good representation of reality. As explained, there are various ways by which this 

“imaging” technique could be improved to yield more accurate representations, but we would 

not expect these to differ from ours beyond recognition. 

Among conceivable applications of the TTM is its use, similar to the model by Link 

(2004), to predict links in (changing) food webs. Specifically, predicted link strengths and the 

coordinates of new resources and consumers in the trophic niche space defined by our D=4 

dimensional TTM can be computed from their phenotypic traits by the following procedure: (i) 

To obtain the abstract foraging traits for Labeobarbus species (and presumably other cyprinid 

fishes), measure their fork length FL and their anterior barbel length ABaL (both in cm). 

ABaL is measured as the maximal natural length of the barbel from its base to its tip when it 

is extended, but not stretched. (ii) Form the row vector (log10(FL), log10(ABaL/FL), 1), and 

multiply this vector from the right with the matrix formed by the block under “Consumers - 

Phenotypic traits” in Table 3. (iii) To obtain vulnerability traits for resource objects, let PE=1 

if they are pelagic and PE=0 otherwise, and estimate the degree of macro-reduction (MR) they 

require by a value in the range 0 to 4 on the scale used by Sibbing and Nagelkerke (Sibbing 

and Nagelkerke 2001). (iv) Form the row vector (PE, MR, 1), and multiply this vector from 

the right with the matrix formed by the block under “Resources - Phenotypic traits” in Table 3. 

Table 3. The correlation coefficients (ρ) between predicted and observed trophic link strengths with 
increasing number of predictive dimensions. Results show that all 4 dimensions of fitted trophic niche 
space contain ecologically relevant information; the fourth dimension, however, only marginally. 

Dc 
dimensions fixed at 
best fitting values 

dimensions 
permuted 
randomly 

correlation coefficients (ρ)  

 
two-sided 95% 
confidence interval 

a
 

actually found 
in 4D model 

b
 

1 - 1, 2, 3, 4 -0.295 - 0.292 0.723 

2 1 2, 3, 4 0.332 - 0.639 0.723 

3 1, 2 3, 4 0.430 - 0.686 0.723 

4 1, 2, 3 4 0.554 - 0.718 0.723 

 
a
 95% quantile under the null hypothesis that only fixed dimensions are relevant 

 
b
 If the value of the actually found correlation falls outside the 95% confidence interval this 

indicates that the extra dimension significantly add information 
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(v) The baseline traits *
iV and  

*
jF  are always 0 for the D=4 model fit. (vi) Predicted link 

strengths are then given by Eq. (1). 

Noteworthy is also that the clustering of consumers with resources found in the TTM 

is largely consistent with the study of Sibbing and Nagelkerke (2001) (Fig. 3). Similar to that 

study, the morphologically more ‘extreme’ species with the highest degree of specialization 

were most consistently associated with their particular resource categories. True piscivores, 

such as L. longissimus, L. acutirostris, and L. megastoma, clustered consistently with fish in 

both studies, while L. nedgia and L. tsanensis consistently clustered with the consumption of 

benthos and detritus. L. gorgorensis and L. surkis are identified as consumers of molluscs and 

plants (Figs 1, 3). The other species have a more generalized morphology or combine trait 

variables that could fit a wider range of resources, which mostly resulted in more diverse diets 

and therefore less clear-cut trophic relationships. 

A geometric interpretation of the TTM arises from reading the sum  



D

k

k

j

k

ik fv
1

2)()(  in 

the exponent of Eq. (1) as the squared distance between the points  )()1( ,..., D

ii vv  and 

 )()1( ,..., D

jj ff  in trophic niche space. When all signs k  are equal to +1 (or all –1), this 

interpretation is obvious, because the Euclidean distance between  )()1( ,..., D

ii vv  and 

 )()1( ,..., D

jj ff  is defined as  



D

k

k

j

k

i fv
1

2)()(
. Except for the trophic baseline traits *

iV  and 

*

jF , Eq. (1) then has the form of a Gaussian interaction kernel, a form that is widely used in 

theoretical ecology to model niches (MacArthur and Levins 1967; May and MacArthur 1972). 

