
1

Minimising Human Annotation for Scalable

Person Re-Identification

Hanxiao Wang

Submitted in partial fulfilment of the requirement for the Doctor of Philosophy

School of Electronic Engineering and Computer Science

Queen Mary University of London

27 September 2017



2



3

Minimising Human Annotation for Scalable

Person Re-Identification

Hanxiao Wang

Abstract

Among the diverse tasks performed by an intelligent distributed multi-camera surveillance sys-
tem, person re-identification (re-id) is one of the most essential. Re-id refers to associating an
individual or a group of people across non-overlapping cameras at different times and locations,
and forms the foundation of a variety of applications ranging from security and forensic search
to quotidian retail and health care. Though attracted rapidly increasing academic interests over
the past decade, it still remains a non-trivial and unsolved problem for launching a practical re-
id system in real-world environments, due to the ambiguous and noisy feature of surveillance
data and the potentially dramatic visual appearance changes caused by uncontrolled variations in
human poses and divergent viewing conditions across distributed camera views.

To mitigate such visual ambiguity and appearance variations, most existing re-id approaches
rely on constructing fully supervised machine learning models with extensively labelled training
datasets which is unscalable for practical applications in the real-world. Particularly, human an-
notators must exhaustively search over a vast quantity of offline collected data, manually label
cross-view matched images of a large population between every possible camera pair. Nonethe-
less, having the prohibitively expensive human efforts dissipated, a trained re-id model is often
not easily generalisable and transferable, due to the elastic and dynamic operating conditions
of a surveillance system. With such motivations, this thesis proposes several scalable re-id ap-
proaches with significantly reduced human supervision, readily applied to practical applications.
More specifically, this thesis has developed and investigated four new approaches for reducing
human labelling effort in real-world re-id as follows:

Chapter 3 The first approach is affinity mining from unlabelled data. Different from most
existing supervised approaches, this work aims to model the discriminative information for re-
id without exploiting human annotations, but from the vast amount of unlabelled person image
data, thus applicable to both semi-supervised and unsupervised re-id. It is non-trivial since the
human annotated identity matching correspondence is often the key to discriminative re-id mod-
elling. In this chapter, an alternative strategy is explored by specifically mining two types of
affinity relationships among unlabelled data: (1) inter-view data affinity and (2) intra-view data
affinity. In particular, with such affinity information encoded as constraints, a Regularised Ker-
nel Subspace Learning model is developed to explicitly reduce inter-view appearance variations
and meanwhile enhance intra-view appearance disparity for more discriminative re-id matching.
Consequently, annotation costs can be immensely alleviated and a scalable re-id model is readily
to be leveraged to plenty of unlabelled data which is inexpensive to collect.

Chapter 4 The second approach is saliency discovery from unlabelled data. This chapter
continues to investigate the problem of what can be learned in unlabelled images without identity
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labels annotated by human. Other than affinity mining as proposed by Chapter 3, a different solu-
tion is proposed. That is, to discover localised visual appearance saliency of person appearances.
Intuitively, salient and atypical appearances of human are able to uniquely and representatively
describe and identify an individual, whilst also often robust to view changes and detection vari-
ances. Motivated by this, an unsupervised Generative Topic Saliency model is proposed to jointly
perform foreground extraction, saliency detection, as well as discriminative re-id matching. This
approach completely avoids the exhaustive annotation effort for model training, and thus better
scales to real-world applications. Moreover, its automatically discovered re-id saliency represen-
tations are shown to be semantically interpretable, suitable for generating useful visual analysis
for deployable user-oriented software tools.

Chapter 5 The third approach is incremental learning from actively labelled data. Since
learning from unlabelled data alone yields less discriminative matching results, and in some cases
there will be limited human labelling resources available for re-id modelling, this chapter thus
investigate the problem of how to maximise a model’s discriminative capability with minimised
labelling efforts. The challenges are to (1) automatically select the most representative data from
a vast number of noisy/ambiguous unlabelled data in order to maximise model discrimination
capacity; and (2) incrementally update the model parameters to accelerate machine responses
and reduce human waiting time. To that end, this thesis proposes a regression based re-id model,
characterised by its very fast and efficient incremental model updates. Furthermore, an effective
active data sampling algorithm with three novel joint exploration-exploitation criteria is designed,
to make automatic data selection feasible with notably reduced human labelling costs. Such an
approach ensures annotations to be spent only on very few data samples which are most critical
to model’s generalisation capability, instead of being exhausted by blindly labelling many noisy
and redundant training samples.

Chapter 6 The last technical area of this thesis is human-in-the-loop learning from relevance
feedback. Whilst former chapters mainly investigate techniques to reduce human supervision for
model training, this chapter motivates a novel research area to further minimise human efforts
spent in the re-id deployment stage. In real-world applications where camera network and po-
tential gallery size increases dramatically, even the state-of-the-art re-id models generate much
inferior re-id performances and human involvements at deployment stage is inevitable. To min-
imise such human efforts and maximise re-id performance, this thesis explores an alternative
approach to re-id by formulating a hybrid human-computer learning paradigm with humans in
the model matching loop. Specifically, a Human Verification Incremental Learning model is for-
mulated which does not require any pre-labelled training data, therefore scalable to new camera
pairs; Moreover, the proposed model learns cumulatively from human feedback to provide an in-
stant improvement to re-id ranking of each probe on-the-fly, thus scalable to large gallery sizes. It
has been demonstrated that the proposed re-id model achieves significantly superior re-id results
whilst only consumes much less human supervision effort.

For facilitating a holistic understanding about this thesis, the main studies are summarised
and framed into a graphical abstract as shown in Figure 1.
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Chapter 1

Introduction

1.1 Person Re-Identification in Surveillance

1.1.1 Motivation

Person Re-Identification (re-id) refers to the problem of visually matching an individual or a

group of people across non-overlapping cameras distributed at diverse physical locations and

times [3]. For most of today’s intelligent surveillance systems, re-identification has become a

fundamental functionality which paves the way for numerous higher level and more complex

applications. For example, it contributes as a critical component for a multi-camera tracking or

forensic search system, which allow government agencies to fast locate suspicious criminals, and

therefore prevent terrorism threatening social infrastructure and civilian safety and security; The

re-identification of a group of people collectively provides valuable intelligence for crowd move-

ment/behaviour analysis, which facilitates public spaces like airports or shopping malls to con-

duct better crowd control practices or develop more profitable retail floor plans; Re-identification

techniques could also be integrated into smart home automation platforms, so as to enable func-

tionalities such as elderly/baby monitoring, intrusion detection and burglary alarming.

Among the various fields to which re-identification technologies could bring benefits, the

most significant application scenario is the one encountered by visual surveillance systems op-

erating over large closed-circuit television (CCTV) camera networks. Thanks to the technical

innovations and the availability of cheaper and more advanced electrical equipments in the past

decades, the deployments of CCTV networks are fast-growing and wide-spreading, currently
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prevalent in public spaces of every major city worldwide. By the year of 2016, there are about

350 million CCTV cameras installed globally [4]; It was estimated by [5] that Britain has 1

surveillance camera for every 11 people in UK. According to a recent report from Marketsand-

Markets [6], the video surveillance market was valued at USD 30.37 Billion in 2016 and is

projected to reach USD 75.64 Billion by 2022, at a CAGR (Compound Annual Growth Rate)

of 15.4% between 2017 and 2022. Willing or not, most of contemporary human beings have

already become permanent residuals of a surveillance state, and meanwhile been benefiting from

the mass convenience and value brought by the mass surveillance.

1.1.2 Recent Developments

However, re-identification is never trivial in these real-world scenes at large scales, and still re-

mains unsolved to both academic and industrial communities. In particular, for surveillance sys-

tems in the crowded and unconstrained public spaces, re-identification relying upon higher-level

biometry such as face recognition is neither feasible nor reliable, due to numerous complicated

factors such as uncontrolled standoff distances (distances between the camera and the object),

insufficient image details, low camera resolution, and so forth. Instead, researchers have turned

to alternative solutions by exploiting the holistic appearances of people, whose visual features

predominated by their clothing, skin color and objects carried or associated with them. However,

such physical characteristics are intrinsically weaker and consequently guarantee much lower

identity matching accuracies. For instance, many people may dress alike due to cultural tradi-

tions, locations, seasons, social norms in fashion and so on, every of which undermining the

discrimination capability of this kind of representation. Moreover, what further compounds the

problem is that person visual appearances may undergo dramatic variations in different camera

views caused by the unconstrained viewing condition, e.g. illumination, occlusion, background

clutter, and human pose. In other words, a re-identification system is required to differentiate

person images often with high intra-class variances and low inter-class variances (Figure 1.1).

In order to address such problems, the predominant approaches in existing literature follow

a standard supervised learning scenario. That is, to exploit manually labelling by human ex-

perts as externally provided information. For instance, the human labelling could specify the

identity information of each individual; Or it could specify whether a given paired person im-

ages captured by two different cameras belong to the same identity or not, regardless their vi-

sual appearance dissimilarity/similarity. Trained with such labels, a machine learning model is
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(a) Different people have similar appearances. 

1 2

3 4

(b) Cross-view appearance variations

Camera A

Camera B

Figure 1.1: (a) Examples of low inter-class variances in people appearances: (a1) Women in Hin-
duism wearing red; (a2) People in winter wearing dark; (a3) Sport fans wearing team colors; (a4)
Workers wearing suits. (b) Examples of high inter-class variances in people appearances: The
same four individuals observed by two different cameras (Each column indicates one identity).

therefore more capable of discriminating person identities, more sensitive to subtle differences

in person appearances and more robust to viewing condition variations. Such a trained model

can be then leveraged for automatically matching person identities during deployment stage. It

is evident that the external annotations from human experts, i.e. the training labels, participate

as one indispensable component in the procedure of knowledge transferring from human exper-

tise to an automated re-identification model. Based on this supervised learning approach, the

re-identification community has witnessed ever-increased matching accuracies on increasingly

larger sized benchmarks of more training identity classes over the past two years. For instance,

the CUHK03 benchmark [1] contains 13,164 images of 1,360 identities, of which 1,260 are used

for training with 100 for testing, significantly larger than the earlier VIPeR [7] (1,264 images of

632 people with 316 for training), and iLIDS [8] (476 images for 119 people with 69 for train-

ing). The state-of-the-art Rank-1 accuracy on CUHK03 has exceeded 80% [9], tripling the best

performance reported only two years ago [1] (Figure 1.2).

Despite such rapid progress, we found these automatic re-identification solutions ill-suited

and unscalable for practical deployments due to human labelling. More specifically, these meth-

ods are based on a few assumptions which are too artificial and unrealistic about human labelling,

failed to meet numerous real-world challenges. They will be discussed in the following section.
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Figure 1.2: Rank-1 recognition rates on CUHK03 [1] published in main conferences.

1.2 Human Labelling for Modelling Re-Identification

An ordinary user can be highly impressed by the intelligence of a deep convolutional neural

network [10, 11] (CNN) for its capability of accurately recognising a Welsh Corgi dog in an

image (Figure 1.3), but what is often beyond his/her realisation is that the neural network can

be trained with datasets containing millions of images labelled by human, and perhaps have

witnessed thousands of instances of the Welsh Corgi. Taking the well-known ImageNet [12]

dataset as an example, it consists of a total number of 14,197,122 images, each being labelled

as at least one of the 21,841 synsets (hierarchical category labels). The most popular category,

‘animal’, contains over 2799K human labelled images. Such a large scale of training image

dataset with accurate human labels is one important factor, if not the most, for recent computer

algorithms to successfully conquer many vision tasks, such as image classification [11], object

detection [13], segmentation [14], and so forth. Human labelling has become so important that it

is common to see many companies such as IBM hiring labelers or outsourcing the labelling work

through online platforms such as Amazon Mechanical Turk [15].

1.2.1 Challenges to Human Labelling

However, compared to most above listed vision tasks, there exists many more difficulties and

challenges to exploit human labelling for re-identification. Specifically, the challenges to human

labelling for re-identification in real-world applications are summarised as following.

1. Labelling Cost: Identifying and labelling person identities in a large scale of CCTV

surveillance videos is intrinsically harder and more expensive compared to other more

common annotation tasks in vision such assigning image class labels (classification), or
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Deep Convolutional Neural Network
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Training Images with Human Labels Supervised Learning

Figure 1.3: Image classification by a fully-supervised deep neural network.

drawing bounding boxes of objects (localisation/detection). Specifically, labelling the

identity of a person requires several decision processes: Does this person belong to those

already labelled identities stored in the database? If yes, which one should it be assign to?

If not, should it be assigned a new ID or discarded? The procedure of telling ‘who it is’ is

apparently more complicated and tedious than just telling ‘what it is’, i.e. identifying a im-

age by ‘This is (not) a person’ as in other more common classification tasks. What further

compounds labelling identities are the homogeneous appearance among different persons

and the dramatic appearance variations across camera views, i.e. small inter-person vari-

ances and large intra-person variances, demanding more energy, time, and concentration

of a human annotator. For instance, [16] reported the average work shift of a modern

CCTV operator was now 12-hours, which is a much heavier work overload compared to

the average working time.

2. Expertise Requirement: The human expertise required by the labelling person identities

in surveillance camera networks is substantially high. Generating accurate and efficient

human labelling for re-identification requires years of professional work experience. More

specifically, a human operator needs to be capable of correctly infer person identities from

surveillance video frames whose contents are noisy and cluttered, often with low image

resolutions and large numbers of candidates per frame. Furthermore, the operator needs

to have sufficient context knowledge, i.e. being familiar with the physical layout of the

camera network(s), and the frequent trajectory choices of a pedestrian, so as to predict and
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search over the cameras and time frames where the target will most possibly to re-appear.

Such a labelling job can hardly be outsourced through online mechanical platforms to

workers without professional training, and it is difficult to transfer this expertise directly

between operators. As a result, the difficulty to obtain sufficient labels further increases.

3. Plausibility: One fundamental challenge is that, to obtain ‘sufficient’ labels for person

re-id might just be not plausible. Particularly, due to the uncontrolled pedestrian path

and open-ended environment, there simply may not exist enough person identities who

re-appear in every different cameras of a public surveillance network. In fact, the labelled

training population for re-identification is often small in number, e.g. hundreds of person

classes, and the training samples of each person class is also often limited, in some cases

only one-shot of the person being available. The training sample size is thus much smaller

(often in an order of magnitude or more) than the typical feature dimension. This lack

of training samples is known as the Small Sample Size (SSS) problem [17]. The SSS

problem can thus result in ill-estimated intra-class variances, indications of problematic

class distributions, which in turn lead to suboptimal discriminative solutions.

4. Scalability: Even if there are sufficient people who indeed re-appear in all camera views,

to obtain a manually pre-labelled pairwise training data set for every camera pair requires

continuous monitoring and exhaustive searching which is infeasible and unscalable in prac-

tice. In a real-world topologically complex and large camera network, there are a quadratic

number of camera pairs with a extremely large search space for labelling. Such a scalabil-

ity challenge is another cause for the aforementioned SSS problem.

5. Generalisation: A trained re-identification model with samples labelled in one specific

camera network usually cannot generalise or transfer perfectly to other camera networks

with different camera configurations (e.g. image resolution, camera focus), viewing con-

ditions (e.g. viewing angle, illumination, background clutter), physical topologies, etc. In

other words, the re-identification labelling is usually camera-network specific, constrained

by many factors related to one particular network and thus difficult to generalise to others.

6. Adaptability: Even for the same camera network, the operating condition also varies over

time instead of being a constant factor. For instance, the illumination may change at differ-

ent times of day; The viewing background may change due to different weathers (raining,



1.2. Human Labelling for Modelling Re-Identification 25

snowing, cloudy, etc); The population appearance pattern may vary in different seasons, or

evolve over years. As a result, the human labelling obtained at a specific time period may

not be adaptable to the elastic viewing conditions. New human labelling with extra costs

will be needed again to update the re-identification model.

1.2.2 Hypotheses of Existing Approaches

Given all the listed challenges, one inevitable question arises: How well do state-of-the-art re-id

approaches tackle these challenges? Unfortunately, most of existing re-id works fail to take any

of such challenges into consideration in model design, and thus are still far from an automated

re-id solution capable of deployment in the real-world. In particular, in most state-of-the-art

methods [1, 18, 19, 20, 21, 22, 23, 24, 25], a re-id model is trained with an overwhelming demand

and heavy reliance on a large scale of human labels, without taking into account the expense,

feasibility and other challenges of real-world label collection. Particularly, they usually share

four common artificial hypotheses:

1. Closed-world matching: Many approaches assume that a re-identification model works in

a extremely constrained scenario where a person in one camera must re-appears in other

cameras. In the model training phase, this hypothesis is reflected by the fact that every

training person identity is annotated under at least one pair of camera views, so that his/her

cross-view appearance variations are guaranteed to be labelled. It is evident that this hy-

pothesis largely underestimates the labelling cost, expertise requirement, and plausibility

for real-world human labelling. Moreover, this hypothesis has also been reflected in unre-

alistic testing evaluations. For instance, most existing works test a re-id model by matching

two sets of person images, namely the probe set and gallery set, which contain exactly the

same group of people. In other words, every testing person in one set is guaranteed with

prior knowledge to be definitely included in the other set. This is however another strong

closed-world assumption. In practical environments, the person identities of the probe and

gallery set could be only partially overlapped, and there exist much more distractors in the

potential searching space than the target persons.

2. Offline training label collection: Existing supervised learning based re-id approaches arti-

ficially assumes an offline training label collection process. That is, a pre-labelled training

dataset containing either binary-class labelled true/false-matching image pairs or multi-
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class labelled individual person images is collected by human annotators for every pair

of cameras through manually examining a vast pool of image/video data. This training

dataset is then used to train an offline re-id model. However, due to the aforementioned

generalisation and adaptability challenges, it is highly possible that such an offline trained

re-id model will not generalise/adapt perfectly to various camera networks, viewing con-

ditions and population appearance patterns which vary over time. In fact, real-world data

collection and model training is more incremental than static, that is, additional labelled

images are generated over time and available for new model training. It is thus highly

desirable for a re-id model to incorporate increasingly available labelled data, growing and

adapting continuously to the changing environments.

3. Small testing population: In most popular re-id benchmark datasets [1, 7, 8], the size

of the training population is either significantly greater or no less than that of the testing

population. For instance, the standard CUHK03 benchmark test defines the training set

having paired images of 1,260 people from six different camera views (on average 4.8

image samples per person per camera view), whilst the test set having only 100 identities

each with a single image. The test population is thus 10 times smaller than the training

population, with approximately 50 times less images. This is however another erroneous

experiment design led by an unrealistic assumption. In practice, any deployment gallery

size (test population) is almost always much greater than any labelled training data size

even if such training data were available. In a public space such as an underground station,

there are easily thousands of people passing through a camera every hour [26] with a testing

gallery population size of over 10,000 per day, much more than the amount of affordable

human labels for training.

4. Fully-automated deployment: The above discussed offline training label collection and

small testing population assumptions often resulted in an blind confidence on fully-automated

model deployments. It is tacitly assumed by most that an offline-trained re-id model is ca-

pable of re-identifying target (unseen during model training) person images at test time in a

fully-automated manner, without any human assistance nor model adaptation. As the test-

ing population sizes in most standard re-id benchmarks are small, existing fully-automated

approaches have achieved sound matching accuracies and this hypothesis seems unchal-

lenged. However, we observed on CUHK03 dataset that, a 10-fold increase in gallery size
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leads to a 10-fold decrease in re-id Rank-1 performance, even when the state-of-the-art

re-id models were trained from sufficiently sized labelled data. Given such low Rank-1

scores, in practice human operators (users) would still be required to verify any true match

of a probe from an automatically generated ranking list. Consequently, how to efficiently

exploit human labelling effort in a cost-effective way during the deployment stage arises

as an open question which is however largely overlooked by existing methods.

1.3 Contributions

The research of this thesis attempts to move one step further toward re-identification applications

in practice by proposing several re-id models to specifically address the human labelling chal-

lenges in the real-world and relax hypotheses which are practically unrealistic. Specifically, the

contributions of this thesis to re-identification research are summarised below:

1. Chapter 3: A new subspace learning based re-id model is proposed to exploit inter/intra-

view affinity information from unlabelled data, with an efficient and flexible solution which

can be applied to both semi-supervised and unsupervised re-id. The capability of learning

from unlabelled data substantially reduces the demand of heavy human labelling for model

training, and completely avoids the human labelling challenges discussed in Section 1.2.1.

Furthermore, to relax the unrealistic hypothesis of closed world matching, a new OneShot-

OpenSet Re-Id problem setting is introduced. It poses more realistic challenges to the

research community and paves a way towards large scale open-world re-id.

2. Chapter 4: Instead of only learning a general matching function (Chapter 4), in this Chap-

ter a new unsupervised re-id model is proposed, aiming to explore more fine-grained image

details from the unlabelled data. Specifically, a novel generative saliency discovery model

is proposed which is capable of simultaneous foreground saliency detection, background

clutter removal and re-id matching, without any forms of human labelling. As a completely

unsupervised approach, it significantly improves the scalability of a re-id model. In addi-

tion to re-id matching, its automatically discovered foreground saliency is also useful as an

image analysis module whose target users are human operators of a surveillance system.

3. Chapter 5: A new active learning algorithm for cost-effective human labelling is proposed

to reduce labelling cost and increase scalability, by only querying the most informative



28 Chapter 1. Introduction

rather than randomly sampled feedback from a human operator. This active learning model

aims to jointly explore the population diversity and discover the class boundary of the up-

to-date model. In addition, to relax the offline training label collection and fully-automated

deployment hypotheses, a regression based re-id model is formulated, enabling to rapidly

update an incremental re-id model from piecewise new data only, and progressively adapt

the model to more data when available.

4. Chapter 6: A hybrid human-computer learning paradigm is proposed to minimise the hu-

man labelling effort during model deployments. More importantly, a new human-in-the-

loop re-id model is formulated with a few advantages: (1) Scalability: The model can be

directly deployed without the need of heavy human labelling for the pre-collection a sep-

arate training dataset. During deployments, it enables a user to re-identify rapidly a given

probe person image after only a handful of feedback verifications, without the need for

exhaustive eyeball search of true/false in the entire very large gallery set. (2) Generali-

sation and Adaptability: It introduces a new online incremental distance metric learning

algorithm, which enables the re-id model to cumulatively update parameters to utilise on-

the-fly user feedback, and adapt itself to the varying operating conditions.

1.4 Thesis Outline

The remaining chapters of this thesis are organised as follows:

Chapter 2 provides a review of existing research relevant to the main components of this thesis.

Chapter 3 investigates an inter/intra-view affinity mining algorithm to explore discriminative

information only from the unlabelled data, so the human labelling can be avoided from training.

It also introduces a more realistic open-world re-id setting.

Chapter 4 proposes an unsupervised model which discovers localised saliency regions and re-

moves cluttered backgrounds on person images without the need of human labelling. The dis-

covered salient appearances are shown to be effective in re-id matching.

Chapter 5 presents an active learning based re-id model, which reduces human labelling by

selecting only the most informative unlabelled data to actively query. It also considers an incre-

mental learning setting to improve model generalisation and adaptability.

Chapter 6 presents a hybrid human-computer learning paradigm which smooths the boundary

of re-id model training and testing. This human-in-the-loop model does not require any labelling
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for training, and meanwhile exceedingly reduces the human labour spent during deployments.

Moreover, it is designed to be updated incrementally from cumulative user feedback, well suited

to the real-world scenarios with varying viewing conditions.

Chapter 7 includes concluding remarks and discusses potential areas for future research and

extensions.
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Chapter 2

Literature Review

2.1 The Re-Identification Problem

The general task of an automated re-identification system is: when being represented with a

person of interest, the system needs to tell whether the same person has been observed, and to lo-

cate the same identity in the large amount of video footage generated in a network of surveillance

cameras watching over public spaces with major pedestrian traffic flows. A standard pipeline [27]

for such a person re-id system contains three following modules (Figure 2.1):

1. Pre-processing: This step refers to the generation of images of pedestrians by applying a

person detection and tracking process on the raw video frames collected by surveillance

cameras. The generated person images are treated as input data for the re-id system.

2. Representation: After the acquisition of person image data, the second stage is to con-

struct a representation of each image or tracklet (a sequence of images), i.e. to extract

discriminative visual features to describe individual appearances.

3. Matching: The core module of a re-id system is to match the imagery features of the

query (or interchangeably termed as probe) images/tracklets against a gallery of persons

by measuring the similarity between features. Often a re-id matching model is required to

be trained so that an optimised similarity function can be found.

It is a common belief to the research community that the preprocessing stage, i.e. person

detection [28, 29, 13] and tracking [30, 31, 32], should be treated as independent research ar-
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Figure 2.1: The pipeline of a person re-identification system.

eas, and therefore interested readers are invited to read aforementioned references for more de-

tails of them. This chapter reviews particularly the most recent developments in the other two

core stages of re-identification, i.e. different strategy in designing feature representations and

learning matching models. Specifically, Section 2.2 reviews a selection of broadly used feature

representations for contemporary works; Section 2.3 discusses various re-id model learning and

deployment strategies as well as their connections to the contributions of relevant chapters in this

thesis.

2.2 Feature Representation

Feature representation is an important step within the re-id process. The choice of feature is

critic since it needs be robust to the changing factors like illumination, viewpoint, occlusion

and image resolution. In some early works on re-identification, researchers have been explor-

ing hand-engineered low-level features such as color histograms and texture filters to represent

human appearances; Later on several mid-level descriptors which are more robust to viewing

condition variations were proposed; Most recently, along with the development of powerful deep

convolutional neural networks, discriminative representations can also be directly learned with

raw image pixels. This section mainly reviews the first two types of features, whilst the last type

will be discussed in Section 2.3 together with other model learning strategies, since the learning

of deep representations is essentially one type of re-id model.

2.2.1 Low-level Features

There are two types of hand-engineered low-level features being popularly used, reflecting color

distributions and edge/texture properties of a region respectively. The features are often rep-

resented as bag-of-words scheme in the form of histogram. The color features includes color

histograms in different color channels. Color spaces like RGB, HSV, Lab, and YCbCr are often

explored. As to the edge/texture feature, existing works often use Scale-invariant feature trans-



2.2. Feature Representation 33

form (SIFT) Descriptors [33], local binary patterns [34] or texture filters like the Gabor filter

and the Schmid filter [35, 36, 37] to represent texture and gradient information of a given image

region.

A natural consideration next is how to divide a whole image into regions. As extracting

feature histograms on a whole image would be inaccurate and unreliable to reflect the important

information on localised details, existing works often first separate an image into different local

regions and then extract features on each region. Because of viewpoint changes and arbitrary

pedestrian poses, an individual appearing in a image caught by one camera usually does not

appear in the same region within another image caught by a different camera. This problem is

known as the mis-alignment problem. To avoid the mis-alignment problem, two types of image

segmentation schemes have been proposed: part-based and patch-based representations.

Part-Based Representation It tends to divide the images according to different parts of human

body. For example, Gray et al [35] and Prosser et al [36] divide the whole image into 6 equal

sized horizontal strips in order to roughly captured the head, upper and lower torso and upper

and lower legs. In this scheme they believe individuals could appear in different positions in

different images, but the body parts should remain the same horizontally. After that, they use

color features as 8 color channels (RGB, HSV and YCbCr) and 21 texture filters (8 Gabor filters

and 13 Schmid filters). Then each feature is represented by a 16-bin histogram. So for each strip,

the feature vector is of (8+21)×16 = 464 dimension. And the final representation of the image

is the concatenation of the six strips’ features, ending up in a 2784-dimensional feature vector.

Another part-based segmentation method is proposed by Farenzena et al [38]. They explore

the principles of symmetry and asymmetry, using two horizontal axes of asymmetry that isolate

three main body parts (head, torso and legs) and two vertical axes of symmetry to isolate the left

part and right part of torso and legs. After dividing an individual’s figure into 5 parts, they extract

color features as weighted color histograms for each part where pixels near the vertical axes gain

more weight. Then they use RHSP (Recurrent High-Structured Patches) to encode edge/texture

feature for each part. Also, they introduced MSCR feature (Maximally Stable Color Regions)

which represent the information like area and centroid of blobs having a stable color and can also

be treated as a color feature.

Other than [38] which only uses some geometry assumptions to roughly locate the body

parts, there are also works which explicitly utilize body-part detectors to explore the body con-
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figurations, such as the work of [39, 40]. For example, [39] utilizes pictorial structures part

detector trained elsewhere on re-id images, and extracts low level features like colour histogram

and MSCR within the detected body mask.

Patch-Based Representation Different from part-based representation, patch-based representa-

tion divide the images into regular sized local patches aligned in grids for matching persons. For

example Zhao et al [33] and Hirzer et al [34] both took this way for feature extraction. Con-

sidering the problem of mis-alignment caused by viewpoint change and pose variation, normally

the patches are overlapped, trying to catch slight movement of human body. While Hirzer et

al [34] concatenate the feature vectors of all the patches to a single feature vector to represent

a whole image, Zhao et al [33] retain the patch representation and take more steps to handle

mis-alignment problem, which will be discussed later.

