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ABSTRACT
Many models have been proposed to generate Internet Au-
tonomous System (AS) topologies, most of which make struc-
tural assumptions about the AS graph. In this paper we com-
pare AS topology generation models with several observed
AS topologies. In contrast to most previous works, we avoid
making assumptions about which topological properties are
important to characterize the AS topology. Our analysis
shows that, although matching degree-based properties, the
existing AS topology generation models fail to capture the
complexity of the local interconnection structure between
ASs. Furthermore, we use BGP data from multiple vantage
points to show that additional measurement locations signif-
icantly affect local structure properties, such as clustering
and node centrality. Degree-based properties, however, are
not notably affected by additional measurements locations.
These observations are particularly valid in the core. The
shortcomings of AS topology generation models stems from
an underestimation of the complexity of the connectivity in
the core caused by inappropriate use of BGP data.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Net-
work topology; I.6.4 [Simulation and Modeling]: Model
Validation and Analysis

General Terms
Topology, Models, Measurement
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1. INTRODUCTION
For many years researchers have modeled the Inter-

net’s Autonomous System (AS) topology1 using graphs
obtained via various measurement techniques, e.g. BGP
routing tables [16, 28] and traceroute maps [18]. The
AS topology is an abstraction of the Internet which is
commonly used to analyze its characteristics and sim-
ulate the performance and scalability of new protocols
and applications. Simulation methods require that AS
topology generation models be able to provide topolo-
gies whose properties are as close as possible to those
of the observed AS topology.

In this paper we evaluate existing AS topology gener-
ation models by comparing them with several available
datasets, representing observed AS topologies of the In-
ternet. Figure 1 illustrates the relationship between the
Internet topology, its measurement instances, and AS
topology generation models.

A key principle underlying our work is to be agnostic
about the topological properties of the Internet. The
main reason for our agnosticism lies in the dynamic be-
havior of the Internet topology. In addition, observa-
tions of the AS topology suffer from two problems. On
the one hand, common set of observation points have
only limited visibility of the topology [26]. On the other
hand, each observation technique suffers from measure-

1Note that the AS topology neither represents the data-
plane topology nor directly corresponds to the Internet
router-level topology. Many organizations are permanently
connected to their providers, sharing an AS number [29]. Al-
ternately, a single organization may use many AS numbers
for controlling routing.
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Figure 1: Internet topology generation

ment artifacts. This results in problems for BGP-based
as well as traceroute-based observations of the Internet
topology. For example, traceroute can report hops that
do not map to a unique AS number [22]. As a result,
AS topology models make use of simplifying assump-
tions about the actual topology [5, 19, 37]. One widely
held assumption, based on biased observations, is that
the AS topology has a hierarchical structure [30] and
its node-degree distribution obey a power-law [12].

Believing that at present it is impossible to know bet-
ter, we accept the fact that the AS topology observa-
tions suffer from biases and thus reveal different partial
truths about the properties of the Internet. However,
comparison of different observed AS topologies with dif-
ferent levels of incompleteness, and topologies generated
from different models, allows us to learn from the lim-
itations of particular assumptions about the Internet’s
AS topology. Then, the direction of these biases and
limitations may gives us insight into the actual proper-
ties of the AS topology.

To evaluate AS topology generation models, we rely
on a wide set of commonly used topological metrics. We
do not claim that the set of considered metrics captures
all important aspects of the AS topology. However, us-
ing such an extensive set of topological metrics allows
us to observe differences in the so far revealed topolog-
ical properties of observed and sythetic AS topologies.
Futhermore, we rely on statistical measures to compare
distributions of some metrics, allowing us to measure
more objectively the similarity of two topologies.

In this paper we show that the existing topology gen-
erators capture the node degree distributions quite well,
but fail to account either for the complex local intercon-
nection structure between ASes, or the highly meshed
structure of the core AS topology. Such shortcomings
can affect the performance of protocols and applications
when simulated using synthetic topologies. We also
show that, using additional BGP peering vantage points
for collecting connectivity information, does greatly af-
fect important characteristics, such as power-laws and
measures of centrality, while having little effect on basic

degree-related properties. These observations suggest
that for understanding the nature of the Internet topol-
ogy one should use rich(er) datasets, which capture a
large portion of existing peering links. Moreover, they
show that the significance of preferential-attachment
has waned while peering links, underestimated in the
past, are now far more important.

The rest of this paper is structured as follows. In
Section 2 we contrast our work with the related work.
We then introduce the existing AS topology generation
models and describe their underlying assumptions in
Section 3, and present a set of observed AS topolo-
gies collected using different methodologies from vari-
ous locations in the world in Section 4. Subsequently,
in Section 5 we describe the metrics used for topology
characterization and discuss the statistical measures of
similarity in Section 6. In Section 7, we present the
results of our comparison analysis. Due to the discov-
ery that synthetic and observed topologies record biases
related to the nature of the data collection processes,
we conduct an extensive analysis of the impact of in-
creasing the number of BGP peering vantage points on
our topology dataset, collected from a large number of
measurement locations. This study is presented in Sec-
tion 8. Finally, in Section 9 we conclude and discusses
potential improvements in the field of AS topology mod-
eling.

2. RELATED WORK
Zegura et al. [35] analyse topologies of 100 nodes gen-

erated using pure-random, Waxman [32], exponential
and several locality based models of topology such as
Transit-Stub. They use metrics such as average node
degree, network diameter, number of paths between
nodes. They find that pure random topologies repre-
sent expected properties such as locality very poorly
and so we exclude them from our comparison. They
suggest that the Transit-Stub method should be used
due both to its efficiency and the realistic average node
degree its topologies achieve.

Faloutsos et al. [12] state that three specific proper-
ties of the Internet AS topology are well described by
power laws: rank exponent, out-degree exponent and
eigen-exponent (graph eigenvalues). This work paral-
lelled development of many models incorporating power
laws, such as the Barabási and Albert [3] model, based
on incremental growth by addition of new nodes and
preferential attachment of new nodes to existing well-
connected nodes.