The trophic niche of a consumer can be defined as the (hyper-) sphere, centred in trophic 

niche space at  )()1( ,..., D

ii ff , beyond which trophic link strengths with resources fall below a 

given threshold. In the present case, this is the situation when only the two leading dimensions 

of the TTM are considered. To this extent, the historically assumed geometric picture 

(MacArthur and Levins 1967; May and MacArthur 1972) is here, in essence, empirically 

 
Figure 3. As Figure 1a, with ellipses and curved shapes indicating the hierarchical clusters of diets as 
found by Nagelkerke and Sibbing (2000) in their Fig. 8b, indicating that our model is consistent with 
these findings. 
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confirmed. It implies that by adapting a consumer’s foraging traits its link strength with a 

given resource species can be maximized.  

However, for the full four-dimensional TTM we find a signature (+1, +1, -1, -1) 

containing both positive and negative signs k . For dimensions with negative k
 
, link 

strengths increase with increasing separation between vulnerability and foraging traits in 

niche space. This means that resources can minimize link strength with particular consumer 

species by adapting corresponding vulnerability traits, i.e. optimize their defence against these 

species (Rossberg et al. 2010b). The geometric interpretation of the TTM can therefore be 

upheld only when interpreting the sum in Eq. (1) as a squared distance in a pseudo-Euclidean 

space (Sokolov 2002). Pseudo-Euclidean geometry differs from Euclidean geometry exactly 

by employing a distance measure with mixed sign structure.  

For our TTM with signature (+1, +1, -1, -1), surfaces of constant link strength form 

hyperboloids in the 4-dimensional trophic niche space. In Fig. 1, for example, we show 

sections through a surface of constant link strength with the consumer L. acutirostris. The 

sections are parallel to the 1-2 plane (top panel) and the 1-3 plane (bottom panel) respectively 

and go through the point corresponding to the foraging traits of L. acutirostris. Resources 

with vulnerability traits located within this hyperboloid have a pseudo-Euclidean distance 

smaller than 1 from L. acutirostris, and therefore, by Eq. (1), a trophic link strength at most 
 2/12e =0.6 times smaller than 0a . In a certain sense, this hyperboloid therefore represents the 

foraging niche of L. acutirostris.  

 The geometric interpretation becomes crucial when comparing or combining our 

results with other TTMs obtained using different datasets. Different TTMs could have 

different coordinates that are equivalent in their biological meanings (Rossberg 2013). By 

appropriate coordinate transformations these TTMs could be directly compared. In a 

Euclidean niche space such transformations would be solid rotations, translations of the 

coordinate system, and inversions of the directions of axes. In pseudo-Euclidean geometries, 

rotations are complemented by other kinds of transformations (French 1968). In general, all 

those transformations need to be considered that keep link strengths as given by Eq. (1) 

invariant for all resource-consumer pairs. Correspondingly, characterizations of distributions 

of consumers and resources in trophic niche space are ecologically relevant only if they are 

invariant under these coordinate transformations. Rossberg (2013) discusses these questions 

in detail. 

Conclusion 

A central finding of this study is that models such as Eq. (1) can indeed be consistently fitted 

to data in such a way that trophic trait variables are given in terms of phenotypic traits. The 

model fit lends empirical support to the common preference of modellers for Gaussian 

interaction kernels with maximal link strength at the centre, at least as a first approximation. 

However, we showed that, upon closer inspection, the Euclidean geometry of trophic niche 

space implied by Gaussian kernels gives way to a pseudo-Euclidean geometry as discussed 

above. Within this pseudo-Euclidian space, the model fit assigns relative positions to the 

consumers and resources that we studied in such a way that the pseudo-Euclidean distances 

between them become predictors of (logarithmic) trophic link strength. The relative positions 

of consumers and resources thus obtained are independent of the specific dataset studied. If 

sufficient information on other consumers and resources became available, either in terms of 

their trophic traits or their trophic interaction partners, these could be placed in niche space 

alongside those studied here. Thus, the relative positions of consumers and resources that we 

find directly represent aspects of ecological reality that are not contingent on study design (so 

differentiating this method from other ordination techniques). This is why our analysis can be 
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understood as providing a direct image of trophic niche space, a concept that has remained 

largely hypothetical so far. We demonstrated the reality of trophic niche space by taking a 

picture of it.  