On feature selection, the work of [34] choose the mean value of patch pixels in HSV and

Lab color channels to represent color information, and use Local Binary Patterns (LBP) to catch

edge/texture information. The patches are in the size of 8× 16 pixels, sampled on a grid of

4× 8 pixels. So the patches are 50% overlapped both horizontally and vertically. In the work

of [33], they choose color histograms in Lab space as color features and use SIFT descriptor as

edge/texture features. The patches are of size 10×10 and sampled on a grid with a grid step size

of 4 pixels. So their patches are also overlapped in both direction.

2.2.2 Mid-level Features

Compared to the low-level feature representations above, the mid-level features usually are more

effective since they are less vulnerable to varying conditions like illuminations and poses. Most

mid-level representation requires some extent of learning, and thus have more discriminative

power than hand-engineered features. There are several mid-level representation methods as

discussed below:

Semantic attributes are used as mid-level representations for re-id, firstly introduced by Layne

et al in [41] and [42]. The authors proposed a method that learns a selection and weighting of

mid-level semantic attributes to describe people. Different from low-level feature representa-

tions and high-level classes/identities, attributes provide a mid-level semantic description of an

instance. After the low-level feature extraction, they train a Support Vector Machine (SVM) to

detect attributes. Using the SVM, each image can be interpreted as an attribute profile, which

reflects the SVM’s confidence on each attribute existing on this certain image. This attribute
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profile can be treated as a new feature representation, and fused as a complementary to low-level

features. In Li et al’s work of [43], a more complete attribute topology is defined and learned

through a latent SVM model.

Mid-level filters are also explored as one type of mid-level representation in the work of

[21]. The key idea is that certain patches on one image could be more effective on describing

one person because they are neither too rare nor too general throughout the dataset. Thus filter

responses on those effective patches can form a good mid-level representation for the task of

re-id. Through clustering and supervision, each learned filter response is coherent in appearance,

specific for location, and also robust for cross-view variation.

Other than attributes and mid-level filters, Ma et al [44] have explored fisher vector based

representation for the task of re-id. They combine Fisher vectors with a local descriptor and use

the resultant representation (Local Descriptors encoded by Fisher Vector or LDFV) to describe

persons images. The method also shows promising performance when combined with metric

learning approaches. More recently, Yang et al’s proposed method [45] explores another mid-

level representation - the salient color names. By mapping the raw RGB color space values to a

probability distribution over a 16 dimension color names, the proposed representation also gives

state-of-art result when combined with supervised metric learning methods. All of the above

methods have provided a insight on the potential of mid-level representations to improve re-id

results.

2.3 Matching Model

Feature representations alone are often insufficient to accurately capture complex appearance

variations across cameras with uncontrolled viewing conditions as typical in visual surveillance

scenarios. A matching model is thus needed to obtain a more robust and reliable cross-view im-

age similarity/distance measurement. In this section, re-id matching models are discussed from

various aspects including: supervision strategies during model training, model updating strate-

gies when new data becomes available, and the deployment strategies on how human operators

interact with the re-id model when it is being leveraged.

2.3.1 Supervision Strategies

Supervised Learning Most existing re-id models are fully-supervised learning models, usually

framed into classification [9, 18, 20, 21, 23, 24, 25, 46, 47, 48, 49], pairwise verification [1, 50,
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51, 52], triplet ranking [22, 36, 53, 54, 55, 56, 57], or their combination [58]. These supervised

models require a large amount of exhaustively labelled cross-view matching image pairs for each

pair of cameras. Such a heavy and annotation requirement significantly restricts their use in

real-world settings, and more importantly, their scalability to large camera networks with many

camera pairs.

Many of the above approaches can be formulated as a Mahalanobis metric learning problem.

For instance, PCCA [59] learns a projection space with a hinge loss function, and constraints

thresholding on the margin over distances between matched image pairs as well as unmatched

pairs. Similar approaches can be found in LFDA [20, 23] and PRDC [19], stating that distances

between matched pairs should be either strictly minimized or relatively smaller than distances

between unmatched pairs. While models listed above only learn one global linear projection

matrix (thus treating images from both view equally), supervised multi-view subspace learning

methods like Canonical Correlation Analysis(CCA) [60, 61] have also been explored to better

handle the modality shift caused by the viewing condition variation.

Inspired by the success of deep learning in other computer vision problems, deep re-id models

[1, 9, 52, 51, 57, 62, 63] have recently attracted more attention and made significant progress

in improving re-id performance. This trend is mainly driven by the availability of larger re-

id datasets such as CUHK03 [1] and Market-1501 [2]. These deep networks often contains

millions of parameters, constructed by a stack of convolution layers and fully connected layers

to learn discriminative image features, and trained by iterative optimisations on a large amount

of labelled training data. However,since these deep learning based methods are data-hungry and

require more training data to be labelled, the scalability problem becomes even more acute.

Transfer Learning The scalability limitation of these supervised methods has motivated a num-

ber of transfer learning-based methods [64, 65, 66, 67]. These methods aim to extract and employ

the transferable knowledge from the labelled data in auxiliary datasets for assisting the learning

of the target model. Often, a strong relevance between auxiliary and target datasets is assumed.

However, they suffer from the generalisation problem. In particular, the difficulties in extracting

domain-invariant knowledge and the significant unknown viewing condition variations and often

yield ineffective re-id models. In addition, they still bear the assumption that sufficient labelled

information is available and needs to be labelled in the source domain.

Unsupervised Learning Unsupervised methods do not require labelled image pairs, and thus are
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able to scale up to large surveillance camera networks in real-world. However, very few unsuper-

vised methods exist, since it is much harder than supervised learning from labelled information

on person-specific appearance. Earlier unsupervised learning re-id methods are focused on fea-

ture design [38, 44, 68]. Later on, Liu et al. [37] proposed a feature importance mining scheme,

aiming to optimise the weights for global feature types. Nonetheless, their re-id matching perfor-

mance is less appealing, since it is very hard to design or select effective identity-discriminative

features, due to the unknown large cross-view covariates. Zhao et al.[33] proposed a patch-based

representation to learn local saliency in a person’s appearance which are shown to be effective

for re-id matching. However, this approach is exhaustively data-driven therefore computationally

complex. This is due to the fact that the approach is based on constructing a different saliency

model for every local image patch in every image against a reference set whilst each image is

decomposed into hundreds of patches. That is, if there are M images to be matched across two

camera views and each image is decomposed to N patches, there are M×N different saliency

models required to be constructed against the reference set. This data-driven approach to unsu-

pervised saliency learning also makes it potentially unstable to large scale problems. For these

problems, many images of people (from hundreds to thousands) need be matched across camera

views and peoples appearance necessarily exhibits greater variety.

Compared to these existing methods, the two unsupervised methods proposed in Chapter

3 and Chapter 4 improve significantly in both matching accuracies as well as computational

efficiency: In particular, Chapter 3 exploits the soft-correspondences across camera views to

compensate for the lack of manually labelled cross-view data pairs, significantly different from

the existing approaches. The problem is framed into a subspace learning model which has a

efficiently solved closed-form solution; Chapter 4 improves the saliency detection framework by

learning a single generative model for computing saliency map for all the images in a camera

view, without the need to perform model retraining, significantly reducing model complexity.

Moreover, the model segments simultaneously foreground and background, giving more accurate

saliency detection compared to [33] as the latter is sensitive to false saliency detection caused by

confusing background as salient foreground.

Semi-supervised Learning Lying somewhere in-between supervised learning and unsupervised

learning are semi-supervised learning approaches. Semi-supervised models still require some

data labels to build optimisation constraints, but they are also able to exploit unlabelled data
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as constraints for regularising model learning. Few existing works in re-id has explored this

area [69, 70]. The work in [69] models the data distribution by exploring the manifold struc-

ture of the unlabelled gallery images. Such manifold structure are then explored to propagate

some sparse user-labelled samples to the large quantity of unlabelled gallery set. Liu [70] uti-

lizes unlabelled images from each camera view to build better coupled dictionaries for a image

patch representation. However, even less labelling is required, these methods still assume the

availability of some labelled data. Moreover, for both work the unlabelled data are only ex-

ploited independently in each camera view. They make no attempts with the unlabelled data to

learn cross-view identity-discriminative information which is critical for matching people across

views. Compared to them, the approach proposed in Chapter 3 exploit the cross-view affinity

graphs of unlabelled data to specifically capture cross-view identity-discriminative information,

and it does not require necessarily the availability of any labels.

Active Learning One possible solution to the scalability problem associated with human labels

is to explore active learning techniques. Active learning is a canonical strategy for reducing hu-

man labelling effort by selecting most informative and valuable samples to annotate [71, 72].

Two typical scenarios are stream-based [73] and pool-based [74] active learning. For the former,

an unlabelled data sample is drawn once at a time from an input source, and the learner needs to

decide whether to query or discard it. Whilst the later assumes a large set of pre-collected unla-

belled data is available, and often a small set of labelled data also exists for model initialisation.

One of the most important elements in active learning is the query selection criterion. Notable

schemes of selecting queries include uncertainty sampling (e.g. focusing on model-confusing

unlabelled samples since confident ones are more likely to be correct and offer less informa-

tion) [75], query by committee (e.g. the disagreement based methods that use a committee of

hypotheses/models) [73, 76], expected error reduction (e.g. to reduce the expected total number

of incorrect predictions) [77]. While the overwhelming majority of existing active learning re-

searches are spent on generic object / scene classification [71, 78, 79, 80, 81, 82, 83, 84], very

little attempt has been made for person re-id.

To our knowledge, there exist only two works closely related to our research reported in

Chapter 5 an active person identification method [85] and a temporal adaptation based re-id

model [86]. Specifically, instead of learning a generalised cross-view matching function, [85]

trains multi-class SVM person classifiers on known identities with the final model unable to be
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deployed to re-identify previously unseen people (i.e. new classes). In other words, the learned

model has no generalisation ability as required by person re-id. In addition, this model cannot

perform incremental learning as efficiently our proposed method in Chapter 5, since their model

update requires expensive re-training from scratch and less suitable for human-in-the-loop like

active selection. Martinel et al. [86] explore similarly the active learning idea for incremental

re-id model update. In comparison, the active learning algorithm proposed in Chapter 5 is more

extensive and comprehensive (i.e. joint exploitation-exploration vs. exploitation alone) with

lower computational cost (i.e. no need for iterative optimisation and graph based data clustering)

thus more suitable for human-in-the-loop driven incremental re-id model learning.

2.3.2 Updating Strategies

Batch Learning Almost all of contemporary re-id models assume a batch-mode learning scheme,

that the training images is made available all at the same time as a single data pool so that an

offline re-id model can be trained. However, it is difficult to make these batch-mode approaches

adaptable to a surveillance camera network with changing viewing conditions and new data being

continuously generated. In particular, for these existing batch-mode methods to incorporate any

new data, a system has to keep all the past training data, add the new data as a enlarged data

pool, and re-train a new model from scratch. This re-training approach makes them unscalable

to large-scale deployment in the real-world.

Incremental Learning Incremental learning concerns the problem of model training from data

streams where samples arrive in sequence [87, 88]. As opposite to batch-wise model learning

where all training data are assumed already available before (off-line) model training, incremen-

tal learning often requires additionally immediate on-line model update for making the model

ready to accept new data at any time if possible. In computer vision, incremental learning has

been explored in many different tasks, such as image classification [89, 90, 91, 92], object detec-

tion [93], and visual tracking [94].

In re-identification, incremental learning is of more practical importance since it enables

an re-id model to be adapted to the varying viewing conditions in the long term without the

expensive data storage and model re-training. Moreover, useful feedback could be generated

by human operators as a re-id system is being deployed. Incremental learning models are able

to cumulatively utilise these user feedback to improve the matching accuracy, whereas offline

trained models cannot. However, very few incremental learning models have been proposed for
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re-identification, as reviewed below.

[69] consider optimising the time-consuming and error-prone post-rank visual search stage

by formulating a Post-rank OPtimisation (POP) model that aims to refine quickly the ranking

lists. This is achieved by incrementally learning a specific model for each probe person from

a few number of human selections during the re-identification process. However, by design the

POP model is inherently restricted and unscalable due to the need for human feedback on all

probe images and the independence nature between individual person-specific models that un-

favourably prevents the cumulative benefit of historical human selections upon future person

matching and feedback. [86] perform incremental update of a learned re-id model during the

deployment phase for maintaining continuously model performance over time. Both approaches

require multiple iterations of optimisation to conduct each step of an incremental update, which

is time-consuming to an end-user of the system. While sharing a similar spirit in incremental

modelling, the incremental models proposed in Chapter 5 and Chapter 6 are uniquely charac-

terised with more efficient optimisation (i.e. a closed-form solution without the need for iterative

optimisation or solving eigen-problem).

2.3.3 Deployment Strategies

In general, almost all existing methods are aimed for automated human-out-of-the-loop (HOL)

re-id deployment, thus suffering from dramatic performance degradation given a small size train-

ing population and a potentially large searching space in practice, even with the best state-of-the-

art supervised method [23, 24, 25, 47, 95, 96]. In contrast, Chapter 6 proposes a human-in-the-

loop (HIL) re-id deployment framework. The proposed model learns interactively from human

online feedback equivalent to a smaller number of selective labelling of negative-pair data on-the-

fly, therefore costing less human “labelling effort”. This section reviews the concept of general

interactive learning, as well as contemporary re-identification work which also consider human’s

active participation during deployment.

Interactive Learning Interactive model learning with human-in-the-loop is attractive for two

reasons: (1) It provides a user with tools that can significantly alleviate or even eliminate the need

for careful preparation of large-sized training data. (2) It allows to reduce the human labelling

effort by exploiting a model’s capacity interactively. Human-computer interactive models have

been considered in image segmentation [97, 98], object recognition [99, 100], semi-supervised
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clustering [101] and object counting [102]. In addition, relevance feedback [103, 104, 105]

and active learning [106, 80] are also related to a similar idea of exploiting human feedback to

improve model learning. The former has been exploited for interactive image retrieval where

human feedback to search results are used to refine a query. The latter aims to reduce the human

labelling effort by active sample selection for model training. In active learning, knowledge

cumulation during model deployment is not considered, and some offline pre-labelled data are

typically needed for model initialisation.

Human-In-the-Loop (HIL) Re-Id A small number of HIL re-id methods have been proposed

recently. Abir et al. [85] (Fig. 6.2(b,c)) exploited human-in-the-loop verification to expand their

multi-class based re-id model. Compared to the approach proposed in Chapter 6, their method

requires a pre-labelled training set for model initialisation. Another limitation is that such a model

cannot generalise to new person classes re-id when human effort becomes unavailable. Hirzer

et al. [107] (Fig. 6.2(d)) considered a form of human feedback which is ill-posed in practice: It

only allows a user to verify whether a true match is within the top-k ranking list. This limits

significantly the effectiveness of human feedback and can waste expensive human labour when

a true match cannot be found in the top-k ranks, which is rather typical for a re-id model trained

by small-sized training data and deployed to a larger-size test gallery population. More recently,

Liu et al. [69] proposed the POP model (Fig. 6.1(d) and Fig. 6.2(d)), which allows a user to

identify correct matches more rapidly and accurately by accommodating more flexible human

feedback. However, POP requires to perform label propagation on an affinity graph over all

gallery samples. This makes it poor for large gallery sizes (Section 6.5). Moreover, all existing

HIL re-id models [69, 85, 107] do not benefit from cumulative learning, i.e. they treat each probe

re-id as an independent modelling or retrieval task; therefore the process of model learning for

re-id each probe does not benefit learning the models for other probes. This lack of improving

model-learning cumulatively from increased human feedback is both suboptimal and disengaging

the human in the loop. In contrast, the proposed re-id framework in Chapter 6 (Fig. 6.1(c) and

Fig. 6.2(d)) enables incremental model improvement from cumulative human feedback thus

maximising and encouraging human-machine interaction.
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Chapter 3

Affinity Mining from Unlabelled Data

3.1 Overview

Most existing person re-identification methods assume the availability of extensively labelled

cross-view image pairs. However, compared to the small amount of labelled portion, the scale of

unlabelled images are much larger and they are also easier to collect with negligible costs. More-

over, most methods assume a closed-world/set matching scenario , i.e. all the probe people exist

in the gallery set, and every selected person image are guaranteed to find its cross-view matching

pair (see also Section 1.2). These two assumptions significantly limit their usefulness in real-

world applications, particularly with large scale camera networks. To relax these assumptions,

this chapter focusses on addressing the following two problems: (1) Instead of relying on human

annotated data, how to train a discriminative re-id model directly with unlabelled data samples

themselves? (2) How to perform re-id in an open-world scenario where the probe population and

gallery population are only partially overlapped?

In this chapter, we introduce a new re-id scenario termed OneShot-OpenSet Re-Id (OS2Re-

Id). Under this setting, there is no assumption on the access to labelled matching pairs, and

the probe people are not guaranteed to have a match in the galley set. For re-id under this

more challenging yet realistic setting, we propose a novel Regularised Kernel Subspace Learning

(RKSL) model. Our RKSL model differs significantly from existing re-id models in its ability

to effectively learn cross-view identity-discriminative information from unlabelled data alone, as

well as its flexibility of naturally accommodating pairwise labels if available. We demonstrate the
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learn cross-view appearance variations
unlabelled data

ReID matching

unlabelled data

Figure 3.1: Intuition of our cross-view constraint. The unlabelled cross-view data (the left and
right pairs) encode information on cross-view appearance variations, e.g. changes in illumination
and viewpoint respectively. This subtle information is exploited effectively by the proposed
RKSL model for re-identifying the truly matched cross-view people (the middle pair).

efficacy of the proposed model by extensive comparisons with related state-of-the-art methods

on two benchmark re-id datasets, VIPeR and CUHK01.

3.2 Problem Definition

Automated person re-identification is an essential yet challenging task due to the rapid expansion

of large scale camera networks across our physical world [27]. In a public space monitored by

a network of surveillance cameras, person re-id aims to match people across (non-overlapping)

camera views. Even in a space of moderate size (e.g. an underground station), there could easily

be hundreds or even thousands of people passing through within an hour. In a real-world applica-

tion scenario, the objective is not to match each and every one. Instead, one typically has a small

watch list, which could be a list of known active shoplifters for a shopping mall, or a No Fly List

for an airport. An automated re-id system is used to assist human in searching for the people on

the watch list from a large volume of video footages. This is an extremely challenging task be-

cause a person’s appearance can change dramatically due to changes in illumination, view angle,

background clutter and occlusion in different camera views. In addition, many of the innocent

passers-by may look fairly similar to the people on the watch list. To further compound the prob-

lem, there may be only a single shot for each person on the watch list offering insufficient data to

learn the appearance variations. We call re-id under this real-world setting the OneShot-OpenSet

Re-Id (OS2Re-Id) problem.

The objective of this study is to solve this OS2Re-Id problem without any labelled inter-

camera pairs in order to move one step closer towards large scale person re-identification. To

this end, we propose a novel Regularised Kernel Subspace Learning (RKSL) model, which is
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capable of automatically learning more effectively person identify-discriminative information

from unlabelled data, the only available data in this new problem setting. The model aims to

learn a shared kernalised subspace where after being projected, the probe and gallery data become

easier to match than in their original feature space. Such a subspace is learned by constraints on

two types of affinity information among unlabelled data samples: (1) affinities between gallery

and probe images, regardless of their identities, need to be preserved in the learned subspace; and

(2) affinities of visually similar person images from the gallery set need to be separated in the

subspace. These two constraints are incorporated as regularisation terms in our subspace learning

formulation. Importantly, our model has a closed-form solution which runs efficiently making it

suitable for large scale and real-time applications. Furthermore, the model is flexible in that it

can be readily extended to exploit pairwise labels when available.

Contributions – Our contributions are: (1) We introduce a new and more realistic person re-

identification problem called OneShot-OpenSet Re-Id (OS2Re-Id). This problem differs signif-

icantly to the existing closed-world Re-Id problem and does not require the tedious exhaustive

pairwise labelling. This new re-id problem poses more realistic challenges to the re-id research

community and paves a way towards large scale open-world re-id. (2) We present a solution

to the OS2Re-Id problem by proposing a new Regularised Kernel Subspace Learning (RKSL)

model to exploit the unlabelled data, which can be solved efficiently. (3) We further extend our

RKSL model to accommodate any sparse labelled data if available. The efficacy of the pro-

posed RKSL model is extensively evaluated on two of the largest benchmarking re-id datasets

(CUHK01 [108] and VIPeR [7]) by extensively comparing with a wide range of relevant state-of-

the-art methods including three unsupervised models (SDC [33], SDALF [38], and DASA [109]),

one semi-supervised models (SSCDL [70]), and four fully supervised models (RankSVM [36],

KISSME [18], kLFDA [23], and KCCA [61]).

3.3 Inter/Intra-View Affinity Mining for Open World Re-Identification

Let us first formally define the OneShot-OpenSet Re-Id problem before introducing our proposed

model. Suppose we only have unlabelled (in a pairwise inter-camera sense) images of people,

including a one-shot watch list of target people G (gallery) seen in camera view X and a larger

pool of probe people P from camera view Y . Given a probe image in Y , the objective is to

determine (a) whether it matches anyone in the gallery set, and (b) if yes, which one. Note that
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Figure 3.2: Three types of pairwise relationships in re-id. Each node represents a person. Note
that View Y caught more people than View X, reflecting the open-set re-id setting. Nodes of the
same colour within each view indicate that they have similar visual appearances.

we focus on two views here but an arbitrary number of views can be considered.

Our solution to this OS2Re-Id problem is a Regularised Kernel Subspace Learning (RKSL)

model. The model aims to learn a shared subspace such that when data pairs of the same identities

across different camera views are projected into this subspace, they are close to each other, whilst

those from distinct people are further-apart. Importantly the model needs to be learned without

any cross-view pairwise labels. To achieve this, our model is designed to extract subtle identity-

discriminative information from the given unlabelled data via explicitly encoding two types of

data affinity constraints into the subspace learning formulation.

Positive soft inter-view correspondence constraint: The unavailability of labelled cross-view

pairs motivates us to search for other inter-view information, which is noisy but still useful.

Specifically, it is observed that the similarity/affinity measure between two people’s images in

different views in the visual feature space contains some noisy but identity-discriminative infor-

mation. This corresponds to a basic assumption that two visually similar people are more likely

to be the same person than two visually dissimilar people. This assumption would hold true

in most cases. It underpins our soft cross-view correspondence constraint which states that the

soft cross-view correspondence relationship needs to be preserved in the learned subspace. This

constraint is much softer, compared to the labelled hard correspondence constraint exploited by

most supervised distance metric learning models.

Negative intra-view affinity constraint: In contrast to the inter-view relationship which we

want to preserve in the subspace, we wish two visually similar people (i.e. close in the visual

feature space) in the gallery set are separated in the subspace. This constraint is thus to break the



3.3. Inter/Intra-View Affinity Mining for Open World Re-Identification 47

/* Variables associated with view X (similar for Y) */:
{x̆i}nu

i=1: Unlabelled data, with feature matrix X̆ ;
{x̄i}nl

i=1: Labelled data, with feature matrix X̄ ;
{x̂i}nx

i=1 = {x̆i}nu
i=1∪{x̄i}nl

i=1, and X̂ = [X̄ ; X̆ ];
Lx̂: Graph Laplacian matrix;
wx: Projection vectors (model parameters);
α: Kernelised projection vectors;

/* Variables across view X and Y */:
Si j: Similarity measure between x̆i and y̆ j

/* Others */:
K: Kernel matrix on data, further clarified by subscript.

Figure 3.3: Definition of notations.

local affinity structure within each view (see Fig. 3.2 the dashed lines). This constraint is related

to the inter-class constraints in classic techniques such as Fisher discriminative analysis, and

is designed to make the people on the watch list more distinguishable in the learned subspace.

Note, this information is readily available given the one-shot images of different people in a

gallery view, and does not require any labelling.

3.3.1 Model Formulation

Formally, with the two constraints described above formulated as two regularisation terms re-

spectively, our RKSL model has the following objective function:

ρ = max
wx,wy

w>x (∑i, jSi j · x̆iy̆>j )wy√
w>x (Cx̂x̂ +Rx̂)wx w>y Cŷŷwy

(3.1)

with
Cx̂x̂ = X̂>X̂

Cŷŷ = Ŷ>Ŷ
(3.2) Rx̂ =−

γx

n2
x

X̂>Lx̂X̂ (3.3)

where Cx̂x̂ and Cŷŷ are the covariance matrices among data for the two views, and other notations

are explained in Fig. 3.3. In this subspace learning formulation, each data point represented in a

visual feature space F is projected to a subspace P . The projection is realised by two projection

matrices wx and wy for the two views respectively, which are also the model parameters needed

to learn. Note that in the OS2Re-Id setting, X̂ = X̆ , and Ŷ = Y̆ since no cross-view labelled data

is available, i.e. X̄ = Ȳ = ∅.

In Eq. (3.1), the nominatorB=w>x (∑i, jSi j · x̆iy̆>j )wy enforces the positive soft inter-view cor-

respondence constraint, dictating that the cross-view similarity/affinity relationship in F should
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be preserved in P . More precisely, the similarity between a cross-view unlabelled data pair {x̆i,

y̆ j} in P is constrained to be consistent with their similarity Si j in F during the learning pro-

cess. The value of Si j can be set by either learning or non-learning based methods as detailed in

Sec. 3.5.

On the other hand, Rx̂ in the denominator of Eq. (3.1) represents the negative intra-view affin-

ity regularisation for constraining wx, so that in the gallery camera view X , intra-view visually

similar person pairs are pulled apart in the subspace. Formally, we denote Ax̂ as a K-Nearest-

Neighbour (KNN) similarity graph on X̂ . By the properties of graph Laplacian [110], we have:

w>x X̂>Lx̂X̂wx =
1
2

nx

∑
i, j=1

(w>x x̂i−w>x x̂ j)
2Ai j

x̂ (3.4)

where Lx̂ is the graph Laplacian matrix of Ax̂. Therefore, Rx̂ is then computed as the summation

over pairwise distances in space P on visually alike people from gallery view X (see Eq. (3.3)).

By adding its negative regularisation term onto the denominator of Eq. (3.1), we explicitly en-

force the adjacent samples in F to be more separated in P , and in return make the projection wx

more identity discriminative.

Interestingly, rather than maintaining the locality manifold structures as in models designed

for classification [110, 111], our negative regularisation term Rx̂ on the gallery set is designed to

distort them so as to make the projection directions more distinguishable with respect to identi-

ties. This is more appropriate for our verification task. However, we do not intend to completely

destroy the local manifold structure by over-distortion. We thus impose this negative affinity

constraint only on the most visually similar (so confusing) intra-view pairs by using sparse Ax̂

(i.e. a small K in the KNN graph1), whose effect is further controlled by the weight γx. Note

that a similar negative constraint can be applied to the probe set if this information is available as

explained next.

To further extend our model, let us now consider the situation when some labelled cross-view

pairs are available (e.g. as assumed in conventional re-id settings). To that end, we introduce a

third regularisation term to represent any pairwise labelled information by expanding Eq. (3.1)

as follows:

max
wx,wy

w>x (∑
nl
k x̄kȳ>k )wy +η ·w>x (∑i, jSi j · x̆iy̆>j )wy√
w>x (Cx̂x̂ +Rx̂)wx w>y (Cŷŷ +Rȳ)wy

(3.5)

1K is set to 15 in this work.
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where w>x (∑
nl
k x̄kȳ>k )wy is the new regularisation term for encoding the labelled cross-view data

pairs. The coefficient η is a balancing weight parameter for controlling the trade-off between

the hard and soft cross-view data correspondences. Note that we also introduce the negative

regularisation term Rȳ = − γy
n2

y
Ȳ>LȳȲ (similar to Rx̂ in Eq. (3.3)), for the probe set data whose

identities are given from the cross-view pairwise labels.

The objective function in Eq. (3.5) assumes linear projections. However, given significant

changes across views in lighting conditions, poses, and occlusions, the optimal subspace for

cross-view matching may not be obtainable by linear projections. We thus further kernelise

Eq. (3.5) by projecting the data from the original visual feature space into a reproducing kernel

Hilbert space (RKHS) H with an implicit feature mapping function φ(·). The inner-product of

two data points in H can be computed by a kernel function K, with K(xi,x j) = 〈φ(xi),φ(x j)〉.

With the ‘kernel trick’ [112], we obtain the kernelised objective function as:

max
α,β

α>Kx̂x̄Kȳŷβ +η ·α>(∑i, jSi j ·Kx̂x̆iKy̆ j ŷ)β√
α>(K2

x̂x̂ +Rx̂)α β>(K2
ŷŷ +Rȳ)β

(3.6)

where α and β are the kernelised projection vectors for the two views respectively, and the

kernelisedRx̂ andRȳ are:

Rx̂ = εxKx̂x̂−
γx

n2
x

Kx̂x̂Lx̂Kx̂x̂,

Rȳ = εyKŷŷ−
γy

n2
y

KŷȳLȳKȳŷ.

(3.7)

To prevent potential issues caused by the high-dimensional feature maps φ(·), we introduce εxKx̂x̂

and εyKŷŷ to penalise the norms of the associated projection vectors respectively, which is equiv-

alent to Tikhonov regularization [112]. In our evaluation, we set both εx and εy to the standard

value of 0.5 [112], and utilised the exponential chi-square kernel function.