Later, Bu and Towsley [5] used the empirical com-
plementary distribution (ECD) rather than standard
histograms to generate new nodes. They showed the
variability in graphs from different generators using the
same heuristics using characteristic path length and clus-
tering coefficients.
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Tangmunarunkit et al. [31] provide a first comparison
of the underlying characteristics of degree-based models
against structural models. A major conclusion is that
the the simplest form of degree-based model performs
better than random or structural models at represent-
ing the studied parameters. They compare three cat-
egories of model generators: Waxman, Tiers [10] and
the Transit-Stub structural model, against the simplest
degree based generator, the power-law random graph
(PLRG) [1]. They define and use three metrics: ex-
pansion, resilience and distortion. They find that the
PLRG matches these metrics better than the random
or structural models. Based on these metrics they con-
clude that stricter hierarchy is present in the measured
networks than in degree-based generators. However,
they leave many questions unanswered about the accu-
racy of degree-based generators and the choice of met-
rics.

Zhou and Mondragon [37] propose models based on
several mathematical features, such as rich-club, inter-
active growth and betweenness centrality. They use AS
data from the CAIDA Skitter project to examine the
Joint Degree Distribution (JDD) and rich-club connec-
tivity. They show that for these data, rich-club connec-
tivity and the JDD are closely linked for a network with
a given degree distribution.

In this paper, we consider more recent degree-based
generators using a larger set of graph-theory derived
metrics to give better insight into correct understand-
ing of the AS topology. We compare in detail against
a range of different Internet AS topologies at national
and international level obtained from traceroute and
BGP data. When choosing our metrics, we considered
both metrics used by the topology generator designers
and those used more widely in graph theory. A par-
ticular point to note is that we chose not to use the
three metrics of Tangmunarunkit et al. for two reasons.
First, computation of both resilience and distortion are
NP-complete, requiring use of heuristics. In contrast,
all our metrics are straightforward to compute directly.
Second, although accurate reproduction of degree-based
metrics is well-supported by current topology genera-
tors, our hypothesis was that local interconnectivity was
poorly supported, and so we chose to use several metrics
that focus on exactly this, e.g., assortativity, clustering,
and centrality.

3. AS TOPOLOGY MODELS
There are many models available that claim to de-

scribe the Internet AS topology. Several of these models
are embodied in tools for generating simulated topolo-
gies [15]. In this section we describe the particular
models whose output we compare in this paper. The
first are produced from the Waxman model [32], de-
rived from the Erdös-Rényi random graphs [11], where

the probability of two nodes being connected is propor-
tional to the Euclidean distance between them. The
second come from the Barabasi and Albert [3] model,
following measurements of various power laws in de-
gree distributions and rank exponents by Faloutsos et
al. [12]. These incorporate common beliefs about pref-
erential attachment and incremental growth. The third
are from the Generalized Linear Preference model [5]
which additionally model clustering coefficients. Fi-
nally, Inet [33] and PFP [37] focus on alternative AS
topology characteristics: the meshed core and preferen-
tial attachment respectively. Each model focused only
on particular metrics and parameters, and only com-
pared their output with selected AS topology observa-
tions.

3.1 Waxman
The Waxman model of random graphs is based on

a probability model for interconnecting nodes of the
topology given by: P (u, v) = α e−d/(βL), where 0 <
α, β ≤ 1, d is the Euclidean distance between two nodes
u and v, and L is the network diameter (largest distance
between two nodes). We use the BRITE [23] implemen-
tation of this model in this paper, which facilitates re-
wiring using iterative assignment of edges to ensure that
there are no disconnected components in the generated
topology.

3.2 BA
The BA model was inspired by the idea of prefer-

entially attaching new nodes to existing well-connected
nodes, leading to the incremental growth of nodes and
the links between them. When a node i joins the net-
work, the probability that it connects to a node j al-

ready in the network is given by: P (i, j) =
dj∑

k∈V dk

where dj is the degree of node j, V is the set of nodes
that have joined the network and

∑
k∈V dk is the sum

of degrees of all nodes that previously joined the net-
work [23].

3.3 GLP
Our third model is the Generalized Linear Preference

model (GLP) [5]. This focuses on matching character-
istic path length and clustering coefficients. It uses a
probabilistic method for adding nodes and links recur-
sively while preserving selected power law properties.

3.4 Inet
Inet [33] produces random networks using a preferen-

tial linear weight for the connection probability of nodes
after modelling the core of the generated topology as a
full mesh network. Inet sets the minimum number of
nodes at 3037, the number of ASs on the Internet at the
time of its development. It similarly sets the fraction
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of degree 1 nodes to 0.3, based on measurements from
Routeviews2 and NLANR3 BGP table data in 2002.

3.5 PFP
In the Positive Feedback Preference (PFP) model, the

AS topology of the Internet is considered to grow by in-
teractive, probabilistic addition of new nodes and links.
It uses a nonlinear preferential attachment probability
when choosing older nodes for the interactive growth of
the network, by inserting edges between existing nodes
as well as the newly added ones.

4. AS TOPOLOGY OBSERVATIONS
The Internet AS topology can be inferred from var-

ious sources of data such as BGP or traceroute [21] at
the network (IP) layer. Using BGP routing data alone
suffers from incompleteness, no matter how many van-
tage points are used to collect observations. In par-
ticular, even if BGP updates are collected from mul-
tiple vantage points and combined, many peering and
sibling relationships are not observed [13]. Conversely,
traceroute data misses alternative paths since routers
may have multiple interfaces which are not easily iden-
tified, and multi-hop paths may also be hidden by traffic
tunnelled via Multi-Protocol Label Switching (MPLS).
Combining these data sources still does not solve all
problems since mapping traceroute data to AS num-
bers is not always accurate [22]. In this paper we at-
tempt to avoid these problems by comparing against
many measurement-derived datasets giving a diverse
spatial and temporal comparison across different con-
tinents and years of measurement.

4.1 Chinese
The first dataset is a traceroute measurement of the

Chinese AS Topology collected from servers within China
in May 2005. It reports 84 ASs, representing a small
subgraph of the Internet. Zhou et al. [38] maintain that
the Chinese AS graph presents all the major topology
characteristics of the global AS graph. The presence
of this dataset enables us to compare the AS topology
models at smaller scales. Further, this dataset is be-
lieved to be nearly complete, i.e., it contains very little
measurement bias and accurately represents the true AS
topology for that region of the Internet. Thus, although
it is rather small, we have included it as a valuable com-
parison point in our studies.

