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Abstract

Objectives: To investigate the hypothesis that persistence of apical contraction into 

diastole is linked to reduced myocardial perfusion and chest pain. 

Background: Apical hypertrophic cardiomyopathy (HCM) is defined by left 

ventricular (LV) hypertrophy predominantly of the apex. Hyperdynamic contractility 

resulting in obliteration of the apical cavity is often present. Apical HCM can lead to 

drug-refractory chest pain. 

Methods: We retrospectively studied 126 subjects; 76 with apical HCM and 50 

controls (31 with asymmetrical septal hypertrophy (ASH) and 19 with non-cardiac 

chest pain and culprit free angiograms and structurally normal hearts). Perfusion 

cardiac magnetic resonance imaging (CMR) scans were assessed for myocardial 

perfusion reserve index (MPRi), late gadolinium enhancement (LGE), LV volumes 

(muscle and cavity) and regional contractile persistence (apex, mid and basal LV).   

Results: In apical HCM, apical MPRi was lower than in normal and ASH controls 

(p<0.05). In apical HCM, duration of contractile persistence was associated with 

lower MPRi (p<0.01) and chest pain (p<0.05). In multivariate regression, contractile 

persistence was independently associated with chest pain (p<0.01) and reduced 

MPRi (p<0.001).

Conclusion:  In apical HCM, regional contractile persistence is associated with 

impaired myocardial perfusion and chest pain. As apical myocardium makes limited 

contributions to stroke volume, apical contractility is also largely ineffective. 

Interventions to reduce apical contraction and/or muscle mass are potential 

therapies for improving symptoms without reducing cardiac output. 

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



3

Abbreviations

ASH = asymmetrical septal hypertrophy

CMR = cardiac magnetic resonance

EF = ejection fraction

FWHM = full width half max 

HCM = hypertrophic cardiomyopathy 

LGE = late gadolinium enhancement 

LV = left ventricular

LVH = left ventricular hypertrophy

MPRi = myocardial perfusion reserve index

MWT = maximal wall thickness

PMT = papillary muscles and trabeculae 

RV = right ventricular

SAX = short axis 

SSFP = steady state free precession cine

SV = stroke volume

%CC = percentage of the cardiac cycle

%D = percentage of diastole
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1. Introduction

Hypertrophic cardiomyopathy (HCM) is characterised by marked left ventricular (LV) 

hypertrophy (LVH) [1].  Patients frequently experience troubling chest pain [2-5].  

Several studies demonstrate myocardial perfusion abnormalities in HCM [6-10] and 

others describe biochemical evidence for myocardial ischaemia [11, 12].  In the 

absence of coronary disease or LV outflow obstruction, microvascular disease is 

often assumed to be the cause of myocardial ischaemia.  This assumption is based 

on a few studies that report structural abnormalities of the microvasculature [13-16].  

Notably, limited data associates structural changes with perfusion abnormalities or 

chest pain [15, 17]. 

Myocardial perfusion occurs almost exclusively in diastole and perfusion pressure is 

greatest in early diastole when suction force due to decompression of the myocardial 

microcirculation also augments flow [18].  We hypothesised that regional 

prolongation of systolic contractility into early diastole is associated with reduced 

myocardial perfusion in HCM.

The aim of this study was to examine associations between chest pain and 

myocardial perfusion with prolongation of contractility in patients with apical HCM 

using cardiac magnetic resonance imaging (CMR). 
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2. Methods

2.1 Study Design

This is a retrospective, cross-sectional, observational cohort study based at the 

London Chest Hospital, UK. Consecutive cases (age ≥16 years) of apical HCM 

(August 2008-February 2013) were identified from the registry of a regional CMR 

centre where adenosine stress perfusion imaging was routinely performed in HCM. 

We also studied control cohorts. 