Now after kernelisation we obtain our final subspace learning model (Eq. (3.6)) termed Reg-

ularised Kernel Subspace Learning (RKSL). Among the three regularisation terms in Eq. (3.6),

(1) the term α>(∑i, jSi j ·Kx̂x̆iKy̆ j ŷ)β utilises unlabelled cross-view data to enforce the positive soft

cross-view correspondence constraint; (2) the term Rx̂ / Rȳ uses intra-view data to enforce the

negative intra-view affinity constraint, and (3) the term α>Kx̂x̄Kȳŷβ employs labelled cross-view

data to enforce the positive hard cross-view correspondence constraint. When the cross-view

pairwise labels are unavailable, the third term and half of the second term (i.e.Rȳ) are removed.
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Otherwise, all three terms are kept. This shows the flexibility of our model to deal with different

levels of data annotation.

3.3.2 Model Optimisation

We observe that the value of ρ in Eq. (3.6) is not changed when rescaling either α or β or both.

Thus, the optimisation problem in Eq. (3.6) is equivalent to maximising its numerator subject to

the following two constraints:

α
>(K2

x̂x̂ +Rx̂)α = 1,

β
>(K2

ŷŷ +Rȳ)β = 1
(3.8)

So, the corresponding Lagrangian is:

L(λx,λy,α,β ) = α
T (Kx̂x̄Kȳŷ +η ·∑

i, j
Si j ·Kx̂x̆iKy̆ j ŷ)β

− λx

2
(
α
>(K2

x̂x̂ +Rx̂)α−1
)
−

λy

2
(
β
>(K2

ŷŷ +Rȳ)β −1
) (3.9)

By denoting

C = Kx̂x̄Kȳŷ +η ·∑
i, j
Si j ·Kx̂x̆iKy̆ j ŷ,

Bx = K2
x̂x̂ +Rx̂, By = K2

ŷŷ +Rȳ

(3.10)

where C refers to the cross-view term, Bx and By the corresponding intra-view terms, Eq. (3.9)

can be re-written as:

L(λx,λy,α,β ) = α
TCβ − λx

2
(α>Bxα−1)−

λy

2
(β>Byβ −1) (3.11)

Setting the derivatives of L in respect to α and β to zeros, we obtain:

∂L
∂α

=Cβ −λxBxα = 0, (3.12a)

∂L
∂β

=C>α−λyByβ = 0 (3.12b)

By subtracting β> times Eq. (3.12b) from α> times Eq. (3.12a), we have

0 = λyβ
>Byβ −λxα

>Bxα (3.13)
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After combining Eq. (3.13) with our constraints in Eq. (3.8), we get λx = λy = λ . Together with

Eq. (3.12b), we have

β =
B−1

y C>α

λ
(3.14)

Substituting Eq. (3.14) into Eq. (3.12a), we get

CB−1
y C>α = λ

2Bxα (3.15)

Thus, we obtain a generalised eigenproblem of the form Ax= λBx. By solving this eigenproblem

in Eq. (3.15), we eventually find the closed-form solution of our RKSL model, the optimal

projection matrices α and β defined in Eq. (3.6). Specifically, for each eigenvector α and its

eigenvalue λ obtained from solving Eq. (3.15), we also get a corresponding paired β with Eq.

(3.14).

3.3.3 Model Deployment

Under the OS2Re-Id scenario, given the watch list (gallery set) G and the unlabelled probe set

P, we can obtain their representations in the projected space P by applying the proposed RKSL

(Eq. (3.6)) on G and P. This new representation is learned to be identity-sensitive due to the

discriminative learning strategies as detailed above. Therefore, we directly use the projected data

points in the subspace to perform re-id with the cosine distance [112] as the matching function.

3.4 Datasets and Experimental Settings

Figure 3.4: Examples of matched cross-view image pairs sampled from the VIPeR [7] (first row)
and the CUHK01 [108] (second row) dataset.

Datasets: Under the OS2Re-Id setting, a large probe set is needed for simulating real-world appli-

cation settings. Therefore, we selected two large benchmark datasets VIPeR [7] and CUHK01 [108],
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for the evaluation of the proposed RKSL model. Specifically, the VIPeR dataset contains a to-

tal of 632 people with one image per person per view, whilst the CUHK01 dataset 971 people

with two images per person per view. Both datasets include two disjoint outdoor camera views.

These two ReID datasets are challenging due to the large and unknown cross-view variations

in view angle, illumination conditions, background clutter and diverse/random occlusion (see

Figure 3.4).

Visual features: We adopted the histogram-based image descriptor introduced in [61] as the

person appearance representation. Specifically, three types of features were included: (1) Colour

histogram: First, the images were segmented horizontally into 15 even overlapped stripes. Sec-

ond, for each stripe a weighted colour histogram was extracted in each channel of the HS, RGB

and Lab colour spaces. Finally, the histogram was then quantised as: 8×8 (HS), 4×4×4 (RGB),

and 4× 4× 4 (Lab), resulting in a 2880-D colour vector. (2) HOG [29]: The HOG feature was

computed on 8×8 pixel blocks with cell size of 2×2. For each cell the gradients were quantised

into 4 bins. (3) LBP [113]: The LBP histogram was calculated on grids sized 16× 16. The bin

size for quantisation was set to 58. The final image feature vector (5138-D) was obtained as the

concatenation of these three histograms.

3.5 Experiments and Evaluations

3.5.1 Unsupervised Re-Identification Evaluation

We evaluated the re-id performance of unsupervised methods under the OS2Re-Id setting where

no cross-view labelled data pair is available.

Settings: For both datasets, we created the watch list of target people (gallery set) G by randomly

selecting 120 different people from one camera view, and the probe set P by selecting half of the

whole population (316 on VIPeR and 486 on CUHK01) from the other view, with the condition

that 100 people exist in both G and P. Therefore, there are 216 (= 316-100) imposters in P for

VIPeR, and 386 (= 486-100) for CUHK01. For either G or P, only one-shot image per person is

included2. We evaluated a total of 10 folds and reported their averaged results.

Competitors: We compared with four baseline methods: (1) L1-norm3: a basic distance metric.

(2) SDALF [38]: a type of hand-crafted visual feature specially designed for re-id. (3) SDC [33]:

2Even though two shots per person per view are available on CUHK01, we randomly selected and used
one of the two.

3We found that L2-norm distance gave almost identical results.
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Figure 3.5: Comparing Rank-1 scores of all methods over all FARs on VIPeR (left) and CUHK01
(right). OneShot-OpenSet Re-Id setting.

a state-of-the-art unsupervised re-id model. Note that for mining localised saliency statistics, this

model requires two additional reference sets, one for each camera view and containing the same

group of (100) people [33]. (4) DASA [109]: a state-of-the-art unsupervised domain adaptation

model. In the re-id context, each person is considered as a class, and each camera view as a

domain.

Evaluation metric: We utilised the ROC curves of False Accept Rate (FAR) versus Detection

and Identification Rate (DIR) for performance comparison [114]. Specifically, two steps are

involved: (1) Detection - decide whether a probe person i exists in the gallery based on its

estimated similarity measure {si, j}|G|j=1 with the gallery and a decision threshold τ , i.e. yes if

max({si, j}|G|j=1)> τ , no otherwise. (2) Identification - compute the cumulated matching rank rates

over accepted target people. Note that DIR becomes the Cumulated Matching Characteristics

used for the conventional closed-world setting, when FAR = 100%.

Implementation details: For the parameter setting of our RKSL model, since no labelled data

is available, we cannot use cross-validation to tune the model parameters and they have to be set

empirically. The only parameter we need to set is γx/n2
x = 0.02 (see Eq. (3.3)). The value of K

in the KNN graph and ε were set to standard values (15 and 0.5 respectively as in [110, 111]).

We found that the result was very insensitive to its value. For computing the soft cross-view

correspondence Si j, we simply used the additive inverse of L2 distance between each pair of

cross-view unlabelled data, and normalise its value to a range between 0 and 1.

Comparative Results

It is evident from Figure 3.5 and Table 3.1 that the proposed RKSL model significantly outper-

forms all the competitors on both datasets, particularly with demanding (small) FARs. Particu-

larly, when compared to the second best method (SDC on VIPeR and DASA on CUHK01) at

FAR = 10%, the Rank-1 score is doubled (from 7.3 to 15.1) on VIPeR and tripled (from 6.3 to
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Dataset VIPeR CUHK01
FAR (%) 1 10 50 100 1 10 50 100
L1-norm 1.9 5.4 16.1 27.2 1.8 5.8 9.0 15.7
DASA[109] 0.6 4.7 13.5 27.0 1.8 6.3 15.8 30.8
SDALF[38] 0.7 4.5 16.6 26.9 0.2 1.2 8.0 21.7
SDC[33] 1.7 7.3 21.5 41.5 1.2 5.8 14.0 23.3
RKSL 4.9 15.1 36.7 42.9 7.5 20.2 32.0 36.0

Table 3.1: Comparing Rank-1 scores of different methods at varying FARs. OneShot-OpenSet
Re-Id setting.

20.2) on CUHK01 by RKSL. This demonstrates the effectiveness of the proposed kernel sub-

space learning model in extracting identity-sensitive information from the unlabelled data.

We now examine the performance of each individual baseline method. The state-of-the-art

unsupervised re-id model, SDC, is shown to be less effective on CUHK01 (with a larger probe

set) than VIPeR. A possible explanation is that the 100-people reference sets are not sufficient

to capture the localised appearance saliency and more data are needed when a larger population

(probe people) is considered. In contrast, the proposed RKSL model can overcome this problem

by automatically learning person-discriminative subspace from only unlabelled data using the

two complementary pairing constraints (Section 3.3), without any extra manual cost such as the

need of constructing a reference set for each view with the same group of people. Compared

with RKSL, DASA is much inferior in matching people across views. This suggests that it is

difficult for the unsupervised domain adaption approach to solve the re-id problem where the

intrinsic discriminative information can be more subtle and more challenging to extract than in

the general object recognition/categorisation problem, especially when their assumption on the

two domains containing the same set of classes becomes invalid under our setting. Interestingly,

on CUHK01 dataset we found that SDALF generates even poorer results than L1 except when

FAR = 100% which corresponds to the closed-world setting. This demonstrates the significant

challenges of manually designing re-id features, particularly under the more realistic OS2Re-Id

setting.

Computational Cost Analysis In addition to re-id accuracy, we also quantitatively compared

these methods in terms of efficiency, since it is another important metric to evaluate the useful-

ness of a model in real-world large scale person re-id application. The running time was measured

on a desktop machine with Intel CPU at 3.30 GHz and memory of 8.0 GB with MATLAB imple-

mentation for all compared models. This comparison was made on VIPeR. On average, for each
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fold of re-id experiment, the RKSL model took 0.08 minute (4.8 seconds), whilst SDC 104.26

minutes and SDALF 173.18 minutes. In other words, RKSL is >1000 and >2000 times faster

than SDC and SDALF respectively. This confirms the greater suitability of the proposed RKSL

model over its competitors for the large scale and real-time re-id application in reality.

3.5.2 Semi-Supervised Re-Identification Evaluation

In addition to OS2Re-Id, we also wish to investigate the effects of accommodating labelled data

in model learning. We thus extensively compared the effectiveness of the proposed RKSL model

with existing re-id methods in the conventional semi-supervised settings where some (sparse)

cross-view labelled pairs are available.

Settings: We followed the same semi-supervised setting as in [70]. Specifically, for either VIPeR

or CUHK01, we split the whole dataset into two partitions: one half for training and the other

half for testing. One third of the training partition are cross-view pairwise labelled. For a fair

comparison, on CUHK01 dataset the multi-shot matching as in [115, 21] was adopted for all

comparative methods in this semi-supervised setting.

Competitors: We compared the RKSL model with the only comparable semi-supervised re-id

method, SSCDL [70], as well as four most contemporary fully-supervised models including,

RankSVM [36], KISSME [18], kLFDA [23], and KCCA [61]. For a fair comparison, we utilised

the same visual feature in all methods, except SSCDL which is a patch-based matching approach

and thus their reported results were compared.

Evaluation metric: The conventional Cumulated Matching Characteristics (CMC) curves were

utilised for quantitative comparison between different methods.

Implementation details: Under this semi-supervised setting, we used cross-validation to deter-

mine the free parameters (η ,γx,γy) for the proposed RKSL model, as well as parameters of all

the baseline methods [36, 18, 23, 61].

Comparative Results

The results of all compared methods on both datasets are shown in Figure 3.6 and Table 3.2.

It is observed that the proposed RKSL model significantly outperforms all baseline methods,

particulalry at the top ranks. Specifically, RKSL provides much better re-id accuracy than the

state-of-the-art semi-supervised model SSCDL, e.g. a∼ 9% absolute improvement at Rank-1. In

general, performance gains on top ranks are regarded more important and desirable in practical
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Figure 3.6: Comparing the performance of different methods on VIPeR (left) and CUHK01
(right). The semi-supervised re-id setting (top row). We also include here our evaluation results
under the conventional fully-supervised setting (bottom row).

ReID applications, particularly for Rank-1. This shows the effectiveness of our RSKL method

in learning identity-discriminative information from both unlabelled and labelled data using a

unified single formulation integrating three types of pairwise relationships simultaneously (see

Figure 3.2 and Eq. (3.6)). In particular, this demonstrates the importance of our soft cross-view

correspondence constraint over unlabelled data for cross-view people matching, which however

is totally ignored by SSCDL for its model learning/optimisation.

The results also show that all fully-supervised models yield much worse recognition results

than RKSL. For example, for VIPeR our RKSL improves Rank-1 score over RankSVM [36] by

Dataset VIPeR CUHK01
Ranks Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

RankSVM[36] 20.70 41.77 54.62 68.16 15.00 29.44 37.79 48.18
KISSME[18] 18.48 43.70 57.90 74.46 22.72 47.37 59.13 71.19
kLFDA[23] 27.53 56.01 69.55 82.62 38.27 63.68 73.49 82.18
KCCA[61] 24.62 56.20 71.74 85.56 32.63 60.80 72.57 83.21
SSCDL[70] 25.60 53.70 68.10 83.60 - - - -
RKSL (Ours) 34.21 66.55 78.86 89.27 46.32 72.28 80.82 88.66

Table 3.2: Comparing some matching rates of different methods on VIPeR and CUHK01. The
semi-supervised re-id setting.
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Figure 3.7: Semi-supervised matching on VIPeR. Matching rate as a function of labelled data
percentage.

13.51%, KISSME [18] by 15.73%, kLFDA [23] by 6.68%, and KCCA [61] by 9.59%. And even

larger Rank-1 improvements are gained by RKSL on CUHK01. The main reason of inferior

performance by these supervised methods is the limited availability of labelled data and their

inability of exploiting the large quantity of unlabelled data. Whilst the proposed RKSL model

can effectively utilise both in a unified way, largely relaxing the stringent assumption on labelled

data amount and making it flexible in coping with varying amounts of data annotation.

Effect of Labelled Data Sparsity

For evaluating the performance given different amount of data annotation, we further conducted

a set of experiments on VIPeR by comparing RKSL with the two best baselines, kLFDA [23]

and KCCA [61], when different numbers of labelled pairs are provided. To this end, we changed

the labelled data percentage from 10% to 100% and compared their performances on several

ranks (Rank-1, 5, 10). The results in Figure 3.7 show that the accuracies achieved by the pro-

posed RKSL model are significantly better at all three ranks, compared to the two baselines.

The margins are evidently larger when fewer labelled data are available, which further suggests

the effectiveness of our RSKL in exploiting unlabelled data for person-discriminative subspace

learning. Note that at 100%, this becomes the standard fully supervised re-id setting. Our model

operates under this setting by setting η = 0, i.e. removing the soft cross-view correspondence

constraint as no unlabelled data is available. Figure 3.7 shows that our model, although being

unable to exploit the unlabelled data now, still outperforms the state-of-the-arts (see Figure 3.6

at Rank-1, RSKL:40.16%, KLFDA:38.41%, and KCCA:37.18%). This further demonstrates the

strength and flexibility of our model under a large spectrum of settings.
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3.6 Summary

In this Chapter we have presented an unsupervised and open-world re-id setting termed as OneShot-

OpenSet Re-Id (OS2Re-Id). To solve the problem, a novel Regularised Kernel Subspace Learn-

ing (RKSL) model is proposed. The model is unique due to its capability of learning cross-view

identity-discriminative information from unlabelled data. This characteristics makes RKSL read-

ily applicable and scalable to large scale re-id problems. Also, the RKSL model allows to effec-

tively exploit pairwise labels when available. Extensive comparative evaluations were conducted

to validate the advantages of the proposed model in both under the OS2Re-Id (no pairwise labels)

and conventional (with labelled data) settings.
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Chapter 4

Saliency Discovery from Unlabelled Data

4.1 Overview

In this chapter we continue to investigate the question that what can be explored from unlabelled

data for model training in order to save human labelling efforts. While Chapter 3 has proposed

one possible solution to the problem by learning a global matching function from unlabelled

data, this Chapter explores a different strategy by looking into the localised regions of unlabelled

person images. In particular, this chapter proposes a novel unsupervised re-id modelling ap-

proach by exploring generative probabilistic topic modelling. Given abundant unlabelled data,

our topic model learns to simultaneously both (1) discover localised person foreground appear-

ance saliency (salient image patches) that are more informative for re-id matching, and (2) re-

move busy background clutters surrounding a person. Extensive experiments are carried out to

demonstrate that the proposed model outperforms existing unsupervised learning re-id methods

with significantly simplified model complexity. In the meantime, it still retains comparable re-id

accuracy when compared to the state-of-the-art supervised re-id methods but without any need

for pair-wise labelled training data.

4.2 Problem Definition

Recent efforts on solving the re-id problem are dominated by supervised learning based methods

that aim to learn an optimal matching function or distance metric [19, 34, 36, 53, 116]. More

specifically, for each pair of camera views, a labelled training set is constructed. It consists of
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(a) (b) (c) (d) 

Figure 4.1: Each of (a)-(c) shows (left to right): person image, topic model detected background
map and foreground saliency map. The saliency maps capture localised appearance features
(e.g. brown jacket, red shoes, blue sleeve pattern, pink handbag, green bottom, pink shirt). (d)
show that the distributions of the foreground saliency maps from two different camera views of
the same person are stable and useful for re-id. Best viewed in colour.

a set of people for which images of each individual must be annotated manually with an iden-

tity label across both views. A matching function is learned from the training set subject to

a set of constraints, that is, a pair of images of the same person should have larger matching

score/smaller similarity distance compared to that of two different people given the labelling

information, regardless their visual appearance dissimilarity/similarity. By satisfying these con-

straints the learned model can implicitly discover visual features that are more stable against

intra-class appearance variations. These variations are typically caused by viewing condition

changes across a particular pair of camera views. However, there is a significant limitation of

these supervised learning based methods – a large set of people must be labelled manually across

every pair of camera views. Moreover, even for the same pair of camera views, once the con-

ditions change (e.g. different time of the day), new labelling may be needed again to update

the matching function. Therefore, such approaches are inherently limited in their scalability to

different camera pairs at different times without the need for exhaustive and repeated manual

labelling. This is impractical for large camera networks of hundreds of cameras.

Based on the reasons stated above, unsupervised methods are thus more preferred for over-

coming the limitations of supervised learning. As already been discussed in Section 2.2.3,

saliency-based feature selection has been proved to have good properties which can be explored

through unsupervised learning, whereas existing saliency-based re-id methods are still imper-

fect to a large extent. In this chapter, a novel unsupervised modelling approach to saliency

detection for person re-id is proposed based on probabilistic generative topic modelling. This is

significantly different from previous attempts, which are data-driven and discriminative. More

specifically, given abundant unlabelled data, our model aims to learn simultaneously what peo-

ple look like (background removal in a bounding box) and how their typical appearance can be

represented by a collection of local and visually coherent parts. This is achieved by learning a
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set of latent topics that correspond to both typical and localised human appearance components,

e.g. blue jeans and dark suit. This component-based typical appearance representation is then

deployed for identifying atypical appearance by discovering local saliency. This generative topic

model based representation is also inherently capable of differentiating background clutters from

typical human appearance in a detected person bounding box (Figure 4.1), beneficial to person

re-id in cluttered scenes [38, 37].

This chapter proposes a Generative Topic Saliency (GTS) model based on unsupervised topic

modelling designed specifically to discover re-id relevant saliency that corresponds to atypi-

cal appearance of individual people (foreground). It also simultaneously removes surrounding

background clutter in a person detection bounding box. It has two advantages over the existing

saliency model for person re-id [33]: (1) Interpretability - each learned topic has clear seman-

tic meaning. (2) Complexity - only a single model is needed for computing saliency for all the

images in a camera view, in contrast to having to construct a different saliency model for every

image patch of every image. Comparative evaluations on the VIPeR [7] and iLIDS [8] datasets

demonstrate that the proposed GTS model not only outperforms existing unsupervised learning

based saliency model, but also is competitive to the state-of-the-art supervised learning models

without the need for expensive data labelling.

Contributions – Our contributions are: (1) A novel re-id model, Generative Topic Saliency

(GTS), for localised human appearance saliency selection by exploiting unsupervised generative

topic modelling. (2) The GTS model is capable of simultaneous foreground saliency detection

and background clutter removal. (3) The GTS model yeilds state-of-the-art re-id performance

against existing unsupervised learning based re-id methods.

4.3 Unsupervised Saliency Discovery by Generative Topic Modelling

4.3.1 Image Representation

Similar to [33], we adopt an over-sampled local patch based representation for each person image.

More precisely, each image is represented by 50% overlapped uniform-sized square patches on

a dense grid. From each patch, a 32-bin color histogram is computed in the LAB color space

with 3 levels down-sampled. SIFT features are also computed in the 3 color channels, with each

patch divided into 4×4 cells and 8-bin orientations of local gradients. The final patch descriptor

is computed by L2 normalisation and concatenation of the colour histogram and SIFT, giving a
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672 dimensional feature vector (32×3×3+8×4×4×3). Patch size and grid step length are 10

and 4 pixels respectively. Our overall image representation builds on the patch descriptors and

differs from that of [33]. Specifically, a topic model treats each document (image) as a certain

combination of visual words and requires a bag-of-words representation. Given the patch feature

vectors from each image, we cluster all the patch feature vectors from an unlabelled training set

into a Nv = 2000 words codebook by K-means clustering. Given this codebook, each patch is

assigned with a word label by its cluster index. An image Im is then represented by Nm words

together with their image positions, denoted as {wnm, lxnm , lynm}
Nm
n=1, with wnm the word label of a

patch, lxi j and lyi j the image coordinates of that patch.

4.3.2 Model Formulation

Given a set of M images of people in bounding boxes, typically extracted from a person detector,

we wish to learn a joint topic model capable of capturing the typical appearance of people in

foreground patches and simultaneously separating the background patches within each bounding

box, without any labelling information. The topic model essentially factorises the image patches

and attempts to find localised coherent patches (not necessarily connected) that correspond to

common appearance traits of people such as grey top and blue jeans, without any supervised

learning. However, the bounding boxes inevitably contain backgrounds, which are often also

spatially and visually coherent. To differentiate them, background patches are also modelled

explicitly by the generative topic modelling. We thus learn two types of latent topics in our model

corresponding to foreground and background respectively. Since foreground appearance are in

general more ‘compact’ than background, similar to [117] we choose a Gaussian distribution to

encode foreground human appearance topics and a Uniform distribution to encode more spread-

out background topics.

Model Description – Our model is a generalisation of the Latent Dirichlet Allocation (LDA)

model [118] with an added spatial variable to make the learned topics spatially coherent. Given

a dataset of M images, each image will be factorised (clustered) into a unique combination of K

shared topics, with each topic generating its own proportion of words on that image. Concep-

tually, one topic encodes a certain distribution of visual words (patches), whose vocabulary and

spatial location revealing certain patterns, in our case the visual characteristics of human appear-

ances and backgrounds. Among these K topics, Kha topics are used to model foreground human

appearance, and Kcb = K−Kha topics represent background within the bounding boxes from the
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entire training dataset. In this work we set Kcb = Kha = 20 as in [117]. Suppose Dir, Multi,

NW , N denote respectively Dirichlet, Multinomial, Normal-Wishart and Normal distributions,

the generative process of this model is:

1. For each topic tk ∈ {t1, t2, . . . , tK}, draw its appearance distribution βk ∼ Dir(β 0
k ).

2. For each image Im ∈ {I1, I2, . . . , IM}, draw the human appearance and camera background

topic distribution θm ∼ Dir(α). Each human appearance topic tk ∈ T ha is assigned with

a Gaussian distribution parameters to reflect the spatial location and size of the human

appearance on Im: {µkm,σk j} ∼ NW(µk
0 ,λ

k
0 ,W

k
0 ,v

k
0).

3. For each patch Pnm ∈ {P1m,P2m, . . . ,PNmm}, draw its topic znm ∼Multi(θm), draw its vocab-

ulary wnm ∼Multi(βznm) and draw its location lnm. If znm is a human appearance topic then

its location is Gaussian distributed, lnm ∼N (µznmm,σ
−1
znmm); if znm is a camera background

topic then its location is Uniformly distributed, lnm ∼Uni f orm.

Model Learning – The learning task for this model is to infer the following quantities: (1) The

vocabulary distribution of each human appearance and background topics βk, (2) all topics’ word

proportion θm and their locations {µmk,σmk} in each image, and (3) each patch’s topic assignment

znm. The joint distribution of observed data set O, latent variables set L and hyper-parameters set

H is given by:

Pr(O,L|H) =
M

∏
m

K

∏
k

[
Pr(µmk,σmk|µk

0 ,λ
k
0 ,W

k
0 ,v

k
0)Pr(θm|αm)(

Nm

∏
n

Pr(wnm|znm,θm)Pr(znm|θm)

)]
Pr(βk|β 0

k )

(4.1)

This model is intractable by exact solutions. An approximate solution can be learned by the

EM algorithm with a variational inference strategy, through introducing a Dirichlet parameter

γ and a multinomial parameter ϕ as variational parameters. Under this variational inference

framework, γ is learned for each image, with γmk modelling the proportion of patches which

belong to topic tk in image Im. ϕ is learned for each patch, with ϕnmk modelling the probability of

patch Pnm on image Im being generated by topic tk. The hyper-parameter α is set to 1 for all human

appearance and camera background topics because our method is completely unsupervised and

thus all topics may appear in any images.
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4.3.3 Saliency Discovery

A key objective of our model is to discover local foreground patches in a person’s image that

make the person stand out from other people, i.e. the model seeks not only visually distinctive

but also atypical localised appearance characteristics of a person. To compute such a saliency

value, let us first consider to compute a ‘prevalence’ value of each patch and define saliency

as the inverse of prevalence, as the former is more naturally computable by the topic model.

Specifically, for a patch PA on image IA, its saliency value is measured by how unlikely this patch

will appear in a training set IR of J images at the proximity of a particular spatial location in

the images. PA’s saliency score is the inverse of its prevalence value in IR. For computing patch

prevalence value, suppose the learned latent variables set is L and their hyper-parameter set is H.

The topic appearance vector βvk reflects the probability that vocabulary (the collection of words

in the codebook) v is generated under topic tk. The multinomial parameter ϕnmk refers to the

probability that patch Pnm’s topic is tk given the learned model parameters:

βkv = Pr(w = v|tk,L,H), v = 1,2, . . . ,Nv; ϕnmk = Pr(znm = tk|L,H), k = 1,2, . . . ,K (4.2)

Based on the Bayes’ Theorem, combining the two equations in Eqn. (4.2) gives the joint likeli-

hood of observed word wnm and its topic znm as:

Pr(wnm = v,znm = tk|L,H) = Pr(w = v|tk,L,H)Pr(znm = tk|L,H) (4.3)

By margining out the topic variable znm over t1 to tK , we obtain the likelihood of patch Pnm’s

vocabulary wnm. This likelihood value reflects our model’s confidence for the visual word wnm to

be vocabulary v: (v = 1,2, . . . ,Nv):

L(wnm) = Pr(wnm = v|L,H) =
tK

∑
znm=t1

Pr(wnm = v,znm = tk|L,H) (4.4)

To measure the probability of patch PA appearing in image Im, we impose a simple but reasonable

human prior knowledge on people’s images, that is, a person’s position within a bounding box

is relatively stable, and a patch’s horizontal shift caused by viewpoint change is far larger than

its vertical shift. This assumption is typically valid for a pedestrian captured in a bounding box.

Based on this assumption, in each image Im in IR we build a patch set P̂A
m by taking all the patches
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in the same horizontal row as PA. The elements in P̂A
m are referred as PA

m,r, with r as the row index.