4.2 Skitter
The second dataset comes from the CAIDA Skitter

project4. CAIDA computes the adjacency matrix of
the AS topology from the daily Skitter measurements.

2http://www.routeviews.org/
3http://www.nlanr.net/
4http://www.caida.org/tools/measurement/Skitter/

These are obtained by running traceroutes over a large
range of IP addresses and mapping the prefixes to AS
numbers using RouteViews BGP data. Since this data
reports paths actually taken by packets, rather than
path information propagated via BGP, it more directly
represents the IP topology than the BGP data alone.
For our study, we used the graphs for March 2004 as
used by Mahadevan et al. [20], which reports 9,204
unique ASs.

4.3 RouteViews
The third dataset we use is derived from the Route-

Views BGP data. This is collected both as static snap-
shots of the BGP routing tables and dynamic BGP data
in the form of BGP update and withdrawal messages.
We use the topologies provided by Mahadevan et al. [20]
from two types of BGP data from March 2004: one from
the static BGP tables and one from the BGP updates.
In both cases, they filter AS-sets and private ASs and
merge the 31 daily graphs into one. This dataset re-
ports 17,446 unique ASs across 43 vantage points in
the Internet.

4.4 UCLA
The fourth dataset comes from the Internet topology

collection5 maintained by Oliviera et al. [27]. These
topologies are updated daily using the data sources such
as BGP routing tables and updates from RouteViews,
RIPE6, Abilene7 and LookingGlass servers. Each node
and link is annotated with the times it was first and
last observed. We use a snapshot of this dataset from
November 2007 computed using a time window on the
last-seen timestamps to discard ASs which have not
been seen for more than 6 months. The resulting dataset
reports 28,899 unique ASs.

5. TOPOLOGY CHARACTERIZATION
Over the past several years a veriety of topological

metrics has been proposed to quantitatively character-
ize topological properties of networks. In this section
we present a large set of topological metrics that will be
used to measure a distance in graph space, i.e. how dis-
tant two graphs are topologically from each other. The
topological metrics are computed for the synthetic and
the measured AS topologies. Taken individually, these
metrics concentrate on differing topological aspects but
when considered together they reveal the shortcomings
of topology models to faithfully capture the topologi-
cal properties of observed AS topologies. AS topologies
are modeled as graphs G = (N ,L) with a collection of
nodes N and a collection of links L that connect a pair

5http://irl.cs.ucla.edu/topology/
6http://www.ripe.net/db/irr.html
7http://abilene.internet2.edu/
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of nodes. The number of nodes and links in a graph is
then respectively equal to N = |N | and M = |L|.

5.1 Degree
The degree k of a node is the number of links ad-

jacent to it. The average node degree k̄ is defined as
k̄ = 2M/N . The node degree distribution P (k) is the
probability that a randomly selected node has a given
degree k. The node degree distribution is defined as
P (k) = n(k)/N where n(k) is the number of nodes of
degree k. The joint degree distribution (JDD) P (k, k′)
is the probability that a randomly selected pair of con-
nected nodes have degrees k and k′. A summary mea-
sure of the joint degree distribution is the average neigh-
bor degree of nodes with a given degree k, and is de-
fined as follows knn(k) =

∑kmax

k′=1 k′P (k′|k). The max-
imum possible knn(k) value is N − 1 for a maximally
connected network, i.e. a complete graph. Hence, we
represent JDD by the normalized value knn(k)/(N − 1)
[20] and refer to it as average neighbor connectivity.

5.2 Assortativity
Assortativity is a measure of the likelihood of con-

nection of nodes of similar degrees [25]. This is usually
expressed by means of the assortativity coefficient r:
assortative networks have r > 0 (disassortative have
r < 0 resp.) and tend to have nodes that are connected
to nodes with similar (dissimilar resp.) degree.

5.3 Clustering
Given node i with ki links, these links could be in-

volved in at most ki(ki − 1)/2 triangles (e.g. nodes
a → b → c → a form a triangle). The greater the num-
ber of triangles the greater the clustering of this node.
The clustering coefficient, γ(G), is defined as the aver-
age number of 3-cycles (i.e., triangles) divided by the
total number of possible 3-cycles:

γ(G) = 1/N
∑

i

Ti

ki(ki − 1)/2
, ki ≥ 2

where Ti is the number of 3-cycles for node i, ki is the
degree of node i. We use the distribution of clustering
coefficients C(k), which in fact is the distribution of
the terms Ti

ki(ki−1)/2 in the overall summation. This

definition of the clustering coefficient gives the same
weight to each triangle in the network, irrespective of
the distribution of the node degrees.

5.4 Rich-Club
The rich-club coefficient φ(ρ) is the ratio of the num-

ber of links in the component induced by the ρ largest-
degree nodes to the maximum possible links ρ(ρ− 1)/2
where ρ = 1...n are the first ρ nodes ordered by their
non-increasing degrees in a network of size n nodes [8].

5.5 Shortest path

The shortest path length distribution P (h), as com-
monly computed using Dijsktra’s algorithm, is the prob-
ability distribution of two nodes being at minimum dis-
tance h hops from each other. From the shortest path
length distribution, the average node distance in a con-
nected network is derived as h =

∑hmax

h=1 hP (h), where
hmax is the longest among the shortest paths between
any pair of nodes. hmax is also referred to as the diam-
eter of a network.

5.6 Centrality
Betweenness centrality is a measure of the number of

shortest paths passing through a node or link, a cen-
trality measure of a node or link within a network. The

node betweenness for a node v is B(v) =
∑

s6=v 6=t∈N
σst(v)

σst

where σst is the number of shortest paths from s to t
and σst(v) is the number of shortest paths from s to t
that pass through a node v [17]. The average node be-
tweenness is the average value of the node betweenness
over all nodes.