While the picture of trophic niche space that we obtained remains diffuse, the 

positions of 14 cyprinid fishes and their resources are recognizable and consistent with 

previous analyses (Fig. 3). The picture resolves more than one trophic dimension. This 

implies not only that several phenotypic traits notably contribute to determining trophic links, 

but also that these contributions are independent rather than jointly determining a single 

“niche value”. The fact that with a four-dimensional niche space about (0.723)
2 

≈ 52% of the 

variance in link strengths could be explained constrains the scope for contributions from even 

higher niche-space dimensions in this system. This suggests the preliminary conclusion that, 

whilst trophic niche space is multi-dimensional, a rather small number of dimensions will 

generally be sufficient to predict trophic links with reasonable accuracy—thus supporting 

recent analyses of food-web structures based on similar premises (Allesina et al. 2008; 

Petchey et al. 2008; Rohr et al. 2010; Stouffer et al. 2011; Williams and Purves 2011). Apart 

from its theoretical significance, this potentially low number of trophic traits encourages 

efforts to predict trophic links from phenotypic traits also in systems different from the one 

studied here. It also supports the idea that, in order to preserve functional diversity within a 

community, it suffices to preserve diversity among certain important traits. Our approach 

might even be useful for selecting appropriate sets of phenotypic traits to be included in 

indices of functional diversity for management applications. 
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consumers   resources 

species name abbreviation category name abbreviation 

L. acutirostris Ac phytoplankton  Phy 
L. brevicephalus Br sessile algae Alg 
L. crassibarbis Cr macrophytes Pla 
L. dainellii Da seeds See 
L. gorgorensis Go detritus Det 
L. gorguari Gu zooplankton Zoo 
L. longissimus Lo macro-crustaceans Cru 

L. macrophthalmus Ma 
 

benthic 
invertebrates 

Ben 

L. megastoma Me macro-insects Ins 
L. nedgia Ne mollusks Mol 
L. platydorsus Pl fish Fis 
L. surkis Su 
L. truttiformis Tr 
L. tsanensis Ts       
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Table S2. Consumer traits. Data adapted from Nagelkerke (1997). Traits as defined as in Nagelkerke (1997) and Sibbing and Nagelkerke (2001). 
All lengths are measured in units of fork length (FL), areas in units of fork length squared, etc. Fork length itself is measured in cm. Reference 
numbers refer to Figure S1, in some cases expressing how variables were calculated. For instance, body depth / width ratio is a division of 
measurement 4 and 5 and indicated as (4 / 5). 

 General 
size 

 Search and detection  Approach 

Trait description Fork 
length 

 Anterior 
barbel 
length 

Eye 
diameter 

 Body 
depth 

Body depth / 
width ratio 

Oral gape / 
body area 

ratio 

Caudal 
peduncle 

depth 

Anal fin 
area 

Abbreviation a FL  ABaL ED  BD BD/BW OGAr/Bar CPD AfiAr 

Reference number 
in figure S1 

−  − 7  4 (4 / 5) (17 x 18) /  
(4 x 5) 

6 (2 x 3) 