2.2.1Apical HCM Cohort

Morphologic criteria for apical HCM included a maximal end-diastolic LV wall 

thickness (MWT) ≥15 mm in the apical segments of the heart [1]. We excluded cases 

where basal septal exceeded apical wall thickness and individuals with left bundle 

branch block, atrial fibrillation or obstructive coronary disease (>50% narrowing in a 

major epicardial artery or previous revascularisation). Treated hypertension was not 

excluded [19].
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2.2.2Control Cohorts

We identified two control groups:

a). Consecutive patients with the asymmetric septal hypertrophy (ASH) variant of 

HCM who had also undergone perfusion CMR imaging (control-HCM).

b). Normal controls identified through a low-intermediate risk chest pain pathway in 

whom coronary angiography and perfusion CMR were performed as part of a 

prospective research study comparing the diagnostic accuracies of these modalities 

(EVINCI: NCT00979199) [20].  All normal controls had angiographically normal 

coronary arteries and structurally normal hearts. 

2.3 Collection of Clinical Data

Demographic and symptomatic data were collected from electronic records. Chest 

pain was recorded as present or absent from preceding outpatient clinic letters or 

scan indication information. Missing data are reported.

2.4 Consent and Ethical Approval

This study complies with the declaration of Helsinki and was conducted as audit 

(Clinical Management of the Inherited and Acquired Heart Muscle Diseases, 

BartsHealth NHS Trust audit No. 5298). As per protocol, ethics committee approval 

and informed consent were not sought.
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2.5 CMR Image Acquisitions and Analysis

All studies were performed on a 1.5 T magnet (Achieva®, Philips Medical Systems) 

and images acquired using standard protocols, medication was not withheld prior to 

imaging. Briefly, balanced steady-state free precession cine (SSFP) images were 

acquired with 25-30 phases/cardiac cycle (8mm slice thickness, 2mm gap for short 

axis (SAX) images; typical voxel size 1.9 x 1.9 mm).  For perfusion imaging, 

gadolinium based contrast bolus (Dotarem®) was followed by saline flush. SAX 

images at basal, mid and apical LV level were obtained at peak stress (adenosine 

140 μg/Kg/min, 4 minutes) and at rest. For late gadolinium enhancement (LGE), T1 

weighted inversion-recovery gradient echo images were acquired approximately 10 

min after gadolinium (typical voxel 2.07 x 2.16 mm, slice thickness 8 mm, FOV 300 

mm).

2.5.1LV Dimensions and Mass

Endocardial and epicardial borders, including papillary muscles and trabeculae 

(PMT) within blood pool, were manually traced on SAX images in all cardiac phases 

(Extended MR Workspace®, Philips Medical Systems).  Ejection fraction (EF), stroke 

volume (SV) and LV mass were calculated. Regional (SAX) LV volume was 

calculated (epicardial – endocardial volume).
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2.5.2Measurement of Contractile Persistence

LV obliteration was measured by manually tracing endocardial and epicardial 

borders, including PMT within LV muscle volume, for each phase in the three SAX 

slices co-localising with those for basal, mid-LV and apical perfusion (Figure 1).  To 

standardise the cardiac cycle, data were resampled at 30 phases/cycle if cines were 

obtained at any different frequency (typically 25-30 phases). LV cavity obliteration 

was defined as endocardial area ≤ 0.2cm2 (approximately ½ voxel). Diastolic 

obliteration was that present in any cardiac phase after end-systole. End systole was 

defined as the phase where total LV volume was lowest (Figure 1A).  Contractile 

persistence duration was expressed as either percentage of the cardiac cycle (%CC) 

or diastole (%D) during which obliteration was present.

2.5.3Perfusion Analysis

The myocardial perfusion reserve index (MPRi) was calculated in basal, mid and 

apical SAX slices that were not separated into American Heart Association (AHA) 

segments (without segmentation) [21, 22].  Epicardial, endocardial and blood pool 

contours were manually traced.  After baseline correction, stress and rest signal 

intensity (SI) time curves were constructed.  Maximum upslope was measured using 

a 4-point window for the myocardium and a 2-point window for the blood pool and 

mean myocardial maximum upslope was obtained for basal, mid and apical SAX 

slices, and corrected for arterial input [23].  MPRi was calculated by dividing stress 

by rest values.
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2.5.4Late Gadolinium Enhancement

Quantity of LGE on T1 weighted images was determined using the full-width half 

max (FWHM) technique (CMR42, Circle Cardiovascular Imaging Inc., Canada) [24, 

25].  The FWHM method was applied to the three SAX slices co-localizing with 

basal, mid and apex perfusion images and LGE was expressed, without 

segmentation, as %myocardium.