Given PA’s vocabulary wPA = v0, the probability that patch PA repeatedly appears in image Im of

IR is measured by the maximum probability for P̂A
m patches’ vocabulary equalling to v0:

P(PA in Im) = max
(

Pr
(

wPA
m,r

= v0|L,H
))

, PA
m,r ∈ P̂A

m (4.5)

Patch PA’s prevalence level is computed by accumulating P(PA in Im) for all the images Im in IR:

Prevalence(PA) = ∑
Im

P(PA in Im), Im ∈ IR (4.6)

Given the prevalence value of each patch (Eqn. (4.6)), its saliency score is initialised by

applying an inverse function h(x) on its prevalence value. These saliency scores are then further

refined by two basic principles as follows. First, a patch with high probability of belonging to

background topics should have low saliency scores. Second, even if a patch belongs to a human

appearance topic, but if this topic is very dominant/popular in the training dataset (e.g. many

people wearing jeans), the patch also should have low saliency score.

The learned Dirichlet parameter γmk reveals the proportion of patches on Im belonging to

topic tk, which can be treated as a pseudo count for the amount of patches falling into each topic

on Im. We then model the popularity of topic tk by accumulating γmk over all images in the probe

set I p and gallery set Ig:

Popularity(tk) = ∑
Im

γmk, Im ∈ {I p,Ig} , tk ∈ T ha (4.7)

The M foreground topics with highest Popularity values is treated as popular human appearance

topics, and deployed to form a topic set T pop. In practice, we take M = Kha/2, i.e. 50% of all

human appearance topics with higher popularity scores are considered to be statistically com-

mon/typical. The final saliency score of patch PA is computed by combining its prevalence level,

the probability of its topic not belonging to a background topic, and being less popular (atypical)

among foreground appearance topics, i.e.

Saliency(PA) = h(Prevalence(PA))−η1 · ∑
tk∈T cb

Pr(zA = tk|L,H)

−η2 · ∑
tk∈T pop

Pr(zA = tk|L,H), 0 < η1,η2 < 1
(4.8)
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where h(x) is a inverse function defined as taking the additive inverse and normalising the result

into the [0,1] interval. Prevalence(PA) is given by Eqn. (4.6). The last two terms can be calculated

through Eqn. (4.2), whilst η1,η2 are their weights to affect the saliency score, determined by

cross-validation during our experiment. If one considers that Prevalence(PA) simply measures

how likely the exact same patch appears repeatedly across images, its topic’s popularity takes

much larger amounts of patches into consideration. These patches may even be visually different

from PA, but they are inherently related by the same topic. This model avoids the topic being

simply data-driven; it also considers more inherent structure of the large-scaled data. It is worth

pointing out that the model of [33] selects two independent reference training datasets (one for

the gallery camera view and another for the probe camera view) and trains many patch-specific

and view-specific discriminative models: a different model for every patch of every probe image

and every gallery image in order to match the probe image against a set of gallery images for

re-id. In contrast, our method only requires to train a single model for each camera view given an

independent training dataset from that view. Then only two models are required for all patches

of all the probe images and all the gallery images respectively. Some examples of the saliency

maps obtained using our method are shown in Figure 4.2 and Figure 4.3. In addition, we also

show in Figure 4.4 different background patterns discovered by our GTS model, which can be

removed for better re-id matching performance.

Figure 4.2: Saliency maps comparison (left to right): A person image in detected bounding box,
GTS-computed background map, GTS-computed saliency map, saliency map computed by the
model of [33] (green bounding box).

4.3.4 Model Deployment

Given the saliency score, we adopt the same patch-based image matching scheme of [33] to com-

pute a matching score between a set of gallery images and a probe image from an independent

test set. First we build a corresponding pairwise relationship for all the patches in a probe image

IA and a gallery image IB. In each patch pair (image location indexed), one patch P1 is from

IA and the other P2 from IB. More precisely, a pair of (P1, P2) patch is the nearest neighbour
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match searched in the proximity of P1 in IB or vice versa P2 in IA. The matching similarity dis-

tance metric is given by s = exp(−d2/2a2), where d is the Euclidean distance between two patch

feature vectors and a is the bandwidth of a Gaussian function. The overall similarity between

the two images is computed by a weighted sum accumulating all the patch pairs’ similarities

weighted by the saliency scores of patches in each pair, i.e. an accumulation over the quantity

Saliency(P1) · s(P1,P2) · Saliency(P2), where P1 and P2 are two patches in one pair. It is worth

pointing out that the published code of [33] utilizes foreground masks to remove background

patches in VIPeR images. The similarity score between a pair of images is only computed in the

foreground region. A similar process of background removal is adopted by many existing works

[38, 37, 33]. Body parts information are not explored in our experiments.

Figure 4.3: More qualitative results of the discovered saliency regions by our unsupervised GTS
model. Cross-view image pairs of the same identities with their saliency maps are shown here.
The detected saliency regions are found to be stable under different camera views.

4.4 Datasets and Experimental Settings

We evaluate our method on two widely used benchmark datasets, VIPeR [7] and iLIDS [8]. The

VIPeR dataset contains 632 pedestrian image pairs. Each pair of images contain the same individ-

ual, but were taken from different camera views. Following the experimental setting of [35, 38],

we randomly choose half of the dataset, i.e. 316 image pairs, as our training sets. On this train-

ing set, we train two topic models, one for each camera view. Among the 316 pairs of training

images, we choose 100 pairs as our reference sets for computing saliency and use one reference

set per camera view, same as [33]. The iLIDS dataset contains 476 images of 119 people. We

followed the same single shot experiment protocol as [53], i.e. randomly choose all images of

p = 50 people as test set, and use the other images as training set. In the test set, one image per

person is chosen to form a gallery set, while all the remaining images compose a probe set. We
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Figure 4.4: Some typical background patterns discovered by GTS, different colors showing dif-
ferent background topics. Coloured regions shows high probability to belong to the topic.

run our experiments for 10 trials with different splits, and report the average of these 10 trials

as our final result. The performance is evaluated using the Cumulated Matching Characteristics

(CMC) curves.

4.5 Experiments and Evaluations

4.5.1 Unsupervised Competitors Evaluation

We first compare our GTS model against non-learning based methods, i.e. template matching

with a distance measure. L1-norm and L2-norm distances are used as the baseline models for

comparison. Figures 4.5 and 4.6 show respectively the results on VIPeR and iLIDS. It is evident

that our method significantly outperforms the baseline non-learning methods, e.g. Rank-1 about

150% (VIPeR) and 14% (iLIDS) relative improvement over L1-norm. This suggests that the

unlabelled data indeed helps improve re-id matching accuracy.

Next we compare GTS to a number of contemporary unsupervised learning methods includ-

ing eSDC knn [33], eSDC ocsvm [33] 1, LDFV [44] and SDALF [38]. Figures 4.5 and 4.6

1The results of KNN and OCSVM in our experiments are obtained by running the author published
code under our experiment settings. The results are thus slightly different from those reported in [33].
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Figure 4.5: VIPeR test: CMC comparison of
unsupervised learning based re-id models.

Method r=1 r=5 r=10 r=20
ELF 12.00 31.50 44.00 61.00

PRDC 15.66 38.42 53.86 70.09
PCCA 19.27 48.89 64.91 80.28

LMNN-R 20.00 49.00 66.00 79.00
KISSME 19.46 48.10 62.50 78.32
RPLM 27.00 - 69.00 83.00

LF 24.18 - 67.12 -
GTS 25.15 50.03 62.50 75.76

Table 4.1: VIPeR test: Comparing the GTS model
to supervised learning based models.

show that our model is clearly superior to LDFV and SDALF, e.g. Rank-1 27% (VIPeR) relative

improvement over SDALF. These results show that modelling human saliency gives the GTS

model an advantage over the feature-design based unsupervised learning approaches. Compar-

ing with eSDC knn and eSDC ocsvm, which are also patch based unsupervised saliency learning

methods, the GTS model still shows a notable improvement, e.g. Rank-1 5% (VIPeR) and 15%

(iLIDS) relative improvement over eSDC ocsvm. Figure 4.2 sheds some light into why the GTS

model outperforms these two models in [33]. It is evident that a better saliency map is obtained

using the GTS model. This is mainly because our topic model explicitly models human ap-

pearance as well as background so that the background cannot be mistaken as distractions to

true foreground local salient region discovery. In contrast, the model of [33] can give false high

saliency scores due to confusion with background regions, while the saliency scores for those

real salient regions on those image are pulled down due to the interference of backgrounds, thus

cannot be utilised in the re-id process. Computationally, the GTS model is also twice as fast to

compute when compared to [33].

4.5.2 Supervised Competitors Evaluation

We also compared our GTS model against some recently proposed supervised learning based

re-id models. In general, supervised learning of discriminative models are expected to provide

better re-id performance due to the use of labelled information for learning strong discriminative

functions, with a high price for labelling the data. Tables 4.1 and 4.2 show results on VIPeR

and iLIDS respectively. It is clear that without using any labelled data for model training, the

GTS model is competitive against these supervised learning methods without the benefit from
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Figure 4.6: iLIDS test: CMC comparison of
unsupervised learning based re-id models.

Method r=1 r=5 r=10 r=20
SDC knn 33.31 57.55 68.22 83.13

SDC ocsvm 36.81 58.10 69.69 82.94
PRDC 37.83 63.70 75.09 88.35
LMNN 27.97 53.75 66.14 82.33

PLS 22.10 46.04 59.95 78.68
ITM 28.96 53.99 70.50 86.67
GTS 42.39 61.35 71.04 82.21

Table 4.2: iLIDS test: Comparing the GTS model
against other unsupervised (top) and supervised (bot-
tom) learning based models.

learning strong discriminative functions using labelled data. Moreover, the GTS model is able to

outperform a number of the supervised learning models by some notable margins, e.g. Rank-1

20% (VIPeR) and 13% (iLIDS) relative improvement over PRDC, LMNN and KISSME (Tables

4.1 and 4.2). This suggests that the GTS model is scalable to large scale applications when

manual annotations of identity labels across camera views are not available or feasible.

4.6 Summary

We proposed a novel unsupervised generative saliency learning framework for person re-identification.

The core of this framework is a probabilistic topic model specifically designed for modelling

jointly typical human appearance and the surrounding background appearance. The model can be

deployed to simultaneously learn a saliency map and foreground segmentation for a more accu-

rate and scalable person re-identification model. Compared with existing unsupervised learning

methods, the GTS model improves re-id accuracy significantly, especially on Rank-1. The GTS

model is also competitive against a couple of supervised learning based competitors, but without

requiring manual labelling of data, resulting in greater scalability to large scale re-id problems in

many practical applications.
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Chapter 5

Incremental Learning from Actively Labelled Data

5.1 Overview

Training unsupervised re-identification models from only unlabelled data (Chapter 3, 4) is ap-

pealing since it does not require any forms of human annotation. However, a trade-off to these

models often sacrifice discriminative power, and are less effective in re-id matching performance

compared to the fully-supervised models trained with extensively labelled data. One question

arises: can we exploit the advantage of both unsupervised and fully-supervised learning, so that

model scalability and discriminative capability can be achieved simultaneously? We notice that

real-world re-identification systems often have access to a great extent of unlabelled data, but

only afford a very limited human labelling budget for model training purposes. Thus, an inter-

esting problem to investigate regarding to human labelling is that: how to efficiently exploit very

few human annotations, but to learn a most discriminative re-id model? Specifically, existing

methods are limited due to three reasons:

1. Small Sample Size: Due to the high labelling costs and the limited human labour budget,

the labelled training population is small in number compared to the searching space at

deployment stage. Moreover, the available image samples for each person in typical re-id

training data is very limited, e.g. one-shot or a few shots. The SSS problem can thus result

in singular intra-class and poor inter-class scatter estimations, indications of problematic

class distributions, which in turn lead to suboptimal discriminative solutions.
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2. Unselective Data Labelling: Given the limited labelling budget and the small training data

size, it is thus important to be selective when choosing which data to label among the

vast quantity of unlabelled person images generated by a surveillance camera network.

In other words, labelling efforts should only be spent on those most representative data

samples which contribute most to a model’s discriminative capability. However, existing

approaches only assume random data selection for labelling, which is a waste of resource.

3. Offline Labelling: Existing person re-id methods usually consider off-line batch-wise model

learning. However, real-world data collection is an incremental procedure. That is, addi-

tional labelled images are available for model training over time, instead of being collected

together once at the same time. Also, both camera viewing conditions and population ap-

pearance patterns may vary over time. It is thus highly desirable for a re-id model to grow

and adapt continuously to the increasingly available labelled data. Moreover, a contin-

uously improving re-id model with an increasingly accurate matching performance will

also make the labelling work progressively easier. Given the existing re-id models, this

can only be achieved by re-training a model from scratch, resulting in not only high com-

putational cost but also slow response time to a user. They are thus unsuitable for any

human-in-the-loop model adaptation.

In this chapter, these three limitations are addressed by formulating person re-id as a re-

gression problem [119] with active learning strategies. In particular, the proposed approach has

several advantages over existing methods: (1) It has a very simple and efficient closed-form so-

lution with only linear equations; (2) It does not aim to model intra-person variation/distribution

thus can accommodate arbitrary sample size per person, e.g. one-shot, effectively mitigating the

small sample size problem in re-id; (3) It is readily extended to incremental learning, enabling

real-time online model update to incorporate newly available data from model deployment; (4)

Its incremental capability can facilitate active sampling to minimise data annotation effort and

maximise labelling cost-effectiveness. The contributions of this chapter are:

1. We formulate person re-id as an identity regression embedding problem, designed to better

cope with the small sample size problem inherent to person re-id. This is in contrast

to all existing methods that aim to learn either a classification, verification, or ranking

embedding space, which all suffer from the small sample size problem. In particular, we

construct explicitly an identity regression space defined by the different person identities
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of the training population, with each dimension uniquely representing each training person

class.

2. We introduce an Identity Regression Space (IRS) model for learning a regression function

that maps the raw image feature space to the identity regression space. This IRS model

is extremely efficient to compute due to its closed-form solution. This is in contrast with

existing classification, verification and ranking based models which need to solve a gener-

alised eigen-problem or some expensive iterative optimisation.

3. We extend the proposed IRS model for incremental learning by deriving an on-line model

update algorithm. Instead of learning from scratch for each model update as required by

most existing methods, this IRS incremental learning model enables to rapidly build a re-id

model from piecewise new data only, and progressively adapt the model to more data when

available.

4. We further introduce a new active learning algorithm for cost-effective human-in-the-loop

incremental model learning and update, by only querying the most informative rather than

randomly sampled feedback from a human operator. This active learning model aims to

jointly explore the population diversity and discover the class boundary of the up-to-date

model. This is mostly lacking in all existing person re-id models.

Extensive experiments on four benchmark datasets VIPeR [7], CUHK01 [108], CUHK03 [1] and

Market-1501 [2] demonstrate the superiority and advantages of the proposed IRS model over a

wide range of state-of-the-art person re-id models. [21], Additional evaluation and analysis are

given to validate the efficacy of the proposed incremental learning and active sampling algorithms

for on-line model adaptation.

In the following sections, first we introduce our basic IRS model in the context of a standard

supervised learning scenario, whereas its incremental extension and its active learning algorithm

are proposed in later sections.

5.2 Identity Regression Learning

5.2.1 Problem Definition

We first consider the image-based person re-identification (re-id) problem [27] in a standard

supervised learning setting to introduce our base matching model. The key is to handle the un-
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controlled and complex person appearance variations caused by the significant discrepancy in

camera viewing condition and human behavioural pose. Similar to existing supervised learning

based re-id approaches, we aim to formulate a discriminative feature embedding model capa-

ble of effectively and efficiently revealing identity related information of person images from

different camera views.

Formally, we assume a labelled training dataset XXX = [xxx1, · · · ,xxxi, · · · ,xxxn] ∈ Rd×n where xxxi ∈

Rd×1 denotes the d-dimensional feature vector of image xxxi, with the corresponding identity label

vector lll = [l1, · · · , li, · · · , ln] ∈ Z1×n, where li ∈ {1, · · · ,c} represents the identity label of image

xxxi among a total of c identities. So, these n training images describe c different persons captured

under multiple camera views. We omit the camera label here for brevity. The model learning

objective is to obtain a discriminative feature embedding PPP ∈Rd×m, i.e. in the embedding space,

the distance between intra-person images is small whilst that of inter-person images is large re-

gardless of their source camera views. In most existing works, the above criterion of compressing

intra-person distributions and expanding inter-person distributions is encoded as classification /

verification / ranking losses and then a feature embedding is learned by optimising the corre-

sponding objective formulation. However, due to the Small Sample Size problem, the learned

embedding space is often suboptimal and less discriminative. In addition, there is often no clear

interpretation on the learned embedding space.

Our method is significantly different: Prior to the model training, we first explicitly de-

fine an ideal embedding space, and then train a regression from the raw feature space to the

defined embedding space. The learned regression function is our discriminative feature embed-

ding. Specifically, we define a set of “ideal” target vectors in the embedding space, denoted by

YYY = [yyy>1 , · · · ,yyy>n ]> ∈ Rn×m, and explicitly assign them to each of the training sample xxxi, with

yyyi ∈ R1×m referring to xxxi’s target point in the embedding space, i ∈ {1,2, · · · ,n} and m referring

to the embedding space dimension. In model training, we aim to obtain an optimal feature em-

bedding PPP that transforms the image feature xxx into its mapping yyy with labelled training data XXX .

During model deployment, given a test probe image x̃xxp and a set of test gallery images {x̃xxg
i }, we

first transform them into the embedding space with the learned feature embedding PPP, denoted

as ỹyyp and {ỹyyg
i } respectively. Then, we compute the pairwise matching distances between ỹyyp

and {ỹyyg
i } by the Euclidean metric. Based on matching distances, we rank all gallery images in

ascendant order. Ideally, the true match of the probe person is supposed to appear among top
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Figure 5.1: Illustration of embedding spaces obtained by three training coding methods. Note, ni

in (b) refers to the training image number of person i extracted from any cameras.

5.2.2 Identity Regression Space

To learn an optimal regression function as feature embedding, one key question in our framework

is how to design the target “ideal” embedding space, in other words, how to set YYY . We consider

two principles in designing distribution patterns of training samples in the embedding space:

1. Compactness: This principle concerns image samples belonging to the same person class.

Even though each person’s intra-class distributions may be different in the raw feature

space, we argue that in an optimal embedding space for re-id, the variance of all intra-class

distributions should be suppressed. Specifically, for every training person, regardless of

the corresponding sample size, all samples should be collapsed to a single point so that the

embedding space becomes maximally discriminative with respect to person identity.

2. Separateness: This principle concerns image samples belonging to the different person

classes. Intuitively, the points of different person identities should be maximally separated

in the embedding space. With a more intuitive geometry explanation, these points should

be located on the vertices of a regular simplex with equal-length edges, so that the embed-

ding space treats equally any training person with a well-separated symmetric structure.

Formally, we assign a unit-length vector on each dimension axis in the embedding space to

every training person identity, i.e. we set yyyi = [yi,1, · · · ,yi,m] for the i-th training person (Figure

5.1(a)) as:

yi, j =


1, if li = j;

0, if li 6= j.
with j ∈ [1,2, · · · ,m], (5.1)

where li is the identity label of image xxxi. We name this way of setting YYY as Uniform Coding. The

embedding space defined by Eq. (5.1) has a few interesting properties:
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1. Each dimension in the embedding space corresponds to one specific training person’s iden-

tity;

2. Training persons are evenly distributed in the embedding space and the distances between

any two training persons are identical;

3. Geometrically, the points of all training person identities together form a standard simplex.

Because each dimension of this embedding space can be now interpreted by one specific train-

ing identity, we call such an embedding space an identity regression space. Having the identity

regression space defined by Eq. (5.1), we propose to exploit the multivariate ridge regression al-

gorithm [119, 120]. In particular, by treating YYY as the regression output and PPP as the to-be-learned

parameter, we search for a discriminative projection by minimising the least mean squared error

as:

PPP∗ = argmin
PPP

1
2
‖XXX>PPP−YYY‖2

F +λ‖PPP‖2
F , (5.2)

where ‖ · ‖F is the Frobenius norm, λ controls the regularisation strength. Critically, this formu-

lation has an efficient closed-form solution [119]:

PPP∗ =
(
XXXXXX>+λ III

)†XXXYYY , (5.3)

where (·)† denotes the Moore-Penrose inverse, and III the identity matrix. Since our model learn-

ing is by regression towards a training identity space, we call this method the “Identity Regression

Space” (IRS) model (Figure 5.2).

Discussion. We further discuss the proposed IRS model on the following three aspects:

1. It does not need to calculate any within-class scatters or estimate intra-person distributions,

thus it is well suited for mitigating the SSS problem;

2. Compared to most existing methods, the compactness criterion can be viewed as an ex-

treme case of minimising the intra-class scatter as in LDA [118] for obtaining better em-

bedding, enjoying a similar spirit and advantage as [47]; and

3. Our separateness criterion differs significantly from the conventional way of achieving a

discriminative embedding space by learning from the inter-class scatter for separating dis-

tinct person classes. Specifically, by treating all training persons equally and distributing
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Figure 5.2: Illustration of our Identity Regression Space (IRS) person re-id model. During model
training, by regression we learn an identity discriminative feature embedding from (a) the image
feature space to (b) the proposed identity regression space defined by (c) all training person
classes (indicated by circles). During deployment, we can exploit the learned feature embedding
to re-identify (d) novel testing person identities (indicated by triangles) in IRS.

them evenly in the embedding space, the learned feature embedding may be better gener-

alisable to previously unseen testing population as compared to existing methods that take

the learning-to-optimise principle without guarantee to induce such a regular embedding

space as the IRS model.

Alternative Coding. Apart from the above Uniform Coding (Eq. (5.1)), other designs of the em-

bedding space can also be readily incorporated into our IRS model. We consider two alternative

coding methods. The first approach respects the Fisher Discriminant Analysis (FDA) [121, 122]

criterion, named FDA Coding, which is adopted in the preliminary version of this work [95]. For-

mally, the FDA criterion can be encoded into our IRS model by setting target identity regression

space as (Figure 5.1(b)):

yi j =


1√
ni
, if li = j;

0, if li 6= j.
with j ∈ [1,2, · · · ,m]. (5.4)

where ni and li refers to the total image number and identity label of training person i. A de-

tailed derivation is provided in Appendix A. As opposite to Eq. (5.1) which treats each person
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identity equally (e.g. assigning them with unit-length vectors in the embedding space), this FDA

coding scheme assigns variable-length vectors with the length determined by ni. As shown in

(Figure 5.1(b)), with the FDA criterion, the resulting training identity simplex in the embedding

space is no longer regular. This may bring benefits for typical classification problems by making

size-sensitive use of available training data for modelling individual classes as well as possible,

but not necessarily for re-id. Particularly, modelling training classes in such a biased way may

instead hurt the overall performance since the re-id model is differently required to generalise the

knowledge from seen training person classes to completely unseen testing ones other than within

the training ones as in common classification problems.

The second alternative is Random Coding. That is, we allocate for each training identity a

m-dimensional random vector with every element following a uniform distribution over the range

of [0,1] (Figure 5.1(c)), which has shown encouraging effect in shape retrieval [123] and face

recognition [124]. In this way, individual dimensions are no longer identity-specific and training

identity regression space are shared largely irregularly. We will evaluate the effectiveness of

these three coding methods in Section 5.6.1.

Kernalisation. Given complex variations in viewing condition across cameras, the optimal sub-

space may not be obtainable by linear projections. Therefore, we further kernelise the IRS model

(Eq. (5.3)) by projecting the data from the original visual feature space into a reproducing kernel

Hilbert space H with an implicit feature mapping function φ(·). The inner-product of two data

points inH can be computed by a kernel function: hk(xxxi,xxx j) = 〈φ(xxxi),φ(xxx j)〉. By hk (we utilised

the typical RBF or Gaussian kernel in our implementation), we obtain a kernel representation

KKK ∈ Rn×n, based on which a corresponding non-linear projection solution can be induced as:

QQQ∗ =
(
KKKKKK>+λKKK

)†KKKYYY . (5.5)

During deployment, different from the linear case, all test samples need to be transformed into

the kernel space with hk before applying the learned projection QQQ∗.

5.3 Incremental Identity Regression Learning

In Section 5.2, we presented the proposed IRS person re-id model. Similar to the majority of

conventional re-id methods, we assume a batch-wise model learning setting: First collecting all

labelled training data and then learning the feature embedding model (Figure 5.3 (a)). In real-
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Fast effective model update over time 

(b) 

Figure 5.3: Illustration of different person re-id model learning settings. (a) Batch-wise person
re-id model learning: A re-id model is first learned on an exhaustively labelled training set, and
then fixed for deployment without model update; (b) Incremental person re-id model learning:
Training samples are collected sequentially on-the-fly with either random or active unlabelled
data selection, and the re-id model keeps up-to-date by efficient incremental learning from the
newly labelled data over time.

world scenario, however, data annotation is likely to arrive in sequence rather than at one time.

In such case, a practical system requires the incremental learning capability for cumulatively

learning and updating the re-id model over deployment process (Figure 5.3 (b)-(1)). On the

other hand, incremental learning is essential for temporal model adaptation, e.g. handling the

dynamics in the deployment context [86]. A simple and straightforward scheme is to re-train

the model from scratch using the entire training dataset whenever any newly labelled samples

become available. Obviously, this is neither computational friendly nor scalable particularly for

resource restricted deployment such as on mobile devices.

To overcome this limitation, we introduce an incremental learning algorithm, named IRSinc,

for enabling fast model update without the need for re-training from scratch. Suppose at time t,

we have the feature matrix XXX t ∈ Rd×nt of nt previously labelled images of ct person identities,

along with YYY t ∈ Rnt×m their indicator matrix defined by Eq. (5.1). We also have the feature

matrix XXX ′ ∈Rd×n′ of n′ newly labelled images of c′ new person classes, with YYY ′ ∈Rn′×(ct+c′) the

corresponding indicator matrix similarly defined by Eq. (5.1). After merging the new data, the

updated feature and identity embedding matrix can be represented as:

XXX t+1 = [XXX t , XXX ′], YYY t+1 =
[ YYY t ⊕000

YYY ′

]
, (5.6)

where (·)⊕000 denotes the matrix augmentation operation, i.e. padding an appropriate number of

zero columns on the right. By defining

TTT t = XXX tXXX>t +λ III, (5.7)
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and applying Eq. (5.6), we have

TTT t+1 = TTT t +XXX ′XXX ′>. (5.8)

Also, we can express the projection PPPt ∈ Rd×m (Eq. (5.3)) of our IRS model at time t as

PPPt = TTT †t XXX tYYY t . (5.9)

Our aim is to obtain the feature embedding PPPt+1, which requires to compute TTT †t+1. This can be

achieved by applying the Sherman-Morrison-Woodbury formula [125] to Eq. (5.8) as:

TTT †t+1 = TTT †t −TTT †t XXX ′
(
III +XXX ′>TTT †t XXX ′

)†XXX ′>TTT †t . (5.10)

Eq. (5.3) and Eq. (5.6) together give us:

PPPt+1 = TTT †t+1XXX t+1YYY t+1 (5.11)

= (TTT †t+1XXX tYYY t)⊕000+TTT †t+1XXX ′YYY ′.

Further with Eq. (5.10) and Eq. (5.9), we can update PPP as:

PPPt+1 =
(

PPPt −TTT †t XXX ′
(
III +XXX ′>TTT †t XXX ′

)†XXX ′>PPPt

)
⊕000 (5.12)

+TTT †t+1XXX ′YYY ′.

Note that, our model update (Eq. (5.10) and Eq. (5.12)) only involves newly coming data sam-

ples. As a result, our method does not require to store the training data once utilised for model

update. As only cheap computational cost is involved in such linear operations, this proposed

algorithm well suits for on-line re-id model learning and updating over the deployment process.

Implementation Consideration. Our IRSinc model supports incremental learning given either

a single new sample (n′ = 1) or a small chunk of samples (n′ > 2). If the data chunk size n′� d

(where d is the feature dimension), it is faster to perform n′ separate updates on each new sample

instead of by a whole chunk. The reason is that, in such a way the Moore-Penrose matrix inverse

in Eq. (5.10) and Eq. (5.12) can be reduced to n′ separate scaler inverses, which is much cheaper

in numerical computation.
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5.4 Active Identity Regression Learning

The incremental learning process described above is passive, i.e. a human annotator is supposed

to label randomly chosen data without considering the potential value of each selected sample in

improving the re-id model. Therefore, data annotation by this random way is likely to contain

redundant information with partial labelling effort wasted. To resolve this problem, we explore

the active learning idea [71] for obtaining more cost-effective incremental re-id model update

(Figure 5.3 (b)-(2)).

Active IRSinc Overview. In practice, we often have access to a large number of unlabelled

images P̃ and G̃ captured by disjoint cameras. Assume at time step t ∈ {1, · · · ,τ} with τ defining

the pre-determined human labelling budget, we have the up-to-date IRSinc model mt (correspond-

ing to the feature embedding PPPt), along with P̃t and G̃t denoting the remaining unlabelled data.

To maximise labelling profit, we propose an active labelling algorithm for IRSinc with the main

steps as follows:

1. An image xxxp
t ∈ P̃t of a new training identity lt is actively selected by model mt , according

to its potential usefulness and importance measured by certain active sampling criteria (see

details below);

2. A ranking list of unlabelled images G̃t against the selected xxxp
t is then generated by mt based

matching distances;

3. For the selected xxxp
t , a human annotator is then asked to manually identify the cross-view

true matching image xxxg
t ∈ G̃t in the ranking list, and then generate a new annotation (xxxp

t ,

xxxg
t );

4. The IRSinc re-id model is updated to mt+1 (i.e. PPPt+1) from the new data annotation (xxxp
t ,xxx

g
t )

by our incremental learning algorithm (Eq. (5.10) and Eq. (5.12)).