Closeness is a another measure of the centrality of a
node within a network. The closeness of a node is the
reciprocal of the sum of shortest paths from this node
to all other reachable nodes in a graph.

5.7 Coreness
The l-core of a network (also known as the k-core)

is the maximal component in which each node has at
least degree l. In other words, the l-core is defined as the
component of a network obtained by recursively remov-
ing all nodes of degree less than l. A node has coreness
l if it belongs to the l-core but not to the (l + 1)-core.
Hence, the l-core layer is the collection of all nodes hav-
ing coreness l. The core of a network is the l-core such
that the (l + 1)-core is empty [4].

5.8 Clique
A clique in a network is a set of pairwise adjacent

nodes, i.e. a component which is a complete graph. The
top clique size, also known as the graph clique number,
is the number of nodes in the largest clique in a net-
work [34].

5.9 Spectrum
Recently, it has been observed that eigenvalues are

closely related to almost all critical network charac-
teristics [7]. For example, Tangmunarunkit et al. [31]
classified network resilience as a measure of network ro-
bustness subject to link failures, resulting in a minimum
balanced cut size of a network. Spectral graph theory
enables studying this problem of network partitioning
by using graph’s eigenvalues [7]. In this paper we fo-
cus on graph’s spectrum, i.e. the set of eigenvalues of
the adjacency, the Laplacian or any other characteristic
matrix of a graph. In the graph theory literature, one
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usually considers the adjacency or the Laplacian ma-
trix [24, 9], both which employ different normalizations
and therefore lead to different spectra. Here we focus
on the spectrum of the normalized Laplacian matrix [7]
where all eigenvalues lie between 0 and 2, allowing easy
comparison of networks of different sizes. The normal-
ized graph’s spectrum has been successfully used for
tuning the topology generators [14].

6. MEASURES OF SIMILARITY
To compare the distributions of various metrics we

use the following statistics to determine how close two
distributions are to each other. We perform the calcu-
lations for each synthetic topology instance separately
and compare them to observed topologies of the same
size. Note that distances are relative to the metric and
the topology size, so that distances of one metric for a
particular sized topology cannot be compared either to
distances of another metric for the same sized topology,
or to distances for the same metric for different sized
topologies.

6.1 Kolmogorov-Smirnov (KS) distance
Given samples of two random variables, X1 and X2,

the KS distance is the maximum empirical distribution
difference defined as:

Dmax = sup |Fn1
(x) − Fn2

(x)|

where Fni
(x) is the empirical distribution of Xi(i =

1, 2):

Fni
(x) = 1

ni

ni∑

j=1

IXj≤x for i=1,2

where n1 and n2 are the number of samples from X1

and X2 and IXj
is the indicator function.

The closely related 2-sample KS test tests the null
hypothesis that X1 and X2 share a (true) common dis-
tribution based on the KS distance (Dmax). However,
it is misleading to use this test to indicate whether two
distributions are similar, as it is highly sensitive to large
sample sizes, and also as the particular x1 and x2 com-
pared here are not strictly independent variables since,
e.g., nodes with high degrees tend to occur together.
Instead Dmax alone is used in this paper to indicate the
relative closeness of distributions.

6.2 Kullback-Leibler divergence
The Kullback-Leibler (KL) divergence is also pro-

posed as a suitable metric8 for comparing network dis-
tributions. The KL divergence between two discrete
random variables X1 and X2 is defined as:

DKL(X1, X2) =
∑

i P (X1 = Xi)log
P (X1=Xi)
P (X2=Xi)

8The KL divergence is not strictly a metric as
DKL(X1, X2) 6= DKL(X2, X1)

where P (x) is the probability of x.
The KL divergence takes into account the difference

between the distributions at all points rather than sim-
ply at the maximum point. In this paper, Gaussian ker-
nel density estimation using fixed bins centered around
data in the observed data set were found to perform
well, although other methods do exist.

7. RESULTS AND DISCUSSION
Most past comparisons of topology generators have

been limited to the average node degree, the node de-
gree distribution and the joint degree distribution. The
rationale for choosing these metrics is that if those prop-
erties are closely reproduced, then the value of other
metrics will also be closely reproduced [19].

In this section we show that current topology genera-
tors are able to match first and second order properties
well, i.e., average node degree and node degree distribu-
tion, but fail to match many other topological metrics.
We also discuss the importance of various metrics in our
analysis.

7.1 Methodology
For each generator we specify the required number of

nodes and generate 10 topologies of that size in order
to provide confidence intervals for the metrics. We then
compute the values of the metrics introduced in Sec-
tion 5 for the generated and observed AS topologies.
It is important to note that all topologies studied in
this paper are undirected, preventing us from consid-
ering peering policies and provider-customer relation-
ships. This limitation is forced upon us by the design
of the generators as they do not take such policies into
account.

Each topology generator uses several parameters, all
of which could be tuned to best fit a particular size
topology, e.g., the Skitter dataset. However, there are
two problems with attempting this tuning. First, do-
ing so requires selection of an appropriate goodness-of-
fit measure of which there are many, e.g., as noted in
Section 5. Second, in any case tuning parameters to
a particular dataset is of questionable merit since, as
we argue in Section 1, each dataset is only a sample
of reality with multiple biases and inaccuracies. Typi-
cally topology generator parameters are tuned so as to
match the number of links in the synthetic and mea-
sured networks, for a given number of nodes. However
we discovered this method to be inefficient as generat-
ing graphs with equal numbers of links from a random
model and a power-law model gives completely different
outputs. For space reasons we dealt with this particular
issue elsewhere [14] and in this paper we simply use the
default values embedded within each generator.