Labeobarbus species           

L. acutirostris 21.8  0.028 0.048  0.219 1.99 0.272 0.085 1.07 

L. brevicephalus 16.6  0.037 0.049  0.238 2.14 0.111 0.099 1.21 

L. crassibarbis 20.3  0.058 0.041  0.243 1.93 0.218 0.103 1.24 

L. dainellii 26.6  0.038 0.039  0.215 1.87 0.358 0.088 1.19 

L. gorgorensis 38.1  0.050 0.036  0.269 1.99 0.115 0.102 1.32 

L. gorguari 23.3  0.035 0.043  0.224 1.71 0.282 0.091 1.19 

L. longissimus 32.9  0.023 0.035  0.221 1.82 0.241 0.098 1.12 

L. macrophthalmus 15.8  0.029 0.059  0.239 2.00 0.209 0.095 1.28 

L. megastoma 26.0  0.029 0.041  0.215 1.90 0.285 0.090 1.13 

L. nedgia 22.4  0.051 0.042  0.236 1.91 0.112 0.100 1.25 

L. platydorsus 21.3  0.043 0.044  0.243 1.88 0.231 0.093 1.24 

L. surkis 23.3  0.038 0.045  0.270 2.14 0.083 0.098 1.23 

L. truttiformis 17.2  0.029 0.037  0.242 1.83 0.248 0.106 1.30 

L. tsanensis 21.3  0.047 0.044  0.253 1.99 0.145 0.102 1.19 
 

 Intake  Size selection  Digest-
ion 

Trait description Oral 
gape 
axis 

Protrusion 
length 

Lower 
jaw 

length 

Pharyngo-
opercular 
volume b 

Head 
lengt

h 

Post-
orbital 
length 

Gill arch 
resistance 

 Oral gape 
diameter 

Gill 
raker 
length 

Gill 
raker 
profile 

 Gut 
length 

Abbreviation a OGAx ProtL LJL  HL POrL / 
OpD 

GiAR  OGD GiRL GiRP  GuL 

Reference number 
in figure S1 

16 26 13 − 11 (25 / 19) −  18 9 10  − 

Labeobarbus species              
L. acutirostris              

L. brevicephalus 65.8 0.041 0.109 0.487 0.271 1.657 1.09  0.082 0.0061 1.89  1.698 

L. crassibarbis 50.6 0.040 0.077 0.354 0.206 1.149 1.61  0.060 0.0068 4.75  2.054 

L. dainellii 46.9 0.066 0.108 0.710 0.250 1.237 1.00  0.076 0.0054 1.20  2.273 

L. gorgorensis 46.2 0.051 0.110 0.576 0.274 1.490 0.98  0.090 0.0053 1.50  1.516 

L. gorguari 52.7 0.047 0.082 0.605 0.222 1.201 1.29  0.065 0.0060 2.67  3.399 

L. longissimus 63.5 0.047 0.107 0.774 0.267 1.449 1.22  0.090 0.0070 1.40  1.655 

L. macrophthalmus 77.6 0.038 0.109 0.588 0.250 1.431 1.01  0.086 0.0056 1.22  1.708 

L. megastoma 68.0 0.048 0.104 0.569 0.251 1.260 1.39  0.084 0.0075 3.25  1.821 

L. nedgia 79.6 0.039 0.110 0.488 0.248 1.449 1.06  0.083 0.0056 2.46  1.908 

L. platydorsus 47.5 0.051 0.092 0.595 0.247 1.177 1.43  0.073 0.0066 3.10  2.412 

L. surkis 65.8 0.040 0.100 0.710 0.253 1.333 1.19  0.086 0.0066 2.30  1.831 

L. truttiformis 58.7 0.037 0.075 0.413 0.205 1.114 1.64  0.057 0.0065 3.93  2.898 

L. tsanensis 67.1 0.031 0.095 0.631 0.238 1.409 1.13  0.084 0.0071 2.50  1.916 

 49.6 0.051 0.090 0.619 0.237 1.230 1.45  0.071 0.0070 3.57  2.277 

a in Sibbing and Nagelkerke (2001): Table 4 

b defined in Nagelkerke (1997) 
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Figure S1. Measurements of phenotypic traits in the Lake Tana Labeobarbus species: (a) external traits (Hor: 
Horizontal line as reference for angular measurements); (b) head with the mouth closed; (c) head with open, 
protruded mouth; (d) oro-pharyngeal floor; (e) oro-pharyngeal roof; (f) detail of gill arch showing a raker profile 
(10), coded as value 3 (on a scale from 1 to 5); (g) elements of the head skeleton (not used in this study). Numbers of 
used traits can be found in Table S2. Figure reproduced with permission from Sibbing and Nagelkerke (2001). 
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Table S3. Resource traits. Data adapted from Nagelkerke (1997). Data are ordinal and adaptations from the original 
tables from Sibbing and Nagelkerke (2001). 

Resource 
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Phytoplankton  1.0 0.0 0 1 0 0 1.5 0 0 0 3 

Sessile algae 2.0 0.0 0 0 0 0 1.5 0 0 1 2 

Macrophytes 3.5 0.0 1 0 0 2 2 2 2 4 3 

Seeds 3.5 0.0 0 0 0 3 1 1 2 4 1 

Detritus 2.0 0.0 0 0 0 0 2 1.5 1 2 1 

Zooplankton 1.5 1.5 0 1 1 0 2 1 1 0 1 

Macro-crustaceans 4.5 3.5 0 0 1 0 1.5 1 1 3 0 

Benthic 
invertebrates 
(larvae / worms) 

2.0 1.0 1 0 1 0 3 1.5 2 1 1 

Macro-insects 3.5 4.0 1 0 1 2 2.5 2 3 3 0 

Molluscs 3.5 1.0 0 0 1 3 0 1 2 3 0 

Fish 5.0 5.0 1 1 1 2 4 3 5 3 0 
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Table S4. Consumer diets. Data adapted from Nagelkerke (1997). Volume-% of food categories in the gut. Data per 
species do not add up to 100% due to a rest category of unidentified particles in the gut. 