Among these steps above, the key lies in how to select a good image xxxp
t . To this end, we

derive a “Joint Exploration-Exploitation” (JointE2) active sampling algorithm composed of three

criteria as follows (Figure 5.4).

(I) Appearance Diversity Exploration. Intuitively, the appearance diversity of training people

is a critical factor for the generalisation capability of a re-id model. Thus, the preferred next

image to annotate should lie in the most unexplored region of the population P̃t . Specifically, at
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Figure 5.4: Illustration of the proposed active exploration and exploitation selection criteria for
more cost-effective incremental re-id model learning.

time t, the distance between any two samples (xxx1,xxx2) by the current re-id model is computed as:

d(xxx1,xxx2|mt) = (xxx1− xxx2)
>PPPtPPP>t (xxx1− xxx2). (5.13)

Given the unlabelled P̃t and labelled Pt part of the set P̃ (P̃t
⋃
Pt = P̃), we can measure the

diversity degree of an unlabelled sample xxxp
i ∈ P̃t by its distance against the within-view nearest

neighbour in Pt (Figure 5.4 (a)):

ε1(xxx
p
i ) = min d(xxxp

i ,xxx
p
j |mt),

s.t. xxxp
i ∈ P̃t , xxxp

j ∈ Pt .

(5.14)

By doing so, more diverse person appearance can be covered and learned for more rapidly in-

creasing the knowledge of the IRSinc model, rather than repeatedly learning visually similar

training samples.

(II) Matching Discrepancy Exploration. A well learned re-id model is supposed to find the

true match of a given image with a small cross-view matching distance. In this perspective, our

second criterion particularly prefers the samples with large matching distances in the embedding

space, i.e. the re-id model mt remains largely unclear on what are the likely corresponding cross-

view appearances of these “unfamiliar” people. Numerically, we compute the matching distance

between an unlabelled sample xxxp
i ∈ P̃t and the cross-view true match (assumed as cross-view

nearest neighbour) in G̃ (Figure 5.4 (b)):

ε2(xxx
p
i ) = min d(xxxp

i ,xxx
g
j |mt), (5.15)

s.t. xxxp
i ∈ P̃t , xxxg

j ∈ G̃.

That is, the unlabelled images with greater ε2(xxx
p
i ) are preferred to be selected.

(III) Ranking Uncertainty Exploitation. Uncertainty-based exploitative sampling schemes
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have been widely investigated for classification problems [126, 127, 81]. The essential idea

is to query the least certain sample for human to annotate. Tailored for re-id tasks with this

idea, given the similar appearance among different identities, a weak re-id model may probably

generate similar ranking scores for those visually ambiguous gallery identities with respect to a

given probe. Naturally, it should be useful and informative to manually label such “challenging”

samples for enhancing a person re-id model’s discrimination power particularly with regarding

to such person appearance (Figure 5.4 (c)). To obtain such person images, we define a matching

distance based probability distribution over all samples xxxg
j ∈ G̃ for a given cross-view image

xxxp
i ∈ P̃:

pmt (xxx
g
j |xxx

p
i ) =

1
Zt

i
e−d(xxxp

i ,xxx
g
j |mt), (5.16)

where

Zt
i = ∑

k
e−d(xxxp

i ,xxx
g
k |mt), xxxg

k ∈ G̃.

The quantity pmt (xxx
g
j |xxx

p
i ) gives a high entropy when most ranking scores are adjacent to each

other, indicating great information to mine from the perspective of information theory [128]. In

other words, the model has only a low confidence on its generated ranking list considering that

only a very few number of cross-camera samples are likely to be true matches rather than many

of them. Consequently, our third criterion is designed as:

ε3(xxx
p
i ) =−∑

j
pmt (xxx

g
j |xxx

p
i ) log pmt (xxx

g
j |xxx

p
i ), (5.17)

s.t. xxxp
i ∈ P̃t , xxxg

j ∈ G̃.

which aims to select out those associated with high model ranking ambiguity.

Joint Exploration-Exploitation. Similar to the model in [79, 81], we combine both exploitation

and exploration based criteria into our final active selection standard, formally as:

ε(xxxp
i ) = ε1(xxx

p
i )+ ε2(xxx

p
i )+ ε3(xxx

p
i ). (5.18)

Note that, we normalise ε1,ε2,ε3 to the unit range [0,1] respectively before performing this fusion

for eliminating the scale discrepancy problem.

In summary, with Eq. (5.18), all the unlabelled samples in P̃ can be sorted according, and

the one with highest ε(xxxp
i ) is then selected for human annotation. An overview of our proposed
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Algorithm 1: Active IRSinc

Data:
(1) Unlabelled image set P̃ and G̃ from disjoint cameras;
(2) Regularisation strength λ ;
(3) Labelling budget τ .

Result:
(1) Discriminative feature embedding matrix PPP;

Initialisation:1

(1) Randomly label a small seed set XXX0, YYY 0;2

(2) Set TTT †0 = (XXX0XXX>0 +λ III)†;3

(3) Set PPP0 = TTT †0XXX0YYY 0 (Eq. (5.3)).4

Active Labelling:5

for t = 0 : τ−1 do6

(1) Select an unlabelled sample xxxp
t ∈ P̃t (Eq. (5.18));7

(2) Rank the images in G̃t against the selection xxxp
t ;8

(3) Human annotator verifies the true match in G̃t ;9

(4) Generate a new annotation (I p
t ,I

g
t );10

(5) Update TTT †t+1 (Eq. (5.10));11

(6) Update PPPt+1 (Eq. (5.12)).12

return PPP = PPPτ ;13

(a) VIPeR (b) CUHK01 (c) CUHK03 (d) Market-1501

Figure 5.5: Example person images from four person re-id datasets. Two images of the same
column describe the same person.

active learning based incremental model learning and updating is presented in Algorithm 13. We

will show the effect of our proposed active labelling method in our evaluations (Section 5.6.2).

5.5 Datasets and Experimental Settings

Datasets. For model evaluation, four person re-id benchmarks were used: VIPeR [7], CUHK01

[108], CUHK03 [1], and Market-1501 [2], as summarised in Table 5.1. We show in Figure 5.5

some examples of person images from these datasets. Note that the datasets were collected with

different data sampling protocols: (a) VIPeR has one image per person per view; (b) CUHK01
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Dataset Cameras Persons Labelled BBox Detected BBox
VIPeR 2 632 1,264 0

CUHK01 2 971 1,942 0
CUHK03 6 1,467 14,097 14,097

Market-1501 6 1,501 0 32,668

Table 5.1: Statistics of person re-id datasets. BBox: Bounding Box.

contains two images person per view; (c) CUHK03 consists of a maximum of five images per

person per view, and also provides both manually labelled and auto-detected image bounding

boxes with the latter posing more challenging re-id test due to unknown misalignment of the

detected bounding boxes; (d) Market-1501 has variable numbers of images per person per view.

These four datasets present a good selection of re-id test scenarios with different population

sizes under realistic viewing conditions exposed to large variations in human pose and strong

similarities among different people.

Features. To capture the detailed information of person appearance, we adopted three state-of-

the-art feature representations with variable dimensionalities from 104 to 102: (1) Local Maximal

Occurrence (LOMO) feature [24]: The LOMO feature is based on a HSV colour histogram and

Scale Invariant Local Ternary Pattern [129]. For alleviating the negative effects caused by camera

view discrepancy, the Retinex algorithm [130] is applied to pre-process person images. The fea-

ture dimension of LOMO is rather high at 26,960, therefore expensive to compute. (2) Weighted

Histograms of Overlapping Stripes (WHOS) feature [61, 131]: The WHOS feature contains

HS/RGB histograms and HOG [29] of image grids, with a centre support kernel as weighting

to approximately segmented person foreground from background clutters. We implemented this

feature model as described by [61]. The feature dimension of WHOS is moderate at 5,138.

(3) Convolutional Neural Network (CNN) feature [9]: Unlike hand-crafted LOMO and WHOS

features, deep CNN person features are learned from image data. Specifically, we adopted the

CNN model of [9] and used the FC7 layer output as the deep feature for person re-id. This CNN

FC7 feature has a rather low dimension of 256, thus easy to compute. To compute this deep

feature, we first trained the CNN model with authors’ released code on the 26,246 training im-

ages of CUHK03.We then deployed the trained CNN model to extract features of the test data of

CUHK03 (same domain). On Market-1501, the CUHK03 trained CNN was further fine-tuned

using the 12,936 training person images of Market-1501 for feature domain adaptation. On

VIPeR and CUHK01, the CUHK03 trained CNN was directly deployed without any fine-tuning
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as there are insufficient training images to make effective deep feature domain adaptation, with

only 632 and 1,940 training images for VIPeR and CUHK01 respectively.

Model Training Settings. In evaluations, we considered extensively comparative experiments

under two person re-id model training settings: (I) Batch-wise model training: In this setting,

we followed the conventional supervised re-id scheme commonly utilised in most existing meth-

ods, that is, first collecting all training data and then learning a re-id model before deployment.

(II) Incremental model training: In contrast to the batch-wise learning, we further evaluated a

more realistic data labelling scenario where more training labels are further collected over time

after model deployment. The proposed IRSinc model was deployed for this incremental learning

setting.

5.6 Experiments and Evaluations

5.6.1 Batch-Wise Person Re-Identification Evaluation

Batch-Wise Re-Id Evaluation Protocol. To facilitate quantitative comparisons with existing

re-id methods, we adopted the standard supervised re-id setting to evaluate the proposed IRS

model. Specifically, on VIPeR, we split randomly the whole population of the dataset (632 peo-

ple) into two halves: One for training (316) and another for testing (316). We repeated 10 trials of

random people splits and utilised the averaged results. On CUHK01, we considered two bench-

marking training/test people split settings: (1) 485/486 split: randomly selecting 485 identities

for training and the other 486 for testing [24, 47]; (2) 871/100 split: randomly selecting 871 iden-

tities for training and the other 100 for testing [50, 51]. As CUHK01 is a multi-shot (e.g. multiple

images per person per camera view) dataset, we computed the final matching distance between

two people by averaging corresponding cross-view image pairs. Again, we reported the results

averaged over 10 random trials for either people split. On CUHK03, following [1] we repeated

20 times of random 1260/100 people splits for model training/test and reported the averaged

accuracies under the single-shot evaluation setting[47]. On Market-1501, we used the standard

training/test (750/751) people split provided by [2]. On all datasets, we exploited the cumulative

matching characteristic (CMC) to measure the re-id accuracy performance. On Market-1501, we

also considered the recall measure of multiple truth matches by mean Average Precision (mAP),

i.e. first computing the area under the Precision-Recall curve for each probe, then calculating the

mean of Average Precision over all probes [2].
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In the followings, we evaluated: (i) Comparative person re-id performance of our IRS model

against existing state-of-the-art methods, (ii) the effects of different embedding spaces on the IRS

model, (iii) the effects of feature choices on the IRS model, (iv) the sensitivity of parameter λ in

Eq. (5.2), and (v) model complexity and computational costs among different methods.

(I) Comparisons to the State-of-The-Art. We first evaluated the proposed IRS model by ex-

tensive comparisons to the existing state-of-the-art re-id models under the standard supervised

person re-id setting. We considered a wide range of existing re-id methods, including both hand-

crafted and deep learning models. In the following experiments, we deployed the Uniform Cod-

ing (Eq. (5.1) in Section 5.2.2) for the identity regression space embedding of our IRS model

unless stated otherwise. We considered both single- and multi-feature based person re-id per-

formance, and also compared re-id performances of different models on auto-detected bounding

boxes when available in CUHK03 and Market-1501.

Evaluation on VIPeR. Table 5.2 shows a comprehensive comparison on re-id performance be-

tween our IRS model (and its variations) and 43 existing models using the VIPeR benchmark [7].

It is evident that our IRS model with a non-deep feature LOMO, IRS(LOMO), is better than all

existing methods1 except the deep model MCP [57], with Rank-1 45.1% vs. 47.5% respectively.

Interestingly, using our CUHK03 trained CNN deep feature without fine-tuning on VIPeR, i.e.

IRS(CNN), does not offer extra advantage (Rank-1 33.1%), due to the significant domain drift

between VIPeR and CUHK03. This becomes more clear when compared with the CUHK01

tests below. Moreover, given a score-level fusion on the matching of three different features,

IRS(WHOS+LOMO+CNN), the IRS model can benefit from further boosting on its re-id per-

formance, obtaining the best Rank-1 rate at 54.6%. These results demonstrate the effectiveness

of the proposed IRS model in learning identity discriminative feature embedding because of our

unique approach on identity regression to learning a re-id embedding space, in contrast to the ex-

isting established ideas on classification, verification or ranking based learning of a re-id model.

Evaluation on CUHK01. Table 5.3 shows a comprehensive comparison of the IRS model with

24 existing re-id models on the CUHK01 benchmark [108]. It is clear that the proposed IRS

model achieves the best re-id accuracy under both training/test split protocols. Note that, HER

[95] is IRS-FDA(LOMO). Specifically, for the 486/485 split, our IRS(CNN) method surpassed

1The HER model presented in our preliminary work [95] is the same as IRS(LOMO) with FDA coding
(Eq. (5.4)), i.e. HER = IRS-FDA(LOMO). On the other hand, IRS(LOMO) in Tables 5.2, 5.3, 5.4 and 5.5
is IRS-Uniform(LOMO). The effects of choosing different coding is evaluated later (Table 5.6).
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Dataset VIPeR
Rank (%) R1 R5 R10 R20
ISFI [37] 17.1 39.0 52.9 67.3

KISSME [18] 22.0 - 68.0 -
LFDA [20] 24.2 52.0 67.1 82.0
RPLM [34] 27.0 - 69.0 83.0

SalMatch [115] 30.2 52.3 65.5 79.2
MLF [21] 29.1 52.3 66.0 79.9

kLFDA [23] 38.6 69.2 80.4 89.2
SCNCD [45] 33.7 62.7 74.8 85.0
KCCA [61] 37.0 - 85.0 93.0
XQDA [24] 40.0 68.1 80.5 91.1

MLAPG [25] 40.7 69.9 82.3 92.4
RKSL [132] 40.2 74.5 85.7 93.5
NFST [47] 42.3 71.5 82.9 92.1

LSSCDL [49] 42.7 - 84.3 91.9
TMA [86] 43.8 - 83.8 91.5
HER [95] 45.1 74.6 85.1 93.3
DML [62] 28.2 59.3 73.5 86.4

DCNN+ [50] 34.8 63.6 75.6 84.5
RDC-Net[56] 40.5 60.8 70.4 84.4

JRL [133] 38.4 69.2 81.3 90.4
SICI [58] 35.8 - - -
DGD [9] 38.6 - -

Gated S-CNN [52] 37.8 66.9 77.4 -
EDM [51] 40.9 - - -

S-LSTM [63] 42.4 68.7 79.4 -
MCP [57] 47.8 74.7 84.8 91.1

IRS (WHOS) 44.5 75.0 86.3 93.6
IRS (LOMO) 45.1 74.6 85.1 93.3

IRS (CNN) 33.1 59.9 71.5 82.2
MLF∗ [21] 43.4 73.0 84.9 93.7
ME∗ [46] 45.9 77.5 88.9 95.8

CVDCA∗ [134] 47.8 76.3 86.3 94.0
FFN-Net∗ [135] 51.1 81.0 91.4 96.9

NFST∗ [47] 51.2 82.1 90.5 95.9
HER∗ [95] 53.0 79.8 89.6 95.5
GOG∗ [96] 49.7 - 88.7 94.5

SCSP∗ [136] 53.5 82.6 91.5 96.7
IRS (WHOS+LOMO+CNN)∗ 54.6 81.5 90.3 95.7

Table 5.2: Re-Id performance comparison on the VIPeR benchmark. (∗): Multiple features
fusion.

the deep learning DGD model [9], the second best in this comparison, by Rank-1 2.0%(68.6−

66.6). For the 871/100 split, IRS(CNN) yields a greater performance boost over DGD with

improvement on Rank-1 at 12.6%(84.4−71.8). It is also worth pointing out that the DGD

model was trained using data from other 6 more datasets and further carefully fine-tuned on

CUHK01. In contrast, our IRS(CNN) model was only trained on CUHK03 without fine-tuning

on CUHK01, and the CNN architecture we adopted closely resembles to that of DGD. Moreover,

by fusing multiple features, the performance margin of IRS(WHOS+LOMO+CNN) over the ex-

isting models is further enlarged under both splits, achieving Rank-1 11.7%(80.8−69.1) boost

over NFST [47] and Rank-1 16.6%(88.4−71.8) boost over SICI [58], respectively. Compared

to VIPeR, the overall re-id performance advantage of the IRS model on CUHK01 is greater over

existing models. This is due to not only identity prototype regression based feature embedding,
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Dataset CUHK01 (486/485 split)
Rank (%) R1 R5 R10 R20

LMNN [137] 13.4 31.3 42.3 54.1
ITML [138] 16.0 35.2 45.6 59.8

SalMatch [115] 28.5 45.9 55.7 68.0
MLF [21] 20.5 37.1 45.3 55.3

RefDes [139] 31.1 - 68.6 79.2
kLFDA [23] 54.6 80.5 86.9 92.0

CVDCA [134] 47.8 74.2 83.4 89.9
XQDA [24] 63.2 83.9 90.0 94.2

MLAPG [25] 64.2 85.4 90.8 94.9
L1-Lap [140] 50.1 - - -
NFST [47] 65.0 85.0 89.9 94.4
HER [95] 68.3 86.7 92.6 96.2

DCNN+ [50] 47.5 71.6 80.3 87.5
MCP [57] 53.7 84.3 91.0 93.3
DGD [9] 66.6 - - -

IRS (WHOS) 48.8 73.4 81.1 88.3
IRS (LOMO) 68.3 86.7 92.6 96.2

IRS (CNN) 68.6 89.3 93.9 97.2
ME∗ [46] 53.4 76.4 84.4 90.5

FFN-Net∗ [135] 55.5 78.4 83.7 92.6
GOG∗ [96] 67.3 86.9 91.8 95.9
NFST∗ [47] 69.1 86.9 91.8 95.4
HER∗ [95] 71.2 90.0 94.4 97.3

IRS (WHOS+LOMO+CNN)∗ 80.8 94.6 96.9 98.7
Dataset CUHK01 (871/100 split)

FPNN [1] 27.9 59.6 73.5 87.3
DCNN+ [50] 65.0 - - -

JRL [133] 70.9 92.3 96.9 98.7
EDM [51] 69.4 - - -
SICI [58] 71.8 - - -

IRS (WHOS) 77.0 92.8 96.5 99.2
IRS (LOMO) 80.3 94.2 96.9 99.5

IRS (CNN) 84.4 98.2 99.8 100
IRS (WHOS+LOMO+CNN)∗ 88.4 98.8 99.6 100

Table 5.3: Re-id performance comparison on the CUHK01 benchmark. (∗): Multiple features
fusion.

but also less domain drift from CUHK03 to CUHK01, given that the CNN feature used by IRS

was trained on CUHK03.

Evaluation on CUHK03. The person re-id performance of 19 different methods as compared to

the IRS model on CUHK03 [1] is reported in Table 5.4. We tested on both the manually labelled

and automatically detected bounding boxes. Similar to VIPeR and CUHK01, our IRS model

surpassed clearly all compared methods in either single- or multi-feature setting given manually

labelled bounding boxes. Importantly, this advantage remains when more challenging detected

bounding boxes were used, whilst other strong models such as NFST and GOG suffered more

significant performance degradation. This shows both the robustness of our IRS model against

misalignment and its greater scalability to real-world deployments.

Evaluation on Market-1501. We evaluated the re-id performance of 13 existing models against

the proposed IRS model on the Market-1501 benchmark [2]. The bounding boxes of all person
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Dataset CUHK03 (Manually)
Rank (%) R1 R5 R10 R20

kLFDA [23] 45.8 77.1 86.8 93.1
XQDA [24] 52.2 82.2 92.1 96.3

MLAPG [25] 58.0 87.1 94.7 98.0
NFST [47] 58.9 85.6 92.5 96.3

LSSCDL [49] 57.0 - - -
HER [95] 60.8 87.0 95.2 97.7
FPNN [1] 20.7 - - -

DCNN+ [50] 54.7 86.5 93.9 98.1
EDM [51] 61.3 - - -
DGD [9] 75.3 - -

IRS (WHOS) 59.6 87.2 92.8 96.9
IRS (LOMO) 61.6 87.0 94.6 98.0

IRS (CNN) 81.5 95.7 97.1 98.0
ME∗ [46] 62.1 89.1 94.3 97.8

NFST∗ [47] 62.6 90.1 94.8 98.1
HER∗ [95] 65.2 92.2 96.8 99.1
GOG∗ [96] 67.3 91.0 96.0 -

IRS (WHOS+LOMO+CNN)∗ 81.9 96.5 98.2 98.9
Dataset CUHK03 (Detected)

ITML [138] 5.1 17.7 2.8.3 -
LMNN [137] 6.3 18.7 29.0 -
KISSME [18] 11.7 33.3 48.0 -

BoW [2] 23.0 42.4 52.4 64.2
XQDA [24] 46.3 78.9 83.5 93.2

MLAPG [25] 51.2 83.6 92.1 96.9
L1-Lap [140] 30.4 - - -
NFST [47] 53.7 83.1 93.0 94.8

LSSCDL [49] 51.2 80.8 89.6 -
FPNN [1] 19.9 - - -

DCNN+ [50] 44.9 76.0 83.5 93.2
EDM [51] 52.0 - - -
SICI [58] 52.1 84.9 92.4 -

S-LSTM [63] 57.3 80.1 88.3 -
Gated S-CNN [52] 68.1 88.1 94.6 -

IRS (WHOS) 50.6 82.1 90.4 96.1
IRS (LOMO) 53.4 83.1 91.2 96.4

IRS (CNN) 80.3 96.3 98.6 99.0
NFST∗ [47] 54.7 84.8 94.8 95.2
GOG∗ [96] 65.5 88.4 93.7 -

IRS (WHOS+LOMO+CNN)∗ 83.3 96.2 97.9 98.6

Table 5.4: Re-id performance comparison on the CUHK03 benchmark. (∗): Multiple features
fusion.

images of this dataset were generated by an automatic pedestrian detector. Hence, this dataset

presents a more realistic challenge to re-id models than conventional re-id datasets with manu-

ally labelled bounding boxes. Table 5.5 shows the clear superiority of our IRS model over all

competitors. In particular, our IRS model achieved Rank-1 73.9% for single-query and Rank-1

81.4% for multi-query, significantly better than the strongest alternative method, the deep Gated

S-CNN model [52], by 8.1%(73.9−65.8) (single-query) and 5.4%(81.4−76.0) (multi-query).

Similar advantages hold when compared using the mAP metric.

In summary, these comparative evaluations on the performance of batch-wise re-id model

learning show that the IRS model outperforms comprehensively a wide range of existing re-id

methods including both hand-crafted and deep learning based models. This validates the effec-
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Dataset Market-1501
Query Per Person Single-Query Multi-Query

Metric (%) R1 mAP R1 mAP
BoW [2] 34.4 14.1 42.6 19.5

KISSME [18] 40.5 19.0 - -
MFA [141] 45.7 18.2 - -
kLFDA [23] 51.4 24.4 52.7 27.4
XQDA [24] 43.8 22.2 54.1 28.4
SCSP [136] 51.9 26.3 - -
NFST [47] 55.4 29.9 68.0 41.9
TMA [86] 47.9 22.3 - -
HL [142] 59.5 - - -

SSDAL [143] 39.4 19.6 49.0 25.8
S-LSTM [63] - - 61.6 35.3

Gated S-CNN [52] 65.8 39.5 76.0 48.4
IRS (WHOS) 55.2 27.5 60.3 33.5
IRS (LOMO) 57.7 29.0 68.0 37.8

IRS (CNN) 72.7 48.1 80.2 58.5
BoW∗ [2] - - 47.3 21.9

SCSP∗ [136] 51.9 26.4 - -
NFST∗ [47] 61.0 35.7 71.6 46.0

IRS (WHOS+LOMO+CNN)∗ 73.9 49.4 81.4 59.9

Table 5.5: Re-id performance comparison on the Market-1501 benchmark. (∗): Multiple features
fusion.

Dataset VIPeR CUHK01 CUHK03 Market-1501
Rank (%) R1 R5 R10 R20 R1 R5 R10 R20 R1 R5 R10 R20 R1(SQ) mAP(SQ) R1(MQ) mAP(MQ)

Uniform Coding 45.1 74.6 85.1 93.3 68.3 86.7 92.6 96.2 61.6 87.0 94.6 98.0 57.7 29.0 68.0 37.8
FDA Coding [95] 45.1 74.6 85.1 93.3 68.3 86.7 92.6 96.2 60.8 87.0 95.2 97.7 55.6 27.5 67.5 36.8

Random Coding [123] 44.8 73.4 84.8 92.7 61.3 83.4 89.5 94.2 51.7 79.4 87.4 93.0 47.4 21.1 48.5 23.2

Table 5.6: Effects of embedding space design on person re-id performance in our proposed IRS
model. The LOMO visual feature were used on all datasets. We adopted the 485/486 people split
on CUHK01 and the manually labelled person images on CUHK03. SQ: Single-Query; MQ:
Multi-Query.

tiveness and advantages of learning a re-id discriminative feature embedding using the proposed

approach on identity regression.

(II) Effects of Embedding Space Design. To give more insight on why and how the IRS

model works, we evaluated the effects of embedding space design in our IRS model. To this

end, we compared the three coding methods as described in Section 5.2.2: Uniform Coding in

the proposed Identity Regression Space, FDA Coding by [95], and Random Coding by [123].

In this experiment, we used the LOMO feature on all four datasets, the 485/486 people split on

CUHK01, and the manually labelled bounding boxes on CUHK03. For Random Coding, we

performed 10 times and used the averaged results to compare with the Uniform Coding and the

FDA Coding. The results are presented in Table 5.6. We have the following observations:

(i) The embedding space choice plays a clear role in IRS re-id model learning and a more

“semantic” aligned (both Uniform and FDA) coding has the advantage for learning a more dis-

criminative IRS re-id model. One plausible reason is that the Random Coding may increase the
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model learning difficulty resulting in an inferior feature embedding, especially given the small

sample size nature of re-id model learning. Instead, by explicitly assigning identity class “se-

mantics” (prototypes) to individual dimensions of the embedding space, the feature embedding

learning is made more selective and easier to optimise.

(ii) Both the Uniform and FDA Coding methods yield the same re-id accuracy on both VIPeR

and CUHK01. This is because on either dataset each training identity has the same number of

images (2 for VIPeR and 4 for CUHK01), under which the FDA Coding (Eq. (5.4)) is equivalent

to the Uniform Coding (Eq. (5.1)).

(iii) Given the different image samples available per training person identity on CUHK03 and

Market-1501, FDA Coding is slightly inferior to Uniform Coding. This is interesting given the

robust performance of FDA on conventional classification problems. Our explanation is rather

straightforward if one considers the unique characteristics of the re-id problem where the train-

ing and test classes are completely non-overlapping. That is, the test classes have no training

image samples. In essence, the re-id problem is conceptually similar to the problem of Zero-Shot

Learning (ZSL), in contrast to the conventional classification problems where test classes are suf-

ficiently represented by the training data, i.e. totally overlapping. More specifically, learning by

the FDA criterion optimises a model to the training identity classes given sufficient samples per

class but it does not work well with small sample sizes, and more critically, it does not necessar-

ily optimise the model for previously unseen test identity classes. This is because if the training

identity population is relatively small, as in most re-id datasets, an unseen test person may not be

similar to any of training people, That is, the distributions of the training and test population may

differ significantly. Without any prior knowledge, a good representation of an unseen test class is

some unique combination of all training persons uniformly without preference. Therefore, a fea-

ture embedding optimised uniformly without bias/weighting by the training class data sampling

distribution is more likely to better cope with more diverse and unseen test classes, by better

preserving class diversity in the training data especially given the small sample size challenge in

re-id training data. This can be seen from the regularised properties of the Uniform Coding in

Section 5.2.