7.2 Topological metrics

6



Table 1: Comparison of AS level dataset with synthetic topologies.
Topology Links Avg. deg. Max. Top clique Max. Max. Assort. Clust. Max.

degree size betweenness coreness coef. coef. closeness
Chinese 211 5.02 38 2 1,324 5 -0.32 0.188 <0.01
Waxman 252 6 18 2 404 4 0.039 0.117 0.506

BA 165 3.93 19 3 1,096 2 -0.096 0.073 0.515
GLP 151 3.6 44 3 2,391 5 -0.257 0.119 0.643
PFP 250 5.95 37 10 849 9 -0.38 0.309 0.638

Skitter 28,959 6.3 2,070 16 10,210,533 28 -0.23 0.026 <0.01
Waxman 27,612 6 33 0 474,673 4 0.205 0.002 0.264

BA 18,405 4 190 0 5,918,226 2 -0.05 0.001 0.315
GLP 16,744 3.64 2,411 2 34,853,544 5 -0.089 0.003 0.496
INET 18,504 4.02 1,683 3 15,037,631 7 -0.195 0.004 0.514
PFP 27,611 6 3,000 16 13,355,194 24 -0.244 0.012 0.588

RouteViews 40,805 4.7 2,498 9 30,171,051 28 -0.19 0.02 <0.01
Waxman 52,336 6 35 0 1,185,687 4 0.205 0.001 0.25

BA 34,889 4 392 3 33,178,669 2 -0.04 0.001 0.33
GLP 31,391 3.6 4,226 4 127,547,256 6 -0.08 0.002 0.48
INET 43,343 4.97 2,828 6 31,267,607 14 -0.258 0.006 0.522
PFP 52,338 6 4,593 23 39,037,735 30 -0.252 0.009 0.564

UCLA 116,275 8.05 4,393 10 76,882,795 73 -0.165 0.05 0.32
Waxman 86,697 6 40 0 3,384,114 4 0.213 <0.001 0.246

BA 57,795 4 347 0 52,023,288 2 -003 <0.001 0.3
GLP 52,456 3.63 7391 2 371,651,147 6 -0.08 <0.001 0.486
INET 91,052 6.3 6,537 12 88,052,316 38 -0.3 0.01 0.55
PFP 86,696 6 8076 26 123,490,676 40 -0.218 0.01 0.57

In this section we discuss the results for each met-
ric separately and analyze the reasons for differences
between the observed and the generated topologies.

Table 1 displays the values of various metrics (columns)
computed for different topologies (rows). Blocks of rows
correspond to a single observed topology and the gen-
erated topologies with the same number of nodes as
the observed topology. Bold numbers represent nearest
match of a metric value to that for the relevant ob-
served topology. Rows in each block are ordered with
the observed topology first, followed by the generated
topologies from oldest to newest generator. For syn-
thetic topologies, the value of the metrics is averaged
over the 10 generated instances. Note that Inet requires
the number of nodes to be greater than 3037 and hence
cannot be compared to the Chinese topology.

We observe a small but measurable improvement from
older to newer generators in how well they match some
metrics such as maximum degree, maximum coreness,
and assortativity coefficient. This suggests that topol-
ogy generators have been successively improved to bet-
ter match some properties of the observed topologies.
However, the number of links in the generated topolo-
gies may differ considerably from the observed topology
due to the assumptions made by the generators. The
Waxman and BA generators fail to capture the maxi-

mum degree, the top clique size, maximum betweenness
and coreness. Those two generators are too simplistic
in the assumptions they make about the connectivity
of the graphs to generate realistic AS topologies. Wax-
man relies on a random graph model which cannot cap-
ture the clique between tier-1 ASs nor the heavy tail of
the node degree distribution. BA tries to reproduce the
power-law node degrees with its preferential attachment
model but fails to reach the maximum node degree, as
it only adds edges between new nodes and not between
existing ones. Hence, neither of these two models is able
to create the highly-connected core of tier-1 ASs. PFP
and Inet manage to come closer to the values of the
metrics of the observed topologies. For Inet this is be-
cause it assumes that 30% of the nodes are fully meshed
(at the core), whereas for PFP its rich-club connectivity
model allows to add edges between existing nodes.

7.2.1 Node degree distribution

In Figure 2 we show the CCDF of the node degree
for all topologies on a log-log scale. We observe that
the Chinese topology does not exhibit power law scal-
ing due to its limited size, whereas all the larger AS
topologies do exhibit power-law scaling of node degrees.
The Waxman generator completely fails to capture this
behavior as it is based on a random graph model, but
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recent topology generators do capture this power law
behavior of the node degrees quite well. In the case
of the RouteViews and UCLA datasets, Inet and PFP
outperform other topology generators. Note that, con-
trary to RouteViews where the degree distribution dis-
plays strict power law scaling, the UCLA dataset has a
slightly concave shape. In summary, more recent gen-
eration models reproduce node degree distribution well,
as expected since most focus has been on this metric.
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Figure 2: Comparison of node degree CCDFs.

7.2.2 Average neighbor connectivity
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Figure 3: Comparison of average neighbor con-
nectivity CCDFs.

Neighbor connectivity has been far less studied than
node degree, although it is very important to match lo-
cal interconnection among a node’s neighbors when re-
producing the topological structure of the Internet [20].
Figure 3 shows the CCDF of the average neighbor de-
grees for all topologies. We observe that Waxman, BA
and GLP all underestimate the local interconnection
structures around nodes due to their way of modeling

node interconnections. Note that BA and GLP typi-
cally generate graphs with far less links than the ob-
served topologies so they underestimate neighbor de-
grees on average.

For the larger topologies, i.e. RouteViews and UCLA,
PFP and Inet typically overestimate the neighbor con-
nectivity, as they both place a large number of inter-As
links in the core. In addition, the shapes of the neigh-
bor connectivity CCDF differ for the larger topologies:
Inet and PFP have two regimes, one for highly con-
nected nodes (those with larger neighbor connectivity),
and another for low-degree nodes. On the other hand,
observed topologies have a smooth region for the high-
degree nodes followed by a rather stable region caused
by similar degree nodes. We observe that the highest
degree nodes in the UCLA topology have very high val-
ues of neighbor connectivity. This is consistent with
the belief that tier-1 providers are densely meshed. In
summary, existing topology generators do not repro-
duce local interconnection behavior well, even though
it is an important aspect of today’s AS topology.

7.2.3 Clustering coefficients

Like the average neighbor connectivity, the cluster-
ing coefficient gives information about local connectiv-
ity of the nodes. It is important to reproduce clustering
due to its impact on the local robustness in the graph:
nodes with higher local clustering have increased local
path diversity [20]. Clustering properties of a graph can
directly affect simulations on performance of multipath
and resilience of overlay routing.
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Figure 4: Comparison of clustering coefficients.