Labeobarbus 
species 
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M
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M
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s 

F
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h
 

L. acutirostris 3.2 0.1 2.0 0.0 2.6 0.6 0.0 7.9 3.5 0.7 76.0 

L. brevicephalus 7.4 0.2 14.6 0.0 3.9 34.0 0.0 9.4 23.2 5.2 0.2 

L. crassibarbis 10.4 0.3 0.7 0.3 28.2 8.8 0.0 28.8 7.3 11.8 2.1 

L. dainellii 2.1 0.0 8.5 0.0 1.0 0.0 2.4 5.7 7.3 1.6 69.2 

L. gorgorensis 8.5 0.1 31.6 0.1 14.6 0.0 3.3 1.6 0.0 27.0 11.5 

L. gorguari 6.9 0.2 15.8 0.7 3.4 1.4 2.4 6.5 1.2 3.6 55.4 

L. longissimus 3.8 0.1 12.9 0.7 2.9 0.0 2.6 2.5 0.1 0.8 71.0 

L. macrophthalmus 9.6 1.8 8.4 0.3 3.2 6.5 0.5 13.0 10.4 0.3 45.3 

L. megastoma 1.3 0.1 13.9 0.0 0.7 1.3 0.3 6.8 6.9 0.3 66.8 

L. nedgia 5.0 0.3 4.7 0.3 18.9 3.2 1.1 32.5 10.8 16.3 5.6 

L. platydorsus 9.4 0.0 10.3 0.0 3.2 1.2 0.1 17.6 3.6 4.0 49.0 

L. surkis 7.9 0.3 70.9 0.6 2.8 5.2 0.2 4.9 4.3 0.4 2.1 

L. truttiformis 4.2 0.0 3.3 0.0 3.7 2.8 5.1 1.3 0.0 1.6 72.3 

L. tsanensis 6.3 0.2 4.6 0.8 14.2 6.2 0.0 42.6 4.9 17.7 1.3 
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A Details of data analysis

Our procedure to obtain the trophic trait vectors of consumers and resources from field data has
three main aspects: (1) parametrization of the trophic trait model (TTM) based on observed feeding
behaviour for a given set of empirical trait variables, (2) cross-validation of the model to assess its
predictive power, and (3) selection an appropriate set of trait variables such as to achieve good
predictive power. Variable selection (3) requires repeated cross validation (2), and cross-validation
repeated model fitting (1).

A.1 Parametrization of the TTM

Input trait variables The procedure for parametrizing the TTM starts from two given sets of
phenotypic traits, one for resources and one for consumers. The values of the resource trait variables
are known for each of R kinds of resource, here diet categories, and the values of the consumer trait
variables are known for each of Q kinds of consumers, here labeobarb species. For each resource
category, the values of n trait variables are given, and for each labeobarb species the values of m trait
variables. The trait values for resource i are given by an n-component vector of real values t̃i, that
is t̃i and trait values for consumer j by an m-component vector s̃j . The trait values of labeobarbs
were log-transformed. By taking logarithms, the problem of how to best account for dependencies
of trait variables on body size is mitigated, because different normalizations in terms of body size
correspond to different linear combinations of logarithmic traits. The best-fitting abstract foraging
traits, which are linear combinations of logarithmic phenotypic traits, will automatically combine
these traits in such a way as to achieve the most appropriate normalization.

Trait standardization The input trait values were now standardized, by transforming them
into equivalent sets of trait values that were statistically uncorrelated and had mean zero and
variance one. This was achieved as follows: from the vectors of phenotypic traits, we first computed
the means over the sets of consumers and resources considered, i.e. t = R−1

∑R
i=1 t̃i and s =

Q−1
∑Q

j=1 s̃j , and then formed the raw resource trait matrix defined by T̃ = (t̃1 − t, ..., t̃R − t)

and raw consumer trait matrix defined by S̃ = (s̃1 − s, ..., s̃Q − s). Then we sought matrices A and

B such that (R − 1)−1AT̃T̃TAT = I, and (Q − 1)−1BS̃S̃TBT = I, and defined new, scaled trait
matrices as T = AT̃, S = BS̃.1 The columns of T = (t1, ..., tR) and S = (s1, ..., sQ) are equivalent
representations of the original phenotypic traits. The original trait values can be recovered by
making use of A, B, s, and t.