(III) Effects of Features. We evaluated the effects of three different visual features (WHOS,

LOMO, and CNN) individually and also their combinations used in our IRS model with the

Uniform Coding, as shown in Table 5.7.
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Dataset VIPeR CUHK01 (486/485 split) CUHK01 (871/100 split)
Metric (%) R1 R5 R10 R20 R1 R5 R10 R20 R1 R5 R10 R20

WHOS [131] 44.5 75.0 86.3 93.6 48.8 73.4 81.1 88.3 77.0 92.8 96.5 99.2
LOMO [24] 45.1 74.6 85.1 93.3 68.3 86.7 92.6 96.2 80.3 94.2 96.9 99.5

CNN [9] 33.1 59.9 71.5 82.2 68.6 89.3 93.9 97.2 84.4 98.2 99.8 100
WHOS+LOMO 53.0 79.8 89.6 95.5 71.2 90.0 94.4 97.3 83.6 95.4 98.8 100
CNN+LOMO 49.9 77.5 86.9 93.8 79.8 93.6 96.3 98.2 88.0 98.3 99.5 100
WHOS+CNN 49.7 78.0 87.9 94.4 76.1 92.9 96.1 98.2 89.0 98.5 99.6 100

WHOS+LOMO+CNN 54.6 81.5 90.3 95.7 80.8 94.6 96.9 98.7 88.4 98.8 99.6 100
Dataset CUHK03 (Manually) CUHK03 (Detected) Market-1501

Metric (%) R1 R5 R10 R20 R1 R5 R10 R20 R1(S) mAP(S) R1(M) mAP(M)
WHOS [131] 59.6 87.2 92.8 96.9 50.6 82.1 90.4 96.1 55.2 27.5 60.3 33.5
LOMO [24] 61.6 87.0 94.6 98.0 53.4 83.1 91.2 96.4 57.7 29.0 68.0 37.8

CNN [9] 81.5 95.7 97.1 98.0 80.3 96.3 98.6 99.0 72.7 48.1 80.2 58.5
WHOS+LOMO 65.2 92.2 96.8 99.1 59.9 89.4 95.5 98.5 62.4 33.6 69.0 41.0
CNN+LOMO 82.6 96.0 97.5 98.6 82.4 95.7 97.4 98.4 73.0 48.5 80.9 59.1
WHOS+CNN 80.4 95.7 98.0 98.4 81.1 95.4 97.5 98.6 72.8 48.3 80.3 58.7

WHOS+LOMO+CNN 81.9 96.5 98.2 98.9 83.3 96.2 97.9 98.6 73.9 49.4 81.4 59.9

Table 5.7: Effects of feature choice in re-id performance using the IRS model with Uniform
Coding.

When a single type of feature is used, it is found that deep CNN feature gives the best re-id

performance, except on VIPeR, and LOMO is more discriminative than WHOS most of the time.

The advantage of CNN deep feature over both hand-crafted features LOMO and WHOS is very

significant given larger training data in CUHK03 and Market-1501, yielding Rank-1 rate increase

of 19.9% (CUHK03 (Manual)), 26.9% (CUHK03 (Detected)), and 15.0% (Market-1501) against

LOMO. Without fine-tuning a CUHK03 trained CNN deep feature on the target domains, it still

performs the best on CUHK01 due to the considerable similarity in viewing conditions between

CUHK01 and CUHK03. CNN feature performs less well on VIPeR given the greater discrepancy

in viewing conditions between VIPeR and CUHK03, similar to the domain shift problem in

transfer learning [65, 144].

We further evaluated multi-feature based re-id performance by score-level fusion. It is ev-

ident that most combinations lead to improved person re-id performance, and fusing all three

features often generate the best accuracies. This observation confirms the previous findings that

different appearance information can be encoded by distinct features and their fusion enhances

the effect of each other [46, 47, 96, 136].

(IV) Regularisation Sensitivity. We analysed the sensitivity of the only free parameter λ in Eq.

(5.3) which controls the regularisation strength of our IRS model. This evaluation was conducted

with the LOMO feature and multi-query setting on Market-1501 [2]. Specifically, we evaluated

the Rank-1 and mAP with λ varying from 0 to 0.1. Figure 5.6 shows that the performance of our

IRS model is not sensitive to λ , with a large satisfactory range.

(V) Model Complexity. In addition to model re-id accuracy, we also examined the model
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Figure 5.6: Regularisation sensitivity on the Market-1501 dataset [2], with the multi-query setting
used.

Dataset VIPeR CUHK01 CUHK03 Market-1501
Training Size 632 1940 12197 12936

MLAPG 50.9 746.6 4.0×104 -
kLFDA 5.0 45.9 2203.2 1465.8
XQDA 4.1 51.9 3416.0 3233.8
NFST 1.3 6.0 1135.1 801.8
IRS 1.2 4.2 248.8 266.3

Table 5.8: Model complexity and training costs of person re-id models. Metric: Model training
time (in seconds), smaller is better.

complexity and computational costs, in particular model training time. We carried out this evalu-

ation by comparing our IRS model with some strong metric learning methods including kLFDA

[23], XQDA [24], MLAPG [25], and NFST [47]. Given n training samples represented by d-

dimensional feature vectors, it requires 3
2 dnm+ 9

2 m3 (m = min(d,n)) floating point addition and

multiplications [145] to perform an eigen-decomposition for solving either a generalised eigen-

problem [23, 24] or a null space [47], whereas solving the linear system (Eq. (5.3)) of the IRS

model takes 1
2 dnm+ 1

6 m3 [146]. Deep learning models [50, 9, 52] are not explicitly evaluated

since they are usually much more demanding in computational overhead, requiring much more

training time (days or even weeks) and more powerful harware (GPU). In this evaluation, we

adopted the LOMO feature for all datasets and all the models compared, the 485/486 people split

on CUHK01, the manually labelled person bounding boxes on CUHK03, and the single-query

setting on Market-1501.

For each model, we recorded and compared the average training time of 10 trials performed

on a Linux OS based workstation with 2.6GHz CPU. Table 5.8 presents the training time of

different models (in seconds). On the smaller VIPeR dataset, our IRS model training needed only

1.2 seconds, similar at NFST and 42.4 times faster than MLAPG. On larger datasets CUHK01,

CUHK03 and Market-1501, all models took longer time to train and training the IRS model

remains the fastest with speed-up over MLAPG enlarged to 177.8 / 160.8 times on CUHK01
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Dataset VIPeR CUHK01 CUHK03 Market-1501
Label # 50 100 150 200 ALT 50 100 150 200 ALT 50 100 150 200 ALT 50 100 150 200 ALT

Time BL 0.23 0.23 0.25 0.26 36.5 1.43 1.51 1.57 1.66 232.8 20.4 21.7 22.4 24.5 3349.9 119.5 121.5 125.6 140.3 1.9×104

(sec.) IL 0.02 0.02 0.02 0.03 3.28 0.14 0.15 0.16 0.17 23.4 1.62 1.69 1.70 1.81 257.0 1.94 5.05 6.61 9.60 877.3
R1 BL 20.6 29.2 34.9 38.9 - 21.9 37.3 46.5 52.5 - 24.0 35.2 40.5 43.8 - 28.6 44.5 51.7 55.2 -
(%) IL 19.4 29.2 33.6 37.2 - 20.8 35.6 45.3 51.5 - 22.1 33.0 38.8 41.7 - 27.5 44.2 50.6 54.3 -

Table 5.9: Comparing passive Incremental Learning (IL) vs. Batch-wise Learning (BL) using
the IRS model. ALT: Accumulated Learning Time, i.e. the summed time for training all the 151
IRS models when the label number is increased from 50 to 200 one by one.

Dataset VIPeR CUHK01 CUHK03 Market-1501
Label # 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Random 19.4 29.2 33.6 37.2 20.8 35.6 45.3 51.5 22.1 33.0 38.8 41.7 27.5 44.2 50.6 54.3

Density [81] 18.4 26.8 33.5 37.5 23.3 37.0 44.5 50.0 23.7 34.8 40.2 42.7 32.3 46.2 51.5 53.9
JointE2 23.4 31.4 36.5 40.9 29.9 39.7 47.1 52.2 25.1 36.8 41.3 43.0 36.5 50.7 54.8 58.2

Table 5.10: Evaluation on the active incremental learning algorithm.

/ CUHK03, respectively2. This demonstrates the advantage of the proposed IRS model over

existing competitors for scaling up to large sized training data.

5.6.2 Incremental Person Re-Identification Evaluation

We further evaluated the performance of our IRS model using the incremental learning IRSinc

algorithm (Section 5.3). This setting starts with a small number, e.g. 10 of labelled true match

training pairs, rather than assuming a large pre-collected training set. More labelled data will

arrive one by one over time during deployment due to human-in-the-loop verification. In such

a setting, a re-id model can naturally evolve through deployment life-cycle and efficiently adapt

to each application test domain. In this context, we consider two incremental re-id model learn-

ing scenarios: (I) Passive incremental learning where unlabelled person images are randomly

selected for human to verify; (II) Active incremental learning where person images are actively

determined by the proposed JointE2 active learning algorithm as detailed in Section 5.4.

Incremental Re-Id Evaluation Protocol. Due to the lack of access to large sized training sam-

ples in batch, incrementally learned models are typically less powerful than batch learned models

[87, 92]. Therefore, it is critical to evaluate how much performance drop is introduced by the In-

cremental Learning (IL) algorithm, IRSinc, as compared to the corresponding Batch-wise Learn-

ing (BL) and how much efficiency is gained by IL. We started with 10 labelled identities, i.e.

cross-camera truth matches of 10 persons, and set the total labelling budget to 200 persons. For

simplicity, we selected four test cases with 50,100,150,200 labelled identities respectively and

2The MLAPG model failed to converge on Market-1501.
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evaluated their model accuracy and training cost. To compare the Accumulated Learning Time

(ALT), i.e. the summed time for training all the IRS models when the label number is increased

from 50 to 200 one by one (in total 151 updates), we interpolated estimations on training time be-

tween these four measured test cases. We adopted the LOMO feature on all datasets. We utilised

the 485/486 people split on CUHK01, the manually labelled person images on CUHK03, the

single-query setting on Market-1501, and the same test data as the experiments in Section 5.6.1.

We conducted 10 folds of evaluations each with a different set of random unlabelled identities

and reported the averaged results.

(I) Passive Incremental Learning. We compared the proposed incremental learning (IL) based

IRS (IRSinc) with batch-wise learning (BL) based IRS in Table 5.9 for model training time and

re-id Rank-1 performance. It is found that IRS model training speed can increase by one order

of magnitude or more, with higher speed-up observed on larger datasets and resulting in more

model training efficiency gain. Specifically, on VIPeR, BL took approximately 36.5 seconds to

conduct the 151 model updates by re-training, whereas IL only required 3.28 seconds. When

evaluated on Market-1501, BL took over 5.5 hours (1.9×104 seconds) to perform the sequential

model updates, while IL was more than 20× faster, only took 877.3 seconds. Importantly, this

speed-up is at the cost of only 1∼ 2% Rank-1 drop. This suggests an attractive trade-off for the

IRSinc algorithm between effectiveness and efficiency in incremental model learning.

(II) Active Incremental Learning. We further evaluated the effect of the proposed JointE2

active learning algorithm (Section 5.4) by random passive unlabelled image selection (Random).

Also, we compared with a state-of-the-art density based active sampling method [81] which

prefers to query the densest region of unlabelled sample space (Density). For both active sam-

pling methods, we used our IRSinc for re-id model training. We evaluated the four test cases as

shown in Table 5.9.

It is evident from Table 5.10 that: (1) On all four datasets, our JointE2 outperformed clearly

both Random and Density given varying numbers of labelled samples. For example, when 50

identities were labelled, the proposed JointE2 algorithm beats Random sampling in Rank-1 by

4.0%(23.4−19.4), 9.1%(29.9−20.8), 3.0%(25.1−22.1), 9.0%(36.5−27.5) on VIPeR, CUHK01,

CUHK03 and Market-1501, respectively. (2) Our JointE2 model obtained similar or even bet-

ter performance with less human labelling effort. For example, on Market-1501, by labelling

150 identities, JointE2 achieved Rank-1 rate of 54.8%, surpassed Random (54.3%) and Density
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(53.9%) with a greater budget of 200 identities.

In summary, the results in Tables 5.9 and 5.10 show clearly that the hybrid of our proposed

IRSinc model and JointE2 active sampling method provides a highly scalable active incremental

re-id model training framework, with attractive model learning capability and efficiency from

less labelling effort suited for real-world person re-id applications.

5.7 Summary

In this chapter, we developed a novel approach to explicitly designing a feature embedding space

for supervised person re-identification model optimisation. We solved the re-id model learning

problem by introducing an identity regression method in an Identity Regression Space (IRS) with

an efficient closed-form solution. Furthermore, we formulated an incremental learning algorithm

IRSinc to explore sequential on-line labelling and model updating. This enables the model to

not only update efficiently the re-id model once new data annotations become available, but also

improve adaptively the re-id model to new test domains. To better leverage human annotation

effort, we further derived a novel active learning method JointE2 to selectively query the most

informative unlabelled data online. Extensive experiments on four benchmarks show that our IRS

method outperforms existing state-of-the-art re-id methods in the conventional batch-wise model

learning setting. Moreover, the proposed incremental learning algorithm increases significantly

model training speed, over 10 times faster than batch-wise model learning, by only sacrificing

marginal model re-id capability with 1∼ 2% Rank-1 drop. Our active learning method improves

notably the human labelling quality, particularly when limited budget is accessible, providing

over 3% Rank-1 improvement than Random sampling given 50 identities labelling budget.
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Chapter 6

Human-In-The-Loop Learning from Relevance Feedback

6.1 Overview

The previous chapters have investigated techniques to minimise human labelling efforts spent

during the model training stage, i.e. either by unsupervised learning directly from unlabelled

data (Chapter 3, 4), or by active learning on a small group of representative data labelled by

human (Chapter 5). However, they ignored one important aspect of human labelling in a re-id

system, which is that human efforts could also be required in the model deployment stage. In

particular, in real-world scenarios where the population size in the potential searching space is

very large, even the current best re-id model still cannot achieve satisfiable performance for fully-

automated deployments. We observed on CUHK03 dataset that (Section 6.5), a 10-fold increase

in gallery size leads to a 10-fold decrease in re-id Rank-1 performance (i.e. single-digit Rank-1

accuracy). Given such low Rank-1 scores, in practice human operators (users) are still required

to verify any true match of a probe from the output ranking list generated by any re-id model.

In this chapter, we aim to save such human efforts spent in the deployment stage, by for-

mulating a hybrid human-computer learning paradigm with humans in the model matching loop

(Fig. 6.1(c)). We call this semi-automated scheme Human-In-the-Loop (HIL) re-id, designed to

optimise re-id performance on a larger-sized test population (either with or without training data),

as compared to the conventional Human-Out-of-the-Loop (HOL) re-id models that are mostly de-

signed to optimise re-id given a larger size labelled training data and a small size test population.

This HIL re-id scheme has three significant advantages over the conventional HOL models:
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1. Less human labelling effort: HIL re-id requires much less human labelling effort, since

it does not necessarily require the expensive construction of a pre-labelled training set.

More importantly, it prioritises directly the human labour effort on each given re-id task

in deployment, rather than optimising the model learning error on an independent training

set. More specifically, the number of feedback from human verification is typically in tens

as compared to thousands of offline pre-labelled training data required by HOL methods.

2. Model transfer learning: Our HIL model is able to achieve greater transferability with

better re-id performance in test domains. This is because a HIL model focuses on re-id

matching optimisation directly in the deployment gallery population, rather than learning

a distance metric from a separate training set and assuming its blind transferability to

independent (unseen) test data. It enables a human operator to interactively validate model

matching results for each re-id task and inform on model mistakes (similar in spirit to

negative mining).

3. Reinforcing visual consistency: As computer vision algorithms are intrinsically very dif-

ferent from the human visual system, a re-id model can make mistakes that generate “un-

expected” (visually inconsistent) re-id ranking results, readily identifiable by a human ob-

server. By learning directly from the inconsistency between a computer vision model and

human observation, a HIL re-id model is guided to maximise visually more consistent

ranking lists favoured by human observations, and thus more effective to users of a re-id

system.

The main contribution of this chapter is a novel HIL re-id model that enables a user to

re-identify rapidly a given probe person image after only a handful of feedback verifications

even when the search gallery size is large. More specifically, a Human Verification Incremental

Learning (HVIL) model (Fig. 6.1(c)) is formulated to simultaneously minimise human-in-the-

loop feedback and maximise model re-id accuracy by incorporating:

1. Sparse feedback - HVIL allows for easier human feedback on a few dissimilar matching

results without the need for exhaustive eyeball search of true/false in the entire rank list.

It aims to rectify rapidly model mistakes by focusing only on minimising visually obvious

errors (hard negatives) identified by human observation. This is reminiscent to learning by

hard negative mining but with human in the loop, so to improve model learning with less
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training data.

2. Immediate benefit - HVIL introduces a new online incremental distance metric learning al-

gorithm, which enables real-time model response to human feedback by rapidly presenting

a freshly optimised ranking list for further human feedback, quickly leading to identifying

a true match.

3. The older the wiser - HVIL is updated cumulatively on-the-fly utilising multiple user feed-

back per probe, with incremental model optimisation for each new probe given what have

been learned from all previous probes.

4. A strong ensemble model - An additional Regularised Metric Ensemble Learning (RMEL)

model is introduced by taking all the incrementally optimised per-probe models as a set

of “weak” models [147, 148] and constructing a “strong” ensemble model for performing

HOL re-id tasks when human feedback becomes unavailable.

Extensive comparative experiments on three benchmark datasets (CUHK03 [1], Market-1501

[2], and VIPeR [7]) demonstrate that this HVIL model outperforms the state-of-the-art methods

for both the proposed new HIL and the conventional HOL re-id deployments.

6.2 Human-In-the-Loop Incremental Learning

6.2.1 Problem Definition

Let a person image be denoted by a feature vector xxx ∈ Rd . The Human-In-the-Loop (HIL) re-id

problem is formulated as:

1. For each image xxxp in a probe set P = {xxxp
i }

Np
i=1 (Fig. 6.3(a)), xxxp is matched against a gallery

set G = {xxxg
i }

Ng
i=1 and an initial ranking list for all gallery images is generated by a re-id

ranking function f (·) : Rd → R, according to ranking scores fxxxp(xxxg
i ) (Fig. 6.3(b)).

2. A human operator (user) browses the gallery ranking list to verify the existence and the

rank of any true match for xxxp. Human feedback is generated when a ranked gallery image

xxxg is selected by the user with a label y ∈ {true,dissimilar} (Fig. 6.3(c)). Once a feedback

on probe xxxp is received, the parameters of re-id model f (·) are updated instantly (Fig.

6.3(d)) to re-order the gallery ranking list and give the user immediate reward for the next

feedback (Fig. 6.3(e)).
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Figure 6.1: Illustration of two person re-id schemes. (a) The conventional Human-Out-of-the-
Loop (HOL) re-id scheme requires exhaustive pre-labelled training data collection for supervised
model learning. The learned model is assumed sufficiently accurate and then deployed to perform
fully automated person re-id tasks without human in the loop. (b) POP [69]: A recent Human-In-
the-Loop (HIL) re-id approach which optimises probe-specific models in isolation from human
feedback verifications in the deployment time. All probe people requires human in the loop.
(c) HVIL: The proposed new incremental HIL re-id model capable of not only progressively
learning a generalised model from human verifications across all probed people while carrying
out the HIL re-id tasks, but also performing the HOL re-id tasks when human effort becomes
unavailable.

3. When either a true match is found or a pre-determined maximum round of feedback is

reached, the next probe is presented for re-id matching in the gallery set. In contrast to pre-

labelling training data required by the conventional train-once-and-deploy human-out-of-

the-loop (HOL) re-id scheme, HIL re-id has two unique characteristics: (a) Due to limited

human patience and labour budget [107], a user typically prefers to examine only the top

ranks rather than the whole rank list, and to provide only a few feedback. (b) Instead of

seeking to verify positives (true matches) for each probe, which are most unlikely to appear

in the top ranks1, it is a much easier and more rewarding task for the user to identify strong-

negatives, that is, those top ranked negative gallery instances “definitely not the one I am

looking for” – visually very dissimilar to the target image.

Note that, in contrast to [69, 48], here we consider a simpler human verification task by also

ignoring weak-negatives: Those top ranked negative instances which “look similar but not the

same person as I am looking for”. The reasons are:

1. A user is inclined to notice strong negatives among the top ranks, i.e. a cognitively eas-

ier task (Fig. 6.2(d)) due to that most top ranks are likely to be weak negatives. Making
1In a large size gallery set, true matches are often scarce (only one-shot or few shots) and overwhelmed

(appear in low-ranks) by false matches of high-ranks in the rank list.
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Figure 6.2: Different human labelling processes are employed in person re-id model training
and deployment. (a) Large size offline labelling of cross-view positive- and negative-pairs of
training data with identity labels [46, 25, 95, 47]. (b) Selective or random sampling of person
image pairs for human verification in either model training [86] or deployment [85]. (c) Fine-
grained attribute labelling in either training [143] or deployment [85]. (d) True match verification
among the top ranked sub-list in model deployment [107, 69, 48], or verification of both visually
dissimilar and similar wrong matches in top ranks (strong/hard and weak negative mining) in
model deployment [69, 48].

correct selection and verification of all weak negatives requires much more effort. In con-

trast, a strong negative “stands out” readily to a user’s attention among the top ranks given

the salience-driven visual selective attention mechanism built into the human visual sys-

tem [149].

2. We consider strong negatives in top ranks are hard-unexpected negatives: “Hard” since

they are top-ranked negatives in the gallery thus misclassifed with high confidence (short

matching distance) to the wrong identity class by the current model; “Unexpected” since

they are visually significantly dissimilar to the probe image whilst among the top ranks,

therefore violating expectation and providing most informative feedback on model mis-

takes2. Exploiting strong negatives to rectify model learning is more cost-effective with

less labelling required (Section 6.5). Moreover, this is also compatible with the notion

of salience-guided human eye movements therefore more likely to encourage a user to

engage with the re-id task at hand whilst giving feedback, providing a higher degree of

complementary effect between iterative machine learning from human feedback and hu-

2In this context, weak negatives in top ranks can be considered as hard-expected negatives [150].



104 Chapter 6. Human-In-The-Loop Learning from Relevance Feedback

(a) Query 𝒙𝑡
𝑝

 

Ranking Model  𝑴𝑡 

(b) Ranking List 

Human Feedback 𝑦𝑡 

(c) Selected Sample 𝒙𝑡
𝑔

 

Updated Model  

𝑴𝑡+1 

(d) Updated Ranking List 

Human Feedback 𝑦𝑡+1 

(e) Selected Sample 𝒙𝑡+1
𝑔

 

 ‘true match’  ‘strong negative’ 

Figure 6.3: Visualisation of the proposed Human-In-the-Loop person re-id procedure.

man rewards from improved model output.

6.2.2 Modelling Human Feedback

Formally, we wish to construct an incrementally optimised ranking function, fxxxp(xxxg
i ) : Rd → R,

where f (·) can be estimated by two types of human feedback y ∈ L = {m,s} as true-match

and strong-negative respectively. Inspired by [151, 152, 153], we define a ranking error (loss)

function for a feedback y on a human selected gallery sample xxxg given a probe xxxp as:

err( fxxxp(xxxg),y) = Ly(rank( fxxxp(xxxg))), (6.1)

where rank( fxp(xxxg)) denotes the rank of xxxg given by fxxxp(·), defined as:

rank( fxxxp(xxxg)) = ∑
xxxg

i ∈GGG\xxxg

I( fxxxp(xxxg
i )> fxxxp(xxxg)), (6.2)

where I(·) is the indicator function. The loss function Ly(·) : Z+→ R+ transforms a rank into a

loss. We introduce a novel re-id ranking loss defined as:

Ly(k) =


∑

k
i=1 αi, if y ∈ {m}

∑
ng
i=k+1 α̂i, if y ∈ {s}

, (6.3)

with α1 > α2 > · · ·> 0, and α̂ng > α̂ng−1 > · · ·> 0.

Note, different choices of αi, α̂i lead to specific model responses to human feedback (Fig. 6.4).

We set αi =
1
i (large penalty with steep slope) when y indicates a true-match (m), and α̂i =

1
ng−1

with ng the gallery size (small penalty with gentle slope) when y represents a strong-negative (s).

Such a ranking loss is designed to favour a model update behaviour so that: (1) true-matches

are quickly pushed up to the top ranks, whilst (2) strong-negatives are mildly moved towards
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the bottom rank direction. Our experiments (Sec. 6.5.1) show that such a ranking loss criterion

boosts very effectively the Rank-1 matching rate and pushes quickly true-matches to the top

ranks at each iteration of human feedback.
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Figure 6.4: Values of Ly(k) for distinct human feedback, with ng = 50.

6.2.3 Real-Time Model Update

Model Formulation Given the re-id ranking loss function defined in Eqn. (6.3), we wish to

have real-time model update to human feedback therefore providing instant reward to user labour

effort. To that end, we consider the HVIL re-id ranking model f (·) as a negative Mahalanobis

distance metric:

fxxxp(xxxg) =−
[
(xxxp− xxxg)>MMM(xxxp− xxxg)

]
, MMM ∈ Sd

+. (6.4)

The positive semi-definite matrix MMM consists of model parameters to be learned.

Knowledge Cumulation by Online Learning In the previous works [69, 107], a re-id model

f (·) is only optimised in isolation for each probe without benefiting from previous feedback on

other probes. To overcome this limitation, we wish to optimise f (·) incrementally in an online

manner [154] for maximising the value of limited human feedback labour budget. Moreover, to

achieve real-time human-in-the-loop feedback and reward, f (·) needs be estimated immediately

on each human feedback.

Formally, given a new probe xxxp
t at time step t ∈ {1, · · · ,τ} (τ the pre-defined verification

budget), a user is presented with a gallery rank list computed by the previously estimated model

MMMt−1 instead of a new ranking function re-initialised from scratch for this new probe. The user

then verifies a gallery image xxxg
t in the top ranks with a label yt , generating a labelled triplet

(xxxp
t ,xxx

g
t ,yt). Given Eqn. (6.3), this triplet has a corresponding loss as L(t) = Lyt (rank( fxxxp

t
(xxxg

t ))).
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We update the ranking model by minimising the following objective function:

MMMt = argmin
MMM∈Sd

+

∆F(MMM,MMMt−1)+ηL(t), (6.5)

where ∆F is a Bregman divergence measure, defined by an arbitrary differentiable convex func-

tion F , for quantifying the discrepancy between MMM and MMMt−1. The set Sd
+ defines a positive

semi-definite (PSD) cone. The tradeoff parameter η>0 balances the model update divergence

and empirical ranking loss. This optimisation updates the ranking model adopted from the pre-

vious probe by encoding user feedback on the current probe.

Loss Approximation for Real-Time Optimisation In order to encourage and maintain user

engagement in verification feedback, real-time online incremental metric learning is required.

However, as L(t) is discontinuous, the overall objective function cannot be optimised efficiently

by gradient-based learning methods. We thus approximate the loss function by a continuous

upper bound [151] so that it is differentiable w.r.t. the parameter MMM:

L̃(t) = 1
N−t

∑
xxxg

i ∈GGG\xxxg
t

Lyt

(
rank

(
fxxxp

t
(xxx

g
t |MMMt−1)

))
·hyt

(
fxxxp

t
(xxxg

t |MMMt)− fxxxp(xxxg
i |MMMt−1)

)2
, (6.6)

where fxxxp
t
(xxxg

t |MMMt−1) denotes the function value of fxxxp
t
(xxxg

t ) parametrised by MMMt−1, and hyt (·) rep-

resents a hinge loss function defined as:

hyt

(
fxxxp

t
(xxxg

t )− fxxxp
t
(xxxg

i )
)
=

max
(
0,1− fxxxp

t
(xxxg

t )+ fxxxp
t
(xxxg

i )
)
, if yt ∈ {m}

max
(
0,1− fxxxp

t
(xxxg

i )+ fxxxp
t
(xxxg

t )
)
, if yt ∈ {s}

. (6.7)

The normaliserN−t in Eqn. (6.6) is the amount of violators, i.e. the gallery instances that generate

non-zero hinge loss (Eqn. (6.7)) w.r.t. the triplet (xxxp
t ,xxx

g
t ,yt).

Learning Speed-up by Most Violator Update Given the loss approximation in Eqn. (6.6), we

can exploit the stochastic gradient descent (SGD) algorithm [155] for optimising the proposed

model objective function Eqn. (6.5) by iteratively updating on sub-sampled batches of all viola-

tors. However, the computational overhead of iterative updates can be high due to possibly large

number of violators, and thus not meeting the real-time requirement. To address this problem, we
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explore a most violator update strategy, that is, to perform metric updates using only the violator

xxxg
v with the most violation (Eqn. (6.7)). The final approximated empirical loss is then estimated

as:

L̃(t)v = Lyt

(
rank

(
fxxxp

t
(xxxg

t |MMMt−1)
))

·hyt

(
fxxxp

t
(xxxg

t |MMMt)− fxxxp(xxxg
v |MMMt−1)

)2
. (6.8)

Next, we derive MMMt for updating the ranking metric. Specifically, recall that the Bregman diver-

gence between any two matrices AAA and BBB is defined as:

∆F(AAA,BBB) = F(AAA)−F(BBB)− tr
(
(AAA−BBB)g(BBB)>

)
, (6.9)

where g(·) denotes the derivative of F (Eqn. (6.5)) [156] and tr(·) the matrix trace norm. After

taking the gradient with the first argument AAA, it has the following form:

∇AAA∆F(AAA,BBB) = g(AAA)−g(BBB), (6.10)

By replacing L(t) in Eqn. (6.5) with L̃(t)v , and setting the gradient of the minimisation objective

in Eqn. (6.5) to zero, we have:

g(MMMt)−g(MMMt−1)+η∇MMML̃(t)v = 0. (6.11)

This gives the following ranking metric online updating criterion:

MMMt = g−1
(

g(MMMt−1)−η∇MMML̃(t)v

)
, (6.12)

where the gradient of L̃(t)v w.r.t. MMM can be calculated as:

∇MMML̃(t)v = L̂( ft − fv−bt)zzztzzz>t , (6.13)
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with

L̂= Lyt

(
rank

(
fxxxp

t
(xxxg

t |MMMt−1)
))

, fv = fxxxp
t
(xxxg

v |MMMt−1), (6.14)

ft = fxxxp
t
(xxxg

t |MMMt), zzzt = xxxp
t − xxxg

t , bt =


1, if yt ∈ {m}.