2.5.5 Intra- and Inter-observer Error

For intra-observer error, MPRi was measured in a random sample of 10 apical HCM 

twice (with a gap of 1 week), in a random order. For inter-observer error, two 

independent measurements of MPRi were made in 5 scans, in a random order, by 

two observers. All patient-identifiable information was removed from the scans and 

the observers blinded to all other results.

2.6 Statistical Analysis

Nominal and parametric baseline characteristics were compared with Chi-squared 

and paired or unpaired t-tests, respectively. Parametric and non-parametric 

intergroup differences were tested with one-way ANOVA and Kruskal-Wallis one-

way ANOVA tests respectively. Multivariate regression was performed in apical HCM 

patients to find variables predicting apical MPRi (linear regression) and chest pain 

(logistic regression). The pre-specified, independent (predictor) variables included 

sex, age (years), apical LGE (%LV mass), apical MWT (mm), contractile persistence 

(%CC) and MPRi.
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Unless stated, data are presented as mean (SD), p-values are two-tailed and a value 

of less than 0.05 was considered statistically significant. Where appropriate, Fisher’s 

exact test corrected for small samples and post-hoc Bonferroni correction was used 

for differences between means. Analyses was performed using StatsDirect, (v2.7.9 

(Cheshire, UK)) and STATA (v11).
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3. Results

CMR images of sufficient quality were available from 126 subjects (76 apical HCM, 

31 ASH-controls and 19 normal controls). The baseline characteristics of the cohort 

are shown in Table 1. 

3.1 Global and Regional LV Morphological Characteristics

Apical-HCM and control-HCM patients had similar LV end-diastolic and end-systolic 

volumes (EDV and ESV), LV mass and MWT. EF was marginally greater in apical 

HCM.  

There were differences in regional morphology; apical and mid-LV end-diastolic 

cavity volumes were lower in apical than in control-HCM but similar at the base.  

The myocardial volume in the apical SAX slices was greater in apical HCM than 

control-HCM, but similar in the basal and mid-LV. These data are shown in Table 2.

Resting LV outflow tract obstruction was present in 12 (39%) control-HCM patients.  

In the 28 HCM-control patients where symptom status was available 11 (39%) had 

resting LVOTO. In this small selected group, differences in the proportions with chest 

pain were no different in those with resting LVOTO and those without (9 of 11 Vs. 11 

of 17 respectively; Χ2 p=0.33).
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3.2 LV Cavity Obliteration

No normal controls demonstrated LV obliteration; the threshold for cavity obliteration 

was lower than end-systolic apical endocardial area in normal controls (3.3±1.4 cm2) 

by 2.2 standard deviations (98th percentile).  

In apical HCM, LV cavity obliteration was detected in the apex, mid and basal LV in 

79%, 32% and 3% respectively, and in 39%, 13% and 0% of control-HCM (χ2 

p<0.001 for apex, p=0.03 for mid). 

In apical HCM, LV cavity obliteration persisting into diastole was demonstrated in 

apical, mid and basal LV regions in 78%, 26% and 3% respectively, and in 26%, 

13% and 0% of control-HCM (χ2 p<0.001 for apex).

Cavity obliteration was present for median 32%CC in the apex (interquartile range 

13%-43%) and 0%CC in the mid (0-9%) in apical HCM; and for 8%CC (0-13%) and 

0%CC (0-0%), respectively, in control-HCM (p<0.001 for apex, p<0.05 for mid). 

When only diastolic cavity obliteration was assessed, this was for 33%D at the apex 

(12-44%) and 0%D in the mid (0-9%) in apical HCM and 12%D (0-13%) and 0%D (0-

0%), respectively, in control-HCM (p<0.001 for apex).
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3.3 Regional Myocardial Perfusion

MPRi at the apex in apical HCM (1.1±0.3) was lower than that in control-HCM 

(1.5±0.6; p<0.001) and normal controls (1.6±0.5; p<0.001). MPRi in the basal and 

mid LV were similar in apical and control-HCM groups (Table 2). In apical HCM, 

MPRi was lower in the apex than the base (1.1±0.3 and 1.3±0.4 respectively; 

p<0.001).  MPRi was also lower, in apical HCM, at the apex compared to the mid-LV 

(1.1±0.3 and 1.2±0.5 respectively; p=0.03).  MPRi at all three levels were similar in 

control-HCM and in normal controls.