1To find an appropriate transformations A, we computed the eigendecomposition of the covariance matrix (R −
1)−1T̃T̃T = VDVT, with the diagonal matrix D containing the eigenvalues and the columns of V the eigenvectors,
and set A = D−1/2VT. We proceeded analogously for consumer traits to obtain B.
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One might be concerned that this standardization procedure enhances measurement errors for
trait variables that show little variability over the data set considered or for combinations of trait
variables that are strongly correlated. However, selections of trait variables that include such cases
will be identified by the cross-validation procedure that we apply to each candidate combination,
and the variable-selection procedure will reject them.

Relation between link-strength function stomach-content data There are various ways
in which trophic link strength can be defined. Here we use a particularly simple definition: We
interpret a(t, s)∆t as the probability that a consumer individual with traits s, upon encountering a
resource item with traits t, will feed on it within a small time interval of length ∆t. Mathematically,
this is the conditional probability a(t, s)∆t = P [s eats t within ∆t|s meets t]. By basic probability
theory and the assumption that encounters occur at random, a feeding interaction will then occur
with probability

P [s meets and eats t within ∆t] = a(t, s)P [s meets t]∆t

∝ a(t, s)× (density of s)× (density of t).
(1)

The precise meaning of Eq. (1) depends on the statistical ensemble considered. Here, we choose the
population of one labeobarb species at random with uniform probability and randomly pick one of
its individuals. Within this ensemble, the density of labeobarbs with traits s is a fixed constant when
a species with traits s exists, and zero otherwise.2 Resources we consider sampled at random from
the volume of the lake. The probability of encounter with prey that has traits t is proportional to
the volumetric abundance of prey with traits t in the lake if such prey exists, and zero otherwise. If,
upon encounter, a labeobarb individual eats the prey item, this ends up in its gut. The probability
on the left hand side of Eq.(1) is therefore approximately proportional to the volumetric proportion
in the gut content: P [t meets and eats s within ∆t] ∝ (proportion of s in gut of t) if labeobarbs
with traits t exists, and zero otherwise.

Estimation of the link-strength function To estimate a(t, s) by Eq. (1), we approximated
the three densities entering Eq. (1) by normal distributions. To determine the parameters of these
normal distributions, we computed the mean µt and covariance matrix Ct of occurrences of re-
source traits t in the lake, the mean µs and covariance matrix Cs of consumer traits s over all
labeobarb species with equal weights, and the mean µf and covariance matrix Cf of pairs (t, s) in
feeding interactions. Since, unfortunately, reliable direct measurements of the densities of resource
items are not available, we use the mean proportion of prey items in labeobarb gut content as a
rough surrogate, as discussed in the main text. With frc denoting the proportion of item r in
the gut of labeobarb species c (diet proportion) this gives estimated densities ρr = Q−1

∑Q
c=1 frc.

Abbreviating further N =
∑

rc frc, we obtain

2Mathematically inclined readers will notice that we gloss over a few Dirac-delta functionals and questions re-
garding proportionality constants here. Discussing these subtleties would not yield any additional insights.
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µt =

(
R∑

r=1

ρr

)−1 R∑
r=1

trρr =
1

N

Q∑
c=1

R∑
r=1

trfrc

µs =
1

Q

Q∑
c=1

sc,

µf =
1

N

Q∑
c=1

R∑
r=1

(
tr
sc

)
frc,

(2)

and

Ct =
1

N

Q∑
c=1

R∑
r=1

(tr − µt)(tr − µt)
Tfrc,

Cs =
1

Q

Q∑
c=1

(sc − µs)(sc − µs)
T,

Cf =
1

N

Q∑
c=1

R∑
r=1

[(
tr
sc

)
− µf

] [(
tr
sc

)
− µf

]T

frc.

(3)

Three short technical notes help understanding details of calculations in Eqs. (2) and (3). Note 1:
The diet proportions of a consumer do not always add up to 1, e.g., when resource items are omitted
from the statistics or when portions of diets remain unclassified. The normalization constant N
takes this into account. Note 2: Because we computed weighted co-variances, no attempt of a
Bessel correction (a denominator of “n− 1” rather than “n”) was made. Note 3: Due to the initial
data standardization µs = 0, and Cs is proportional to an identity matrix.