Figure 4 displays the clustering coefficients of all nodes
in the topologies. Error bars indicate 95% confidence
intervals around the mean values of the 10 topologies
from each generator. We observe that Waxman and BA
significantly underestimate clustering, consistent with
their simplistic way of connecting nodes. GLP approxi-
mates the clustering of the Chinese topology quite well
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but fails in the case of the larger observed topologies.
PFP and Inet capture clustering reasonably well com-
pared to the other topology generators. However, Inet
does not reproduce the tail of the distribution well due
to the randomness factor in its model for edge addition
once the core is fully meshed.

We also observe that for medium degree nodes, clus-
tering coefficients display rather high variability which
increases with the size of the observed topologies. This
behavior seems to be a property of the observed AS
topology of the Internet (Section 8), and not only an
artifact of the incompleteness of observed AS topolo-
gies.

In summary, all topology generators fail to properly
capture clustering, typically underestimating local con-
nectivity. Only Inet for the UCLA topology overesti-
mates connectivity of low-degree nodes while still un-
derestimating it for high-degree nodes. Current topol-
ogy generators do not seem to have good models of local
node connectivity.

7.2.4 Rich-club connectivity
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Figure 5: Comparison of rich-club connectivity
coefficients

Rich-club connectivity gives information about how
well-connected nodes of high degree are among them-
selves. Figure 5 makes it clear that the cores of the
observed topologies are very close to a full mesh, with
values close to 1 on the left of the graphs. The error bars
again indicate the 95% confidence intervals around the
mean values of the different instances of the generated
topologies. Waxman and BA perform poorly for this
metric in general. Only PFP and Inet generate topolo-
gies with a dense enough core compared to the observed
topologies. Given the emphasis that PFP gives to the
rich-club connectivity, it overestimates it in the case of
the Chinese and RouteViews topologies. Inet performs
well due to its emphasis on a highly connected core,
especially for larger topologies where data has been col-

lected across multiple peering points.
In summary, most topology generators underestimate

the importance of rich-club connectivity of the AS topol-
ogy. PFP is the only topology generator that empha-
sizes the importance of the dense core of the AS topol-
ogy.

7.2.5 Shortest path distributions
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Figure 6: Comparison of shortest path distribu-
tions (number of hops).

Figure 6 displays the distributions of shortest path
length. Apart from BA, most topology generators ap-
proximate the shortest path length distribution of the
Chinese graph quite well due to its small size. For the
other topologies, PFP and Inet generally underestimate
the path length distribution while Waxman and BA
overestimate. Particular generators seem to capture the
path length distribution for particular topologies well:
PFP matches that for Skitter well and GLP is close for
Routeviews. Inet and PFP both do a better job for
UCLA than for RouteViews but both still underesti-
mate the distribution.

In summary, shortest path length is not well captured
by any topology generator. Given the poor match of
generators to local connectivity metrics, this is not sur-
prising.

7.2.6 Spectrum

The spectrum of the normalized Laplacian matrix is
a powerful tool for characterizing properties of a graph.
If two graphs have the same spectrum, they have the
same topological structure.

Figure 7 displays the CDF of the eigenvalues com-
puted from the normalized Laplacian matrix of each
topology.

As with other topological metrics, Inet and PFP per-
form best. The difference between the topology gen-
erators is most easily observed around the eigenvalues
equal to 1. These eigenvalues play a special role as they
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tions of eigenvalues (from normalized laplacian).

indicate repeated duplications of topological patterns
within the network. By duplication, we mean different
nodes having the same set of neighbors giving their in-
duced subgraphs the same structure. Through repeated
duplication, one can create networks with high multi-
plicity of eigenvalue 1 [2]. Further, if a network is bi-
partite, i.e., it consists of two connected parts with no
links between nodes of the same part, then its spectrum
will be symmetric about 1. This phenomenon can also
arise through repeated structure duplication

We observe that the spectra have a high degree of
symmetry around the eigenvalue 1, and so the observed
AS topologies appear close in spectral terms to a bi-
partite graph. In the AS topology many ASs share
a similar set of upstream ASs without being directly
connected to each other. Inet and PFP are good exam-
ples of topology generators where this strategy is imple-
mented. Note that the simple preferential attachment
model of BA does not reproduce the eigenvalues around
1 very well. In the simple BA model, new nodes connect
randomly to a given number of existing nodes, favoring
connections to high degree nodes. In the Internet in
contrast, although small ASs may tend to connect to
large upstream providers, they might not connect pref-
erentially to the largest ones, connecting instead to na-
tional or regional providers. In summary, these results
provide further evidence that the interconnection struc-
ture of the AS topology is more complex than current
models assume.

7.3 Measures of similarity
In Section 7.2, we presented visual evidence for the

(dis)similarity both among topology generators and be-

tween generators and observed topologies. In this sec-
tion we present a more objective approach, based on the
statistical distance metrics described in Section 6: the
Kolmogorov-Smirnov (KS) distance and the Kullback-
Leibler (KL) divergence.

In the following tables, the values of the distances
and the standard deviations are shown for the topolog-
ical metrics with distributions: node degree, neighbor
connectivity, clustering coefficient, and rich-club coeffi-
cient. We provide the average values of the statistical
distances and the standard deviation around the aver-
age over the 10 topologies generated by each topology
generator. When no deviation is shown, it was < 0.01.

Table 2: Statistical distances for Chinese vs.
synthetic topologies.