3.4 Global and Regional Late Gadolinium Enhancement

Globally, %LGE in apical and control-HCM was similar. Regionally, in apical HCM, 

%LGE in the apex (7.3±8.0%) was greater than in the base (4.7±5.7%, p=0.007) and 

greater than in the apex of control-HCM (1.9±3.7%; p=0.002). There was a 

significant univariate association between %LGE and MWT in the apex of apical 

HCM (ρ=0.40, p<0.001).

3.5 Apical HCM

3.5.1Chest Pain and Myocardial Perfusion

To examine for associations between perfusion or chest pain with morphologic and 

functional abnormalities, we divided apical HCM into tertiles for LVH magnitude 

(MWT) and apical contractile persistence (Table 3).
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3.5.2Magnitude of LVH

MWT tertiles had similar chest pain prevalence and regional apical MPRi (Table 3). 

%LGE was greatest in the highest MWT tertile; for all patients, there was a 

significant univariate correlation between MWT and %LGE (r=0.36, p=0.001), but not 

with MPRi (Table 4).

3.5.3Duration of Apical Cavity Obliteration

Apical obliteration persisted through a median of 50%D (interquartile range 44%-

55%) in the group with most obliteration (CIII), 33%D (29-37%) and 0%D (0-12%) in 

intermediate (CII) and least severe groups (CI) respectively. Most measures of 

global LV structure/function and %LGE were similar.

Chest pain was much more frequently reported in CIII (χ2 p<0.05; Table 3). Apical 

MPRi was lower in CIII patients than CI (p<0.001) and CII (p=0.007). For all apical 

HCM, both %D (r=-0.52, r2=0.27, p<0.001) and %CC (r=-0.54, r2=0.29, p<0.001) 

correlated with MPRi (Table 4, Figure 2A). 

3.6 Multivariate Analyses

Duration of contractile persistence, %CC, was independently associated with chest 

pain (p<0.005) and a reduction in apical MPRi (p<0.001) (Table 4).  Analyses for 

contractile persistence as %D were similar (data not shown).
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3.7 Inter- and Intra-observer Error

For the three areas of the left ventricle in 20 patients (n=60), the intra-observer mean 

difference in MPRi was -0.02 (95% CI; -0.10 to 0.041, p=0.52).  The inter-observer 

mean difference in MPRi for 5 patients (n=15) was -0.07 (95% CI; -0.19 to 0.04, 

p=0.18).

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



16

4. Discussion

This study shows for the first time that chest pain in apical HCM is associated with 

distinct contractile abnormalities. Our novel finding is that the persistence of apical 

contraction is strongly associated with chest pain and regional impairment in 

myocardial perfusion. We suggest that apical muscle exhibits pathological 

contractility into diastole, resulting in ischaemia and symptoms.

In comparison to other morphologic variants, apical HCM has a relatively benign 

prognosis in both Western and Asian populations [26, 27].  Reported prevalence of 

chest pain in patients with apical HCM cared for at tertiary centres varies widely 

between 30 and 92% and is frequently refractory to pharmacological therapy [26-32].  

Chest pain is commonly attributed to myocardial ischaemia, the cause of which is not 

well understood and several mechanisms including microvascular dysfunction, 

reduced capillary density and myocardial bridging have been implicated [33-35].

Early diastole is particularly important for myocardial perfusion [18].  We 

hypothesised that regional differences in persistence of early diastolic contractility 

could result in impaired myocardial perfusion in HCM.  In order to examine this 

hypothesis, we used CMR to assess regional contractility and MPRi in apical HCM 

and used two comparator cohorts to investigate morphologic and contractile 

abnormalities particular to apical HCM.  Notably, despite similar disease severity 

(including LV mass, max wall thickness and %LGE), LV cavity obliteration, a 

common feature of apical HCM, was considerably less frequently detected in ASH-

HCM, and was much less persistent when present.  Cavity obliteration was not 

detected in normal controls.
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The pathophysiology of chest pain in HCM is complex. In this study of apical HCM, 

almost all patients with contractile systolic persistence of >40% of cardiac cycle 

and/or MPRi<1 experienced chest pain (Figure 2B).  However, chest pain was also 

present in the absence of these two abnormalities in a substantial subgroup of 

patients, suggesting that other factors are contributing. Similarly, low MPRi is not 

always associated with contractile systolic persistence of >40%, suggesting that 

additional factors are at play [6, 36-38].