Putting the estimated normal distributions into Eq. (1) gives

exp

{
−1

2

[(
t
s

)
− µf

]T

C−1f

[(
t
s

)
− µf

]}
∝

a(t, s) exp

[
−1

2
(t− µt)

TC−1t (t− µt)

]
exp

[
−1

2
(s− µs)

TC−1s (s− µs)

]
. (4)

Solving this for a(t, s) yields

a(t, s) = a1 exp

[
bT

(
t

s

)
+

1

2

(
t

s

)T

C

(
t

s

)]
(5)

with

b = C−1f µf −
(
C−1t µt

C−1s µs

)
(6)

and

C = −C−1f +

(
C−1t 0

0 C−1s

)
. (7)
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We measure time in units of stomach turnover time, assuming this does not vary much between
consumer species. The constant of proportionally a1 can then be chosen such that the mean of
Eq. (5) over all consumer-resource pairs, weighted by resource abundance ρr, approximates the

actual weighted mean link strength (Q
∑

r ρr)
−1∑

rc frcρr.

Transformation to trophic traits The symmetric matrix C defined by Eq. (7) can be repre-
sent in terms of a complete orthonormal set of n + m eigenvectors ek and the corresponding real
eigenvalues λk,

C =

n+m∑
k=1

ekλke
T

k . (8)

Without loss of generality, we assume that the eigenvalues are ordered such that |λ1| ≥ |λ2| ≥ ... ≥
|λn+m|.

Now define, for each k = 1, ..., n + m, partial eigenvectors e′k, e′′k consisting of the first n
and remaining m components of ek, i.e. the components corresponding to resource and consumer
(Rossberg et al., 2010) respectively. With this definition:

ek =

(
e′k
e′′k

)
. (9)

Since the eigenvectors ek form a complete orthonormal basis, we can decompose any (n + m)-
component vector u as

u =

n+m∑
k=1

ek (eT

ku) . (10)

If t represents the phenotypic traits of some resource item, and s the phenotypic traits of a labeobarb
species, we therefore get, using Eqs. (9) and (10),(

t
s

)
=

n+m∑
k=1

ek
(
e′k

T
t + e′′k

T
s
)

=

n+m∑
k=1

ek|λk|−1/2
(
w(k) − f (k)

)
(11)

where

w(k) = |λk|1/2e′k
T
t, f (k) = −|λk|1/2e′′k

T
s. (12)

Putting Eq. (11) into the quadratic term in expression (5) and taking Eq. (8) and the orthogo-
nality of the vectors ek into account yields

a(t, s) = a1 exp

[
n+m∑
k=1

bTeke
T

k

(
t
s

)
− 1

2

n+m∑
k=1

σk

(
w(k) − f (k)

)2]
, (13)

where

σk = − signλk. (14)
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The variable-selection procedure will provide a dimensionality D ≥ 1 of the trophic niche space
to be used or tested. We therefore keep only the first D terms in the sum over (w(k) − f (k))2.
This is legitimate, because, as a result of the initial data standardization, the vectors t and s have
the same variance in all directions. A large eigenvalue of C therefore immediately implies that
trait variations in the direction of the corresponding eigenvector are more important than those
directions corresponding to smaller eigenvalues. An eigenvalue λk = 0 corresponds to a direction in
trait space that does not matter for the quadratic term at all. It can therefore always be dropped.
The case that λk = 0 and σk = 0 is therefore excluded in the following.

To simplify the first sum in Eq. (13), we define the trophic baseline traits as

V ∗ =

n+m∑
k=D+1

bTeke
′
k
T
t and F ∗ =

n+m∑
k=D+1

bTeke
′′
k

T
s, (15)

accounting for the last n+m−D terms of this sum, and the constants

d(k) = σk|λk|−1/2bTek (k = 1, . . . , D), (16)

encapsulating the information from the first D terms. The constants d(k) are then combined with
the raw vulnerability traits to obtain the (final) vulnerability traits as

v(k) = w(k) − d(k) (k = 1, . . . , D). (17)

It can be verified using Eqs. (12) to (17) that Eq. (5) is equivalent to

a(t, s) = a0 exp

[
V ∗ + F ∗ − 1

2

D∑
k=1

σk

(
v(k) − f (k)

)2
+X

]
, (18)

with X denoting the remaining n+m−D terms in the sum over k, and

a0 = a1 exp

[
−

D∑
k=1

(bTek)2

2λk

]
. (19)

The approximation that niche space is D-dimensional is equivalent to setting X = 0. With aij =
a(ti, sj), this yields Eq. (2) of the main text.