Node degree Neighbor connectivity

KS KL KS KL
distance divergence distance divergence

Waxman 0.27±0.07 0.6±0.1 0.75±0.03 27.4±4.1
BA 0.12±0.03 3.5±1.8 0.74±0.07 18.4±8.1
GLP 0.24±0.08 0.64±0.31 0.41±0.08 1.18±0.72

PFP 0.17±0.04 1.45±0.48 0.51±0.07 0.85±0.25

Clus. Coefficients Rich-Club Coefficients
KS KL KS KL

distance divergence distance divergence

Waxman 0.61±0.03 22.31±4.5 0.22±3.5 4.2±2.8
BA 0.65±0.1 13.5±5.2 0.28±0.01 2.78±1.4

GLP 0.31±0.05 1.08±.6 0.26±0.04 0.34±0.19
PFP 0.32±0.11 0.34±0.14 0.12±0.01 0.11±0.02

Both statistical measures globally confirm the visual
inspection of Section 7.2: more recent topology gener-
ators produce topologies whose properties are closer to
the observed topologies. Table 2 provides the KS and
KL results for topology generators against the Chinese
topology for the four chosen topological metrics. Topol-
ogy generators do not show improvement for the node
degree. However, for the other three metrics succes-
sive topology generators do show improvement. Over-
all, the PFP and GLP model both have small relative
distances to the Chinese dataset, due to the small size
of the dataset, the presence of high degree nodes and
fewer inter-AS connections.

Table 3 displays the results of the statistical measures
for results against the Skitter topology. We observe a
particularly good match of the node degree distribu-
tion by Inet. PFP outperforms all other topology gen-
erators for the clustering coefficients and the rich-club
coefficients, consistent with the visual inspection.

Statistical distances for RouteViews (Table 4) show
that Inet again better matches the node degree distribu-
tion. GLP and Inet both perform better than other gen-
erators for neighbor connectivity. PFP performs better
than the others on the clustering coefficients. On the
other hand, none of the generators manages to obtain a
close distance for the rich-club coefficients. In Figure 5,
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Table 3: Statistical distances for Skitter vs.
synthetic topologies.

Node degree Neighbor connectivity
KS KL KS KL

distance divergence distance divergence

Waxman 0.54±0.04 2.27±0.15 0.99±0.01 44.48±0.08

BA 0.41±0.02 17.1±2.6 0.99±0.01 44.7±0.25
GLP 0.31±0.06 17.42±4.1 0.31 2.16
Inet 0.075±0.02 4.13 0.40±0.02 1.82±0.31

PFP 0.13±0.03 18.2±2.31 0.13±0.05 18.2±2.21

Clust. Coefficients Rich-Club Coefficients

KS KL KS KL
distance divergence distance divergence

Waxman 0.91±0.02 40.62±1.2 0.2±0.05 6.75±1.3
BA 0.9±0.05 44.62±0.12 0.37±0.09 7.34±1.21

GLP 0.7±0.02 19.12±1.8 0.3±0.01 4.34±.45
INET 0.74±0.01 11.34±1.23 0.25 3.82±0.2
PFP 0.09±0.02 0.59±0.19 0.03 0.91±0.14

Table 4: Statistical distances for RouteViews vs.
synthetic topologies.

Node degree Neighbor connectivity
KS KL KS KL

distance divergence distance divergence

Waxman 0.5±0.03 50.77±0.01 0.94±0.01 42.68±0.25
BA 0.2±0.02 50.74±0.01 0.94±0.01 42.91±0.34
GLP 0.18±0.03 50.73±0.01 0.12±0.02 0.1±0.02

Inet 0.07 9.92 0.23±0.02 0.2±0.01
PFP 0.11±0.03 50.7 0.62±0.02 1.25±0.07

Clust. Coefficients Rich-Club Coefficients
KS KL KS KL

distance divergence distance divergence

Waxman 0.83±0.05 39.4±1.2 0.97 42.23±0.43

BA 0.96±0.01 44.08±0.21 0.97 43.07±0.6
GLP 0.58±0.02 12.9±0.65 0.96 40.7±0.9
INET 0.39±0.01 1.35±0.2 0.93 34.18±1.1

PFP 0.32±0.06 0.21±0.03 0.92 27.4±2.45

Inet seemed to be close to RouteViews for rich-club co-
efficients, but this is not supported by the statistical
distances. The behavior for rich-club connectivity is
surprising, especially for PFP which is highly biased
towards reproducing rich-club connectivity. We believe
this is due mainly to the addition of many extra peering
links in this dataset, which was not captured by model
designers.

Statistical distance results for UCLA (Table 5) reveal
a more complex picture. For node degrees, no genera-
tor seems to outperform the others, although Inet does
perform worst. GLP, Inet and PFP perform equally
well on the neighbor connectivity. For clustering coeffi-
cients and rich-club connectivity, Inet and PFP perform
better than the others.

Visual inspection of Section 7.2 seemed to suggest
that each successive topology generator introduced im-
provements in their matching of observed AS topolo-
gies. Waxman and BA perform poorly both in visual
inspection and in the statistical distances. The KL di-

Table 5: Statistical distances for UCLA vs. syn-
thetic topologies.

Node degree Neighbor connectivity
KS KL KS KL

distance divergence distance divergence

Waxman 0.52±0.01 1.33±0.9 0.99±0.01 46.31±1.3

BA 0.17±0.03 2.15±0.8 0.99±0.01 46.42±0.7
GLP 0.18±0.05 2.21±0.7 0.32±0.03 0.63±0.04
Inet 0.2±0.02 5.34 0.29±0.01 0.41±0.01

PFP 0.12±0.03 2.17±0.8 0.48±0.05 0.83±0.21

Clust. Coefficients Rich-Club Coefficients

KS KL KS KL
distance divergence distance divergence

Waxman 0.93±0.02 44.2±0.34 0.31 14.5±4.32
BA 0.99±0.01 45.42 0.5 14.32±2.3

GLP 0.82±0.01 33.32±0.9 0.42±0.01 8.9±1.2
INET 0.38±0.01 0.53±0.01 0.13 2.85±0.12

PFP 0.38±0.02 0.79±0.15 0.16 3.23±0.4

vergences clarify the difference of the two distributions
across all the values and hence minimize the effects of
local differences at certain values.

Our statistical measures show that apparent visual
closeness of two distributions does not mean close dis-
tance in distributional terms, due partly to the use
of logarithmic scale axes. Improvements in successive
topology generators are not consistent across all metrics
and across all observed topologies. Nonetheless, most of
the time the most recent generators, Inet and PFP, do
outperform the other topology generators. This indi-
cates that more attention should be given on capturing
the effects of peering links in the core and at the edge
of the AS topology, as this is the significant difference
between these two generators and the older Waxman
and BA generators.