4.1 Implications for other HCM Variants

In apical HCM, cavity obliteration is easily detectable and quantifiable. Post-systolic 

regional contractile persistence in other variants/myocardial regions may be less 

readily discerned.  For example, in patients with ASH, an AHA-segmental rather than 

regional analysis of LV contraction would be required to demonstrate this 

phenomenon in the basal septum.  Analyses of differences in regional strain may 

help determine if this mechanism contributes to symptoms in other HCM variants, 

and in other cardiac conditions.  
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4.2 Therapeutic Implications

Our hypothesis is consistent with the efficacy of conventional drug therapies for 

symptomatic HCM that decrease contractility, prolong diastole and promote lusitropy. 

For drug-refractory chest pain, invasive options are only considered when there is 

dynamic LV obstruction [1];  such symptoms can be exceptionally difficult to manage 

in non-obstructive HCM. We present very preliminary evidence that therapies which 

manipulate contraction/relaxation on a global (with investigative molecules such as 

MYK-461/Mavacamten) or a regional basis (such as RV or LV pacing) may warrant 

further investigation in severely symptomatic apical HCM [31, 39, 40]. These 

investigations should be advanced in rigorous peer-reviewed prospective research 

settings.  Notably, the regional reduction of muscle mass (surgical and non-surgical 

myectomy) that has been advocated for some patients with severe forms of apical 

HCM may, in part, improve chest pain by interrupting this mechanism [30, 41]. 

4.3 Limitations

This single centre study retrospectively selects HCM patients that have undergone 

stress CMR. Stress CMR imaging is a routine component of our clinical evaluation of 

all HCM patients in the absence of contra-indications. In addition, several subjects 

scanned in our centre are managed in other centres, limiting available data and 

contributing to selection bias.  This also meant we were unable to index our CMR 

findings to body surface area.  There was a non-significant trend for apical HCM 

patients with more severe disease, in terms of apical contractile persistence, to be 

more likely to be treated with a beta-blocker and/or calcium channel antagonist.  

Differences in medical therapy may have affected LV contraction, but these are more 

likely to obscure a relationship between contractility and symptoms.
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A prospective study would include long-axis perfusion imaging to account for long-

axis systolic function, as well as more specialised quantitative perfusion techniques 

(for example by using a dual-bolus approach to assess myocardial blood flow 

(MBF)). Tissue tagging could provide additional data on regional differences in 

contraction and relaxation. Finally, hypercontractility would be assessed on images 

obtained during stress.  A prospective study could also include invasive perfusion 

pressure and volume measurements to further substantiate our observations.

5. Conclusions

In conclusion, duration of systolic cavity obliteration is associated with chest pain and 

impaired myocardial perfusion in apical HCM. We speculate that the prolongation of 

systolic contraction into diastole impairs myocardial blood flow to cause regional 

myocardial ischaemia. 
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Figure Legends

Figure 1: Contractile persistence in three subjects.  Columns from left to right: long axis 

CMR images at end-diastole and end-systole respectively; typical endocardial area changes 

across the cardiac cycle, and; basal, mid and apical MPRi. Row (A) Apical HCM, (B) ASH-

HCM, (C) Normal control.

Figure 2: Panel A: Scatter plot demonstrating relation of MPRi and contractile persistence 

(%CC) in 76 apical HCM patients. As persistence increases, myocardial perfusion declines. 

The linear regression line and 95% CI are shown (MPRi=1.40 -0.0092*%CC; 95%CI of 

coefficient: -0.01 to -0.006; p<0.001). Panel B: Scatter plot demonstrating relation of MPRi 

and contractile persistence (%CC) in 66 apical HCM patients: 47 with (red markers) and 19 

without chest pain (blue markers) (chest pain data missing from 10 apical HCM patients). 

Almost all patients with contractile persistence >40% of cardiac cycle and/or MPRi <1 had 

chest pain (MPRi=1.39 -0.0088*%CC; 95%CI of coefficient: -0.01 to -0.005; p<0.001). 

