Convolutional recurrent neural networks for music classification
Choi, K; Fazekas, G; Sandler, M; Cho, K

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/30083

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk
CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR MUSIC CLASSIFICATION

Keunwoo Choi, György Fazekas, Mark Sandler

Queen Mary University of London, London, UK
Centre for Digital Music, EECS
E1 4FZ, London, UK
keunwoo.choi@qmul.ac.uk

Kyunghyun Cho

New York University
Computer Science & Data Science
New York, NY, USA
kyunghyun.cho@nyu.edu

ABSTRACT

We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted features. We compare CRNN with three CNN structures that have been used for music tagging while controlling the number of parameters with respect to their performance and training time per sample. Overall, we found that CRNNs show a strong performance with respect to the number of parameter and training time, indicating the effectiveness of its hybrid structure in music feature extraction and feature summarisation.

Index Terms— convolutional neural networks, recurrent neural networks, music classification

1. INTRODUCTION

Convolutional neural networks (CNNs) have been actively used for various music classification tasks such as music tagging \cite{1,2}, genre classification \cite{3,4}, and user-item latent feature prediction for recommendation \cite{5}.

CNNs assume features that are in different levels of hierarchy and can be extracted by convolutional kernels. The hierarchical features are learned to achieve a given task during supervised training. For example, learned features from a CNN that is trained for genre classification exhibit low-level features (e.g., onset) to high-level features (e.g., percussive instrument patterns) \cite{6}.

Recently, CNNs have been combined with recurrent neural networks (RNNs) which are often used to model sequential data such as audio signals or word sequences. This hybrid model is called a convolutional recurrent neural network (CRNN). A CRNN can be described as a modified CNN by replacing the last convolutional layers with a RNN. In CRNNs, CNNs and RNNs play the roles of feature extractor and temporal summariser, respectively. Adopting an RNN for aggregating the features enables the networks to take the global structure into account while local features are extracted by the remaining convolutional layers. This structure was first proposed in \cite{7} for document classification and later applied to image classification \cite{8} and music transcription \cite{9}.

CRNNs fit the music tagging task well. RNNs are more flexible in selecting how to summarise the local features than CNNs which are rather static by using weighted average (convolution) and subsampling. This flexibility can be helpful because some of the tags (e.g., mood tags) may be affected by the global structure while other tags such as instruments can be affected by local and short-segment information.

In this paper, we introduce CRNNs for music tagging and compare them with three existing CNNs. For correct comparisons, we carefully control the hardware, data, and optimisation techniques, while varying two attributes of the structure: i) the number of parameters and ii) computation time.

2. MODELS

We compare CRNN with k1c2, k2c1, and k2c2, which are illustrated in Figure 1. The three convolutional networks are named to specify their kernel shape (e.g., k1 for 1D kernels) and convolution dimension (e.g., c2 for 2D convolutions). The specifications are shown in Table 1. For all networks, the input is assumed to be of size 96×1366 (mel-frequency band×time frame) and single channel. Sigmoid functions are used as activation at output nodes because music tagging is a multi-label classification task.

In this paper, all the convolutional and fully-connected layers are equipped with identical optimisation techniques and activation functions – batch normalization \cite{10} and ELU activation function \cite{11}. This is for a correct comparison since optimisation techniques greatly improve the performances of networks that are having essentially the same structure. Exceptionally, CRNN has weak dropout (0.1) between convolutional layers to prevent overfitting of the RNN layers \cite{12}.

*This work has been part funded by FAST IMPACT EPSRC Grant EP/L019981/1 and the European Commission H2020 research and innovation grant AudioCommons (688382). Mark Sandler acknowledges the support of the Royal Society as a recipient of a Wolfson Research Merit Award.

†Kyunghyun Cho thanks the support by Facebook, Google (Google Faculty Award 2016) and NVidia (GPU Center of Excellence 2015-2016)
2.1. CNN - k1c2

k1c2 in Figure 1(a) is motivated by structures for genre classification [13]. The network consists of 4 convolutional layers that are followed by 2 fully-connected layers. One-dimensional convolutional layers (1×4 for all, i.e., convolution along time-axis) and max-pooling layers ((1×4)-(1×5)-(1×8)-(1×8)) alternate. Each element of the last feature map (the output of the 4-th sub-sampling layer) encodes a feature for each band. They are flattened and fed into a fully-connected layer, which acts as the classifier.

2.2. CNN - k2c1

k2c1 in Figure 1(b) is motivated by structures for music tagging [2] and genre classification [14]. The network consists of 5 convolutional layers that are followed by 2 fully-connected layers. The first convolutional layer (96 × 4) learns 2D kernels that are applied to the whole frequency band. After then, one-dimensional convolutional layers (1×4 for all, i.e., convolution along time-axis) and max-pooling layers ((1×4) or (1×5)) alternate. The results are flattened and fed into a fully-connected layer. This model compresses the information of whole frequency range into one band in the first convolutional layer and this helps reducing the computation complexity vastly.

2.3. CNN - k2c2

CNN structures with 2D convolution have been used in music tagging [2] and vocal/instrumental classification [15]. k2c2 consists of five convolutional layers of 3×3 kernels and max-pooling layers ((2×4)-(2×4)-(2×4)-(3×5)-(4×4)) as illustrated in Figure 1(c). The network reduces the size of feature maps to 1×1 at the final layer, where each feature covers the whole input rather than each frequency band as in k1c1 and k2c1.

This model allows time and frequency invariances in different scale by gradual 2D sub-samplings. Also, using 2D sub-sampling enables the network to be fully-convolutional, which ultimately results in fewer parameters.