−1, if yt ∈ {s}.

For the convex function F(·), existing common choices include squared Frobenius norm ‖MMM‖2
F

and quantum entropy tr(MMM log(MMM)−MMM). The incremental update of the HVIL model by Eqn. (6.12)

can be optimised by a standard gradient-based learning scheme such as [151, 157, 156]. In this

work, we adopt a strictly convex function F(MMM) = − logdet(MMM). This is because its gradient

function g(·) is as simple as

g(MMM) =∇MMMF(MMM) = MMM−1, (6.15)

and along with Eqn. (6.13) we can simplify Eqn. (6.12) as:

MMMt =
(

MMM−1
t−1−ηL̂( ft − fv−bt)zzztzzz>t

)−1
. (6.16)

Applying the Sherman Morrison formula [125], we obtain the following online updating scheme

for our HVIL model MMM:

MMMt = MMMt−1−
ηL̂( ft − fv−bt)MMMt−1zzztzzz>t MMMt−1

1+ηL̂( ft − fv−bt)zzz>t MMMt−1zzzt
(6.17)

To compute MMMt , we need to obtain the value of ft which however is parametrised by MMMt (Eqn.

(6.14)) and thus cannot be computed readily. One potential optimisation option is resorting to

gradient approximation [158]. Instead, we propose to solve MMMt with exact gradient for more

accurate modelling, inspired by the LEGO metric update [159]. Specifically, by left multiplying

MMMt with zzz> and right multiplying with zzz, we obtain

zzz>MMMtzzz = ft =
f̂

1+ηL̂( ft − fv−bt) f̂
(6.18)

with f̂ = fxxxp
t
(xxxg

t |MMMt−1). Then, ft can be solved by algebra transformation as:

ft =
ηL̂( fv +bt) f̂ −1+

√
(ηL̂( fv +bt) f̂ −1)2 +4ηL̂ f̂ 2

2ηL̂ f̂
(6.19)
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Given this explicitly calculated ft , we can evaluate quantitatively Eqn. (6.17) for online HVIL

model updating. An overview of the HVIL online learning process is given in Algorithm 2.

The updating scheme as described herein is favourable because it requires no computationally

expensive eigen-decomposition to project the updated metric back to the PSD cone, and the

positive definiteness of MMMt can be automatically guaranteed according to:

Theorem 1. If MMMt−1 is positive definite, then MMMt computed by Eqn. (6.17) is also positive

definite.

Proof. If MMMt−1 is a positive definite matrix, then

f̂ = fxxxp
t
(xxxg

t |MMMt−1) = zzz>t MMMt−1zzzt > 0 for all zzzt .

Since η > 0, L̂> 0, we have

√
(ηL̂( fv +bt) f̂ −1)2 +4ηL̂ f̂ 2 > |ηL̂( fv +bt) f̂ −1|.

Therefore, from Eqn. (6.19) we have

ft = fxxxp
t
(xxxg

t |MMMt) = zzz>t MMMtzzzt > 0 for all zzzt .

Hence MMMt is also a positive definite matrix.

Model Complexity This online HVIL model update by Eqn. (6.17) is solved with a compu-

tational complexity of O(d2) where d is the feature vector dimension, while a cost of O(d3)

is required by most other schemes which perform the Bregman projection back to the PSD

cone [151, 157, 156]. Given all the components described above, our final model for Human

Verification Incremental Learning (HVIL) enables real-time incremental model learning with

human-in-the-loop feedback to model re-id rank list. As shown in our evaluation (Sec. 6.5.1), the

proposed HVIL model provides faster human-in-the-loop feedback-reward cycles as compared

to alternative models.

6.3 Metric Ensemble for Human-Out-of-the-Loop Re-Identification

Finally, we consider the situation when the limited human labour budget is exhausted at time

τ and an automated HOL re-id strategy is required for any further probes as in conventional
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Algorithm 2: Human Verification Incremental Learning (HVIL)
Input: Unlabelled probe set P and gallery set G;
Output: Per probe optimised ranking lists; re-id models {MMMt}τ

t=1;
Initialisation: MMM0 = III (identity matrix, equivalent to the L2 distance)1
HIL person re-id:2
while t < τ do3

Present the next probe xxxp
t ∈ P;4

// maxIter: maximum interactions per probe
for iter = 1 : maxIter do5

Rank G with MMMt−1 against the probe xxxp
t (Eqn. (6.4));6

Request the human feedback (xxxg
t ,yt);7

Calculate L̃(t)v with the most violator xxxg
v (Eqn. (6.7) and (6.8));8

MMMt = update(MMMt−1, L̃
(t)
v ) (Eqn. (6.12));9

Return {MMMt}τ
t=1.10

approaches. In this setting, given that the HVIL re-id model is optimised incrementally during the

HIL re-id procedure, the latest model MMMτ optimised by the human verified probe at time τ can be

directly deployed. However, it is desirable to construct an even “stronger” model based on metric

ensemble learning. Specifically, a side-product of HVIL is a series of models incrementally

optimised locally for a set of probes with human feedback. We consider them as a set of globally

“weak” models {MMM j}τ
j=1, and wish to construct a single globally strong model for re-identifying

further probes without human feedback.

Regularised Metric Ensemble Learning Given weak models {MMM j}τ
j=1, we compute a distance

vector dddi j ∈ Rτ for any probe-gallery pair (xxxg
j , xxxp

i ):

dddi j =−
[

fxxxp
i
(xxxg

j |MMM1), · · · , fxxxp
i
(xxxg

j |MMMτ)
]>

(6.20)

The objective of metric ensemble learning is to obtain an optimal combination of these distances

for producing a single globally optimal distance. Here we consider the ensemble ranking function

f ens
xxxp

i
(xxxg

j) in a bi-linear form (shortened as f ens
i j ):

f ens
i j = f ens

xxxp
i
(xxxg

j) =−ddd>i jWWWdddi j, s.t. WWW ∈ Sτ
+, (6.21)

with WWW being the ensemble model parameter matrix that captures the correlations among all the

weak model metrics. In this context, previous work such as [46] is a special case of our model

when WWW is restricted to be diagonal only.

Objective Function To estimate an optimal ensemble weights WWW with maximised identity-

discriminative power, we re-use the true matching pairs verified during the human verification
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procedure (Sec. 6.2) as “training data”: Xtr = {(xxxp
i ,xxx

g
i )}

Nl
i=1, and their corresponding person iden-

tities are denoted by C = {ci}Nl
i=1. Note, “training data” here are only for estimating the ensemble

model weight, not for learning a distance metric. Since the ranking score f ens
i j in Eqn. (6.21)

is either negative or zero, we consider that in the extreme case, an ideal ensemble function f ∗i j

should provide the following ranking scores:

f ∗i j =


0, if ci = c j,

−1, if ci 6= c j.

(6.22)

Using FFF∗ to denote such an ideal ranking score matrix and FFFens to denote an estimated score

matrix by a given WWW with Eqn. (6.21), our proposed objective function for metric ensemble

learning is then defined as:

ρ = min
WWW
‖FFFens−FFF∗‖2

F +νR(WWW ), s.t. WWW ∈ Sτ
+, (6.23)

where ‖ · ‖F denotes a Frobenius norm, and R(WWW ) a regulariser on WWW with parameter ν control-

ling the regularisation strength. Whilst common choices of R(WWW ) include L1, Frobenius norm,

or matrix trace, we introduce the following regularisation for a Regularised Metric Ensemble

Learning (RMEL) re-id model:

R(WWW ) =−∑
i, j

f ens
i j , if ci = c j. (6.24)

Our intuition is to impose severe penalties for true match pairs with low ranking scores since they

deliver the most informative discriminative information for cross-view person re-id, whilst false

match pairs are less informative.

Optimisation Eqn. (6.23) is strictly convex with a guaranteed global optimal so it can be opti-

mised by any off-the-shelf toolboxes [160]. We adopt the standard first-order projected gradient

descent algorithm [161], with the gradient of Eqn. (6.23) computed as:

∇WWW = ∑
i, j
( f ∗i j− f ens

i j +νI[ci = c j])dddi jddd>i j , (6.25)

with I being the indicator function. Our optimisation algorithm is summarised in Algorithm 3.

HOL Person Re-Id Given the estimated optimal ensemble weight matrix WWW and the weak mod-
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Algorithm 3: Regularised Metric Ensemble Learning (REML)

Input: Training dataset Xtr = {(xxxp
i ,xxx

g
i )}

Nl
i=1, label set C = {ci}Nl

i=1, learning rate ε , max learning inteartion
τme, and weak HVIL models {MMM j}τ

j=1;
Output: The optimal weight matrix WWW for the metric ensemble;
Initialisation: Randomly initialise WWW 0 to some PSD matrix.1
Metric Ensemble Learning:2
for k = 1 : τme do3

Calculate gradient∇WWW k−1 (Eqn. (6.25));4
Set WWW k =WWW k−1− ε∇WWW k−1 ;5
Perform eigen-decomposition of WWW k: WWW k = ∑i λiuuuiuuu>i ;6
Project WWW k back to PSD cone:7
WWW k = ∑i max(λi,0)uuuiuuu>i .8

Return WWW .9

els {MMM j}τ
j=1, a single strong ensemble model (Eqn. (6.21)) is made available for performing au-

tomated HOL re-id of any further probes on the gallery population. Our experiments (Sec. 6.5.2)

show that the proposed RMEL algorithm achieves superior performance as compared to state-of-

the-art supervised re-id models given the same amount of labelled data.

6.4 Datasets and Experimental Settings

Two sets of comparative experiments were conducted: (1) The proposed HVIL model was evalu-

ated under a Human-In-the-Loop (HIL) re-id setting and an enlarged test gallery population was

used to reflect real-world use-cases (Sec. 6.5.1). (2) In the event of limited human labour budget

being exhausted and human feedback becoming unavailable, the proposed HVIL-RMEL model

was evaluated under an automated human-out-of-the-loop (HOL) re-id setting (Sec. 6.5.2).

Datasets Two largest person re-id benchmarks: CUHK03 [1] and Market-1501 [2], were chosen

for evaluations due to the need for large test gallery size. CUHK03 contains 13,164 bounding box

images of 1,360 people. Two versions of person image are provided: manually labelled and au-

tomatically detected, with the latter presenting more realistic detection misalignment challenges

for practical deployments (Fig. 6.5(a)). We used both. Market-1501 has 32,668 person bound-

ing boxes of 1,501 people, obtained by automatic detection. Both datasets cover six outdoor

surveillance cameras with severely divergent and unknown viewpoints, illumination conditions,

(self)-occlusion and background clutter (Fig. 6.5(b)). In addition, we also selected the most

common benchmark VIPeR [7] characterised with low imaging resolution and dramatic illumi-

nation variations (Fig. 6.5(c)). Compared to CUHK03 and Market-1501, VIPeR has a much

smaller population size (632 people) with fewer (1,264) labelled person images, therefore only

suitable for the conventional HOL re-id setting. These three datasets present a wide range of re-id
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(a) CUHK03 (b) Market-1501 (c) VIPeR

Figure 6.5: Examples of cross-view person images from three person re-id datasets. Two images
in each column describe the same person.

evaluation challenges under different viewing conditions and with different population sizes, as

summarised in Table 6.1.

Dataset Cams IDs Labelled Detected HIL Split HOL Split
VIPeR [7] 2 632 1,264 0 - 316/316

CUHK03 [1] 6 1,467 13,164 13,164 1,000 360
Market-1501 [2] 6 1,501 0 32,668 1,000 501

Table 6.1: Settings of three person re-id datasets.

Data Partitions For CUHK03 or Market-1501, we randomly selected 1,000 identities Dp1 (p

stands for population) as the partition to perform HIL re-id experiments. The remaining partition

of people Dp2 (360 on CUHK03, and 501 on Market-1501) were separated for evaluating the

proposed model against state-of-the-art supervised re-id methods for automated HOL re-id (see

details in Sec. 6.5.1 and Sec. 6.5.2). Due to its small size, VIPeR was only used in the HOL

experiments and the identities were split half-half for training and testing. To obtain statistical

reliability, we generated 10 different trials with different random partitions and reported their

averaged results.

Visual Features We adopted two types of image features: (1) The WHOS descriptor [61]: A

state-of-the-art hand-designed person re-id feature (5,138 dimensions) composited by colour,

HOG [29] and LBP [113] histograms extracted from horizontal rectangular stripes3. (2) The

CNN feature learned by a recently proposed deep architecture for re-id [162]: In contrast to

hand-crafted WHOS features, deep CNN features are extracted from a deep model trained by su-

pervised learning from a large number of labelled training data. Specifically, we trained the deep

3The LOMO (26,960-D) [24] and GOG (27,622-D) [96] were not selected due to their high dimension-
ality property which poses high computational cost for online model updating, although they are possibly
more discriminative.
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model with the entire person search dataset [163], which is independent of CUHK03, Market-

1501 and VIPeR, therefore without any additional effect on their data partitions. The trained

deep model is directly deployed as a feature extractor (1,024 dimensions) without any domain

transfer learning by fine-tuning on the three evaluation datasets. Whilst adopting deep features

from training a CNN model using labelled data may seem to be inconsistent with the objective

of this work – eliminating the need for offline pre-collected training data, the main purposes of

utilising the CNN feature are: (a) To evaluate the proposed HVIL on different features; (b) To

demonstrate any additional benefit of the proposed HVIL model on a strong deep feature already

learned from a large size labelled training data.

Evaluation Metrics We adopted three performance evaluation metrics in the following exper-

iments: (1) Cumulative Match Characteristic (CMC): calculated as the cumulative recognition

rate at each rank position. (2) Expected Rank (ER): defined as the average rank of all true

matches. (3) Mean Average Precision (mAP): first computing the area under the Precision-Recall

curve for each probe, then calculating the mean of Average Precision over all probes. For all HIL

re-id models, we used the ranking result after the final human feedback applied on each probe.

The averaged results over all 10 trials were reported in comparisons.

6.5 Experiments and Evaluations

6.5.1 Human-In-the-Loop Re-Identification Evaluation

Experiment Settings

Probe/Gallery Configuration For each of the Di
p1 partitions, we built a probe set for human

operators to perform HIL re-id. In each trial, the probe set P i contains randomly selected 300

persons with one image/person. For building the cross-view gallery set, we considered three

different configurations to fully analyse the behaviour and scalability of the proposed HVIL

method:

1. Single-shot gallery Gi
s: We randomly selected one cross-view image/person of all the 1,000

identities in partition Di
p1 and construct a single-shot gallery set Gi

s (1,000 person images)

on both CUHK03 and Market-1501.

2. Multi-shot gallery Gi
m: We built the multi-shot gallery Gi

m by following [2]. In particular,

for all the 1,000 identities in partition Di
p1, we used all cross-view images to construct the
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Feature WHOS [61] CNN [162] (except for DGD and Inception-V3)
Dataset CUHK03 (L) CUHK03 (D) Market-1501 (D) CUHK03 (L) CUHK03 (D) Market-1501 (D)
Rank (%) 1 50 100 1 50 100 1 50 100 1 50 100 1 50 100 1 50 100

L2 2.9 31.1 43.2 2.7 29.8 41.6 16.1 66.6 76.6 19.0 72.0 82.3 17.1 67.0 78.1 44.2 94.4 97.5
kLFDA [23] 5.9 47.3 60.1 4.7 39.6 51.7 21.8 85.8 91.5 21.4 77.4 86.2 19.4 73.7 82.7 52.9 97.2 98.5
XQDA [24] 3.7 40.2 53.6 2.4 22.4 33.3 18.3 75.1 83.5 19.8 76.9 85.8 17.7 73.9 83.0 49.6 97.0 98.5
MLAPG [25] 4.2 39.5 52.4 3.5 36.1 49.3 24.1 84.5 91.2 11.8 69.6 82.5 10.2 64.3 77.9 37.7 95.5 97.9
NFST [47] 7.1 41.5 54.7 4.9 37.4 48.5 34.4 85.3 90.7 9.9 41.7 51.3 9.5 38.0 47.8 45.0 89.7 93.3
HER [95] 7.6 46.0 58.1 5.7 41.8 53.8 39.1 90.8 94.7 16.2 73.5 84.3 14.5 69.9 80.2 44.0 96.1 98.3
DGD [9] - - - - - - - - - 12.0 58.0 69.8 10.1 49.8 61.6 58.4 95.7 97.4
Inception-V3 [10] - - - - - - - - - 15.7 63.7 74.4 15.3 62.5 72.2 51.6 94.7 96.8
EMR [105] 29.3 29.3 40.7 27.7 27.7 39.5 64.2 64.2 74.2 73.5 73.5 83.7 66.7 66.7 77.5 92.7 92.7 96.8
Rocchio [104] 32.0 38.7 46.2 29.0 36.2 43.8 61.7 70.2 77.5 62.0 79.2 85.2 56.2 74.3 80.8 81.2 94.5 93.3
POP [69] 44.0 51.5 60.0 41.7 48.5 58.8 75.0 78.5 84.5 74.7 74.8 77.2 69.0 70.7 73.2 92.8 93.0 93.3

HVIL (Ours) 60.2 68.2 78.5 53.7 65.0 75.3 84.5 89.2 93.2 84.2 89.2 93.3 80.3 86.0 91.2 95.3 96.0 98.3

Table 6.2: Human-in-the-loop person re-id with single-shot galleries. Gallery Size: 1,000 for
both CUHK03 and Market-1501; L: Labelled; D: Detected.

gallery set. As such, the average gallery size is 4,919 on CUHK03 and 9,065 on Market-

1501. Note that, we did not utilise the label information about which images are of the

same person, and thus both CMC and mAP can be used for performance evaluation.

3. Open-world gallery Gi
d : We considered a more challenging setting with a large number of

distractors involved in the gallery set. Specifically, we added 34,574 bounding boxes of

11,934 persons from the person search dataset [163] to the single-shot gallery set Gi
s. The

resulted gallery Gi
d size is 35,574 on both datasets. This is to evaluate the scalability of

HIL re-id methods when operating under the open-world re-id setting featured with a huge

gallery search space.

Human Feedback Protocol Human feedback were collected on all 10 trials of Di
p1 partitions

and all 3 different gallery configurations, in total 3× 10 = 30 independent sessions on each

dataset by 5 volunteers as users. During each session, a user was asked to perform the HIL

re-id on probes in probe set P i against gallery set Gi ∈ {Gi
s,Gi

m,Gi
d}. For each probe person, a

maximum of 3 rounds of user interaction are allowed. We limited the users to verify only the

top-50 in the rank list (5% of Gi
s, 0.5 ∼ 1% of Gi

m, and 0.1% of Gi
d). During each interaction:

(1) A user selects one gallery image as either strong-negative or true-match; and (2) the system

takes the feedback, updates the ranking function and returns the re-ordered ranking list, all in

real-time (Sec. 6.2). The HVIL model was evaluated against eight existing models for HIL re-id

deployment as follows.

HIL Competitors Three existing HIL models were compared: (1) POP [69]: The current state-

of-the-art HIL re-id method based on Laplacian SVMs and graph label propagation; (2) Roc-
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Feature WHOS [61] CNN [162] (except for DGD and Inception-V3)
Dataset CUHK03 (L) CUHK03 (D) Market-1501 (D) CUHK03 (L) CUHK03 (D) Market-1501 (D)
Rank (%) R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

L2 4.1 14.1 3.6 13.9 28.0 23.9 22.0 29.5 20.7 28.0 58.0 50.9
kLFDA [23] 8.1 17.8 6.3 16.5 47.1 39.9 25.4 32.8 23.9 31.0 67.7 63.0
XQDA [24] 3.6 14.9 4.5 14.5 34.3 30.1 24.5 31.7 22.5 30.0 63.4 58.1
MLAPG [25] 5.0 15.1 5.1 15.1 44.3 40.8 14.8 23.7 12.2 21.9 54.5 50.8
NFST [47] 8.2 17.5 7.7 16.6 68.3 62.1 20.2 26.8 18.6 25.3 76.2 69.9
HER [95] 9.5 18.6 8.1 17.4 68.9 61.7 24.3 31.4 22.3 29.3 77.4 72.1
DGD [9] - - - - - - 15.1 23.5 13.0 21.4 82.1 75.9
Inception-V3 [10] - - - - - - 19.2 27.1 18.3 26.2 76.3 71.4
EMR [105] 30.8 20.2 29.7 19.3 76.0 31.7 71.3 40.6 66.3 37.5 94.0 57.7
Rocchio [104] 34.0 26.4 30.7 23.7 74.3 37.1 59.3 50.0 56.0 46.8 83.7 65.1
POP [69] 43.0 39.4 44.3 38.2 82.7 52.7 71.7 68.2 68.0 64.3 94.0 74.0

HVIL (Ours) 63.0 59.0 53.7 48.7 87.3 63.3 84.0 73.4 80.7 72.7 96.0 83.3

Table 6.3: Human-in-the-loop person re-id with multi-shot galleries. Gallery Size: 4,919 for
CUHK03 and 9,065 for Market-1501. L: Labelled; D: Detected.

chio [104]: A probe vector modification model updates iteratively the probe’s feature vector

based on human feedback, widely used for image retrieval tasks [164]; (3) EMR [105]: A graph-

based ranking model that optimises the ranking function by least square regression. For a fair

comparison of all four HIL models, the users were asked to verify the same probe and gallery

data (P i,Gi) with the same two types of feedback given the ranking-list generated by each model.

HOL Competitors In addition, seven state-of-the-art conventional HOL supervised learning

models were also compared: kLFDA [23], XQDA [24], MLAPG [25], NFST [47], HER [95],

DGD [9], and Inception-V3 [10], among them two are deep learning models (DGD and Inception-

V3). These supervised re-id methods were trained using fully pre-labelled data in the separate

partition Di
p2 (CUHK03: averagely 3,483 images of 360 identities; Market-1501: averagely

7,737 images of 501 identities) before being deployed to P i and Gi for automated HOL re-id

testing. Note, the underlying human labour effort for pre-labelling the training data to learn

these supervised models was significantly greater – exhaustively searching 3,483 and 7,737 true

matched images respectively for CUHK03 and Market-1501, than that required by the HIL meth-

ods – between 300 to 900 indicative verification (strong negative or true match) given a maxi-

mum of 300 probes on both CUHK03 and Market-1501, so only 1/10th of and weaker user input

than supervised HOL models. It should be noted that non-deep distance metric models (kLFDA,

XQDA, MLAPG, NFST, HER) were trained using either hand-crafted WHOS [61] or deep learn-

ing CNN [162] features (Section 6.5), while DGD and Inception-V3 were trained directly from

raw images in Di
p2, since these two deep models provide their own deep CNN features (256

dimensions for DGD and 2,048 for Inception-V3).

Implementation Details For implementing the HVIL model (Sec. 6.2), the only hyper-parameter
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Feature WHOS [61] CNN [162] (except for DGD and Inception-V3)
Dataset CUHK03 (L) CUHK03 (D) Market-1501 (D) CUHK03 (L) CUHK03 (D) Market-1501 (D)
Rank (%) 1 50 100 1 50 100 1 50 100 1 50 100 1 50 100 1 50 100

L2 2.8 27.2 38.2 2.6 24.8 34.4 10.7 43.9 51.5 18.3 69.6 80.1 16.6 65.0 75.9 31.4 77.6 84.0
kLFDA [23] 5.6 32.9 44.8 3.6 28.1 38.0 19.8 67.6 76.1 17.7 66.9 77.1 16.8 63.6 72.9 38.4 84.2 89.7
XQDA [24] 3.1 25.3 36.3 2.4 21.7 32.0 16.6 61.9 70.7 15.5 61.7 70.6 13.2 58.1 67.7 31.3 77.0 84.4
MLAPG [25] 3.7 33.3 44.0 2.8 28.9 39.2 18.9 67.6 76.3 6.4 34.6 43.1 5.8 30.2 37.9 20.1 65.0 74.0
NFST [47] 5.6 34.6 45.6 4.2 30.3 40.5 30.1 78.3 85.0 9.8 41.4 51.0 9.4 37.8 47.5 39.6 83.7 88.4
HER [95] 6.3 36.2 46.0 4.5 31.4 40.5 32.7 80.8 86.0 12.3 57.3 66.5 11.8 54.7 64.1 26.1 70.6 79.0
DGD [9] - - - - - - - - - 7.2 29.1 35.0 5.6 23.2 29.0 48.6 86.3 89.2
Inception-V3 [10] - - - - - - - - - 8.9 31.5 38.2 7.4 30.5 37.6 37.0 79.4 83.9
EMR [105] 25.8 25.8 35.5 23.1 23.1 32.2 40.8 40.8 46.8 70.7 70.7 81.0 66.3 66.3 77.7 72.7 72.7 80.7
Rocchio [104] 28.7 32.3 37.5 25.3 30.0 37.0 43.6 46.2 48.8 61.0 74.0 81.7 56.7 73.7 80.0 64.3 74.3 80.0
POP [69] - - - - - - - - - - - - - - - - - -

HVIL (Ours) 55.6 65.7 74.8 52.0 60.3 67.8 61.7 70.8 76.7 80.3 86.0 91.3 73.3 84.7 89.3 91.3 93.3 96.0

Table 6.4: Human-in-the-loop person re-id with open-world galleries consisting of 34,574 dis-
tractors. Gallery Size: 35,574 for both CUHK03 and Market-1501. L: Labelled; D: Detected.
Note: POP results are unavailable because it was intractable on our computing hardware.

η (Eqn. (6.5)) was set to 0.5 on both CUHK03 and Market-1501. We found that HVIL is insensi-

tive to η with a wide satisfiable range from 10−1 to 101. For POP, EMR, and Rocchio, we adopted

the authors’ recommended parameter settings as in [69, 104]. For all HIL methods above, we

applied L2 distance as the initial ranking function f0(·) without loss of generalisation4. Note that

for HVIL, once f0(·) was initialised for only the very first probe, it was then optimised incre-

mentally across different probes. In contrast, for POP and EMR and Rocchio, each probe had

its own f0(·) initialised as L2 since the models are not cumulative across different probes. For

HOL competitors, the parameters were determined by cross-validation on Dp2 with the authors’

published codes. All models except DGD and Inception-V3 used the same two feature descrip-

tors for comparison (WHOS [61] and CNN feature [162]). DGD [9] and Inception-V3 [10] used

their own deep features from training their CNN networks.

Evaluations on Person Re-Identification Performance

The person re-id performances of all HIL and HOL methods onP i and {Gi
s,Gi

m,Gi
d} are compared

in Tables 6.2 (single-shot), 6.3 (multi-shot), and 6.4 (open-world) respectively.

HIL vs. HOL Re-Id Methods We first compared the re-id matching performance of HIL and

HOL re-id schemes. It is evident from the three Tables that the HIL methods outperform signifi-

cantly the conventional HOL counterparts in all testing settings on both datasets. Specifically, in

single-shot setting (Table 6.2), all conventional supervised re-id models suffered severely when

the gallery size was enlarged to 1,000 from their standard setting. For example, the state-of-the-

4No limitation on considering any other distance or similarity metrics, either learned or not. However,
non-learning based generic metrics are more scalable and transferable in real-world.
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art deep re-id model DGD [9] can achieve 72.6% Rank-1 rate on CUHK03 (Labelled) under the

test protocol of using the 100-sized test gallery. However, its Rank-1 accuracy drops dramati-

cally to only 12.0% Rank-1 on CUHK03 (Labelled) and 10.1% (Detected) under the 1,000-sized

test gallery evaluated here. Similar performance drops occur for all other HOL models. Such

low Rank-1 matching accuracies show that, existing best supervised re-id approaches are still far

from being sufficiently mature to provide a fully automated HOL re-id solution in real world.

On the contrary, HIL methods make more realistic assumptions by considering human in the

loop, and leverage limited human efforts to directly drive up model matching performance by

mining the joint human-machine benefits. The advantage in re-id matching by the HOL methods

is clear: for example, with WHOS feature the proposed HVIL achieves over 50% and 80% in

Rank-1 on CUHK03 and Market-1501 (Table 6.2), which is much more acceptable in practical

use. In terms of supervision cost, the supervised HOL models were offline trained on a large-

sized pre-labelled data in Dp2 with an average of 3,483 cross-view images of 360 identities on

CUHK03, and 7,737 images of 501 identities on Market-1501. Whereas the HIL models re-

quired much less human verification effort, e.g. at most 3 feedback for each probe in top-50

ranks only, in total (300∼ 900) weak feedback. Human feedback is neither restricted to be only

true matches, nor exhaustively labelling person identity labels, nor searching true matches in a

huge image pool. These evidences suggest that HIL re-id is a more cost-effective and promising

scheme in exploiting human effort for real-world applications as compared to the conventional

HOL approach.