Panels C and D: Box plots of contractile persistence (%CC) and MPRi according to chest 

pain status (*: p<0.05, ***: p<0.001).
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Table 1: Baseline characteristics
Apical HCM

(n=76)
ASH-HCM

(n=31)
Normal 
controls
(n=19)

Male, n (%) 47 (62) 23 (74) 14 (74)
Age at scan, average (SD) 58.6 (13) 62.0 (13) * 51.7 (11)

Ethnicity
Information available (n) 67 26 16
White, n (%) 16 (24) 9 (35) 6 (38)
Asian, n (%) 32 (48) 10 (39) 6 (38)
Black, n (%) 13 (19) 6 (23) 4 (25)
Mixed, n (%) 6 (9) 1 (4) 0 (0)

Treated Hypertension
Information available (n) 68 28 19
Present, n (%) 50 (74) † 22 (79) † 8 (42)

NYHA function class
Information available (n) 64 27
1, n (%) 36 (56) 10 (37)
2, n (%) 16 (25) 12 (44)
3, n (%) 12 (19) 5 (19)

Chest pain
Information available (n) 66 28
Present, n (%) 47 (71) 20 (71)

*: p<0.05 vs. Normal controls; †: χ2 p<0.05
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Table 2: CMR Findings
Apical HCM

(n=76)
ASH-HCM

(n=31)
Normal controls

(n=19)
LV EDV (mL) 115 (29) 122 (33) 129 (34)
LV ESV (mL) 38 (17) * 47 (23) 51 (22)
EF (%) 68 (8) ** † 63 (10) 61 (8)
ED MWT (mm) 18.8 (3.4) *** 18.3 (2.5) *** 10.1 (2.0)
LV mass (g) 177 (64) *** 155 (42) *** 100 (33)
Endocardial area (cm2)

Base 15.1 (5.4) ** 15.5 (4.2) ** 19.9 (4.4)
Mid 9.3 (3.6) *** ††† 12.9 (4.6) *** 17.9 (3.2)
Apex 4.4 (2.4) *** ††† 8.7 (3.9) *** 12.8 (3.2)

Myocardial area (cm2)
Base 27.0 (6.7) *** 26.5 (7.4) *** 18.7 (5.5)
Mid 27.0 (6.8) *** 24.2 (7.2) *** 16.0 (4.7)
Apex 21.2 (7.8) ** †† 16.8 (6.4) ** 11.0 (3.3)

MPRi
Base 1.3 (0.4) ‡‡‡ 1.4 (0.6) 1.5 (0.5)
Mid 1.2 (0.5) ‡ 1.5 (0.6) 1.5 (0.4)
Apex 1.1 (0.3) *** ††† 1.5 (0.6) 1.6 (0.5)

All data presented as mean (SD).*:p<0.05, **:p<0.01, ***:p<0.001 vs. normal controls; 
†:p<0.05, †††: p<0.001 vs. ASH-HCM; ‡:p<0.05, ‡‡‡:p<0.001 vs. Apical HCM apex.
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Table 3: Differences between apical HCM patients divided into tertiles on the basis of LVH and apical contractile persistence (tertile 1 
best (n=26), 2 (n=25), tertile 3 worst (n=25), and for gender (male=47, female=29) 

 Apical MWT Contractile Persistence, % cardiac cycle Gender

1 2 3 1 2 3 Male Female
Range
(mean)

15 -16 
(15.4)

16 -20 
(18.2)

21 -28 
(23.0)

0-20
(6)

23-37 
(32)

40-73
(49)

Male, n (%) 14  (54) 14 (56) 19 (73) 18 (69) 16 (64) 13 (52)
Age (SD), years 62 (14) 59 (13) 56 (13) 58 (13) 59 (13) 59 (14) 56 (13) § 63 (13)
Chest pain, n (%) 16 (70) 14 (63) 17 (78) 13 (57) 15 (68) 19 (91) * 31 (76) 16 (64)
Apex MWT (SD), mm 17.9 (3.0) 18.9 (3.3) 19.8 (3.8) 19.5 (3.6) § 17.7 (2.8)
LV apical LGE (SD), % 5.4 (7.7) † 5.5 (6.9) † 11.0 (8.3) 7 (8) 6 (8) 9 (8) 9.0 (8.6) § 4.5 (6.0)
Apex contractile persistence