2.4. CRNN

CRNN uses a 2-layer RNN with gated recurrent units (GRU) [16] to summarise temporal patterns on the top of two-dimensional 4-layer CNNs as shown in Figure 1(d). The assumption underlying this model is that the temporal pattern can be aggregated better with RNNs then CNNs, while relying on CNNs on input side for local feature extraction.

In CRNN, RNNs are used to aggregate the temporal patterns instead of, for instance, averaging the results from shorter segments as in [1] or convolution and sub-sampling as in other CNN’s. In its CNN sub-structure, the sizes of convolutional layers and max-pooling layers are 3×3 and (2×2)-(3×3)-(4×4)-(4×4). This sub-sampling results in a feature map size of N × 1 × 15 (number of feature maps × frequency × time). They are then fed into a 2-layer RNN, of which the last hidden state is connected to the output of the network.

2.5. Scaling networks

The models are scaled by controlling the number of parameters to be 100,000, 250,000, 0.5 million, 1M, 3M with 2% tolerance. Considering the limitation of current hardware and the dataset size, 3M-parameter networks are presumed to provide an approximate upper bound of the structure complexity. Table 1 summarises the details of different structures including the layer width (the number of feature maps or hidden units).

The widths of layers are based on [1] for k1c2 and k2c1, and [2] for k2c2. For CRNN, the widths are determined based on preliminary experiments which showed the relative importance of the numbers of the feature maps of convolutional layers over the number of hidden units in RNNs.

Layer widths are changed to control the number of parameters of a network while the depths and the convolutional kernel shapes are kept constant. Therefore, the hierarchy of learned features is preserved while the numbers of the features in each hierarchical level (i.e., each layer) are changed. This is to maximise the representation capabilities of networks, considering the relative importance of depth over width [17].

3. EXPERIMENTS

We use the Million Song Dataset [18] with last.fm tags. We train the networks to predict the top-50 tag, which includes genres (e.g., rock, pop), moods (e.g., sad, happy), instruments (e.g., female vocalist, guitar), and eras (60s – 00s). 214,284 (201,680 for training and 12,605 for validation) and 25,940 clips are selected by using the originally provided training/test splitting and filtering out items without any top-
50 tags. The occurrences of tags range from 52,944 (rock) to 1,257 (happy).

We use 30-60s preview clips which are provided after trimming to represent the highlight of the song. We trim audio signals to 29 seconds at the centre of preview clips and downsample them from 22.05 kHz to 12 kHz using Librosa [19]. Log-amplitude mel-spectrograms are used as input since they highlight the parameters to the feature extraction stage. For example, the flexibility of structures (k2c2) shows better performance than a similar but vastly larger structure in [2], which ignores local invariance and captures local time-frequency relationships, is more effective than the others, which ignores local frequency relationships. k2c2 also uses parameters in a more flexible way with its fully-convolutional structure, while k2c1 and k1c2 allocate only a small proportion of the parameters to the feature extraction stage. For example, in k1c2 with 0.5M parameters, only 13% of the parameters are used by convolutional layers while the rest, 87%, are used by the fully-connected layers.

CRNN outperforms k2c2 in all cases. Because they share the same 2D-convolutional layers, this difference is probably a consequence of the difference in RNNs and CNNs the ability of summarising the features over time. This may indicate that learning a global structure is more important than focusing on local structures for summarisation. One may focus on the different layer widths of two structures – because recurrent layers use less parameters than convolutional layers, CRNN has wider convolutional layers than k2c2 with same number of parameters. However, even CRNN with narrower layer widths (0.1M parameters) shows better performance than k2c2 with wider widths (0.25M parameters).

Table 1: Hyperparameters, results, and time consumptions of all structures. Number of parameters indicates the total number of trainable parameters in the structure. Layer width indicates either the number of feature maps of a convolutional layer or number of hidden units of fully-connected/RNN layers. Max-pooling is applied after every row of convolutional layers.

<table>
<thead>
<tr>
<th>Layer type</th>
<th>Layer width</th>
<th>Type</th>
<th>Layer width</th>
<th>Type</th>
<th>Layer width</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv2d</td>
<td>15</td>
<td>k1c2</td>
<td>43</td>
<td>conv2d</td>
<td>20</td>
</tr>
<tr>
<td>conv2d</td>
<td>15</td>
<td>k2c1</td>
<td>43</td>
<td>conv2d</td>
<td>41</td>
</tr>
<tr>
<td>conv2d</td>
<td>15</td>
<td>k2c2</td>
<td>43</td>
<td>conv2d</td>
<td>41</td>
</tr>
<tr>
<td>conv2d</td>
<td>15</td>
<td>CRNN</td>
<td>83</td>
<td>CRNN</td>
<td>30</td>
</tr>
<tr>
<td>conv2d</td>
<td>15</td>
<td>SOTA</td>
<td>83</td>
<td>SOTA</td>
<td>30</td>
</tr>
</tbody>
</table>

Fig. 2: AUCs for the three structures with {0.1, 0.25, 0.5, 1.0, 3.0}×10^6 parameters. The AUC of SOTA is .851 [2].
3.2. Computation-controlled comparison

We further investigate the computational complexity of each structure. The computational complexity is directly related to the training and prediction time and varies depending not only on the number of parameters but also on the structure. The wall-clock training times for 2500 samples are summarised in Table 1 and plotted in Figure 2.

The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure. The computational complexity is directly related to the number of parameters but also on the structure.
5. REFERENCES