Formulae (12), (15), and (14) define a transformation from standardized physical/phenotypic
traits to trophic traits. For any potential resource-consumer pair characterized by raw physical
traits t̃ and s̃, the vectors t and s entering these equations are obtained as

t = A (t̃− t), s = B (s̃− s), (20)

where A, B, t, and s are the coefficients of the initial standardization transformation of the data
used for determining b and C. By combining this transformations with the transformation from
standardized trait vectors to trophic traits, Eqs. (12), (15), (17), the final result in Eq. (18) can be
used to predict trophic link strengths from phenotypic traits.
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A.2 Cross-validation of the TTM

To assess, for a given set of physical/phenotypic trait variables, the predictive power of the TTM
as obtained above, we performed a two-fold leave-one-out cross validation over all resource cate-
gories and labeobarb species. That is, running over all possible resource–labeobarb pairings (p, q),
the TTM was parametrized with the given set of phenotypic trait variables, and the predicted
link strength of the omitted resource category p with the omitted labeobarb species q using this
parametrization was correlated with the actual link strength.

The procedure is complicated by the fact that link strength is more difficult to measure for
rare diet items than for abundant ones, leading to larger measurement errors. In computing the
correlation coefficient, link strengths were therefore weighted with the square of our proxy for
resource abundance, that is, its mean contribution to consumer diets: fr = Q−1

∑Q
c=1 frc. Hence,

the correlation was computed as

ρ =

∑
p,q(âpq − c1)(apq − c2)f

2

p[∑
p,q(âpq − c1)2f

2

p

]1/2 [∑
p,q(apq − c2)2f

2

p

]1/2 (21)

with averaged link strengths

c1 =

∑
p,q âpqf

2

p∑
p,q f

2

p

, c2 =

∑
p,q apqf

2

p∑
p,q f

2

p

. (22)

This is very similar to directly computing the correlation between predicted and observed diet
proportions, but, because of the quadratic weights entering Eq. (22), not the same.

The value of ρ was used as a measure for the predictive power of the TTM in the cross-validation
procedure.

A.3 Selection of phenotypic trait variables

The estimation of the trophic link strength function a(t, s) requires estimation of 1 + (n+m)/2 +
(n+m)2/2 real numbers entering the coefficients a1, b, and C in Eq. (5) from R×Q measured link
strengths. As a rule of thumb, the numbers of physical resource traits n and phenotypic consumer
traits m for which a(t, s) is estimated should therefore be small compared to both the number
of resource categories R and the number of consumer species Q. In our case, many more trait
variables have been measured. A systematic method for choosing appropriate sets of trait variables
is therefore required. The number of trait variables can be reduced at two levels: immediately at
the level of the raw trait variables, or at the level of trophic traits by choosing the number D of
dimensions of trophic trait space to be retained. Here, both approaches are combined. We seek
combinations of trait variables and a value of D that yield good predictive power according to the
cross-validation procedure, i.e., combinations that give a large value of ρ defined by Eq. (21) above.

We conducted an exhaustive search through all combinations of up to n = 2 and m = 2 trait
variables and values of D between 1 and 4. Reasons for limiting the search space to this range were
given in the main text: It reduces the risk of unnoticed overfitting (Reunanen, 2003) and we find
that dimension 4 makes only a small contribution to improving the fit of our model. There may
be procedures that lead to good model fits also for larger values of n, m, or D. To support the
conclusions of the present study, however, our conservative choices were sufficient.
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Results obtained for the TTMs with D = 1, 2, or 3.  

The correlation coefficients (ρ) between predicted and observed trophic interaction strengths with 
increasing number of predictive dimensions. 

D=3 

Dc dimensions fixed at 

best fitting values 

dimensions 

permuted 

randomly 

correlation coefficients (ρ)  

 
two-sided 95% 

confidence interval a 

actually found 

in 3D model b 

1 - 1, 2, 3 -0.299 - 0.283 0.655 

2 1 2, 3 0.356 - 0.614 0.655 

3 1, 2 3 0.655 - 0.655 0.655 

 

D=2 

Dc dimensions fixed at 

best fitting values 

dimensions 

permuted 

randomly 

correlation coefficients (ρ)  

 
two-sided 95% 

confidence interval a 

actually found 

in 2D model b 

1 - 1, 2 -0.290 - 0.286 0.656 

2 1 2 -0.045 - 0.493 0.656 
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D=1 

Dc dimensions fixed at 

best fitting values 

dimensions 

permuted 

randomly 

correlation coefficients (ρ)  

 
two-sided 95% 

confidence interval a 

actually found 

in 1D model b 

1 - 1 -0.283 - 0.291 0.140 

 

 