% CC (SD) 24 (18) 30 (20) 32 (20) 26 (20) 33 (18)

% D (SD) 21 (18) 26 (19) 29 (19) 4 (7) ††† ‡‡‡ 28 (6) ††† 45 (13) 23 (19) 29 (18)

Apical MPRi (SD) 1.1 (0.4) 1.2 (0.3) 1.0 (0.3) 1.3 (0.3) ††† 1.2 (0.3) †† 0.9 (0.3) 1.2 (0.3) 1.1 (0.4)

EF (SD), % 71 (8) 68 (6) 66 (9) 67 (9) 69 (8) 68 (8) 66 (9) § 71 (6)

LV mass (SD), g 151 (47) 
††† 160 (43) †† 220 (76) 174 (67) 189 (69) 167 (56) 196 (67) §§ 146 (46)

LV ED volume (SD), ml 108 (27) 119 (31) 119 (29) 126 (33) 110 (30) 110 (21) 120 (32) 109 (22)
LV ES volume (SD), ml 33 (17) 39 (15) 42 (18) 43 (20) 35 (16) 35 (12) 42 (19) § 32 (11)
ED endocardial area (SD), cm2

Base 15 (5) 17 (6) 14 (6) 17 (6) 13 (5) 15 (5) 14 (6) 16 (5)
Mid 10 (3) † 10 (4) † 8 (3) 11 (3) †† ‡ 8 (4) 8 (3) 9 (4) 10 (4)
Apex 5 (2) 5 (3) 4 (2) 7 (2) † ‡ 4 (2) 3 (2) 5 (3) 4 (2)

ED myocardial area (SD), cm2

Base 26 (7) 26 (7) 30 (9) 28 (7) 29 (9) 25 (7) 29 (8) § 24 (7)
Mid 24 (6) ††† 26 (6) † 31 (7) 28 (7) 28 (7) 25 (7) 28 (7) §§ 25 (6)
Apex 18 (6) ††† 21 (5) †† 26 (7) 22 (6) 22 (7) 21 (7) 23 (6) 20 (7)

βBlocker and/or Ca antagonist (%) 95 70 85 96 77 72 77 86

† p<0.05, †† p<0.01, ††† p<0.001 vs. 3rd tertile; ‡ p<0.05, ‡‡ p<0.01, ‡‡‡ p<0.001 vs. 2nd tertile; § p<0.05, §§ p<0.01 vs. female; * p<0.05 for 
χ2
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Table 4: Multivariate regression analyses for predictors of apical LGE, apical MPRi 
and chest pain

Multivariable ordinal logistic regression with apical LGE [none, mild (<10%), 
moderate (10-20%), severe(>20%)] as dependent variable in 76 patients

Independent variables OR p 95% Conf. Interval
Male 1.88 0.193 0.73 4.87
Age (years) 1.00 0.928 0.97 1.04
Apical MWT (mm) 1.21 0.008 1.05 1.39
Contractile persistence (%CC) 0.99 0.600 0.97 1.02
MPRi 0.43 0.298 0.09 2.09

Multivariable linear regression with apical MPRi as dependent variable in 76 
patients*

Independent variables Coef. p 95% Conf. Interval
Male 0.04 0.610 -0.11 0.18
Age (years) -0.002 0.467 -0.01 0.003
Apical LGE (%LV) -0.001 0.245 -0.01 0.004
Apical MWT (mm) -0.004 0.706 -0.03 0.02
Contractile persistence (%CC) -0.01 <0.001 -0.01 -0.01

Multivariable logistic regression with chest pain as dependent variable in 66 
patients **

Independent variables Odds Ratio p 95% Conf. Interval
Male 2.66 0.159 0.68 10.42
Age (years) 1.01 0.770 0.96 1.06
Apical LGE (%LV) 1.03 0.426 0.95 1.13
Apical MWT (mm) 1.02 0.858 0.82 1.27
Contractile persistence (%CC) 1.06 0.003 1.02 1.10

* Constant for linear regression model: 1.58, R2: 0.31
** 10 patients with missing chest pain data were not included
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