Among all HIL re-id models, the proposed HVIL achieves the best performance. For in-

stance, it is found in Table 6.2 that the HVIL improves significantly over the state-of-the-art HIL

model POP on Rank-1 score, e.g. from 44.0% to 60.2% on CUHK03 (Labelled), from 41.7%

to 53.7% on CUHK03 (Detected), and from 75.0% to 84.5% on Market-1501, when the WHOS

feature is used. HVIL’s advantage continues over all ranks. This demonstrates the compelling ad-

vantages of the HVIL model in cumulatively exploiting human verification feedback, whilst other

existing human-in-the-loop models have no mechanisms for sharing human feedback knowledge

among different probes.

Effect of Features Next, we evaluated the effect of different visual features by comparing the

hand-crafted WHOS [61] and the most recent deep CNN feature [162] learned from the large

scale person search dataset [163]. As shown in Table 6.2, the CNN feature is much more discrim-
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inative and view-invariant than the WHOS thanks to the access of large quantity of labelled data

and the strong deep model learning capacity. Specifically, with CNN feature, even the generic L2

metric can achieve 19.0%/17.1% and 44.2% on CUHK03 (Labelled/Detected) and Market-1501,

respectively. Importantly, CNN feature can be well complementary with HIL re-id methods:

The HIL re-id Rank-1 rates are further boosted to a more satisfying level, e.g. 84.2%/80.3%

and 95.3% by the proposed HVIL. This implies the great compatibility of the HVIL with deep

feature learning. On the other hand, it is found that with such a powerful deep CNN feature,

HOL models are still outperformed drastically by HIL methods. This suggests the consistent and

general advantages of the HIL re-id scheme over the HOL approach given various types of visual

features.

Single-Shot vs. Multi-Shot We evaluated the effect of shot number in the gallery set in person

re-id performance. When more shots of a person are available (Table 6.3 vs. Table 6.2), re-id

matching accuracy can be improved in most cases by either HIL and HOL methods including

the proposed HVIL. However, the best results are still generated by the HVIL model. This

suggests the steady advantage of the proposed method in different search gallery settings. In

particular, we have the following observations and justifications: (1) The Rank-1 improvement

degree varies over different datasets, with Market-1501 benefiting more than CUHK03. The

plausible reason is that, Market-1501 person images give more pose and detection misalignment

challenge due to poorer person bounding box detection, and therefore multi-shot images with

various poses and detection qualities can bring more gains. (2) The HVIL model seem to benefit

less from multi-shot gallery images as compared to other methods. This may be due to the better

capability of mitigating the pose/detection misalignment challenge by the proposed incremental

model learning, thus not needing multiple shots as much as the other models do.

Effect of Distractors in Open-World Setting Finally, we evaluated the effect of open-world

distractors in the gallery set for further testing the model scalability. This evaluation is made by

comparing Table 6.2 and Table 6.4. After adding 34,574 person bounding boxes as distractors to

the 1000 sized single-shot gallery (i.e. the gallery size is enlarged by 35 times), we observed that

(1) As expected, all methods suffered from some drop in re-id performance; (2) The HIL methods

outperform more significantly the HOL models under the open-world setting; and (3) the HVIL

again achieves the best re-id performance, and particularly on the CUHK03 (Detected) dataset,

the addition of 34K distractors causes only a 1.7% = 53.7− 52.0% Rank-1 drop. This again
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Figure 6.6: Comparing Rank-1 score and Expected Rank (ER) on human feedback rounds.

suggests the clear advantages and superiority of having human in the loop for real-world person

re-id applications when the gallery population size is inevitably large in the open-world operation

scenarios. More specifically, when the WHOS feature was used, the best HOL model HER’s

Rank-1 rates dropped from 7.6% to 6.3%, 5.7% to 4.5%, and 39.1% to 32.7% on CUHK03

(Labelled), CUHK03 (Detected), and Market-1501 respectively. The best HIL competitor, POP,

completely fails to operate with such a large gallery set. The reason is that POP requires to build

an affinity graph and calculate the graph Laplacian on all the gallery samples to propagate human

labels. Given a 34,574-sized gallery set, the affinity graph alone takes 4.78 GB storage which is

both difficult to process (out of memory) for common workstations and suffering from slow label

propagation.

Further Analysis on Human Verification

We examined the effectiveness of the proposed HVIL model in exploiting human verification

effort for HIL re-id in the single-shot setting with WHOS feature.

Statistics Analysis on Human Verification Fig. 6.6 shows the comparisons of Rank-1 and Ex-

pected Rank (ER) on the 4 human-in-the-loop models over three verification feedback rounds. It

is evident that the proposed HVIL model is more effective than the other three models in boost-

ing Rank-1 scores and pushing up true matches’ ranking orders. The reasons are: (1) Given a

large gallery population with potentially complex manifold structure, it is difficult to perform

accurately graph label propagation for graph-based methods like POP and EMR. (2) Unlike

POP/EMR/Rocchio, the proposed HVIL model optimises on re-id ranking losses (Eqn. (6.3))
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Dataset CUHK03 (L) CUHK03 (D) Market-1501 (D)

Method HVIL POP ES HVIL POP ES HVIL POP ES

Found-matches(%) ↑ 60.2 44.0 100 53.7 41.7 100 84.5 75.0 100

Browsed-images ↓ 35.1 57.3 253.9 71.6 107.0 264.3 19.7 33.8 98.5

Feedback ↓ 2.2 2.4 - 2.4 2.4 - 1.6 1.7 -

Search-time(sec.) ↓ 23.5 47.3 187.0 33.0 55.8 234.9 14.7 22.7 131.8

Table 6.5: Human verification effort vs. benefit. All measures are from averaging over all probes. ↓: lower better;
↑: higher better. Setting: single-shot. Feature: WHOS.

specifically designed to maximise the two types of human verification feedback. (3) The HVIL

model enables knowledge cumulation (Eqn. (6.5)). This is evident in Fig. 6.6 where HVIL yields

notably better (lower) Expected Ranks (ER), even for the initial ER before verification feedback

takes place on a probe (due to benefiting cumulative effect from other probes). In contrast, other

models do not improve initial ER on each probe due to the lack of a mechanism to cumulate

experience.

Human Verification Cost-Effectiveness We further evaluated the human verification effort in

relation to re-id performance benefit by analysing the meta statistics of HIL re-id experiments

above. We compared the HVIL model with the POP model and Exhaustive Search (ES) where a

user performs exhaustive visual searching over the whole gallery ranking list (1,000) generated

by L2 metric until finding a true match. The averaged statistics over all 10 trials were compared

in Table 6.5. It is evident that though ES is guaranteed to locate a true match for every probe

if it existed, it is much more expensive than POP (3×) and HVIL (5×) in search time given a

1,000-sized gallery. This difference will increase further on larger galleries. Comparing HVIL

and POP, it is evident that HVIL is both more cost-effective (less Search-time, Browsed-images

and Feedback) and more accurate (more Found-matches).

HIL Re-Id Search Speed To better understand model convergence given human feedback,

we conducted a separate experiment to measure the search time by different human-in-the-loop

models given the initial rank lists on 25 randomly selected probes verified by multiple users. This

experiment was evaluated by 10 independent sessions with the same set of 25 probes provided.

In each session, the users were required to find a true match for all 25 probes. Specifically,

for HVIL and POP, if a true match was not identified after 3 (maximum) feedback, the users

then performed an exhaustive searching until it was found. The search time statistics for all 25

probes are shown in Fig. 6.7, where a bar shows the variance between 10 different sessions. It is
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Figure 6.7: Search time from different HIL models on the same 25 randomly selected probes.
Dataset: CUHK03 (Labelled). Setting: single-shot.

unsurprising that ES is the least efficient whilst HVIL is the quickest in finding a true match, i.e.

the data points of HVIL are much lower in search time. Moreover, it is evident that HVIL yields

much better initial ranks, i.e. the data points of HVIL are more centred towards the bottom-left

corner. This further shows the benefit of cumulative learning in HVIL (Sec. 6.2.3).

Strong vs. Weak Negative We evaluated explicitly the effect of strong and weak negative

feedback on the HIL re-id performance. To this end, a further experiment was conducted with

the single-shot gallery setting with WHOS feature, under the same human feedback protocol as

described in Sec. 6.5.1 with the only difference that users were required to label visually sim-

ilar samples (weak negative) instead of dissimilar ones (strong negative). For model updates

on weak negatives we adopted the same loss design of our preliminary model [48]. Table 6.6

shows that labelling weak negatives is much less effective than strong ones in re-id perfor-

mance. For example, when weak negatives are labelled instead of strong ones, Rank-1 rates

drops from 60.2%/53.7%/84.5% to 45.3%/43.6%/78.0% and Expected Ranks increases from

76.0/99.8/20.0 to 203.0/226.7/90.7 on CUHK03(Labelled/Detected) and Market-1501. More-

over, it is indicated by the users that weak negatives are much harder and time consuming to label.

This is intuitive given that most top-ranked gallery images are visually similar which renders a

user hard to select a specific one against the others (Fig. 6.3c).

Dataset CUHK03 (L) CUHK03 (D) Market-1501 (D)
Metric R1(%) ER R1(%) ER R1(%) ER

Strong 60.2 76.0 53.7 99.8 84.5 20.0
Weak 45.3 203.0 43.6 226.7 78.0 90.7

Table 6.6: Effect of strong and weak negatives in HIL re-id performance.
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6.5.2 Human-Out-of-the-Loop Re-Identification Evaluation

Experiment Settings

Finally, we assume that a limited budget for human verification on Di
p1 has been reached after

time τ so that human feedback becomes unavailable. Re-id of any further independent popula-

tion (e.g. Di
p2) turns to a conventional human-out-of-the-loop (HOL) re-id problem, if one treats

previously human labelled samples as training samples. The proposed RMEL model was then

evaluated under this HOL re-id setting against both state-of-the-art supervised models and base-

line ensemble models. This experiment was conducted with CNN feature on both CUHK03 (La-

belled) and Market-1501 dataset, Additionally, to examine our proposed HVIL-RMEL frame-

work in a more comparable context defined in the literature on HOL re-id, we also tested on the

VIPeR [7] benchmark, with more details as follows.

Training/Testing protocol On CUHK03 and Market-1501 datasets, in each of the overall 10

trials, we employed the human verified true matches on Di
p1 to learn the weights for constructing

a strong ensemble model using all the verified weak models {MMM j}τ
j=1 collected from our pre-

vious experiments on human-in-the-loop re-id. The strong ensemble model was then deployed

for testing on the separate partition Di
p2 with the size of 360 and 501 persons for CUHK03 and

Market-1501 respectively. For performance evaluation, we adopted the standard single-shot test

setting, i.e. randomly sampling 360 cross-camera person image pairs from CUHK03 and 501

pairs from Market-1501 on {Di
p2}10

i=1 to construct the test gallery and probe sets over ten trials.

On VIPeR dataset, we followed the exact setting of the established protocol in existing literature:

splitting the 632 identities into 50−50% partitions for training and testing sets. For obtain-

ing weak re-id models, we simulated HVIL feedback update by simply giving the ground-true

matching pairs instead of strong negatives (Eqn. (6.12)); therefore each weak model was obtained

by a true-match, using the same information as training a conventional supervised model. On all

three datasets the averaged CMC performance over all trials was reported.

HOL Competitors On CUHK03 and Market-1501, five state-of-the-art supervised re-id models

are compared: kLFDA [23], XQDA [24], MLAPG [25], NFST [47], HER [95] were trained

using 300 ground-truth labelled data from P i (300) and Gi
s (1,000) of Di

p1 under the same CNN

feature, for both CUHK03 and Market-1501. The trained models were tested on the separate

5In this study, a challenging single-shot training/testing protocol (300/360 for CUHK03 and 300/501
for Market-1501) is adopted for HOL evaluation (Table 6.7). In contrast to the reported multi-shot set-
ting [1, 2] of 1260/100 for CUHK03 and 751/750 for Market-1501, this is a harder task.
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Dataset CUHK03 (Ng = 360) Market-1501 (Ng = 501)
Rank (%) 1 5 10 20 1 5 10 20

kLFDA [23] 20.6 43.1 55.8 67.8 57.0 83.9 91.9 96.9
XQDA [24] 19.7 43.6 56.7 68.9 52.9 83.5 89.9 96.1
MLAPG [25] 15.8 35.8 45.6 57.7 52.2 78.6 87.7 94.1
NFST [47] 22.8 43.1 56.1 63.7 58.6 84.1 90.7 96.3
HER [95] 25.3 43.3 55.8 67.1 60.6 83.9 90.7 96.8
HVIL - MMMavg 19.7 39.2 55.3 70.3 57.3 85.5 93.0 96.5
HVIL - MMMτ 20.3 43.3 56.4 66.1 59.3 86.8 93.6 96.5
HVIL - RMEL 21.9 46.7 59.2 71.4 62.6 87.0 92.3 96.3

Table 6.7: Automatic person re-id (HOL) with CMC performances on CUHK03 and Market-
1501. Gallery Size: 360 for CUHK03 and 501 for Market-15015.

partition Di
p2 with same testing protocol as above. On VIPeR, as our training/testing protocol

is standard, we compared fifteen recently published state-of-the-art including six deep models:

RDC-Net[56], JRL [133], DGD [9], Gated S-CNN [52], S-LSTM [63], MCP [57], and nine

shallow models: MLF [21], kLFDA [23], SCNCD [45], XQDA [24], MLAPG [25], RKSL [132],

NFST [47], LSSCDL [49], HER [95]. Since most of the above work were reported with the same

training/testing protocol but various features and unavailable code access, we simply compared

ours with their published results.

Metric Ensemble Baselines For investigate the effect of RMEL’s learned ensemble, two base-

line models are compared: (1) HVIL - MMMτ : The incrementally optimised re-id model MMMτ obtained

by HVIL from the last probe image at time τ during the human-in-the-loop process. (2) HVIL -

MMMavg: An naive approach to ensemble weak models, that is, simply taking an average weighting

of all weak models {MMM j}τ
j=1 as the ensemble re-id model.

Evaluations on Person Re-Identification Performance

Tables 6.7 and 6.8 report the result. For CUHK03, there is insufficient labelled data for all

camera pairs during training, given only one pair of randomly selected single-shot images per

identity. All models generated poor re-id performances (Rank-1 rates < 30%), much less than

state-of-the-art reported in the literature. For Market-1501, a similar problem exists although

less pronounced. Note, the results in Table 6.7 are based on a single-shot test setting. This is

a much harder problem than the multi-shot test setting [2] where on average 14.8 true matches

exist in the gallery for each probe. Given the experimental results above, it is evident that: Due

to (1) a much larger unlabelled test gallery population than the labelled training set, (2) a lack of
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Dataset VIPeR (Ng = 316)
Rank (%) 1 5 10 20

MLF [21] 29.1 52.3 66.0 79.9
kLFDA [23] 38.6 69.2 80.4 89.2
SCNCD [45] 33.7 62.7 74.8 85.0
XQDA [24] 40.0 68.1 80.5 91.1
MLAPG [25] 40.7 69.9 82.3 92.4
RKSL [132] 40.2 74.5 85.7 93.5
NFST [47] 42.3 71.5 82.9 92.1
LSSCDL [49] 42.7 - 84.3 91.9
HER [95] 45.1 74.6 85.1 93.3
RDC-Net[56] 40.5 60.8 70.4 84.4
JRL [133] 38.4 69.2 81.3 90.4
DGD [9] 38.6 - - -
Gated S-CNN [52] 37.8 66.9 77.4 -
S-LSTM [63] 42.4 68.7 79.4 -
MCP [57] 47.8 74.7 84.8 91.1
HVIL - MMMavg 40.8 66.1 76.9 86.4
HVIL - MMMτ 42.1 69.0 78.5 88.6

HVIL - RMEL 47.1 71.7 82.5 91.3

Table 6.8: Automatic person re-id (HOL) with CMC performances on VIPeR.

sufficient multi-shot training/testing data in many camera pairs, human-in-the-loop approach to

re-id is not only desirable, but essential for re-id in real world applications.

Nevertheless, for HOL re-id, the proposed HVIL-RMEL still achieves the best performance

among all models with a Rank-1 of 21.9% on CUHK03 and 62.6% on Market-1501. More impor-

tantly, even though less true-match data (253 pairs for CUHK03 and 285 pairs for Market-1501)

were used to learn the ensemble weighting for the RMEL model as compared to the ground-truth

data (300 pairs for both benchmarks) used to train kLFDA, XQDA and MLAPG, it is evident that

the human verification feedback process yields more discriminative information for optimising

probe re-id directly in the gallery population, resulting in a more optimal ensemble model. When

HVIL-RMEL was evaluated under the standard training/testing setting on VIPeR, it yields 47.1%

for Rank-1 rate, which is only 0.6% lower compared to the current best deep model MCP [57]. It

is also evident that naively taking an average ensemble model (HVIL - MMMavg) gives even poorer

performance than the cumulatively learned single model (HVIL - MMMτ ).
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6.6 Summary

We formulated a novel approach to human-in-the-loop person re-id deployment by introducing a

Human Verification Incremental Learning (HVIL) model, designed to overcome two unrealistic

assumptions adopted by existing re-id models that prevent them to be scalable to real world

applications. In particular, the proposed HVIL model avoids the need for collecting off-line pre-

labelled training data and is scalable to re-id tasks in large gallery sizes. The advantage of HVIL

over other human-in-the-loop models is its ability to learn cumulatively from human feedback

on more probe images when available. We further developed a regularised metric ensemble

learning (RMEL) method to explore HVIL for automated re-id tasks when human feedback is

unavailable. Extensive comparisons on the CUHK03 [1] and the Market-1501 [2] benchmarks

show the potentials of the proposed HVIL-RMEL model for real-world re-id deployments.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has explored a wide range of approaches to reduce the human labelling efforts in

modelling person re-identification, and meanwhile maximise its cost-effectiveness for more scal-

able model training and deployments (Figure 1 in Abstract). In particular, the primary aims of

this thesis are (i) to extract discriminative information from unlabelled surveillance images for

model training since they are much easier and cheaper to collect and larger in scales; (ii) to ef-

ficiently utilise limited human labelling labour for model training, so that annotation efforts are

only concentrated on a small group of data which contributes most to a re-identification model’s

discriminative power; (iii) to facilitate human operators and speed up the searching time for

model deployments with a potentially large searching space. Specifically,

1. We have adopted unsupervised learning based approaches to (i) in Chapter 3 and Chapter 4.

Particularly, Chapter 3 proposes a subspace learning model to exploit the inter/intra-view

affinity information from unlabelled data and learns an efficient closed-form global simi-

larity matching function. On the other hand, Chapter 4 proposes a generative topic model

to learn the localised appearance saliency from each unlabelled individual person images,

and perform re-identification based on the salient visual features which are representative

for each person and robust across camera views. The capability of learning from unla-

belled data substantially reduces the demand of heavy human labelling for model training,

and improves the scalability of a re-id model.
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2. We have adopted active learning algorithms with incremental model updates on-the-fly to

address (ii) in Chapter 5. A new active learning algorithm is proposed for cost-effective

human labelling and model update, by only querying the most informative rather than

randomly sampled data from a human operator. The active learning model jointly explore

the population diversity and discover the discriminative class boundary of the up-to-date

model, so that best re-identification matching with the least labelling cost.

3. To address (iii), Chapter 6 has proposed a a new human-in-the-loop re-id model which

incrementally adapts its model parameters continuously improves the re-identification re-

trieval results for each query image by taking only a handful of weak human feedback,

without the need for exhaustive eyeball search of true/false in the entire very large gallery

set. The model can be directly deployed without the need of heavy human labelling for the

pre-collection a separate training dataset.

Although presented as separate chapters in this thesis, techniques proposed in Chapter 3, 4, 5

and 6 should be treated as synergistic building blocks required by one practical re-identification

system with remarkably reduced human annotation efforts. In such a system, an operator only

needs to annotate a small portion of person images which are automatically selected by a re-

identification model. The model could immediately adapt its parameters with any incoming

labels, and meanwhile learns complementary information from the vast amount of unlabelled

data to further increase its discriminative performance; Given a query image of any individual

of interest, an operator does not needs to exhaustively browse and verify every instance on the

retrieved image list page by page, instead he/she can take two or three mouse clicks so that a true

match will quickly show up in sight. In sum, this thesis considered many aspects to reduce the

human efforts involved at different stages of a real-world surveillance system.

7.2 Future Work

The potential research directions for future work beyond the proposed methods are summarised

as follows:

• Chapter 3 attempts to increase the scalability of a re-identification model by unsupervised

learning from unlabelled data and relaxing the requirement of human labels. To do so it for-

mulated a canonical correlation analysis [112] (CCA) based model, which learns a separate
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projection/representation for every different camera view i.e. view-specific representation

models, which could be harmful to the approach’s scalability. In a real-scale surveillance

network where the camera numbers increases dramatically and candidate images could

come from multiple or even unknown views, it is more desirable to train a unified model

which is independent to camera views. One possible direction could be formulate other

base frameworks, such as Linear Discriminant Analysis [121], metric learning [138], or

deep learning [10], into unsupervised learning models by imposing the intra/inter-view

affinity constraints (Section 3.3) as learning principles.

• In Chapter 4, although the proposed generative topic model successfully learns the salient

appearance regions on unlabeled images, the extracted saliency map and foreground/background

maps are still coarse (see Figure 4.3). The reason is that Chapter 3 adopts a patch-based

representation, where a single saliency score will be assigned to all pixels within the same

image patch. In recent years many end-to-end pixel level saliency mapping techniques has

been proposed, e.g. [165, 166, 167]. However, unlike Chapter 4, these above mentioned

approaches are supervised models and require even heavier and more fine-grained human

annotations (pixel level). One potential future work is to exploit the idea proposed in Chap-

ter 4 with the more advanced pixel-level models for accurate saliency generation under

the unsupervised learning setting, and then achieve more discriminative re-identification

matching results.

• Chapter 5 leaves a few open questions to exploiting active learning and incremental learn-

ing algorithms in the context of re-identification. First, what forms of data input should

an active learning model ask for human labeling? In the current approach proposed by

Chapter 5, an active learning model automatically selects one unlabeled image, and ask

for human operators to label its cross-view matching pair. In real-world scenarios, this

is however not guaranteed (see Section 1.2). When a true match cannot be labeled, the

model takes no inputs and human annotation effort will be wasted. One possible solution

is to develop active learning algorithms which are capable of taking more flexible types

of human inputs, e.g. the weak human feedback as proposed in Chapter 6 and [69], for a

model to perform update. A second question is that, is it possible to achieve fast incremen-

tal updates for more advanced models such as deep neural networks [10]? Currently the

incremental model proposed by Chapter 5 is characterised by its closed-form solution and
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efficient updates, but as a shallow regression model it sacrifice discriminative capability

compared to recent deep models [9, 50, 52]. However, it is widely known that deep neural

networks require iterative stochastic gradient decent optimisations on a batch of data to

adapt its parameters, which is both inefficient in timing and less effective for updates with

single data. One interesting and yet unsolved problem is thus to perform fast incremental

model updates with deep learning based models on a steam of incoming data.

• Currently, Chapter 6 treats human operators as an adversary in the proposed online learning

system, which generates the loss at each time frame based on his/her feedback. Although

shown to be effective, e.g. with dramatically reduced annotation effort and boosted re-

identification accuracy, the approach can still be further improved in many aspects. For

example, the current system overwhelmingly relies on the correctness of a human oper-

ator, whereas in real-world a human could easily make mistakes which cause the model

parameters to converge to an unexpected state. Moreover, the quality of feedback de-

pends on many uncontrolled factors such as experience, concentration, mental and physi-

cal condition during working, etc. One possible solution to avoid this is to explore recently

developed reinforcement learning (RL) algorithms [168, 169] where a RL agent could au-

tomatically learn from its past experiences without the need for explicit human input. In

addition, more sophisticated adversary mechanism and reward functions should be also de-

signed to further reduce the involvement of human, in order to achieve automated retrieval

results refinement.
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Appendix A

Derivation of FDA Coding

In the following, we provide a detailed derivation of FDA coding (Eq. (5.4)) in our IRS method.

FDA Criterion. Specifically, the FDA criterion aims to minimise the intra-class (person) ap-

pearance variance and maximise inter-class appearance variance. Formally, given zero-centred

training data XXX = {xxxi}n
i=1, we generate three scatter matrices defined as follows:

SSSw =
1
n

c

∑
j=1

∑
li= j

(xxxi−uuu j)(xxxi−uuu j)
>,

SSSb =
1
n

c

∑
j=1

n juuu juuu>j ,

SSSt = SSSw +SSSb =
1
n

n

∑
i=1

xxxixxx>i ,

(A.1)

where SSSw, SSSb, and SSSt denote within-class, between-class and total scatter matrices respectively,

uuu j the class-wise centroids, and n j the sample size of the j-th class (or person). The objective

function of FDA aims at maximising trace(SSSb) and minimising trace(SSSw) simultaneously, where

SSSw can be replaced by SSSt since SSSt = SSSb +SSSw. Hence, an optimal transformation GGG∗ by FDA can

be computed by solving the following problem:

GGG∗ = argmax
GGG

trace
((

GGG>SSSbGGG
)(

GGG>SSStGGG
)†)

. (A.2)

Theorem 1. With YYY defined as Eq. (5.4), the projection PPP∗ learned by Eq. (5.3) is equivalent to

GGG∗, the optimal FDA solution in Eq. (A.2).
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Proof. First, optimising the objective in Eq. (5.4) involves solving the following eigen-problem:

SSS†t SSSbGGG = GGGΛΛΛ, (A.3)

where GGG ∈ Rd×q =
[
ggg1, · · · ,gggq

]
contains q eigenvectors of SSS†t SSSb, and ΛΛΛ = diag(α1, · · · ,αq) with

αi the corresponding eigenvalue, and q = rank(SSSb) ≤ c− 1. From the definitions in Eq. (A.1)

and Eq. (5.4), SSSt and SSSb can be further expanded as:

SSSt = XXXXXX>, SSSb = XXXYYYYYY>XXX>. (A.4)

Here, the multiplier 1
n is omitted in both scatter matrices for simplicity. Now, we can rewrite the

left-hand side of Eq. (A.3) as:

(XXXXXX>+λ III)†XXXYYYYYY>XXX>GGG = GGGΛΛΛ. (A.5)

Note that, the pseudo-inverse SSS†t is calculated by (XXXXXX>+λ III)†. The reason is that in real-world

problems such as person re-id where training data is often less sufficient, SSSt is likely to be ill-

conditioned, i.e. singular or close to singular, so that its inverse cannot be accurately computed.

By our solution PPP in Eq. (5.3), we can further rewrite Eq. (A.5):

PPPYYY>XXX>GGG = GGGΛΛΛ (A.6)

To connect the regression solution PPP and the FDA solution GGG, we define a c× c matrix

RRR = YYY>XXX>PPP. According to the general property of eigenvalues [170], RRR and PPPYYY>XXX> share the

same q non-zero eigenvalues. Also, if VVV ∈Rc×q contains the q eigenvectors of RRR, columns of the

matrix PPPVVV must be the eigenvectors of the matrix PPPYYY>XXX>. Therefore, the relation between PPP

and GGG is:

GGG = PPPVVV (A.7)

Finally, we show in the following Lemma that PPP and GGG are equivalent in the aspect of re-id

matching.

Lemma 1. In the embedding provided by PPP and GGG, the nearest neighbour algorithm produce

same result. That is, (xxxi− xxx j)
>PPPPPP>(xxxi− xxx j) = (xxxi− xxx j)

>GGGGGG>(xxxi− xxx j).
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Proof. The necessary and sufficient condition for Lemma 1 is PPPPPP> = GGGGGG>. As VVV ∈Rc×q, there

must exist a matrix VVV 2 ∈ Rc×(c−q) such that V̂VV = [VVV ,VVV 2] is a c× c orthogonal matrix. Suppose

the diagonal matrix ΓΓΓ contains the non-zero eigenvalues of RRR, then the eigen decomposition

RRR =VVV ΓΓΓVVV> implies that VVV>2 RRRVVV 2 = 0.

Recall that RRR = YYY>XXX>PPP, and PPP = (XXXXXX>+λ III)†XXXYYY , then we obtain:

VVV>2 YYY>XXX>(XXXXXX>+λ III)†XXXYYYVVV 2 = 0 (A.8)

As (XXXXXX> + λ III)† is positive definite, the above equation implies that XXXYYYVVV 2 = 0, and hence

PPPVVV 2 = (XXXXXX>+λ III)†XXXYYYVVV 2 = 0. Hence, we have:

PPPPPP> = PPPV̂VVV̂VV
>

PPP>

= PPPVVVVVV>PPP>+PPPVVV 2VVV>2 PPP>

= GGGGGG>+0

(A.9)

As such, the proof to Lemma 1 and Theorem 1 is complete.
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