8. MULTIPLE VANTAGE POINTS
The previous section studied in detail how well topol-

ogy generators capture the properties of observed AS
topologies. In this section, we will argue about why
topology generators capture different propeties of ob-
served AS topologies with varying degrees of success.
To that end we examine the impact on the metrics of
the number of vantage points from which BGP data is
collected. For our analysis we collected BGP data from
over 40 RouteViews peering points, for a period of 6
months from May 2007. This time period was chosen
to be the same as that used to build the UCLA dataset.

Zhang et al. [36] also examine the impact of the se-
lection of route monitors on topology visibility and the
consequences on AS relationship inference and AS-level
path prediction. They analyze a range of monitor se-
lection schemes and their influence on the number of
observed links as well as network properties. They sug-
gest that the accuracy of AS relationship inference may
decrease as the number of monitors increases, and go on
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to quantify the improvements in identifying AS relation-
ships and anomaly detection in the data. In contrast,
our work focuses on understanding the underlying ef-
fect placement of vantage points has on inferring both
the network topology and its associated dynamics. We
are also interested in examining the distortion of local
topological properties by using a different number of
vantage points.

Table 6 shows the values of the topological metrics
the same way as in Table 1, for AS topologies obtained
from different numbers of observation points. When
comparing the AS topologies using 1 and 10 observa-
tion points, we see a significant increase in the number
of nodes and links. Hence, one might also expect a
significant difference in the other metrics, and indeed,
the maximum node degree almost triples and the num-
ber of fully-meshed nodes almost doubles. As a conse-
quence, the size of the core increases, indicated by the
maximum coreness value. In turn, the number of short-
est paths crossing the core also increases as indicated
by the maximum betweenness. On the other hand, we
see that going from 1 to 10 observation points slightly
decreases the value of the clustering coefficient. Most
probably this is because with 10 observation points we
discover more of the core than the edge of the network,
which does not contribute to increase the overall value
of the clustering coefficient. With 25 or more observa-
tion points the links on the edge of the network are also
discovered, contributing to the increase of the value of
the clustering coefficient. This behavior is confirmed by
a slight decrease of the value of the maximum between-
ness from 10 to 25 observation points.

Preferential attachment models originate in the be-
lief that small ASs tend to connect to large upstream
ASs, leading to a disassortative network. Although the
value of the assortativity coefficient is negative for the
AS topology, it is not affected by an increase in the
number of observation points. The links added by in-
creasing the number of observation points seem to be
neutral for the assortativity of the AS topology. One
implication is that the links that can be discovered by
using more observation points do not preferentially in-
terconnect ASs of any particular degree. We conjec-
ture that this is due to the type of peering relationships
that are missed. If node degrees give an indication of
the likely type of peering relationship, then we suggest
that BGP does not preferentially miss peer-peer rela-
tionships, which are believed to be more difficult to ob-
serve that customer-provider ones [6].

We now turn in more detail to the effect of the num-
ber of peering points on four particular topological met-
rics (see Figure 8). The addition of observation points
mostly affects node degree distribution for high degree
nodes. As we increase the number of observation points,
we see that on average the neighbors of a node will have
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Figure 8: Comparison of effects of the number
of peering points.

a higher degree. However, this does not hold for nodes
whose neighbors already have high degrees (left part of
Figure 8. Those nodes correspond to stub networks con-
nected to very well interconnected upstream providers.
For the clustering coefficient, when moving from one to
several observation points, the difference is striking. For
all node degrees, the clustering coefficient significantly
increases. On the other hand, when moving from a few
peerings to many, the difference appears most for high
degree nodes. This illustrates the better observability of
links in the core compared to the edge of the network.
Rich-club connectivity confirms the previous observa-
tions in that adding a few observation points is enough
to discover the core links.

In this section we have illustrated the importance
of relying on a sufficiently large number of observation
points in order to properly capture the actual proper-
ties of the AS topology. Using only a few observation
points has led researchers to simplify the complexity
of the interconnection structure between ASs. The im-
proper AS topology on which researchers have relied has
caused the creation of topology generators that underes-
timate this interconnection structure between ASs. Our
results show that researchers must use rich datasets for
an accurate understanding of the Internet AS topology.

9. CONCLUSIONS
In this paper we evaluated the existing AS topology

generation models, by comparing them with several ob-
served AS topologies. For this evaluation, we relied on a
wide set of topological metrics and statistical measures
to carry our comparison as objectively as possible. Our
analysis revealed that:

• Increasing the number of observation points causes
deviation from strict degree power-law scaling. Ex-
isting topology generation models overemphasize
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Table 6: Comparison of AS topology datasets from multiple peering points.
Topology Nodes Links Avg. deg. Max. Top clique Max. Max. Assort. Clust. Max.

degree size betweenness coreness coef. coef. closeness

1 peer 17,952 34,617 3.86 980 4 35,069,182 9 -0.18 0.008 <0.01

10 peers 27,838 64,717 4.65 2,731 7 52,862,315 20 -0.18 0.007 <0.01
25 peers 27,885 67,659 4.85 2,808 7 49,798,002 25 -0.19 0.01 <0.01
All peers 27,924 70,064 5.02 3,371 7 70,142,726 30 -0.18 0.01 <0.01

the preferential attachment mechanism and the
resulting node degree distribution. The power-
law assumption is thus an artefact of incomplete
datasets, rather than a property of the AS-level
topology.

• In addition to clustering and centrality properties,
the highly meshed core of the Internet AS topology
must be considered in order to generate represen-
tative synthetic topologies.

• The successive improvements in topology genera-
tion models seems to result from improved avail-
able datasets. Knowing that incomplete datasets
were the cause for simplistic topology generation
models, we expect that the new generation of topol-
ogy models will take into account the insights gained
in this paper.

Our findings indicate that future work in this area
should consider the geographical extent of the AS graphs,
the AS sizes, multiple peerings between ISPs, policy
routing and topology dynamics. Future AS topology
generators should also permit the addition of metadata
such as peering relationships and relative importance of
nodes.
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